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4 
Single-electron control for optical charge 

detection 

 

We first studied in Chapter 2 the Stark effect caused by an external electric field applied to a 

molecular crystal in direct contact with the electrodes. In Chapter 3, we discussed how light-

induced charging processes in the vicinity of DBT molecules lead to a stable Stark shift in the 

zero-phonon line in three different host matrices. Our initial goal is to scale down charge 

sensing to its ultimate limits and detect one electron optically. An essential need for this 

purpose is combining single-molecule spectroscopy and electronic manipulation of single 

charges. In this chapter, we describe charge quantization and control in single-electron devices, 

and their compatibility with optical measurements of a single charge is discussed.  
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4.1. Single-electron transfer and control 

4.1.1. Coulomb blockade 

In many electronic devices, the charges flowing under an applied potential are usually 

considered as non-interacting particles. In contrast to this non-interacting scattering regime, 

interactions become very important in the so-called Coulomb blockade regime. 1,2 These 

interactions make it possible to control and manipulate individual charges. The Coulomb 

blockade regime requires certain conditions that can be discussed in terms of energy, 

conductivity, and capacitance. To understand when the Coulomb effect takes place, it is 

necessary to consider how the charging energy and the device properties scale with the 

dimensions of the device. In the following, we discuss these conditions.  

4.1.2. Charge quantization and charging energy 

Let us simplify the system and consider a tiny metallic island placed somewhere in free space 

(Figure. 4.1.). This system is assumed to be far enough from any leads that the number of 

charges inside the island is a constant, integer number.3 Since the island is metallic, the charges 

are distributed on the surface of the island and generate an electric field around it. Assume we 

want to add an extra electron to the island, the electron must overcome this electric field, and 

this will cost energy. To calculate the energy, we consider the island as a capacitor with 

electrostatic energy:  

𝐸 =  
𝑄2

2𝐶
= 

𝑒2

2𝐶
𝑁2 = 𝐸𝐶𝑁

2, (4.1) 

where e, N and C are the electron charge, the number of charges and the self-capacitance of the 

island, respectively.  Adding the first electron to a neutral island costs the energy of 𝐸𝐶 =

𝑒2 2𝐶⁄  that is known as charging energy. 2–5 The origin of the charging energy is the 

electrostatic energy stored in the field, and which manifests itself as electron-electron 

interaction due to charge quantization. The charging energy depends inversely on the island 

capacitance, itself directly related to the size of the island (see next section for more detail). 

This means that, in small enough islands, electron charging energy will become dominant and 

charge quantization will become observable.  

  
Figure 4.1: a) Charges inside a metallic island create an electric field around it which determines the charging 

energy. b) Quantum effect of energy level splitting inside a finite island. This quantization of energy is only valid 

in small island such as molecules. 
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Charging energy is not the only energy that  must be considered when charging the island. 

Quantum mechanics allows us to express the spacing between energy levels inside the island 3 

(Figure. 4.1.b). The level spacing at Fermi energy for a box with size of 𝐿 scales as 

𝛿 ≃ ħ2 𝑚𝐿2⁄ 2-4 where 𝑚 is the electron mass. This relation states that the level spacing inside 

the island becomes important for very small nanostructures such as molecules and 2D quantum 

dots.1,3 For instance, the energy level splitting in a box with a length of 100 nm is 𝛿 ≃ 10−10 eV 

whereas the charging energy for the same box is 𝐸𝐶 = 1.2 meV. Therefore, for structures larger 

than molecules, this quantum kinetic energy is often negligible. In the discussions of this thesis, 

we are not considering the quantum effect and the classical charging energy is the leading the 

charge states. 

So far, the island was isolated and could store a certain amount of charge. To adjust the number 

of charges inside the island two bulk electrodes can be added to the system. A source electrode 

is placed close enough to the island that an electron can jump into it. A gate electrode is placed 

at a somewhat larger distance from the island to tune the electrostatic potential of the island 

with respect to the source. This configuration is known as a single-electron box. Figure. 4.2 

presents the equivalent circuit of a single-electron box.   

 

Figure 4.2. Equivalent circuit for an island close to two electrodes acting as source and gate.  

The charge stored in the island is 

𝑞 =  −𝑞𝑔 + 𝑞𝑠 = 𝐶𝑔(𝑉𝑖 − 𝑉𝑔) + 𝐶𝑠𝑉𝑖 = 𝐶𝑉𝑖 − 𝐶𝑔𝑉𝑔, 𝐶 = 𝐶𝑠 + 𝐶𝑔. 

Therefore, the potential in the island follows from an external potential  𝑉𝑒𝑥𝑡 = 𝑉𝑔𝐶𝑔 𝐶⁄  

according to: 

𝑉𝑖 =
𝑄

𝐶
+ 𝑉𝑒𝑥𝑡 (4.2) 

Equation 4.3. shows that the island potential is given by the charge on the island plus the 

potential induced by the gate. It suggests that the potential of the island, and therefore the 

number of charges it supports, can be tuned by means of the gate electrode.  Note that this 

potential is not quantized; what is quantized is the charge inside the island.   

However, large charging energy is not sufficient to observe clear changes in the charge states 

of the island. An essential requirement is that electrons do not jump into, or escape from, the 
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island under thermal fluctuations. This condition is satisfied by ensuring that the charging 

energy is much larger than the thermal energy: 

𝐸𝐶 ≫ 𝑘𝐵𝑇 (4.3) 

Alternatively, the condition (4.3) is equivalent to demanding that the thermal Johnson noise is 

much lower than the shot noise due to charge quantization. 

4.1.3. Self-capacitance of an island  

In the previous section, we showed that the charging energy of an island inversely depends on 

its capacitance. The self-capacitance itself depends on the geometry and size of the island. In 

this section, we look at the self-capacitance of two simple shapes of islands that could be used 

to detect a single electron optically, a sphere and a disk island. The capacitance is defined as 

𝐶 = 𝑄 𝑉⁄  and the electric potential 𝑉 on the surface of a sphere with the radius of 𝑅 that stores 

charge 𝑄 is 𝑉 =  −∫ 𝐸. 𝑑𝑅
𝑅

∞
. From electrostatics, we know that the electric field is 𝐸 =

𝑄 4𝜋휀0𝑅
2⁄ . Therefore, the capacitance for a metal sphere is obtained as follow. 

𝐶 = 4𝜋휀0𝑅 (4.4) 

In a similar way, the potential of a disk island can be calculated analytically, and we have: 

𝐶 = 2𝜋휀0𝑅. (4.5) 

Note that these equations are calculated for the conditions under which the islands are in a 

vacuum. In practice, the dielectric constant of the environment also enters this equation 

multiplicatively. To have a feeling of the orders of magnitude of the capacitance as a function 

of these parameters, we give the self-capacitance for different island sizes and the temperature 

needed to satisfy charge quantization. 

Table 4.1: Self-capacitance and maximal thermal energy needed to observe charge 

quantization, for spherical islands of different sizes.  

R C EC E/kB 

10 μm 6.3×10-15 F 12 μeV 0.15 K 

1 μm 6.3×10-16 F 120 μeV 1.5 K 

100 nm 6.3×10-17 F 1.2 meV 15 K 

4.1.4. Barrier  

To manipulate the charges inside the island we need electrodes to add/remove electrons to/from 

the island. We must now estimate how close the electrodes must be to the island and how strong 

the resistance of the barrier should be. A first condition gives a lower bound for the resistivity 

of the barrier and is derived from Heisenberg’s uncertainty relation 𝛥𝐸. 𝛥𝑡 ≥ ℏ. Let us assume 

that we have paid the charging energy 𝐸𝐶 = 𝑒2 2𝐶⁄  and added the first charge to the island. 
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The typical time that the charge stays inside the island should be of the order of the classical 

discharge time of a capacitor, 𝑅𝐶 = 𝐶 𝐺⁄ . To have a well-defined state of an extra electron the 

uncertainty should not exceed the charging energy. 1,3,4  

𝑒2

2𝐶
.
𝐶

𝐺
≫ ℏ , 𝐺 ≪

2𝑒2

ℎ
= 𝐺𝑄 ≃ 104𝑘𝛺  (4.6) 

Where 𝐺 is the conductivity and 𝐺𝑄is known as quantum conductance6 and appears when the 

transmission channel width becomes comparable with electron wavelength. Therefore, to 

prevent electron leakage from the island, it is necessary to have a barrier with conductivity less 

than the quantum of conductance. Satisfying this condition is relatively easy. For instance, an 

aluminium oxide barrier thicker than 1 nm would keep charges long enough in the box to 

measure quantize charge states.  

Heisenberg’s uncertainty relation defines an upper bound for the conductance of the barrier. A 

lower bound for the conductance can be defined by the transmission or tunnelling probability. 

In quantum mechanics the probability of tunnelling through a barrier for an electron is 

approximately given by a simple   𝑃𝑡 = 𝑒𝑥𝑝−2𝛽𝑙, with 𝛽 = √2𝑚(𝑈𝑒 − 𝐸𝑏) ℏ2⁄ , 𝑙 is the barrier 

width, 𝑚 is the electron mass, 𝑈𝑒 the electron energy and 𝐸𝑏 the potential barrier. This 

probability decays swiftly as the barrier length increases. As an example, the probability of 

tunnelling for a barrier of 2 nm is 107 times lower than for a 1nm barrier. A typical tunnelling 

barrier proper for electrical measurements is between 1 to 3 nm.  

4.2. Single-electron transistor 

A single-electron transistor (SET) is an electronic device that takes advantage of Coulomb 

blockade to transfer electrons one by one 1,3,7. Its structure is similar to the electron box, except 

that a third electrode (Drain electrode) is added to conduct the tunnelling current (Figure 4.3). 

 
Figure 4.3:   Schematic view of a SET. Two electrodes (source and drain) are placed near a cylindrical island. The 

electron tunnels through the tunnelling junction (typically between 1 to 3 nanometre) and enters the islands. C and 

R correspond to capacitance and resistivity of the tunnelling junctions. The island energy can be manipulated with 

a gate electrode, placed far enough to avoid electron transport through it. 
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The charging energy in a SET is  𝐸𝐶 = 𝑒2 2𝐶∑⁄  where 𝐶∑ = 𝐶𝑆 + 𝐶𝐷 + 𝐶𝑔. Similar to the 

electron box, the charge in the island can be calculated in a classical way: 

𝑄 = 𝐶𝑉𝑖 − 𝐶𝑠𝑉𝑠 − 𝐶𝐷𝑉𝐷 − 𝐶𝑔𝑉𝑔 (4.7) 

with island potential of 𝑉𝑖 = 𝑉𝑒𝑥𝑡 + 𝑄 𝐶∑⁄  where the external potential is the potential induced 

by all the electrodes 𝑉𝑒𝑥𝑡 = (𝐶𝑠𝑉𝑠 + 𝐶𝑔𝑉𝑔 + 𝐶𝐷𝑉𝐷) 𝐶∑⁄ . Adding extra electrodes introduces 

extra capacitance that can be even bigger than the self-capacitance of the island. This extra 

capacitance therefore reduces the charging energy. This inevitable reduction is the price to pay 

for full control over the tunnelling current and the number of electrons inside the island. 3 

4.2.1. Current through a SET  

The most important feature of SETs for our project, the optical detections of a single charge, 

is their ability to transmit very low currents and to trap electrons. In this section, we discuss 

the operation of SETs and we apply this discussion to present our approach for single-charge 

trapping. Figure 4.4 presents the different working regimes of SETs.  

 

Figure 4.4: Working regimes of SETs. a) Charge transfer is blocked. b) current flows. c) Typical IV curve of a 

SET. 

In order to change the charge state of the island, the electron need to overcome the chemical 

potential.  

𝜇(𝑁) = (𝑁 −
1

2
)

𝑒2

𝐶∑
− 𝑒𝑉𝑒𝑥𝑡. (4.8) 

In the Coulomb blockade regime, the electron does not have enough energy to enter the system. 

Therefore, the number of charges inside the island stays constant. A source-drain bias voltage 

will increase the electron energy and at 𝑉 = 𝑒 𝐶∑⁄  electrons reach enough energy to jump into 

(or out of) the island and current flows. The 𝑒 𝐶∑⁄  value is the maximum threshold and can be 

suppressed by a gate voltage. Figure 4.4.c shows a typical IV measurement of an SET.  

The electron flow becomes more interesting when a voltage is applied to the gate electrode. 

According to equation 4.8, the number of charges inside the island can be adjusted by the gate 

voltage. If we draw a 2D map of intensity 𝐼 as a function of the source-drain voltage 𝑉𝑆𝐷 and 



 Single-electron control… 89 
 

 

of the gate voltage 𝑉𝑔 the map of Fig. 4.5 follows, which demonstrates the full characteristic of 

a SET. The white areas in Fig. 4.5 are known as Coulomb diamonds.  

 
Figure 4.5: a) Schematic view of a typical SET characteristic displaying Coulomb diamonds. Note: the skewness 

is a result of different CS and CD that always exist due to the imperfect structures. b) Schematic of conductance as 

a function of gate voltage for low bias voltage.  

Figure 4.5.a. is a schematic representation of a SET characteristic with typical Coulomb 

diamonds. Inside a Coulomb diamond (the white area) the current flow is blocked and the 

number of electrons in the island is fixed.  Outside of the Coulomb diamonds the current flows 

and the number of electrons inside the island fluctuates.  

4.2.2. SETs for optical charge detection 

In addition to the physical and electrical requirements for building and operating a SET, the 

optical charge detection we envision adds its own specific requirements. The most restrictive 

one is that the SET configuration must create a significant electric field at the position of the 

molecule. This means that the electric field should not be shielded by the electrodes or any 

other metallic structures close by. This feature rules out many SET configurations and 

fabrication recipes that have been successfully applied to electrical detection of Coulomb 

blockade. Accordingly, we had to develop a novel fabrication method to fulfil the electric-field 

condition. 

The ability of electrical controlling of a single charge offers two approaches to detect a single 

electron optically. 

1.  By using SETs as an electron trap in the vicinity of an electric-field-sensitive molecule 

and electrically manipulate the charges inside the island. Figure 4.5.b shows that the 

current through the island changes from many tunnelling events (𝐼 ≠ 0) to a blockade 

state that the number of electrons inside the island is fixed by sweeping the gate voltage. 

Therefore in a low bias for source and drain and by tuning the gate, the SET can be 

adjusted in a way that maximum current is passing (on top of the peaks in Figure 4.5.b). 
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In this case, by slightly detuning the gate voltage the electric state changes. For a DBT 

molecule in DBN placed in the vicinity of the island the electric field of these states is 

different and the extra electron in the island can be measured optically by measuring 

the ZPL’s Stark shift. 

2. Alternatively, a low coupled island to electrodes (island far from electrodes) and 

without a gate electrode that is easier to fabricate can be used to trap electrons. In this 

configuration the tunnelling barrier and capacitance need to be adjusted in a way that 

the tunnelling current be significantly low. As we need to distinguish single-electron 

tunnelling events through fluorescence changes, we will require long intervals between 

electron tunnelling events, typically a millisecond or longer. A thicker barrier increases 

the RC time, i.e., the typical time during which an electron remains localized on the 

island. In addition to the optical single-electron detection, this configuration enables 

one to measure extremely low current (≤ pA) optically that no electrical ammeter can 

measure. The following table compares the requirements on SETs and low-coupled 

island for optical detection of a single charge.  

Table 4.2: Characteristic of SETs and SEBs for optical detection of a single charge 

 SET Low-coupled island 

Bias Voltage  > μV > μV 

Tunnelling Current   > pA  <0.1 pA 

Resistivity  > 100 kΩ,  ≅ 1-3nm > 10 GΩ,  ≅ 5-10nm 

4.3. Optical detection of an electron by using SET 

The DBT/DBN system presented in chapter 2 is an excellent candidate for optical charge 

detection. In this system, the matrix-induced dipole moment caused a huge Stark shift of about 

1.5 GHz/kVcm-1. This sensitivity is sufficient to sense the electric field of one electron over 

100 nm. COMSOL simulations were applied to map the electric field distribution around an 

island in a SET configuration. Figure 4.6 presents the electric field around a 100 nm island that 

is located 3 nm away from two bulk electrodes. Such a configuration is very similar to the SETs 

fabricated in our lab for single-electron detection and is discussed in the next chapter.  

Considering the DBT:DBN system as the molecular probe for the electric field sensing, a field 

with a strength of only 80 V/cm could be detected. Based on the COMSOL simulation, the 

electric field of an island charged by one extra electron is around 100 V/cm at 300 nm away 

from the island. With the DBT:DBN system, this field could be easily detected as a shift in 

ZPL more than 3 times bigger than its linewidth. Note that in this estimation the molecule’s 

dipole moment is assumed to be aligned along the electric field vector to obtain the maximum 

Stark shift. In an unfavourable case when the electric field is projected equally on all 4 

possibilities of dipole moment orientation in DBT:DBN system and the Stark shift is minimum 

(500 MHz/kVcm-1, see figure 2.5) still a shift in ZPL, more than its linewidth is expected.  
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Figure 4.6: Electric field distribution around a 200 nm disc island with two nearby contacts. 

4.4. Conclusion  

In contrast to the normal non-interacting regime for electric current in a resistance, Coulomb 

blockade is a result of charge carrier interactions. This interaction defines the charging energy 

of a finite island hanging somewhere in space. If electrons cannot leave or enter the island 

spontaneously, the charging energy allows us to manipulate the number of electrons in the 

islands electrically. We provided the conditions for the Coulomb blockade for a 100 nm disk 

island at a temperature of 15 K or lower. Adding leads and a gate electrode introduce a 

controllable electron trap with well-defined states with a controlled number of electrons. The 

electric field induced by adding one electron to the island is detectable by a sensitive molecule 

in the vicinity of the island as a shift on its optical transition energy (Stark effect). The electric 

field induced by the added electron was simulated using COMSOL. We showed that by 

applying DBT:DBN as the molecular probe for charge detection, shifts larger than the 

molecular ZPL linewidth are expected at 300 nm away from the island. In the next chapter we 

discuss the fabrication process of the desired SETs.  
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