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Pseudomonas putida as a robust microbial host for the production of 

high-value chemicals

The transition from a fossil-fuel to a bio-based economy is necessary to tackle the current en-

vironmental issues and ensure the sustainable economic growth. Current high demands in the 

production of value added products (e.g. food, energy, high-value chemicals) from renewable 

biological resources needs to be followed by system innovations in biotechnology fields. Re-

cent developments in microbial physiology and metabolic engineering enable the production 

of biobased chemicals to become economically competitive with the petrochemical-based 

production (1–4).

Industrial microbial hosts need to fulfill a number of key performance indicators; for 

instance straightforward handling, reproducible production behavior, and more importantly, 

natural robustness to bioprocessing conditions (5). Pseudomonas putida meets these criteria 

due to its fast growth, high biomass yields, and low maintenance demands (6). This bacterium 

lacks a functional Embden-Meyerhof-Parnas (EMP) pathway and therefore, glycolysis occurs 

via Entner-Doudoroff (ED) pathway (7). Indeed, 90% of the consumed sugar is converted 

into gluconate and enters central carbon metabolism as 6-phosphogluconate (ED pathway) 

(8). However, 10% of the triose phosphates were found to be recycled back to form hexose 

phosphates, which evidently, merges ED, EMP, and pentose phosphate (PP) pathways into 

an EDEMP pathway (8). As the result, this bacterium exhibits an overflow metabolism which 

results in a surplus of ATP production and high NAD(P)H regeneration rates (8, 9). In addi-

tion, P. putida has been successfully engineered for efficient utilization of alternative carbon 

sources (e.g. D-xylose and L-arabinose), underlining its versatile metabolic constitution (10). 

The remarkable solvent tolerance trait of P. putida S12 offers a greater degree of 

freedom in bioprocess development for aromatic chemicals (11). Therefore, P. putida S12 has 

been exploited for bioproduction of various aromatic chemicals, e.g. phenol, p-hydroxyben-

zoate, p-hydroxystyrene, and FDCA (4, 12–14). In this chapter, the genetic interplay of the 

advantageous solvent tolerance trait in P. putida S12 will be discussed.

Immediate and adaptive responses are required to circumvent solvent 

toxicity
Organic solvents (LogPo/w 1-4) may directly diffuse through the membrane or enter the cyto-
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plasmic compartment through membrane porins and subsequently accumulate in 

bacterial membrane (Fig. 7.1). This accumulation leads to the increase of fluidity and 

disruption of the membrane. Damaged macromolecules and cellular components upon 

exposure to organic solvent may elicit a variety of cellular responses (15).  Such responses 

can be divided into immediate and adaptive responses (15, 16). Immediate responses are a 

first line defence to solvent stress which are induced very rapidly or within minutes following 

the addition of organ-ic solvent. While such responses ensure the survival to solvent-shock, 

but they may not be sufficient to support long term growth in the presence of solvent. For 

this, adaptive responses ultimately take over after hours or generations of solvent exposure 

in bacterial cultures. In this chapter, the time frame of various cellular responses toward 

solvent stress in P. putida S12 will be addressed.

Fig. 7.1. Illustration of bacterial cells experiencing solvent stress.

Solvent tolerance mechanisms in Pseudomonas putida S12

Membrane lipid bilayer

Membrane compaction is important for the tolerance of P. putida S12 against organic sol-

vents. By compacting the membrane, P. putida S12 reduces the internalization of organic 

solvent into the cells. As extensively discussed by Rühl and colleagues, trans-unsaturated 

TCA cycle

Membrane porins
(e.g. OprB, OprD)
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Discussion

fatty acid concentrations were increased in P. putida S12 treated with 1-butanol, reducing the 

“kink” caused by the cis-conformation of unsaturated fatty acid (17). However, previous tran-

scriptomic studies (18, 19) nor the transcriptomic data in this thesis (Chapter 5) did not show 

an increase in the expression of cis-trans isomerase (cti) during elevated temperature and 

solvent stress. Eberlein and colleagues argued that cti is constitutively expressed in a suffi-

cient amount and its activity is controlled by the change of membrane fluidity as an immediate 

response to stress (20). A recent model of cti’s mode of action by Eberlein and colleagues 

illustrate that in the presence of organic solvent, the membrane bilayer becomes more fluid 

and thus allow cti to access the membrane and change the cis-unsaturated fatty acid into its 

trans-conformation (Fig. 7.1, Ref. (20)). Introduction of cti into E. coli, a non-solvent-tolerant 

microbial host, significantly improved its solvent tolerance towards n-butanol (21).

In addition to cti activity, an increase of phosphatidylethanolamine (PE) and car-

diolipin (CL) head groups was observed as a response to sudden 1-butanol addition at the 

expense of phosphatidylglycerol (PG) in P. putida S12 (17). However, variation of headgroup 

species was not observed when P. putida S12 was previously adapted to the presence of 

1-butanol. Similar to cti activity, headgroup shift may play a role as an immediate response to 

stabilize bacterial membrane in the presence of organic solvent. 

Bioenergetics and redox balance

During solvent stress, tricarboxylic acid (TCA) cycle components are upregulated, the 

NAD(P) H/NAD(P)+ ratio is increased, but cell growth is typically reduced (Fig. 7.2, Ref. (16, 

22–25)). Upregulation of the TCA cycle and subsequent increase of the NAD(P)H/NAD(P)+ 

ratio enable the cells to cope with the demand of active solvent extrusion by the efflux pumps 

in maintaining proton motive force. When plasmid-cured P. putida S12 was adapted to high 

toluene concen-tration (ALE-derived strains), we observed the downregulation of F0F1 ATP 

synthase follow-ing the mutations found in the intergenic regions and subunits of this gene 

cluster (Chapter 5). Apparently, the demand of solvent extrusion pump requires the 

repression of other membrane proteins which are also energized by H+ influx. On the other 

hand, respiratory proteins such as succinate dehydrogenase and cytochrome C oxidase 

were upregulated, presumably  as an attempt to maintain redox balance and intracellular pH 

(Chapter 5, Ref. (24)). This remarkable metabolic flexibility allows P. putida S12 to survive 

the addition of high toluene concentration, even in the absence of its megaplasmid 

containing its main solvent pump.
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Membrane proteins

P. putida S12, like other P. putida strains, contains multiple resistance, nodulation, and cell-di-

vision (RND) efflux pumps encoded on its chromosome and megaplasmid. Among these 

pumps, SrpABC, a homologue to TtgGHI of P. putida DOT-T1E and Pseudomonas taiwan-

ensis VLB120, is the main solvent extrusion pump. SrpABC expression can be induced by 

organic solvents, which in turn will be extruded by this pump (26, 27). The srpRSABC oper-

on is encoded on pTTS12 megaplasmid, along with a 3-phenylpropionate degradation gene 

cluster adjacent to it  (Chapter 3). Identical arrangement of the srpRSABC operon and the 

3-phenylpropionate degradation gene cluster was also found in P. taiwanensis VLB120, sug-

gesting that these gene clusters were recently disseminated, presumably through horizontal 

gene transfer.

 In P. putida S12, another RND efflux pump, ArpABC (homologue to TtgABC P. puti-

da DOT-T1E and MexAB-OprM in P. aeruginosa (28, 29)), plays a role as a secondary extru-

sion pump to organic solvents. Notably, the role of this extrusion pump was initially unclear in 

P. putida S12 since megaplasmid removal or srpABC deletion would render the strain to be 

non-solvent-tolerant (Chapter 4) (30, 31). Kieboom and colleagues hypothesized that ArpABC 

may have a lower affinity towards organic solvent compared to SrpABC (31). Further analysis 

on the pumps efficiency and specific affinity to organic solvent however, remains of interest. 

In the ALE-derived strains (Chapter 5), we observed that mutations occurred at the 

arpR locus which encodes for the repressor to ArpABC efflux pump. These mutations subse-

quently caused moderate upregulation of arpBC (ttgBC) loci. However, to achieve tolerance to 

a high toluene concentration, upregulation of this pump was not sufficient. Downregulation of 

other membrane proteins which are energized by H+ influx, such as flagellar assembly, F0F1 

ATP synthase, and transporters, is also appears necessary. Indeed, downregulation of mem-

brane proteins, such as flagellar assembly gene clusters, was also reported by Molina and 

colleagues in their study regarding the response of P. putida strains towards solvent stress 

(22). This may be to accommodate the demand of ArpABC pump on proton motive force and 

due to the spatial restriction of the membrane surface in which these proteins are embedded. 
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Fig. 7.2. Schematic representation of the solvent tolerance mechanism in P. putida S12
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Toxin-antitoxin module

Bacterial toxin-antitoxins (TA) are ubiquitous systems that can be found encoded on bacte-

rial chromosomes and plasmids; their role has been a controversial subject in recent years. 

TA modules have been reported to be important for the bacterial defence mechanisms, for 

instance in antibiotic resistance, bacterial persister formation, and more recently, as a prede-

cessor to CRISPR-Cas systems as a phage defence system (32–35). However, Rosendahl 

and colleagues argued that most of the chromosomal TA systems do not demonstrate any 

clear benefit to their host and that they are maintained due to their low fitness cost (36).

In Chapter 4, a novel SlvT-SlvA TA module was identified to play a role in solvent 

stress response of P. putida S12. The polycistronic SlvT-SlvA TA mRNA was upregulated in 

transcriptomic data of P. putida S12 growing in the presence of toluene (Chapter 5 and Ref. 

(16)). Further scrutiny on this TA module revealed a role in stabilizing and maintaining the 

pTTS12 megaplasmid, especially during solvent stress when this plasmid may cause meta-

bolic burden to P. putida S12 (Fig. 7.2). Moreover, chromosomal introduction of the SlvT-Sl-

vA TA module in the plasmid-cured P. putida and E. coli strains slightly improved 
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tolerance in these strains. This TA system is likely to act in the immediate response towards 

solvent stress by stalling cell growth. This would allow the bacteria to quickly adapt to its en-

vironment. Several proteases were found to be upregulated during solvent stress (16), that 

potentially may degrade SlvA antitoxin and subsequently release the SlvT toxin in its active 

form. Once active, SlvT toxin degrades NAD+, thus affecting intracellular cofactor levels caus-

ing cell growth to be stalled. 

General stress response and biofilm formation

One of the main stress responses in P. putida is the formation of biofilm. Biofilm formation oc-

curs as a series of highly regulated steps: attachment, microcolony formation, maturation and 

dispersal (37). Reversible apical attachment of bacterial cells occurs to a surface upon initial 

contact, followed by irreversible lateral interaction. These attached cells rapidly multiplied into 

clonal microcolonies which then produce the biofilm matrix, consisting of exopolysaccharide 

(EPS), extracellular DNA and proteins (38). However, it was unclear whether biofilm formation 

is actually beneficial for constituting a high solvent tolerance phenotype. In addition, uninten-

tional biofilm formation maybe disadvantageous in a fermenter set-up as previously described 

(39). Adherent cell layers in bioreactors may cause a negative effect on mass, energy and mo-

mentum transfer; creating an atypical econiche within the bioreactor; and inaccurate culture 

stoichiometric and kinetic parameters estimation (39). 

The formation of biofilm in P. putida is regulated by the GacS/GacA two component 

system (37). Upon sensing the environmental signal, GacS becomes phosphorylated, which 

in turn, causes GacA to also become phosphorylated. GacA phosphorylation stimulates pro-

duction of the small RNAs RsmZ and RsmY, which bind to the RsmA protein, releasing the 

repression of the biofilm matrix, quorum sensing signalling, and Type VI secretion system 

gene clusters (37). Both gacS and gacA loci were truncated or mutated in our ALE-derived 

strains with enhanced solvent tolerance (Chapter 5). In addition, RsmA was upregulated, 

probably unbound to RsmZ or RsmY, due to the disruption of gacS or mutated gacA loci. As 

the result, a significant reduction of biofilm formation was observed in our ALE-derived 

strains (Fig. 7.2). Reverse engineering of the key mutations revealed that after deletion of 

the gacS locus, solvent tolerance and growth parameters were generally improved (Chapter 

5) while no biofilm formation occurred during solvent stress. It appears that in P. putida S12, 

it is essential to escape biofilm-forming tendency to adapt to high solvent concentration. 
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Discussion

Several stress-related proteins were differentially expressed during solvent stress in 

P. putida S12 (Fig. 7.2). A previous chemostat-based proteomic study reported upregulation 

of heat shock protein GroEL caused by the addition of 5 mM toluene (24). In the ALE-derived 

strains, upregulation of another heat shock protein, Hsp20 (RPPX_17155), was observed 

(Chapter 5). Moreover, constitutive upregulation of the putative sigma factor E (RpoE), an-

ti-sigma factor RseAB, and DegP, known to regulate chaperone proteins expression in E. coli 

(40), were observed in ALE-derived strains. Upregulation of several heat shock proteins and 

chaperones indicates the involvement of general stress responses, that are similar between 

heat and solvent stress. Heat stress primarily inactivate microbial activity through general 

protein unfolding. Thermophile bacteria respond to this stress by expressing chaperones and 

heat shock proteins to aid protein refolding (41–43). Similarly, solvent stress causes the re-

lease of membrane-bound proteins due to the membrane disruption (44). Thus, similar re-

sponses (e.g. chaperones and heat shock proteins upregulation) can be observed between 

thermophile and solvent-tolerant bacteria, aimed at refolding denatured proteins.

Regulating solvent tolerance mechanisms
Due to the high energy demand and potential toxicity of RND efflux pumps (45), such systems 

are typically tightly regulated. The SrpABC efflux pump is regulated by a pair of repressor 

and antirepressor, SrpS and SrpR respectively (46). The repression imposed by SrpS binding 

to the promoter region of srpABC operon can be subjugated by organic solvent binding to 

SrpS, or binding of SrpS to its antirepressor SrpR. The ArpABC efflux pump is regulated by a 

single repressor system, ArpR, which is a member of the TetR family regulators (31). Crystal 

structure analysis of TtgR (homologue of ArpR regulator in P. putida DOT-T1E) indicates the 

occurrence of two distinct binding sites within its large pocket (47). These binding sites allow 

the interaction between TtgR and antibiotics, solvents, or toxic plant secondary metabolites 

which are also extruded by the efflux pump. In addition to these repressor systems, mobile 

elements have been described to play an important role in regulating solvent efflux pumps. 

ISS12 and ISPpu21 were reported to disrupt the repressors of the srpABC and arpABC op-

erons after prolonged exposure to organic solvent, thus enabling constitutive expression of 

the solvent extrusion pumps (Chapter 5, Ref. (48, 49)). On the other hand, prolonged storage 

in the absence of organic solvent was reported to cause ISS12 disruption of the srpA locus, 

rendering P. putida S12 to be less solvent-tolerant (50).
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Other regulatory mechanisms have been described to be involved in the solvent 

stress response in P. putida S12. A putative modulator, TrgI, was found to be immediately re-

pressed upon exposure to organic solvent (51). A knock-out of this gene causes a significant 

increase in solvent tolerance followed by differential expression of many genes, especial-

ly upregulation of the proteins related to the posttranslational modification, protein turnover, 

and molecular chaperones (16). In Chapter 5, an AraC family transcriptional regulator Afr, 

was found to be truncated in all of the ALE-derived strains. Afr positively regulates a number 

of membrane-bound proteins, including the MexEF-OprN antibiotic efflux pump (Chapter 6). 

Downregulation of TrgI and Afr regulatory proteins in P. putida S12 seemed to be important for 

the rewiring of metabolism during solvent stress. 

Conclusion and future outlook
P. putida S12 circumvents the solvent stress through environmentally acquired mechanisms 

(e.g. solvent extrusion pumps and aromatic degradation pathway) in combination with inher-

ent metabolic flexibility which allows this strain to adapt to the high energy demand of solvent 

extrusion pumps. While solvent extrusion pumps are indeed the main mechanisms to survive 

solvent stress, other accessory factors (e.g. membrane compaction, NAD(P)H regeneration 

rate, general stress responses) need to be taken into account to model and efficiently en-

gineer the solvent tolerance trait in other non-solvent-tolerant microbial strains. Alternative 

mechanisms for cellular solvent removal, like outer membrane vesicle formation, have been 

described in other P. putida strains (52, 53) but requires further analysis in P. putida S12. 

Moreover, the works in this thesis indicate that there is a difference between SrpABC and 

ArpABC efflux pump in their ability to extrude solvent molecules. Further scrutiny on this dif-

ference; whether it is caused by pump specificity or affinity, membrane localization and other 

factors, may be beneficial for understanding and constructing a solvent-tolerant microbial cell 

factory. 
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