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Short and long-term adaptation in 
the auditory nerve stimulated with 
high-rate electrical pulse trains are 
better described by a power law
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Abstract

Despite the introduction of many new sound-coding strategies speech perception 
outcomes in cochlear implant listeners have levelled off. Computer models may help 
speed up the evaluation of new sound-coding strategies, but most existing models of 
auditory nerve responses to electrical stimulation include limited temporal detail, as the 
effects of longer stimulation, such as adaptation, are not well-studied. Measured neural 
responses to stimulation with both short (400 ms) and long (10 minutes) duration high-
rate (5kpps) pulse trains were compared in terms of spike rate and vector strength (VS) 
with model outcomes obtained with different forms of adaptation. A previously published 
model combining biophysical and phenomenological approaches was adjusted with 
adaptation modeled as a single decaying exponent, multiple exponents and a power law. 
For long duration data, power law adaptation by far outperforms the single exponent 
model, especially when it is optimized per fiber. For short duration data, all tested models 
performed comparably well, with slightly better performance of the single exponent 
model for VS and of the power law model for the spike rates. The power law parameter 
sets obtained when fitted to the long duration data also yielded adequate predictions for 
short duration stimulation, and vice versa. The power law function can be approximated 
with multiple exponents, which is physiologically more viable. The number of required 
exponents depends on the duration of simulation; the 400 ms data was well-replicated 
by two exponents (23 and 212 ms), whereas the 10-minute data required at least seven 
exponents (ranging from 4 ms to 600 s). Adaptation of the auditory nerve to high-rate 
electrical stimulation can best be described by a power-law or a sum of exponents. This 
gives an adequate fit for both short and long duration stimuli, such as CI speech segments.
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1. Introduction

Cochlear implants (CIs) are implantable hearing devices for people with severe to 
profound hearing loss. CIs generally allow good speech understanding, but outcomes are 
highly variable and speech perception remains challenging in more complex listening 
situations. Many different sound-coding strategies have been introduced in the last 
decade to improve sound coding, but performance on perception tests has not improved 
significantly (Zeng, 2017). New stimulation strategies are commonly investigated in 
psychophysical experiments and clinical trials, which is time-consuming for both the 
patient and researcher and does not provide insight into physiological characteristics 
underlying the large variability in perception scores. Alternatively, strategies could be 
evaluated using computational models. A variety of models are currently available that 
can simulate responses of the auditory nerve to electrical stimulation. 

Models that simulate responses of the auditory nerve to electrical stimulation can be 
classified as phenomenological or biophysical. Biophysical models, which describe 
physiological elements of the neuron in detail, have been shown to reproduce 
deterministic threshold characteristics and refractory behavior in response to a stimulation 
of several milliseconds, with arbitrary pulse shapes (Dekker et al., 2014; Frijns et al., 2001; 
Frijns and ten Kate, 1994; Kalkman et al., 2015; O’Brien and Rubinstein, 2016). Methods to 
biophysically model more complex neural behavior, such as stochasticity and the effects of 
long temporal spiking history, have also been suggested. These methods provide insight 
into the physiological processes, but have the disadvantage of requiring many parameters 
to be fitted and consume great computational power (Negm and Bruce, 2014; O’Brien and 
Rubinstein, 2016; Woo et al., 2010, 2009). Efficient computation of the neural responses 
of all ~30,000 auditory nerve fibers is fundamental to predicting perception outcomes.  
Alternative to biophysical models, phenomenological models, that describe the behavior 
of the neuron empirically, can be used efficiently for these purposes. Stochasticity is 
such a phenomenon that can be included (Bruce et al., 1999b, 1999a), and more recently 
adaptation has been included in phenomenological models (Boulet et al., 2016; van Gendt 
et al., 2019, 2016). The effect of adaptation increases with stimulus duration and rate (van 
Gendt et al., 2017, 2016). Therefore, in simulations of neural responses to segments of 
speech, which are of long durations, adaptation becomes relevant. Contemporary CIs use 
pulse rates of 800-2000 pps, but depending on the spatial spread single neurons may be 
stimulated by higher rates. 

Single fiber auditory neuron recordings in response to long duration electrical stimulation, 
which can be used for verification, is available only for high pulse rates (5 kpps). For lower 
stimulus rates adaptation is expected to have a smaller effect. It has been suggested that 
high rate pulse trains can be used as desynchronizing pulse trains (Rubinstein et al., 1999). 
In the healthy auditory nerve there is spontaneous activity, which yields linear behaviour 
also for low stimulus levels. Electrically stimulated auditory nerve fibers, however, respond 
highly synchronized, diminishing the dynamic range. To overcome this, it has been 
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suggested to first stimulate the auditory nerve with a high-rate (e.g., 5kpps) pulse train, 
bringing all fibers in a refractory or adapted state, after which spiking will be less coherent.

Adaptation is a well-known phenomenon in general neuroscience that is particularly 
well-studied in the visual system. Adaptation has been shown to maximize information 
transmission (Barlow, 1961; Wark et al., 2007). Neural adaptation dynamics depend on the 
stimulus history (de Ruyter van Steveninck et al., 1986). Neurons not only adapt to stimulus 
gain, but to a range of stimulus statistics, so that stimuli in a dynamic environment are 
represented most efficiently (Brenner et al., 2000). Such statistics may be very different 
over different durations of stimulation. After long durations of stimulation, the dynamics 
of adaptation in neural systems in general are often better described by a power law than 
an exponent (Toib et al., 1998). In the fly’s visual system, adaptation was demonstrated 
to occur at different time scales; short time scales are necessary for optimal information 
encoding of rapid stimulus variations within an ensemble, whereas long time scales adjust 
the rate and statistics of the firing pattern to provide information about the ensemble 
of the stimulus (Fairhall et al., 2001). A power law function can be approximated by a 
combination of a large number of exponential processes with a range of time constants 
(Drew and Abbott, 2006). Many natural processes decay and grow exponentially. Although 
neurons behave according to a power law, no individual biological processes that can 
be described by a power law have been detected in neurons (Drew and Abbott, 2006), 
and the dynamics probably arise physiologically from different exponential processes. 
Because of the power law dynamics, neurons are capable of adapting their responses to 
stimulus statistics over a wide range of time scales, from tens of milliseconds to minutes. 
Thus, adaptation has been shown to play a role in efficient coding of the continuously 
(rapidly or slowly), changing sensory world. 

In the auditory system, adaptation is also a supposed mechanism for optimized information 
transmission (Clague et al., 1997; Epping, 1990). Neurons can adapt to stimulus statistics, 
such as sound level and variance (Dean et al., 2005; Wen et al., 2009). The dynamic range 
is adjusted to the range of presented sound levels, leading to high accuracy of the 
perception of differences in loudness, regardless of the large dynamic range spanned 
by the input levels. Auditory nerve responses to statistically varying acoustic input were 
well-replicated by a model that included power law adaptation (Zilany et al., 2009; Zilany 
and Bruce, 2006). This model showed that power law adaptation increases the dynamic 
range of the auditory neuron (Zilany and Carney, 2010). Auditory neurons also adapt in 
response to electrical stimulation (Heffer et al., 2010; Litvak et al., 2003; Zhang et al., 2007). 
This becomes especially apparent with stimulus durations >100 milliseconds, as is the 
case in pulse trains encoding speech segments. Thus, a model of the auditory nerve that 
simulates responses to electrical CI stimulation representative of speech should account 
for adaptation. Previously, a model combining the biophysical and phenomenological 
approaches was shown to accurately simulate spiking of the auditory nerve in response 
to electrical pulse trains of durations up to a few hundred milliseconds (van Gendt et al., 
2019, 2017, 2016). In these studies, adaptation was modeled by increasing the threshold 
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following each spike or pulse with a certain amplitude that exponentially decayed over 
time. Exponential spike adaptation and accommodation with a time constant of 100 
ms was found to explain spiking behavior in response to both amplitude modulated 
and continuous amplitude pulse trains with duration up to 400 ms. This model, with a 
single exponent, successfully replicated responses, but its success was restricted to the 
limited stimulus ranges for which its parameters were optimized. The model has not been 
validated for longer duration stimulation. In addition, no studies have evaluated whether 
a power law, a single exponent, or a sum of exponents best describes the response of the 
auditory nerve to electrical stimulation.

As speech segments have durations of up to several seconds and a large dynamic range, it 
is important that the adaptation be correctly implemented in a model of neural responses 
to speech coding in CIs. The present study evaluated which model of adaptation best 
describes the responses of the auditory nerve to long duration stimulation. For this, 
recordings of the auditory neuron’s responses to pulse trains with short and long 
durations were simulated with different models of adaptation. The used model builds on 
a previously developed computationally efficient model (van Gendt et al., 2017). 

It is plausible to expect that more than one time-component is required to model 
long duration responses. This could be modeled as multiple exponentials, or, with 
less parameters, with a power law. This study investigates how both short- and long-
term adaptation of auditory neurons to electrical stimulation can most adequately, 
physiologically realistic and computationally efficient be described and fitted.

2. Methods

Responses of the electrically stimulated auditory nerve were modeled using a combined 
biophysical and phenomenological model. 

2.1. Deterministic thresholds
First, deterministic fiber thresholds (Idet) were calculated with a 3D volume conduction 
model and active nerve fiber model developed in the LUMC (Kalkman et al., 2015, 2014). 
The cochlear geometry is based on micro-CT data, the electrode array geometry is 
based on the HiFocus1J array (Advanced Bionics, Valencia, CA, USA) in lateral position. 
Deterministic thresholds were obtained for specific pulse shapes and pulse widths. In the 
current paper biphasic pulses with pulse-widths per phase of 18µs were used.

2.2 Phenomenological threshold adjustments
These deterministic thresholds were adjusted with stochasticity, adaptation, and 
accommodation using a phenomenological approach (van Gendt et al., 2017, 2016). 
For each nerve fiber, the stochastic threshold was taken from the normal distribution, 
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N(Idet, SD), with SD calculated with a relative spread (RS) as SD= Idet ∙ RS. Subsequently, 
refractoriness (R), as calculated with equation 4.1, was added to the stochastic threshold. 

 

 𝑅𝑅𝑅𝑅 =  1

1−𝑑𝑑𝑑𝑑
−(𝑡𝑡𝑡𝑡−𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

  (Eq. 1),  

where τARP and τRRP 

the time since the last action potential. It was shown previously 

of both sustained firing, referred to as spike adaptation (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

as accommodation (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). Different models to described 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

final threshold was calculated as follows;  

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (Eq. 2) 

A spike was assumed to occur when: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 

(van Gendt et al., 2017, 2016)

Single exponent adaptation 

Adaptation was previously modeled with an exponential decay as in Eq. 3. 

𝑆𝑆𝑆𝑆 =  𝛼𝛼𝛼𝛼 ∙ ∑  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∙  𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔   (Eq. 3) 

𝛼𝛼𝛼𝛼 is the adaptation amplitude or the accommodation amplitude. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

adaptation, and 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒)

 for accommodation, 𝐼𝐼𝐼𝐼min(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒

for the fiber most sensitive to the used electrode, and 𝐼𝐼𝐼𝐼(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

particular fiber to that electrode. For spike adaptation 𝑓𝑓𝑓𝑓 ref

refers to the last stimulus pulse given.  

 

Power law adaptation  

 (Eq. 4.1) 

where τARP and τRRP are the time constants for the absolute and relative refractory period, 
and t is the time since the last action potential. It was shown previously (van Gendt et al., 
2017, 2016) that the adaptation behavior of the auditory nerve in response to electrical 
stimulation is a consequence of both sustained firing, referred to as spike adaptation (SA), 
and sustained stimulation, referred to as accommodation (Acco). Different models to 
described SA and Acco are described below. The final threshold was calculated as follows; 

 Iadj = N(Idet,σ)·R+ SA+ Acco (Eq. 4.2)

A spike was assumed to occur when: Igiven > Iadj, where Igiven is the stimulus current. The 
parameters for stochasticity, refractoriness, and single exponential adaptation were 
previously fitted (van Gendt et al., 2017, 2016). An overview of the parameters is given 
in table 4.1 in the appendix. The present paper determined parameters for power law 
adaptation and multiple exponentials.

Single exponent adaptation

Adaptation was previously modeled with an exponential decay as in equation 4.3:

 

 𝑅𝑅𝑅𝑅 =  1

1−𝑑𝑑𝑑𝑑
−(𝑡𝑡𝑡𝑡−𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)

𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

  (Eq. 1),  

where τARP and τRRP 

the time since the last action potential. It was shown previously 

of both sustained firing, referred to as spike adaptation (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

as accommodation (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). Different models to described 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

final threshold was calculated as follows;  

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (Eq. 2) 

A spike was assumed to occur when: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 

(van Gendt et al., 2017, 2016)

Single exponent adaptation 

Adaptation was previously modeled with an exponential decay as in Eq. 3. 
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𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔   (Eq. 3) 

𝛼𝛼𝛼𝛼 is the adaptation amplitude or the accommodation amplitude. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

adaptation, and 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
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particular fiber to that electrode. For spike adaptation 𝑓𝑓𝑓𝑓 ref

refers to the last stimulus pulse given.  

 

Power law adaptation  

 (Eq. 4.3)

α is the adaptation amplitude or the accommodation amplitude. SP, a spatial factor, is 1 
for spike adaptation, and 0.03% 

 =  
1−𝑑𝑑𝑑𝑑

−(𝑡𝑡𝑡𝑡−𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)
𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

   

where τARP and τRRP are the time constants for the absolute and relative refractory period, and 𝑡𝑡𝑡𝑡 is 

the time since the last action potential. It was shown previously (van Gendt et al., 2017, 2016) that 

the adaptation behavior of the auditory nerve in response to electrical stimulation is a consequence 

of both sustained firing, referred to as spike adaptation (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), and sustained stimulation, referred to 

as accommodation (𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). Different models to described 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are described below. The 

final threshold was calculated as follows;  

𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎 =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (Eq. 2) 

A spike was assumed to occur when: 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 > 𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎, where 𝐼𝐼𝐼𝐼𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 is the stimulus current. The 

parameters for stochasticity, refractoriness, and single exponential adaptation were previously fitted 

(van Gendt et al., 2017, 2016). An overview of the parameters is given in Table 1 in the appendix. 

The present paper determined parameters for power law adaptation and multiple exponentials. 

Single exponent adaptation 

Adaptation was previously modeled with an exponential decay as in Eq. 3. 

𝑆𝑆𝑆𝑆 =  𝛼𝛼𝛼𝛼 ∙ ∑  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∙  𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔   (Eq. 3) 

𝛼𝛼𝛼𝛼 is the adaptation amplitude or the accommodation amplitude. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, a spatial factor, is 1 for spike 

adaptation, and 0.03% ∙ 𝐼𝐼𝐼𝐼 ∙ 𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒)

 for accommodation, 𝐼𝐼𝐼𝐼min(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is the threshold 

for the fiber most sensitive to the used electrode, and 𝐼𝐼𝐼𝐼(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) is the threshold for a 

particular fiber to that electrode. For spike adaptation 𝑓𝑓𝑓𝑓 refers to the last spike, for accommodation 𝑓𝑓𝑓𝑓 

refers to the last stimulus pulse given.  

 

Power law adaptation  

 for accommodation, Imin (electrode)is 
the threshold for the fiber most sensitive to the used electrode, and Imin (electrode, fiber) 
is the threshold for a particular fiber to that electrode. For spike adaptation i refers to the 
last spike, for accommodation i refers to the last stimulus pulse given. 

Power law adaptation 

The power law function was implemented in the neural model as in equation 4.4:

 PLA(t)= α ∙ ∑i SP ∙ (t-ti+offset)β (Eq. 4.4) 

where i, α and SP are the same as above, offset represents a shift in the power law function, 
and β is the power component for the power law. Offset and β were assumed equal in 
both spike adaptation and accommodation.
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Power law approximation with multiple exponents

Power law adaptation can be approximated by multiple exponents (Drew and Abbott, 
2006). This was implemented here as in equation 4.5 for one exponent and equation 4.6 
for multiple (k) exponents: 

 

adaptation and accommodation. 

Power law approximation with multiple exponents 

Power law adaptation can be approximated by multiple exponents 

was implemented here as in Eq. 5 for one exponent and Eq. 6 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡)𝑘𝑘𝑘𝑘  =  𝛼𝛼𝛼𝛼 ∙ ∑  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∙  𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔   (Eq. 5) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) =  ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡)𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  (Eq. 6), 

where 𝑓𝑓𝑓𝑓, 𝛼𝛼𝛼𝛼 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 are the same as above, and 𝜏𝜏𝜏𝜏 

adaptation.  

 

2.4 Model optimization 

The parameters for the single exponent adaptation 

2017, 2016), and the formulas and optimal parameters are given in A

adaptation model was fitted to two different data sets

of one fiber to short duration (400 ms) amplitude-

different stimulus amplitudes (Hu et al., 2010) (Fig. 2). 

recordings, st

threshold, which 

the first bin. Similar to the recordings by Hu et al. (2010), the s

 (Eq. 4.5)

 ExpA(t)= ∑k ExpA(t)k  (Eq. 4.6)

where i, α and SP are the same as above, and τ refers to the time constant for the 
exponential adaptation. 

2.3 Model optimization
The parameters for the single exponent adaptation model were previously fitted (van 
Gendt et al., 2017, 2016), and the formulas and optimal parameters are given in Appendix 
A. The power law adaptation model was fitted to two different data sets. The first data set 
consisted of the responses of one fiber to short duration (400 ms) amplitude-modulated 
electrical pulse trains with five different stimulus amplitudes (Hu et al., 2010) (figure 4.2). 
For this short duration data, similar to the recordings, stimulation amplitudes were set to 
a certain relative amplitude compared to the threshold, which was defined as the stimulus 
amplitude that yielded a response of 100 spikes/s in the first bin. Similar to the recordings 
by Hu et al. (2010), the stimulus duration was 400 ms, bin-width 50 ms, pulse rate 5000 pps, 
modulation frequency 100 Hz, and modulation depth 10%. The second data set consisted 
of the responses of seven different fibers to long duration (600 s) continuous amplitude 
electrical pulse trains (Litvak et al., 2003). For this long duration data, the measurements 
of the seven different fibers (figure 4.1) were replicated. Stimulus levels that elicited the 
same simulated discharge rate in the initial bin as in the recordings were chosen. The 
duration was 600 seconds, the rate was 5000 pps, and bin-width was 1 second. Responses 
of fiber 1200 (located roughly 180˚ from the round window) to stimulation of the nearest 
electrode contact were simulated. 

Parameter search
Simulations were performed for both data sets using a range of parameters (table 4.1). 
Combinations of different parameter settings in the range (i.e., 432 unique parameter sets) 
were used to simulate both datasets. Refractoriness and relative spread were set to the 
average values as published by van Gendt et al. (2017). See Appendix A for an overview 
of these parameters.
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Table 4.1. Parameters for optimization
Parameter Range

Accommodation amplitude (αacco), % 0.004 – 0.014, step size: 0.002

Adaptation amplitude (αadap), % 0.00 – 0.05, step size: 0.01

Offset, ms 1, 5, 20, 40

Exponent β -1.2, -1.1, -1.0, -0.9

Minimal normalized RMS error
Values were visually extracted from the published data recordings for the measured 
discharge rates in all different bins. Differences between simulated and measured 
discharge rates were calculated using the normalized root mean square error (NRMSE), 
normalization was done by dividing by the range of the measured rates per stimulus 
amplitude. The NRMSE was calculated for each stimulus amplitude (a) as in equation 4.7:

 
𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎 =

�∑ (�̅�𝑒𝑒𝑒𝑎𝑎𝑎𝑎−𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎)2𝑁𝑁𝑁𝑁
𝑛𝑛𝑛𝑛=1

𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚−𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎,𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛
   (Eq. 7) 

where for N bins, r is the measured rate and �̅�𝑒𝑒𝑒 the simulated rate. 

The NRMSE values for all stimulus levels were averaged. For both data sets, t

minimal error was defined. These parameter sets were also used to simulate 

data set for which it was not optimized. 

found by finding the minimum of the average error of both data sets. In 

duration data, seven different fibers were used, and 

individual fiber. A sensitivity analysis was performed in which the effect of 

the NRMSE was investigated.  

2.5 Approximating the power law fit with multiple exponents 

A sum of exponents was used to match the optimal power law 

optimization. The number of exponents (n) for this fit was increased until 5 or, i

found with 5, until the NRMSE did not decrease 

limit the search space for the least squares-

the power law kernel was divided into n parts of equal log-

first and only on the last part of the power 

the last two parts of the power 

account. Following this pattern, 

 (Eq. 4.7)

where for N bins, r is the measured rate and r ̅  the simulated rate.

The NRMSE values for all stimulus levels were averaged. For both data sets, the parameter 
set with minimal error was defined. These parameter sets were used to simulate responses 
to the other data set for which it was not optimized. An optimal parameter set, defined as 
the set yielding minimal average NRMSE of both data sets. In addition, in the long duration 
data, seven different fibers were used, and the optimal parameter set was defined for each 
individual fiber. A sensitivity analysis was performed in which the effect of parameter 
variations on the NRMSE was investigated. 

2.4 Approximating the power law fit with multiple exponents
The optimal power law parameter set was matched to a sum of exponents using least 
squares optimization. The number of exponents (n) for this fit was increased until 5 or, 
if no good fit was found with 5 exponents, until the NRMSE did not decrease more than 
10% with an extra exponent. In order to limit the search space for the least squares-
optimization of the parameters for the set of exponents, the power law kernel was divided 
into n parts of equal log-length. The longest exponent was fitted first and only on the last 
part of the power law kernel. The second longest exponent was fitted on the last two parts 
of the power law kernel taking the contribution of the longest exponent into account. 
Following this pattern, the shortest exponent was fitted last on the entire duration of 
the power law kernel taking all other exponents into account. This method ensured that 
all exponents were properly normalized. The log spacing ensured that the exponents 
overlapped equally with each other.
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3. Results

The optimal parameter set was defined as the combination of parameters that yielded the 
smallest NRMSE. Table 4.2 shows these parameter sets optimized for the short and long 
duration data and those combined (columns Short, Long and Both respectively), and for 
each of the individual fibers of the long duration data (F1 – F7).

Table 4.2. Optimal parameter sets yielding the smallest NRMSE averaged for the different stimulus 
amplitudes on the short duration data (Short), the seven different fibers used in the long duration 
data (Long), for both errors averaged (Both) and per fiber (F) in the long duration data.

Short Long Both F1 F2 F3 F4 F5 F6 F7
Offset [ms] 20 5 20 5 5 5 5 40 20 40
Exponent β -1 -1 -1.1 -0.9 -0.9 -1.1 -1 -1.2 -1 -0.9
α accommodation 
[x 10-4 % of stimulus]

10 6 8 6 4 4 4 12 6 4

α adaptation 
[% of threshold]

0.03 0.02 0.02 0.02 0.01 0.00 0.01 0.05 0.02 0.01

3.1 Comparison of model simulations to recordings

Long duration simulations
For the long duration simulations, measured and simulated spike rates over the course of 
the stimulus are plotted in figure 4.1. Data were recorded from seven different fibers from 
one animal (Litvak et al., 2003). The two units with the lowest response amplitudes stopped 
discharging after 1-2 minutes, the other five units exhibited adaptation over the first 100 
seconds followed by either slow adaptation or a steady response. For comparison, the 
simulations for the previously published model with an exponent of 100 ms is shown in 
figure 4.1A. The power law adaptation simulations with the optimal parameter set (table 
2) for the short and long duration data are shown in figure 4.1B and 4.1C respectively, 4.1D 
shows the simulations with the parameter set that yielded the minimal combined error. 
Figure 4.1E shows the power law fit when the optimal parameter set is chosen per fiber. 



Chapter 4

92

0 200 400 600
Time from onset [s]

0
200
400
600
800 [A]: Exp 100 ms

E = 0.806

0 200 400 600

[B]: PLA - Short
E = 0.201

0 200 400 600

[C]: PLA - Long
E = 0.082

0 200 400 600

[D]: PLA - Both
E = 0.090

0 200 400 600

[E]: PLA - Long /fiber
E = 0.060

Fi
rin

g 
ra

te
 [s

p/
s]

Figure 4.1. Discharge rates in response to long duration stimulation (600 s). The simulations are 
plotted in black. The visually extracted data from Litvak et al. (2003) is plotted in blue in each graph. 
The E in the upper right corner refers to the mean NRMSE for all fibers. Simulated discharge rates 
are calculated with the 100 ms exponential model [A], with the power law model optimized for the 
short duration data [B], with the power law model optimized for the long duration data [C], with the 
power law model optimized for both the short and long duration data [D] and with the power law 
model optimized per fiber for the long duration data [E].

The simulations with exponential adaptation only showed an initial, small decrease in 
spike rate, whereas all power law adaptation models demonstrated a continuous spike 
rate decrease over the course of stimulation (figure 4.1). Quantitatively, the power law 
outperformed the model with exponential adaptation, as reflected in the NRMSE value 
of 0.806 for exponential adaptation, 0.201 for power law adaptation with the parameter 
set optimized for the short duration data, 0.082 optimized for the long duration data set, 
0.090 for both data sets and 0.060 optimized per fiber. Both the parameter set optimized 
for this particular data and the parameter set optimized for the short duration data 
yielded a substantial improvement in predicting the discharge rate relative to the single 
exponent. The best replication was obtained when optimized per fiber. The only difference 
between the recordings and these per-fiber-simulations was that the dip in the spike rate 
at approximately 50 to 150 seconds was not replicated by the model.

Short duration, amplitude-modulated simulations 
To investigate which model best described the discharge rates and modulation following 
behavior in response to short duration amplitude-modulated pulse trains, the recordings 
from Hu et al. (2010) were simulated. The single exponent model and the power law 
models optimized for the short duration data and for the long duration data were used. 
For ease of comparison, recordings and simulations are plotted together in figure 4.2. 

For the spike rates, the exponential adaptation yielded an NRMSE of 0.094. The power 
law model with the parameters optimized for this data and the combined data sets had 
NRMSE’s of 0.065 and 0.068 respectively, outperforming exponential adaptation, whereas 
the parameters optimized for the long duration data only performed quantitatively worse, 
with an NRMSE of 0.134. For the VS, the single exponent model performed better than any 
of the power law models. Vector Strength measures periodicity in the neural response 
to a periodic input. The vector strength in the models is above zero but lower than the 
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recordings. This means that some periodicity is maintained in the modeled responses, but 
not as much as in the recordings.
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Figure 4.2. Simulation of responses to short duration, amplitude-modulated pulse trains. Upper 
row shows spike rates determined in bins of 50 ms in response to five different stimulus amplitudes. 
The lower row shows vector strengths obtained from the same bins. For clarity, the recorded 
data are plotted separately in [A], and in [B-E] in grey-blue in the background (data from Hu et al., 
2010, reprinted with permission). The numbers in the lower right corner in [A] indicate amplitudes 
relative to the threshold. In [B]-[E] simulations are plotted in black. Simulations were modeled with 
exponential adaptation, single exponent (100 ms) in [B], with the parameter set optimized for the 
short data in [C], with the parameter set optimized for the long duration data in [D], and with the 
parameter set optimized for both data sets in [E]. The optimal parameter sets are given in table 4.2.

3.2 Sensitivity analysis
To find the parameter sets yielding the minimal NRMSE, simulations were performed with 
a range of stimulus parameters. To investigate how the error was affected by the variation 
in the parameters, a sensitivity analysis was performed. The sensitivity to the adaptation 
and accommodation parameters was investigated by plotting them for each exponent 
and offset combination, and the sensitivity of the exponent and offset parameters was 
investigated by plotting them for each adaptation and accommodation combination. The 
resulting graphs including the optimal parameters are shown in figure 4.3. 



Chapter 4

94

0 0.01 0.02 0.03 0.04 0.05
 adap, [%]

4

6

8

10

12

14
 a

cc
o,

 [%
]

10-4 Short duration

min=0.061
max=0.7

[A]

-1.2 -1.1 -1 -0.9
exponent

10

20

30

40

of
fs

et

min=0.061
max=0.45

[C]

0 0.01 0.02 0.03 0.04 0.05
 adap, [%]

4

6

8

10

12

14 10-4 Long duration

min=0.082
max=0.31

[B]

-1.2 -1.1 -1 -0.9
exponent

10

20

30

40
min=0.082
max=0.26

[D]

Figure 4.3. NRMSEs for the short duration data (left) and long duration data (right). Color coding 
ranges from the minimal error in blue to the maximal error in yellow. The minimal and maximal 
values are included in each sub-figure. At all intersections of the dotted lines, responses were 
calculated, and between those points is interpolated. The following parameters were set so that the 
optimal value was included in each sub-figure: [A] offset = 20 ms, exponent = -1; [B] offset = 5 ms, 
exponent = -1; [C] adaptation = 0.03%, accommodation = 10 x 10-4 %; and [D] adaptation = 0.02%, 
accommodation = 6 x 10-4 %.

The patterns in figure 4.3 are different for the short and long duration data. For long 
duration data, larger accommodation values led to strong errors, which was not seen 
in the short duration data. The short duration data exhibited a combined effect of 
adaptation and accommodation amplitudes; larger adaptation amplitudes required 
smaller accommodation amplitudes for similar errors. Furthermore, we identified an 
entangled effect of offset and β in the short duration simulations that was not seen in the 
long duration simulations. In the long duration data, the exponent influenced the error 
much more than the offset.
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3.3 Fitting the power law with multiple exponents

Short duration fits with multiple exponents
The actual physiological processes underlying adaptation likely have exponential 
dynamics, but together behave in line with power law dynamics. Therefore, we investigated 
how many exponential processes would be required to explain the data. Each added 
exponent adds two new parameters to the parameter space that needs to be fitted. Fitting 
with several parameters can lead to overfitting or lack of convergence. Moreover, running 
simulations of the history-dependent neural responses with multiple exponents requires 
tremendous computational power. Alternatively, the exponential parameters can be fitted 
on the power law function that, in turn, was fitted on the data. Here, the minimum number 
of exponents needed to reliably simulate the recordings was tested. The time constants 
and weights for each number of exponents are given in Appendix B. The simulations of 
the short duration data with multiple exponents are shown in figure 4.4. 

Going from the fit with 1 exponent (τ=77 ms) to two exponents (τ1= 23 and τ2=212 ms) 
induced the largest improvement. The NRMSE decreased from 0.100 to 0.066, and a 
continuous decrease in the spike rate was seen, similar to the animal data. The VS also 
improved with the addition of a second exponent; the NRMSE decreased from 0.25 to 
0.219. When the number of exponents increased further, no additional substantial 
improvement in replication of the data was seen.

Long duration fits with multiple exponents
In a similar approach as with the short duration data, the long duration data were fitted 
with exponents. The simulations with 1, 5 and 7 exponentials are shown in figures 4.5A-C. 
The NRMSE values for up to 10 exponentials are shown in figure 4.5D. 
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Figure 4.4. Simulations with adaptation as sums of exponential functions, compared to the short 
duration data (Hu et al., 2010). Results of the simulations are shown in black, and the experimental 
counterparts as published by Hu et al. in grey-blue. The number of exponents to model the 
adaptation varied from 1 to 5. The exponential components were fitted to a power law function 
with the optimal parameters to fit the short duration data itself; beta = -1 and offset = 20 ms.
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Figure 4.5. Power law adaptation fitted with 1, 5 and 7 exponents in [A-C], the NRMSE compared to 
the long duration data (Litvak et al., 2003) for 1 up to 10 exponents is plotted in [D]. The results of 
the simulations are shown in black, and the experimental counterparts as published by Litvak et al. 
in grey-blue. Exponential functions were fitted to a power law function with β = -1 and offset = 5 ms.

As can be seen in figure 4.5D, with up to seven exponents the fit improved; NRMSE 
decreased from 0.257 with the one fitted exponent to 0.079 with seven exponential 
functions. With seven exponents the taus ranged from 4 ms to 600 s, with approximately 
one order size difference between each tau. The NRMSE of 0.079 as found with seven 
exponents is similar to the NRMSE found with the power law fitted on the long duration 
(0.082, figure 4.1C).
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4. Discussion

Power law and exponential models of adaptation were evaluated for their performance 
in simulating the responses of the auditory nerve to electrical pulse trains of different 
durations. Firing rates were better simulated with power law adaptation optimized on both 
data sets combined than with exponential adaptation. For both data sets, when optimized 
for the data set itself the best results were obtained. The power law parameters optimized 
for short duration data also predicted the long duration data reasonably well, but short 
duration data simulated with the parameters for long duration data yielded a fit worse 
than the exponential. Vector strength was best simulated with exponential adaptation, but 
was in all simulations smaller than in the recordings. For individual fibers, slightly different 
parameter sets were found. The power law could be fitted with multiple exponents, which 
is physiologically more realistic. When enough exponents were included, this yielded 
similar responses as with the power law. The number of required exponents depended on 
the duration of stimulation. The effect of long duration stimulation is important because 
relevant temporal segments, such as sentences, are in the order of seconds rather than 
milliseconds, and regular CI usage will last a day. With improved models of adaptation 
as suggested here, extended with an interpretation model, the effect of sound-coding 
strategies for speech segments and longer duration stimulation can be evaluated. It will 
be particularly interesting to evaluate how the adaptation in the auditory nerve alters 
loudness perception and dynamic range. In the future, this improved understanding of 
neural adaptation could be used to test the performance of sound-coding strategies in 
long duration stimulation and provide suggestions on how to integrate adaptation in 
sound-coding strategies to optimally encode the acoustic environment.

Optimal power law parameters
Here, two different data sets were used to find the optimal parameter set, and an overall 
optimum parameter set was determined. The separate data sets were best described by a 
power law with an exponent of -1, the combined optimum was obtained with an exponent 
of -1.1. These values are in line with earlier studies of adaptation mechanisms in general 
computational neurosciences, and with specific studies on adaptation of the auditory 
nerve in response to acoustic stimulation (Zilany and Carney, 2010), where the exponent 
was found to be around -1. The parameter set found by minimizing the combined error 
outperforms the single exponential model for both the short and long duration data.

Power law adaptation has been argued to result in whitening of the neural responses, 
with the power law exponent optimizing information transmission by removing both 
short-range and long-range temporal correlations in spike trains (Pozzorini et al., 2013). 
For the individual fits, the exponents varied between -0.9 and -1.2 (table 4.2). This spread 
in individual power law components suggests that the characteristic exponent depends 
on the frequency sensitivity of the neuron and the corresponding temporal correlations, 
thereby optimizing information transmission in the population of fibers. As seen in the 
sensitivity analysis for the short duration data (figure 4.3), there is a relationship between 
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offset and exponent; with a smaller exponent, a smaller offset was required to yield minimal 
error. For the long duration data, such a relationship was not as clear. When the optimized 
power law was fitted to a single exponent, the resulting time constant (77 ms for the short 
duration data, and 60 s for the long duration data) was different from the time constant 
found in previous studies (100 ms) (van Gendt et al., 2017, 2016). A possible explanation for 
this is that, in previous studies, the exponent was found by directly optimizing on the data, 
whereas in the present study the exponent was found by fitting on the optimal power law. 
Moreover, previously, the time constant of 100 ms was based on a larger number of data 
sets. Previous studies combined the power law with exponential adaptation to ensure 
that adaptation on the shortest time scales was properly modeled (Zilany and Carney, 
2010). In the model presented here, temporal neural behavior was described by both 
power law adaptation and refractory behavior, which is exponential with a time constant 
of approximately 1 ms. Parameters of the approximation with multiple exponents were 
obtained by a direct fit to the power law and minimizing the error. Alternatively, the error 
between expected output and simulated neural responses can be minimized directly, but 
requires much more computational effort. The computational effort depended mostly 
on stimulus duration and level, and was comparable for power law and exponential 
adaptation.

Biophysical origins of adaptation
The dynamics of adaptation in the auditory nerve in response to electrical stimulation, and 
more specifically the dynamics of power law adaptation, can be attributed to underlying 
phenomena with exponential dynamics. Generally, many biological processes cannot be 
described by a single exponential time constant, but rather by a sum of exponents with a 
wide range of time constants. Such a sum yields a single power law, which has been applied 
to model adaptation in neural systems (Anderson, 2001; Thorson and Biderman-Thorson, 
1974). Up to this date it is unclear which biophysical processes cause power law adaptation 
and whether this is a single process or multiple processes operating on different time 
scales (Pozzorini, 2014). It has been suggested to be related to ion channel- (Teka et al., 
2016; Toib et al., 1998), synaptic- (Fusi et al., 2005), and psychophysical dynamics (Fairhall 
et al., 2001; Zilany et al., 2009). The synaptic mechanism can be caused either by depletion 
of presynaptic neurotransmitters, or desensitization of post-synaptic receptors (Zilany et 
al., 2009). With electrical stimulation of the auditory nerve and recorded peripherally, as 
in this study, no synapse mechanisms or complex neural networks have been in place. 
Rather, the power law response in the recordings replicated here is an effect of adaptation 
in the behavior of the ion channels in the membranes of the auditory neurons. 

Ion channels can show power-law dynamics under the assumption of a large number of 
hidden states (Ben-Avraham and Havlin, 1991; Teka et al., 2016), producing anomalous 
diffusion with power-law behavior. Such behavior has been shown to accurately capture 
single channel dynamics (Goychuk and Hänggi, 2004), with phenomenological power-
law parameters relating to the transition probabilities between these hidden states. The 
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exact parameters to be implemented in the kinetics of ion channels to yield the power law 
dynamics could be evaluated using a biophysical model.

Specific adaptation currents have been suggested in the literature, and have been related 
to different ion channels and time constants. The most well-known are the voltage-gated 
potassium (M-) currents, may cause adaptation with time constants of a few milliseconds 
(Benda and Herz, 2003). Secondly, calcium-gated potassium currents have been shown 
to cause adaptation with time constants of around 50 milliseconds (Madison and Nicoll, 
1984). A third, slower, mechanism is the slow recovery from inactivation of the sodium 
channels (Vilin and Ruben, 2001). The time constant of the slow inactivation process 
ranges from a few 100ms up to tens of seconds (Benda and Herz, 2003; Blair and Bean, 
2003). Moreover, a model study showed that hyperpolarization-activated cation and low-
threshold potassium ion channels may play a role in adaptation with a time scale around 
100 ms (Negm and Bruce, 2014). An after hyperpolarization, adaptation current may be 
generated by a cascade of exponential processes (Drew and Abbott, 2006). The number 
of relevant processes, the time scales involved, and the parameters required to couple the 
different processes depend on the duration of stimulation to be simulated. 

Implications of power law adaptation behavior
Power law adaptation provides an improved dynamic range and enhanced representation 
of stimulus dynamics (Fairhall et al., 2001; Mensi et al., 2016). The slow components of 
adaptation provide information about the context or stimulus statistics, whereas the fast 
components provide information about the rapid stimulus variations (Fairhall et al., 2001). 
Because of the slow variations, the human auditory system is sensitive to a wide range 
of stimulus levels, including levels of soft speech and loud shouting. With power law 
adaptation, auditory neurons that adapt to sound-level statistics (Zilany and Carney, 2010) 
are more sensitive to amplitude modulations in the presence of a steady background 
noise (Zilany et al., 2009) and to abrupt changes, such as those reflected in oddball 
paradigms (Antunes et al., 2010). When the neuron is adapted to a certain sound level, 
small variations are better detectable, i.e., just noticeable differences become smaller. A 
previous modeling study showed that weaker adaptation reduces the vector strength 
and vice versa, but vector strength is the results of a complex interplay of adaptation, 
stochasticity and refractoriness (van Gendt et al., 2017). Power law adaptation has been 
suggested to improve dynamic range, or precision coding in a dynamic environment. 
The question is whether long term adaptation components would come at the expense 
of short-term components, yielding the drop in vector strength. Models developed so 
far slightly underestimate vector strength of phase locking properties of the electrically 
stimulated auditory nerve (Goldwyn et al., 2010; van Gendt et al., 2017). It would be of 
great value to further investigate what neural behavior could underlie this strong phase 
locking. Future simulations with amplitude modulated pulse trains with means slowly 
varying over time could demonstrate how power law adaptation affects precision coding 
in a dynamically changing environment.
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The modulation rate of the speech envelope is 2 to 50 Hz (Rosen, 1992), and peaks at 3-5 
Hz. These slow modulations are important for speech perception. Frequency modulations, 
often referred to as fine-structure, occur on much shorter time scales. These faster 
modulations in speech (milliseconds or less) convey information about prosody, melody, 
intonation, timbre, and the quality of speech. One can expect that, because power law 
adaptation improves precision coding in a dynamic environment, it also improves the 
perception of both of these cues. This could be evaluated in a follow-up study including 
amplitude-modulated signals with different modulation rates and switching stimulus 
levels. 

In CIs, loudness is generally coded by charge, i.e., the amplitude or width of the stimulus 
pulse, by which a larger number of fibers are stimulated. For normal hearing, loudness 
increases with a compressive function of sound pressure, whereas for electrical stimulation, 
loudness increases with an expansive function for increasing stimulation (Vellinga et al., 
2017). Moreover, the dynamic range in CI listeners is much smaller than that of normal 
hearing listeners. Compression can be employed to compensate for the steep build-up 
in loudness. In addition, in contemporary CIs, matching the dynamic range of naturally 
occurring sounds to the perceptual dynamic range is improved through the automatic 
gain control (AGC). The AGC adjusts the loudness cue according to the history of stimulus 
levels averaged over a certain amount of time, thereby improving the comfortable 
audibility of a wide range of stimulus levels. These systems are generally slow- or fast-
acting or dual. Fast-acting systems aim to evoke the loudness perception most true to 
nature, whereas slow-acting systems are designed to maintain the audibility of the 
amplitude differences for the modulation rates conveying speech information (Boyle et 
al., 2009). With an ideal AGC, neural activation would replicate the situation of natural 
hearing, and the optimal dynamic range would be achieved. To further optimize existing 
AGC designs in this direction, the difference in adaptation dynamics between the normal 
hearing situation and the electrically stimulated degenerated auditory nerve could be 
established and accounted for by sound processing. The present study shows that power 
law dynamics best describe the adaptation in the electrically stimulated auditory nerve. 
Ideally, the dynamics and strength of adaptation of the auditory nerve in an individual CI 
user would be determined. Subsequently, the adaptation mechanism in the sound-coding 
strategy could be adjusted so that the stimulation pattern effectively yields activation 
similar to the normal hearing situation.

In real-life, a CI listener will wear the CI continuously. Although there will be moments 
of relative quiescence, adaptation will occur continuously to a larger or smaller extent. 
Consequently, models of the auditory nerve in response to electrical stimulation will have 
to be tuned to this. Psychophysical experiments generally start in quiet. This may lead 
to inherent changes within the duration of the experiments. This should be considered 
while designing an experiment. When one wants to use a desynchronizing pulse train to 
activate the neurons from an adapted situation (Rubinstein et al., 1999), the duration of 
stimulation must be evaluated. As can be seen from the recordings (Litvak et al., 2003), 
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most fibers fire at a constant rate after a stimulus duration of around 200 seconds. This 
suggests that here the maximum adaptation is reached.

The pulse trains simulated in the current study had pulse rates of 5 kpps. Stimulus rates used 
in contemporary cochlear implants vary from 800 to 2000 pps, with new developments 
in the lower frequency range. Because of cross-over stimulation between electrodes, 
neurons are likely to be affected by much higher rates than the stimulus rates on single 
electrodes, notwithstanding the fact that there will be a large variability of stimulus rates 
at the site of the neurons. It has been shown that the stimulus rate has an effect on the 
spike rate over time for short duration responses (Heffer et al., 2010; Zhang et al., 2007). 
Previous modelling work showed that such differences over time can be replicated with a 
single model with the same parameters (van Gendt et al., 2016). For long duration electrical 
stimulation, unfortunately, such experimental data of neural responses to a variety of 
stimulus rates is not available. Such data would enable validation of, or optimization of 
the power law parameters (alpha, beta and offset) for low rate pulse trains. To investigate 
the theoretical effect of power law adaptation on clinically used, lower rate pulse trains, 
responses to long duration stimulation with 800 and 1800 pps were simulated, results are 
shown in figure 4.6. 
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Figure 4.6.  Response rates simulated with power law adaptation (offset = 5 ms, exponent = -1, 
accommodation = 6 x 10-4 % of stimulus, adaptation = 0.02% of threshold) for long duration pulse 
trains (600 seconds) with different stimulus rates; 800 pps (black), 1800 pps (middle grey) and 5000 
pps (light grey). For all pulse trains the stimulus level was used that elicited the 720 spikes in the first 
second in response to the 5kpps pulse train. 

Figure 4.6 shows that also with lower rates the induced firing rates are expected to 
decrease over a long period of stimulation. The lower stimulation rates (800 and 1800 
pps) had higher sustained firing rates than the response to 5000 pps, in which the neuron 
was supposedly less affected by adaptation and refractoriness. The sustained firing 
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rates in response to 800 and 1800 pps are very similar.  The exact response is the result 
of a complex interplay between refractory properties, accommodation, adaptation, and 
stimulus rate, and therefore dependent on stimulus rate in a nonlinear manner. 

Limitations and suggestions for further research
The optimal parameter set was found via direct comparison of the simulated and 
recorded spike rates. However, especially for the long duration simulations, the model 
did not replicate some anomalous behavior of the recorded spike rates. Examples of this 
behavior were the dip in response rates around 50 ms and the continuous decrease in the 
strongest responding neuron. This latter observation may have been a result of continuing 
damage being done to the neuron due to the recording electrode, or displacement of 
the recording electrode. A larger number of these kinds of recordings from neural fibers 
would be required to determine whether this is an intrinsic neural behavior that should be 
modeled, or whether it is merely an effect of the recording method.

The short duration data fitted in this paper were all obtained from a single neuron. The 
other two fibers presented in Zhang et al. (2007) did not show the continuous decrease 
and were already reliably simulated by the model with a single exponent. Such inter-fiber 
differences indicate great variability between fibers in adaptation behavior. The improved 
fit on long duration data when optimized per fiber indicates that different fibers require a 
different parameter set and exhibit different neural behaviors. More experimental data is 
needed to obtain ranges for the parameters in auditory neurons. A previous study showed 
that the strength of adaptation may be related to the health of the auditory nerve (van 
Gendt et al., 2019). How the characteristics of the power law adaptation relate to neural 
health is unknown, but could be evaluated in a physiological study.

In a follow-up study, the effect of the amount of adaptation on long duration stimulation, 
especially speech segments, should be evaluated. An interpretation model that can relate 
the neural spiking to perceptual outcomes will be required. Hypotheses relating neural 
adaptation to increased dynamic range and loudness discrimination could be tested. 
In addition, the effect of diminished adaptation, in amplitude or temporal length, as 
may occur in a degenerated auditory nerve, on perceptual outcomes could be tested. 
Besides evaluating how the neural behavior can be expected to be related to perceptual 
outcomes, the model can also be used to compare different sound-coding strategies. After 
validation, new approaches to sound coding can be tested efficiently. With the model 
presented here, the performance of new designs and strategies in the perception of long 
duration speech segments can be evaluated.
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Appendices

A. Exponential model formula and parameters
• Relative spread: 

A. Exponential model formula and parameters 

 

• Relative spread: 𝜎𝜎𝜎𝜎 =  𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑ℎ  ∙ 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆 

• Refractoriness: 𝑅𝑅𝑅𝑅 =  1 − 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝜏𝜏𝜏𝜏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   

• Adaptation: 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴 =  ∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∙ 𝑒𝑒𝑒𝑒
𝑡𝑡𝑡𝑡−𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔𝑔𝑔  

o Every pulse: adaptation amplitude is increased: 

Adaptation parameter:  

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒) +  Adaptation amplitude · 𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝐴𝐴𝐴𝐴𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒 (𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸) 

o Every spike: adaptation amplitude is increased (accommodation): 

Adaptation parameter (accommodation): 

 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒) +  Accommodation amplitude · 𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝐸𝐸𝐸𝐸𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒 𝐴𝐴𝐴𝐴𝑜𝑜𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡 ·

𝑒𝑒𝑒𝑒𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝐸𝐸𝐸𝐸 𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝐴𝐴𝐴𝐴𝑡𝑡𝑡𝑡𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒 

o Spatial factor =  𝐼𝐼𝐼𝐼min(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒)

 

• Total model: 𝐼𝐼𝐼𝐼𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒_𝑑𝑑𝑑𝑑ℎ =  𝑁𝑁𝑁𝑁(𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑ℎ,𝜎𝜎𝜎𝜎) · 𝑅𝑅𝑅𝑅 +  𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴  

 

 

Table A.1: Model parameters 

Parameter Value 

RS 0.06  

τARP 0.4 ms  

τRRP 0.8 ms 

Within refractoriness stochasticity 5% of τARP/τRRP 

Adaptation amplitude 1% of threshold 

Accommodation amplitude 0.03% of stimulus current · spatial factor 

 

• Refractoriness: 
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Chapter 4

104

B. Power law approximation with exponents

Table B.1: Fitted exponents and their weights to approximate the power law for short duration data. 
Exponential time constants and weights for the fit to power law with beta = -1 and offset = 20 ms.
1 exp in ms 
weight

77 

2 exps in ms
weights

23
0.72

212 
0.26

3 exps in ms 
weights

17
0.61

80
0.28

376
0.13

4 exps in ms 
weights

15
0.52

50
0.28

159
0.14

512
0.07

5 exps in ms 
weights

14 
0.45

36
0.27

93
0.16

237
0.09

606
0.05

Table B.2: Fitted exponents and their weights to approximate the power law for long duration data 
Exponential time constants and weights for the fit to power law with beta = -1 and offset = 5 ms. 
1 exp ms 
weights

6e5
2.5e-4

2 exps ms 
weights

21
0.76

6e5
1.9e-4

3 exps ms 
weights

10
0.86 

150
0.13

6e5
1e-4

4 exps ms 
weights

6.3
0.81

49   
0.25

748
0.03   

6e5
1.1e-4

5 exps ms 
weights

5 
0.71

26
 0.35

197
0.067

2.8e4
7e-3

6e5
1e-4

6 exps ms 
weights

3.8
0.61

17
0.41

88
0.11

628
0.021

7.8e3
2.3e-3

6e5
5.9e-5

7 exps ms 
weights

4
0.56

14
0.43

68
0.13

407
0.028

3608
4.1e-3

6.5e4
2.9e-4

6e5
1.9e-5

8 exps ms 
weights

3
.50

12
0.45

48
0.17

239
0.042

519
7.9e-3

134e2
1.0e-3

897e2
1.0e-4

6e5
2.8e-5

 

9 Exps ms 
weights

2.8
0.43

9.4
0.47

35
0.20

140
0.061

710
0.014

4.1e3
2.6e-3

2.2e4
4.5e-4

1.1e5
8.6e-5

6e5
2.3e-5

10 exps ms 
weights

2.4
0.35

7.3
0.47

23
0.25

82
0.089

320
0.026

1.4e3
6.6e-3

7.1e3
1.3e-3

3.1e4
2.7e-4

1.4e5
6.2e-5

6.0e5
2.2e-5

 




