
Green Chemistry

PAPER

Cite this: Green Chem., 2020, 22,
3558

Received 27th January 2020,
Accepted 14th April 2020

DOI: 10.1039/d0gc00337a

rsc.li/greenchem

Transition-state rate theory sheds light on
‘black-box’ biodegradation algorithms†

T. M. Nolte, *a,b W. J. G. M. Peijnenburg, c,d T. J. H. M. van Bergen a and
A. J. Hendriksa

Biodegradation is a predominant removal mechanism for organic pollutants in the aquatic and ter-

restrial environment and needs to be determined to design ‘green chemicals’ amongst an increas-

ingly large set of industrial chemicals. Decades of research have been dedicated to producing bio-

degradation models, though improving those models has become problematic due to ‘black box’

models driven by incomparable or conflicting experimental results. In this study, we tested the

plausibility and applicability of an intuitive algebraic formula stemming from transition-state rate

theory. The formula is overarching, describing the pseudo first-order biodegradation rate constant in

terms of computationally easily obtainable electronic, steric/geometrical, energetic and thermo-

dynamic properties. Surprisingly, statistical evaluation using experimental data shows that the

formula performs equal to or better than established ‘black-box’ models. We interpret the properties

used, highlight the precise (inter)dependencies and discuss reaction- and diffusion-limiting mecha-

nisms. Altogether, the work shows the potential to improve our understanding of biodegradation via

‘first principles’: it helps to unravel the causal mechanisms of the chemical fate in complex matrices.

Amongst potential ramifications, this will enable a more precise and comprehensive environmental

risk assessment.

1. Introduction
1.1. Relevance

Understanding the fate and transformation of organic pollu-
tants is vital to evaluate their hazards posed by unwanted
exposure. Following the principles of Green Chemistry,
design of “less hazardous syntheses”, “benign chemicals”
and “degradation routes”,1 manufacturers evaluate potential
biotransformations of their chemicals during early
development.2–4 Since biodegradation is a predominant
removal mechanism for organic pollutants,5 chemicals man-
ufactured or imported in quantities over one ton per year
can only be registered6 if their ‘ready biodegradability’ is
evaluated.7 Laboratory tests8 provide such information.

However, testing is time- and resource-intensive,9 as evi-
denced by the body of existing and ‘to-be-registered’
chemicals.10–12

As an alternative, in silico methods such as quantitative
structure–biodegradation relationships (QSBRs)3,13–16 infer
biodegradation from molecular characteristics. As such,
QSBRs are helpful (as alternative data6) to handle chemical
libraries and enable screening.10,17 Many empirical models
predict the biodegradability in aquatic media15 such as
Biowin, CATALOGIC and VEGA.16,18–20 Undoubtedly, they con-
tributed to our understanding, but drawbacks remain. QSBRs
may apply to specific media/inocula,21 e.g. wastewater/
sludge,22,23 sediment or surface water,15 only. Low
precisions24–26 (e.g. a factor 5 error27) according to the OECD
(The Organisation for Economic Co-operation and
Development) standards28,29 or semi-quantitative/categorical
(e.g. 28-day pass) predictions can be involved. QSBRs have
fundamentally limited applicability30 (e.g. hydrocarbons
only31) and become less comprehensive as the number of
descriptors increases and when the (non-linear) algorithm
does not visibly correspond to an underlying process.27

Conversely, for only substituted benzenes31 or hydro-
carbons,32 interpretation is more straightforward. Apparently,
more precise values relate to ‘first principles’ modelling of
in situ biodegradation kinetics.
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1.2. Theory

Many processes affect the potential and the kinetics of
biodegradation,23,33,34 wherefore tests are often ‘inadequately’
standardized. Indeed, limited information on the media and
inocula may be available3,21,35 which hampers model
improvement.3,22,36–38 We can expect that after accounting for
many such test-specific phenomena, the ‘intrinsic biodegrad-
ability’ of chemicals becomes apparent.23,27,39–42

Such an ‘intrinsic biodegradation rate’ might not entail
information on microbial processes: adaptation, active
transport,43,44 the involvement of medium (pH; organic
carbon), nutrients,45 and back-transformation46 (i.e. the
factors are either non-existent, or constant for all chemicals).
We might also assume no toxicity (e.g. under μg L−1 concen-
trations27), meaning a constant active (catalyzing) biomass.33

We can also consider a constant influence of temperature on
transport and (facilitated) diffusion.47,48 If the data meet these
conditions, the biodegradation process is pseudo first-order:

biodegradation rate ¼ kb � ½active biomass� � ½substrate� ð1Þ
The biodegradation rate constant kb (eqn (1), taken in L per

cell per h) relates to e.g. the size, and the steric and electronic
aspects of the substrate chemical.3,27,49 Qualitatively, such
molecular characteristics are embedded in kb via ‘some’ func-
tion f ():

kb ¼ f ðavailability; accessibility; affinity; reactivity;…Þ ð2Þ
This function f () is notoriously complex. For example, it is

difficult and laborious to determine a-priori the details of
the biotransformation energy landscape (Fig. 1) for
structurally diverse chemicals.50–53 Since f () is too complex, we
simplify.

Biodegradation rate constants may be near the diffusion
limit in water or viscous cytosols in case microbes can evolve
and/or adapt.54,55 If so, rate constants for diffusion-limited
and reaction-limited reactions are in the same order of magni-
tude.‡ For low concentrations, e.g. ≤0.1 mM, substrate–sub-
strate interactions are negligible.56 Also, various enzymes have
similar accessibilities, e.g. in case the chemical is much
smaller than the active site.57 Thus, we can treat the diffusion
frequency58 as a uniform factor for each chemical based on its
dimensions, taking a certain (constant) diffusion pathway
length. Then, the diffusion frequency becomes a product (·)
function59–61 and we can quantify f () and characteristics (in
eqn (2)) to:60

kb /
Xi
i¼1

Di�j � di�jΛ
� ��1�Pi�j � e

�ΔG‡
i�j

RT

 !
ð3Þ

In eqn (3), D is the diffusion coefficient (Å2 s−1), d is a
characteristic distance (Å) that depends on the trajectory of the
substrate chemical towards the active transformation site and
Λ is the DeBroglie wavelength (Å). ΔG‡ is the activation energy
(J mol−1), T is the temperature (K), R is the ideal gas constant
(J mol−1 K−1) and P is a partition function describing thermo-
dynamic equilibrium (dimensionless). The indices i and j are
the active sites of the biotransformation in a functional group
(see the ESI†) of the molecule, and bacteria/enzymes,
respectively.

Taken together, the pre-exponential term in eqn (3) may be
regarded as the frequency factor Ai–j = Di–j/(di–jΛ) (in s−1 for the
1st order reaction) in collision theory.58 Similar derivations
exist for abiotic reactions60 and for conversion of biomass.62

The terms in eqn (3) broadly correspond to the qualitative
characteristics in eqn (2). The dashed blue lines in Fig. 1 visu-
alize the terms as related to the complex biodegradation
mechanism (solid black lines). The blue circles illustrate the
effective distances between the substrate chemical (S) and
enzyme (E).

The aim of this paper is to test the plausibility of eqn (3)
and the assumptions associated. We do this by evaluating the
individual contribution of the terms in eqn (3) to kb and for
this purpose selected characteristics describing the diffusion
process and the thermodynamics. We combined these into fre-
quency factors A and activation energies ΔG‡ and indepen-
dently correlated them with experimental kb (section 2.1) and
(in the case of gaps) QSBR-derived kb values (section 2.2).

Fig. 1 Schematic representation (dashed lines) of the biodegradation
mechanism (solid lines) in energetic and spatial dimension. The term d�P

D

describes the size of the dashed blue boxes and characterizes the
inverse diffusion frequency factor (the size of the circle’s light blue
areas), and ΔG‡ is the activation energy. Dark blue circles denote the
chemical substrate S and enzyme E (not to scale).

‡A median kcat/KM ∼ 5 × 105 M−1 s−1, kcat/KM (“diffusion-controlled”) = 106–109

M−1 s−1 (Bar-Even et al., 2011) and diffusion (Smoluchowski) limit ∼1010 M−1 s−1

(Schurr and Schmitz, 1976) have been reported at room temperature. This
amounts to thermodynamic (reaction) and diffusion barriers of 2–19 kJ mol−1

and 6–23 kJ mol−1, respectively.
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2. Methods
2.1. Collection and curation of experimental kb values

To maximize the validity of eqn (1) and the likelihood of a con-
stant (active) biomass, we made a selection of biodegradation
data. Details on data selection are described in S0† and else-
where.27 Focusing on primary aerobic biodegradation, we
excluded tests and chemicals implying partial or full reductive
biodegradation (e.g. inocula obtained from anaerobic sedi-
ments incubated with nitro (–NO2) group chemicals). We
excluded hydrolytically (abiotic) unstable chemicals (Fig. S9†),
with the exception of sterically hindered and aromatic esters.

We pooled the dataset with that of previous studies27 to
widen the chemical diversity by including molecules entailing
the steric and electronic aspects known to affect bio-
degradation in general.3,27,49,63 Noteworthy new inclusions are
herbicides and pharmaceuticals. The chemical structures pre-
sented a wide range of properties (Table 1); the structural
diversity of the molecules is high, e.g. ∼8 and >1 orders of
magnitude in KOW and volume, respectively (Fig. S1†).

The dataset contained a set of 550 unique chemicals,
Fig. S1.† The data were corrected for sorption to organic
carbon and converted to a pseudo first-order rate constant
(eqn (1)) taking a biomass of ∼108 cells per L.27 A unit of L per
cell per h was chosen to allow implementation for different
biomasses. The values for log(kb) (kb in L per cell per h) range
from −13 (perfluorooctanoic acid) to −8.5 (acetaldehyde) and
the median value for log(kb) is −10.5 (equivalent to a DT50 ∼ 2
weeks in surface water).

2.2. Generation of QSBR-predicted kb values

Speciation states were manually adjusted taking pH = 7 and
experimental (Drugbank; Pubchem) or predicted66 pKa as the
starting point. The 3D structures of the molecules were opti-
mized using OpenBabel. 5000+ chemical descriptors were cal-
culated by common packages such as Chemopy, PaDEL65,67–70

and RDKit71 via SMILES input to the web-based platform
Online Chemical Modeling Environment.65 As descriptors can
capture similar molecular characteristics (i.e. are intercorre-
lated), we grouped highly intercorrelated descriptors (R2 >
0.95).72

We split the dataset randomly between training and testing
sets (3 : 1). Based on previous studies,27,73,74 we selected a
random forest regression (RF-R) algorithm75 with 10 trees with
infinite tree depth for the development of a QSBR model. The
RF method links descriptors to an endpoint in a non-linear

way, suitable in the case of heterogeneous data and complex
endpoints,76 Fig. 2:

We evaluated the accuracy of the QSBR-predicted values via
(1) external testing, (2) leave-5-out cross validation,28,77 and (3)
comparison with CATABOL78 predictions. We evaluated the
stability using different (random) training/testing data splits.

2.3. Characterisation of A and ΔG‡

Custom descriptors were calculated via MOPAC, Chemopy,
ChemAxon and Molinspiration65,67–70: surface area, accessible
surface area, volume,79,80 the octanol–water partitioning coeffi-
cient (KOW) and parameters encoding electronic aspects:
EHOMO and atom-specific (i, eqn (3)) delocalizability (δ)
indices.23,81–85 S2† describes detailed calculations of custom
descriptors. We first screened the descriptors for their individ-
ual relevance, and then used them to calculate D, d, P (which
in turn are used to calculate A) and ΔG‡ (eqn (3)). S2† provides
a theoretical underpinning of eqn (3) and its terms.

Changing a single term in eqn (3) can automatically affect
one or more of the other terms (inter-correlations). For this
reason, we evaluate the (contribution of) characteristics in eqn
(3) with respect to kb orthogonally (independently): vary one
characteristic while keeping the other constant. For this
purpose, we defined ‘similarly reactive chemicals’ and ‘simi-
larly diffusive chemicals’ here as chemicals for which there is
no variation in the terms eð�ΔG‡

i�j=RTÞ and A, respectively (eqn
(3)). We also defined ‘electron-rich’ chemicals as those con-
taining only C, H or O atoms, or a combination thereof
(excluding e.g. N or halogen atoms).

Table 1 The diversity of the chemicals considered in this study’s QSBR

Property
log(KOW,
pH = 7)

log(V)/
log(Å3)

EHOMO/
eV log(S)b

Formal
charge

Range (N = 550) −4 to 4a 1.4 to 2.8 −13 to −8 −6 to 1 −3 to 2

a For 95% of the data (Fig. S1†).64 bNo units provided.65 KOW = octanol
water partitioning coefficient; V = volume; EHOMO = the energy of the
highest occupied molecular orbital; S = water solubility.

Fig. 2 Simplified representation of the random forest regression tree.
The input feature space is given by v = (x). x are the descriptors and kb is
the dependent variable. v is used during training to optimize parameters
(nodes + connections) in the tree. Confidences associated with different
nodes increase from the root (top) to the leaves (bottom). Mathematical
details in ref. 75.
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3. Results and discussion

Frequency factors A and activation energies ΔG‡ were success-
fully related to molecular characteristics. Via A and ΔG‡ (eqn
(3)), we can differentiate between diffusion-limited and reac-
tion-limited biodegradation. The differentiation has previously
been made theoretically86 and used to describe abiotic reac-
tions.87 Fig. S7 and S8† depict substances with higher kb
values than expected only on the basis of reactivity and A.
These chemicals are polar and charged; charge inhomogeneity
is known to affect e.g. active uptake.27,88 The regressions with
kb values show appreciable statistical significance: depending
on the degradation regime, eqn (3) explains 58–76% of the var-
iance in the log(kb) values. This is comparable to the results
for ‘conventional’ or ‘black-box’ QSBR methods (50–80%) and
meets regulatory requirements (R2 > 0.510,16,89,90). This shows
that eqn (3) can compete with more complex methods, and
implies that eqn (3) can be used as a basis to further improve
our understanding of biodegradation in environmental
matrices. Details are described below.

3.1-1. Diffusion-limited biodegradation (A)

A regression was performed for electron-rich, ‘similarly reactive
chemicals’ for which the term eð�ΔG‡

i�j=RTÞ � 1 (eqn (3)). Then,
we obtained a reasonable fit between kb and A (Fig. 3). Fig. S7†
shows additional relationships. The regression coefficient (R2)
for ‘similarly reactive chemicals’ (closed black symbols) is
higher as compared to the regression coefficient for all chemi-
cals considered simultaneously, Fig. 3. Fig. 4 depicts similar
results. The offset of the regression is lower for heterogeneous
chemicals (entailing diverse functionalities, e.g. multivalent

charges and heavy atoms): we observe structurally higher kb
values e.g. ‘electron-rich’ linear ethylene glycol oligomers
(Fig. 4; S6B†). Ribose analogs and amino acids (i.e. natural
substances) have even higher kb values than on the basis of A
(Fig. 3; S7† and regressions with individual characteristics in
Fig. 4). The inclusion of multiplicity (number of equivalent
functional groups, Σi term in eqn (3)) did not visibly contrib-
ute to a better fit.

The relationship between kb/P (excluding ‘natural sub-
stances’) and the frequency factor A indicates (Fig. 3) that the
biodegradation of ‘similarly reactive’, electron-rich chemicals
is diffusion-limited (eqn (3)). In other words, diffusion estab-
lishes the upper limit for kb. We note that an upper limit can
be set also by active uptake.

3.1-2. Individual geometrical characteristics

According to eqn (3), the frequency factor A consists of the
diffusion coefficient (i.e. via V), the partitioning function
(∼KOW) and accessibility (i.e. d ) (eqn (3); SI2†). The results
from the regression of kb values with individual geometric
descriptors are given in Fig. 4-1. Based on the results in Fig. 4-
1, we transformed the kb values according to eqn (3). For
example, the ‘scaling exponent’ for V involving the trans-
formed values is −0.8 ± 0.1 (kb·d·P

−1 ∝ V−0.8±0.1, Fig. 4A-2),
which agrees with previous studies.91–93 In analogy, when cor-
rected for hydrophobicity, the permeabilities for larger pene-
trants (diameter ≳0.6 nm) follow the Stokes–Einstein relation
for diffusion (D ∼ cV−1/3 with c being a geometry dependent
factor).93 The ‘pure’ scaling exponent for volume is −2.0 ± 0.1
(kb ∝ V−2.0±0.1) for ‘similarly reactive chemicals’ (−1.4 ± 0.4, i.e.
kb ∝ V−1.4±0.4 for all chemicals). Since diffusion constants scale
to V with exponents of ∼−0.8 (kb ∝ V−0.8) depending on the
penetrant and the barrier,61,79,93–95 the regression between
volume and kb suggests a double relationship (kb ∝ (V·V)−x).

On the basis of V only, we observe certain outliers. Their
‘low’ kb values are explained likely by steric inhibition (bulky
group, e.g. neopentane). However, when alternative sites for
microbial attack are present, the relative values for kb increase
as a function of distance from the bulky group (Fig. S4†). In
other words, when the molecule is longer (e.g. having a linear
alkane/glycol tail group), the inhibition is less pronounced
(Fig. S4†). The calculated values for ‘relative accessibilities’, i.e.
d values, range from 1 Å to 4 Å. Fig. 4C-1 and C-2 show the
results of regressions. Strictly, d is a characteristic distance
that depends on the trajectory of the substrate chemical
towards the active site (eqn (3) and Fig. 1). Relevant distances
vary between the type of enzyme and substrate: rate-limiting
forming/breaking of bonds occurs over distances of 1.5 Å to
3.5 Å (ref. 96–98) and cutoff values for diffusion through mem-
branes and cell wall pores are 1–2 Å (ref. 99) and 4–20 Å,100,101

respectively. One expects that, if a reaction is possible at all,
the distance d is larger upon incorporation of a bulky group
(confirmed by the negative slope in Fig. 4C).

V is also interrelated with KOW, Fig. S5.† Thus, the incorpor-
ation of extra functional groups affects P. When corrected for
the diffusion coefficient D and ‘accessibility’ d, we find

Fig. 3 The relationship between log(kb/P) and the frequency factor, log
(A). Solid black circles are ‘similarly reactive’, electron rich chemicals
eð�ΔG‡

i�j=RTÞ � constant � 1, R2 = 0.63. Open gray circles are all chemicals
considered in this study (R2 = 0.16). Dashed lines indicate 95% confi-
dence intervals (2σ).
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Fig. 4 Biodegradation versus log V, log P (i.e. log KOW) and logarithm of the characteristic distance log d for non-transformed (4-1) and transformed
log kb (4-2) values. Solid black datapoints denote ‘similarly reactive’ chemicals. P is calculated via KOW for the species at pH = 7. Error bars denote
prediction uncertainty (1σ). Symbols denote different ‘families of structurally similar chemicals’ (Fig. S6†), e.g. ethylene glycol oligomers. R2 =
0.7–0.8 (class-specific regressions).
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kb·d·D
−1 ∝ KOW

0.1 (Fig. 4B-2). In comparison, octanol contains
∼3 (∼0.5 in log units) times as much carbon (608 g L−1) than
does a bacterium (∼220 g L−1) though not all hydrophobic
patches are near a catalytic center. Class-specific relationships
exist, e.g. kb ∝ KOW

0.9±0.2 for linear ethylene glycol oligomers,
and kb ∝ KOW

−0.2±0.1 for linear alkanes. P (via KOW) does not
explain any of the observed variance in kb (R2 = 0.02, open
symbols in Fig. 4B-1) for all chemicals considered simul-
taneously. In comparison, both positive and negative relation-
ships have been reported, e.g. Kprotein/water ∝ KOW

0.46–0.70 (ref.
102) and VMAX ∝ KOW

−0.35±0.09 (with VMAX in μmol min−1

mgPROTEIN
−1 for aldehyde dehydrogenase activity),80 depending

on the limiting factor.54

The influence of diffusion on biodegradation has previously
been documented for specific chemical classes, shapes, and
biotransformation pathways via surface area,27,32 weight,22 van
der Waals radii,103 or geometrical descriptors.80 Taken
together, electronic, steric, electrostatic, and/or hydrophobic
factors determine kb values, thereby affecting the observed
scaling factors with individual geometric descriptors. Despite
the correlations, many kb values are lower than expected based
on geometrical descriptors alone (open gray symbols, Fig. 3;
4). This implies that kb values can (also) be reaction-limited,
section 3.2.

3.2-1. Reaction-limited biodegradation (ΔG‡)

For ‘similarly diffusive’ chemical classes A is approximately a
constant factor (see eqn (3)), such as benzene analogs. The
benzene analogs and alkanes in Fig. 6B and A undergo aro-
matic ring-hydroxylating dioxygenation (Scheme 1B)104,105 and
monooxygenation,104,106 respectively. Thus, determination of
the ‘effective’ ΔG‡ for distinct pathways such as C–N cleavage
(Fig. 6C and Scheme 1A), hydroxylase, dehalogenation and de-
carboxylation (Fig. 7 and Scheme 1C) probably requires separ-
ate consideration.23,104 Surprisingly, the same reactivity para-
meters describe biodegradation in surface water and in waste-
water (Fig. 6B; D).

Energy curve descriptors relate to many (a)biotic
reactions:15,107,108 reactivity indices have been used to detect
susceptible atomic sites of molecules sensitive to biotic23,81,83

and abiotic109,110 modifications; biodegradation of amides and
anilides in ponds relates to the wavenumber (stretching
vibration) of each carbonyl group, indicating that the cleavage
of the amide bond is rate-limiting;111 for polycyclic aromatics
potential energy curves might especially be important.112

Reactivity parameters may be co-linear with shape-steric and
charge distribution parameters used to describe mono- and
dioxygenation and the uptake of neutral chemicals.§ 27

Nevertheless, the combined results indicate that ΔG‡ can be
approximated via individual reactivity characteristics. Fig. 5 shows

energy curves for distinct transformations, wherein the maximal
y-amplitudes of the colored solid lines represent ΔG‡ values.

3.2-2. Individual reactivity characteristics

The results from regression between kb values and individual
reactivity descriptors¶ are given in Fig. 6 and 7. E.g. Fig. 6A
and B show a relationship between atom-specific delocalizabil-
ity, δ(i), and kb for linear alkanes and benzene analogs, respect-
ively. Delocalizability is a measure of the relative energy stabi-
lization due to electronic redistribution caused by a reagent at
a specific site.85,113 Nucleophilic delocalizability, δn(i), relates
to C–N cleavage23 in wastewater and dehalogenation81 in sedi-
ments. Hydrogen atom abstraction from a (R–H) substrate by
high-valent iron-oxo (FenvO) species of the P450 complex gen-
erates a substrate radical and a reduced iron hydroxide, [R• +
Fen−1–OH]. This caged radical pair then evolves on a compli-
cated energy landscape through a number of reaction path-
ways.114 It is plausible that at least 1 of these pathways involves
a delocalization of electrons.

The relationship for dioxygenation mechanisms (Scheme 1,
reaction B) aligns with those for mono-oxygenation mecha-
nisms, although the influence of δ(i) is ∼10× larger for aro-
matic chemicals (Fig. 6A; B). The curve (parabola for a harmo-
nic oscillator approximation) of aromatics for an excited state
complex [E − S]* (Fig. 5) lies lower than the energy curve for
aliphatic chemicals. Thus, stabilization through delocalization,

Fig. 5 Simplified energy curves of the enzyme–substrate systems.
Black parabola: ground state (reactants), dashed parabola: excited/
charge transfer state (left) and reaction products (right), resp. Vertical
positions of the parabola affect the intercepts, ΔG‡ values. ΔΔGδ and
ΔΔGr describe vertical positions of [E − S]* and [E] − [S’] parabolas, resp.
(E = enzyme, S = substrate). Solid curves indicate the implied energy
landscapes. Colors exemplify chemicals with high/low ΔGr and ΔGδ.

§Within classes of chemicals, delocalizability δ indices are also co-linear with
frontier orbital energies (EHOMO − ELUMO, ELUMO) and parameters such as polar-
izability, superdelocalizability, and hyperpolarizability which might refine
results.

¶The descriptors ‘delocalizability’ δ and EHOMO were selected based on their %
explained variance in the data. Altogether, the descriptors characterize the
apparent activation energy ΔG‡ = f (δ, EHOMO) term in eqn (3).
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ΔGδ(i), in the transition state is more likely ([E − S]* in
Scheme 1B (left arrow) for aromatics. Thus, the relative influ-
ence of δ(i) on ΔG‡ appears larger.

The outliers in Fig. 6A include neopentane with lower
values of kb than expected on the basis of δe(i) only. Outliers in
Fig. 6A can be attributed to a low value for A (section 3.1). In
Fig. 6B, outliers such as trifluorotoluene (kb is 100 times lower

than expected, Fig. 6B) can also be explained by electronic
factors, i.e. the ionization potential (IP) is 0.5 ± 0.3 eV higher
compared to the chemicals in the regression. Illustratively, we
found a relationship between kb and EHOMO (≈−IP) for carboxy-
lates, Fig. 7. The factor 0.5 ± 0.3 eV implies a factor difference
in kb of 10 ± 5 (based on non-phenomenological LFER
behavior110).

Fig. 6 Biodegradation rate constants versus delocalizability δ(i) (δ(i) ∝ ΔG‡(i − j )). Error bars indicate uncertainty associated with QSBR-predictions
(top) and data conversion (bottom). Top: log(kb) for surface water vs. electrophilic delocalizability for functionalized linear alkanes (A) and benzene
analogs (B). We took delocalizabilities as minimum values on aliphatic (A) and maximum values on aromatic carbons (B), i. Dashed lines indicate 95%
confidence intervals (2σ). Outliers include trifluorotoluene and trichlorotoluene (B). Bottom: kb for wastewater (N-containing chemicals in C and
monocyclic aromatics in D) vs. nucleophilic and electrophilic delocalizability, figure reproduced with permission ref. 23.

Scheme 1 Simplified reaction schemes for amine dehydrogenase (A, carbon–nitrogen bond), dioxygenation (B, sp2 carbon–hydrogen bond) and
decarboxylation (C, carbon–carbon bond). For each arrow in the schemes an enzymatic step is involved.
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EHOMO explains 40–50% of the variance in kb values for car-
boxylates (Fig. 7). On the basis of EHOMO, trifluoroacetate and
oxalate are expected to have a low and high kb, respectively. In
general, frontier orbital energies have been used widely to
describe biodegradation,22,32,112 as well as
biotransformation.80,84 The relation between kb and EHOMO

characterizes a linear free-energy relationship (LFER) on the
basis of ΔGr,

115,116 in which the thermodynamic driving force
is oxidative. Note that if the delocalization energy is constant
(blue and green [E − S]* parabola in Fig. 5), we return to LFER
behavior based on ΔGr (e.g. via EHOMO), right black arrows.

In decarboxylation, the carboxylate can undergo electron
transfer with a suitable partner (oxidant). During this process,

the carboxylate is oxidized to an acyloxy radical, which sub-
sequently fragments to yield an alkyl (or alkylaryl) radical and
CO2 (Scheme 1C). (Photo)chemical variants of this reaction
have been examined.117,118 EHOMO (Fig. 7) illustrates the rele-
vance of the first step of the mechanism. Tricyanoacetate did
not adhere to the LFER (Fig. 7; S8A†). We note that free ener-
gies are susceptible to solvation,116,119 which might refine
relationships.110 Outliers might be expected in the case kb
entails (also) a reductive pathway, such as for nitriles or
amines (Scheme 1A).

3.3. Comparison of eqn (3) with existing methods

In an attempt to characterize the relative accuracy of the pre-
dictions via eqn (3), we applied additional techniques: statisti-
cal evaluation of an RF-QSBR model is given in Fig. 8; a vali-
dation via comparison with CATABOL (Fig. S2†) and Biowin
(Table 2). RF-QSBR has R2ext = 0.66 ± 0.05, and root-mean-
squared error (RMSEext) = 0.53 ± 0.03.

The explained variance of RF-QSBR (R2 ∼ 0.66) is compar-
able to that by means of eqn (3) (0.58–0.76). In contrast, the
RMSE differs significantly (∼0.53 and 0.22–0.46, resp.). We
attribute this to the inclusion of ‘exotic chemicals’ in the train-
ing set for the RF-QSBR, which virtually do not biodegrade:
siloxanes, inorganics or chemicals with high degrees of halo-
genation/low carbon content. Previously, Arnot et al. correlated
the output from different Biowin versions to aerobic half-lives
of 40 chemicals, giving R2 = 0.58–0.78.120 For CATABOL, R2 =
0.69.121 The values are similar to eqn (3) and the RF-QSBR
(Table 2), though one might argue that there are differences in
the applicability domain. To our knowledge, there is no con-
sensus on which is the most reliable experimental dataset to
develop/test biodegradation models.3,36,37,49,122 Thus, statisti-
cal parameters reflect both prediction uncertainty and varia-
bility due to test conditions.

Many QSBRs use non-linear methods: analogous to a RF
algorithm (Fig. 2), CATABOL simulates metabolism by a rule-
based approach.78 While little quantitative information can be

Fig. 7 Relationship between log-transformed kb values and the energy
of the electron pair on the carboxylate group. In most cases, this is equi-
valent to EHOMO, hence the x-axis title. Error bars denote prediction
uncertainty. Dashed lines indicate expected values based on LFER.110 kb
values were not corrected for P (S2†).

Fig. 8 A: Cross-validated (5-fold) values for calculated log(kb) versus experimental kb (R
2 = 0.62). B: Predicted log(kb) versus experimental log(kb), R

2

= 0.66. For training (A) and evaluation (B), 75% and 25% of the total dataset were used, resp.
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extracted, the more complex, non-linear structures might better
capture intermediate cases (combined diffusion- and reaction-
limited degradation) and additional phenomena. Phenomena
not incorporated in eqn (3) whilst incorporated in the RF-QSBR
and CATABOL may include differences in test conditions
needed for heterogeneous (dissimilar) chemicals (e.g. toxicity or
solubility), ion trapping,27,123,124 non-linear sorption, co-metab-
olism, size exclusion100,101 and a diversity of active uptake
routes for heterogeneous (dissimilar) chemicals.

3D structures of the active sites and the trajectories of
diffusion vary. This has implications for d and P (eqn (3)),
whose precise values are determined by the nature of the
optimal pathway towards the transition state, as influenced
also by the matrix’ geometric restrictions and interactions: the
size, form, accessibility, and the nature of surrounding amino
acid residues of a catalytic site are of greatest importance for
the binding specificity.48 Binding sites in related enzymes nor-
mally have related structures and cavities since evolution tends
to conserve structural features that are of importance to bio-
logical function, activity and specificity. Thereby, the rates of
transport and enzymatic transformation may be optimized
towards each other, making ‘intermediate cases’ plausible.
Variation in metabolic capacities seems reasonably small, even
for strongly differing microbial communities.125,126

4. Practical application and outlook

Herein, we highlighted statistical as well as mechanistic limit-
ations of the current empirical ‘black-box’ quantitative struc-
ture-biodegradation relationships. Such ‘fitting’ methods are
subject to differences in testing setup/conditions interfering
with the actual biodegradation ‘signal’, and allow ‘noise’ in
the statistical model. Alternatively, we sought to adapt/test
algebraic formations describing biodegradation in terms of
transition state theory. The results show that the algebraic for-
mulations do not necessarily perform less well than statistical
‘black-box’ methods. Given biodegradation as a crucial para-
meter in environment assessment, risks for ‘data-poor’ chemi-
cals can be assessed via these formulations.

Given the similarity in performances (Table 2), we hypothesize
that nodes in rule-based decision models (e.g. Fig. 2) reflect
chemical class-specific relationships, whose descriptors reflect the

terms in eqn (3). Mechanisms of biodegradation are not likely lin-
early dependent on (often inter-correlated) chemical character-
istics; eqn (3) helps to rationalize why non-linear models perform
satisfactorily. As the simultaneous presence of multiple bacteria,
enzymes, metabolic steps, uptake and reaction pathways can sub-
stitute and supplement each other, validation via heterogenic (e.g.
field) data will be challenging. Future study will need to adapt
and test the formulations for increasingly structurally exotic
chemicals as well as for anaerobic biodegradation.

Minimal parametrization of eqn (3) was necessary and
therefore, we find it plausible that the formulations have
better extrapolative capability. As a practical example, we
expect perfluorooctanoic acid (EHOMO, PFOA = −10.6 eV; APFOA =
0.05) and ‘large’ colloids such as humic acid (δ(i), HA = ∼−0.45;
AHA = 0.001–0.01) to be transformed with log kb, PFOA = −13.0.
(DT50 ∼ 10 years) and log kb, HA = −12.0–13.0 (i.e. 1–10 years) in
surface water, respectively. A larger extrapolation capacity
would allow for a more robust ‘green’ metric to design ‘new’ or
substitute chemicals or products. Therein, the potential for
biodegradation can be assessed during design.
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