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Two models that can simulate acoustic responses of the implanted peripheral auditory 
system were presented in this thesis. One model describes responses of the auditory nerve 
to electrical stimulation, the other describes how responses to acoustic stimulation are 
recorded in a cochlear implant. In the first section of this discussion, both model designs 
are discussed. In the following section, the different outcome measures are discussed: 
single fiber action potential (SFAP), evoked compound action potential (ECAP). The SFAPs 
and ECAPs were calculated with the neural model, ECochG recordings were calculated 
with the cochlear model. In the section thereafter, the most important model parameters, 
and how they affect outcomes of objective measures are discussed. Limitations and 
suggestions for improved model design are discussed in the next section. The concluding 
sections describe alternative model applications and future research directions. 

Model design

Neural response to electrical stimulation
With the first model responses of the auditory nerve to electrical pulse trains were 
simulated. It was built on an existing model of the cochlea and auditory nerve that 
simulates deterministic initial fiber thresholds in response to single pulses (Kalkman et al., 
2015, 2014). The model was extended so that responses to pulse trains can be simulated. 
In the previous model, the initial thresholds were calculated with a realistic 3D geometric 
model of the cochlea and a biophysical active multi-nodal cable-neuron model of 32,000 
nerve fibers (Frijns et al., 1994; Frijns and ten Kate, 1994; Kalkman et al., 2015). Thresholds 
could be calculated in response to predefined electrode configurations, pulse shapes, 
sizes and amplitudes, irrespective of spiking and stimulation history. In the current 
model, these initial thresholds were pre-calculated and stored in a database. To calculate 
responses to pulse trains, stochasticity and temporal components have to be described 
in a computationally efficient manner and with a limited parameter space. To achieve 
this, the pre-calculated thresholds were adjusted temporally and stochastically using a 
phenomenological approach. To accurately simulate temporal behavior in response to 
long duration pulse trains, long-term-adaptation components were introduced in the 
new model. it was shown that both a spiking-dependent adaptation and a stimulus-
dependent adaptation (or accommodation) are required to correctly predict spike 
patterns. The resulting model is the first of its kind to include a combination of adaptation 
and accommodation. Stochasticity was implemented in the model as a relative spread 
(RS) on the threshold, by stochastic distributions of parameters over the fibers and by 
stochastic variation of the parameters in time. In a further refined version of the model, 
latency and jitter were implemented in the phenomenological part of the model. By 
having combined a biophysical approach with a phenomenological approach, this model 
can deal with both spatial and temporal effects in a computationally efficient manner. 
Because of this, single fiber action potentials (SFAPs) can be simulated for all nerve fibers 
in response to pulse trains. All single fiber responses together yield the pulse-train evoked 
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compound action potentials (ECAPs). To simulate these, the spike patterns were convolved 
with their contributions to the potentials recorded at each electrode contact.

Cochlear implant recordings of hair cell activity
The second model simulates how the implanted electrode records hair cell activity in 
response to sound, the intracochlear electrocochleography (ECochG). This model is a 
combination of two existing models; a model of hair cell activation (Zilany et al., 2014) 
and a 3D electrical conduction model (Kalkman et al., 2015) of the cochlea. Intracellular 
hair cell voltages were calculated with the hair cell activation model. The thus calculated 
intracellular voltages were similar to recordings from animal studies. Extracellular currents 
are calculated based on hair cell membrane resistances and capacitive low-pass filtering 
properties of the membrane. The 3D volume conduction model is used to calculate 
electrical impedances between hair cell dipoles at 3200 spatially different locations along 
the basilar membrane and each electrode contact. For the implanted electrode array two 
different designs and cochlear morphologies were used. Combining the extracellular hair 
cell currents with the impedances yielded simulations of the intracochlearly recorded 
ECochG.

Model outcomes

Responses of the peripheral auditory system either to acoustic or electrical stimulation 
can be recorded objectively with SFAP, ECAP and eCochG recordings, as elaborated in 
the introduction. Here, the ability of the models to simulate such recordings is evaluated. 
Single Fiber Action Potential (SFAP) recordings are made from individual neurons and can 
therefore be directly compared to simulated spike timings. The model of neural responses 
accurately simulated discharge rate I/O curves, post-stimulus time histograms (PSTH), 
period histograms (PH), and inter-spike interval histograms (IH), and their variances 
obtained from SFAP recordings (Bruce et al., 1999a; Javel et al., 1987; Litvak et al., 2001; 
Miller et al., 2008; Zhang et al., 2007; chapters 2 and 4) and in the case of amplitude 
modulated (AM) pulse trains also vector strengths (VS) and fundamental frequency (F0) 
amplitudes (Hu et al., 2010; Litvak et al., 2003b, 2003a; chapter 3). The simulated responses 
were in good agreement with animal data for continuous and amplitude modulated long-
duration, pulse trains over a wide range of stimulus rates and amplitudes. The modulation 
detection thresholds, as interpreted by an ideal observer, inferred from the VS, yield 
realistic upper bounds when compared to data from human experiments (Shannon, 1992; 
chapter 3).

Simulated pulse-train-ECAP responses, to both short and long duration stimuli (chapter 
5), replicated studies in both animals and humans (Carlyon and Deeks, 2015; Hughes et al., 
2012; Jeng et al., 2009; Ramekers et al., 2015; chapter 5). Pulse train ECAP recordings show 
an alternation, which is replicated by the model. Modeled pulse train ECAPs showed that 
with the standard parameter settings, or with longer refractory periods when combined 
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with a larger stochasticity, describe the human data very well. Interpatient differences can 
now be explored with the model by investigating how parameters affect the pulse train 
ECAP response.

In chapter 6, intracochlear ECochG simulations were compared to recordings from two 
different subjects. The model replicated characteristics seen in intracochlear ECochG 
recordings in the temporal, spectral and spatial domains. Impedance calculations with 
the 3D volume conduction simulations demonstrate that the intracochlear ECochG is a 
local measure of activation, although possibly sensitive to neighboring cochlear turns. In 
response to high stimulus levels, double peaks may occur which can either be contributed 
to cross-turn sensitivity, or to broad hair cell activation within the cochlea. Simulations of 
the hair cell response showed that increasing stimulus frequency results in a basal shift of 
the peak cochlear microphonic (CM) amplitude. The exact location on the array of the peak 
CM amplitude depended on cochlear geometry and electrode array type. Simulations of 
phase recordings showed that the recorded pattern becomes unreliable when the special 
sampling is too low. 

Model parameters

As discussed in the previous section, the models and their average parameters are well 
equipped to replicate the different objective recordings of the auditory periphery to 
acoustic or electrical excitation. This section describes how recordings are affected by 
specific model parameters and how the parameters, and thus differences in recordings, 
might be related to hearing loss. 

Neural adaptation and accommodation
Chapters 2 to 5 showed that adaptation must be implemented to correctly model 
auditory neuron spike rates in response to pulse trains. Adaptation decreased the 
discharge rate over time, and improved modulation following behavior. Only a few 
models of auditory nerve responses to electrical stimulation include adaptation (Negm 
and Bruce, 2008; Woo et al., 2009). Those models take a biophysical approach, where 
adaptation behavior is implemented in specific ion channels. Such models are important 
to provide further understanding of the origin of adaptation, but are too slow to be used 
to simulate spike trains in response to sound segments in a complete auditory nerve. 
Implementing adaptation using a phenomenological approach enabled fast simulations 
of neural responses to pulse trains. Spike-adaptation alone did not describe the long-term 
behavior; stimulus-dependent adaptation, sometimes referred to as accommodation, or 
sub-threshold adaptation, also had to be implemented. The time constant was assumed 
similar for both accommodation and adaptation. Biophysical studies have shown that 
there are at least a few different ion channel-types in spiral ganglion cells; fast voltage-
gated sodium (Nav) and delayed rectifier potassium (Kv) channels (Hodgkin and Huxley, 
1952), but also low-threshold potassium (KLT) channels and hyperpolarization-activated 
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cation (HCN) channels (Negm and Bruce, 2008). These different channels invoke different 
currents flowing over the neural membrane which all may result in different forms of 
adaptation with different time scales. Because biologically it might very well be that 
different mechanisms underlie accommodation and spike-adaptation, different time 
constants for both processes could perhaps be physiologically more viable. Adaptation 
over different time scales can be modeled by a power-law. Power-law adaptation is 
suggested in general neuroscience (Fairhall et al., 2001) and is implemented in models 
of acoustic stimulation of the auditory periphery (Zilany et al., 2009; Zilany and Carney, 
2010), but not in models of electrical stimulation. Chapter 4 shows that the adaptation 
is best described by a power-law, especially for long duration data. As suggested in 
literature, this power-law adaptation can be approximated with multiple exponentials, 
and the number of exponentials required to fit the data depended on the duration of 
stimulation to simulate. Chapter 5 shows that decreasing the magnitude of adaptation in 
the model produced increases in alternation of ECAP amplitude and response amplitude, 
as seen in deafened guinea pigs (Ramekers et al., 2015). In their study, Ramekers et al 
see an increased alternation depth of pulse-train ECAP in chronically deafened animals 
that is hypothesized to be related to altered refractoriness or jitter in hearing impaired 
animals. In chapter 5 this hypothesis was tested and it was shown that instead, decreasing 
the adaptation amplitude better reproduced recordings from the deafened animals. Thus, 
measurement of the pulse-train ECAP’s alternation can provide a measure of adaptation, 
which might be related to hearing loss. Generally, explanations for the relation between 
hearing loss and neural behavior can be sought in axonal shrinkage, demyelination and 
progressive retraction of the peripheral axon (Leake and Hradek, 1988). To date, however, 
there is no exact biophysical explanation for any relation between hearing loss and 
decreased adaptation.

Refractoriness
Refractoriness has, by the use of two-pulse paradigms, been much more extensively 
studied than adaptation. Simulations in chapters 2 and 3 show that for longer duration 
stimulation, effects of refractoriness interplay with effects of accommodation and 
adaptation. Effects of refractoriness were mostly visible at short time scales, such as SFAP 
onset rates and initial rate decrements. Larger refractory parameters in the model lead to 
larger inter-spike intervals in the SFAP interval histograms. ECAP simulations showed that 
refractoriness affects the frequency at which alternation is maximal, alternation depth 
and, for short duration simulations, also the final response amplitude. Several previous 
studies show that refractory periods are longer in animals with hearing loss than in control 
animals (Rubinstein, 1995; Shepherd et al., 2004; Shepherd and Javel, 1997; Sly et al., 2007; 
Walton et al., 1995). Prolonged refractory time-constants are observed in demyelinated 
neurons (Waxman and Ritchie, 1993), of which the chronically deafened auditory nerve is 
an example (Leake and Hradek, 1988). Demyelinated nerve fibers have fewer potassium 
channels than myelinated fibers, which might result in a leakage of internodal potassium 
currents into the nodal regions and thus cause a prolongation of refractory time constants.
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Stochasticity
Stochasticity was implemented in various parts of the neural model by using: a stochastic 
distribution of thresholds over all nerve fibers, a threshold variability, an internal variability 
of the refractoriness and a distribution of model parameters over the fibers. The relative 
stochasticity (RS) and the internal variability of the refractoriness were essential model 
attributes to obtain I/O curves similar to animal data in response to electrical pulse trains. 
Variation of RS affected the width of the peaks in the interval histograms obtained from 
simulated SFAPs. A lower RS resulted in slightly improved modulation following behavior 
and stronger phase-locking over time in response to low stimulus amplitudes. This can 
be explained by a more deterministic fiber more strongly relying on the exact stimulus 
amplitude to determine whether it fires or not. The model presented here shows that 
decreased stochasticity (i.e., reduced RS), or increased refractoriness of the nerve, may 
lead to increased alternation depths in the temporal ECAP, independent of stimulus rate. 
A psychophysical study by Carlyon and Deeks (2015) shows that patients with larger 
alternation depths in their ECAP responses perform worse on rate discrimination tasks. The 
simulations presented in chapter 5 suggest that CI wearers with better rate discrimination 
have auditory neurons with short refractory periods and strong stochastic behavior. 
Biophysically this can be understood as that stochasticity, or the RS of the threshold, 
depends on the myelination of the nerve, with demyelination reducing RS (Resnick et al., 
2018).

Latency and jitter
For the SFAP simulations, latency and jitter were not implemented. This resulted in slightly 
later spike timings in the animal experiments than in the model simulations, visible in the 
post-stimulus time histograms. In the ECAP simulations latency and jitter were included. 
An increased latency induced a small delay in the ECAP responses. Jitter did not affect 
any of the output measures. Latency and jitter are important parameters when exact 
spike timing is of interest, such as in a model of ITD differences. Spike timing is, however, 
also affected by adaptation (Prescott and Sejnowski, 2008), and the exact location of the 
auditory neuron relative to the stimulus (Mino et al., 2004). 

3D model
Both the neural model’s responses to electrical stimulation and the hair cell model’s 
responses to acoustic stimulation include a 3D model of the cochlea. It is demonstrated 
in chapter 2 that spike rate adaptation depends on the spatial location of the nerve fiber 
relative to the current source. Relative rate decreases, and thus the amount of adaptation, 
was largest at the borders of the stimulated area. The deterministic single pulse threshold 
distribution thus has a large effect on final firing patterns. The local sensitivity of the 
intracochlear ECochG, as obtained with the 3D volume conduction model, was in line with 
a previous modeling study using a finite element approach (Teal and Ni, 2016) and with 
measurements made close to the hair cells (Dong and Olson, 2013; Fridberger et al., 2004), 
but contradicting other beliefs of wider fall-offs (Ayat et al., 2015; Charaziak et al., 2017; 
Davis et al., 1958; Tasaki and Fernández, 1952; v. Békésy, 1952, 1951; Whitfield and Ross, 
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1965). This local sensitivity implies that the intracochlearly located electrode contact is 
most sensitive to a small region of hair cells, located in closest proximity to the recording 
location. As a result of this local sensitivity of the intracochlear ECochG, it is possible to 
measure acoustic tuning in the cochlea. For both types of models, it is thus of the utmost 
importance to include an accurate and realistic 3D volume conduction model.

Hair cell degeneration
In the intracochlear ECochG simulations of chapter 6, different forms of hearing loss were 
modeled by implementing different degrees and types of hair cell degeneration. CM 
phase changes, as recorded with the intracochlear ECochG, are suggested to indicate hair 
cell damage (Giardina et al., 2019; Koka et al., 2018), and most, but not all, data seems 
consistent with this theory (Tejani et al., 2019). Simulations with hair cell degeneration 
resulted in ECochG responses that better resembled the recordings from subjects in terms 
of CM onset responses, higher harmonics, and the width of the tuning curve. Changes in 
the ECochG recording in the temporal, spectral, and spatial domains were thus related to 
the degree and type of hair cell degeneration. Hence, it is concluded that the intracochlear 
ECochG recording has the potential to elucidate on the type and degree of hair cell 
degeneration. Simulations show that OHCs are the main contributor to the intracochlear 
ECochG response, in line with previous recordings from animal studies (Dallos, 1986, 
1985, 1983; Dallos et al., 1972; Dallos and Cheatham, 1976; Davis et al., 1958; Russell et 
al., 1986). Animal studies correlating post-mortem histological counting of the hair cells 
to audiometric thresholds show that hair cell degeneration generally starts in the base 
and then proceeds to the apex. Laterally positioned hair cells are more vulnerable than 
those medially positioned. Hence, degeneration progresses from base to apex, and affects 
lateral OHCs first and the medially positioned IHCs last (Dallos et al., 1972; Eric Lupo et al., 
2011; Stebbins et al., 1979; Van Ruijven et al., 2005, 2004). Despite this, the exact relation 
between audiogram and hair cell degeneration, especially in humans, remains unknown. 
Synaptic or retro-cochlear pathologies might cause hearing loss regardless of the status of 
hair cells in the cochlea (Hill et al., 2016). To verify the relationship between intracochlear 
ECochG responses and hearing loss, further studies relating hair cell degeneration in 
humans to degree and etiologies of hearing loss are necessary. 

Model design suggestions

Neural model parameters
Temporal and stochastic parameters are known to depend on fiber diameter and pulse 
shape (Liberman and Oliver, 1984; Miller et al., 1999a; Resnick et al., 2018; Verveen, 
1962; Woo et al., 2010; Zhang et al., 2007). These factors have not yet been included 
in the parameters of the phenomenological model, but could be included in a further 
refinement of this model. The RS was assumed to be independent of the time since a spike 
occurred, whereas some data suggest that RS depends on time since spike (Imennov and 
Rubinstein, 2009; Matsuoka et al., 2001). In response to some stimulation rates, SFAP 
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recordings may exhibit an increased sustained firing rate (Zhang et al., 2007), which can 
be hypothesized to be a result of integration effects, also referred to as summation or 
facilitation. In some ECAP recordings, increased amplitudes over the stimulus duration 
were observed (He et al., 2015), probably also related to integration. Such temporal 
integration was not implemented in the current model, because its exact dependency on 
pulse train characteristics such as rate and amplitude level needs to be investigated more 
thoroughly. 

Hair cell model parameters
A challenge in modeling hair cell membrane behavior is the relatively sparse animal data 
available. Pujol et al. show that the outer hair cell length is correlated to the characteristic 
frequency in different species (Pujol et al., 1992). In the present study the dependency of 
conductance parameters on the characteristic frequency was determined from relatively 
sparse data (Johnson et al., 2011). A wider range of data recording how the hair cell 
conductance depends on characteristic frequency would be desirable. A limitation of the 
hair-cell model for the current application is the non-physiologically large IHC responses 
to stimulus levels above 80 dB SPL. From the auditory peripheral model, only responses 
to hair cells with a characteristic frequency larger than 125 Hz can be obtained, although 
hair cells with characteristic frequencies below 125 Hz might also influence the ECochG 
response. 

ECAP and the Unitary response
The exact unitary response, or contributions from each individual nerve fiber to the ECAP 
is unknown, especially for humans. Simulations in this thesis were done with a unitary 
response based on cat data (Miller et al., 1999b). Differences in fiber kinetics, neuron 
myelination, size and morphology between the cochleae of different species influence 
the contribution of each action potential. An important species-dependent factor is, 
for instance, that in humans the soma is unmyelinated, which effectively adds a large 
capacitance to the human auditory nerve: leading to altered spike propagation times along 
the nerve. For simulation of the human ECAP, a unitary response derived especially for the 
human situation would be desirable (Dong et al., 2018). To test sensitivity to the shape 
of the unitary response, simulations were repeated with an alternative unitary response 
(Versnel et al., 1992). With this different unitary response, the simulated normalized pulse-
train ECAP responses were similar, thus such differences in shape of the unitary response 
would not influence the results reported in chapter 5. 

Model applications

Recording adaptation in humans
The pulse train ECAP can be used as a measure of adaptation based on findings in 
chapter 5, as a decrease in adaptation magnitude produces an increased alternation and 
response amplitude in long duration simulations. First, the average refractory period of 
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the auditory nerve should be estimated based on a two-pulse paradigm ECAP recording, 
or by identification of the stimulus rate at which the ECAP alternation is maximal. After 
adjusting the model parameters of refractoriness accordingly, the adaptation amplitude 
can be altered so that recorded responses are best replicated. This will yield an indication 
of the adaptation amplitude. From such recordings, data on adaptation levels in patients 
can easily be obtained. This can be used to investigate the relationship between neural 
adaptation and outcomes on functional tests. Ultimately, information about the level 
of neural adaptation in an individual can be used to optimize settings in sound coding 
strategies.

Simulating other ECochG responses
The model of the eCochG responses presented in chapter 6 mainly investigated CM 
responses, but it can also be used to simulate intracochlear SP. With such simulations the 
eligibility of the SP as a diagnostic measure can be established and the origin of the SP 
response can be further elucidated on (Dallos and Cheatham, 1976; Davis et al., 1958; 
Durrant et al., 1998). In a similar approach to the ECAP simulations discussed above, 
after implementing neural responses, this eCochG model could also simulate compound 
action potential (CAP) and auditory nerve neurophonic (ANN) responses. This can be 
useful to evaluate how stimulus shape affects the intracochlear CAP response and ANN. 
The ANN is often believed to be reflected in the AC potentials in the summed response. 
Contrasting with this, the simulations presented in chapter 6 with only hair cells and no 
neurons simulated, also show an AC potential in the summed response. As another future 
application, the ECochG model developed here can be used to simulate the much more 
common extracochlear, round window, recordings. Responses to different stimulation 
patterns, such as chirps, clicks or tone bursts (Schoonhoven et al., 1995), or masked 
noises (Chertoff et al., 2012) could be modeled to better understand how these responses 
potentially differentiate between different types and degrees of hair cell degeneration. By 
combining simulations of the auditory periphery with simulations of the neural model, 
while incorporating electro-acoustic interactions, responses to an EAS system could also 
be simulated in future.

Towards model-based evaluation of sound coding strategies

Owing to the efficient implementation of spatial and temporal components, the model 
of responses to electrical pulse trains can be used to evaluate whole nerve responses to 
long duration sound segments. Simulated spike patterns in response to different stimuli, 
coded with different stimulation strategies, or from both ears in binaural stimulation, 
can now be compared. From these simulated neural responses, CI users’ performance on 
tests as used in perceptual patient testing, such as minimal detection and identification 
tests, could be inferred with an interpretation model. Such simulations, whether with a 
basic interpretation, or a more complex perceptual interpretation model, can evaluate 
responses to different stimulation patterns, or sound coding strategies. Moreover, the 
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simulations could be used to investigate how inter-subject differences in auditory nerve 
characteristics will affect interpretation. These patient specific neural parameters, and 
related performance expectations, could yield patient specific recommendations for 
sound coding strategies. Whether used for optimizing sound coding strategies in general, 
or for personalization, the simulated spike trains have to be interpreted. In other words, 
spike trains have to be decoded to give information about the underlying stimuli. There 
are different approaches to evaluation of the information in, or to decode, these simulated 
spike trains.

One way to interpret spike trains would be to define a metric that can be calculated 
directly from the spike train, that quantifies embedded information. This outcome can be 
related to a stimulus. For example, a simple measure of modulation following behavior 
is the vector strength, which can be used to simulate modulation detection thresholds 
(Goldwyn et al., 2010; O’Brien et al., 2016; Xu and Collins, 2007; chapter 3). Another example 
of a metric that can be used to compare spike trains is cross-correlation, or coincidence 
counting (Heinz et al., 2001; Heinz and Swaminathan, 2009). Such measures can be very 
well used to compare binaural coincidence neurons for their interaural differences (Dietz, 
2016). The cross-correlation metric does however, not take into account spatial effects, 
since only two neurons are compared. In modeling speech perception this will generally 
not suffice, because the whole nerve contains information about the stimulus. Also, for 
modeling localization in cochlear implant users, these metrics will probably not suffice. 
Due to differences in electrode placement and neural survival binaurally, the binaural 
coincidence neuron will receive unequal information. The cochlear implant recipient 
might use other cues for localization. Another example of a metric based on the spike 
pattern is using averaging in the spatial and temporal domains. For this, first an internal 
representation of a stimulus over time is defined from the spike patterns by a spatial 
averaging over all neurons and temporal windowing (Fredelake and Hohmann, 2012; 
Hamacher, 2004; Hines and Harte, 2012). Hereafter, this internal representation over 
time is compared to a reference representation by calculating the shortest Euclidean 
distance from the signal to the reference stimulus (Chiba and Sakoe, 1978). The temporal 
integration can be done by calculating average discharge rates over a steady or moving 
rectangular or asymmetric window, e.g. a running exponential integration window (McKay 
and McDermott, 1998). Instead of using time warping averaged spatially over all neurons, 
similarity can be assessed of the 2D representation. Here, the spatiotemporally averaged 
spike pattern is treated as an image, with the structural similarity index (Wang et al., 2004). 
In both metrics, representation with the smallest difference with the representation of 
the reference stimulus has the largest chance to be perceived as similar to the reference 
stimulus. All the metrics described here define a specific attribute of the spike train that 
should be evaluated. Its ability to predict psychophysical outcomes is largely dependent 
on the stimulus. 

An alternative approach to interpreting spike patterns is the use of a neural network (Kell 
and Mcdermott, 2019).  Neural network models have already been found useful in 
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speech recognition  (Graves and Jaitly, 2014). For auditory sciences, neural networks 
often use  spatiotemporally averaged spectrograms as inputs.  From these,  image 
classification  features are extracted  and used as inputs to the neural  network.  In a 
neural network,  there are weights and layers connecting different aspects of the input 
to each other and to the output. In supervised learning,  the weights of the different 
units that relate the output to the inputs are adjusted to minimize the error on a training 
set. This training set relates spectrograms to specific outputs. With this set, for example, the 
neural network can be trained to distinguish between two different sounds. Because in 
the training stage the desired output is known, this is referred to as a supervised learning 
deep neural network.  Performance of deep learning neural networks is increasingly 
enhanced by introducing different levels of complexity such as multiple layers, pooling of 
input and optimized filtering operations. A specific class of neural networks, the spiking 
neural network, includes a temporal component  and can be trained directly on spike 
trains simulated at the level of the auditory nerve (Paugam-Moisy and Bohte, 2012). Even 
though this is more directly applicable to the spike trains simulated in this thesis, its 
implementation is not straightforward because a more  complex learning algorithm is 
required.  So, it can be seen that there is a vast and growing variety of neural network 
designs, and there are many factors to consider when designing one for the current 
purpose.  

Future perspectives

With an interpretation model, simulated spike trains can be compared for evaluating the 
effect of neural health, sound coding strategies, or binaural implants on the perceptual 
outcomes for cochlear implant users. This model can be used to test new sound coding 
strategies and to evaluate its performance in general.  Sound coding strategies can be 
optimized for their expected performance on speech discrimination tasks, minimal just 
noticeable difference and detection tasks and optimal directional hearing.  Moreover, 
patient specific performance, due to inter-individual differences in cochlear morphology 
and neural health, can also be modeled. Settings of the cochlear implant, its design, and its 
sound coding, can then be adjusted to realize an optimal performance for each individual. 
With this kind of modeling, the development of sound coding can be boosted, so that CI 
wearers will benefit more from their implants in the future. 




