Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide

Zhuang Wanga,*, Fan Zhangb, Martina G. Vijverb, Willie J.G.M. Peijnenburgb, c

a School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
b Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
c National Institute of Public Health and the Environment (RIVM), Center for the Safety of Substances and Products, PO Box 1, 3720 BA, Bilthoven, the Netherlands

HIGHLIGHTS

- This is the first study to explore synergistic effects of mixtures of carbon-based NMs associated with metal NPs.
- Exposure to GNPs and/or RGO induced enhanced cytotoxicity of nZrO2 to algae.
- Cellular oxidative stress and membrane functional changes led to toxicity increase.
- Mitochondria-generated ROS regulated treatment-induced cellular response.
- RGO induced more cytotoxic responses from algal cells than GNPs.

ABSTRACT

Novel products often have a multitude of nanomaterials embedded; likewise within many products graphite-based products are decorated with nano-zirconium oxide (nZrO2) because graphene is an ultrahigh conductive material whereas nZrO2 is for instance fire-retardant. As a consequence, the pristine/isolated nanoparticle has unique beneficial properties but it is no longer the only compound that needs to be considered in risk assessment. Data on joint toxicological implications are particularly important for the hazard assessment of multicomponent nanomaterials. Here, we investigated the mechanisms underlying the cytotoxicity induced by the co-occurrence of nZrO2 and two graphene nanomaterials including graphene nanoplatelets (GNPs) and reduced graphene oxide (RGO) to the freshwater algae Chlorella pyrenoidosa. Exposure to GNPs and/or RGO induced enhanced cytotoxicity of nZrO2 to the algae. Intracellular oxidative stress and cellular membrane functional changes in Chlorella pyrenoidosa were the reason for the enhancement of toxicity induced by the binary mixtures of GNP/RGO and nZrO2. Furthermore, mitochondria-generated ROS played a major role in regulating the treatment-induced cellular response in the algae. Observations of cellular superficial- and ultra-structures indicated that the binary mixtures provoked oxidative damage to the algal cells. RGO increased the cytotoxicity and the extent of cellular oxidative stress to a higher extent than GNPs. These findings provide new insights that are of use in the...
1. Introduction

Nanotechnology has been thoroughly incorporated into modern society, with industries producing increasing amounts of nanomaterials (NMs) for various purposes, including biomedical applications, electronics/telecommunications, agriculture, and renewable energy (Ma et al., 2015; Sohn et al., 2015; Sun et al., 2020). At present, graphene-based carbon materials (GCMs) are becoming popular because they have fascinating nanostructures and have exceptional properties (Peng et al., 2020). Environmental health and human safety of GCMs are critical requirements for their wide range of applications (Chen et al., 2020; Fadeel et al., 2018), and numerous studies have been conducted to probe the ecotoxicity of GCMs in the past few years (Castro et al., 2018; Freixa et al., 2018; Hu et al., 2015a; Nogueira et al., 2015; Pretti et al., 2014). It has been reported that GCMs can provoke toxic effects on numerous ecological species, e.g. green algae (Du et al., 2016; Hu et al., 2015b; Zhao et al., 2017), water fleas (Cano et al., 2017; Feng et al., 2015; Lv et al., 2018), and fish (Bangeppagari et al., 2019; Manjunatha et al., 2018; Zheng et al., 2019). Hence, GCMs represent a new and emerging class of pollutants for which relatively little is known about their effects in the environment.

Current studies on the eco-toxicity of GCMs are based predominantly on assessments carried out on individual materials (Chen et al., 2020; Marchi et al., 2018; Wang et al., 2019). Since products typically embed a multitude of NMs rather than being composed of one single NM, organisms, as well as the environment in which they reside, are exposed to a wide variety of substances. Koivisto et al. (2017) developed a library that contains the release data from nano-enabled products. The studies included in the library led to the conclusion that there is a lack of understanding of joint stress of multiple NMs. Koivisto et al. (2017) proposed to mimic the stress scenario by following standardized test procedures or by simulating the spray process in environmentally relevant and well-controlled conditions. The sampling of released fragments should be harmonized so that it can be linked to hazard assessment and further risk assessment. Once fragments from NM-products are released, their fate and possible subsequent NM release and transformation depend on the composition of the surrounding medium. In this regard, it is important to note that most toxicological studies are conducted on pristine NMs (Srivastava et al., 2015). Several studies have reported that NMs may interact differently with and within biological and ecological systems, which implies that deviations from additivity of the joint effects can occur. For instance, nano-TiO₂ was shown to reduce the impacts of nano-ZnO on the hatching of zebrafish embryos (Hua et al., 2016). What is more, the coexistence of nano-ZnO and nano-Fe₂O₃ induced synergistic cytotoxicity to Nitrosomonas europaea cells (Yu et al., 2016). Moreover, nano-SiO₂ and nano-TiO₂ synergistically triggered macrophage inflammatory responses (Tsugita et al., 2017). Limited studies on multiple NMs consisting of GCMs and other NMs indicated that the effects of NM mixtures are in general less than the summed effects of the individual NMs. For example, graphene oxide (GO) and nano-ZnO were antagonistic to Danio rerio, and GO contributed less than nano-ZnO to the joint toxicity (Ye et al., 2018). Likewise, the presence of GO reduced the bioavailability and toxicity of nano-ZnO in human A549 cells (Wu et al., 2019). Overall, these reports indicate that the toxic potential of multiple NMs can have impacts that deviate from additivity impacts; that is being the summed toxicity of individual NMs.

Nano-zirconium oxide (nZrO₂) is an emerging material with potentially extensive applications in amongst all ceramics, artificial jewelry, fire-retarding materials, optical storage, light shutters, stereo television glasses (Liu et al., 2016; Zhao et al., 2008). To date, most attention is focused on the interaction of nZrO₂ with GCMs, which provides an exciting new array of ideas and applications (Cho and Ko, 2013; Jafari et al., 2018; Sun et al., 2013; Zhou et al., 2016). Especially expanded (or exfoliated) graphite nano-platelets (xGnP) significantly outperform other forms of carbon in terms of thermal conductivity, electrical conductivity, and mechanical properties. What is more, xGnP significantly improves the impermeability of composites because of the platelet shape. Furthermore, sewage systems and municipal wastewater treatment plants have become important intermediate pathways for metal-based nanoparticles (NPs) and carbon-based NMs transfer into the environment since industrial and municipal wastewater are considered to be the main source of metal-based NPs (Brag et al., 2010; Sousa and Ribau Teixeira, 2020) and carbon-based NMs (Suárez-Iglesias et al., 2017; Yin et al., 2020). It is reasonable to assume that the continuing development and use of nanocomposites will lead to nZrO₂ with GCMs jointly being accidentally discharged into the environment, in turn posing unknown combined risks to organisms.

In the work presented herein, we investigated the microcgal cytotoxicity of binary mixtures consisting of nZrO₂ and two representative GCMs, namely graphene nanoplatelets (GNPs) and reduced graphene oxide (RGO). To compare with the toxic effects induced by the mixture components, the aquatic toxicity of individual GNPs and RGO, as well as the zirconium ion (Zr4⁺) as a counterpart of zirconium element was also observed. We used Chlorella pyrenoidosa as a model organism being a representative freshwater green algae, which has an important ecological role in the aquatic food chain and a primary agent for global biogeochemical cycles (Chen et al., 2012). We first determined the effect concentrations of nZrO₂ and Zr4⁺ in the absence and presence of GNPs and RGO, subsequently elucidated the mechanisms of toxicity of intracellular oxidative stress and cellular membrane function disruption. Additionally, the superficial- and ultra-structures of C. pyrenoidosa exposed to the studied toxicants were analyzed. Taken together, our findings help to clarify the mechanisms underlying the total impact on algae in the co-occurrence of different NPs.
Germany). A reagent grade Zirconium (IV) chloride (ZrCl₄, CAS No. 10026-11-6) with a purity of 99.9% on a metal basis was purchased from Aladdin Industrial Corporation (Shanghai, China) and also tested to determine the sensitivity of the test organism to ionic zirconium (Zr⁴⁺). Stock suspensions of the test materials were prepared by dispersing powders in ultrapure water, and thereafter the stock suspensions were sonicated for 30 min in a temperature-controlled sonication bath. A test suspension was prepared by adding, dropwise, an aliquot of the stock GNPs/RGO suspensions to the algae culture medium (ACM) whilst stirring with a magnetic stirring apparatus. The ACM was prepared at pH 7.8 ± 0.2 according to OECD guideline 201 (OECD, 2006).

2.2. Physicochemical analyses

A transmission electron microscope (TEM, FEI-Tecnai G2F20, Hillsboro, OR, USA) was used to characterize the morphology of the studied materials in the ACM. The surface chemistry of GNPs and RGO was characterized by X-ray Photoelectron Spectroscopy (XPS, Thermofischer Scientific ESCALAB 250Xi, USA). The zeta potential and the hydrodynamic diameter of the individual and binary materials were analyzed by a ZetaSizer (Nano ZS90, Malvern Instruments Ltd., Worcestershire, UK) at 0, 24, 48, and 72 h after incubation in the ACM. The physicochemical property measurements were carried out at the concentration of 1 mg/L of GNPs/RGO and effect concentrations of nZrO₂, namely 10% effect concentration (EC₃ₐ) and 50% effect concentration (EC₅₀) and EC₃ₐ of nZrO₂ is an inert nanoparticle similar to nano-TiO₂. Although the potential ion release from the particles was followed over time, the dissolved ion concentration was below the detection limit of inductively coupled plasma mass spectrometry (Thermo Fisher iCAP-Q, Germany).

2.3. Growth inhibition bioassay

The OECD Guideline 201 with slight modifications was used to test the algal growth-inhibition toxicity of the studied materials to C. pyrenoidosa (OECD, 2006). The growth inhibition test of C. pyrenoidosa was conducted for 72 h with three replicates for each treatment. The algal cells at the logarithmic stage of growth were re-suspended in a freshly prepared OECD medium to obtain a cellular density of 4 × 10⁵ cells/mL used for the testing. The algae used for toxicity testing were maintained at 24 ± 1.0 °C with a photoperiod of 12 h of light (3000—4000 L) and 12 h of dark in a climatic chamber, and were shaken manually three times a day. Algae were exposed to increasing initial concentrations of nZrO₂ (from 1 to 50 mg/L) and Zr⁴⁺-ions (from 0.1 to 25 mg/L) in the absence and presence of GNPs and RGO (0.1 and 1 mg/L). Concentration-response curves (CRCs) were fitted based on different response measures. For each batch of toxicity tests, the treatments of individual GNPs and RGO of 0.1 and 1 mg/L were also included. The algal cell density in each flask was determined after 72 h to allow the specific growth rate to be calculated. Growth inhibition (%) was calculated by dividing the specific growth rate for a treatment by the mean specific growth rate of the runs (n = 3) for the controls.

2.4. Biomarker assays

To detect the formation of reactive oxygen species (ROS) in algae cells, a fluorescent probe with 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) reagent purchased from Macklin Biochemical Co., Ltd (Shanghai, China) was used. When intracellular ROS was generated, DCFH-DA was broken down into DCFH by the lipase enzyme, after which DCFH was converted into 2',7'-dichlorodihydrofluorescein (DCF). The degree of ROS generation can be quantified by the fluorescence intensity (FI) of DCF. To gather the algae cells, 72-h algal cell suspensions were centrifuged at 15,000 rpm for 15 min at 4 °C using a D3024 high-speed micro-centrifuge (Sicloge, Rocky Hill, CT, USA). Subsequently, cells were incubated with 10 μM DCFH-DA for 30 min at 25 °C in the dark and then washed three times with the algae culture medium. FI of DCF was measured by a fluorescence spectrophotometer (F96PRO, Shanghai Kingdak Scientific Instrument Co., Ltd., Zhejiang, China). The relative ROS level was calculated as a percentage (%) of the treatment compared to the control. ROS tracking was analyzed using a fluorescent microscope OLYMPUS BX51 (Olympus Corp., Tokyo, Japan).

Fluorescein diacetate (FDA, Aladdin), a fluorescent chemical, was used to measure cellular membrane permeability (CMP). Non-ionic and non-fluorescent FDA can enter the cells via passive uptake by the algae. FDA is then hydrolyzed in the cells, producing the fluorescent molecule fluorescein. Before incubating with 10 μM FDA at 25 °C for 30 min in the dark, 72-h algal cells need to be obtained by centrifugation (15,000 rpm, 15 min, 4 °C, using the D3024 high-speed micro-centrifuge). After that, the cells were washed three times with the algae culture medium under the same conditions. FI was measured using the fluorescence spectrophotometer. The CMP data were expressed as a percentage (%) of the fluorescence of the control cells.

Rhodamine 123 (Rh 123) purchased from the Aladdin Industrial Co. was used as a cationic fluorescent probe to measure mitochondrial membrane potential (MMP). Once the cells are equilibrated with the probe, depolarization (increase in potential difference) will cause the release of the dye into the medium, and hyperpolarization (increase in potential difference) will cause uptake of the dye. 72-h algal cells obtained by centrifugation (15,000 rpm at 4 °C for 15 min, using the D3024 high-speed micro-centrifuge) were subjected to 30 min of incubation using 10 μM Rh 123 at 25 °C under dark conditions, followed by washing three times with the algae culture medium. FI was measured using the fluorescence spectrophotometer. The MMP data were expressed as a percentage (%) of the fluorescence of the control cells. The excitation and emission wavelength for the fluorescence measurements of ROS, CMP, and MMP were based on previous studies (Hu et al., 2015b; Meng et al., 2018).

2.5. Analysis of cellular superficial- and ultra-structures

Superficial- and ultra-structures of C. pyrenoidosa exposed to nZrO₂ in the absence and presence of GNPs and RGO were characterized using a Hitachi S-4800 cold-cathode field-emission scanning electron microscope (SEM, Hitachi, Tokyo, Japan) and a TEM (JEM-1011, JEOL Ltd., Japan). Briefly, 72-h algal suspensions were centrifuged at 4000 rpm for 1 h at 25 °C. Algal cells were then chemically fixed for 2 h using 2.5% glutaraldehyde. A series of pre-processing processes were carried out as described previously reported methods (Liu et al., 2018; Meng et al., 2018).

2.6. Statistical analysis

All values were reported as means ± standard deviation (SD). Statistically significant differences between groups were determined by one-way analysis of variance at significance levels of p < 0.05, p < 0.01, and p < 0.001. CRCs were described using a sigmoidal relationship by performing regression models using the Logistic model in Sigma Plot, Ver. 10.0 (Systat Software Inc., San Jose, CA).
3. Results and discussion

Concern has been raised that exposure of organisms to systems containing multiple metal-oxide-based NPs might induce effects that significantly exceed the summed effects of the individual constituents of the mixture (Tsugita et al., 2017; Yu et al., 2016). As far as we are aware, this is the first study that explores the synergistic cytotoxicity induced by different carbon NMs and metal-based NPs.

3.1. Morphology analysis of studied materials

Fig. 1 shows the transmission electron microscope (TEM) images of the individual GNPs, RGO and nZrO2, as well as nZrO2 in the presence of GNPs and RGO. It can be observed that the nZrO2 was spherical-like and agglomerated intensely (Fig. 1A). The TEM image marked in Fig. 1B revealed that GNPs with a sheet structure intensely agglomerated. RGO was slightly transparent and consisted of expanded and corrugated nanosheets, as shown in Fig. 1C. Moreover, it is observed that nZrO2 showed more particles upon the surface of RGO (Fig. 1E) than those upon the surface of GNPs (Fig. 1D). In addition, as determined from X-ray photoelectron spectroscopy (XPS) (Fig. S1 in SM), the GNPs and RGO surfaces consisted of 94.7% C/4.7% O/0.6% N and 94.2% C/5.3% O/0.5% S, respectively. This implies that the oxygen content in the structure of RGO is slightly higher than that in the structure of GNPs.

3.2. Algal growth inhibition toxicity

Concentration-response curves (CRCs) were generated for all single and binary mixtures tested to which C. pyrenoidosa was exposed (Fig. 2). As shown in Fig. 2, a concentration-dependent increase of toxicity was observed after 72 h of exposure of the algae to the single compounds and the binary mixtures. Comparisons clearly show that the CRCs for the nZrO2 and Zr4+ ions shifted towards lower concentrations in the presence of GNPs and RGO. As shown in Fig. 2A, the CRCs of nZrO2 in the presence of RGO deviated from the CRCs for the single nZrO2 more seriously compared with the shift of the CRCs of nZrO2 in the presence of GO. Dissimilarly, the CRCs of the Zr4+ ions in the presence of GNPs/RGO of 1 mg/L deviated from the CRCs of the single Zr4+ ions more seriously (Fig. 2B) compared with the CRCs for the nZrO2 in the presence of GNPs/RGO at a concentration of 0.1 mg/L. From the CRCs (Fig. 2) it is important to note that the joint action of GNPs/RGO and nZrO2/
Zr4+ ions produces a greater effect than the sum of their individual effects. This implies that the GNPs/RGO and nZrO\textsubscript{2}/Zr4+ ions induced synergistic cytotoxicity to the algal cells.

Based on the CRCs, the observed \(EC_{50} \) and \(EC_{10} \) values are summarized in Table 1. No toxicity of the GNPs and RGO at the concentrations of 0.1 and 1 mg/L to \(C. \ pyrenoidosa \) was observed. The toxicity (in terms of the \(EC_{50} \) and \(EC_{10} \) values) of nZrO\textsubscript{2} in the presence of GNPs and RGO was higher than the toxicity of nZrO\textsubscript{2} when the GNPs and RGO were absent. Moreover, the toxicity (in terms of the \(EC_{50} \) values) of a mixture of GNPs and RGO with nZrO\textsubscript{2} was enhanced by a factor of approximately 2 and 3 respectively as compared to single nZrO\textsubscript{2}. This also means that the RGO had a greater impact on the toxicity increase than the GNPs. In addition, increasing the concentrations of GNPs and RGO increased the toxicity of the nZrO\textsubscript{2}. The \(EC_{50} \) and \(EC_{10} \) values of Zr4+ ions in the absence and presence of GNPs or RGO to \(C. \ pyrenoidosa \) were approximately 3–58 times lower than the corresponding effect values of nZrO\textsubscript{2} in the absence and presence of GNPs or RGO (Table 1), showing that the Zr4+ ions are more toxic to the algae than the nZrO\textsubscript{2} no matter whether the GNPs and RGO were present. As shown in Fig. S2, the pH value of Zr4+ ions in the absence and presence of the GNPs and RGO was significantly lower than the pH value of the ACM. Moreover, decreasing the pH value increases the toxicity. This implies that the toxicity of Zr4+ ions to the algae was associated with variation of pH. Low pH might inhibit macromolecule such as phosphorus uptake because the macromolecules were coupled with metal ions (Luderitz and Nicklisch, 1989). Thus, pH is an important factor affecting the toxicity of the Zr4+ ions to \(C. \ pyrenoidosa \). Similar to the nZrO\textsubscript{2}, the presence of GNPs and RGO enhanced the toxicity of Zr4+ ions. Furthermore, the higher the concentration the greater the impact. The determination of the \(EC_{50} \) and \(EC_{10} \) values and further confirmed the presented results of the CRCs.

The dispersion stability of NPs might play an important role in governing their toxicological effects (Peijnenburg et al., 2015; Xiao et al., 2018). To assess the agglomeration extent of nZrO\textsubscript{2} in the presence of the GNPs and RGO, the zeta potential (Fig. S3A in SM) and the hydrodynamic diameter (Fig. S3B in SM) of the particles in suspension were measured in the single and in the binary systems. As shown in Fig. S3A in SM, the zeta potential of the particles in the single nZrO\textsubscript{2} and binary systems were more negative than in the case of the particles in the single GNPs and RGO exposures. Zeta potential variations between –15 and –22 mV do have a negligible significance on particle stability in the different suspensions. There was no difference in the zeta potential of nZrO\textsubscript{2} in the absence and presence of GNPs or RGO. It was also found that the hydrodynamic diameter of the particles in the single nZrO\textsubscript{2} and in the binary systems was significantly higher than in the case of the GNPs/RGO alone treatments (Fig. S3B in SM). There was no difference in the hydrodynamic diameter of nZrO\textsubscript{2} in the absence and presence of GNPs or RGO. Together, the presence of GNPs and RGO had no impact on the aggregation and dispersion stability of nZrO\textsubscript{2}. This implies that the toxicity of the binary mixtures of the nZrO\textsubscript{2} and GNPs/RGO cannot be associated with the agglomeration and dispersion stability of the particles.

The agglomeration of NMs (especially carbon-based NMs) has been found to affect the growth of photoautotrophs in aquatic systems because of shading in previous studies (Hu et al., 2015a; Pretti et al., 2014). As shown in Fig. S3B, the hydrodynamic diameters of the GNPs and RGO were greater than those of the single nZrO\textsubscript{2} and the binary systems, implying that the GNPs and RGO exhibited more severe agglomeration compared with the single nZrO\textsubscript{2} and the binary systems. However, as aforementioned, no toxicity of the GNPs and RGO at the concentrations of 0.1 and 1 mg/L was observed. It is therefore reasonable to conclude that the GNPs and RGO did not induce shading effect on the studied algae, but it had not been ruled out that the shading effect can contribute to the growth inhibition toxicity of nZrO\textsubscript{2} in the single and binary systems to \(C. \ pyrenoidosa \). This also means that the enhanced toxicity of nZrO\textsubscript{2} in the presence of the GNPs and RGO was not attributed to the shading effect.

GCMs have a unique physicochemical property with unparalleled nano-topographic features, which can make use of the graphene layer to carry NPs like nZrO\textsubscript{2} to target cells. Combined with their known-good biocompatibility, the GNPs and RGO can further promote cellular uptake and bioavailability of nZrO\textsubscript{2} or Zr4+. This might cause the enhancement of the toxicity of nZrO\textsubscript{2} and Zr4+ to the algae when the GNPs or RGO were present. Further, the expanded and corrugated nanosheets of RGO (Fig. 1C) are better for phagocytosis, which possibly made RGO had a more significant impact on the toxicity of nZrO\textsubscript{2} than the GNPs. Moreover, the surface oxygen groups of RGO provides more reaction sites for adsorption with the particles or interaction with the algal cells than GNPs, as indicated by the XPS analysis results.

Table 1

Effect concentrations for concentration–response curves of the single compounds and the binary mixtures tested \(^{\dagger}\)

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>Effect concentrations (mg/L)</th>
<th>Effect concentrations (mg/L)</th>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>nZrO\textsubscript{2}</td>
<td>15.3</td>
<td>5.8</td>
<td>Zr4+</td>
</tr>
<tr>
<td>[12.0–19.6]</td>
<td>3.1–9.3</td>
<td>[0.91–6.21]</td>
<td>[0.01–0.64]</td>
</tr>
<tr>
<td>GNPs (0.1)</td>
<td>7.8</td>
<td>2.4</td>
<td>Zr4+</td>
</tr>
<tr>
<td>[2.5–17.1]</td>
<td>[0.8–7.1]</td>
<td>[0.80–1.96]</td>
<td>[0.03–0.21]</td>
</tr>
<tr>
<td>nZrO\textsubscript{2}</td>
<td>7.2</td>
<td>2.3</td>
<td>Zr4+</td>
</tr>
<tr>
<td>[2.2–16.7]</td>
<td>[0.7–7.4]</td>
<td>[0.34–0.98]</td>
<td>[0.01–0.09]</td>
</tr>
<tr>
<td>GNPs (1)</td>
<td>4.7</td>
<td>2.0</td>
<td>Zr4+</td>
</tr>
<tr>
<td>[1.4–12.6]</td>
<td>[0.5–6.2]</td>
<td>[1.13–2.24]</td>
<td>[0.05–0.23]</td>
</tr>
<tr>
<td>RGO (0.1)</td>
<td>4.6</td>
<td>1.2</td>
<td>Zr4+</td>
</tr>
<tr>
<td>[1.3–9.5]</td>
<td>[0.3–4.0]</td>
<td>[0.43–0.86]</td>
<td>[0.01–0.06]</td>
</tr>
</tbody>
</table>

\(^{\dagger}\) The 95% two-sided confidence intervals are given in brackets.
intracellular ROS accumulation reflected the oxidative damage of the algae cells exposed to the different treatments. Generally, the cells treated by nZrO₂ singly and by the binary mixtures of nZrO₂ and GNPs/RGO (Fig. 3E–J) showed a stronger vivid green fluorescence than any of the other treatments. This indicates that nZrO₂ induced intracellular ROS accumulation in the algae.

Compared with single nZrO₂, the presence of GNPs and RGO increased the accumulation of intracellular ROS. Especially, the binary mixtures of nZrO₂ at the EC₅₀ value and the GNPs/RGO at 1 mg/L gave rise to high intracellular production of ROS in the algae cells (Fig. 3I and J), implying that the binary mixtures might invoke more serious oxidative intracellular stress. These findings showcased the synergistic effect triggered by the nZrO₂ and GNPs/RGO on the level of ROS accumulated in the algal cells. On the other hand, the intracellular ROS accumulation induced by the Zr⁴⁺-ion treatments was not significantly different from the ROS levels present in the control group (Fig. S4 in SM). This also means that the effect of GNPs and RGO on the cytotoxicity mechanism of nZrO₂ completely differed from the impacts of GNPs and RGO on the mechanism of cytotoxicity of Zr⁴⁺-ions.

3.4. Cellular membrane function disturbance

The stability of cellular membrane permeability (CMP) and
mitochondrial membrane potential (MMP) is beneficial to maintain the normal physiological function of cells (dos Santos et al., 2012). As shown in Fig. S5A in SM, the nZrO2 alone significantly increased the CMP in the algal cells in comparison with the control. Moreover, increasing the concentration of nZrO2 increased the CMP in the algal cells. In addition, the CMP of the algae cells treated by the binary mixtures of nZrO2 and GNPs/RGO showed a clear increase, of which the most significant increase was in the binary mixtures of nZrO2 and RGO. In addition, the single GNPs, RGO, Zr^{4+}-ions, and their combined systems had no impacts on the CMP. As shown in Fig. S5B in SM, the MMP of the algae cells treated by the nZrO2 alone and the binary mixtures of nZrO2 and GNPs/RGO at 1 mg/L also showed a clear increase. The accumulation of intracellular ROS may lead to an increase in MMP, resulting in the functioning of mitochondria to be affected (Amado and Monserrat, 2010). This result suggested that mitochondria contributed mainly to the accumulation of ROS in the algae cells. Collectively, these findings also indicate that GNPs/RGO and nZrO2 synergistically disturbed the cellular membrane function.

3.5. Cellular structural damage

To further examine the findings from the biomarker assays, we observed the superficial- and ultra-structures of C. pyrenoidosa cells exposed to the single and binary mixtures of nZrO2 and GNPs/RGO by means of SEM (Fig. 4) and TEM (Fig. 5), respectively. Accumulated nZrO2 on the cellular surface can clearly be discerned in the images, as presented in Fig. 4G–J. Compared with the control (Fig. 4A and B), the cells exposed to the binary mixtures showed serious cell-cell adhesion (Fig. 4J and L). It is noteworthy that a structural defect in the cell surface was observed in a single cell when the nZrO2 and GNPs/RGO coexisted (Fig. 4I and K). The ultra-structures of the algae were determined to elucidate whether the particles can enter the algal cells and the effect of the particles on the algal cell ultra-structures. The C. pyrenoidosa cells in control contained a well-organized structure of organelle (Fig. 5A), while many ultra-structure details of the algal cells after the particle exposure could not be recognized (Fig. 5B–D), implying their toxicity inside the cell structures. Particle-mediated ROS accumulation and subsequent oxidative stress responses were the likely mechanisms for the cellular structure damage. This further supports our hypothesis that the ROS generated by the binary mixtures triggered the oxidative stress on the exposed algae. Rather, compared with the control, no obvious structural change was observed for the individual GNPs and RGO (Fig. 4C–F). Therefore, the results reported here further provide direct evidence of nZrO2 and GNPs/RGO synergistically inducing oxidative damage to the algal cells.

4. Conclusions

In summary, we provided evidence that GNPs and RGO elevated the cytotoxicity of nZrO2 to C. pyrenoidosa. As the results show, the mechanism underlying the joint toxic action was associated with the induction of intracellular oxidative stress and cellular membrane functional changes by the NPs/NP mixtures. Moreover, the intracellular oxidative stress is activated via a mitochondria-generated ROS-dependent mechanism. Observations of cellular superficial- and ultra-structures indicated that the elevated ROS levels induced significant oxidative damage to the algal cellular structure, resulting in subsequent cell growth inhibition. A comparison of the impacts of GNPs and RGO showed that RGO induced more cytotoxic responses from the cells, including intracellular ROS accumulation, cellular membrane disruption, and cell growth inhibition. Given that our nanotechnological-based innovations nowadays contain a multitude of different nanomaterials, co-

Fig. 4. Superficial-structures of Chlorella pyrenoidosa for control (A) and exposed to 1 mg/L GNPs (C and D) and RGO (E and F), as well as nZrO2 at the EC_{50} value of suspensions in the absence (G and H) and presence of the concentration of 1 mg/L GNPs (I and J) and RGO (K and L), respectively.
exposures are likely to occur in the environment. Joint impacts of binary NMs as addressed in this study are the first stepping stone to address these new safety questions on graphene-based materials with for instance nZrO2 that will more widely find its applications in products.

Supplementary material

XPS survey spectra of GNPs and RGO; pH values of the test medium, 50 mg/L nZrO2 and 25 mg/L Zr$^{4+}$-ions in the absence and presence of 1 mg/L GNPs and RGO. The studied concentration represent the highest exposure concentration for each treatment in the toxicity testing; Zeta potential and hydrodynamic diameter of the individual and binary mixtures of nZrO2 at the effect concentration (EC_{50} and EC_{10}) values of suspensions in the absence and presence of GNPs and RGO of 1 mg/L, respectively; Images (scale bar, 25 μm) demonstrating the ROS accumulation in C. pyrenoidosa exposed to Zr$^{4+}$-ions at the effect concentration (EC_{10} and EC_{50}) values of suspensions in the absence and presence of the concentration of 1 mg/L GNPs and RGO, respectively; and cellular membrane permeability and mitochondrial membrane potential of the algae exposed to the various treatments.

Credit author contribution statement

Zhuang Wang: Conceptualization, Methodology, Resources, Investigation, Data curation, Formal analysis, Writing – original draft preparation, Visualization, Funding acquisition, Project administration. Fan Zhang: Conceptualization, Visualization, Writing – review & editing. Martina G. Vijver: Conceptualization, Writing – review & editing, Funding acquisition, Project administration. Willie J. G. M. Peijnenburg: Conceptualization, Writing – review & editing, Funding acquisition, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The research described in this work was supported by the National Natural Science Foundation of China (31971522) and the Natural Science Foundation of Jiangsu Province (BK20191403). This work was also supported by the European Union’s Horizon 2020 research and innovation program “NanoinformaTIX” (814426). We also thank the reviewers for their valuable comments on the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemosphere.2021.130015.
References

