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Abstract

The challenge of sustainably producing highly valuable chemical compounds requires spe-

cialized microbial cell factories because the majority of these compounds can be toxic to 

microbial hosts. Therefore, solvent-tolerant bacteria are promising production hosts because 

of their intrinsic tolerance towards these compounds. Recent studies have helped to elucidate 

the molecular mechanisms involved in solvent tolerance. Advances in synthetic biological 

tools will enable further development of streamlined solvent tolerant production hosts and 

the transfer of solvent tolerant traits to established industrial strains. In this review, we outline 

challenges and opportunities to implement solvent tolerance in bacteria as a desired trait for 

industrial biotechnology.
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Solvent tolerant bacteria are efficient biocatalysts

The transition of a fossil raw materials-based economy to a biobased economy is character-

ized by complex and ambitious systems innovations. Recent breakthrough developments in 

green chemistry and biotechnology are major drivers enabling production of biobased chem-

icals (1–4). Today, in the new Biotech Era, increased demands for bio-based “green” chem-

icals and pharmaceuticals are met with rapid product development benefitting from years of 

research in the microbial physiology and metabolic engineering fields. Biobased production 

of these compounds is becoming economically competitive with petrochemical-based produc-

tion. Both environmental considerations and the need to further improve the competitiveness 

of the chemicals industry, promise to drive continued biotechnology developments and inno-

vation in the production of biobased chemicals. 

Biobased production of valuable chemicals and biopolymer compounds puts a chal-

lenge on the choice of microbial host strains (3–6). Many of these chemicals have hydrocar-

bon-solvent properties and thus exhibit toxicity towards the microbial hosts (7, 8). Furthermore, 

the production of more complex biobased products, such as o-cresol and 3-methylcathecol, 

requires toxic solvent-like compounds as substrates or intermediates (9, 10). Therefore, sol-

vent tolerance becomes an essential trait for microbial host in the biobased production of 

valuable chemicals and biopolymer compounds. Several species of bacteria can grow and 

survive in the presence of hydrocarbon solvents (11) and can therefore be identified as prom-

ising and advantageous platforms for the production of such potentially toxic compounds, 

or for bioremediation. These bacteria can efficiently withstand or degrade various toxic sol-

vent-like compounds (12, 13). Therefore, the application of solvent-tolerant bacteria in the 

biocatalytic production of (new) chemical building blocks is rapidly increasing (1–4). Using 

these solvent-tolerant bacteria in biotechnological production processes, however, requires 

a thorough understanding of solvent tolerance mechanisms involved. With recent advanc-

es in genome sequencing and omics studies of solvent-tolerant bacteria, unique clusters of 

genes have been identified that confer solvent tolerance traits (14–18). Better understanding 

of these solvent tolerance traits in combination with modern synthetic biology tools will enable 

further development of specialized biocatalysts, new applications, and improved production 

processes of high value compounds (19–27). In this review, we discuss recent findings in 

solvent tolerance mechanisms and new advances in synthetic biology tools that can help 
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to design microbial hosts and processes in industrial productions for a plethora of new and 

valuable compounds.

Table 2.1. Hydrocarbon solvents and their industrial relevance

Hydrocarbon 
solvent Solvent class Industrial relevance LogPo/w Refs.

acetone ether solvent in cosmetic, pharmaceutical, medi-
cal, and domestic uses -0.24 -

ethyl acetate ester solvent in coating formulation for epoxies, 
urethanes, acrylics, and vinyls. 0.73 -

n-butanol short chain 
alkanol biofuel 0.88 (28)

phenol aromatics precursor for plastics 1.5 (29)

butyl acetate ester product co-solvent (vanillin) 1.78 (3)

benzene aromatics substrate for the production of 3-methylcat-
echol 2 (30)

toluene aromatics substrate for the production of 3-methylcat-
echol, o-cresol, & p-hydroxybenzoate 2.69 (9, 30, 31)

styrene aromatics substrate for the production of (S)-styrene 
oxide 2.9 (32)

1-octanol long chain 
alkanol product co-solvent (phenol) 3 (29)

ethylbenzene aromatics production of paints, varnishes, and lac-
quers 3.3 -

cyclohexane cyclic alkane precursor to nylon, adipic acid, caprolactam 3.4 -

m-xylene aromatics substrate for the production of 3-methylcat-
echol 3.46 (10)

n-hexane alkane extraction solvent for vegetable oil, cleaning 
agent 3.9 -

1-decanol long chain 
alkanol product co-solvent (p-hydroxystyrene) 4.57 (6)

Current understanding of solvent tolerance mechanisms 

Since the first discovery of solvent-tolerant bacterium Pseudomonas putida IH-2000 by Inoue 

and Horikoshi (12), the number of known solvent-tolerant strains has been rapidly expanding. 

Despite this growing number of identified solvent-tolerant bacteria, the current knowledge and 

understanding of solvent tolerance mechanisms has mostly been obtained from studying var-

ious strains of P. putida (14, 17, 18). But solvent-tolerant traits are not restricted to P. putida, 
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as exemplified for instance by Exiguobacterium sp., Pseudoalteromonas sp., Vibrio sp., Ma-

rinomonas sp., Paracoccus denitrificans, and Halomonas sp. (33–36). The discovery of new 

solvent-tolerant strains and their unique features may help to better understand the molecular 

and physiological mechanisms underlying bacterial solvent tolerance.

 Fig. 2.1.Current understanding on solvent tolerance mechanism of bacteria

The left panel represents the state of a bacterium upon the addition of solvent and before solvent tolerance 

mechanisms are induced, and the right panel represents the state of the bacterium after solvent tolerance 

mechanisms are induced. Gram-negative and Gram-positive bacteria employ similar strategies to compensate 

for solvent exposure. The increase in membrane compaction [1] is a consensus for solvent tolerance mechanism 

between Gram-positive and Gram-negative bacteria by using multiple strategies [1a & 1b]. Resistance, nodula-

tion, and division (RND) efflux pumps [2] and general stress responses [3] play important roles in both groups. 

Several mechanisms are also unique to certain species, such as the increase of bioenergetics and NAD(P)H 

regeneration rate in Pseudomonas putida [4], membrane vesicle formation in P. putida [1c], and filamentous 

growth in Gram-positive bacteria [5].

Hydrocarbon solvents with a log Po/w value in the range of 1 to 4 (Table 2.1) are toxic 

to microorganisms at very low concentration because these solvents bind and penetrate the 

cell membrane and severely affect cell permeability (37). Solvents with log Po/w value lower 

than 1, like short-chain alkanols (C2-C4), exhibit toxicity in high concentration. Short-chain 

alkanols directly interact with the phospholipid headgroups, while longer-chain alkanols (e.g. 

RND
efflux
pump

other efflux
system

Membrane
stabilizing

protein

2. Membrane proteins

3. Molecular chaperones
& general stress responses

Upregulation of
TCA cycle

Increased
NAD(P)H
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C8) accumulate within the lipid bilayer of the membrane, ‘competing’ with the fatty acid acyl 

chains (38). Solvent-invoked membrane damage inhibits various important membrane func-

tions, such as the permeability barrier function and the structural matrix scaffold for many 

metabolic and enzymatic reactions (39). Consequently, this membrane damages leads to 

disrupted cellular metabolism, growth inhibition, and eventually, cell death (11, 38). 

Tolerance to hydrocarbon solvents is a multifactorial trait. Bacterial cells employ var-

ious strategies to change their physiology and gene expression to circumvent cellular dam-

age caused by these solvents (Fig. 2.1). Tolerance mechanisms have been more extensively 

studied in gram-negative bacteria than in gram-positive bacteria, but similar mechanism have 

been observed for both groups (40, 41). 

Membrane fluidity

In the presence of a hydrocarbon solvent, tolerant Gram-negative bacteria respond by chang-

ing their cell membrane composition towards saturated and trans-unsaturated fatty acids (7, 

42). The formation of trans-unsaturated fatty acid is catalysed by a periplasmic, haem-con-

taining cis-trans isomerase (Cti) (43). In P. putida DOT-T1E, Cti is constitutively expressed at 

a constant level during log-growth and stationary-phase cells and moderately upregulated in 

the presence of toluene (42). Recently, a working model of Cti activity was proposed by Eber-

lein and colleagues (44): initially, Cti activity is regulated by the limited accessibility to cis fatty 

acid under nonstressed condition due to membrane rigidity. The membrane bilayer becomes 

more fluid upon interaction with hydrocarbon solvents, enabling hydrophilic Cti to reach cis 

fatty acids and isomerize them into trans fatty acid. Saturated and trans-unsaturated fatty 

acids increase membrane rigidity, exemplified by a higher phase-transition temperature. This 

rigid membrane structure provides resistance to hydrocarbon solvents by decreasing solvent 

influx and accumulation in the membrane. Similarly, Gram-positive bacteria also shift their 

membrane composition towards a more rigid structure in presence of hydrocarbon solvents by 

a concentration-dependent decrease in anteiso/iso branched fatty acid ratio. This modification 

in branched fatty acid promotes a more compact membrane structure, resulting in reduced 

accumulation of hydrocarbon solvents (43, 45). 

Solvent tolerance in Bacteria

 2

20



Phospholipid headgroup species 

The phospholipid headgroup constituents found in Pseudomonads are phosphatidyl-ethanol-

amine (PE), phosphatidylglycerol (PG), and cardiolipin (CL). Those phospholipid headgroups, 

especially CL, appear to play an important role in aiding Pseudomonads in their adaptation 

against hydrocarbon solvents (46). Recently, an increase in CL-containing lipids was reported 

in strains of P. putida S12 and Pseudomonas taiwanensis VLB120 grown in the presence of 

n-butanol (35). Accordingly, CL-containing lipids are important for the function of the efflux 

pumps in P. putida DOT-T1E (42). 

Recent metabolomic analyses of P. putida DOT-T1E showed that the intracellular 

ornithine concentration increases in response to toluene exposure (47). Ornithine-containing 

lipids are known to play an important role in stabilizing the outer membrane and the negative 

charge of lipopolysaccharides (LPS), as well as in the stress response towards abiotic condi-

tions such as elevated temperature and acidic environment (48). 

Membrane vesicle formation 

Outer membrane vesicle (OMV) is a spherical compartment released from the outer mem-

brane of bacteria (consisting phospholipids, LPSs, and small amounts of outer membrane 

proteins) as a response to various stress condition encountered in the environment (49). 

Encapsulation of hydrocarbon solvents by the formation of membrane vesicles is an effective 

defence mechanism in solvent tolerant P. putida strains in the presence of toluene (50). By 

forming these membrane vesicles, the cells effectively discard toluene adhering to the outer 

membrane. In P. putida DOT-T1E, the formation of OMVs contributes to a rapid and extreme 

rise in cell surface hydrophobicity, which prepare the cells for biofilm formation as a protective 

response towards solvent-induced stress (51, 52). Membrane vesicles also play a role in re-

leasing lipids with lesser degrees of saturation, enabling rapid lipid turnover as a response to 

the presence of hydrocarbon solvents (52).
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Resistance, nodulation and division (RND) efflux pump and membrane pro-
teins

Adaptive cell membrane properties constitute a robust mechanism against toxic hydrocarbon 

solvents. However, decreased membrane permeability does not necessarily generate suffi-

cient tolerance in the presence of hydrocarbon solvent (53). Therefore, cells need an effective 

mechanism to actively extrude accumulating toxic solvents. 

In both Gram-positive and Gram-negative bacteria, the most important membrane 

proteins in terms of solvent tolerance are the RND efflux pumps (35, 53–55). The RND efflux 

pumps can extrude a broad range of compounds with little chemical resemblance to each 

other. They are frequently associated with resistance to a broad spectrum of antibiotics and 

heavy metals (54, 56). Some RND efflux pumps are specifically induced by (and only ex-

trude) hydrocarbon solvents and are not induced by, for example, hydrophobic antibiotics. 

Illustrative examples are SrpABC from P. putida S12 and TtgDEF from P. putida DOT-T1E 

(53, 55). Recent knowledge and advances in the field of these efflux pumps, their role, control 

mechanisms, and cross-resistance with antibiotics and efflux properties have recently been 

extensively reviewed (57, 58). 

Novel recent findings have pointed to differential expression of membrane porins and 

other secretion systems in solvent-tolerant Pseudomonads exposed to solvents (14, 15, 59). 

Unspecific outer membrane porins are downregulated in the presence of toluene to prevent 

influx of toluene (14, 15, 59). A membrane protein OprH is found to be upregulated to stabilize 

cell membrane and decrease the uptake of toluene (15, 59). Hence, alongside the RND efflux 

pumps, other membrane proteins may play important roles in constituting solvent tolerance.

Molecular chaperones and general stress responses 

The presence of hydrocarbon solvents invokes similar stress responses in both Gram-positive 

and Gram-negative bacteria (15, 16, 60). In several bacterial species confronted with hydro-

carbon solvents, general stress response regulators such as the heat shock protein and the 

cold shock protein are upregulated (15, 16). Other members of the general stress response 

system may be induced by the presence of toluene, such as molecular chaperones, oxida-
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tive stress response components, and other resistance proteins in Gram-negative P. putida 

DOT-T1E and P. putida S12 as well as in Gram-positive B. subtilis (16, 60). Accordingly, the 

toluene-repressed gene (trgI) of P. putida S12 was found to control a large number of protein 

modification and chaperone genes (18). 

Bioenergetics and redox balance

Several studies in P. putida have indicated that in the presence of hydrocarbon solvents, tri-

carboxylic acid (TCA) cycle components are upregulated, the NAD(P)H regeneration rate is 

increased, and growth is reduced (14–16, 18, 61). Differential expression of TCA cycle-related 

proteins modulates the NAD(P)H concentration, and therefore the redox balance, throughout 

the solvent stress (15). Upregulation of the TCA cycle and concomitant increase of the NA-

D(P)H regeneration rate enable the cells to cope with the energetic potential loss connected 

with rapid solvent extrusion through the efflux pumps (15, 61). As a representative illustration, 

the ATP content, cellular concentration of potassium and adenine nucleotides, and the ad-

enylate energy charge were all similar in cells of P. putida DOT-T1E grown in the presence 

or absence of 1-decanol (51). These findings reflected the efficient metabolic and energetic 

adaptation of solvent-tolerant bacteria during their exposure to toxic hydrocarbon solvents. 

Changes in cell morphology 

Both Gram-positive and Gram-negative bacteria exhibit changes in cell morphology and in cell 

size as a response to the presence of hydrocarbon solvents (62–65). For example, decrease 

in cell size was observed in P. aeruginosa and Enterobacter sp. upon the exposure to hydro-

carbon solvents (63, 65). However, conflicting observations were reported in Bacillus lichine-

formis S-86, P. putida P8, and Enterobacter sp. VKGH12 which have shown increases in cell 

volume in the presence of hydrocarbon solvents (41, 64). Additionally, in the presence of 0.6% 

3-methylbutan-1-ol, B. lichineformis S-86 was reported to exhibit filamentous growth (62). By 

decreasing cell-size, cell surface-to-volume ratio increases, contributing to a more efficient 

uptake of nutrient. With the decreased cell surface-to-volume ratio, cell surface exposure is 

reduced and solvent extrusion can be more effective.
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Applications of solvent-tolerant bacteria in biocatalysis of valuable 

compounds

Employing bacteria for biocatalysis is currently a preferred method for industrial synthesis 

of various biochemicals, pharmaceuticals, and enantiomerically pure intermediates. Indeed, 

such synthesis routes require co-enzymes and co-factors, and stepwise/multiple enzymatic 

reactions that may be readily available within the microorganism of choice (38). In the bio-

production of industrial chemicals, the production process is often hampered by the toxicity 

of the substrate or the product, which may severely affect the product yield (3, 6). Solvent-tol-

erant bacteria are favored for the biocatalytic production of many valuable compounds, since 

they are far less prone to inhibition by toxic compounds, so the desired yields can be better 

achieved. Valuable compounds that can be readily produced through the use of solvent-tol-

erant bacteria include simple aromatic compounds such as phenol or p-hydroxybenzoate, as 

well as more complicated compounds such as 2,5-furandicarboxylic acid (FDCA), enantio-

merically specific (s)-2-octanol, and pharmaceutically active 15b-hydroxytestosterone (Table 

2.2). Recently, the biobased production of a major building-block chemical FDCA, a promising 

‘green’ alternative to terephthalate in the production of polyesters, from 5-hydroxymethyl-furfu-

ral (HMF) was achieved in the noted solvent-tolerant strain P. putida S12. Hence, solvent-tol-

erant traits of microbial production strains can enable the use of hydrocarbon solvents and 

solvent-like compounds as substrate and intermediates for the production of high-value com-

pounds. In addition, the unique features of solvent-tolerant bacteria allow tolerance towards a 

broad range of potentially toxic compounds and make them highly suitable for implementation 

in two-phase bioreactors production set-up (3, 66). The main challenges that arise in using 

solvent-tolerant bacteria in biocatalysis are maintaining product yield and system complexity. 

Solvent-tolerant bacteria are well suited for biocatalytic production in two-phase bio-

catalysis systems, as reviewed previously (38). This system can significantly improve pro-

duction yield by reducing substrate and/or product toxicity (3, 6). The use of a hydrocarbon 

solvent as the second phase has several advantages, including reduced reaction inhibition, 

reduced toxicity towards the microbial host and the prevention of product hydrolysis (3). More-

over, the second hydrocarbon phase acts as a simultaneous extraction step, thus simplifying 

downstream processing and purification and increasing the yield of poorly water-soluble prod-

ucts (29). Hydrocarbon solvents having log Po/w values in the range of 1 to 4 are considered 
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suitable for product extraction and substrate reservoir in a two-phase biocatalysis system, and 

solvent-tolerant bacteria can survive and exhibit biocatalytic activity under these circumstanc-

es. Known bacterial index values have been extensively listed in previous articles (11, 67). 

Predominantly Gram-negative bacteria have index values in the ideal two-phase biocatalysis 

range from 1 to 4.

Several examples demonstrate increased product titre and optimized production of 

valuable chemicals in two-phase biocatalysis system (3, 6, 68). Production of p-hydroxysty-

rene in P. putida S12 was established with by introducing the pal (L-phenylalanine/L-tyro-

sine ammonia lyase) and pdc (p-coumaric acid decarboxylase) genes in combination with 

inactivating the  fcs gene (6). A product titre of 4.5 mM with a yield of 6.7% (C-mol p-hy-

droxystyrene/C-mol glucose) and maximum volumetric productivity of 0.4 mM h-1 was initially 

achieved. However, due to the toxicity of p-hydroxystyrene, cell growth and production was 

inhibited. Using decanol as a second phase, the toxicity of the product p-hydroxystyrene was 

significantly reduced, which resulted in a p-hydroxystyrene titer of 147 mM (17.6 g l-1), a 

fourfold increase compared with a standard fed-batch production. The maximum volumetric 

productivity was also increased to reach 0.75 mM h-1. Similarly, production of p-hydroxysty-

rene from p-coumaric acid from corn cob hydrolysate using recombinant Escherichia coli and 

simultaneous extraction by n-hexane as the second phase clearly improved product titre (68). 

Another example is the bioproduction of vanillin from isoeugenol, which can be inhibited by 

two major phenomena: the toxicity of isoeugenol and vanillin to microbial host, and the low 

solubility of isoeugenol in water (3). The solvent-tolerant Gram-positive bacterium Brevibacil-

lus agri 13 can produce vanillin from 2 g l-1 isoeugenol with a yield of 7.6% (Cmol vanillin/Cmol 

isoeugenol) in a single-phase system. Using butyl-acetate (30% v/v) as an second-phase with 

10 g l-1 isoeugenol increases the production yield to 17.2% with product titer of 1.7 g l-1 after 

48 hours of fermentation. Here, the reduction of isoeugenol and vanillin toxicity in combination 

with the simultaneous extraction of vanillin by the second phase result in increased product 

formation.
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Table 2.2. Biocatalysis using solvent tolerant bacteria
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The case of FDCA

A recent study identified and characterized a fully biobased enzymatic route for the production 

of 2,5-furandicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF) [86]. HMF, 

like furfural, is an intrinsically toxic furanic aldehyde occurring in lignocellulosic hydrolysates 

(Fig. 2.2). FDCA has been proclaimed by the USA Department of Energy as 1 of 12 prior-

ity chemicals for the realization of a biobased green chemistry industry (69). It is regarded 

an important platform compound for the synthesis of a variety of aromatic chemical building 

blocks, including as a biobased alternative for the monomer terephthalic acid in polymeric 

polyethylene terephthalate (PET) (70–73). Polymerisation of ethylene glycol and FDCA yields 

polyethylene furanoate (PEF), which has improved barrier, thermal and mechanical properties 

compared with PET (72).

Fig. 2.2. Potential applications of FDCA, from lignocellulosic biomass to biopolymers

Expression of a novel, specific HMF/furfural oxidoreductase from the soil bacterium 

Cupriavidus basilensis in the solvent-tolerant industrial host bacterium Pseudomonas puti-
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da enabled efficient high-yield production of FDCA from HMF (4). In this process, P. putida 

proves to be an efficient whole-cell biocatalyst. The company Corbion is currently developing 

a cost-effective production route for FDCA, based on this novel enzymatic route (http://www.

corbion.com/bioplastics/products/fdca-for-pef). 

Challenges in biocatalysis using solvent tolerant bacteria

The primary complication with using solvent-tolerant bacteria in industrial biotechnology is the 

unpredictable product yield caused by host interference issues (19, 74, 75). Adapting native 

biocatalytic pathways often provokes imbalances in pathway flux, the accumulation of toxic 

intermediates, and reduced cellular fitness, again causing unpredictable product yields (76). 

Genome streamlining  reduces host interference, resulting in increased biomass and growth 

rate and subsequently leading to optimizing production chassis (19). Imbalances in pathway 

fluxes, bottlenecking enzymes, and accumulation of toxic intermediates can be mitigated by 

optimizing metabolic pathways (5, 29, 76, 77). And the development of synthetic biology tools 

is becoming crucial to support the implementation of solvent-tolerant bacteria in biocatalysis 

(20, 78).

Another advantage of solvent-tolerant bacteria is their easier implementation in two-

phase bioreactor systems. However, other challenges may arise in two-phase bioreactor sys-

tems, such as  increased system complexity, problems with waste disposal, and the hazard-

ous risk of using flammable solvents (79). By applying heat treatment or a continuous-plate 

centrifuge, a solvent emulsion in an aqueous phase can be degraded or, preferably, be 

avoided, resulting in a clear solvent that can be processed by further downstream treatment. 

Distillation may be applied in the downstream process specifically to purify volatile product 

from its volatile substrate. Schmid and colleagues developed a safe and efficient pilot-scale 

two-phase bioreactor containing flammable solvent (79). Finally, exogenously supplemented 

glycerol provides effective protection and thus improves bacterial growth in a two-phase bio-

reactor system (80).

Synthetic biology and engineering towards advanced biocatalysts  

Host interference issues can be overcome by reducing the complexity of the genome in the 
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microbial chassis by genome streamlining (74). Genome streamlining is widely used in engi-

neering industrial bacterial strains (75, 81). This approach has resulted in increased biomass 

formation, reduced doubling times, increased product yield, and ultimately optimized produc-

tion systems (19). Metabolic pathway optimization can resolve imbalances in pathway fluxes 

and reduce accumulation of toxic intermediates to restore cellular fitness (76, 82). Trans-

ferring solvent-tolerant traits to a preferred industrial host strain is also a plausible strategy 

(83). In combination, these strategies comprise promising approaches to exploit the solvent 

tolerance features of bacteria for producing a wide range of valuable compounds with a high 

degree of predictability and robustness (Fig. 2.3). Existing and novel tools for synthetic biology 

and the rapidly accumulating genome sequencing data of solvent-tolerant bacteria, drive the 

opportunities to implement these strategies.

Molecular synthetic tools for improving solvent-tolerant process design and 
application  

Synthetic molecular tools are crucial aspects for developing a robust industrial bacterial 

strains. BioBricks was developed as flexible exchangeable DNA fragments that can be com-

bined to fully synthesized biological tools suitable for common industrial strains like E. coli 

(78). The Standard European Vector Architecture (SEVA) established a reliable and efficient 

vector repository accompanied by a simple and user-friendly database mainly implemented in 

solvent-tolerant P. putida and other industrial strains (20). A plasmid system, GeneGuard, was 

constructed to overcome the safety concerns including unwanted horizontal gene transfer by 

host-mutual dependency, based on using SEVA plasmids (24). 

Optimizing a robust bacterial chassis requires both precise genome editing tools and 

the ability to incorporate new features into its genome. The CRISPR/Cas system has become 

a standard tool in editing bacterial genomes (84). Using SEVA plasmids as its backbone, a re-

combination event between free homologous DNA sequences, allowing an accurate genome 

editing, was developed for a wide variety of Gram-negative bacteria (21). 

Transposon tools for specific transgene introduction, in combination with promoter 

libraries for P. putida cell factories, have been developed as an alternative to the use of multi 

copy plasmids (22, 23, 85). The developed mini-Tn5 vector offers the advantages of main-

taining introduced genes without selective pressure, construct stability, recurrent use of the 
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system, and introducing a relatively large DNA sequence (22). The mini-Tn7 transposon sys-

tem can integrate with a high frequency in a specific location as a unidirectional single copy of 

gene  that is suitable in various studies for gene expression, characterization of certain genes, 

and gene complementation (23). Finally, a novel broad range system for the transfer and 

expression of biosynthetic pathways (TREX) was developed using this transposon system to 

include all functional elements that are essential for efficient introduction and expression of 

pathway clusters in different bacteria (86).

Fig. 2.3. Synthetic biology and engineering towards advanced solvent-tolerant biocatalysts

Three optimization strategies on biocatalysis using solvent-tolerant bacteria are employed to solve problem of 

host interference, which can cause an unpredictable yield of products. Pathway flux imbalance can be reduced 

by identifying bottlenecking enzymes and altering the expression level of the bioproduction pathway (red ar-

rows). Genome streamlining can be applied to reduce the genome complexity of solvent-tolerant strains (green 

arrow). Introducing solvent tolerance-related genes into an existing industrial strain is also proven to be a prom-

ising approach (blue arrow). Synthetic biology tools are useful in pathway optimization, altering the expression 

level of bioproduction, strain optimization, and conferring solvent-tolerant traits.
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Pathway optimization and adaptation of enzyme expression

Metabolic pathways can be optimized by characterizing enzyme expression, identifying bot-

tlenecking enzymes, and subsequently optimizing the expression and activity of enzymes 

through modulation of transcription, translation and specific enzyme characteristics (76, 82). 

As an example, transcriptomics and proteomics studies of p-hydroxybenzoate-producing P. 

putida S12 identified critical components of the tyrosine degradation pathway (5, 77). Sub-

sequent deletion of the hpd gene involved in p-hydroxybenzoate degradation led to a 22% 

increase of p-hydroxybenzoate production. In another case, by overproducing the pyruvate 

dehydrogenase subunit gene acoA or deleting the glucose dehydrogenase gene gcd to over-

come bottlenecking, production of polyhydroxyalkanoate (PHA) in P. putida KT2440 was in-

creased by 33% and 121%, respectively (87). 

In combination with rapidly emerging synthetic biology tools, pathway optimization 

is a powerful strategy in designing optimized bacterial strains for application in industrial bio-

technology. The highest yield in microbial phenol production reported so far was achieved by 

implementing pathway optimization on solvent-tolerant P. taiwanensis VLB120 (1). To opti-

mize phenol production, catabolic routes toward aromatic compounds and shikimate pathway 

intermediates are inactivated. This inactivation is accomplished by the deletion of five genes: 

pobA, hpd, quiC, quiC1, and quiC2, along with the subsequent loss of megaplasmid pSTY. 

This process yields P. taiwanensis VLB120∆5, which is unable to grow on 4-hydroxybenzo-

ate, tyrosine, and quinate. The introduction of a codon-optimized tyrosine-phenol lyase (TPL) 

gene from Pantoea agglomerans facilitates tyrosine transformation into phenol. Metabolic 

flux towards phenol production is further increased using forward- and reverse-engineering 

from leads indicated by previous mutagenesis of phenol-producing P. putida S12 (88) and the 

addition of bottlenecking enzymes AroG and TyrA. P. taiwanensis VLB120∆5-TPL36 achieved 

the yield of 15.6% and 18.5% (Cmol/Cmol) of phenol in minimal medium from glucose and 

glycerol, respectively, without requiring additional complex nutrient.

Synthetic promoter libraries can optimize the expression of several modules in a 

metabolic pathway (23). Using synthetic promoters, the production of rhamnolipids in P. puti-

da KT2440 was significantly increased, reaching a yield of 40% rhamnolipids on sugar (89, 

90). These examples present further proof that pathway optimization is a highly promising 
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approach to resolving pathway flux imbalance and improving biomass and product yield in 

solvent-tolerant bacterial industrial host strains. 

Top-down strategies in genome streamlining 

Genome streamlining has been implemented in various industrial host strains, such as E. coli 

and Streptomyces species (75, 81). Top-down genome streamlining deletes from microbial 

chassis multiple genes or gene clusters that are predicted to be inessential for the microbes, 

consume high amount of energy, contribute to the degradation of products or intermediates, 

or reduce metabolic flux towards the product of interest (75). Alternatively, the bottom-up strat-

egy attempts to design a production chassis from scratch based on minimum requirements 

for a functioning microbial chassis. The top-down strategy significantly increased the biomass 

yield and the maximum specific rate for protein synthesis in the streamlined hosts P. putida 

EM329 and P. putida EM383, compared with the parental strain P. putida KT2440 (19, 91). 

One early example was Pseudomonas arvilla mt-2, described by Murray and colleagues in 

1972 as a fascinating strain of Pseudomonas able to grow on benzoate, m-toluate (3-methyl-

benzoate) or p-toluate (4-methylbenzoate) as its sole carbon source (92). A derivative of this 

strain, P. putida KT2440, has been cured of the endogenous megaplasmid pWW0 present in 

the parental strain P. putida mt-2. Since then,  P. putida KT2440 has proven to be a suitable 

host for gene cloning due to its deficiency in endogenous DNA restriction, so it can efficiently 

receive plasmid DNA for gene cloning purposes (93). P. putida KT2440 is a generally re-

garded as safe (GRAS) strain of P. putida1. The genome of P. putida KT2440 comprises of a 

6,181,873-bp single circular chromosome (25).

In the process of optimizing P. putida KT2440 towards a robust industrial chassis, 

11 chromosomal regions comprising 300 genes, including mobile elements, were found to be 

responsible for genetic instability or massive energy spillage (19). Together, these genes com-

prise a 170 kb genome segment encoding two transposons (Tn7 and Tn4652), prophages, 

two type I DNAses (endA-1 and endA-2), an operon encoding type I DNA restriction-modifi-

cation system (hsdRMS operon), and the 69-kb complete flagellar operon. Mobile elements 

play a significant role in the adaptation during solvent exposure, but mobile elements are 

1 Correction: P. putida KT2440 is classified by the FDA as HV1 certified, indicating it is safe 
to use in a P1 or ML1 environment. (98)
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also responsible for genetic instability (94).  Removing all of these genes resulted in a new 

optimized strain of P. putida EM42. To further diminish the probability of genetic instability, 

recA was deleted, resulting in P. putida EM383. This streamlined P. putida EM383 was shown 

to be superior to P. putida KT2440, as it exhibited a reduced lag phase, increased biomass 

formation, and increased redox charge, leading to exceptional tolerance against redox stress 

and reactive oxygen species damage.  

Optimization of industrial host strains with solvent tolerance traits

Improving tolerance against toxic compounds is an important step towards developing a ro-

bust bacterial chassis for the industrial production of a wide range of valuable compounds. 

Using a modular semisynthetic system, overexpression of heat shock proteins GrpE, GroESL, 

and ClpB in E. coli generated a stress response that increased tolerance towards ethanol, 

n-butanol, and other toxic compounds (95). An engineered E. coli TG1-derived strain ex-

pressing the solvent efflux pump SrpABC from P. putida S12 was employed for 1-naphthol 

production in a two-phase fermentation (83). Although 1-naphtol production did not reach the 

same levels as in P. putida S12, this result demonstrated the successful transfer of the Pseu-

domonas solvent extrusion pump gene cluster, providing the engineered E. coli strain with a 

genuine solvent-tolerant trait. 

The introduction of multiple efflux pumps may promise further advantages, but over-

expression of efflux pumps may severely inhibit cell growth (96). As demonstrated by Turner 

and Dunlop, certain combinations of different efflux pumps can be highly toxic, even at basal 

expression levels of the pump proteins. Another successful example of optimizing solvent 

tolerance relates to bacterial fatty acid modification. Introducing cyclopropane fatty acid syn-

thase (Cfa) from the solvent-tolerant strain Enterococcus faecalis CM4A into E. coli clearly 

increased tolerance towards n-butanol (34). Cfa activity maintains the fluidity of the cell mem-

brane upon exposure to toxic hydrocarbon solvents. Further understanding of the roles of 

and interplay between solvent-tolerant mechanisms will enable the transfer of solvent-tolerant 

traits into suitable industrial host strains. 
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Concluding Remarks and Future Perspectives

Increased insight into solvent tolerance mechanisms is an important basis for biotechnologi-

cal production of challenging compounds. An increasingly wider variety of compounds will be 

produced in microbial hosts due to the transition to a biobased economy. However, biobased 

production of added-value compounds, many of which are aromatics,  is still challenging be-

cause of the inherently toxic nature of most of these compounds. Solvent-tolerant strains 

indeed represent a promising solution to this problem. A deeper understanding of the interplay 

in solvent tolerance mechanisms is still required to further increase the applicability of sol-

vent-tolerant traits in industrial production.

With the help of modern synthetic biology tools, top-down genome streamlining of 

solvent-tolerant strains is essential to reduce host interference and increase production yields. 

In this approach, the challenge is to identify minimal gene clusters required for solvent toler-

ance and biosynthetic capacity which should not be disrupted. Implementing specific synthetic 

biological tools, like efficient gene editing for introducing heterologous genetic feature, or ad-

justable transcriptional regulators for pathway optimization, will enable the rapid generation of 

optimized production strains.

Transferring solvent tolerance traits into existing industrial strains may be a promis-

ing alternative strategy to optimize biobased production. The required synthetic biology tools 

are already available for established industrial strains. The challenge in this strategy is in 

obtaining the desired expression level of exogenous gene clusters in their new hosts. Once 

again, this highlights the necessity for thorough analysis and understanding of solvent tol-

erance mechanisms and the interplay of these mechanisms that orchestrate the tolerance 

toward solvents.
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