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CHAPTER 7
Open Problem: Fast and Optimal

Online Portfolio Selection

This chapter is based on Van Erven, T., Van der Hoeven, D., Kotłowski, W., and
Koolen, W. M. (2020b). Open problem: Fast and optimal online portfolio selection.
In Proceedings of the 33rd Annual Conference on Learning Theory (COLT), pages
3864–3869.1

Abstract

Online portfolio selection has received much attention since its introduction by
Cover, but all state-of-the-art methods fall short in at least one of the following ways:
they are either i) computationally infeasible; or ii) they do not guarantee optimal
regret; or iii) they assume the gradients are bounded, which is unnecessary and
cannot be guaranteed. We are interested in a natural follow-the-regularized-leader
(FTRL) approach based on the log barrier regularizer, which is computationally
feasible. The open problem we put before the community is to formally prove
whether this approach achieves the optimal regret. Resolving this question will
likely lead to new techniques to analyse FTRL algorithms. There are also interesting
technical connections to self-concordance, which has previously been used in the
context of bandit convex optimization.

1The author of this dissertation performed the following tasks: co-deriving the theoretical results
and co-writing the paper.
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7.1 Introduction

Online portfolio selection (Cover, 1991) may be viewed as an instance of online
convex optimization (OCO) (Hazan et al., 2016): in each of t = 1, . . . , T rounds,
a learner has to make a prediction wt in a convex domainW before observing a
convex loss function ft : W → R. The goal is to obtain a guaranteed bound on
the regretRT =

∑T
t=1 ft(wt)−minw∈W

∑T
t=1 ft(w) that holds for any possible

sequence of loss functions ft. Online portfolio selection corresponds to the special
case that the domainW = {w ∈ Rd+ |

∑d
i=1wi = 1} is the probability simplex

and the loss functions are restricted to be of the form ft(w) = − ln(wᵀxt) for
vectors xt ∈ Rd+. It was introduced by Cover (1991) with the interpretation that
xt,i represents the factor by which the value of an asset i ∈ {1, . . . , d} grows in
round t and wt,i represents the fraction of our capital we re-invest in asset i in
round t. The factor by which our initial capital grows over T rounds then becomes∏T
t=1w

ᵀ
t xt = e−

∑
t=1 ft(wt). An alternative interpretation in terms of mixture

learning is given by Orseau et al. (2017).

For an extensive survey of online portfolio selection we refer to Li and Hoi
(2014). Here we review only the results that are most relevant to our open prob-
lem. Cover (1991); Cover and Ordentlich (1996) show that the best possible
guarantee on the regret is of order RT = O(d lnT ) and that this is achieved
by choosing wt+1 as the mean of a continuous exponential weights distribution
dPt+1(w) ∝ e−

∑t
s=1 fs(w)dπ(w) with Dirichlet-prior π (and learning rate η = 1).

Unfortunately, this approach has a run-time of order O(T d), which scales exponen-
tially in the number of assets d, and is therefore computationally infeasible when d
exceeds, say, 3. A sampling-based implementation by Kalai and Vempala (2002)
greatly improves the run-time to Õ(T 4(T + d)d2), but even this is still infeasible
already for modest d and T .

As shown in Table 7.1, much faster algorithms are available, but they either do not
achieve the optimal regret or they assume that the gradients are uniformly bounded
by a known bound G: ‖∇ft(wt)‖2 ≤ G, and the bounds deteriorate rapidly when
G is large. Bounding the gradients is very restrictive: we either need to (i) assume
that the asset prices do not fluctuate too rapidly, which defeats the purpose of using
adversarial online learning; or (ii) we need to allocate a minimum amount of capital
wt,i ≥ α to each asset, which means we cannot drop any poorly performing assets
from our portfolio.

We are interested in a natural follow-the-regularized-leader algorithm, previously
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Table 7.1: Overview of achievable trade-offs between regret and run-time

Method Regret Run-time Assumes References

Bounded Gradients

Universal Portfolio O(d ln(T )) Õ(T 4(T + d)d2) No (Cover and Ordentlich, 1996;
Kalai and Vempala, 2002)

Online Newton Step O(Gd ln(T )) O(d3T ) Yes (Agarwal et al., 2006;
Hazan et al., 2007;
Hazan and Kale, 2015)

Exponentiated Gradient O(G
√
T ln(d)) O(dT ) Yes Helmbold et al. (1998)

Gradient Descent O(G
√
dT ) O(dT ) Yes Zinkevich (2003)

Soft-Bayes O(
√
dT ln(d)) O(dT ) No Orseau et al. (2017)

Ada-BARRONS O(d2 ln4(T )) O(d2.5T 2) No Luo et al. (2018)

FTRL ? O(d2T 2) No Agarwal and Hazan (2005)

proposed by Agarwal and Hazan (2005):

wt+1 = arg min
w∈W

{ t∑
s=1

fs(w) + λ
d∑
i=1

− lnwi

}
(7.1.1)

for some λ > 0. The regularizer R(w) =
∑d

i=1− lnwi is a self-concordant barrier
function (Nesterov and Nemirovskii, 1994) that is the log barrier for the positive
orthant and has a natural interpretation as adding d extra rounds in which x equals
e1, . . . , ed.

The optimization problem (7.1.1) can be solved to machine precision in O(d2t)

steps using Newton’s method, so a naive implementation in which we solve the
optimization problem independently for each round would already lead to a total
run-time of O(d2T 2), which is computationally feasible for practical values of
d and T . One might further hope that sharing calculations between rounds or
solving (7.1.1) approximately may lead to additional speed-ups, similar to those
obtained for FTRL with linear losses by Abernethy et al. (2008). Thus the method
is computationally feasible, at least for an interesting range of d and T . The open
problem we now pose is whether it is also worst-case optimal in terms of regret:

Open Problem: Does the FTRL algorithm (7.1.1) guarantee the optimal regret
O(d lnT ) without further assumptions like bounded gradients?

Our motivation is twofold: efficient algorithms for portfolio selection (and beyond)
are desirable, and FTRL is the simplest natural candidate. In addition, our current
inability to analyse it highlights frustrating blind spots in our FTRL toolbox, which
solving this problem will need to address.
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Agarwal and Hazan (2005) already prove O(G2d ln(dT )) regret when the gradients
are bounded, but we believe that the bound should not depend on G at all. It seems
that the key difficulty in analyzing the regret is to control the sum of so-called local
norms of the gradients. As we will discuss below, this is possible at least in several
encouraging special cases.

7.2 Technical Discussion

It is convenient to reparametrize by v ∈ Rd−1
+ such that

∑d−1
i=1 vi ≤ 1, obtaining

wt = Avt + b for A =
(
I
−1ᵀ

)
, and b = ed. With some abuse of notation, we will

also write ft(v) for ft(Av+ b) and R(v) for R(Av+ b). Then the criterion being
minimized is

φT (v) =
T∑
t=1

ft(v) + λR(v).

As the loss is 1-exp-concave, we have ∇2ft(v) � ∇ft(v)∇ft(v)ᵀ (Bubeck, 2015,
pp. 324–325). In fact, this holds with equality in the present case:

∇ft(v) =
−Aᵀxt

(Av + b)ᵀxt
, ∇2ft(v) =

Aᵀxtx
ᵀ
tA(

(Av + b)ᵀxt
)2 = ∇ft(v)∇ft(v)ᵀ.

7.2.1 Regret Bounded by Local Norms via Self-concordance

We observe that both the losses ft and the regularizer R are self-concordant func-
tions (Abernethy et al., 2008). Assume for simplicity that λ ≥ 1, in which case
φT is a sum of self-concordant functions and hence also self-concordant. Like
Abernethy et al. (2008), define the local norms ‖g‖t =

√
gᵀ∇−2φt(vt)g. By

Lemma 28 below we know that the gradients are always bounded in these local
norms.

Lemma 28. ‖∇ft(vt)‖2t ≤ 1
λ+1

Proof. We start by observing that

‖∇ft(vt)‖2t ≤∇ft(vt)ᵀ(∇ft(vt)∇ft(vt)ᵀ + λ∇2R(vt))
−1∇ft(vt)

=λ−1‖∇ft(vt)‖2R(vt)
−

λ−2‖∇ft(vt)‖4R(vt)

1 + λ−1‖∇ft(vt)‖2R(vt)

=
‖∇ft(vt)‖2R(vt)

λ+ ‖∇ft(vt)‖2R(vt)

,
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where ‖g‖R(vt) =
√
gᵀ∇−2R(vt)g and the first equality follows from

the Sherman-Morrison formula. Note that ∇2R(vt) is positive definite, so
∇ft(vt)ᵀ∇2R(vt)∇ft(vt) = 0 only when ∇ft(vt) = 0, for which the result
holds. If∇ft(vt)ᵀ∇2R(vt)∇ft(vt) > 0, because∇2R(v) � ∇ft(v)∇ft(v)ᵀ for
all v by Lemma 29 below we have

∇ft(vt)ᵀ∇−2R(vt)∇ft(vt)∇ft(vt)ᵀ∇2R(vt)∇ft(vt)
≤ ∇ft(vt)ᵀ∇2R(vt)∇ft(vt)

and thus ∇ft(vt)ᵀ∇−2R(vt)∇ft(vt) ≤ 1. Using that s(x) = x/(λ + x) is
increasing for x > −λ we conclude that the gradients are indeed bounded in the
local norms:

‖∇ft(vt)‖2t ≤
‖∇ft(vt)‖2R(vt)

λ+ ‖∇ft(vt)‖2R(vt)

≤ 1

λ+ 1
. (7.2.1)

Lemma 29. ∇2R(v) � ∇ft(v)∇ft(v)ᵀ for all v.

Proof. We need to show that, for all x and w:

Aᵀ
( d∑
i=1

eie
ᵀ
i(

wᵀei
)2)A � AᵀxxᵀA(

wᵀx
)2 .

It is sufficient to show that:
d∑
i=1

eie
ᵀ
i(

wᵀei
)2 � xxᵀ(

wᵀx
)2 .

Both sides are positive semi-definite. The right-hand side is rank 1, with eigenvector
x. Hence it is sufficient to show that

xᵀ
( d∑
i=1

eie
ᵀ
i(

wᵀei
)2)x ≥ xᵀ

( xxᵀ(
wᵀx

)2)x
d∑
i=1

x2
i

w2
i

≥ ‖x‖42(
wᵀx

)2
(
wᵀx

)2 d∑
i=1

x2
i

w2
i

≥ ‖x‖42

‖y‖21‖z‖22 ≥ (yᵀz)2

‖y‖1‖z‖2 ≥ yᵀz
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where y = (y1, . . . , yd) for yi = wixi, z = (z1, . . . , zd) for zi = xi/wi, and we
are using thatwi, xi ≥ 0. The result then follows upon observing that ‖z‖1 ≥ ‖z‖2,
and applying the Cauchy-Schwarz inequality.

To bound the regret the following Lemma is useful.

Lemma 30. For λ ≥ 5
4 , the regret is bounded in terms of the local norms:

RT ≤ λd ln(2T ) + 1 +
T∑
t=1

‖∇ft(vt)‖2t .

Proof. Let v∗ ∈ arg minv
∑T

t=1 ft(v). Then

RT = φT (vT+1)− λR(v1)−
T∑
t=1

ft(v
∗) +

T∑
t=1

(
φt(vt)− φt(vt+1)

)
.

We start by bounding

φT (vT+1)− λR(v1) ≤φT
(
(1− 1

2T )v∗ + 1
2T v1

)
− λR(v1)

≤
T∑
t=1

− ln((1− 1
2T )(Av∗ + b)ᵀxt)

+
d∑
i=1

−λ ln( 1
2T (Av1 + b)ᵀei)− λR(v1)

=
T∑
t=1

ft(v
∗)− T ln(1− 1

2T ) + dλ ln(2T )

≤
T∑
t=1

ft(v
∗) + λd ln(2T ) +

1

2(1− 1
2T )

≤
T∑
t=1

ft(v
∗) + λd ln(2T ) + 1

Next, by using (2.16) of Nemirovski (2004) for the self-concordant function φt we
find

φt(vt)− φt(vt+1) ≤ − ln(1− ‖∇ft(vt)‖t)− ‖∇ft(vt)‖t
≤ ‖∇ft(vt)‖2t ,
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where we used that∇φt(vt) = ∇ft(vt), − ln(1− s)− s ≤ s2 for s ∈ [0, 2
3 ], and

‖∇ft(vt)‖2t ≤ 4
9 by equation (7.2.1). To complete the proof we combine the above

and find

RT =φT (vT+1)− λR(v1)−
T∑
t=1

ft(v
∗) +

T∑
t=1

(
φt(vt)− φt(vt+1)

)
≤λd ln(2T ) + 1 +

T∑
t=1

(
φt(vt)− φt(vt+1)

)
≤λd ln(2T ) + 1 +

T∑
t=1

‖∇ft(vt)‖2t .

Combining Lemma 30 with (7.2.1), we immediately see that the regret is bounded
by

RT = O(
√
dT lnT ) for λ ≈

√
T

d lnT ,

but if we hope to get the optimal rate, we need to use constant λ, so this is what we
will assume from now on. Below we list several promising corollaries of Lemma 30.

7.2.2 Assuming Bounded Gradients

Suppose that, for some reason, the gradients with respect tow (not v!) are bounded:
‖∇ft(wt)‖2 = ‖ −xt

wᵀ
t xt
‖2 ≤ G. Then, abbreviating yt = Aᵀxt/‖xt‖2, we can use

that ∇2ft(vt) � Aᵀxtx
ᵀ
tA

‖xt‖2∞
� Aᵀxtx

ᵀ
tA

‖xt‖22
= yty

ᵀ
t to get

T∑
t=1

‖∇ft(vt)‖2t ≤G2
T∑
t=1

‖yt‖2t

≤G2
T∑
t=1

yᵀt

( t∑
s=1

ysy
ᵀ
s + λAᵀA

)−1
yt

=O
(
G2d lnT

)
,

where the last step follows analogously to Hazan et al. (2007, Lemma 11) and using
that det(AᵀA) = det(I + 11ᵀ) = (1 + 1ᵀ1) det(I) = d by Sylvester’s determin-
ant theorem. This gives the optimal rate if G is small.
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7.2.3 Source Coding and xt in Finite Set

We call the case that xt ∈ {e1, . . . , ed} the source coding setting. This case is
easy to analyse, because wt has a simple closed-form solution that coincides with
Cover’s universal portfolio algorithm. More generally, let us assume that xt takes
values in some finite set X of size k, so k = d in the source coding setting, and let
nt(x) denote the number of times that xs = x for s ≤ t. Then

T∑
t=1

‖∇ft(vt)‖2t

≤
T∑
t=1

∇ft(vt)ᵀ
(
nt(xt)∇ft(vt)∇ft(vt)ᵀ + λ∇2R(vt)

)−1∇ft(vt)

≤
T∑
t=1

1

nt(xt) + λ
=
∑
x∈X

nT (x)∑
j=1

1

j + λ
= O

( ∑
x∈X

lnnT (x)
)

= O
(
k lnT

)
.

In particular, algorithm (7.1.1) achieves the optimal rate in the source coding setting.

7.2.4 A (Suboptimal) General Bound without Bounded Gradients

Since R(v) is a barrier, it should be the case that wt,i ≥ C/t for some constant
C > 0. We may therefore cover the effective domain of wt by m = O((lnT )d)

sets B1, . . . , Bm such that wᵀx ≤ 2uᵀx for all w,u ∈ Bi. It follows that
T∑
t=1

‖∇ft(vt)‖2t

≤
m∑
i=1

∑
t:vt∈Bi

∇ft(vt)ᵀ
( ∑
s≤t:vs∈Bi

∇fs(vt)∇fs(vt)ᵀ + λ∇2R(vt)
)−1∇ft(vt)

≤ 4

m∑
i=1

∑
t:wt∈Bi

∇ft(vt)ᵀ
( ∑
s≤t:ws∈Bi

∇fs(vs)∇fs(vs)ᵀ + λAᵀA
)−1∇ft(vt)

= O(md lnT ) = O
(
d(lnT )d+1

)
,

where the first equality follows like Lemma 11 of Hazan et al. (2007) with
‖∇ft(vt)‖ ≤ t/C. This of course has wildly suboptimal dependence in d, but
shows near-optimal regret for very small d.

7.3 Discussion

The partial analysis presented above relies on (2.16) of Nemirovski (2004). An
alternative approach could be to use (2.4) of Nemirovski (2004) instead, as is done
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by Bilodeau et al. (2020) to analyse the logarithmic loss. Another attempt could
be made to improve the approach of Section 7.2.4 by employing other techniques
from literature on self-concordant barriers. Inside the Dikin ellipsoid the hessians
of self-concordant barriers are roughly proportional (see for example Proposition
2.3.2 by Nesterov and Nemirovskii (1994) or (2.2) by Nemirovski (2004)). Instead
of covering the domain as described in Section 7.2.4 perhaps it is possible to cover
the domain in Dikin ellipsoids more efficiently, although several unfruitful attempts
have already been made.
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