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CHAPTER 5
MetaGrad: Universal Adaptation
using Multiple Learning Rates in

Online Learning

This chapter is based on: Van Erven, T., Koolen, W. M., and Van der Hoeven, D.
(2020a). Metagrad: Universal adaptation using multiple learning rates in online
learning. Manuscript in preparation.1

Abstract

In online convex optimization it is well known that certain subclasses of objective
functions are much easier than arbitrary convex functions. We are interested in
designing universally adaptive methods that can automatically get fast rates in
as many such subclasses as possible, without any manual tuning. We provide
a new universally adaptive method, MetaGrad, that is robust to general convex
losses but adapts to a broad class of functions, including exp-concave and strongly
convex functions, but also various types of stochastic and non-stochastic functions
without any curvature. For instance, MetaGrad can achieve logarithmic regret on
the unregularized hinge loss over the unit ball, even though the hinge loss has no
curvature, if the data come from a favorable probability distribution. We prove this
by drawing a connection to the Bernstein condition, which is known to imply fast
rates in offline statistical learning. MetaGrad further adapts automatically to the
size of the gradients. Its main feature is that it simultaneously considers multiple
learning rates. Unlike previous methods with provable regret guarantees, however,
its learning rates are not monotonically decreasing over time and are not tuned based
on a theoretically derived bound on the regret. Instead, they are weighted directly
proportional to their empirical performance on the data using a tilted exponential

1The author of this dissertation performed the following tasks: performing the experiments,
co-deriving part of the theoretical results, and co-writing the paper
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weights meta-algorithm. We provide three versions of MetaGrad. The full matrix
version maintains a full covariance matrix and is applicable to learning tasks for
which we can afford update time quadratic in the dimension. The other two versions
provide speed-ups for high-dimensional learning tasks with an update time that is
linear in the dimension: one is based on sketching, the other on running a separate
copy of the basic algorithm per coordinate. We compare all versions of MetaGrad on
benchmark online classification and regression tasks, showing that they consistently
outperform both online gradient descent and AdaGrad.
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5.1 Introduction

Methods for online convex optimization (OCO) (Shalev-Shwartz, 2011; Hazan et al.,
2016) make it possible to optimize parameters sequentially, by processing convex
functions in a streaming fashion. This is important in time series prediction where
the data are inherently online; but it may also be convenient to process offline data
sets sequentially, for instance if the data do not all fit into memory at the same time
or if parameters need to be updated quickly when extra data become available.

The difficulty of an OCO task depends on the convex functions f1, f2, . . . , fT that
need to be optimized. The argument of these functions is a d-dimensional parameter
vectorw from a convex domainW . Although this is abstracted away in the general
framework, each function ft usually measures the loss of the parameters on an
underlying example (xt, yt) in a machine learning task. For example, in classifica-
tion ft might be the hinge loss ft(w) = max{0, 1− yt〈w,xt〉} or the logistic loss
ft(w) = log

(
1 + e−yt〈w,xt〉

)
, with yt ∈ {−1,+1}. Thus the difficulty depends

both on the choice of loss and on the observed data.

There are different methods for OCO, depending on assumptions that can be made
about the functions. The simplest and most commonly used strategy is online
gradient descent (GD). GD updates parameterswt+1 = wt− ηt∇ft(wt) by taking
a step in the direction of the negative gradient, where the step size is determined
by a parameter ηt called the learning rate. The goal is to minimize the regret
over T rounds, which measures the difference in cumulative loss between the
online iterates wt and the best offline parameters u. For learning rates ηt ∝ 1/

√
t,

GD guarantees that the regret for general convex functions is bounded by O(
√
T )

(Zinkevich, 2003). Alternatively, if it is known beforehand that the functions are
of an easier type, then better regret rates are sometimes possible. For instance, if
the functions are strongly convex, then logarithmic regret O(log T ) can be achieved
by GD with much smaller learning rates ηt ∝ 1/t (Hazan et al., 2007), and, if they
are exp-concave, then logarithmic regret O(d log T ) can be achieved by the Online
Newton Step (ONS) algorithm (Hazan et al., 2007).

This partitions OCO tasks into categories, leaving it to the user to choose the
appropriate algorithm for their setting. Such a strict partition, apart from being
a burden on the user, depends on an extensive cataloguing of all types of easier
functions that might occur in practice. (See Section 5.3 for several ways in which
the existing list of easy functions can be extended.) It also immediately raises the
question of whether there are cases in between logarithmic and square-root regret
(there are, see Theorem 21 in Section 5.3), and which algorithm to use then. And,
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third, it presents the problem that the appropriate algorithm might depend on (the
distribution of) the data (again see Section 5.3), which makes it entirely impossible
to select the right algorithm beforehand.

These issues motivate the development of adaptive methods, which are no worse
than O(

√
T ) for general convex functions, but also automatically take advantage

of easier functions whenever possible. An important step in this direction are the
adaptive GD algorithm of Bartlett et al. (2007) and its proximal improvement by
Do et al. (2009), which are able to interpolate between strongly convex and general
convex functions if they are provided with a data-dependent strong convexity para-
meter in each round, and significantly outperform the main non-adaptive method
(i.e. Pegasos, (Shalev-Shwartz et al., 2011)) in the experiments of Do et al.. Here
we consider a significantly richer class of functions, which includes exp-concave
functions, strongly convex functions, general convex functions that do not change
between rounds (even if they have no curvature), and stochastic functions whose
gradients satisfy the so-called Bernstein condition, which is well-known to enable
fast rates in offline statistical learning (Bartlett and Mendelson, 2006; Van Erven
et al., 2015; Koolen et al., 2016). The latter group can again include functions
without curvature, like the unregularized hinge loss. All these cases are covered
simultaneously by a new adaptive method we call MetaGrad, for multiple eta
gradient algorithm. Theorem 23 below implies the following:

Theorem 19. Suppose the diameter of the domain W and the `2-norms of the
gradients gt = ∇ft(wt) are both bounded by constants, and define V uT =∑T

t=1 ((u−wt)
ᵀgt)

2. Then MetaGrad’s regret is simultaneously bounded by
O(
√
T log log T ), and by

T∑
t=1

f(wt)−
T∑
t=1

ft(u) ≤
T∑
t=1

(wt−u)ᵀgt ≤ O

(√
V uT d ln(T/d) + d ln(T/d)

)
(5.1.1)

for any u ∈ W .

Theorem 19 bounds the regret in terms of a measure of variance V uT that depends
on the distance of the algorithm’s choices wt to the optimum u, and which, in
favorable cases, may be significantly smaller than T . Intuitively, this happens, for
instance, when there is a stable optimum u that the algorithm’s choiceswt converge
to. Formal consequences are given in Section 5.3, which shows that this bound
implies faster than O(

√
T ) regret rates, often logarithmic in T , for all functions

in the rich class mentioned above. In all cases the dependence on T in the rates
matches what we would expect based on related work in the literature, and in most
cases the dependence on the dimension d is also what we would expect. Only for
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strongly convex functions is there an extra factor d. It seems that this is a real
limitation of the method as presented here. In Section 5.9 we discuss a recent
extension of MetaGrad by Zhang et al. (2019) that removes this limitation.

The main difficulty in achieving the regret guarantee from Theorem 19 is tuning a
learning rate parameter η. In theory, η should be roughly proportional to 1/

√
V uT ,

but this is not possible using any existing techniques, because the optimum u is
unknown in advance, and tuning in terms of a uniform upper bound maxu V

u
T ruins

all desired benefits. MetaGrad therefore runs multiple supporting expert algorithms,
each with a different learning rate η, and combines them with a novel controller
algorithm that learns the empirically best learning rate for the OCO task in hand.
Crucially, the overhead for learning the best expert is not of the usual order O(

√
T ),

which would ruin all desired benefits, but only costs a negligible O(log log T ).

The experts are instances of exponential weights on the continuous parameters u
with a suitable surrogate loss function, which in particular causes the exponential
weights distributions to be multivariate Gaussians. The resulting updates are closely
related to the ONS algorithm on the original losses, where each expert receives the
controller’s gradients instead of its own. It is shown that dlog2 T e experts suffice,
which is at most 30 as long as T ≤ 109, and therefore seems computationally
acceptable. If not, then the number of experts can be further reduced at the cost of
slightly worse constants in the bound.

An important practical consideration for OCO algorithms is whether they can adapt
to the Lipschitz-constant of the losses ft, i.e. the maximum norm of the gradients.
For instance, this is an important feature of AdaGrad (Duchi et al., 2011; McMahan
and Streeter, 2010). The MetaGrad algorithm is also adaptive in this way. Our
approach is a refinement of the techniques of Mhammedi et al. (2019): whereas
their procedure may occasionally restart the whole MetaGrad algorithm, we only
restart the controller but not the experts. Wherever possible, we further measure
the size of the gradients by the (semi-)norm maxw∈W |wᵀgt| instead of the larger
maxw,v∈W ‖w − v‖2‖gt‖2. The difference is crucial in Section 5.5.1, where we
consider a domain for which the diameter is infinite, but our norms are under
control.

The version of MetaGrad described so far maintains a full covariance matrix of size
d× d, where d is the parameter dimension. This requires at leastO(d2) computation
steps per round to update, which is prohibitive for large d. We therefore also present
two extensions: the first applies the matrix sketching approach of Luo et al. (2017)
to approximate the matrix by a rank k sketch, and requires O(kd) update time on
average per round. Our second extension was inspired by the diagonal version of
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AdaGrad (Duchi et al., 2011; McMahan and Streeter, 2010) and runs a separate
copy of full MetaGrad per coordinate, which takes O(d) computation per round,
just like vanilla GD and AdaGrad. While the full matrix version of MetaGrad and
its sketching approximation naturally favor parameters u with small `2-norm, the
coordinatewise extension is appropriate for the `∞-norm.

Related Work If we disregard computational efficiency and omit Lipschitz-
adaptivity, then the result of Theorem 19 can be achieved by finely discretizing the
domainW and running the Squint algorithm for prediction with experts with each
discretization point as an expert (Koolen and Van Erven, 2015). MetaGrad may
therefore also be seen as a computationally efficient extension of Squint to the OCO
setting.

As already mentioned, Zhang et al. (2019) extend MetaGrad to adapt to strongly
convex functions. They further provide an extension for the case that the optimal
parameters u vary over time, as measured in terms of the adaptive regret. See also
the closely related extension of Squint for the adaptive regret by Neuteboom (2020).

Our focus in this work is on adapting to sequences of functions ft that are easier
than general convex functions, but we require an estimate D̂ of the `2-norm of the
optimum u as a hyperparameter. In contrast, a different line of work designs meth-
ods that can adapt to the norm of u over all of Rd, but without providing adaptivity
to the functions ft (Mcmahan and Streeter, 2012; Orabona, 2014; Cutkosky and
Orabona, 2018). It was thought for some time that these two directions could not be
reconciled, because the impossibility result of Cutkosky and Boahen (2017) blocks
simultaneous adaptivity to both the size of the gradients of the functions ft and the
norm of u. The perspective has recently shifted, however, following discoveries
of ways to partially circumvent this lower bound (Kempka et al., 2019; Cutkosky,
2019; Mhammedi and Koolen, 2020).

Another notion of adaptivity is explored in a series of work obtaining tighter bounds
for linear functions ft that vary little between rounds, as measured either by their
deviation from the mean function or by successive differences (Hazan and Kale,
2010; Chiang et al., 2012; Steinhardt and Liang, 2014). Such bounds imply super
fast rates for optimizing a fixed linear function, but reduce to slow O(

√
T ) rates

in the other cases of easy functions that we consider. Finally, the way MetaGrad’s
experts maintain a Gaussian distribution on parameters u is similar in spirit to
AROW and related confidence weighted methods, as analyzed by (Crammer et al.,
2009) in the mistake bound model.

94



5.2. Setup

C
H

A
P

T
E

R
5

Outline We start with the main definitions in the next section. Then Section 5.3
contains an extensive set of examples where Theorem 19 leads to fast rates, Sec-
tion 5.4 presents the Full Matrix version of the MetaGrad algorithm, and Section 5.5
describes the faster sketching and coordinatewise extensions. Section 5.6 provides
the analysis leading to Theorem 23 for the Full Matrix version of MetaGrad, which
is a more detailed statement of Theorem 19 with several quantities replaced by
data-dependent versions and with exact constants. Section 5.7 extends this analysis
to the two other versions of MetaGrad. Then, in Section 5.8, we compare all ver-
sions of MetaGrad to GD and to AdaGrad in experiments with several benchmark
classification and regression data sets. We conclude with possible further extensions
of MetaGrad in Section 5.9.

5.2 Setup

We consider algorithms for OCO, which operate according to the protocol displayed
in Protocol 9. In each round, the environment reveals a closed convex domainWt,
which we assume contains the origin 0 (if not, it needs to be translated). In the
introduction, we assumed thatWt =W was fixed beforehand, but for the remainder
of the paper we allow it to vary between rounds, which is needed in the context
of the sketching version of MetaGrad (Section 5.5.1). Let wt ∈ Wt be the iterate
produced by the algorithm in round t, let ft :Wt → R be the convex loss function
produced by the environment and let gt = ∇ft(wt) be the (sub)gradient, which is
the feedback given to the algorithm.2 The regret over T rounds RuT , its linearization
R̃uT and our measure of variance V uT are defined as

RuT =

T∑
t=1

(ft(wt)− ft(u)) , R̃uT =

T∑
t=1

(wt − u)ᵀgt,

V uT =

T∑
t=1

((u−wt)
ᵀgt)

2 with respect to any u ∈
T⋂
t=1

Wt.

By convexity of ft, we always have ft(wt)− ft(u) ≤ (wt−u)ᵀgt, which implies
the first inequality in Theorem 19: RuT ≤ R̃uT . Finally, wherever possible we
measure the size of the gradient gt in the intrinsic (semi-)norm for the domainWt:

‖g‖t = max
w∈Wt

|wᵀg|.

This is a norm in the typical case that Wt has full dimension d, and it is still a
semi-norm in general. We note that the intrinsic norm is smaller than the usual

2If ft is not differentiable at wt, any choice of subgradient gt ∈ ∂ft(wt) is allowed.
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Algorithm 9 Online Convex Optimization from First-order Information
1: for t = 1, 2, . . . do
2: Environment reveals convex domainWt ⊆ Rd containing the origin 0
3: Learner plays wt ∈ Wt

4: Environment chooses a convex loss function ft :Wt → R
5: Learner incurs loss ft(wt) and observes (sub)gradient gt = ∇ft(wt)
6: end for

upper bounds based on Hölder’s inequality: ‖g‖t ≤ ‖g‖maxw∈Wt ‖w‖∗ for any
dual norms ‖ · ‖ and ‖ · ‖∗. The difference becomes essential in Section 5.5.1, where
we consider a domainWt that has an infinite radius maxw∈Wt ‖w‖∗ in any norm
‖ · ‖∗, but for which ‖gt‖t is still bounded. MetaGrad depends on (upper bounds
on) the sizes of the gradients per round bt, as well as their running maximum Bt:

bt ≥ ‖gt‖t, Bt = max
s≤t

bs, (5.2.1)

with the convention that B0 = 0. We would normally take the best upper bound
bt = ‖gt‖t, except if this is difficult to compute. In such cases, we may for example
let bt = ‖gt‖maxu∈Wt ‖u‖∗.

Further Notation We denote by dze+ = max{dze, 1} the smallest integer that
is at least z and at least 1.

5.3 Fast Rates Examples

In this section, we motivate our interest in the adaptive bound (5.1.1) by giving a
series of examples in which it provides fast rates. Although MetaGrad is designed
to handle time varying domains, for simplicity we will assume that the domain is
fixed in this section. In this section we will also assume that the following standard
boundedness assumptions hold for all u,w ∈ W and all t: ‖u −w‖2 ≤ D′ and
‖gt‖2 ≤ G′. The fast rates are all derived from two general sufficient conditions:
one based on the directional derivative of the functions ft and one for stochastic
gradients that satisfy the Bernstein condition, which is the standard condition for fast
rates in off-line statistical learning. Simple simulations that illustrate the conditions
are provided in Section 5.10.1 and proofs are also postponed to Section 5.10.

Directional Derivative Condition In order to control the regret with respect to
some point u, the first condition requires a quadratic lower bound on the curvature
of the functions ft in the direction of u:
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Theorem 20. Suppose, for a given u ∈ W , there exist constants a, b > 0 such that
the functions ft all satisfy

ft(u) ≥ ft(w)+a(u−w)ᵀ∇ft(w)+b ((u−w)ᵀ∇ft(w))2 for all w ∈ W .
(5.3.1)

Then any method with regret bound (5.1.1) incurs logarithmic regret, RuT =

O(d lnT ), with respect to u.

The case a = 1 of this condition was introduced by (Hazan et al., 2007), who show
that it is satisfied for all u ∈ W by exp-concave and strongly convex functions.
These are both requirements on the curvature of ft that are stronger than mere
convexity: α-exp-concavity of f for α > 0 means that e−αf is concave or, equival-
ently, that ∇2f � α∇f∇fᵀ; α-strong convexity means that ∇2f � αI . We see
that α-strong convexity implies (α/‖∇f‖22)-exp-concavity. The rate O(d log T ) is
also what we would expect by summing the asymptotic offline rate obtained by
ridge regression on the squared loss (Srebro et al., 2010, Section 5.2), which is
exp-concave. Our extension to a > 1 is technically a minor step, but it makes the
condition much more liberal, because it may then also be satisfied by functions
that do not have any curvature. For example, suppose that ft = f is a fixed convex
function that does not change with t. Then, when u∗ = arg minu f(u) is the
offline minimizer, we have (u∗ −w)ᵀ∇f(w) ∈ [−G′D′, 0], so that

f(u∗)− f(w) ≥(u∗ −w)ᵀ∇f(w)

≥2(u∗ −w)ᵀ∇f(w) +
1

D′G′
((u∗ −w)ᵀ∇f(w))2 ,

where the first inequality uses only convexity of f . Thus condition (5.3.1) is
satisfied by any fixed convex function, even if it does not have any curvature at all,
with a = 2 and b = 1/(G′D′).

Bernstein Stochastic Gradients The possibility of getting fast rates even without
any curvature is intriguing, because it goes beyond the usual strong convexity or
exp-concavity conditions. In the online setting, the case of fixed functions ft = f

seems rather restricted, however, and may in fact be handled by offline optimization
methods. We therefore seek to loosen this requirement by replacing it by a stochastic
condition on the distribution of the functions ft. The relation between variance
bounds like Theorem 19 and fast rates in the stochastic setting is studied in depth
by (Koolen et al., 2016), who obtain fast rate results both in expectation and in
probability. Here we provide a direct proof only for the expected regret, which
allows a simplified analysis.
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Suppose the functions ft are independent and identically distributed (i.i.d.), with
common distribution P. Then we say that the gradients satisfy the (B, β)-Bernstein
condition with respect to the stochastic optimum u∗ = arg minu∈W Ef∼P[f(u)] if
for all w ∈ W .

(w−u∗)ᵀ E
f

[∇f(w)∇f(w)ᵀ] (w−u∗) ≤ B
(
(w−u∗)ᵀ E

f
[∇f(w)]

)β
. (5.3.2)

This is an instance of the well-known Bernstein condition from offline statistical
learning (Bartlett and Mendelson, 2006; Van Erven et al., 2015), applied to the
linearized excess loss (w − u∗)ᵀ∇f(w). As shown in Section 5.14, imposing the
condition for the linearized excess loss is a weaker requirement than imposing it
for the original excess loss f(w)− f(u∗).

Theorem 21. If the gradients satisfy the (B, β)-Bernstein condition for B > 0 and
β ∈ (0, 1] with respect to u∗ = arg minu∈W Ef∼P[f(u)], then any method with
regret bound (5.1.1) incurs expected regret

E[Ru
∗

T ] = O
(

(Bd lnT )1/(2−β) T (1−β)/(2−β) + d lnT
)
.

For β = 1, the rate becomes O(d lnT ), just like for fixed functions, and for smaller
β it is in between logarithmic and O(

√
dT ). For instance, the hinge loss on the

unit ball with i.i.d. data satisfies the Bernstein condition with β = 1, which implies
an O(d log T ) rate. (See Section 5.10.4.) It is common to add `2-regularization to
the hinge loss to make it strongly convex, but this example shows that that is not
necessary to get logarithmic regret.

5.4 Full Matrix Version of the MetaGrad Algorithm

In this section, we explain the full matrix version of the MetaGrad algorithm:
METAGRADFULL. Computationally more efficient extensions follow in Section 5.5.
METAGRADFULL will be defined by means of the following surrogate loss `ηt (u):

`ηt (u) := η(u−wt)
ᵀgt +

(
η(u−wt)

ᵀgt
)2
. (5.4.1)

This surrogate loss consists of a linear and a quadratic part, whose relative import-
ance is controlled by a learning rate parameter η > 0. The sum of the quadratic parts
is what appears in the regret bound of Theorem 19. They may be viewed as causing
a “time-varying regularizer” (Orabona et al., 2015b) or “temporal adaptation of the
proximal function” (Duchi et al., 2011).
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METAGRADFULL is a two-level hierarchical construction: at the top is a main
controller, shown in Algorithm 10, which manages multiple η-experts, shown in
Algorithm 11. Each η-expert produces predictions for the surrogate loss `ηt with its
own value of η, and the controller is responsible for learning the best η by starting
and stopping multiple η-experts on demand, and aggregating their predictions.

Algorithm 10 Full MetaGrad: Controller
1: for t = 1, 2, . . . do
2: Receive domainWt

3: Start and stop η-experts to manage active set At (see (5.4.2)).
Give newly started η-experts weight pt(η) = 1.

4: if Nobody active: At = ∅ then
5: Predict wt = 0 . Make a default prediction
6: else
7: Have active η-experts project ontoWt

8: Collect prediction wη
t for every active η-expert

9: Predict

wt =

∑
η∈At pt(η)ηwη

t∑
η∈At pt(η)η

10: end if
11: Receive gradient gt = ∇ft(wt) and range bound bt (see (5.2.1))
12: Update every active η-expert with unclipped surrogate loss `ηt
13: if No reset needed after round t (see (5.4.3)) then
14: Update based on the clipped surrogate losses (see (5.4.4)):

pt+1(η) =
pt(η) exp(−¯̀η

t (wηt ))∑
η∈At

pt(η) exp(−¯̀η
t (wηt ))

(
∑

η∈At pt(η)) for all η ∈ At.
15: else
16: Set pt+1(η) = 1 for all η ∈ At . Reset
17: end if
18: end for

Controller Online learning of the best learning rate η is notoriously difficult
because the regret is non-monotonic over rounds and may have multiple local
minima as a function of η (see (Koolen et al., 2014) for a study in the expert
setting). The standard technique is therefore to derive a monotonic upper bound
on the regret and tune the learning rate optimally for the bound. In contrast,
our approach, inspired by the approach for combinatorial games of Koolen and
Van Erven (2015, Section 4), is to weigh the different η depending on their empirical
performance using exponential weights with sleeping experts (line 14), except that
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in the predictions the weights of the η-experts are tilted by their learning rates
(line 9), having the effect of giving a larger weight to larger η. Although we provide
a formal analysis of the regret, the controller algorithm does not depend on the
outcome of this analysis, so any slack in our bounds does not feed back into the
algorithm.

To be able to adapt to the norms of the gradients, the controller maintains a finite
grid At of active learning rates η, which is dynamically adjusted over time:

At =


∅ while Bt−1 = 0,

{2i | i ∈ Z} ∩

(
1

4
(∑t−1

s=1 bs
Bs−1
Bs

+Bt−1

) , 1
4Bt−1

]
afterwards.

(5.4.2)
Using that bs

Bs−1

Bs
≤ Bt−1, it can be seen that the number of active learning rates

never exceeds |At| ≤ dlog2 T e. In the first two rounds, or if there is a sudden
enormous gradient such that Bt−1 dwarfs

∑t−1
s=1 bsBs−1/Bs, it may also happen

that At is empty, which signals that all previous rounds were negligible compared
to the last round. In such cases the controller decides it has not yet learned anything,
and makes a default prediction: wt = 0.

There are two further mechanisms to deal with extreme changes in the size of the
gradients. The first mechanism is that extremely large gradients may trigger a reset
of the controller’s weights on η-experts. This splits the controller’s learning process
into epochs. When running in an epoch starting at time τ +1, a reset and new epoch
will be triggered after the first round t such that

Bt > Bτ

t∑
s=1

bs
Bs
. (5.4.3)

As the sum on the right-hand side will typically grow linearly in t, we only expect a
reset to occur when the effective size of the gradients grows by more than a factor t
compared to the largest size seen before the start of the epoch. This should normally
be very rare except perhaps for a few initial rounds when t is still small.

The second mechanism to protect against extreme gradients is that the controller
measures performance of the experts by a clipped version of their corresponding
surrogate losses:

¯̀η
t (u) := η(u−wt)

ᵀḡt +
(
η(u−wt)

ᵀḡt
)2
, (5.4.4)

which are based on the clipped gradients

ḡt :=
Bt−1

Bt
gt.
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This is a trick first used by Cutkosky (2019), which makes the effective sizes of the
gradients predictable one round in advance: maxu∈Wt |uᵀḡt| ≤ Bt−1.

Algorithm 11 Full MetaGrad: η-Expert

Input: Learning rate η > 0, estimate D̂ > 0 of comparator norm ‖u‖2,
activation round a ≡ aη

1: Initialize w̃η
a = 0,Ση

a = D̂2I and Λη
a = 1

D̂2
I

2: for t = a, a+ 1, . . . do
3: Project wη

t = arg minu∈Wt
(u− w̃η

t )ᵀΛη
t (u− w̃

η
t )

4: Predict wη
t

5: Observe gradient gt = ∇ft(wt) . Gradient at controller predictionwt

6: Update:

Ση
t+1 = Ση

t −
2η2(Ση

t gt)(g
ᵀ
tΣ

η
t )

1 + 2η2gᵀtΣ
η
t gt

Λη
t+1 = Λη

t + gsg
ᵀ
s

w̃η
t+1 = wη

t − (1 + 2η(wη
t −wt)

ᵀgt) ηΣη
t+1gt

7: end for

η-Experts Each η-expert is active for a single contiguous sequence of rounds
for which η ∈ At. Upon activation, its job is to issue predictions wη

t ∈ Wt for
the (unclipped) surrogate loss `ηt that achieve small regret compared to any u ∈⋂
t:η∈AtWt. This is a standard online convex optimization task with a quadratic

loss function and time-varying domain, which we assume is non-empty. We use
continuous exponential weights with a Gaussian prior, which is a standard approach
for quadratic losses (Vovk, 2001), because the corresponding posterior exponential
weights distribution is also Gaussian with mean wη

t and covariance matrix Ση
t =(

1
D̂2
I + 2η2

∑t
s=a gsg

ᵀ
s

)−1
. Algorithm 11 presents the update equations in a

computationally efficient form. To avoid inverting Ση
t , it maintains its inverse

Λη
t = (Ση

t )
−1 separately. For a recent overview of continuous exponential weights

see Van der Hoeven et al. (2018). It can be seen that our η-expert algorithm is nearly
identical to Online Newton Step (ONS) (Hazan et al., 2007), which is not surprising
because ONS is minimizing a quadratic loss that is nearly identical to our `ηt . The
differences are that each η-expert receives the controller’s gradient gt = ∇ft(wt)

instead of its own ∇ft(wη
t ), and that an additional term (1 + 2η(wη

t −wt)
ᵀgt)

in line 6 adjusts for the difference between the η-expert’s parameters wη
t and the

controller’s parameterswt. MetaGrad is therefore a bona fide first-order algorithm
that only accesses ft through gt. We also note that we have chosen the Greedy
projections version that iteratively updates and projects (see line 6). One might

101



5. MetaGrad: Universal Adaptation using Multiple Learning Rates in Online
Learning

C
H

A
P

T
E

R
5

alternatively consider the Lazy Projection version (as in Zinkevich (2004); Nesterov
(2009); Xiao (2010)) that forgets past projections when updating on new data. Since
projections are typically computationally expensive, we have opted for the Greedy
projection version, which we expect to project less often, since a projected point
seems less likely to update to a point outside of the domain than an unprojected
point.

5.4.1 Practical Considerations

Although METAGRADFULL is adaptive to the maximum effective size of the gradi-
ents BT , its performance degrades when BT becomes too large. In applications, it
is therefore important that the domainWt is small enough along the direction of gt
to keep the effective gradient size bt under control.

It is further required to choose the hyperparameter D̂, which is an estimate of
the `2-norm of the comparator u. Theorem 23 quantifies the trade-off between
underestimating and overestimating this parameter. Note that overestimating ‖u‖2
only incurs a logarithmic penalty, so it is less expensive to use a too large value
rather than a too small value.

Finally, we note that there is no gain in pre-processing the data by scaling all
gradients by a fixed constant factor, since the regret bound in Theorem 23 is
scale-free. In fact, the METAGRADFULL algorithm is almost invariant under such
rescaling, except for the term {2i | i ∈ Z} in the definition of At. If one wants to
make the algorithm fully invariant under rescaling, this term may be replaced by
{2i/Bτ | i ∈ Z}, where τ is the first round that Bτ > 0. Or, equivalently, one may
replace all gradients by gt/Bτ for t > τ . Since we do not expect any noticeable
difference in performance from this modification, we have left it out.

Run Time The run time of METAGRADFULL is dominated by computations for
the η-experts. Ignoring the projection step, an η-expert takes O(d2) time to update.
If there are at most k′ active η-experts in any round, this makes the overall computa-
tional effortO(k′d2), both in time per round and in memory. Since |At| ≤ dlog2 T e,
it is guaranteed that k′ ≤ 30 as long as T ≤ 109. We note that all η-experts share
the same gradient gt, which is only computed once. We remark that a potential
speed-up is possible by running the η-experts in parallel. If the factor k′ is still
considered too large, it is possible to reduce the size of |At| by spacing the learning
rates by a factor larger than 2, at the cost of a worse constant in the regret bound.

In addition, each η-expert may incur the cost of a projection, which depends on
the shape of the domainWt. To get a sense for the projection cost, we consider
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the Euclidean ball as a typical example. If the matrix Ση
t were diagonal, we could

project to any desired precision using a few iterations of Newton’s method. Since
each such iteration takes O(d) time, this would be affordable. But for the non-
diagonal Ση

t that occur in the algorithm, we first need to reduce to the diagonal case
by a basis transformation, which takes O(d3) to compute using a singular value
decomposition. We therefore see that the projection dwarfs the other run time by
an order of magnitude. This has motivated Luo et al. (2017) to define a different
domain (see Section 5.5.1), for which projections can be computed in closed form
with O(d) computation steps. In this case, the computation for the projections is
negligible and the total computational complexity is O(d2) per round. We refer to
Duchi et al. (2011) for examples of how to compute projections for various other
domainsWt.

5.5 Faster Extension Algorithms

As discussed above, METAGRADFULL requires at leastO(d2) computation per round,
which makes it slow in high dimensions. We therefore present two extensions to
speed up the algorithm. The first is a straightforward adaption of the sketching
approach of Luo et al. (2017), which we apply to approximate the matrix Ση

t in
the η-experts. This reduces the computation per round to O(kd), where k is a
hyper-parameter that determines the sketch size. The second extension is to run a
separate copy of the algorithm per dimension, which was inspired by the diagonal
version of AdaGrad (Duchi et al., 2011). This requires O(d) computation per round.

5.5.1 Sketched MetaGrad with Closed-form Projections

In this section, we are mixing matrices of different dimensions. The identity
matrix Id ∈ Rd and the all-zeros matrix 0a×b ∈ Ra×b are therefore annotated
with subscripts to make their dimensions explicit. To simplify notation, we further
assume without loss of generality that the η-experts are started in round aη = 1.

Luo et al. (2017) develop several sketching approaches for Online Newton Step,
which transfer directly to our η-experts. They combine these with a computationally
efficient choice of the domain that applies to loss functions of the form ft(w) =

ht(w
ᵀxt), where the input vectors xt ∈ Rd are assumed to be known at the start

of round t, but the convex functions ht : R → R are not. They then choose the
domain to be

Wt = {w : |wᵀxt| ≤ C} for a fixed constant C. (5.5.1)
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Let Gt = (g1, . . . , gt)
ᵀ ∈ Rt×d, such that Ση

t+1 = ( 1
D̂2
Id + 2η2Gᵀ

tGt)
−1. The

idea of sketching is to replace Ση
t+1 by an approximation

Σ̃η
t+1 =

(
1
D̂2
Id + 2η2Sᵀ

t St

)−1
,

where St ∈ Rk×d for a given sketch size k ≤ d, so that Sᵀ
t St has rank at most k.

Abbreviating ĝt = (1 + 2η(wη
t −wt)

ᵀgt) ηgt, we then need to compute

wη
t = arg min

u∈Wt

(u− w̃η
t )ᵀ(Σ̃η

t )
−1(u− w̃η

t ) (projection)

w̃η
t+1 = wη

t − Σ̃η
t+1ĝt. (update)

The key to an efficient implementation of these steps is to rewrite Σ̃η
t+1 using the

Woodbury identity (Golub and Van Loan, 2012):

Σ̃η
t+1 = D̂2(Id − 2η2Sᵀ

t ( 1
D̂2
Ik + 2η2StS

ᵀ
t )−1St) = D̂2(Id − 2η2Sᵀ

tH
η
t St),

where we have introduced the abbreviation Hη
t = ( 1

D̂2
Ik + 2η2StS

ᵀ
t )−1. Let

sC(y) = sign(y) max{|y|−C, 0}. By Lemma 1 of Luo et al. (2017), the projection
step then becomes

wη
t = w̃η

t −
sC(xᵀ

t w̃
η
t )

(xᵀ
txt − 2η2xᵀ

tS
ᵀ
tH

η
t Stxt)

(xt − 2η2Sᵀ
tH

η
t Stxt),

and the update step can be written as

w̃η
t+1 = wη

t − D̂2(ĝt − 2η2Sᵀ
tH

η
t Stĝt).

Assuming that St andHη
t can be efficiently maintained, the operations involving

Stxt or Stĝt require O(kd) computation time and matrix-vector products with
Hη
t can be performed in O(k2) time. As noted by Luo et al. (2017), both of these

are only a factor k more than the O(d) time required by first-order methods. They
describe two sketching techniques to maintain St and Hη

t , each requiring O(kd)

storage and O(kd) average computation time per round. The first technique is
based on Frequent Directions (FD) sketching; the other one on Oja’s algorithm.
We adopt the FD approach, which comes with a guaranteed bound on the regret.
Luo et al. (2017) further develop an extension of FD for sparse gradients, and yet
another option would have been the Robust Frequent Directions sketching method
of Luo et al. (2019).

104



5.5. Faster Extension Algorithms

C
H

A
P

T
E

R
5

Frequent Directions Sketching

Some sketching approaches are randomized, but Frequent Directions sketching
(Ghashami et al., 2016) is a deterministic method. The simplest version (Luo
et al., 2017, Algorithm 2) performs a singular value decomposition (SVD) of St
every round at the cost of O(k2d) computation time, but there also exists a refined
epoch-based version which only performs an SVD once per epoch. Each epoch
takes m rounds and k = 2m, leading to an average runtime of O(kd) per round.
We describe here the epoch version, adapted from Algorithm 6 of Luo et al. (2017)
and summarized in Algorithm 12.

Algorithm 12 Frequent Directions Sketching

1: Initialize S0 = 02m×d, andHη
0 = D̂2I2m.

2: for t = 1, 2, . . . do
3: Let τ = t mod m and insert gᵀt in the (m+ τ)-th row of St−1 to

obtain S̃.
4: if τ 6= 0 then
5: Set St = S̃.

6: Let e ∈ R2m be the basis vector in direction m + τ and
q = 2η2(S̃gt −

gᵀt gt
2 e).

7: UpdateHη
t = H̃ − H̃eqᵀH̃

1+qᵀH̃e
, where H̃ = Hη

t−1 −
Hη
t−1qe

ᵀHη
t−1

1+eᵀHη
t−1q

.
8: else
9: From the SVD of S̃, compute the top-m singular values

σ1 ≥ · · · ≥ σm and corresponding right-singular vectors
as V ∈ Rd×m.

10: Set St = diag(σ2
1 − σ2

m, . . . , σ
2
m − σ2

m)1/2V ᵀ.

11: Set Hη
t = diag( 1

D̂−2+2η2(σ2
1−σ2

m)
, . . . , 1

D̂−2+2η2(σ2
m−σ2

m)
,

1
D̂−2

, . . . , 1
D̂−2

).
12: end if
13: end for

Recall that Sᵀ
t St is an approximation ofGᵀ

tGt. At the start of each epoch, we have
the invariant that only the first m− 1 rows of St contribute to this approximation
and the remaining m+ 1 rows are filled with zeros. During the τ -th round in any
epoch we first add the incoming gradient gᵀt to row m + τ of St−1 to obtain an
intermediate result S̃. If we are not yet in the last round of the epoch (i.e. τ < m),
then we simply set St = S̃, and we use that

(Hη
t )−1 = (Hη

t−1)−1 + qeᵀ + eqᵀ,
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where e ∈ R2m is the basis vector in direction m+ τ and q = 2η2(S̃gt −
gᵀt gt

2 e).
It follows that we can compute Hη

t from Hη
t−1 using two rank-one updates with

the Sherman-Morrison formula:

Hη
t = H̃ − H̃eqᵀH̃

1 + qᵀH̃e
, where H̃ = Hη

t−1 −
Hη
t−1qe

ᵀHη
t−1

1 + eᵀHη
t−1q

.

Otherwise, if we are in the last round of the epoch (i.e. τ = m), the invariant is
restored by eigen decomposing S̃ᵀS̃ intoWΛW ᵀ, where Λ = diag(λ1, . . . , λ2m)

contains the potentially non-zero eigenvalues in non-decreasing order λ1 ≥ · · · ≥
λ2m and the columns of W ∈ Rd×2m contain the corresponding eigenvectors.
Then we set St = diag(λ1 − λm, . . . , λm − λm, 0, . . . , 0)1/2W ᵀ. Since the rows
of St are now orthogonal,

Hη
t = ( 1

D̂2
I2m + 2η2StS

ᵀ
t )−1

= diag
( 1

D̂−2 + 2η2(λ1 − λm)
, . . . ,

1

D̂−2 + 2η2(λm − λm)
,

1

D̂−2
, . . . ,

1

D̂−2

)
is a diagonal matrix.

Implementation Details When implementing the FD procedure, we can calcu-
late the eigen decomposition of S̃ᵀS̃ via an SVD of S̃, which can be performed
in O(m2d) computation steps. The eigenvalues λi then correspond to the squared
singular values σ2

i of S̃, and W contains the corresponding right-singular vec-
tors. In fact, we only need the top-m singular values and the corresponding m
right-singular vectors V ∈ Rd×m to compute St = diag(λ1 − λm, . . . , λm −
λm, 0, . . . , 0)1/2W ᵀ = diag(σ2

1 − σ2
m, . . . , σ

2
m − σ2

m)1/2V ᵀ.

We further observe that, since St does not depend on η, we only need to compute
it once when sketching for multiple η-experts with different learning rates η. The
matrixHη

t , however, does need to be computed for each η separately.

Practical Considerations

Sketching introduces an extra hyper-parameter k = 2m, which controls the sketch
size. In theory, larger k provides a better approximation of the full version of
MetaGrad, at the cost of more computation.

5.5.2 Coordinate MetaGrad

Duchi et al. (2011) introduce a full and a diagonal version of their AdaGrad
algorithm. The diagonal version, which is the version that is widely used in
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applications, may be interpreted as running a copy of online gradient descent
(Zinkevich, 2003) for each dimension separately, with a separate data-dependent
tuning of the step size per dimension. This approach of running a separate copy
per dimension can be applied to any online learning algorithm, and works out as
follows.

We output a joint prediction wt = (wt,1, . . . , wt,d)
ᵀ, where each wt,i is the output

of the copy of the algorithm for dimension i. Each of these copies gets as inputs the
1-dimensional losses ft,i(w) = wgt,i, where gt,i is the i-th component of the joint
gradient gt = ∇ft(wt). This works because the linearized regret decomposes per
dimension:

T∑
t=1

(wt − u)ᵀgt =
d∑
i=1

T∑
t=1

(ft,i(wt,i)− ft,i(ui)),

so our joint linearized regret is simply the sum of the linearized regrets per dimen-
sion.

One limitation of this approach, if we apply it as is, is that the domain cannot
introduce dependencies between the dimensions, so we are limited to rectangular
domains:

W rect
t = {w ∈ Rd | at,i ≤ wi ≤ zt,i for i = 1, . . . , d},

with our only freedom consisting of choosing the boundaries at,i and zt,i.

Practical Considerations

Running a copy of MetaGrad per dimension potentially introduces a separate
hyperparameter D̂i per dimension i. Like Duchi et al. (2011), we reduce the
complexity of hyperparameter tuning by letting D̂i = D̂ be the same for all
dimensions. If no specific domain is required and the components of the gradients
are approximately standardized, it is also generally sufficient to set the dimensions
of the rectangular domain to at,i = −q and zt,i = q for a fixed parameter q.

5.6 Analysis of the Full Matrix Version of MetaGrad

The high-level goal of MetaGrad is to deliver a tight data-dependent regret bound.
Such bounds could be achieved in principle by existing algorithms, were their
learning rate tuned certain a-priori unknown data-dependent quantities. The prac-
tical approach implemented in MetaGrad is to run multiple instances of a baseline
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“η-expert” algorithm, each with different candidate tuning. A controller then ag-
gregates these η-expert predictions and manages their lifetimes to always have the
required tuning present.

The METAGRADFULL η-experts are Exponentially Weighted Average forecasters
starting from a Gaussian prior and taking in our quadratic surrogate losses. Their
efficient implementation is a variant of Online Newton Step, where the losses are
centred at the prediction of the controller instead of that of the η-expert. In turn, the
controller is a specialists (also known as sleeping experts) algorithm to deal with
the starting and retiring of η-experts. It is further designed to give a non-uniform
regret guarantee, obtaining especially small regret when the best learning rate turns
out to be high. Finally, our approach for adapting to the Lipschitz constant is
speculative. Starting at zero, we monitor the implied Lipschitz constant of the
incoming gradients. If it is increasing slowly, the controller is able to accommodate
the overshoots in a lower-order term. If it makes a large jump, then the controller
may need to reset. We do so by resetting the controller weights without changing
the state of the affected η-experts.

5.6.1 Controller

Denote by G = {2i : i ∈ Z} and by aη the starting time of an η-expert (for the
exact definition of aη see definition 3 in Section 5.11). Let us introduce the concept
of expiration.

Definition 2. We say that η ∈ G is expired after T rounds (or, equivalently, after
round T ) if η > 1

4BT−1
.

Note that expiration can be checked before the round happens (it is “predictable”).
All learning rates used by Algorithm 10 by means of the active set At (5.4.2) are
not expired. Also note the “lifecycle” of any fixed learning rate η. It starts inactive
unexpired. Then it becomes active unexpired. And finally it expires, after which it
loses all relevance.

For the controller, we prove that it behaviour approximates that of any η-expert not
expired, when measured in the η surrogate loss (5.4.1).

Lemma 15 (Controller Surrogate Regret Bound). For any learning rate η ∈ G
not expired after T rounds and any comparator u ∈

⋂T
t=1Wt, METAGRADFULL
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ensures

Rηt (u) ≤ 1

2
+ 4ηBT︸ ︷︷ ︸

small

+2 ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
+︸ ︷︷ ︸

specialist regret for epoch, O(ln lnT )

+
T∑

t=aη

(`ηt (w
η
t )− `ηt (u))︸ ︷︷ ︸

`η-regret of η-expert w.r.t. u

.

The proof is in Section 5.11. It follows the MetaGrad analysis of Mhammedi et al.
(2019), including the range clipping technique due to Cutkosky (2019), and the reset
technique of Mhammedi et al. (2019), which in particular ensures that whenever a
reset occurs, the accumulated regret up until the previous reset is small. As such,
we only have to pay for the controller regret for the last two epochs.

We further streamline the approach by using a standard specialists (sleeping experts)
algorithm on a discrete grid of η-experts as our controller algorithm. Of note here
is our use of the improper log-uniform prior. We also employ a slightly tightened
measure bt of the effective loss range.

To make further progress, we need to make use of the details of the η-experts.

5.6.2 Full η-Experts

Next we establish a O(d log T ) regret bound in terms of the surrogate loss for
each METAGRADFULL η-expert. The η-experts implement Follow-the-Regularised-
Leader with the quadratic losses `ηt and the squared Euclidean norm regulariser.
Equivalently, we can see them as implementing the exponentially weighted average
forecaster for the quadratic losses `ηt starting from a Gaussian prior. Algorithms for
the specific quadratic loss arising in linear regression were designed and analysed
by Vovk (2001). The general quadratic case goes back (at least) to Hazan et al.
(2007), who unfortunately do not separate the analysis for general quadratic losses
from the reduction of exp-concave losses to quadratics, even though these ideas are
clearly present. The explicit analysis by van Erven and Koolen (2016) includes an
unnecessary range restriction, which was subsequently removed by Van der Hoeven
et al. (2018). As pointed out by Luo et al. (2017), the extension to time-varying
domains is trivial.

Lemma 16 (Surrogate regret bound). Consider the METAGRADFULL η-expert in
Algorithm 11 with learning rate η ≤ 1

4BT
starting from time aη. Its surrogate regret

after round T ≥ aη w.r.t. any comparator u ∈
⋂T
t=aηWt is bounded by

T∑
t=aη

(`ηt (w
η
t )− `ηt (u)) ≤ 1

2D̂2
‖u‖22 + ln det

(
I + 2η2D̂2

T∑
t=aη

gtg
ᵀ
t

)
.
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The proof of Lemma 16 can be found in Section 5.12. We note that the condition
on η in the lemma is slightly stricter than not being expired (Definition 2), which
only requires η ≤ 1

4BT−1
. The reason is that the η-expert operates off the unclipped

surrogate loss and gradients.

5.6.3 Composition (bounding the actual regret)

To complete the analysis of METAGRADFULL, we put the regret bounds for the
controller and η-experts together. We then optimize η over the grid G to get our
main result. For the purpose of this section, let us define the essential horizon and
gradient covariance by

QT :=
T−1∑
t=1

bt
Bt

+ 1 and FT :=
T∑
t=1

gtg
ᵀ
t .

Theorem 22 (Grid point regret). Let η ∈ G be such that η ≤ 1
4BT

. Then
METAGRADFULL guarantees that the linearized regret w.r.t. any comparator
u ∈

⋂T
t=1Wt is at most

R̃uT ≤ ηV uT +
ln det

(
I + 2η2D̂2FT

)
+ 1

2D̂2
‖u‖22 + 2 ln d2 log2QT e+ + 1

2

η
+4BT .

Proof. Combining the controller and η-expert surrogate regret bounds Lemma 15
and Lemma 16, we obtain

T∑
t=1

(`ηt (wt)− `ηt (u)) ≤ 1

2
+ 4ηBT + 2 ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
+

+
1

2D̂2
‖u‖22 + ln det

(
I + 2η2D̂2

T∑
t=1

gtg
ᵀ
t

)
.

The definition of the surrogate loss (5.4.1) gives `ηt (wt)−`ηt (u) = η(wt−u)ᵀgt−(
η(u−wt)

ᵀgt
)2 and the theorem follows by reorganising and dividing by η.

The final step is to properly select the learning rate η ∈ G in the regret bound
Theorem 22. This leads to our main result. The proof is in Section 5.13.

Theorem 23 (MetaGrad Full Regret Bound). For all u ∈
⋂T
t=1Wt the linearized

regret of METAGRADFULL is simultaneously bounded by

R̃uT ≤
5

2

√
V uT ( 1

2D̂2
‖u‖22 + ZT ) + 10BT ( 1

2D̂2
‖u‖22 + ZT ) + 4BT ,
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where ZT = rk(FT ) ln
(

1 +
D̂2
∑T
t=1 ‖gt‖22

8B2
T rk(FT )

)
+ 2 ln d2 log2 T e+ + 1

2 , and by

R̃uT ≤
5

2

√√√√(V uT + 2D̂2

T∑
t=1

‖gt‖22
)(

1
2D̂2
‖u‖22 + Z ′T

)
+ 10BT

(
1

2D̂2
‖u‖22 + Z ′T

)
+ 4BT ,

where Z ′T = 2 ln d2 log2 T e+ + 1
2 .

Since rk(FT ) ≤ d, Theorem 19 follows when we assume that the diameter of the
domainWt and the gradient norms are both uniformly bounded over all rounds,
which implies ZT = O(d log(T/d)). If the eigenvalues of FT satisfy a decay
condition, then a more refined bound is possible instead of the first term in the
definition of ZT , as can be seen from the proof.

5.7 Extensions for Faster MetaGrad Analysis

5.7.1 Sketching: Analysis

The analysis for the frequent directions sketching version of MetaGrad with sketch
size k = 2m proceeds like the analysis of the full matrix version, except that we
obtain a different bound for the η-expert regret. This bound depends on the spectral
decay of FT = Gᵀ

TGT =
∑T

t=1 gtg
ᵀ
t . Let λi be the i-th eigenvalue ofGᵀ

TGT and
define Ωq =

∑d
i=q+1 λi. Then the surrogate regret of the η-expert algorithm with

FD sketching is bounded as follows:

Lemma 17. Consider the sketching version of the MetaGrad η-expert algorithm
with learning rate η ≤ 1

4BT
starting from time aη. Its surrogate regret after round

T ≥ aη w.r.t. any comparator u ∈
⋂T
t=aηWt is bounded by

T∑
t=aη

(`ηt (w
η
t )− `ηt (u))

≤ 1

2D̂2
‖u‖22 + log(det(I + 2η2D̂2Sᵀ

TST )) +
2η2D̂2mΩq

m− q

for any q = 0, . . . ,m− 1.

Compared to Lemma 16, we see that Gᵀ
TGT =

∑T
t=1 gtg

ᵀ
t in the logarithmic

term has been replaced by its sketching approximation Sᵀ
TST . We therefore pay

logarithmically for the top m directions, which are captured by the sketch. What we
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lose is the rightmost term of order O(η2Ωq), which corresponds to the remaining
d− q directions that are not captured.

The proof of Lemma 17 is a straightforward adaptation of the proof of Theorem 3
by Luo et al. (2017). For the details, we refer to Chapter 4 of Deswarte (2018),
with two minor remarks: the first is that Deswarte uses a slightly stricter bound on
η, which allows him to bound 1

2 (1 + 2η 〈wt −wη
t , gt〉)

2 ≤ 1, whereas we get an
upper bound of 2 from (5.12.1) and therefore obtain a final result that is a factor
of 2 larger. The other remark is that we have described the fast version of FD
sketching, which corresponds to Algorithm 6 of Luo et al. (2017) instead of the
simpler slow version in their Algorithm 2. They and Deswarte consider the slow
version in their analysis, but this makes no difference for the proof because the fast
algorithm satisfies the same guarantees (Ghashami et al., 2016).

Analogously with Theorem 22, we find:

Theorem 24 (Sketching Grid Point Regret). Let η ∈ G be such that η ≤ 1
4BT

.
Then METAGRADSKETCH guarantees that the linearized regret w.r.t. any comparator
u ∈

⋂T
t=1Wt is at most

R̃uT ≤
ln det

(
I + 2η2D̂2Sᵀ

TST

)
+ 1

2D̂2
‖u‖22 + 2 ln d2 log2QT e+ + 1

2

η

+ ηV uT +
2ηD̂2mΩq

m− q
+ 4BT ,

for any q = 0, . . . ,m− 1.

As shown in Section 5.13, optimizing η leads to the following final result:

Theorem 25 (MetaGrad Sketching Regret Bound). For all u ∈
⋂T
t=1Wt the

linearized regret of METAGRADSKETCH is simultaneously bounded by

R̃uT ≤
5

2

√
(V uT +

2D̂2mΩq

m− q
)( 1

2D̂2
‖u‖22 + ZT )+10BT ( 1

2D̂2
‖u‖22 +ZT )+4BT ,

where ZT = rk(Sᵀ
TST ) ln

(
1 +

D̂2 Tr(Sᵀ
TST )

8B2
T rk(Sᵀ

TST )

)
+ 2 ln d2 log2 T e+ + 1

2 , and by

R̃uT ≤
5

2

√√√√(V uT + 2D̂2

T∑
t=1

‖gt‖22 +
2D̂2mΩq

m− q

)(
1

2D̂2
‖u‖22 + Z ′T

)
+ 10BT

(
1

2D̂2
‖u‖22 + Z ′T

)
+ 4BT ,

for any q = 0, . . . ,m− 1, where Z ′T = 2 ln d2 log2 T e+ + 1
2 .
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Compared to Theorem 23, all occurrences ofGᵀ
TGT have been replaced by their

sketched approximations: FT = Gᵀ
TGT has become Sᵀ

TST everywhere, with
rk(Sᵀ

TST ) ≤ 2m, and
∑T

t=1 ‖gt‖22 = tr(Gᵀ
TGT ) is now tr(Sᵀ

TST ). We further
see the additional term involving Ωk, which corresponds to the directions not
captured by the sketch.

5.7.2 MetaGrad Coordinate: Analysis

First, we define bt,i = |gt,i|max{|at,i|, |zt,i|} and Bt,i = maxs≤t bs,i. The analysis
of the coordinate version of MetaGrad, which we denote by METAGRADCOOR, is
straightforward as we can simply apply the regret bound of METAGRADFULL to
each dimension. The formal statement can be found below.

Theorem 26. Let V ui
T,i = (ui − wt,i)2g2

t,i. For any u ∈
⋂T
t=1W rect

t , the linearized
regret of METAGRADCOOR is simultaneously bounded by

R̃uT ≤
d∑
i=1

5

2

√
V ui
T,i(

1
2D̂2

u2
i + ZT,i) + 10BT,i(

1
2D̂2

u2
i + ZT,i) + 4BT,i,

where ZT,i = ln

(
1 +

D̂2
∑T
t=1 g

2
t,i

8B2
T,i

)
+ 2 ln d2 log2 T e+ 1

2 , and by

R̃uT ≤
d∑
i=1

5

2

√√√√(V ui
T,i + 2D̂2

T∑
t=1

g2
t,i

)(
1

2D̂2
u2
i + Z ′T

)
+ 10BT,i

(
1

2D̂2
u2
i + Z ′T

)
+ 4BT,i,

where Z ′T = 2 ln d2 log2 T e+ 1
2 .

5.8 Experiments

For an experimental evaluation we implemented six versions of MetaGrad, Ad-
aGrad, Online Gradient Descent with learning rate ηT = D̂√∑t

s=1 ‖gs‖22+1e−8
(ab-

breviated as GDn), Online Gradient Descent with learning rate ηt = D̂
G
√
t

(ab-
breviated as GDt) in python. The six versions of MetaGrad we used are the full
version(abbreviated as MGFull), the coordinate version(abbreviated as MGCo), and
two versions of MetaGrad that employ either Frequent Directions sketching with
m = 1, m = min{10, d}, m = min{25, d}, and m = min{50, d} (abbreviated as
MGF1, MGF10, MGF25, and MGF50 respectively). We compared the algorithms
on seventeen datasets from the LIBSVM library (Chang and Lin, 2011), with T
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ranging from 252 to 581012 and d ranging from 6 to 300. Of the seventeen datasets
six had real outcomes and eleven had binary outcomes. A summary of the datasets
can be found in Table 5.2 in Section 5.15. If available we used scaled versions of
the datasets. For all datasets we used the features xt without any adjustments in the
following manner: we estimate ŷ = wᵀ

t xt and feed this prediction to loss function
f(ŷt, yt). For binary datasets we used logistic loss and hinge loss. For datasets
with real outcomes we made use of squared loss and absolute loss. The settings
of the algorithms can be found in Table 5.1 in Section 5.15. For AdaGrad and the
coordinate version of MetaGrad we used U = {w : ‖w‖∞ ≤ D}, whereD was set
to 3‖u‖∞, where u = arg minu

∑T
t=1 f(uᵀxt, yt). For the other algorithms we

usedW = ∩Tt=1Wt = {w : |xTt w| ≤ C} as domain, where C = 3 maxt |uᵀxt|.
Hyperparamaters for algorithms involving a norm of the minimizer were set to
three times the norm of the comparator u. In other words D̂ = D. Hyperpara-
meters involving an upper bound on a norm of gt were set as follows. For t = 1,
G1 = ‖g1‖2 and then we update. For any subsequent round, if Gt−1 ≤ ‖gt‖2 set
Gt = ‖gt‖2, otherwise Gt = Gt−1.

5.8.1 Experimental Results

In Figure 5.1 we plotted the regret of three versions of MetaGrad and AdaGrad
versus the regret of GDt on a logarithmic scale. We decided to use GDt as a baseline
algorithm since it is the algorithm with the lowest regret that is not MetaGrad (in
nine experiments either AdaGrad or GDn had lower regret than GDt). Table 5.3 in
Section 5.15 contains the regrets of all algorithms on all datasets.

Out of 34 experiments in nine experiments a version of MetaGrad did not have the
lowest regret. Among the six version of MetaGrad MGFull appears to be the best
version as it had the lowest regret for the most datasets (thirteen). As predicted by
theory, increasing the sketching size mostly improved the performance of Frequent
Directions. With m = min{50, d}, the Frequent Directions version of MetaGrad
is very close to the performance of the full version of MetaGrad. Overall, the
coordinate version of MetaGrad is close to the performance of the Full version
of MetaGrad, which suggests that on the datasets that we used the correlations
between the features are of little importance.

At first sight it may seem surprising that Online Gradient Descent outperformed
MetaGrad on a9a, bodyfat, housing, ijcnn, and mg when the loss had curvature.
However, upon closer inspection of the regret bounds we see that even in theory
the regret bound of GDt is no worse than the regret of MetaGrad. For example,
on the dataset bodyfat (d = 14, T = 252) with the squared loss the full version
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Figure 5.1: Comparison of the logarithm of the regret of three versions of MetaGrad and
AdaGrad and the logarithm of the regret of GDt.

of MetaGrad has O(min{d log T,
√
T}) = O(

√
T ) regret, whereas GDt also has

O(
√
T ) regret.

To our surprise, AdaGrad had the worst performance of all algorithms. However,
upon closer review of the literature we see that in the experiments of Luo et al.
(2017) and Chen et al. (2018) AdaGrad also had the worst performance, albeit
in a different measure of performance (progressive misclassification rate and log
objective gap, respectively).

Overall, we see that MetaGrad often outperforms AdaGrad and Online Gradient
Descent with various learning rates.
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5.9 Conclusion and Possible Extensions

We provide a new universally adaptive method, MetaGrad, which is robust to
general convex losses but simultaneously can take advantage of special structure in
the losses, like curvature or if the data come from a fixed distribution. The main new
technique is to consider multiple learning rates in parallel: each learning rate η has
its own surrogate loss (5.4.1) and there is a single controller method that aggregates
the predictions of η-experts corresponding to the different surrogate losses.

An important feature of the controller is that its contribution to the final regret
is the log of the number of experts, which is typically dominated by other terms
in the bound. It is therefore cheap to add more experts for possibly different
surrogate losses. To make the proof go through, a sufficient requirement on any
such surrogates is that they replace the term

(
η(u−wt)

ᵀgt
)2 in (5.4.1) by an upper

bound. This possibility is exploited by Zhang et al. (2019), who add extra experts
with surrogates that contain

(
η‖gt‖2‖u−wt‖2

)2 instead. Since these surrogates
are quadratic in all directions, and not just in the direction of gt, they are better
suited for strongly convex losses, which then leads to an even more universally
applicable extension of MetaGrad that also gets the optimal rate O(log T ) for
strongly convex losses.

Another way to extend MetaGrad is to replace the exponential weights update in the
controller by a different experts algorithm. Zhang et al. (2019) use this to extend
MetaGrad for the case that the optimal parameters u vary over time, as measured
in terms of the adaptive regret. See also Neuteboom (2020), who provides a similar
extension of the closely related Squint algorithm for adaptive regret.

As a final possible extension, we mention the sliding window variant of Full Matrix
AdaGrad (Agarwal et al., 2018). The same sliding window idea could be used
to base the covariance matrix Ση

t in our Algorithm 11 only on the k most recent
gradients. This has both computational advantages, because Ση

t then becomes a
matrix of fixed rank d+ k, and it could be beneficial for non-convex optimization
when older covariance information needs to be discarded.

5.10 Extra Material Related to Section 5.3

In this section we gather extra material related to the fast rate examples from Sec-
tion 5.3. We first provide simulations. Then we present the proofs of Theorems 20
and 21. And finally we give an example in which the unregularized hinge loss
satisfies the Bernstein condition.
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5.10.1 Simulations: Logarithmic Regret without Curvature
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(a) Offline: ft(u) = |u− 1/4|
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(b) Stochastic Online: ft(u) = |u−xt| where
xt = ± 1

2
i.i.d. with probabilities 0.4 and 0.6.

Figure 5.2: Examples of fast rates on functions without curvature. MetaGrad incurs
logarithmic regret O(log T ), while AdaGrad incurs O(

√
T ) regret, matching its bound.

We provide two simple simulation examples to illustrate the sufficient conditions
from Theorems 20 and 21, and to show that such fast rates are not automatically
obtained by previous methods for general functions. Both our examples are one-
dimensional, and have a stable optimum (that good algorithms will converge to);
yet the functions are based on absolute values, which are neither strongly convex
nor smooth, so the gradient norms do not vanish near the optimum. As our baseline
we include AdaGrad (Duchi et al., 2011), because it is commonly used in practice
(Mikolov et al., 2013; Schmidhuber, 2015) and because, in the one-dimensional
case, it implements GD with an adaptive tuning of the learning rate that is applicable
to general convex functions.

In the first example, we consider offline convex optimization of the fixed function
ft(u) ≡ f(u) = |u− 1

4 |, which satisfies (5.3.1), because it is convex. In the second
example, we look at stochastic optimization with convex functions ft(u) = |u−xt|,
where the outcomes xt = ±1

2 are chosen i.i.d. with probabilities 0.4 and 0.6. These
probabilities satisfy (5.3.2) with β = 1. Their values are by no means essential, as
long we avoid the worst case where the probabilities are equal.

Figure 5.2 graphs the results. We see that in both cases the regret of AdaGrad
follows its O(

√
T ) bound, while MetaGrad achieves an O(lnT ) rate, as predicted

by Theorems 20 and 21. This shows that MetaGrad achieves a type of adaptivity
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that is not achieved by AdaGrad. We should be careful in extending this conclusion
to higher dimensions, though: whereas (the diagonal version of) AdaGrad uses a
separate learning rate per dimension, METAGRADFULL shares learning rates between
dimensions (unless we run a METAGRADCOOR rather than METAGRADFULL).

5.10.2 Proof of Theorem 20

Proof. By (5.3.1), applied with w = wt, and Theorem 19, there exists a C > 0

(depending on a) such that, for all sufficiently large T ,

RuT ≤ aR̃uT − bV uT ≤ C
√
V uT d lnT + Cd lnT − bV uT

≤ γ

2
CV uT +

(
1

2γ
+ 1

)
Cd lnT − bV uT for all γ > 0,

where the last inequality is based on
√
xy = minγ>0

γ
2x+ y

2γ for all x, y > 0. The
result follows upon taking γ = 2b

C .

5.10.3 Proof of Theorem 21

Proof. Abbreviate r̃ut = (wt − u)ᵀgt. Then, by (5.1.1), Jensen’s inequality and
the Bernstein condition, there exists a constant C > 0 such that, for all sufficiently
large T , the expected linearized regret is at most

E
[
R̃u
∗

T

]
≤ C E

[√
V u

∗
T d lnT

]
+ Cd lnT ≤ C

√
E
[
V u

∗
T

]
d lnT + Cd lnT

≤ C

√√√√B
T∑
t=1

(
E
[
r̃u
∗

t

])β
d lnT + Cd lnT.

We will repeatedly use the fact that

xαy1−α = cα inf
γ>0

(
x

γ
+ γ

α
1−α y

)
for any x, y ≥ 0 and α ∈ (0, 1), (5.10.1)

where cα = (1 − α)1−ααα. Applying this first with α = 1/2, x = Bd lnT and
y =

∑T
t=1

(
E[r̃u

∗
t ]
)β , we obtain√√√√B

T∑
t=1

(
E[r̃u

∗
t ]
)β

d lnT ≤ c1/2γ1

T∑
t=1

(
E[r̃u

∗
t ]
)β

+
c1/2

γ1
Bd lnT for any γ1 > 0.

If β = 1, then
∑T

t=1

(
E[r̃u

∗
t ]
)β

= E[R̃u
∗

T ] and the result follows by taking γ1 =
1

2Cc1/2
. Alternatively, if β < 1, then we apply (5.10.1) a second time, with α = β,
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x = E[r̃u
∗

t ] and y = 1, to find that, for any γ2 > 0,√√√√B
T∑
t=1

(
E[r̃u

∗
t ]
)β

d lnT

≤ cβc1/2γ1

T∑
t=1

(
E[r̃u

∗
t ]

γ2
+ γ

β/(1−β)
2

)
+
c1/2

γ1
Bd lnT

=
cβc1/2γ1

γ2
E[R̃u

∗
T ] + cβc1/2γ1γ

β/(1−β)
2 T +

c1/2

γ1
Bd lnT.

Taking γ1 = γ2
2cβc1/2C

, this yields

E[R̃u
∗

T ] ≤ γ1/(1−β)
2 T +

4C2c2
1/2cβBd lnT

γ2
+ 2Cd lnT.

We may optimize over γ2 by a third application of (5.10.1), now with x =

4C2c2
1/2cβBd lnT , y = T and α = 1/(2− β), such that α/(1− α) = 1/(1− β):

E[R̃u
∗

T ] ≤ 1

c1/(2−β)

(
4C2c2

1/2cβBd lnT
)1/(2−β)

T (1−β)/(2−β) + 2Cd lnT

= O
(

(Bd lnT )1/(2−β) T (1−β)/(2−β) + d lnT
)
,

which completes the proof.

5.10.4 Unregularized Hinge Loss Example

As shown by Koolen et al. (2016), the Bernstein condition is satisfied in the
following classification task:

Lemma 18 (Unregularized Hinge Loss Example). Suppose that
(X1, Y1), (X2, Y2), . . . are i.i.d. with Yt taking values in {−1,+1}, and let
ft(u) = max{0, 1 − Yt〈u,Xt〉} be the hinge loss. Assume that both W and
the domain for Xt are the d-dimensional unit ball. Then the (B, β)-Bernstein
condition is satisfied with β = 1 and B = 2λmax

‖µ‖2 , where λmax is the maximum
eigenvalue of E [XXᵀ] and µ = E[YX], provided that ‖µ‖2 > 0.

In particular, ifXt is uniformly distributed on the sphere and Yt = sign(〈ū,Xt〉)
is the noiseless classification ofXt according to the hyperplane with normal vector
ū, then B ≤ c√

d
for some absolute constant c > 0.

Thus the version of the Bernstein condition that implies anO(d log T ) rate is always
satisfied for the hinge loss on the unit ball, except when ‖µ‖2 = 0, which is very
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natural to exclude, because it implies that the expected hinge loss is 1 (its maximal
value) for all u, so there is nothing to learn. It is common to add `2-regularization
to the hinge loss to make it strongly convex, but this example shows that that is not
necessary to get logarithmic regret.

5.11 Controller Regret Bound (Proof of Lemma 15)

We prove Lemma 15 in two parts.

5.11.1 Decomposing the Surrogate Regret

Fix a comparator point u ∈
⋂T
t=1Wt. We will first bound the surrogate regret

RηT (u) :=
T∑
t=1

(`ηt (wt)− `ηt (u))

for any η ∈ G not expired after T rounds (see Definition 2). Note that by definition
(5.4.1), the surrogate loss `ηt (wt) of the controller is always zero, but we believe
writing it helps interpretation. We will then use this surrogate regret bound to
control the (non-surrogate) regret.

For the first half of this section, we fix a final time T , and a grid-point η ∈ G that is
still not expired after time T , (see Definition 2)

Definition 3. We define the wakeup time of learning rate η ∈ G by

aη := inf

t ≤ T
∣∣∣∣∣∣η > 1

4
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

)
 ∧ (T + 1).

Note that we manually set to T + 1 the wakeup time of an η that does not wake up
during the first T rounds. We do this so that [1, aη − 1] and [aη, T ] always partition
rounds [1, T ].

Our strategy will be to split the regret in three parts, which we will analyse separ-
ately.
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Proposition 1. We have

RηT (u) =
aη−1∑
t=1

(`ηt (wt)− `ηt (u))︸ ︷︷ ︸
`η-regret of controller w.r.t. u

+
T∑

t=aη

(`ηt (wt)− `ηt (w
η
t ))︸ ︷︷ ︸

`η-regret of controller w.r.t. η-expert

+

T∑
t=aη

(`ηt (w
η
t )− `ηt (u))︸ ︷︷ ︸

`η-regret of η-expert w.r.t. u

Proof. The choice of aη makes all wη
t defined. We can hence merge the sums.

We think of the three sums as follows. The first sum is “startup nuisance”, and it
will turn out to be small. The second sum is controlled by the controller, and it only
depends on its construction. The third sum is controlled by the η-experts, and it
only depends on their construction.

We will now proceed to bound the three parts above. First, we reduce to the clipped
surrogate losses (5.4.4) at almost negligible cumulative cost using the clipping
technique of Cutkosky (2019).

Lemma 19 (Clipping in the controller is cheap).
aη−1∑
t=1

(`ηt (wt)− `ηt (u))︸ ︷︷ ︸
`η-regret of controller w.r.t. u

+
T∑

t=aη

(`ηt (wt)− `ηt (w
η
t ))︸ ︷︷ ︸

`η-regret of controller w.r.t. η-expert

≤
aη−1∑
t=1

(
¯̀η
t (wt)− ¯̀η

t (u)
)

︸ ︷︷ ︸
¯̀η-regret of controller w.r.t. u

+

T∑
t=aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t )
)

︸ ︷︷ ︸
¯̀η-regret of controller w.r.t. η-expert

+2ηBT

Proof. For any u ∈ Wt (which includes the case u = wη
t ), we may use the

definition of the range bound (5.2.1), the surrogate loss (5.4.1) and its clipped
version (5.4.4) to find

(`ηt (wt)− `ηt (u))−
(
¯̀η
t (wt)− ¯̀η

t (u)
)

= η
Bt −Bt−1

Bt
(wt − u)ᵀgt − η2B

2
t −B2

t−1

B2
t

(
(u−wt)

ᵀgt
)2

︸ ︷︷ ︸
≥0

≤ 2η
Bt −Bt−1

Bt
bt ≤ 2η (Bt −Bt−1) .
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Summing over rounds completes the proof.

Next we deal with the clipped surrogate regret. We first handle the case of the early
rounds before aη. The key idea is that when η has not yet woken up, it is very small.
Since the surrogate loss scales with η, it is small as well, even in sum.

Lemma 20. For any η and any u ∈
⋂aη−1
s=1 Ws

aη−1∑
t=1

(
¯̀η
t (wt)− ¯̀η

t (u)
)

︸ ︷︷ ︸
¯̀η-regret of controller w.r.t. u

≤ 1

2
.

Proof. By definition of the clipped surrogate loss ¯̀η
t in (5.4.4), the range bound bt

in (5.2.1) and the wakeup time at in Definition 3,

aη−1∑
t=1

¯̀η
t (wt)− ¯̀η

t (u) ≤
aη−1∑
t=1

η(wt − u)ᵀḡt

≤
∑

t:η≤ 1

4

(∑t−1
s=1 bs

Bs−1
Bs

+Bt−1

)
η2bt

Bt−1

Bt
≤ 1

2
.

In the next subsection we deal with the middle sum in Proposition 1. This part only
depends on the construction of the controller. We deal with the final sum in the
section after that.

5.11.2 Controller surrogate regret bound

The controller is a specialists algorithm, which sometimes resets. We call the time
segments between resets epochs. In every epoch, the controller guarantees a certain
specialists regret bound w.r.t. any η-expert in its grid.

The η-expert that we need can be active during several epochs. Our strategy,
following Mhammedi et al. (2019), will be the following. We incur the controller
regret in the last and one-before-last epochs. We further separately prove, using the
reset condition, that the total regret in all earlier epochs is small.

Theorem 27. Consider an epoch starting at time τ + 1 and fix any later time t in
that same epoch. Fix any grid point η ∈ G not expired after t rounds (meaning
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η ≤ 1
2Bt−1

). Then the MetaGrad controller guarantees

∑
s∈(τ,t]:s≥aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t )
)

︸ ︷︷ ︸
specialist ¯̀η-regret of controller w.r.t. η-expert on (τ, t]

≤ ln

⌈
2 log2

(
t−1∑
s=1

bs
Bs

+ 1

)⌉
+

.

Note that it is not important what the η-experts do at this point, the only feature that
we use in the proof is thatwη

t ∈ Wt for each active η. Also, note that the right-hand
side is O(ln lnT ). We choose to stay with the current more detailed expression as
it can be much smaller. This occurs whenever the actually observed loss ranges bs
are smaller than their respective upper bounds Bs.

Proof. We first observe that Algorithm 10, as far as it maintains the weights pt(η)

between resets, implements Specialists Exponential Weights (called SBayes by
Freund et al., 1997). In our particular case it is applied to specialists η ∈ G, loss
function η 7→ `ηt (w

η
t ), active set At ⊆ G and uniform (improper) prior on G. The

specialists regret bound (Freund et al., 1997, Theorem 1) directly yields3

∑
s∈(τ,t]:s≥aη

− ln E
pt(η)

[
e−

¯̀η
t (wηt )

]
≤ ln

∣∣∣∣∣∣
⋃

s∈(τ,t]

As

∣∣∣∣∣∣+
∑

s∈(τ,t]:s≥aη

¯̀η
t (w

η
t ).

Algorithm 10 further chooses the controller iterate

wt =
Ept(η) [ηwη

t ]

Ept(η) [η]

which we claim ensures that

0 ≤ − ln E
pt(η)

[
e−

¯̀η
t (wηt )

]
.

To see why, we use the definition (5.4.4) of clipped loss and gradient to obtain
(wt −wη

t )ᵀḡt ≥ −2Bt−1, and we further use that pt is supported on At, which
implies that η ≤ 1

4Bt−1
. Together these license4 the “prod bound” (ex−x

2 ≤ 1 + x

3Our improper prior does not cause any trouble here, because renormalizing the prior, in hindsight,
to the finite set of η-experts that were ever active preserves the algorithm’s output and hence its regret
bound.

4Here we motivate our controller algorithm using the loss function η 7→ ¯̀η
t (wη

t ). One can
alternatively base it on the loss function η 7→ − ln (1 + η(wt −wη

t )ᵀḡt) (These two versions are
called Squint and iProd respectively by Koolen and Van Erven, 2015). As the second is always
smaller (by the prod bound), using it would give a strictly tighter theorem here. We do not see a way
to ultimately harvest this gain, as we would still need to invoke the prod bound at a later point in the
analysis to express our regret bound in second-order form. We chose to present the “Squint-style”
version here as we believe it is the more intuitive of the two.
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for x ≥ −1
2 ) yielding

− ln E
pt(η)

[
e−

¯̀η
t (wηt )

]
≥ − ln E

pt(η)
[1 + η(wt −wη

t )ᵀḡt] = 0.

Inserting `ηt (wt) = 0, this implies

∑
s∈(τ,t]:s≥aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t )
)
≤ ln

∣∣∣∣∣∣
⋃

s∈(τ,t]

As

∣∣∣∣∣∣ .
It remains to bound the maximum number of awake grid-points during any epoch.
Recall that the active set at any time t is

At =

 1

4
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

) , 1

4Bt−1


Both endpoints are decreasing with t. Since our epoch starts at time τ + 1, the
maximal η awake in the epoch is

max
{
η ∈ G

∣∣∣ η ≤ 1

4Bτ

}
.

As the epoch lasts until at least time t ≥ τ + 1, the smallest η active in the epoch is

min

{
η ∈ G

∣∣∣∣ η ≥ 1

4
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

)}.
And since G is exponentially spaced with base 2, the maximum number of η that
could possibly have been awake islog2

(∑t−1
s=1 bs

Bs−1

Bs
+Bt−1

)
Bτ

 ≤
log2

Bt−1

(∑t−1
s=1

bs
Bs

+ 1
)

Bτ


(5.4.3)

≤

⌈
log2

((
t−1∑
s=1

bs
Bs

)(
t−1∑
s=1

bs
Bs

+ 1

))⌉

≤

⌈
2 log2

(
t−1∑
s=1

bs
Bs

+ 1

)⌉
+

,

so our prior costs for the improper (uniform on G) prior are upper bounded by

ln

∣∣∣∣∣∣
⋃

s∈(τ,t]

As

∣∣∣∣∣∣ ≤ ln

⌈
2 log2

(
t−1∑
s=1

bs
Bs

+ 1

)⌉
+

. (5.11.1)
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We now have a specialists regret bound that we can apply to each epoch.

Lemma 21 (Total regret in far past is small). Consider two consecutive epochs,
starting after τ1 < τ2, and let η be not expired after τ1 rounds. Then∑

s∈[1,τ1],s≥aη

(
¯̀η
s(ws)− ¯̀η

s(w
η
s )
)
≤ 2ηBτ2

Proof.

−
∑

s∈[1,τ1],s≥aη

¯̀η
s(w

η
s ) ≤ 2η

τ1∑
s=1

bs
Bs−1

Bs
≤ 2ηBτ1

τ1∑
s=1

bs
Bs

≤ 2ηBτ1

τ2∑
s=1

bs
Bs

≤ 2ηBτ2 ,

where the last inequality is the reset condition (5.4.3) at time τ2.

We are now ready to compose the main theorem.

Theorem 28 (Overall controller specialists regret bound). Let η be not expired after
T rounds. Then

T∑
t=aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t )
)
≤ 2ηBT + 2 ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
. (5.11.2)

Proof. We make a case distinction based on the number of epochs started by the
algorithm. First, let us check the general case of ≥ 3 epochs (at least two normal
epochs after the startup epoch). We apply the controller regret bound, Theorem 27,
to the last two epochs each. Suppose these start after τ1 and τ2. For any η ∈ G not
expired, we find

−
∑

t∈(τ1,τ2],t≥aη

¯̀η
t (w

η
t )−

∑
t∈(τ2,T ],t≥aη

¯̀η
t (w

η
t )

≤ ln

⌈
2 log2

(
τ2−1∑
s=1

bs
Bs

+ 1

)⌉
+ ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
.

The regret on all epochs except the last two is bounded by Lemma 21. So together
we obtain the theorem. Alternatively, suppose there are 2 epochs. Then, since we
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get no clipped regret in the 1st epoch, we apply the controller regret bound only in
the second epoch to get

−
∑

t∈[1,T ],t≥aη

¯̀η
t (w

η
t ) ≤ ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
,

and (5.11.2) also holds. Finally, if there is only 1 epoch, then our clipped regret is 0
because nobody is awake, so (5.11.2) also holds.

5.12 Proof of Lemma 16

Proof. The η-expert algorithm implements the exponentially weighted average fore-
caster with `ηt as the quadratic loss, unit learning rate, and with greedy projections
(of the mean) ontoWt. By (Hazan et al., 2007, Proof of Theorem 2), we obtain that

T∑
t=aη

(`ηt (w
η
t )− `ηt (u)) ≤

‖u‖22
2D̂2

+
1

2

T∑
t=aη

g′ᵀt Ση
t+1g

′
t

where g′t = η (1 + 2η 〈wt −wη
t , gt〉) gt and where we recall that (Ση

t+1)−1 =
1
D̂2
I + 2η2

∑t
s=aη gsg

ᵀ
s . Expanding, we obtain

g′ᵀt Ση
t+1g

′
t =

1

2
(1 + 2η 〈wt −wη

t , gt〉)
2 · 2η2gᵀt

(
1

D̂2
I + 2η2

t∑
s=aη

gsg
ᵀ
s

)−1

gt

Now we may use that

1

2
(1 + 2η 〈wt −wη

t , gt〉)
2 ≤ 1

2
(1 + 4ηbt)

2 ≤ 1

2
(1 + 1)2 = 2 (5.12.1)

by the assumed upper bound on η. Moreover, by concavity of the log determinant,
we have

2η2gᵀt

(
1

D̂2
I + 2η2

t∑
s=aη

gsg
ᵀ
s

)−1

gt

≤ ln det

(
1

D̂2
I + 2η2

t∑
s=aη

gsg
ᵀ
s

)
− ln det

(
1

D̂2
I + 2η2

t−1∑
s=aη

gsg
ᵀ
s

)
.

Summing over rounds and telescoping, we find

1

2

T∑
t=aη

g′ᵀt Ση
t+1g

′
t ≤ ln det

(
I + 2η2D̂2

T∑
t=aη

gtg
ᵀ
t

)
and obtain the result.
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5.13 Composition Proofs of Theorems 23 and 25

We combine the proofs of Theorems 23 and 25, which are both special cases of the
following more abstract result:

Theorem 29. Suppose there exist a number ω ≥ 0 and a positive semi-definite
matrix F ′ such that the linearized regret is at most

R̃uT ≤ ηω+
ln det

(
I + 2η2D̂2F ′

)
+ 1

2D̂2
‖u‖22 + 2 ln d2 log2QT e+ + 1

2

η
+4BT .

Then the linearized regret is both bounded by

R̃uT ≤
5

2

√
ω( 1

2D̂2
‖u‖22 + ZT ) + 10BT ( 1

2D̂2
‖u‖22 + ZT ) + 4BT ,

where ZT = rk(F ′) ln
(

1 +
D̂2
∑T
t=1 ‖gt‖22

8B2
T rk(F ′)

)
+ 2 ln d2 log2 T e+ + 1

2 , and by

R̃uT ≤
5

2

√(
ω + 2D̂2 tr(F ′)

)(
1

2D̂2
‖u‖22 + Z ′T

)
+10BT

(
1

2D̂2
‖u‖22+Z ′T

)
+4BT ,

where Z ′T = 2 ln d2 log2 T e+ + 1
2 .

Theorem 23 corresponds to the case ω = V uT and F ′ = FT , such that Tr(F ′) =∑T
t=1 ‖gt‖22; Theorem 25 is obtained with ω = V uT +

2D̂2mΩq
m−q and F ′ = Sᵀ

TST .
The precondition of Theorem 29 is established by Theorems 22 and 24, respectively.

To prove Theorem 29 we start with a general lemma about optimizing in η:

Lemma 22. For any X,Y > 0,

min
η∈G : η≤ 1

4BT

ηX +
Y

η
≤ 5

2

√
XY + 10BTY.

Proof. Let us denote the unconstrained optimizer of the left-hand side by η̂ =√
Y/X . We distinguish two cases: first, when η̂ ≤ 1

4BT
, we upper bound the

left-hand side by choosing the closest grid point η ∈ G below η̂ (which, in the worst
case, is at η̂/2) to obtain

min
η∈G : η≤ 1

4BT

ηX +
Y

η
≤ max

η∈[η̂/2,η̂]
ηX +

Y

η
=

5

2

√
XY .
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In the second case, if η̂ > 1
4BT

, we plug in the highest available grid point (for
which the worst case is 1

8BT
) to find

min
η∈G : η≤ 1

4BT

ηX +
Y

η
≤ 1

8BT
X + 8BTY < 10BTY,

where the second inequality follows by the assumption that η̂ > 1
4BT

. In both cases
the conclusion of the lemma follows.

Proof. (Theorem 29) We start with the first claim of the theorem. By assumption,
for any η ≤ 1

4BT
in the grid G, we have

R̃uT ≤ ηω +
A

η
+ 4BT

where A = ln det

(
I +

1

8B2
T

D̂2F ′
)

+
1

2D̂2
‖u‖22+2 ln d2 log2 T e+

1

2
.

Lemma 22 therefore implies that

R̃uT ≤
5

2

√
ωA+ 10BTA+ 4BT .

The proof of the first claim follows by applying the inequality log det(I +M) ≤
rk(M) log

(
1 + Tr(M)

rk(M)

)
(see Lemma 23 below) to the matrixM = 1

8B2
T
D̂2F ′.

For the second claim of the theorem, we again start from Theorem 22 and now
bound ln det(I +M) ≤ Tr(M) for M = 2η2D̂2F ′ (again see Lemma 23) to
obtain

R̃uT ≤ ηω + 2ηD̂2 tr(F ′) +
A′

η
+ 4BT

where
A′ =

1

2D̂2
‖u‖22 + 2 ln d2 log2 T e+

1

2
.

Using Lemma 22, the second claim follows, which completes the proof of the
theorem.

Lemma 23. For any positive semi-definite matrixM ∈ Rd

log det(I +M) ≤ rk(M) log

(
1 +

Tr(M)

rk(M)

)
and

log det(I +M) ≤ Tr(M).
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Proof. Let λ1, . . . , λd be the eigenvalues ofM . Then (1 + λ1), . . . , (1 + λd) are
the eigenvalues of I +M , and Jensen’s inequality implies

log det(I +M) =

d∑
i=1

log(1 + λi) = rk(M)
∑
i:λi 6=0

1

rk(M)
log(1 + λi)

≤ rk(M) log

1 +
∑
i:λi 6=0

λi
rk(M)

 = rk(M) log

(
1 +

Tr(M)

rk(M)

)
,

which proves the first inequality. The second inequality follows because

log det(I +M) =
d∑
i=1

log(1 + λi) ≤
d∑
i=1

λi = Tr(M).

5.14 Bernstein for Linearized Excess Loss

Let f : W → R be a convex function drawn from distribution P with stochastic
optimum u∗ = arg minu∈W Ef∼P[f(u)]. For anyw ∈ W , we now show that the
Bernstein condition for the excess loss X := f(w)− f(u∗) implies the Bernstein
condition with the same exponent β for the linearized excess loss Y := (w −
u∗)ᵀ∇f(w). These variables satisfy Y ≥ X by convexity of f and Y ≤ C :=

D′G′.

Lemma 24. For β ∈ (0, 1], let X be a (B, β)-Bernstein random variable:

E[X2] ≤ B E[X]β.

Then any bounded random variable Y ≤ C with Y ≥ X pointwise satisfies the
(B′, β)-Bernstein condition

E[Y 2] ≤ B′ E[Y ]β

for B′ = max
{
B, 2

βC
2−β
}

.

Proof. For β ∈ (0, 1) we will use the fact that

zβ = cβ inf
γ>0

(
z

γ
+ γ

β
1−β

)
for any z ≥ 0,
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with cβ = (1− β)1−βββ . For γ =
(

1−β
β E[Y ]

)1−β
we therefore have

E[X2]−B′ E[X]β ≥ E[X2]−B′cβ
(
E[X]

γ
+ γ

β
1−β

)
≥ E[Y 2]−B′cβ

(
E[Y ]

γ
+ γ

β
1−β

)
(5.14.1)

= E[Y 2]−B′ E[Y ]β, (5.14.2)

where the second inequality holds because x2 − cβB′x/γ is a decreasing function
of x ≤ C for γ ≤ cβB

′

2C , which is satisfied by the choice of B′. This proves the
lemma for β ∈ (0, 1). The claim for β = 1 follows by taking the limit β → 1 in
(5.14.2).

5.15 Details of Experiments

Algorithm D̂ Domain Domain Parameter G

AdaGrad 3‖u‖∞ Wt = {w : ‖w‖∞ ≤ D} D = 3‖u‖∞ ·

GDn 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| ·

GDt 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| maxs≤t ‖gs‖2

MGFull 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| ·

MGDiag 3‖u‖∞ Wt = {w : ‖w‖∞ ≤ D} D = 3‖u‖∞ ·

MGF1 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| ·

MGF10 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| ·

Table 5.1: The settings of each algorithm.
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Dataset T d Outcome P(y = 1)

a9a 32561 123 binary 0.24

abalone 4177 8 real

australian 690 14 binary 0.44

bodyfat 252 14 real

breast-cancer 683 9 binary 0.35

covtype 581012 54 binary 0.49

cpusmall 8192 12 real

diabetes 768 8 binary 0.65

heart 270 13 binary 0.44

housing 506 13 real

ijcnn1 91701 22 binary 0.10

ionosphere 351 34 binary 0.64

mg 1385 6 real

space_ga 3107 6 real

splice 1000 60 binary 0.52

w1atest 47272 300 binary 0.03

w8a 49479 300 binary 0.03

Table 5.2: Summary of the datasets used in the experiments.
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Dataset Loss AdaGrad GDnorm GDt MGCo MGF1 MGF10 MGF25 MGF50 MGFull

a9a hinge 85411 12712 7619 17012 14064 10821 10354 9858 9743

a9a logistic 9185 2158 1109 1340 2306 1732 1668 1590 1568

abalone absolute 4144 2529 1959 1317 2738 938 938 938 939

abalone squared 23051 12484 10545 6725 9607 5900 5900 5900 5901

australian hinge 124 42 32 41 46 35 35 35 35

australian logistic 511 156 112 48 42 39 39 39 39

bodyfat absolute 125 38 30 30 34 24 24 24 24

bodyfat squared 60 5 4 10 10 10 10 10 10

breast-cancer hinge 98 36 28 24 25 25 25 25 25

breast-cancer logistic 107 41 33 25 36 36 36 36 36

covtype hinge 445023 83124 48461 66797 121064 67126 59301 42043 41985

covtype logistic 24043 11065 5157 4713 17698 10009 8662 5155 5147

cpusmall absolute 183731 67098 61563 40537 89234 13974 13818 13818 13946

cpusmall squared 2671536 806408 894232 561505 728070 358831 358832 358832 358833

diabetes hinge 203 107 91 75 95 56 56 56 55

diabetes logistic 147 80 58 53 54 49 49 49 49

heart hinge 127 77 59 35 46 38 38 38 38

heart logistic 127 71 47 30 30 30 30 30 30

housing absolute 3301 1282 1147 946 1044 888 886 886 886

housing squared 33324 15560 15909 20191 22244 22333 22336 22336 22336

ijcnn1 hinge 4413 1216 537 885 1522 1156 883 883 883

ijcnn1 logistic 4912 1404 795 976 1559 1219 1013 1013 1013

ionosphere hinge 1245 431 299 169 166 150 150 150 150

ionosphere logistic 2564 730 480 240 172 157 156 156 156

mg absolute 85 33 26 30 45 29 29 29 28

mg squared 31 10 4 19 28 28 28 28 28

space_ga absolute 441 314 208 133 370 92 92 92 91

space_ga squared 354 115 71 40 69 53 53 53 53

splice hinge 1296 369 315 243 242 235 234 234 225

splice logistic 1636 323 293 183 175 173 171 168 166

w1atest hinge 134146 52780 67627 16910 17951 17436 16815 17143 16636

w1atest logistic 28340 7500 8735 2498 2436 2271 2229 2207 2182

w8a hinge 152227 60303 90302 18789 20764 19872 19783 19239 19229

w8a logistic 36683 8370 13620 3324 2725 2519 2449 2421 2392

Table 5.3: The regret of each algorithm for the various datasets and loss functions. Boldface
indicates smallest regret.
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