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CHAPTER 2
The Many Faces of Exponential

Weights in Online Learning

This chapter is based on: Van der Hoeven, D., Van Erven, T., and Kotłowski, W.
(2018). The many faces of exponential weights in online learning. In Proceedings
of the 31st Annual Conference on Learning Theory (COLT), pages 2067–2092.1

Abstract

A standard introduction to online learning might place Online Gradient Descent at its
center and then proceed to develop generalizations and extensions like Online Mirror
Descent and second-order methods. Here we explore the alternative approach of
putting Exponential Weights (EW) first. We show that many standard methods and
their regret bounds then follow as a special case by plugging in suitable surrogate
losses and playing the EW posterior mean. For instance, we easily recover Online
Gradient Descent by using EW with a Gaussian prior on linearized losses, and,
more generally, all instances of Online Mirror Descent based on regular Bregman
divergences also correspond to EW with a prior that depends on the mirror map.
Furthermore, appropriate quadratic surrogate losses naturally give rise to Online
Gradient Descent for strongly convex losses and to Online Newton Step. We further
interpret several recent adaptive methods (iProd, Squint, and a variation of Coin
Betting for experts) as a series of closely related reductions to exp-concave surrogate
losses that are then handled by Exponential Weights. Finally, a benefit of our EW
interpretation is that it opens up the possibility of sampling from the EW posterior
distribution instead of playing the mean. As already observed by Bubeck and Eldan
(2015), this recovers the best-known rate in Online Bandit Linear Optimization.

1The author of this dissertation performed the following tasks: co-deriving the theoretical results
and co-writing the paper.
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2.1 Introduction

Exponential Weights (EW) (Vovk, 1990; Littlestone and Warmuth, 1994) is a method
for keeping track of uncertainty about the best action in sequential prediction tasks.
It is most commonly considered for a finite number of actions in the prediction
with expert advice setting, where each of the actions corresponds to following the
advice of one of a finite number of experts, and in this context it is asymptotically
minimax optimal (Cesa-Bianchi and Lugosi, 2006, Section 2.2). However, in the
present work we mostly consider EW on continuous action spaces in the more
general setting of Online Convex Optimization (Hazan et al., 2016), where we show
that surprisingly many standard methods turn out to be special cases of EW.

EW keeps track of a probability distribution over actions that is updated in each
round of the prediction task by multiplying the probability of each action by a
factor that is exponentially decreasing in the action’s error or loss in that round,
and renormalizing. This type of update is quite flexible: by assigning appropriate
surrogate losses to the actions, it covers any kind of multiplicative probability
updates, including, for instance, those of the Prod algorithm (Cesa-Bianchi et al.,
2007). For best performance, losses often need to be scaled by a positive parameter
called the learning rate, and the algorithm may also be biased towards particular
actions by the choice of its initial distribution, which is called the prior. For
continuous sets of actions, efficient implementations of EW are often restricted
to conjugate priors for which the EW distribution can be analytically computed,
but sampling approximations based on random walks can also provide appealing
trade-offs between computational complexity and prediction accuracy, even for
a single random walk step per round (Narayanan and Rakhlin, 2017; Kalai and
Vempala, 2002).

The usual presentation of Online Convex Optimization would introduce EW as a
special case of Mirror Descent (MD) or Follow-the-Regularized-Leader (FTRL)
with the Kullback-Leibler divergence as the regularizer. However, here we turn
this view on its head and show that all instances of MD based on regular Bregman
divergences (Banerjee et al., 2005) in fact correspond to EW on a continuous set of
actions (Section 2.3.3). In particular, Gradient Descent (GD) comes from using a
Gaussian prior on linearized losses (Section 2.3.2), which is striking because GD has
been contrasted with the Exponentiated Gradient Plus-Minus algorithm (Kivinen
and Warmuth, 1997) that is readily seen to be an instance of EW (Section 2.3.1). In
addition, the unnormalized relative entropy regularizer (Helmbold and Warmuth,
2009), which is normally considered a generalization of EW, turns out to be a special
case of EW as well for a multivariate Poisson prior (Section 2.3.3). Furthermore,
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in Section 2.4 we show that running EW on suitable quadratic approximations
of the losses recovers Gradient Descent for strongly convex losses (Hazan et al.,
2007) and, as already observed by van Erven and Koolen (2016), Online Newton
Step (Hazan et al., 2007). The Vovk-Azoury-Warmuth forecaster would also be an
example of running EW on quadratic losses, but we refer to (Vovk, 2001) for its
analysis, which requires a generalized proof technique (see also the discussion by
Orabona et al. (2015a)). We do consider the recent adaptive iProd, Squint and Coin
Betting methods of Koolen and Van Erven (2015); Orabona and Pál (2016), which
learn the optimal learning rate for prediction with expert advice, and show that
these may also be viewed as running EW after a reduction of the original prediction
task to various closely related surrogate tasks in which the learning rate is just one
of the parameters that does not need to be treated specially (Section 2.5). Finally,
in the context of Bandit Linear Optimization, the SCRiBLe method (Abernethy
et al., 2008) may be viewed as an approximation to EW, and an application of EW
outlined by Bubeck and Eldan (2015) achieves the best-known rate (we provide the
technical details they omit in Section 2.6).

Related Work The diverse applications of EW on a finite number of actions
range, for instance, from boosting (Freund and Schapire, 1997) to differential
privacy (Dwork and Roth, 2014) to multi-armed bandits (Auer et al., 2002), and
many algorithms in computer science can be viewed as special cases of EW (Arora
et al., 2012). EW has also been considered for continuous sets of actions, often
in the context of universal coding in information theory, where the goal is to
sequentially compress a sequence of symbols. In this case, actions parametrize a set
of probability distributions and the loss of an action is the logarithmic loss for the
corresponding probability distribution on the symbol that is being compressed (Cesa-
Bianchi and Lugosi, 2006, Chapter 9). EW (with learning rate 1) then simplifies
to Bayesian probability updating. The choice of prior has received much attention
in this literature, with Jeffreys’ prior being shown to be asymptotically minimax
optimal for exponential families with parameters restricted to suitable bounded
sets (Grünwald, 2007, Chapter 8). Without parameter restrictions, Jeffreys’ prior
is still minimax optimal up to constants for the Bernoulli and multinomial models
(Krichevsky and Trofimov, 1981; Xie and Barron, 2000). Several applications
to other losses are also closely related to the log loss: Online Ridge Regression
corresponds to EW on the squared loss, which matches the log loss for Gaussian
distributions; and Cover’s method for portfolio selection (Cover, 1991), which is
EW on Cover’s loss, may be interpreted as learning a mixture model under the log
loss (Orseau et al., 2017). In general, continuous EW is not restricted to the log loss,
however, and has been considered e.g. for general convex losses (Dick et al., 2014)
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Input: a convex set of distributions P over w, a prior P1 ∈ P and learning rates η1 ≥ η2 ≥ · · · ≥ ηT > 0
Lazy Exponential Weights Greedy Exponential Weights

P̃t+1 = arg min
P

EP
[∑t

s=1 fs(w)
]

+ 1
ηt

KL(P‖P1)

Pt+1 = arg min
P∈P

KL(P‖P̃t+1)

P̃t+1 = arg min
P

EP [ft(w)] + 1
ηt

KL(P‖Pt)

Pt+1 = arg min
P∈P

KL(P‖P̃t+1)

Figure 2.1: The lazy and greedy versions of Exponential Weights

or as a computationally inefficient gold standard for exp-concave losses (Hazan
et al., 2007).

2.2 Exponential Weights

In Online Convex Optimization (OCO) (Shalev-Shwartz, 2011; Hazan et al., 2016)
a learner repeatedly chooses actions wt from a convex setW ⊆ Rd during rounds
t = 1, . . . , T , and suffers losses ft(wt), where ft :W → R is a convex function.
The learner’s goal is to achieve small regret RT (u) =

∑T
t=1 ft(wt)−

∑T
t=1 ft(u)

with respect to any comparator action u ∈ W , which measures the difference
between the cumulative loss of the learner and the cumulative loss it could have
achieved by playing the oracle action u from the start. We will assume the domain
of the losses ft is extended fromW to Rd with convexity of ft being preserved.
This comes without loss of generality as one can always set ft(w) =∞ outsideW ,
but we will use more natural and straightforward extensions throughout the chapter
(e.g. when the ft are linear or quadratic functions).

The central topic of this work is the Exponential Weights (EW) algorithm, which
keeps track of uncertainty over actions expressed by a distribution Pt and comes in
the two flavors shown in Figure 2.1 (our naming follows Zinkevich (2004)), where
we let KL(P‖Q) = EP

[
ln dP

dQ

]
denote the Kullback-Leibler (KL) divergence

between distributions P and Q. The algorithm gets its name from the distributions
P̃t, whose densities have the following exponential forms:

dP̃t+1(w) =
e−ηt

∑t
s=1 fs(w) dP1(w)∫

e−ηt
∑t
s=1 fs(w) dP1(w)

(lazy EW) (2.2.1)

dP̃t+1(w) =
e−ηtft(w) dPt(w)∫
e−ηtft(w) dPt(w)

(greedy EW). (2.2.2)

In the case that P contains all possible distributions over Rd (for which the projec-
tion step becomes void) and the learning rates ηt are constant η1 = · · · = ηT = η,
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both versions of EW are equivalent. In general they differ, and enjoy the following
regret bounds with respect to a potentially randomized comparator drawn from a
comparator distribution Q, which follow from a standard MD analysis (Hazan et al.,
2016) and a reformulation of the standard FTRL analysis that works for distribu-
tions Pt on continuous spaces, which cannot be expressed as the finite-dimensional
vectors that are usually assumed (the proof details are in Section 2.8):

Lemma 1 (EW Regret). Suppose that η1 ≥ η2 ≥ . . . ≥ ηT > 0, and that the
minima that define P̃t and Pt are uniquely achieved. Let Q ∈ P be any comparator
distribution such that KL(Q‖P̃t) <∞ for all t, let {wt ∈ W}Tt=1 be the actions

of any learner, and define η0
def
= η1. Then lazy EW satisfies

Eu∼Q[R(u)] ≤ 1

ηT
KL(Q‖P1)

+
T∑
t=1

{
ft(wt) +

1

ηt−1
lnEPt(w)

[
e−ηt−1ft(w)

]
︸ ︷︷ ︸

“mixability gap”

}
(2.2.3)

and greedy EW satisfies

Eu∼Q[R(u)] ≤ 1

η1
KL(Q‖P1) +

(
1

ηT
− 1

η1

)
max

t=2,...,T
KL(Q‖Pt)

+
T∑
t=1

{
ft(wt) +

1

ηt
lnEPt(w)

[
e−ηtft(w)

]
︸ ︷︷ ︸

“mixability gap”

}
. (2.2.4)

While the predictions wt in Lemma 1 are arbitrary actions fromW , one always
chooseswt to be some function of Pt. A general mapping from Pt towt is called a
substitution function (Vovk, 2001) and is usually designed to give the best bound
on the mixability gap in trial t. Throughout the chapter, we will use the mean
wt = EPt [w] as our substitution function, which is a typical choice, although
alternatives may be better in specific cases (Vovk, 2001). To ensure that wt ∈ W ,
we will also generally assume that P = {P : EP [w] ∈ W}, which is convex.

Bounding the mixability gap is a crucial part of the regret analysis of EW (Vovk,
2001; De Rooij et al., 2014). In the special case that the losses are α-exp-concave
for α > 0 (i.e. if e−αf(w) is concave), the mixability gap for ηt ≤ α is at most 0.
This happens in the following example.

Example 1 (The Krichevsky-Trofimov Estimator). Let W = [0, 1] and let the
loss function be the log loss: ft(w) = −xt ln(w) − (1 − xt) ln(1 − w), where
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xt ∈ {0, 1}. A standard algorithm in this case is the Krichevsky-Trofimov forecaster
wt = (

∑t−1
s=1 xs + 1

2)/t (Cesa-Bianchi and Lugosi, 2006, Chapter 9), which is is
well known to be the mean wt = EPt [w] of non-projected EW with a β(1

2 ,
1
2) prior

and a fixed learning rate ηt = 1. For the log loss, the mixability gap is 0. To bound
the remaining terms in Lemma 1, we choose Q = PT+1, which gives:

T∑
t=1

ft(wt) ≤ EPT+1(w)

[
T∑
t=1

ft(w)

]
+ KL(PT+1‖P1)

= − lnEP1(w)[w
∑T
t=1 xt(1− w)T−

∑T
t=1 xt ]

≤ − ln max
w

{
w
∑T
t=1 xt(1− w)T−

∑T
t=1 xt

}
+ ln(2

√
T )

= min
w

T∑
t=1

ft(w) + ln(2
√
T ),

where the last inequality holds by (Cesa-Bianchi and Lugosi, 2006, Lemma 9.3).

For most regret bounds derived from Lemma 1 the structure of the proof remains
the same: we need both a bound on the mixability gap, and a choice for Q for which
the expected loss under Q together with KL(Q‖P1) can be related to the loss of a
deterministic comparator.

2.3 Linearized Losses

A standard approach in OCO is to lower-bound the convex losses ft by their
tangent at wt, which leads to the following upper bound on the regret in terms
of the linearized surrogate losses `t(w) = 〈w, gt〉, where gt = ∇ft(wt) =

(gt,1, . . . , gt,d)
ᵀ is the gradient at wt:

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

(
`t(wt)− `t(u)

)
. (2.3.1)

2.3.1 Exponentiated Gradient Plus-Minus as Exponential Weights

The Exponentiated Gradient Plus-Minus (EG±) algorithm (Kivinen and Warmuth,
1997) starts with weight vectors w−t = w+

t = (1/d, . . . , 1/d) ∈ Rd, which are
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updated according to

w+
t+1,i =

w+
t,ie
−ηt〈ei,gt〉∑d

j=1(w+
t,je
−ηt〈ej ,gt〉 + w−t,je

ηt〈ej ,gt〉)
,

w−t+1,i =
w−t,ie

ηt〈ei,gt〉∑d
j=1(w+

t,je
−ηt〈ejgt〉 + w−t,je

ηt〈ej ,gt〉)
,

and predicts by wt ∈ {w : ‖w‖1 ≤ 1} with components wt,i = w+
t,i − w

−
t,i.

This is readily seen to be the mean wt = EPt [w] of EW (without projections)
on the linearized losses (2.3.1) with a discrete uniform prior P1 on the standard
basis vectors e1, . . . , ed, which form the corners of the probability simplex, and
their negations −e1, . . . ,−ed. The regular Exponentiated Gradient algorithm is
recovered by initializing w−1 = (0, . . . , 0), which corresponds to placing prior
mass only on e1, . . . , ed. Kivinen and Warmuth (1997) also extend the algorithm
to scale up the domain by a factor M > 0, which corresponds to a discrete prior on
Me1, . . . ,Med for EG and also on −Me1, . . . ,−Med for EG±. Hence we may
analyze these methods using Lemma 1, which leads to the following regret bound
for EG± (see Section 2.9):

Theorem 1 (EG± as EW). Suppose ‖gt‖∞ ≤ G for all t. Then the regret of EG±

for scale factor M > 0 and constant learning rate ηt =
√

2 ln(2d)
TM2G2 satisfies

RT (u) ≤ GM
√

2T ln(2d) for all u such that ‖u‖1 ≤M .

2.3.2 Gradient Descent as Exponential Weights

The prior of EG± is adapted to comparators u with small L1-norm. How do
we change the prior to favor comparators with small L2-norm? A natural and
computationally efficient choice is to use a Gaussian prior P1 = N (w1, σ

2I),
where I is the identity matrix. Then it turns out that all EW distributions Pt are
Gaussian with the Gradient Descent (GD) predictions as their means:

Theorem 2 (Gradient Descent as EW). Let P = {P : EP [w] ∈ W}. Then, for
Gaussian prior P1(w) = N (w1, σ

2I), lazy and greedy EW with learning rates ηt
on the linearized losses (2.3.1) yield Gaussian distributions P̃t = N (w̃t, σ

2I) and
Pt = N (wt, σ

2I) with the same covariance as the prior. The means w̃t and wt

coincide with lazy and greedy GD (Figure 2.2), except that the learning rates in GD
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Input: Convex setW , and learning rates η1 ≥ η2 ≥ . . . ≥ ηT > 0
Lazy Gradient Descent Greedy Gradient Descent

w̃t+1 = w1 − ηt
∑t
s=1 gs

wt+1 = arg min
w∈W

1
2‖w − w̃t+1‖22

w̃t+1 = wt − ηtgt
wt+1 = arg min

w∈W

1
2‖w − w̃t+1‖22

Figure 2.2: The lazy and greedy versions of Gradient Descent

are scaled to σ2ηt by the prior variance σ2. Moreover, Lemma 1 directly implies:

RT (u) ≤ ‖u−w1‖22
2σ2ηT

+
σ2

2

T∑
t=1

ηt−1‖gt‖22 (lazy GD)

RT (u) ≤ maxt ‖u−wt‖22
2σ2ηT

+
σ2

2

T∑
t=1

ηt‖gt‖22 (greedy GD).

We note that in this case the parametrization of EW is redundant, because changing
the prior variance σ2 has the same effect on the predictionswt and the regret bounds
as scaling all ηt.

Proof. P̃t = N (w̃t, σ
2I) may be verified analytically from (2.2.1) and (2.2.2). The

fact that the projections Pt onto P preserve Gaussianity with the same covariance
matrix is a property of projecting a member of an exponential family onto a set of
distributions defined by a convex constraint on their means. (This follows from
Lemma 3 in Section 2.10 or see (van Erven and Koolen, 2016, Lemma 9) for the
Gaussian case.) The regret bounds follow by taking Q = N (u, σ2I), for which
KL(Q‖Pt) = 1

2σ2 ‖u−wt‖22, and evaluating the mixability gap in closed form.

2.3.3 Mirror Descent and FTRL as EW

The fact that Gradient Descent is an instance of EW raises the question of whether
other instances of MD or FTRL are special cases of EW as well. Let F ∗(w) =

supθ〈w,θ〉 − F (θ) denote the convex conjugate of F , and let BF ∗(u‖w) =

F ∗(u)−F ∗(w)−∇F ∗(w)ᵀ(u−w) denote the corresponding Bregman divergence.
Then MD and FTRL are defined in Figure 2.3 for Legendre functions F (θ) on
Rd (Cesa-Bianchi and Lugosi, 2006). We consider exponential families that take
the form E = {Pθ | dPθ(w) = e〈θ,w〉−F (θ)dK(w),θ ∈ Θ} for a nonnegative
carrier measure K, cumulant generating function F (θ) = ln

∫
e〈θ,w〉dK(w) and

parameter space Θ = {θ | F (θ) <∞} ⊂ Rd. These are called regular if Θ is an
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Input: Legendre function F , convex setW , and learning rates η1 ≥ η2 ≥ . . . ≥ ηT > 0
FTRL / Lazy Mirror Descent Greedy Mirror Descent

w̃t+1 = arg min
w

∑t
s=1〈w, gs〉+ 1

ηt
BF∗(w‖w1)

wt+1 = arg min
w∈W

BF∗(w‖w̃t+1)

w̃t+1 = arg min
w
〈w, gt〉+ 1

ηt
BF∗(w‖wt)

wt+1 = arg min
w∈W

BF∗(w‖w̃t+1)

Figure 2.3: The lazy and greedy versions of Mirror Descent. Lazy MD is usually called
FTRL.

open set. We then start with the following relation between MD and EW, which is
proved in Section 2.10:

Theorem 3 (Mirror Descent as EW). Suppose F is the cumulant generating
function of a regular exponential family E . Then the lazy and greedy versions
of MD predict with the means wt = EPt [w] of lazy and greedy EW on the
linearized losses (2.3.1) with the same ηt, prior Pθ1 for θ1 = ∇F ∗(w1) and
P = {P : EP [w] ∈ W}.

To answer our question, we therefore need to know whether, for any Legendre func-
tion F ∗, the convex conjugate (F ∗)∗ = F corresponds to the cumulant generating
function of some exponential family, which means we need to find a corresponding
carrier K. Nonconstructive existence of such K has been studied by Banerjee
et al. (2005, Theorem 6), who show that there is in fact a bijection between regular
Bregman divergences and regular exponential families, where regular Bregman
divergences based on F ∗ are defined to be those for which eF (θ) is a continuous,
exponentially convex2 function such that Θ = {θ | F (θ) <∞} is open and F is
strictly convex.

There is no easy general procedure to construct the corresponding carrier K for
a given Legendre function F ∗. However, for the Gradient Descent example from
Section 2.3.2 we see that F ∗(w) = 1

2σ2 ‖w‖22 is the convex conjugate of the
cumulant generating function for K(w) = N (0, σ2I). We also give another
example:

Example 2 (Unnormalized Relative Entropy). Consider MD with regularization
based on the unnormalized relative entropy BF ∗(w‖u) =

∑d
i=1(wi ln wi

ui
− wi +

ui) for w,u ∈ Rd+, which is the Bregman divergence generated by F ∗(w) =∑d
i=1wi(ln(wi)−1) (Cesa-Bianchi and Lugosi, 2006). We have F (θ) =

∑d
i=1 e

θi .
Interestingly, the exponential family with this cumulant generating function is the

2Exponentially convex in the sense of Banerjee et al. (2005, Definition 7).
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Input: Convex setW and learning rate η > 0
Lazy EW Gaussian prior quadratic loss Greedy EW Gaussian prior quadratic loss

Σ−1t+1 = Σ−1t + ηMt

w̃t+1 = w̃t − ηΣt+1gt

wt+1 = arg min
w∈W

(w − w̃t+1)ᵀΣ−1t+1(w − w̃t+1)

Σ−1t+1 = Σ−1t + ηMt

w̃t+1 = wt − ηΣt+1gt

wt+1 = arg min
w∈W

(w − w̃t+1)ᵀΣ−1t+1(w − w̃t+1)

Figure 2.4: The means and covariances of both versions of Exponential Weights with a
multivariate normal prior and a constant learning rate η run on the quadratic surrogate
loss (2.4.1)

set of Poisson distributions, extended i.i.d. to d dimensions. To see this for d = 1,
note that if we start with the usual parametrization of Poisson, we have

Pλ(w) = e−λ
λw

w!
=

1

w!
e−λ+w lnλ on w ∈ {0, 1, 2, . . .},

for which the natural parameter is θ = lnλ and we see that the cumulant
generating function is F (θ) = λ = eθ. Thus, EW with the product prior
P1(w) =

∏d
i=1 Pλi(wi) corresponds to MD with unnormalized relative entropy,

where we need to set (λ1, . . . , λd) = exp(θ1) = exp(∇F ∗(w1)) = w1 to match
the starting point of MD: EP1 [w] = w1. Note that in this case the EW distributions
Pt are discrete.

2.4 Quadratic Losses

In this section we assume that the losses ft satisfy quadratic lower bounds:

ft(w)− ft(wt) ≥ 〈w−wt, gt〉+
1

2
(w−wt)

ᵀMt(w−wt) =: `t(w), (2.4.1)

where Mt is a positive semi-definite matrix. Generalizing the results from Sec-
tion 2.3, EW with Gaussian prior on the surrogate loss `t yields explicitly com-
putable Gaussian distributions Pt (see also van Erven and Koolen, 2016; Koolen,
2016):

Theorem 4. Let P1 = N (w1,Σ1). Both versions of the Exponential Weights
algorithm, run on `t with learning rate η and P = {P : EP [w] ∈ W}, yield a mul-
tivariate normal distribution Pt+1 = N (wt+1,Σt+1) with mean and covariance
matrix given in Figure 2.4. Furthermore, Lemma 1 implies that for all u ∈ W both
versions of EW satisfy:

RT (u) ≤ 1

2η
(w1 − u)ᵀΣ−1

1 (w1 − u) +
η

2

T∑
t=1

gᵀt Σt+1gt. (2.4.2)
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The proof of Theorem 4 in Section 2.11.1 is a straightforward generalization of
Theorem 2 for constant learning rate ηt = η, which is recovered with Mt = 0.
Like in Theorem 2, the parametrization by η and σ2 is redundant in that only the
product ησ2 affects the predictions wt or the bound (2.4.2).

2.4.1 Gradient Descent: Quadratic Approximation of Strongly Con-
vex Losses

For α-strongly convex loss functions, (2.4.1) holds withMt = αI . The standard
approach for these loss functions is to use greedy Gradient Descent with a time-
varying learning rate ηt = 1/(αt) (Hazan et al., 2007). Interestingly, greedy GD
with the closely related choice ηt = 1/( 1

ησ2 + αt) turns out to be a special case
of greedy EW with fixed learning rate η and prior P1 = N (0, σ2I). Applying
Theorem 4 results in the following corollary, proved in Section 2.11.2:

Corollary 4.1. Suppose ‖u‖2 ≤ D and ‖gt‖2 ≤ G. Then the regret of both
versions of the Exponential Weights algorithm with prior N (0, σ2I) and constant
learning rate η, run on the surrogate loss (2.4.1) withMt = αI , satisfies:

RT (u) ≤ G2

2α
ln

(
1
ησ2 + αT

1
ησ2 + α

)
+

G2

2
ησ2 + 2α

+
D2

2ησ2
.

The standard learning rate and corresponding regret bound for GD (Hazan et al.,
2007) correspond to the limiting case ησ2 → ∞. Formally speaking, this case
is not covered here, but for η → ∞ EW reduces to Follow-the-Leader (on the
surrogate loss (2.4.1)), and taking σ2 → ∞ would lead to EW with an improper
prior, which becomes a proper EW posterior P2 after one round.

2.4.2 Online Newton Step: Quadratic Approximation of Exp-concave
Losses

For α-exp-concave loss functions, (2.4.1) holds with Mt = βgtg
ᵀ
t , where

β = 1
2 min{ 1

4GB , α}, assuming ‖gt‖2 ≤ G and B = maxw,u∈W ‖w − u‖2
(Hazan et al., 2007, Lemma 3). Running Exponential Weights on `t(w) with prior
N (0, σ2I) leads to the Online Newton Step algorithm (Hazan et al., 2007) with the
following regret bound, shown in Section 2.11.3:

Corollary 4.2. Suppose ‖u‖2 ≤ D and ‖gt‖2 ≤ G. Then the regret of both
versions of the Exponential Weights algorithm with prior N (0, σ2I) and learning
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rate η, run on the surrogate loss (2.4.1) withMt = βgtg
ᵀ
t , satisfies:

RT (u) ≤ d

2β
ln

(
1 +

ησ2βG2T

d

)
+

D2

2ησ2
. (2.4.3)

The results of Hazan et al. (2007) correspond to setting ησ2 = βD2, together with
some simplifying upper bounds on (2.4.3).

2.5 Adaptivity by Reduction to Exponential Weights

In this section we show how several recent adaptive methods in the prediction with
experts setting – namely iProd (Koolen and Van Erven, 2015), Squint (Koolen and
Van Erven, 2015) and a variation of Coin Betting for experts (Orabona and Pál,
2016) –, whose original analyses seem unrelated at first sight, can all be viewed as
applying exponential weights after reductions of the original OCO task to various
closely related surrogate OCO tasks. The known regret bounds for these methods
are also recovered from the reductions upon plugging in regret bounds for EW in
the surrogate tasks.

2.5.1 Reduction for iProd

The experts setting consists of linear losses ft(w) = 〈w, gt〉 over the simplex
W = {w : wi ≥ 0,

∑d
i=1wi = 1}, with gt,i ∈ [0, 1]. The instantaneous regret in

round t with respect to expert i is rt(i) = ft(wt)−ft(ei) andRT (i) =
∑T

t=1 rt(i)

is the total regret. iProd achieves a second-order regret bound in terms of the
data-dependent quantity VT (i) =

∑T
t=1 rt(i)

2, which is much smaller than the
worst-case regret in many common cases (Koolen et al., 2016).

In the surrogate OCO task for iProd, predictions take the form of joint distributions
Pt on (η, i) for η ∈ [0, 1] and i ∈ {1, . . . , d}. These map back to predictions in the
original task via

wt =
EPt [ηei]
EPt [η]

, (2.5.1)

which is like the marginal mean of Pt on experts, except that it is tilted to favor
larger η. The surrogate loss in the surrogate task is

`t(η, i) = − ln (1 + ηrt(i)) , (2.5.2)

and our aim will be to achieve small mix-regret with respect to any comparator
distribution Q on (η, i), which we define as S(Q) =

∑T
t=1− lnEPt

[
e−`t(η,i)

]
−
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EQ
[∑T

t=1 `t(η, i)
]
. The mix-regret allows exponential mixing of predictions

according to Pt just like for exp-concave losses, so there is no mixability gap to
pay. Exponential weights with constant learning rate 1 on the losses `t therefore
achieves S(Q) ≤ KL(Q‖P1) for any Q.3 The resulting predictionswt are those of
the iProd algorithm. As shown in Section 2.12.1, they achieve the following regret
bound, which depends on the surrogate regret of EW:

Theorem 5 (iProd Reduction to EW). Restrict the domain for η to [0, 1
2 ]. Then any

choice of Pt in the surrogate OCO task defined above induces regret bounded by

EQ[η]

T∑
t=1

ft(wt)− EQ
[
η

T∑
t=1

ft(ei)
]
≤ EQ

[
η2VT (i)

]
+ S(Q) (2.5.3)

for any Q on (η, i) in the original prediction with expert advice task.

In particular, if we use EW in the surrogate OCO task with learning rate 1 and any
product prior P1 = γ × π for γ a distribution on η ∈ [0, 1

2 ] and π a distribution on
i, and we take as comparator Q = γ(η | η ∈ [η̂/2, η̂])× π̂ for any η̂ ∈ [0, 1

2 ] and
distribution π̂ on i that can both depend on all the losses, then

Eπ̂
[
RT (i)

]
≤ 2η̂ Eπ̂[VT (i)] +

2

η̂

(
KL(π̂‖π)− ln γ([η̂/2, η̂])

)
. (2.5.4)

Crucially, the algorithm does not need to know η̂ in advance, but (2.5.4) still holds
for all η̂ simultaneously. To minimize (2.5.4) in η̂ we can restrict ourselves to
η̂ ≥ 1/

√
T without loss of generality, so that a prior density dγ(η)/dη ∝ 1/η

on [1/
√
T , 1/2] achieves − ln γ([η̂/2, η̂]) = O(ln lnT ). After optimizing η̂, this

leads to an adaptive regret bound of

Eπ̂
[
RT (i)

]
= O

(√
Eπ̂[VT (i)]

(
KL(π̂‖π) + ln lnT

))
for all π̂, (2.5.5)

which recovers the results of Koolen and Van Erven (2015) (see also (Koolen,
2015)).

2.5.2 Reduction for Squint

Running EW with a continuous prior on η for the iProd surrogate losses from (2.5.2)
requires evaluating a t-degree polynomial in η in every round, and therefore leads to

3This follows e.g. from Lemma 1 by subtracting
∑
t ft(wt) on both sides of (2.2.3) and rearran-

ging.
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O(T 2) total running time. This may be reduced to O(T lnT ) by using a prior γ on
an exponentially spaced grid of η (as in MetaGrad (van Erven and Koolen, 2016)),
but in the experts setting even the extra lnT factor in run time can be avoided. This
is possible by moving the ‘prod bound’ that occurs in the proof of Theorem 5, from
the analysis into the algorithm by replacing the surrogate loss from (2.5.2) by the
slightly larger surrogate loss

`t(η, i) = −ηrt(i) + η2rt(i)
2, (2.5.6)

which turns iProd into Squint. Because this surrogate is quadratic in η, it becomes
possible to run EW in the resulting surrogate OCO task and evaluate the resulting
integrals over η in closed form for suitable choices of the prior on η, so that Squint
has O(T ) run time (see Koolen and Van Erven (2015) for a detailed discussion of
the choice of prior). Moreover, as shown in Section 2.12.2, it satisfies exactly the
same guarantees as iProd.

2.5.3 Reduction for Coin Betting

If we are willing to give up on second-order bounds, but still want to learn η,
then there is another way to obtain an algorithm with O(T ) run time by bounding
the iProd surrogate loss, which leads to a variant of the Coin Betting algorithm
for experts of Orabona and Pál (2016). Our presentation and analysis are very
different from (Orabona and Pál, 2016), but we obtain exactly the same regret
bound for essentially the same algorithm, and we can explain some design choices
that required clever insights by Orabona and Pál (2016), as natural consequences of
running EW in the surrogate OCO task that we end up with.

The idea is to split the learning of η ∈ [0, 1] and i into separate steps: for each i, we
restrict Pt(η | i) to be a point mass on some ηit, and we will choose ηit to achieve
small regret for the surrogate loss

`it(η) = −1 + rt(i)

2
ln

1 + η

2
− 1− rt(i)

2
ln

1− η
2
− ln 2,

which upper bounds (2.5.2) by convexity of the negative logarithm. We then
plug in the choices of ηit in (2.5.2) and learn i for the resulting surrogate losses
˜̀
t(i) = − ln(1 + ηitrt(i)). For η ∈ [0, 1] and π̂ a distribution on i, let

SiT (η) =
T∑
t=1

`it(η
i
t)−

T∑
t=1

`it(η),

S̃T (π̂) =

T∑
t=1

− lnEi∼Pt
[
e−

˜̀
t(i)
]
− Eπ̂

[ T∑
t=1

˜̀
t(i)
]
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be the mix-regret in the two surrogate OCO tasks. (Notice that in SiT the mix-regret
has collapsed to the ordinary regret, because we are restricting ourselves to play
point masses on η.) Also letR+

T (i) = max{RT (i), 0} be the nonnegative part of
the regret, and define B(x‖y) = x ln x

y + (1− x) ln 1−x
1−y to be the Kullback-Leibler

divergence between two Bernoulli distributions, which satisfies B(x‖y) ≥ 2(x−y)2

by Pinsker’s inequality. Then this reduction gives the following regret bound, proved
in Section 2.12.3:

Theorem 6 (Coin Betting Reduction to EW). Any choice of distributions Pt on
i and learning rates ηit in the surrogate OCO task defined above induces regret
bounded by

Eπ̂
[
B
(

1
2 +

R+
T (i)
2T ‖

1
2

)]
≤ 1

T

(
Eπ̂
[
SiT

(
R+
T (i)
T

)]
+ S̃T (π̂)

)
for any π̂ on i

(2.5.7)
in the original prediction with expert advice task.

In particular, if we use EW with learning rate 1 and prior π on i for the losses
˜̀
t, and for the losses `it we let ηit be the mean of lazy EW with learning rate 1

and with prior on η ∈ [−1,+1] such that 1+η
2 has a beta-distribution β(a, a) with

a = T
4 + 1

2 and with projections onto P = {P | EP [η] ∈ [0, 1]}, then

Eπ̂ [RT (i)] ≤
√

3T (KL(π̂‖π) + 3) for any π̂ on i. (2.5.8)

Compared to (2.5.5), (2.5.8) avoids a ln lnT term, but it has lost the benefits of the
second-order factor Eπ̂[VT (i)] ≤ T . This may be explained by its upper bound
`it(η) ≥ `t(η, i), which is tight only in the extreme case that rt(i) ∈ {−1,+1}.

The Resulting Coin Betting Algorithm EW on the losses `it with the (conjug-
ate) β(a, a) prior is a generalization of the Krichevsky-Trofimov estimator (see
Example 1) and its mean has the closed form Rt−1(i)

t−1+2a . Lazily projecting onto
P then simply amounts to clipping at 0 (by convexity of KL-divergence in its
first argument, which implies that the constraint EP [η] ≥ 0 will be satisfied with
equality when we project from a distribution with negative mean). This means
that ηit = max

{
Rt−1(i)
t−1+2a , 0

}
. By (2.5.1) the Coin Betting algorithm from the the-

orem predicts with weights wt,i obtained by normalizing the unnormalized weights
w̃t,i = p̃t(i)η

i
t, where p̃t(i) is the unnormalized probability Pt(i) of EW on the
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losses ˜̀
t, which recursively satisfies

p̃t(i) :=π(i)

t−1∏
s=1

(1 + ηisrs(i)) = p̃t−1(i) + w̃t−1,irt−1(i) = . . .

=π(i) +

t−1∑
s=1

w̃s,irs(i).

Interestingly, Orabona and Pál (2016) interpret the unnormalized EW probabilities
p̃t(i) as the Wealth for expert i that is achieved by a gambler.

The interpretation in Theorem 6 explains three design choices by Orabona and Pál
(2016): first, their choice of potential function, which naturally arises in our proof
when we bound the regret SiT (R+

T (i)/T ) for EW using Lemma 1. Second, the
choice for a, which in the original analysis comes from defining a shifted potential
function, is simply specifying a prior with most mass in a region of order 1/

√
T

around η = 0. And, third, the clipping of the unnormalized weights w̃t,i to 0 when
Rt−1(i) < 0, which in our presentation happens automatically because the learning
rate ηit is projected to be 0 if it would otherwise become negative. Defining a
prior on positive learning rates directly would be possible in theory, but not with a
conjugate prior, so the computational efficiency of the algorithm is made possible
by the projections.

There is one slight difference between the algorithm we obtain here and the original
Coin Betting algorithm of Orabona and Pál (2016): in the original method the
instantaneous regrets are clipped to max{rt(i), 0} whenRt−1(i) < 0, which our
method does not do. Apparently there is some amount of freedom in the design of
this type of algorithm.

2.6 Online Linear Optimization with Bandit Feedback

A benefit of the EW interpretation of MD is that it opens up the possibility of
sampling from the EW posterior distribution instead of playing the mean. Here
we show how this option can be leveraged to obtain an algorithm for online linear
optimization with bandit feedback (Dani et al., 2008; Abernethy et al., 2008), which
recovers the best known rate O(d

√
T lnT ). A proof of this fact has already been

outlined by Bubeck and Eldan (2015), but here we fill in the technical details.

The linear bandit setting consists of linear losses ft(w) = 〈w, gt〉 ∈ [−1,+1],
but instead of seeing the vectors gt we only observe ft(wt) for the algorithm’s
choice wt. The algorithm can randomize its choice wt, and gt is fixed before
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the outcome of this randomization. The goal is to minimize the expected regret
E[RT (u)], where the expectation is with respect to the algorithm’s randomness.

We consider the EW algorithm with fixed learning rate η and uniform prior distribu-
tion P1 overW . In each round t, after observing ft(wt) = 〈wt, gt〉, the algorithm
constructs a random, unbiased estimate g̃t of the loss vector gt and uses this estim-
ate to update Pt to Pt+1. It is easy to verify that, for each t, Pt is a member of the
exponential family with cumulant generating function F (θ) = ln

∫
W e〈w,θ〉 dw.

At trial t, the algorithm sampleswt ∼ Qt, whereQt = (1−γ)Pt+γR is a mixture
of the EW distribution Pt and a fixed “exploration” distribution R, chosen to be
John’s exploration (Bubeck et al., 2012). Using that the convex conjugate of F is
a universal O(d)-self concordant barrier onW (Bubeck and Eldan, 2015), it can
be shown that, when η and γ are appropriately chosen, this algorithm achieves
expected regret of order O(d

√
T lnT ) (see Section 2.13).

It is interesting to compare with the SCRiBLe algorithm (Abernethy et al., 2012),
which replaces EW by MD. By the results of Section 2.3.3, this is an essentially
equivalent approach, except that SCRiBLe employs a sampling strategy based
on the spectrum of the Hessian of F ∗, without reference to the EW distribution,
and achieves a regret bound that is suboptimal in d. This shows that the EW
interpretation of MD is clearly beneficial in the bandit setting.

2.7 Discussion

We conclude with several remarks: first, we point out that there may be computa-
tional reasons to avoid defining the prior directly on the domainW of interest: as
shown for instance in Sections 2.3.2 and 2.4, defining a Gaussian prior on all of Rd
and then projecting the mean ontoW can be computationally more efficient. In the
context of sampling from the EW distribution, discussed in Section 2.6, this might
also make sense if we project onto the alternative (smaller) set of distributions
P = {P | P (W) = 1} ⊂ {P | EP [w] ∈ W} that are supported on W , which
amounts to conditioning onW . Second, there seems to be a discrepancy between
the body of work for the log loss cited in the introduction, which strongly suggests
using Jeffreys’ prior, and the uniform prior suggested in Section 2.6 in the context
of the universal barrier.

2.8 Proof of Lemma 1 from Section 2.2

Proof. In the following we make use of the generalized Pythagorean inequality for
Kullback-Leibler divergence (Csiszár, 1975): for Pt = arg minP∈P KL(P‖P̃t)
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and any Q ∈ P:

KL(Q‖P̃t) ≥ KL(Q‖Pt) + KL(Pt‖P̃t). (2.8.1)

For greedy EW we have

1

ηt

(
KL(Q‖Pt)−KL(Q‖Pt+1)

)
≥ 1

ηt

(
KL(Q‖Pt)−KL(Q‖P̃t+1)

)
(from (2.8.1))

= −EQ[ft(w)]− 1

ηt
lnEPt

[
e−ηtft(w)

]
(from (2.2.2))

in any trial t. Summing over trials gives:

T∑
t=1

−EQ[ft(w)]− 1

ηt
lnEPt

[
e−ηtft(w)

]
≤

T∑
t=1

1

ηt

(
KL(Q‖Pt)−KL(Q‖Pt+1)

)
=

1

η1
KL(Q‖P1)− 1

ηT
KL(Q‖PT+1)

+

T∑
t=2

KL(Q‖Pt)
(

1

ηt
− 1

ηt−1

)
≤ 1

η1
KL(Q‖P1) + max

t=2,...,T
KL(Q‖Pt)

(
1

ηT
− 1

η1

)
.

Rearranging the terms and adding
∑T

t=1 ft(wt) on both sides results in (2.2.4).

We now proceed with the proof of lazy EW, starting from:

− 1

ηt−1
lnEPt [e−ηt−1ft(w)] (2.8.2)

= min
P

{
EP [ft(w)] +

1

ηt−1
KL(P‖Pt)

}
≤ EPt+1 [ft(w)] +

1

ηt−1
KL(Pt+1‖Pt)

≤ EPt+1 [ft(w)] +
1

ηt−1
KL(Pt+1‖P̃t)−

1

ηt−1
KL(Pt‖P̃t), (2.8.3)

where the last inequality is from the Pythagorean inequality (2.8.1) applied with
Q = Pt+1. By (2.2.1):

ln
dP̃t(w)

dP1(w)
= −ηt−1

t−1∑
s=1

fs(w)− lnEP1

[
e−ηt−1

∑t−1
s=1 fs(w)

]
,
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which gives:
1

ηt−1
KL(Pt+1‖P̃t)−

1

ηt−1
KL(Pt‖P̃t)

=
1

ηt−1
KL(Pt+1‖P1)− 1

ηt−1
KL(Pt‖P1)

+ EPt+1

[ t−1∑
s=1

fs(w)

]
− EPt

[ t−1∑
s=1

fs(w)

]
.

Plugging this into (2.8.3) and using ηt ≤ ηt−1 results in:

− 1

ηt−1
lnEPt [e−ηt−1ft(w)] ≤ 1

ηt
KL(Pt+1‖P1)− 1

ηt−1
KL(Pt‖P1)

+ EPt+1

[ t∑
s=1

fs(w)

]
− EPt

[ t−1∑
s=1

fs(w)

]
.

Summing over trials makes the terms on the right-hand side telescope and gives:
T∑
t=1

− 1

ηt−1
lnEPt [e−ηt−1ft(w)] ≤ 1

ηT
KL(PT+1‖P1) + EPT+1

[ T∑
t=1

ft(w)

]

= min
P∈P

{
EP
[ T∑
t=1

ft(w)

]
+

1

ηT
KL(P‖P1)

}

≤ EQ
[ T∑
t=1

ft(w)

]
+

1

ηT
KL(Q‖P1),

where the equality expresses an equivalent way to define lazy EW. Rearranging the
terms and adding

∑T
t=1 ft(wt) on both sides results in (2.2.3).

2.9 Proof of Theorem 1

Proof. Rather than scaling canonical vectors ei, i = 1, . . . , d and the comparator u
by M , we scale the loss vectors by defining g′t = Mgt, so that the losses remain the
same: 〈ei, g′t〉 = 〈Mei, gt〉 for all i and all t. Let w1 = (w+

1 ,w
−
1 ), and let w+

t ,
w−t be the result of running EG plus-minus on g′t. For any u with

∑2d
i=1 ui = 1

and ui ≥ 0 invoking Lemma 1 gives:
T∑
t=1

〈wt − u, g′t〉 ≤
1

η
KL(u‖w1) +

T∑
t=1

〈w+
t , g

′
t〉 − 〈w−t , g′t〉

+
1

η
ln
( d∑
i=1

(w+
t,ie
−ηt〈ei,g′t〉 + w−t,ie

ηt〈ei,g′t〉)
)
. (2.9.1)
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The first term on the right-hand side of (2.9.1) can be bounded by:

max
u:
∑2d
i=1 ui=1, ui≥0

KL(u‖w1) = ln(2d).

To bound the second term on the right-hand side of (2.9.1), we make use of Hoeffd-
ing’s Lemma (Cesa-Bianchi and Lugosi, 2006, Lemma A.1), which together with
|〈ei, g′t〉| ≤MG gives:

T∑
t=1

〈w+
t , g

′
t〉−〈w−t , g′t〉+

1

η
ln
( d∑
i=1

(w+
t,ie
−ηt〈ei,g′t〉+w−t,ie

ηt〈ei,g′t〉)
)
≤ ηM2G2

2
.

Summing over trials results in a bound on the regret:

T∑
t=1

〈wt − u, g′t〉 ≤
ln(2d)

η
+ η

TM2G2

2
.

Plugging in the optimal η =
√

2 ln(2d)
TM2G2 yields the desired result.

2.10 Proof of Theorem 3

Before proving the theorem, we need two lemmas:

Lemma 2 (Banerjee et al. (2005); Nielsen and Nock (2010)). The KL divergence
between two members, P and Q, of the same regular exponential family E with
cumulant generating function F can be expressed by the Bregman divergence
between their natural parameters, θP and θQ, or their expectation parameters, µP
and µQ. The first Bregman divergence is generated by the cumulant generating
function F and the second Bregman divergence is generated by the convex conjugate
of the cumulant generating function F ∗:

KL(P‖Q) = BF (θQ‖θP ) = BF ∗(µP ‖µQ).

Lemma 3. (Ihara, 1993, Theorem 3.1.4) Let µ be arbitrary and define P = {P :

EP [w] = µ}. Then, for any member Q of an exponential family E ,

min
P∈P

KL(P‖Q)

is achieved by P ∈ E such that EP [w] = µ, provided such a P exists.
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Proof of Theorem 3. Let wt be the weights produced by the greedy version of MD.
Then

min
P∈P

{
EP [〈w, gt〉] +

1

ηt
KL(P‖Pt)

}
= min
µ∈W

min
P :EP [w]=µ

{
EP [〈w, gt〉] +

1

ηt
KL(P‖Pt)

}
= min
µ∈W

min
P∈E :EP [w]=µ

{
〈µ, gt〉+

1

ηt
KL(P‖Pt)

}
,

where in the second step we can restrict to minimization over E by Lemma 3.
Introducing the short-hand notation µP = EP [w], we thus get for the greedy
version of EW:

Pt+1 = arg min
P∈E:µP∈W

{
〈µP , gt〉+

1

ηt
KL(P‖Pt)

}
= arg min
P∈E:µP∈W

{
〈µP , gt〉+

1

ηt
BF ∗(µP ‖µPt)

}
,

where we used Lemma 2. But the last expression coincides with the definition of
the greedy MD weight update, and since it applies to all t, we have µPt+1 = wt+1

for all t, provided µP1 = w1 (which holds by assumption). An analogous argument
can be made to show the equivalence of the lazy versions of MD and EW.

2.11 Proofs for Section 2.4

2.11.1 Proof of Theorem 4

Proof. P̃t = N (w̃t,Σt) may be verified analytically from (2.2.1) and (2.2.2). The
fact that projections Pt onto P preserve Gaussianity with the same covariance
matrix follows from Lemma 9 in van Erven and Koolen (2016). Lemma 1 gives a
bound on the regret w.r.t. randomized forecaster Q = N (u,ΣQ):

T∑
t=1

`t(wt)−
T∑
t=1

EQ[`t(w)] ≤ 1

η
KL(Q‖P1) +

T∑
t=1

`t(wt) +
1

η
lnEPt

[
e−η`t(w)

]
.

The KL divergence between two Gaussians is given by (Ihara, 1993, Theorem
1.8.2):

KL(Q‖P1) =
1

2
(ln

(
det(Σ1)

det(ΣQ)

)
+ Tr(ΣQΣ−1

1 ) + (u−w1)ᵀΣ−1
1 (u−w1)− d).
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The mixability gap can be evaluated in closed form by calculating the Gaussian
integral:

lnEPt
[
eη(`t(wt)−`t(w))

]
=
η2

2
gᵀt Σt+1gt −

1

2
ln

(
det(Σt)

det(Σt+1)

)
.

Also, the expectation of the instantaneous regret can be computed exactly:

`t(wt)− EQ[`t(w)] = `t(wt)− `t(u)− 1

2
Tr(ΣQMt).

Summing the above over the trials, we get the following upper bound on the regret:

T∑
t=1

`t(wt)−
T∑
t=1

`t(u) ≤ η
T∑
t=1

gᵀt Σt+1gt

+
ln
(

det(ΣT+1)
det(ΣQ)

)
+ Tr(ΣQΣ−1

T+1)− d+ (w1 − u)ᵀΣ−1
1 (w1 − u)

2η
,

which holds for all ΣQ. By plugging in the optimal value ΣQ = ΣT+1, the bound
simplifies to:

T∑
t=1

`t(wt)−
T∑
t=1

`t(u) ≤ 1

2η
(w1 − u)ᵀΣ−1

1 (w1 − u) +
η

2

T∑
t=1

gᵀt Σt+1gt,

which concludes the proof after using (2.4.1).

2.11.2 Proof of Corollary 4.1

Proof. Using Theorem 4 gives:

T∑
t=1

ft(wt)−
T∑
t=1

ft(u)

≤ 1

2ησ2
‖u‖22 +

η

2

T∑
t=1

1
1
σ2 + αηt

‖gt‖22

≤ 1

2ησ2
D2 +

η

2
G2

T∑
t=1

1
1
σ2 + αηt

≤ 1

2ησ2
D2 +

ηG2

2( 1
σ2 + αη)

+
η

2
G2

∫ T

1

1
1
σ2 + αηt

dt

=
1

2ησ2
D2 +

G2

2( 1
ησ2 + α)

+
G2

2α

(
ln( 1

ησ2 + αT )− ln( 1
ησ2 + α)

)
,

which was to be shown.
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2.11.3 Proof of Corollary 4.2

Proof. Using Theorem 4 gives:

RT (u) ≤ D2

2ησ2
+
η

2

T∑
t=1

gᵀt Σt+1gt. (2.11.1)

We start by bounding the second term on the right-hand side of (2.11.1). Using
Lemma 12 from Hazan et al. (2007) we bound:

ηβgᵀt Σt+1gt = Tr(Σt+1(Σ−1
t+1 − Σ−1

t )) ≤ ln
det(Σ−1

t+1)

det(Σ−1
t )

,

which after summing over trials gives:

T∑
t=1

ηβgᵀt Σt+1gt ≤ ln
det(Σ−1

T+1)

det(Σ−1
1 )

= ln det
(
I + ησ2β

T∑
t=1

gtg
ᵀ
t

)
=

d∑
i=1

ln(1 + λi) ≤ d ln

(
1 +

ησ2βG2T

d

)
,

where λ1, . . . , λd are the eigenvalues of ησ2β
∑T

t=1 gtg
ᵀ
t , and the last inequality

follows by maximizing under the constraint that
∑

i λi = Tr(ησ2β
∑T

t=1 gtg
ᵀ
t ) ≤

σ2ηβG2T . As discussed by Cesa-Bianchi and Lugosi (2006, proof and discussion
of Theorem 11.7), the maximum is achieved when λi = σ2ηβG2T/d for all i.

All together we find:

RT (u) ≤ D2

2ησ2
+

d

2β
ln

(
1 +

ησ2βG2T

d

)
,

which was to be shown.

2.12 Proofs for Section 2.5

2.12.1 Proof of Theorem 5

Abbreviate mt(P ) = − lnEP
[
e−`t(η,i)

]
and define the potential ΦT =

e−
∑T
t=1mt(Pt). Then ΦT = ΦT−1 = · · · = Φ0 = 1 since

ΦT − ΦT−1 = e−
∑T−1
t=1 mt(Pt) EPT

[
ηrT (i)

]
= 0,
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where the last identity holds for any loss vector gt by the definition of wT . For any
comparator Q on (η, i), it follows that

0 =

T∑
t=1

mt(Pt) =

T∑
t=1

EQ[`t(η, i)]+S(Q) ≤
T∑
t=1

EQ[−ηrt(i)+η2rt(i)
2]+S(Q),

where the last inequality is an application of the ‘prod-bound’ − ln(1 + x) ≤
−x + x2 with x = ηrt(i), which holds for any x ≥ −1

2 (Cesa-Bianchi et al.,
2007, Lemma 1). The result (2.5.3) is a direct consequence, and (2.5.4) follows
upon bounding EQ[η] ≥ η̂/2 and EQ[η2] ≤ η̂2 and plugging in that S(Q) ≤
KL(Q‖P1) = KL(π̂‖π)− ln γ([η̂/2, η̂]) for EW.

2.12.2 Proof of Theorem 7

Theorem 7 (Squint Reduction to EW). The exact same statement as in Theorem 5
also holds when we replace the surrogate loss (2.5.2) by (2.5.6).

Thus (2.5.5) also holds, and we recover the results of (Koolen and Van Erven, 2015)
for Squint.

Remark 8. The Metagrad algorithm (van Erven and Koolen, 2016) is similar to
Squint on a continuous set of experts indexed byw ∈ Rd with losses ft(w) = wᵀgt,
and the analysis of Theorem 7 can be extended to handle this case.

Proof. Letmt(P ) and ΦT be as in the proof of Theorem 5, but for the new surrogate
loss (2.5.6). Then ΦT ≤ ΦT−1 ≤ . . . ≤ Φ0 = 1, because

ΦT − ΦT−1 =e−
∑T−1
t=1 mt(Pt)

(
EPT

[
e−ft(η,i)

]
− 1
)

≤e−
∑T−1
t=1 mt(Pt) EPT

[
ηrT (i)

]
= 0,

where the inequality follows from the ‘prod bound’ (see the proof of Theorem 5)
and the final equality is again by definition of wT . For any Q, it follows that

0 ≤
T∑
t=1

mt(Pt) =
T∑
t=1

EQ[`t(η, i)]+S(Q) =
T∑
t=1

EQ[−ηrt(i)+η2rt(i)
2]+S(Q),

which implies that (2.5.3) also holds for Squint. Since (2.5.4) is a corollary, it also
follows directly.
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2.12.3 Proof of Theorem 6

The proof of Theorem 6 follows the same general steps as the proofs for Theorems 5
and 7. However, bounding the mix-regret SiT (η) using a similar analysis as for the
Krichevsky-Trofimov estimator from Example 1 would lead to an extra lnT factor
in the regret. This is avoided using a more delicate analysis that holds specifically
for the regret with respect to η = R+

T (i)/T , which requires a technical analytic
inequality by Orabona and Pál (2016, Lemma 16).

Proof. For `t as in (2.5.2), let mt = − lnEi∼Pt
[
e−`t(η

i
t,i)
]
. Then, by the same

argument as in the proof of Theorem 5, ΦT = e−
∑T
t=1mt = 1. For any distribution

π̂ on i and any η̂i ∈ [0, 1], we therefore have

0 =
T∑
t=1

mt = Eπ̂

[
T∑
t=1

`t(η
i
t, i)

]
+ S̃T (π̂) ≤ Eπ̂

[
T∑
t=1

`it(η
i
t)

]
+ S̃T (π̂)

= Eπ̂

[
T∑
t=1

`it(η̂
i) + SiT (η̂i)

]
+ S̃T (π̂). (2.12.1)

The minimizer of
∑T

t=1 `
i
t(η) over η ∈ [0, 1] is η̂i = R+

T (i)/T . Plugging this in,
we find that

T∑
t=1

`it(η̂
i) = −T B(1

2 +
R+
T (i)
2T ‖

1
2). (2.12.2)

Substituting (2.12.2) in (2.12.1) and reorganizing we obtain (2.5.7).

If we specialize to EW, then S̃T (π̂) ≤ KL(π̂‖π) by the same argument as for iProd.
In addition, to bound SiT (η̂i), let β̃(x, y) be the distribution on η ∈ [−1,+1] such
that (1 + η)/2 has a β(x, y) distribution. Then Lemma 1 and the observation that
the mixability gap is at most 0 because `it is 1-exp-concave, together imply that

SiT (η̂i) ≤ min
Q∈P

{
Eη∼Q

[ T∑
t=1

`it(η)
]

+ KL(Q‖β̃(a, a))︸ ︷︷ ︸
A(Q,i)

}
−

T∑
t=1

`it(η̂
i)︸ ︷︷ ︸

B(i)

.

We first rewriteB(i) using (2.12.2). Then it remains to bound the term withA(Q, i)

in expectation under π̂. To this end we may assume thatRT (π̂) := Eπ̂[RT (i)] ≥ 0
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without loss of generality (otherwise (2.5.8) holds trivially). Hence

Ei∼π̂
[

min
Q∈P

A(Q, i)
]
≤ min

Q∈P
Ei∼π̂

[
A(Q, i)

]
= min

Q∈P

{
Eη∼Q

[
− T +RT (π̂)

2
ln

1 + η

2
− T −RT (π̂)

2
ln

1− η
2
− T ln 2

]
+ KL(Q‖β̃(a, a))

}
= − ln

(
2T EX∼β(a,a)

[
X

T+RT (π̂)

2 (1−X)
T−RT (π̂)

2

])
= − ln

(
2TΓ(2a)Γ

(T+RT (π̂)
2 + a

)
Γ
(T−RT (π̂)

2 + a
)

Γ(a)2Γ(T + 2a)

)

≤ −RT (π̂)2

2T + 4a− 2
+ 1

2 ln
T + 2a− 1

2a
+ ln(e

√
π),

where we have plugged in the minimizing Q = β̃(T+RT (π̂)
2 + a, T−RT (π̂)

2 + a),
which has nonnegative mean under our assumption that RT (π̂) ≥ 0, and where
the last inequality holds by (Orabona and Pál, 2016, Lemma 16), which applies for
a ≥ 1/2,RT (π̂) ∈ [−T, T ] and T ≥ 1.

With these regret bounds for EW, (2.5.7) specializes to

RT (π̂) ≤

√
(2T + 4a− 2)

(
1
2 ln

T + 2a− 1

2a
+ ln(e

√
π) + KL(π̂‖π)

)
.

The result so far holds for any a ≥ 1
2 . Plugging in the choice a = T

4 + 1
2 , suggested

by Orabona and Pál (2016), and using 1
2 ln 3T

T+2 + ln(e
√
π) ≤ 3 completes the

proof.

2.13 Analysis of the Algorithm from Section 2.6

LetW ⊂ Rd be a compact convex set. Following Bubeck et al. (2012), we assume
without loss of generality thatW is full rank, meaning that the linear combinations
ofW span Rd (otherwise we can express the elements ofW in a lower dimensional
space).

At trials t = 1, 2, . . . , T , the algorithm plays with a randomized choice wt ∈ W ,
the adversary chooses an unobserved loss vector gt, which is not allowed to depend
on the realization ofwt, and the learner suffers and observes bounded loss 〈wt, gt〉.
The goal is to minimize the expected regret: E[RT (u)] = E

[∑T
t=1〈wt − u, gt〉

]
for any choice of the comparator u ∈ W . We consider EW with a fixed learning
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rate η and a prior distribution P1 that is uniform over W . At each trial t, after
observing the loss 〈wt, gt〉, the algorithm constructs a random, unbiased estimate
g̃t of the loss vector gt (described below), and uses this estimate to update the
posterior. Since the projection step can be dropped (as P1 is supported onW), the
greedy and lazy versions of EW coincide and the posterior is given by dPt(w) ∝
exp(−η

∑t−1
s=1〈w, g̃s〉)dw for all w ∈ W . Defining θt = −η

∑t−1
s=1 g̃s (with

θ1 = 0), we can concisely write:

dPt+1(w) = e〈w,θt〉−F (θt)dw ∀w ∈ W, where F (θ) = ln

∫
W
e〈w,θ〉 dw

is the cumulant generating function. At trial t, the EW algorithm sampleswt ∼ Qt,
where Qt = (1 − γ)Pt + γR for γ ∈ (0, 1) is a mixture of the posterior Pt and
a fixed “exploration” distribution R. The exploration distribution is chosen to be
John’s exploration, defined as follows (Bubeck et al., 2012). Let K be the ellipsoid
of minimal volume enclosingW:

K = {w ∈ Rd : (w −w0)ᵀH−1(w −w0) ≤ 1} (2.13.1)

for some positive definite matrix H and w0 ∈ Rd. In what follows we assume
without loss of generality thatW is centered in the sense thatw0 = 0 (otherwise all
w ∈ W need to be shifted byw0). Bubeck et al. (2012) show that one can choose
M ≤ d(d+ 1)/2 + 1 contact points u1, . . . ,uM ∈ K ∩W , and a distribution R
over these points that satisfies:

Ew∼R[wwᵀ] =
1

d
H. (2.13.2)

The estimate g̃t is constructed based on the observed loss 〈wt,xt〉, by:

g̃t = 〈wt, gt〉 (EQt [wwᵀ])−1wt.

We now show the following regret bound for the resulting algorithm:

Theorem 9. Assume the losses are bounded: |〈w, gt〉| ≤ 1 for all w ∈ W and

all t. Let η =
√

ν lnT
3dT , where ν = O(d) is the self-concordant barrier parameter

of F ∗, and let γ = ηd. Then the expected regret for the EW algorithm described
above is bounded by

E[RT (u)] ≤ 2
√

3νdT lnT + 2 = O(d
√
T lnT ).

Proof. We first verify that the estimate g̃t of gt is unbiased:

Ewt∼Qt [g̃t] =Ewt∼Qt
[
(Ew∼Qt [wwᵀ])−1wt〈wt, gt〉

]
= (Ew∼Qt [wwᵀ])−1 Ewt∼Qt [wtw

ᵀ
t ] gt = gt.
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Furthermore, due to the inclusion of the exploration distribution R, we have:

Ew∼Qt [wwᵀ] = (1− γ)Ew∼Pt [wwᵀ] + γ Ew∼R[wwᵀ] � γ

d
H,

(whereA � B meansA−B is positive semidefinite), and hence for any u ∈ W:〈
u,
(
Ew∼Qt [wwᵀ]

)−1
u

〉
≤
〈
u,
d

γ
H−1u

〉
≤ d

γ
, (2.13.3)

where the last inequality is from the fact thatW ⊆ K and from the definition of K
in (2.13.1). This, however, implies that the linear losses induced by g̃t are bounded
for any u ∈ W:

〈u, g̃t〉

= 〈wt, gt〉
〈
u,
(
Ew∼Qt [wwᵀ]

)−1
wt

〉
≤ |〈wt, gt〉|

〈
wt,

(
Ew∼Qt [wwᵀ]

)−1
wt

〉1/2〈
u,
(
Ew∼Qt [wwᵀ]

)−1
u

〉1/2

≤ d

γ
, (2.13.4)

where the first inequality is from the Cauchy-Schwarz inequality (for positive
semidefinite A, xᵀAy ≤ (xᵀAx)1/2(yᵀAy)1/2), while the second inequality is
due to assumption |〈w, gt〉| ≤ 1 and due to (2.13.3) applied twice (first to u and
then to wt).

Let µt be the mean value of Pt: µt = EPt [w]. As a general property of exponential
families or as a consequence of Theorem 3, we have µt = ∇F (θt), and µt and θt
are conjugate parameters of the exponential family. Let us fix a comparator u ∈ W
and define Pu to be the member of the exponential family with cumulant generating
function F that has mean value u: Ew∼Pu [w] = u. We now apply Lemma 1 for
the EW algorithm on the sequence of linear losses induced by g̃1, . . . , g̃T to get:

T∑
t=1

〈µt − u, g̃t〉 =
T∑
t=1

〈µt, g̃t〉 −
T∑
t=1

Ew∼Pu [〈w, g̃t〉]

≤ 1

η
KL(Pu‖P1) +

T∑
t=1

〈µt, g̃t〉+
1

η
lnEw∼Pt

[
e−η〈w,g̃t〉

]
(note that in this section we use µt to denote the mean of Pt, while wt is reserved
for the randomized action at trial t sampled fromQt). Since Pu and P1 are members
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of the same exponential family, the KL-term can be re-expressed using Lemma 2:

KL(Pu‖P1) =DF ∗(u‖µ1)

=F ∗(u)− F ∗(µ1)−∇F ∗(µ1)ᵀ︸ ︷︷ ︸
0

(µ− µ1)

=F ∗(u)− F ∗(µ1),

where we used the fact that µ1 has conjugate parameter θ1 = 0, and thus
∇F ∗(µ1) = θ1 = 0. To bound the mixability gap, we will now use that by
assumption η = γ

d , so that by (2.13.4) we have |η〈w, g̃t〉| ≤ 1 for any w ∈ W .
Using the fact that e−s ≤ 1 − s + s2 holds for s ≥ −1, and combining with
ln(1 + x) ≤ x gives:

〈µt, g̃t〉+
1

η
lnEw∼Pt

[
e−η〈w,g̃t〉

]
≤ 〈µt, g̃t〉+

1

η
ln
(
1 + Ew∼Pt

[
−η〈w, g̃t〉+ η2〈w, g̃t〉2

])
≤ 〈µt, g̃t〉 − Ew∼Pt [〈w, g̃t〉]︸ ︷︷ ︸

=0

+η Ew∼Pt
[
〈w, g̃t〉2

]
= ηg̃ᵀt Ew∼Pt [wwᵀ] g̃t.

Combining the bounds on the KL-term and the mixability gap gives:

T∑
t=1

〈µt − u, g̃t〉 ≤
F ∗(u)− F ∗(µ1)

η
+ η

T∑
t=1

g̃ᵀt Ew∼Pt [wwᵀ] g̃t. (2.13.5)

We can use this result to bound the regret of the original algorithm in the following
way. First, note that:

Ewt∼Qt [〈wt − u, gt〉] = γ〈Ewt∼R[wt]− u, gt〉+ (1− γ)〈Ewt∼Pt [wt]− u, gt
〉

≤ 2γ + (1− γ)〈µt − u, gt
〉

= 2γ + (1− γ)Ewt∼Qt [〈µt − u, g̃t〉] ,

where the random quantity in the last expectation is g̃t, because it depends on wt.
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Therefore:
T∑
t=1

Ewt∼Qt [〈wt − u, gt〉]

≤ 2γT + (1− γ)
T∑
t=1

Ewt∼Qt [〈µt − u, g̃t〉]

≤ 2γT +
F ∗(u)− F ∗(µ1)

η
+ η(1− γ)

T∑
t=1

Ewt∼Qt [g̃ᵀt Ew∼Pt [wwᵀ] g̃t]

≤ 2γT +
F ∗(u)− F ∗(µ1)

η
+ η

T∑
t=1

Ewt∼Qt [g̃ᵀt Ew∼Qt [wwᵀ] g̃t] , (2.13.6)

where the second inequality is from (2.13.5), while the last inequality is due to:

Ew∼Qt [wwᵀ] = (1−γ)Ew∼Pt [wwᵀ]+γ Ew∼R[wwᵀ] � (1−γ)Ew∼Pt [wwᵀ].

Using the definition of g̃t and 〈wt, gt〉2 ≤ 1, we further bound:

Ewt∼Qt [g̃ᵀt Ew∼Qt [wwᵀ] g̃t]

≤ Ewt∼Qt
[
wᵀ
t (Ew∼Qt [wwᵀ])−1 Ew∼Qt [wwᵀ] (Ew∼Qt [wwᵀ])−1wt

]
=

T∑
t=1

Ewt∼Qt
[
Tr
(

(Ew∼Qt [wwᵀ])−1wtw
ᵀ
t

)]
=

T∑
t=1

Tr (I) = Td.

Plugging the above into (2.13.6) and taking expectation with respect to the random-
ness of the algorithm results in the following bound on the expected regret:

E[RT (u)] = E

[
T∑
t=1

Ewt∼Qt [〈wt − u, gt〉]

]
≤ 2γT +

F ∗(u)− F ∗(µ1)

η
+ ηTd.

What is left to bound is F ∗(u) − F ∗(µ1). To this end, define the Minkowski
function (Abernethy et al., 2012) onW as:

πµ(w) = inf{t ≥ 0: µ+ t−1(w − µ) ∈ W}.

Bubeck and Eldan (2015) show that F ∗ is a ν-self concordant barrier onW with
ν = O(d). Using this property and Theorem 2.2 from Abernethy et al. (2012) we
get:

F ∗(u)− F ∗(µ1) ≤ ν ln

(
1

1− πµ1(u)

)
.
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If u is such that πµ1(u) ≤ 1− 1
T , then F ∗(u)− F ∗(µ1) ≤ ν lnT . On the other

hand, if πµ1(u) ≤ 1− 1
T , we define a new comparator u′ = (1− 1

T )u+ 1
T µ1, for

which πµ1(u′) ≤ 1− 1
T (Abernethy et al., 2012), and use the regret bound above

for u′ to get:

E[RT (u)] = E[RT (u′)] +

T∑
t=1

〈u′ − u, gt〉 = E[RT (u′)] +
1

T

T∑
t=1

〈µ1 − u, gt〉

≤ 2γT +
F ∗(u′)− F ∗(µ1)

η
+ ηTd+ 2 ≤ 2γT +

ν lnT

η
+ ηTd+ 2.

Recalling that γ = ηd and tuning η =
√

ν lnT
3dT gives the claimed bound.
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