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CHAPTER 3

User-Specified Local Differential
Privacy in Unconstrained Adaptive
Online Learning

This chapter is based on Van der Hoeven, D. (2019). User-specified local differ-
ential privacy in unconstrained adaptive online learning. In Advances in Neural
Information Processing Systems 32, pages 14103-14112.

Abstract

Local differential privacy is a strong notion of privacy in which the provider of
the data guarantees privacy by perturbing the data with random noise. In the
standard application of local differential privacy the distribution of the noise is
constant and known by the learner. In this chapter we generalize this approach by
allowing the provider of the data to choose the distribution of the noise without
disclosing any parameters of the distribution to the learner, under the constraint
that the distribution is symmetrical. We consider this problem in the unconstrained
Online Convex Optimization setting with noisy feedback. In this setting the learner
receives the subgradient of a loss function, perturbed by noise, and aims to achieve
sublinear regret with respect to some competitor, without constraints on the norm
of the competitor. We derive the first algorithms that have adaptive regret bounds in
this setting, i.e. our algorithms adapt to the unknown competitor norm, unknown
noise, and unknown sum of the norms of the subgradients, matching state of the art
bounds in all cases.
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3.1 Introduction

In learning, a natural tension exists between learners and the providers of data.
The learner aims to make optimal use of the data, perhaps even at the cost of the
privacy of the providers. To nevertheless ensure sufficient privacy the provider
can add random noise to the data that he sends to the learner. This idea is called
e-local differential privacy (Wasserman and Zhou, 2010; Duchi et al., 2014) and the
standard implementation has constant ¢ for all providers. However, not all providers
care equivalently about their privacy (Song et al., 2015). Some providers may wish
to aid the learner in making optimal use of their data, while other providers value
their privacy over helping the learner. For instance, celebrities might care more for
their privacy than others because they want to preserve the privacy they have left.
To complicate things further, the providers of the data may not wish to reveal how
much they care about their privacy, because when privacy levels differ between
providers these privacy levels become privacy sensitive themselves. Furthermore,
not all parts of the data are equally privacy sensitive. For example, tweets are
already publicly available, but browsing history may contain sensitive information
that should be kept private. To capture these varying privacy constraints we allow
each provider to choose how much noise is added for each dimension of the data.

In this chapter, we consider these problems in the Online Convex Optimization
(OCO) setting (Hazan et al., 2016) with local differential privacy guarantees. The
OCO framework is a popular and successful framework to design and analyse many
algorithms used to train machine learning models. The OCO setting proceeds in
rounds ¢t = 1,...,T. In a given round ¢ the learner is to provide a prediction
w; € RY An adversary then chooses a convex loss function ¢; and sends a
subgradient g; € 0¢;(w;) to the learner. We work with an unconstrained domain
for w, which has recently grown in popularity (see McMahan and Orabona (2014);
Foster et al. (2015); Orabona and P4l (2016); Foster et al. (2017); Cutkosky and
Boahen (2017); Kottowski (2017); Cutkosky and Orabona (2018); Foster et al.
(2018b); Jun and Orabona (2019)). We aim to develop online learning methods that
make the best use of data providers who wish to help the learner while at the same
time guaranteeing the desired level of privacy for providers that care about their
privacy, without knowing how much each provider cares for their privacy.

We consider the local differential privacy model with varying levels of privacy
unknown to the learner. Differential privacy (Dwork and Roth, 2014) is a privacy
model that is used in many recent machine-learning applications. The local differ-
ential privacy model is a variant of differential privacy in which the learner can only
access the data of the provider via noisy estimates (Wasserman and Zhou, 2010;
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3.1. Introduction

Duchi et al., 2014). The local differential privacy model with varying levels of
privacy appeared before in Song et al. (2015), but with known levels of noise and
only two levels of noise.

Learning in our setting is modelled by the OCO framework with noisy estimates
of the subgradient (see also Jun and Orabona (2019)). To ensure local differential
privacy the provider adds zero-mean noise & € R? to the subgradient g;. The
learner then receives the perturbed subgradient g; = g; + &;. We allow each &; to
follow a different distribution each round to satisfy different privacy guarantees. In
the standard OCO framework the goal of the learner is to minimize the regret with
respect to some parameter u € R%:

T

Rr(u) =Y (b(wr) — li(uw)).

t=1

However, since the learner receives perturbed subgradients we consider the ex-
pected regret E[R (u)], where the expectation is over the randomness in w; due
to the noisy subgradients. The setting will be formally introduced in Section
3.2. Because §; € R¢, standard algorithms for unconstrained domains do not
work since they require bounded g;. Initial work in this setting by Jun and Ora-
bona (2019) was motivated by a lower bound of Cutkosky and Boahen (2017),
which shows that one can suffer an exponential penalty when both the domain
and subgradients are unbounded. They replace the boundedness assumption on
g: by a boundedness assumption on E[g;| and an assumption on the tails of the
noise distribution. Jun and Orabona (2019) achieved expected regret guarantees
of O(||u|v/(G? + 02)TIn(1 + [[u]|T)), where ¢ is a uniform upper bound on
E[||&:]%], G? is a uniform upper bound on ||g;||%, and || - || and || - ||+ are dual norms.
This bound is useful when the distribution of the noise is constant and known and
an adversary selects g;. We derive an algorithm that satisfies

T
E[Rr(u)] = O <IUH (G2T +  of)In(1 + HUHT))> : 3.1.1)

t=1

where 02 = E[||&||?]. This bound can be smaller in cases where only a few oy
are large but most are small, for example when only few providers have privacy
requirements. In fact, we will prove something stronger than (3.1.1):

T
E[Rr(w)] = O (E[IIUII D gell? (1 + II’MHT))]>, (3.1.2)

t=1
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which implies (3.1.1) via Jensen’s inequality and E[||g:||?] < 3E[&]?] +
3E[||g:]|?]. This bound was motivated by work in the noiseless setting, where

O(HuH\/ZtT:1 lg¢]|2 In(1 + ||u||T"))) bounds are possible (Cutkosky and Ora-
bona, 2018). With these type of bounds, when the sum of the squared norms
of the subgradients is small the regret is also small. To achieve (3.1.2) we require
two assumptions: bounded ||g¢||» and zero-mean symmetrical noise &;. The as-
sumption on g; is common in standard OCO. The symmetrical noise assumption
is satisfied for common mechanisms to ensure local differential privacy. The de-
pendence on E[||&;||2] and E[||g;||?] is unimprovable, which is shown by the lower
bound for this setting by Jun and Orabona (2019).

The algorithms in this chapter are built using the recently developed wealth-regret
duality approach (Mcmahan and Streeter, 2012). We provide two algorithms. The
first achieves the bound in (3.1.2). The second algorithm satisfies (3.1.2) for each
dimension separately. This second algorithm can exploit sparse privacy structures,
which combined with sparse subgradients yields low expected regret bounds.

Contributions We extend the known results in several directions. Many common
local differential privacy applications use symmetric additive noise (Laplace mech-
anism, normal mechanism). We use the symmetry of the noise to adapt to unknown
levels of privacy and achieve adaptive expected regret bounds. We also adapt to
dimension specific privacy requirements, again without requiring knowledge of
the structure of the noise other than symmetry in each dimension. Our algorithms
interpolate between no noise and maximum noise, matching state of the art bounds
in both cases. This can reduce the cost of privacy in some cases, outlined in Section
3.4. Our work partially answers two problems left open by Jun and Orabona (2019).
The first question asks whether or not data-dependent bounds are possible in the
noisy OCO setting, which we answer affirmatively. The second question is how to
adapt to different levels of noise without using extra parameters compared to the
noiseless setting, which we do for symmetric noise.

Related work There has been significant work on unconstrained and adaptive
methods in OCO with noiseless subgradients g; (Foster et al., 2015; Orabona
and P4l, 2016; Foster et al., 2017; Cutkosky and Boahen, 2017; Kottowski, 2017;
Cutkosky and Orabona, 2018; Foster et al., 2018b). However, these results do not
extend to the setting with noisy unbounded subgradients g;, which is possible with

our work. For bounded domains regret bounds of O(D+/ Zle |lg¢||2) are possible
without knowledge of the noise (Duchi et al., 2011; Orabona and Pal, 2018), where
D is an upper bound on ||u||. However, these bounds do not adapt to unknown |[|u||,
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which may be costly for large D but small ||u||. We provide an algorithm that both
scales with ||u|| instead of D and does not require knowledge of the noise.

There is a body of literature in the differential privacy setting with online feedback
(Jain et al., 2012; Jain and Thakurta, 2014; Thakurta and Smith, 2013; Agarwal and
Singh, 2017; Abernethy et al., 2019). In this chapter we consider local differential
privacy (Wasserman and Zhou, 2010; Duchi et al., 2014), which is a stronger notion
of privacy than differential privacy. Duchi et al. (2014) provide an algorithm with
constant local differential privacy that learns by using SGD. (Song et al., 2015)
derive how to use knowledge of several levels of local differential privacy for SGD,
but only with two different levels of noise. Jun and Orabona (2019) consider local
privacy with an unbounded domain and constant noise. With knowledge of the
noise it is possible to extend the results of Jun and Orabona (2019) to achieve
(3.1.1), but not (3.1.2).

QOutline In Section 3.2 we introduce our problem formally and introduce the key
techniques. In Section 3.3 we derive a one-dimensional algorithm that achieves
our goals, which we use in a black-box reduction in Section 3.3.1 and we apply it
coordinate-wise in Section 3.3.2. Section 3.4 contains two scenarios in which our
new algorithm achieves improvements compared to current algorithms. Finally, in
Section 3.5 we present our conclusions.

3.2 Problem Formulation and Preliminaries

In this Section we describe our notation, introduce the version of local differential
privacy we use, briefly introduce the OCO setting with noisy subgradients, and
provide some background to the reward-regret duality paradigm.

Notation. A random variable x is called symmetric if the density function p of the
random variable z = x — E[x] satisfies p(z) = p(—z). The inner product between
vectors g € R? and w € R? is denoted by (w), g). The Fenchel conjugate of a
convex function F', F* is defined as F"*(w) = supg(w, g) — F'(g). || - || denotes a
norm and [|g ||« = Sup,,.|jw|<1{w, g) denotes the dual norm. g; ; indicates the 4
component of vector g;.

3.2.1 User-Specified Local Differential Privacy

In the local differential privacy setting each datum is kept private from the learner.
The standard definition of local privacy requires a randomiser R that perturbs g;
with random noise &;, where &1, . . . , €7 are independently distributed (Wasserman
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and Zhou, 2010; Kasiviswanathan et al., 2011; Duchi et al., 2014). The amount
of perturbation is controlled by €, where smaller ¢ means more privacy. We allow
the provider to specify his desired level of privacy, so in a given round ¢ we have
e;:-local differential privacy.

Definition 1. [Duchi et al. (2014)] Let A = (X1, ..., X1) be a sensitive dataset
where each X; € A corresponds to data about individual t. A randomiser R which
outputs a disguised version of S = (Uy,...,Ur) of A is said to provide e-local
differential privacy to individual t, if for all z,x' € A and for all S C S,

Pr(U; € S|X; = z) < exp(e) Pr(U; € S|X; = ).

In this chapter we make use of randomisers of the form R;(g;) = g+ + &, where
&; is generated by a zero-mean symmetrical distribution p;. A common choice
for p; is py(2) o< exp(—%|/2||) (Song et al., 2015). This randomiser is €;-local
differentially private for ||g:]| < 1 (Song et al., 2015, Theorem 1). We use a
small variation of this randomiser, which we call the local Laplace randomiser:
pt(z) o exp(— Z;lzl ™ |z;|), where Z;-lzl T; = €, Tt,j > 0. The following
result shows that the local Laplace randomiser preserves e;-local differential privacy.

Lemma 4. Suppose |g;;| < 1, then the local Laplace randomiser is e.-local
differentially private, where ¢; = Z;-lzl Tt j

The proof follows from applying Theorem 1 of Song et al. (2015) to each dimension
and summing the 7; ;. For completeness the proof is provided in Section 3.6. This
randomiser is the Laplace randomiser (Dwork and Roth, 2014) applied to each
dimension with a possibly different € per dimension. The local Laplace randomiser
gives the user more control over the details of the privacy guarantees: with the local
Laplace randomiser each dimension j is 7; j-local differentially private. This can
also lead to lower regret in some cases, of which we give an example in Section 3.4.

3.2.2 Online Convex Optimization with Noisy Subgradients

The analysis of many efficient online learning tools has been influenced by the
Online Convex Optimization framework. As mentioned in the introduction, the
OCO setting with noisy subgradients proceeds in rounds ¢ = 1,...,7". In each
round ¢

tth

1. The learner sends w; € R¢ to the provider of the ™ subgradient.

2. The provider samples &; from zero-mean and symmetrical p; and computes
subgradient g; € 00, (w;), where ||g:||« < G.
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3. The provider sends §; = g; + & € R to the learner.

This protocol is a slight adaptation of the protocol of Duchi et al. (2014), where we
allow a different p; in each round ¢ instead of using a constant p. In each round the
provider only sends g, to the learner. The learner has no information about p; other
than that p; is symmetrical and zero-mean. Also note that p; is allowed to change
with each round ¢, complicating things even further. Since the feedback the learner
receives is random we are interested in the expected regret. To bound the expected
regret we upper bound the losses by their tangents:

T T
< E[Z w; — u, gy)] Z w; — u, gr)) (3.2.1)
t=1 t=1

where the equality holds because of the law of total expectation. The analysis

focusses on bounding the r.h.s of (3.2.1), which is a standard approach in OCO.

In the following we introduce a recently popularized method to control the regret
when w; and u are unbounded.

3.2.3 Reward Regret Duality

In this Section we introduce the main technical workhorse in this chapter: the reward
regret duality (McMahan and Orabona, 2014, Theorem 1). Informally, for noiseless

g+, suppose we are able to guarantee — ZtT:1<wt, gi) > Fr(— Zthl gi) — cr

for a convex Fr and cr € R. We will refer to Fr as the potential function.

Here, — Ethl (wy, g¢) is seen as the reward. By Fenchel’s inequality we have
Fr(= YL, g)) > —Fx(u) — .1 (u, g:), which gives us a bound on the regret

after using that — Zthl (wy, g¢) > Fr(— Z?:l g:) — cr and reordering the terms.

For noisy g;, the formal result is found in the following lemma (see also Theorem 3
of Jun and Orabona (2019)).

Lemma 5. If —E[Z?ﬂ('wt,gt)] E[Fr(— Z?:l gi) — cr| for some convex
function Fr and cr € R, then E[Rr(u)] < Elcr] + Fj(u).

Proof. From the definition of Fenchel conjugates we have E[Fr(— S.1_, g:)] >

E[-Ff(u) — Yi(uw.g)] = —Fjw) — Y, (u.g).  Using
—E[ZtT:1<wt, g)] > E[Fr(— Zlegt) — c¢r] and reordering the terms
completes the proof. O

The difficulty lies in finding a suitable F’r and cr. For example, we could use
gradient descent with learning rate 7 to find Fp(— Zf 19¢0) = 2| ZtT L Gtll3
and c7 = t 13 21 gt||2 However, it would be impossible to tune 1 optimally
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due to the dependence on the unknown w in F7ji(u) = %Hu”% For noiseless
subgradients g; (Cutkosky and Orabona, 2018) provide a route to find a suitable Fr,
with a constant ¢7. Jun and Orabona (2019) extend this idea to noisy subgradients
g:: one needs to find an F}, F;_1, and w; that satisfy F;_i(x) — (w¢, g¢) >
Eg, [F;(x—g;)]. By assuming that — E[S""_ (ws, gs)] > E[Fi(— 3.'_, gs)] holds
one can show that if F; and F;_; satisfy Fy_i(x) — (we, g¢) > Eg,[Fi(x — g¢)],
then — B[S (wy,g:)] > E[Fr(—Y/_, §:)] holds by induction. The result is
given in the following lemma, of which the proof can be found in Section 3.6.

Lemma 6. Suppose that F;_i(x) — (wy, g:) > Eg,[Fi(x — g¢)] holds for all t,
then

3.3 One-Dimensional Private Adaptive Potential Func-
tion

Algorithm 1 Local Differentially Private Adaptive Potential Function

Input: G such that | E[g;]| < G and prior P on v € [— =5, 1.
1: fort=1,...,T do

2 Playw; = Epuplvexp(— Y00y (v3s + (v3s)?)))-
3: Receive symmetric g; € R.
4: end for

In this Section we derive a suitable potential function for a one-dimensional problem.
In the remainder of this chapter we use this one-dimensional potential to derive
new algorithms. To derive our one-dimensional potential function we we rely on
a property of symmetric random variables with bounded means. The following
Lemma is key deriving our potential function Frr.

Lemma 7. Suppose  is a symmetrical random variable with | E[(v, z)]| < 1 for
some v. Then E[exp({(v, x) — (v,x)?)] < 1+ E[(v, z)].

The proof of Lemma 7 can be found in Section 3.7. We can now use Lemma 7
to derive a one-dimensional potential function. Suppose g; € R is a symmetrical
random variable with |E[¢]| < G. Then vg; with v € [— 5107 5G] satisfies the

assumptions in Lemma 7. Multiplying the lower bound of Lemma 7 for 1 — E[vg,],
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3.3. One-Dimensional Private Adaptive Potential Function

fort =1,...,T,yields a potential function via Lemma 6. The potential we find is

t

Z = Eyplexp(— Y (vds + (vgs)?)) — 1], (3.3.1)

s=1

where P is an (improper) prior on v € [— 5(;, 5G] the first expectation is over
J1,---, 0t and Fy(0) = 0. This kind of potential function has been used before by

Chernov and Vovk (2010); Koolen and Van Erven (2015); Jun and Orabona (2019).

The novelty in this particular potential function is that it allows for the incorporation
of the symmetrical noise in the analysis. The > _, (vgs)? term is unique to our
potential function and allows us to derive adaptive regret bounds for unconstrained
u. Note that the ¢ = 1 term has moved inside the definition of Fr. While this
does not influence the analysis for proper priors it does influence the analysis for
improper priors. The corresponding prediction strategy is given by

t—1

wy = Epopvexp(— Y  (vgs + (v3s)?)]. (3.3.2)
1

s

Algorithm 1 summarizes the strategy. Note that Algorithm 1 does not require any
extra parameters compared to the setting with noiseless subgradients.

The following result shows that Frr defined by (3.3.1) and w; defined by (3.3.2)
satisfy our assumptions.

Lemma 8. Suppose g, is a symmetrical random variable with | E[g;]| < G. Then
F, defined by (3.3.1) and w; defined by (3.3.2) satisfy Eg,[F;(—>St_1 3s)] <
Froa(= 202 9s) — wi EB[gi).

The proof follows from an application of Lemma 7 and can be found in Section
3.7. We consider two types of priors. The first type are proper priors that are of the

form:
dP(v)  v(v)exp(—bv?)

dv 7 ’

(3.3.3)

1
Where b > 0, v : [~ 5, 5] — Ry, and Z = [5G v(v)e " dv is a normalizing

5G
constant. This captures several priors used in literature, including the conjugate

dpP exp

prlor G = (Koolen and Van Erven, 2015), a variant of the CV prior

dv = W (for G > 5) (Chernov and Vovk, 2010; Koolen and Van Erven,
2015), and the uniform prior on [~ &, =] (Jun and Orabona, 2019).

The second type of prior is an improper prior: % = |v| A variant of this prior

was previously used by (Koolen and Van Erven, 2015). For all priors we derive a
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regret bound by computing an upper bound on the convex conjugate of Fr, F7. For
conciseness we only present the regret bound for the conjugate prior in the main
text. In Section 3.8 we present the analysis of the regret of the improper prior, for
which a slightly different analysis is required compared to the proper priors. The
analysis for all priors can be seen as performing a Laplace approximation of the
integral over v to show that the prior places sufficient mass in a neighbourhood of
the optimal v.

Abbreviating B, = b+ 3'_ ﬁ G Ly =— Zijl gs, and C' = =&, the predictions
(3.3.2) with the conjugate prior are given by:

Bt () (ot (555) -t (15352))
3

erf(CvVb) exp(C (L + CBy))4B} (3.3.4)
2V/B; (exp(2CLy) — 1)
erf(C'v/b) exp(C (Ly + CB;))4B

wy =

These w; can be computed efficiently, but see Koolen and Van Erven (2015) for
numerically stable evaluation. With the conjugate prior we find the following result:

Theorem 10. Suppose g, is a symmetrical random variable with | E[g;]| < G for
all t. The predictions (3.3.4) satisfy:

E[R7(u)] <1+ |u| max {HG (ln(]u\llG) —1+1In (W)) ’

E <b+th>ln16u\2<b+Z >3+1) }

The proof of Theorem 10 can be found in Section 3.7.1 and follows from computing
the Fenchel conjugate of the potential function. For noisy subgradients this is the
first bound that is adaptive to the sum of the squares of the noisy subgradients.
Compared to the expected regret bound for the improper prior (see Theorem 12 in
Section 3.8) this bound has worse constants. However, with the conjugate prior all
non-constant terms scale with ||, which is not the case with the improper prior. For
all proper priors of the form (3.3.3) a similar regret bound can be computed. This
can be seen from Lemma 11 in Section 3.7.1, which shows that the convex conjugate

of the potential function for these priors is O(E[|u \/ Zle G2 In(|u|T + 1))]).
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3.3. One-Dimensional Private Adaptive Potential Function

Algorithm 2 Black-Box Reduction

Input: G such that || E[g]||x < G and Algorithm Az with domain Z = {z :
Izl <1}
1: fort=1,...,T do
2 Get z; € Z from Az
3 Get v; € R from Algorithm 1
4 Play w; = v;2z;, receive symmetrical g; such that | E[g]||« < G
5
6
7

Send g; to Az
: Send (z;, g;) to Algorithm 1
: end for

3.3.1 Black-Box Reductions

In this Section we use our potential function in a black-box reduction: we take a
constrained noisy OCO algorithm .4z and turn it into an unconstrained algorithm
using our potential function. The same reduction is used by Cutkosky and Orabona
(2018) and Jun and Orabona (2019). The algorithm can be found in Figure 2. The
potential function and the OCO algorithm each have their task: the potential function
is to learn the norm of w and the constrained OCO algorithm is to learn the direction
of w. In each round ¢ we play w; = vz, where z, € Z, Z = {z : ||z|| < 1},1is
the prediction of the OCO algorithm and v is the prediction of Algorithm 1. We
feed g, as feedback to Az and (z, g;) as feedback to Algorithm 1. Since g; is a
symmetrical random variable and E[(z;, §;)] < G, (24, g¢) satisfies the assumptions
in Lemma 7. This allows us to control the regret for learning the norm of u using
Theorem 10.

As outlined by Cutkosky and Orabona (2018) the expected regret of Algorithm 2
decomposes into two parts. The first part of the regret is for learning the norm of
u, and is controlled by Algorithm 1. The second part of the regret for learning
the direction of w and is controlled by .4 z. The proof is given by Cutkosky and
Orabona (2018), but for completeness we provide the proof in Section 3.7.2.

all t. Let RY.(||ul)) = [Zt (v — ||uH)<zt,§t>] be the regret for learning ||u|| by
Algorithm 1 and let RZ (%) = [Zt {2z — ”u” , gt)] be the regret for learning

[

by Az. Then Algorithm 2 satisfies E[Rr(u)] = RY(|Jul) + HUHRZ( L )

[

Lemma 9. Suppose g; is a symmetrical random variable with || E[g]||« < G for

IIuII

Orabona and Pal (2018) show that Mirror Descent with learning rates 7, =
(/24 lgl2) " vields RE (pp) = O(EL/SLL, gu]2)- Since Algorithm 1
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. T | T |
satisfies Ry(||ul) = O(E[Hu”\/Zt:l 1gel|Z (llwll 34—y [1ge]|Z + 1)]) the total
regret of Algorithm 2 is

T T
E[Rr(uw)] = O [ [u|E || D g2 m(le]| Y lgd2+1)| |- 335
=1 1=1

This bound matches state of the art bounds for for noiseless subgradients and is
never worse than the bound of Jun and Orabona (2019) for noisy subgradients, but
can be substantially better.

3.3.2 Private Unconstrained Adaptive Sparse Gradient Descent

Algorithm 3 Private Unconstrained Adaptive Sparse Gradient Descent

Input: G such that |E[g; ]|, < G.
1: fort=1,...,Tdo

2: Play w;

3 forj=1,...,ddo

4: Receive symmetrical g; j such that [g; ;| < G

5 Send g; ; to the j-th instance of Algorithm 1

6 Receive vy 11 € R from the j-th instance of Algorithm 1 with the

conjugate prior

7: Set Wi1,5 = Vi1,
8: end for
9: end for

In this Section we propose a noisy unconstrained OCO algorithm that can exploit
sparse subgradients. The algorithm is summarized in Algorithm 3. Algorithm 3
runs a copy of Algorithm 1 with the conjugate prior coordinate-wise. A similar
strategy is used by Orabona and Tommasi (2017). This strategy can exploit sparse
privacy structures, which, combined with sparse subgradients, may yield low regret
(see Section 3.4). Its expected regret bound is given below. The proof follows from
applying Theorem 10 per dimension.

Theorem 11. Suppose §; ; is a symmetric random variable with | E[g, ;]| < G for
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all t and j. Then the expected regret of Algorithm 3 satisfies

d
E[Rr(w)] < d+ ) |uj| max {110 <1n(|ujyng) 1+4In (W)) 7

j=1

T T 2 ﬁ
E|,|8 (bj + Z§§,j> In(16|u;|? (bj + Zg@) ﬁ +1)) }
t=1 t=1 J

3.4 Motivating Examples

In this Section we present two scenarios in which our algorithms provide better
expected regret guarantees than standard algorithms. The first scenario concerns
a case where many providers do not care for their privacy (so they do not perturb
the subgradients) and few providers care substantially for their privacy. Suppose
that the providers who care for their privacy are [In(7")] of the total number of
providers T. Suppose that ||g;||3 < 1 and that the providers who care for their
privacy use p(z) oc exp(—$||z|2), then E[||&][3] < 4 + 4€+¢ (Song et al., 2015,
Theorem 1). Using Algorithm 2, Jensen’s inequality, and the fact that the square
root is subadditive we see from (3.3.5) that the expected regret is upper bounded

by O(HUHQ\/ZL lgell3 (1 + [[ull2T) + [lull2§ In([lull2T + T)) instead of

O(||u|\2§\/T In(1 + ||u|[27")) had we used the maximum privacy guarantee for
all providers instead of letting the providers choose their desired level of privacy.

In the second scenario the providers use the local Laplace randomiser. Sup-
pose that g; is sparse. A standard algorithm that has good perform-
ance for sparse g; is AdaGrad (Duchi et al., 2011). AdaGrad achieves
O(E[D Z?Zl \/2?:1 gﬁj]) expected regret, where max;|u;| < D, and D
has to be guessed prior to running AdaGrad. Using Jensen’s inequality and
the fact that the square root is subadditive the expected regret can be upper

bounded by O(D E?Zl(\/{% Zthl ggj + \/Zthl 3 E[g?]])) Algorithm 3 achieves

Oy [ (/3350 92 (g T + 1) + /3L, BIE, (| T + 1)) re-
gret, which can be significantly smaller than the bound of AdaGrad if D is much
larger than all u; or if w is sparse. Furthermore, since we allow the provider of the
data to choose 7 ;, the parameter of the Laplace randomiser for dimension j, &;
can be sparse as well. While this does not give local differential privacy guarantees
for all attributes it does give local differential privacy guarantees for attributes with

Tj < 00.
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3.5 Conclusions

In this chapter, we extended the local differential privacy framework in uncon-
strained Online Convex Optimization by allowing the provider of the data to choose
their privacy guarantees. Standard algorithms do not yield satisfactory regret bounds
in this setting, either due to dependence on the unknown parameters of the noise
or due to dependence on bounded subgradients. Hence, we proposed two new
algorithms that match state of the art regret algorithms in both the noisy and noise-
less setting, without requiring knowledge of the noise other than symmetry. Our
algorithms do not require parameters other than a bound on the norm of the expect-
ation of the subgradients, which allows the privacy requirements of all providers to
be private itself. The new algorithms are a step towards practically useful algorithms
with local differential privacy guarantees that have sound theoretical guarantees.
Furthermore, our algorithms are the first adaptive unconstrained algorithms in the
noisy OCO setting without requiring extra parameters compared to the standard
OCO setting, solving two problems left open by Jun and Orabona (2019).

3.6 Details from Section 3.2

Proof. (of Lemma 4) Evaluating and rewriting Definition 1 gives

H |9t,y gt,j

]:1 |gt,] gt,]

D)

< H exp(,;) = exp(et),
j=1

where the first inequality follows from applying the triangle inequality for each j
and the second inequality follows from the assumption that |g; ;| < 1. O

Proof. (of Lemma 6) We will prove the result by induction. In a given round ¢
assume that — E[3""_, (ws, gs)] > E[F,(— 3.._, gs)] holds. Now,
t+1

t
- E[Z(ws,gsﬂ =E[—(wit1,Gt+1) Z (ws, gs)]
s=1 s=1
t

Z wt+179t+1>]

t+1

Ft+1 ng
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3.7. Details from Section 3.3

where the first inequality comes from the inductive hypothesis and the second
inequality is by the assumption that F;_(x) — (wy, g;) > Eg,[Fi(x — g¢)] for all
t. Now, by induction — E[Y"L_ (wy, g;)] > E[Fr(— S{_, §:)]. O

3.7 Details from Section 3.3
Proof. (of Lemma 7) We start by rewriting the Lh.s.:
Elexp((v, z) — (v, z)?)]
= E[exp(y(v, z) - <U, Z>2)] exp(E[(v, :I:>] - EK”? :13>]2)

where z = ¢ — E[x] and y = 1 — 2 E[(v, «)]. z is a random variable with mean 0
and |y| < 1.4 due to the restrictions on E[(v, x)]. By Lemma 10, E[exp(y(v, z) —
(v, 2)?)] < 1. It remains to show that exp(E[(v, )] —E[(v, z)]?) < 1 +E[(v, )],
which holds for E[(v, )] > —3 (Cesa-Bianchi and Lugosi, 2006, Lemma 2.4). [

Lemma 10. Let z € R? be a zero-mean symmetrical random variable. Then for
ly| < 1.4 and arbitrary v € R?

Elexp(y(v, z) — (v,2)*)] < 1.

Proof. Due to symmetry of z we can write
Elexp(y(v, z) — (v, 2)*)]

= Bl exp(—y(v, 2) — (v,2)?) + 5 exply(v,2) (v, 5]

We continue by showing that the expression inside the expectation is smaller than 1:

5 OB(—y{o,2) — (0,2)%) + 5 exply(v,2) — (v,2)?) <1

2
In(cosh(y(v, 2))) — (v, z)? <0.

which holds because for |y| < 1.4 f(z) = In(cosh(yz)) — 2 is concave and
maximized at z = 0, which gives f(0) = 0. O
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Proof. (of Lemma 8) Let 4;(v) = vg; + (v:)?
Eg, [Fi(— Zg Eg, [exp(— th

<E,[(1 —vE[g])exp(— th

tf
=F_1(— Z§S) —wE
s=1

where the first equality is due to Tonelli’s theorem and the inequality is due to
Lemma 7, which applies due to the restrictions on v and E[g,]. Since Fy(z) = 0
the proof is complete. O

3.7.1 Regret Analysis for Proper Priors

Proof. (of Theorem 10). By Lemma 5, Lemma 6, and Lemma 8 we only have
to compute the convex conjugate of the potential function. We do the analysis
or — EtT:l g+ = 0. The analysis for — Zle g+ < 0 is analogous. We have
— Y wide > Fr(=Y_; §i) > —1. Suppose Y-y G < \/2(3°/, 57 + D),
then E[Rr(u)] = B[S wige — uge) < B[S ful| i) +1 <
lu| E[y/2(327_, G2 + b)] + 1, which implies the result.

Now, suppose S 7, Gi > \/ 2(3°F | 2 + b). For the conjugate prior v([n, u]) =

n—pand Z < % In the case where —Zlegt < %(Zle G2 +b) set

I B/ RS N
un= 25T, 4D Using Lemma 11 we obtain:
Ff(u)
i G+ b
< | 8uf? (Z +b> In(16]u/2 (th +b> \F% +1)+ 1L
t=1

3.7.1)

In the case where — ZZ;I g > %(Z?zl G2 +b) setn = % and p = % to
obtain:

Fr(u) < 11G]ul (n(u[11G) — 1 +1n [ Y2EYT ) 41 (3.72)
4vb
Combining the expectations of (3.7.1) and (3.7.2) completes the proof. ]
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3.7. Details from Section 3.3

Lemma 11. Suppose L > \/ (V +0b). Let Fr(L) = Eyplexp(vL — v?V) — 1]
with P asin (3.3.3). If L < ¢ (V+b) then

Fi(u) < v/8[ul(V +b) In(16[ul*(V +b)Se([m, pa]) +1) + 1,

where Si([n, u|) = ﬁ m = ﬁ - ﬁ | € [m, =5 such that
< 2(‘/L+b), and v( f” v)dv. If L > < (V + b) then
) < — i (— ) 1 (S ) + 1.
n—n°3G n2 — 133G

where [ng, pi2] C [—%, %] such that py < (V+b)

Proof. The initial part of the analysis is parallel to the analysis of Theorem 3 by
Koolen and Van Erven (2015). Denote by B =V +b. Forv <7 = QB, vl —v2B
is non-decreasing in v. Therefore, for [n, u] C [—%, %] such that . < 7:

1

T 1
Z / T v(v)exp(vL — v*B)dv — 1

5G

1
>—v([n, u]) exp(nL —n*B) — 1,
where v( f #v(v)dv. First suppose that ) < % Take n = 1 — \/%,
which ylelds
v([n, 1)) L 1
> Z ) -1= —
Fr(l)z ———exp| 15— 5 g(m(L)) -1

where g(z) = exp(z — 3 — In (ﬁ)) and m(z) = %. By Hiriart-Urruty
(2006, Theorem 2) we have

Fi(u) < (9(m(u)))" = inf g*(7) + ’Ym*(%

= Infy In(7y) +~(In(
(3.7.3)

Denote by S = ln(ﬁ) and H = 4|u|?>B. Setting the derivative to 0 we find

2H
W (2H exp(S4+13))

that 4 =
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minimizes (3.7.3), where W is the Lambert function.
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Plugging 4 in (3.7.3) gives
H(2W (2H exp(S + 3)) — 1)
\/QH (2H exp(S + 3))

Fi(u)

+1< \/QH(W(2Hexp(S +3)+1

Using W (z) < In(x + 1) (Orabona and Pdl, 2016, Lemma 17) we obtain

Fr(u) < \/QH In(2H exp(S + %) +1) < v/8|ul2BIn(16|u[2B exp(S) + 1)+1.

Now suppose that 1) > % which is equivalent to %GL > B . Then

Fp(L) > 1/([77Zu]) exp((n — 7722G)L) —

The convex conjugate of this lower bound is well known and is an upper bound on
Fx:

« |ul n i — n L
FT(U)Sn_nng(l (n—n2§G> b <V([n,u])>)+1’

which concludes the proof. O

3.7.2 Details From section 3.3.1

Proof. (of Lemma 9) We have

T
Z(wt - U,§t>]

t
T

=E

+[[ulE [ZT: Tall % ]

1
(26, G0) (vr = [[ul])
1 t=1

t=

=R (Jull) + ||ul| RZ <u>

[[ae]]
O
3.8 Regret Analysis for the Improper Prior
Abbreviating By = > Y@ L= Y o ! G5, and C' = =, the predictions
(3.3.2) with the improper prior are given by:
L2 L+2CB L—2CB
Vmexp(iz) <2erf(2f)—erf(;rﬁ>—erf< NG )) a8

2vB
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3.8. Regret Analysis for the Improper Prior

With the predictions in (3.8.1) we can show the following result.

Theorem 12. Suppose g, is a symmetrical random variable with | E[g;]| < G for
all t. The the expected regret of algorithm 1 with the improper prior ‘; dP = ﬁ
satisfies

T T
E[RT(U)]gmax{ME 8 g7 | A|In@ul) @#+1+1]],
t=1 t=1

|u[11G(In(|u|11G n(2)) — 1) + In(2),

T T
23 G +14E |In|1+2,/2) g2 }

t=1 t=1

(3.8.2)

Proof. By Lemma 5, Lemma 6, and Lemma 8 we only have to compute the convex
conjugate of the potential function. The initial part of the analysis is parallel to the
analysis of Theorem 4 by Koolen and Van Erven (2015). Denote by L = — Ethl Jt
andby V = Z;le G2. We do the analysis for L > 0. The analysis for L < 0 is
analogous. We start by considering the case where L < v/2V. We have

Fr(L) > /0E %(exp(—vL —0*V) —1) + /E)G %(exp(—vL — V) = 1)

> — €L — 2V + In(5Ge),

. 1 . T -
where we used exp(x) > 1+ x. Choosing € = sGravay dives — E[D 0, wege] >

E[Fr(L)] > —1—E[ln (1 + NW)}. Now, E[Rr ()] = E[>7, wede — uge] <
E[S"; [ul| L[] +1+E[n (1 +2¢W)] < |u| E[V2V]+1+E[In (1 +2\/W)].

Now consider the case where L > +/2V. Forv < 7 = 2\/’ vL — v%V is non-
decreasing in v. Therefore, for [, u] C [0, %] such that u < 7, we have:

56 1 )
Fr(L) = : m(exp(vL —v*V) —1)dv
T 5G

56 1

#1
>(exp(nL — n?V) — 1)/ ;dv - / ;dv
U 1

=(exp(nL — n*V) —1)In <':;) + In(5Gpu).
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First, supposethatﬁﬁ%. Setp:ﬁandn:ﬁ—ﬁanduseL22\/‘7‘[0
obtain
L? 1 1 L
Fr(L) >exp <4V - 2> In (W) +In <V>
L
NNy 5 U T R S B S
TP\ T2) o) T2t
1/ L 2
Zexp<2<\/ﬁ—l>>—l,

where the last inequality follows by using exp (%(xQ — 1)) >
exp (3(z —1)?)z,-1 > _\/%T/’ and —In(1 — z) > = Write

2

exp <§ <\/%7V— ) ) — 1 = g(m(x)), where g(x) = exp(x) — 1 and
p)

m(x) = ( \/3267 — 1> . By Hiriart-Urruty (2006, Theorem 2) we have

)

= inf yIn(y) — v + —4[ul*V + 2[u|V2V.
720 Y

S

Fr(u) < (g(m(u)))* = ;g% g (v) +ym*(

—_-

(3.8.3)

Setting the derivative to 0 we find that 4 = exp (W (8|u?|V)) minimizes (3.8.3),
where W is the Lambert function. Plugging 4 in (3.8.3) gives

Fi(u) < |ul/SVW (S[u2|V) — 4 + 2[ulv2V.

Using W (x) < In(z + 1) (Orabona and Pdl, 2016, Lemma 17) and dropping the
negative term we obtain

Fi(u) < |ulv8V (\/ln(8|u\2V F1)+1).

Now suppose that 7} > % Using that %L >V, choosing p = %, andn = 55_0—‘/5

G
we obtain
Fr(L) z<exp<<w2§(;”> L)~ 1)in (1 _11>

1
> — | L)—1)In(2).
>(exp(( 1) £ - D2
The convex conjugate of the last expression in (3.8.4) is well known and given by

Fr(u) < [ul11G(In(|ul11G In(2)) — 1) 4 In(2).

(3.8.4)

Combining the above completes the proof. O
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