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CHAPTER 2

The Many Faces of Exponential
Weights in Online Learning

This chapter is based on: Van der Hoeven, D., Van Erven, T., and Kotlowski, W.
(2018). The many faces of exponential weights in online learning. In Proceedings
of the 31st Annual Conference on Learning Theory (COLT), pages 2067-2092.!

Abstract

A standard introduction to online learning might place Online Gradient Descent at its
center and then proceed to develop generalizations and extensions like Online Mirror
Descent and second-order methods. Here we explore the alternative approach of
putting Exponential Weights (EW) first. We show that many standard methods and
their regret bounds then follow as a special case by plugging in suitable surrogate
losses and playing the EW posterior mean. For instance, we easily recover Online
Gradient Descent by using EW with a Gaussian prior on linearized losses, and,
more generally, all instances of Online Mirror Descent based on regular Bregman
divergences also correspond to EW with a prior that depends on the mirror map.
Furthermore, appropriate quadratic surrogate losses naturally give rise to Online
Gradient Descent for strongly convex losses and to Online Newton Step. We further
interpret several recent adaptive methods (iProd, Squint, and a variation of Coin
Betting for experts) as a series of closely related reductions to exp-concave surrogate
losses that are then handled by Exponential Weights. Finally, a benefit of our EW
interpretation is that it opens up the possibility of sampling from the EW posterior
distribution instead of playing the mean. As already observed by Bubeck and Eldan
(2015), this recovers the best-known rate in Online Bandit Linear Optimization.

!"The author of this dissertation performed the following tasks: co-deriving the theoretical results
and co-writing the paper.



CHAPTER 2

2. The Many Faces of Exponential Weights in Online Learning

2.1 Introduction

Exponential Weights (EW) (Vovk, 1990; Littlestone and Warmuth, 1994) is a method
for keeping track of uncertainty about the best action in sequential prediction tasks.
It is most commonly considered for a finite number of actions in the prediction
with expert advice setting, where each of the actions corresponds to following the
advice of one of a finite number of experts, and in this context it is asymptotically
minimax optimal (Cesa-Bianchi and Lugosi, 2006, Section 2.2). However, in the
present work we mostly consider EW on continuous action spaces in the more
general setting of Online Convex Optimization (Hazan et al., 2016), where we show
that surprisingly many standard methods turn out to be special cases of EW.

EW keeps track of a probability distribution over actions that is updated in each
round of the prediction task by multiplying the probability of each action by a
factor that is exponentially decreasing in the action’s error or loss in that round,
and renormalizing. This type of update is quite flexible: by assigning appropriate
surrogate losses to the actions, it covers any kind of multiplicative probability
updates, including, for instance, those of the Prod algorithm (Cesa-Bianchi et al.,
2007). For best performance, losses often need to be scaled by a positive parameter
called the learning rate, and the algorithm may also be biased towards particular
actions by the choice of its initial distribution, which is called the prior. For
continuous sets of actions, efficient implementations of EW are often restricted
to conjugate priors for which the EW distribution can be analytically computed,
but sampling approximations based on random walks can also provide appealing
trade-offs between computational complexity and prediction accuracy, even for
a single random walk step per round (Narayanan and Rakhlin, 2017; Kalai and
Vempala, 2002).

The usual presentation of Online Convex Optimization would introduce EW as a
special case of Mirror Descent (MD) or Follow-the-Regularized-Leader (FTRL)
with the Kullback-Leibler divergence as the regularizer. However, here we turn
this view on its head and show that all instances of MD based on regular Bregman
divergences (Banerjee et al., 2005) in fact correspond to EW on a continuous set of
actions (Section 2.3.3). In particular, Gradient Descent (GD) comes from using a
Gaussian prior on linearized losses (Section 2.3.2), which is striking because GD has
been contrasted with the Exponentiated Gradient Plus-Minus algorithm (Kivinen
and Warmuth, 1997) that is readily seen to be an instance of EW (Section 2.3.1). In
addition, the unnormalized relative entropy regularizer (Helmbold and Warmuth,
2009), which is normally considered a generalization of EW, turns out to be a special
case of EW as well for a multivariate Poisson prior (Section 2.3.3). Furthermore,
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2.1. Introduction

in Section 2.4 we show that running EW on suitable quadratic approximations
of the losses recovers Gradient Descent for strongly convex losses (Hazan et al.,
2007) and, as already observed by van Erven and Koolen (2016), Online Newton
Step (Hazan et al., 2007). The Vovk-Azoury-Warmuth forecaster would also be an
example of running EW on quadratic losses, but we refer to (Vovk, 2001) for its
analysis, which requires a generalized proof technique (see also the discussion by
Orabona et al. (2015a)). We do consider the recent adaptive iProd, Squint and Coin
Betting methods of Koolen and Van Erven (2015); Orabona and P4l (2016), which
learn the optimal learning rate for prediction with expert advice, and show that
these may also be viewed as running EW after a reduction of the original prediction
task to various closely related surrogate tasks in which the learning rate is just one
of the parameters that does not need to be treated specially (Section 2.5). Finally,
in the context of Bandit Linear Optimization, the SCRiBLe method (Abernethy
et al., 2008) may be viewed as an approximation to EW, and an application of EW
outlined by Bubeck and Eldan (2015) achieves the best-known rate (we provide the
technical details they omit in Section 2.6).

Related Work The diverse applications of EW on a finite number of actions
range, for instance, from boosting (Freund and Schapire, 1997) to differential
privacy (Dwork and Roth, 2014) to multi-armed bandits (Auer et al., 2002), and
many algorithms in computer science can be viewed as special cases of EW (Arora
et al., 2012). EW has also been considered for continuous sets of actions, often
in the context of universal coding in information theory, where the goal is to
sequentially compress a sequence of symbols. In this case, actions parametrize a set
of probability distributions and the loss of an action is the logarithmic loss for the
corresponding probability distribution on the symbol that is being compressed (Cesa-
Bianchi and Lugosi, 2006, Chapter 9). EW (with learning rate 1) then simplifies
to Bayesian probability updating. The choice of prior has received much attention
in this literature, with Jeffreys’ prior being shown to be asymptotically minimax
optimal for exponential families with parameters restricted to suitable bounded
sets (Griinwald, 2007, Chapter 8). Without parameter restrictions, Jeffreys’ prior
is still minimax optimal up to constants for the Bernoulli and multinomial models
(Krichevsky and Trofimov, 1981; Xie and Barron, 2000). Several applications
to other losses are also closely related to the log loss: Online Ridge Regression
corresponds to EW on the squared loss, which matches the log loss for Gaussian
distributions; and Cover’s method for portfolio selection (Cover, 1991), which is
EW on Cover’s loss, may be interpreted as learning a mixture model under the log
loss (Orseau et al., 2017). In general, continuous EW is not restricted to the log loss,
however, and has been considered e.g. for general convex losses (Dick et al., 2014)
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CHAPTER 2

2. The Many Faces of Exponential Weights in Online Learning

Input: a convex set of distributions P over w, a prior P, € P and learning rates 19, > 12 > --- > np >0
Lazy Exponential Weights Greedy Exponential Weights

Py = arg}r)nin Ep [22:1 fs(w)] + %KL(PHPl) Py = arg;nin Ep[fi(w)] + = KL(P|| P

t Mt

PH»l = arg min KL(PHPprl) Pt+1 = arg min KL(P“pH,l)
Pep pep

Figure 2.1: The lazy and greedy versions of Exponential Weights

or as a computationally inefficient gold standard for exp-concave losses (Hazan
et al., 2007).

2.2 Exponential Weights

In Online Convex Optimization (OCO) (Shalev-Shwartz, 2011; Hazan et al., 2016)
a learner repeatedly chooses actions w; from a convex set YW C R¢ during rounds
t =1,...,T, and suffers losses f;(w;), where f; : WW — R is a convex function.
The learner’s goal is to achieve small regret Ryp(u) = Zthl fr(wy) — Zle fi(u)
with respect to any comparator action © € VYV, which measures the difference
between the cumulative loss of the learner and the cumulative loss it could have
achieved by playing the oracle action u from the start. We will assume the domain
of the losses f; is extended from W to R? with convexity of f; being preserved.
This comes without loss of generality as one can always set f;(w) = oo outside W,
but we will use more natural and straightforward extensions throughout the chapter
(e.g. when the f; are linear or quadratic functions).

The central topic of this work is the Exponential Weights (EW) algorithm, which
keeps track of uncertainty over actions expressed by a distribution FP; and comes in
the two flavors shown in Figure 2.1 (our naming follows Zinkevich (2004)), where
we let KL(P|Q) = Ep [In %] denote the Kullback-Leibler (KL) divergence
between distributions P and (). The algorithm gets its name from the distributions
P, whose densities have the following exponential forms:

e i fs(@) 4 Py (w)
N [em Xt () 4 Py (w)
e ft(W) 4P, (w)
[ e=nti(w) 4P, (w)

APy (w)

(lazy EW) 2.2.1)

AP,y (w) = (greedy EW). (2.2.2)

In the case that P contains all possible distributions over R? (for which the projec-
tion step becomes void) and the learning rates n; are constantn; = --- =np =17,
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2.2. Exponential Weights

both versions of EW are equivalent. In general they differ, and enjoy the following
regret bounds with respect to a potentially randomized comparator drawn from a
comparator distribution (), which follow from a standard MD analysis (Hazan et al.,
2016) and a reformulation of the standard FTRL analysis that works for distribu-
tions P, on continuous spaces, which cannot be expressed as the finite-dimensional
vectors that are usually assumed (the proof details are in Section 2.8):

Lemma 1 (EW Regret). Suppose that ny > 12 > ... > nr > 0, and that the
minima that define P; and P; are uniquely achieved. Let QQ € P be any comparator
distribution such that KL(Q||P;) < oo for all t, let {w; € W}L_, be the actions

of any learner, and define g def n1. Then lazy EW satisfies

EunolR(u)] < — KL(Q|P1)
nr

T
+ ; { fr(wy) + 77t1—1 lnEPt(w) |:e_77t—1ft(w):| } (2.23)

“mixability gap”

and greedy EW satisfies

ﬂm@mmﬂs;Kumwn+Q;—;)gyxKu@m>

+ ZT:{ —lnEp( el o

t=1

-----

“mixability gap”

While the predictions w; in Lemma 1 are arbitrary actions from WV, one always
chooses w; to be some function of P;. A general mapping from P; to wy; is called a
substitution function (Vovk, 2001) and is usually designed to give the best bound
on the mixability gap in trial £. Throughout the chapter, we will use the mean
w; = Ep,[w] as our substitution function, which is a typical choice, although
alternatives may be better in specific cases (Vovk, 2001). To ensure that w; € W,
we will also generally assume that P = {P : Ep[w] € W}, which is convex.

Bounding the mixability gap is a crucial part of the regret analysis of EW (Vovk,
2001; De Rooij et al., 2014). In the special case that the losses are «-exp-concave
for a > 0 (i.e. if e~ /() js concave), the mixability gap for 7, < « is at most 0.
This happens in the following example.

Example 1 (The Krichevsky-Trofimov Estimator). Let W = [0, 1] and let the
loss function be the log loss: fi(w) = —z;In(w) — (1 — x¢) In(1 — w), where

19
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CHAPTER 2

2. The Many Faces of Exponential Weights in Online Learning

x; € {0,1}. A standard algorithm in this case is the Krichevsky-Trofimov forecaster
wy = (Zi;ll Ts+ %)/t (Cesa-Bianchi and Lugosi, 2006, Chapter 9), which is is
well known to be the mean w; = Ep,[w] of non-projected EW with a 3(%, 1) prior
and a fixed learning rate ny = 1. For the log loss, the mixability gap is 0. To bound
the remaining terms in Lemma 1, we choose Q = Pr.1, which gives:

T T
> ) < By [z iw)
= —1In EP1(w) [thTzl aﬁt(l _ w>T_ZtT:1 xt]
Y -7 &
= —hlmaX{ =11 = )T R 4 n(2VT)

+ KL(Pr41]|P1)

where the last inequality holds by (Cesa-Bianchi and Lugosi, 2006, Lemma 9.3).

For most regret bounds derived from Lemma 1 the structure of the proof remains
the same: we need both a bound on the mixability gap, and a choice for () for which
the expected loss under () together with KL(Q||P1) can be related to the loss of a
deterministic comparator.

2.3 Linearized Losses

A standard approach in OCO is to lower-bound the convex losses f; by their
tangent at w;, which leads to the following upper bound on the regret in terms

of the linearized surrogate losses /;(w) = (w, g:), where g = V fi(w:) =
(g1 - -, 9ta)T is the gradient at wy:
T T
ST (filwr) = fiw) < (Gwy) = G(w)). 2.3.1)
t=1 t=1

2.3.1 Exponentiated Gradient Plus-Minus as Exponential Weights

The Exponentiated Gradient Plus-Minus (EG™) algorithm (Kivinen and Warmuth,
1997) starts with weight vectors w; = w;" = (1/d,...,1/d) € RY, which are
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2.3. Linearized Losses

updated according to

t oM <€',gt>
n _ wt’ie 4

w .=
t+1,3 d + —niles _ e. ;
Zj:l(wt,je ne(e,9¢) +wt7je’7t< ngi))

— entleigt)
w, e

’u)i .=
t+1,1 d + e _ e ’
E j:l(wt,je 77t< ]gt> + wt7j€77t< J:gt>)

and predicts by w; € {w : ||wl|; < 1} with components w;; = w;"

i Wy

o

This is readily seen to be the mean w; = Ep,[w] of EW (without projections)
on the linearized losses (2.3.1) with a discrete uniform prior P; on the standard
basis vectors ey, . .., ey, which form the corners of the probability simplex, and
their negations —ey, ..., —eq. The regular Exponentiated Gradient algorithm is
recovered by initializing w; = (0,...,0), which corresponds to placing prior
mass only on ey, ..., eq. Kivinen and Warmuth (1997) also extend the algorithm
to scale up the domain by a factor M > 0, which corresponds to a discrete prior on
Mey, ..., Meg for EG and also on —Me, ..., —Megy for EG*. Hence we may
analyze these methods using Lemma 1, which leads to the following regret bound
for EG* (see Section 2.9):

Theorem 1 (EG* as EW). Suppose ||g:||sc < G for all t. Then the regret of EG*

. 21n(2d .
Jor scale factor M > 0 and constant learning rate ny = \/ % M(2 G)2 satisfies

Rr(u) < GM+/2TIn(2d)  for all w such that |ul|; < M.

2.3.2 Gradient Descent as Exponential Weights

The prior of EGT is adapted to comparators u with small L;-norm. How do
we change the prior to favor comparators with small Ly-norm? A natural and
computationally efficient choice is to use a Gaussian prior P, = N (w1, 02I),
where I is the identity matrix. Then it turns out that all EW distributions P, are
Gaussian with the Gradient Descent (GD) predictions as their means:

Theorem 2 (Gradient Descent as EW). Let P = {P : Ep[w] € W}. Then, for
Gaussian prior P;(w) = N (w1, 0%I), lazy and greedy EW with learning rates 1
on the linearized losses (2.3.1) yield Gaussian distributions ]515 = N (wy, o’I ) and
P, = N(wy, 0?1 ) with the same covariance as the prior. The means w; and w
coincide with lazy and greedy GD (Figure 2.2), except that the learning rates in GD

21
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CHAPTER 2

2. The Many Faces of Exponential Weights in Online Learning

Input: Convex set WV, and learning rates 71 > 12 > ... > np > 0
Lazy Gradient Descent Greedy Gradient Descent
~ t 75 —
W] = W1 — N Zszl 9gs Wiyl = Wt — NGt
. . 1 ~ 2
W41 = argmin %H'w - wt+1”§ Wyy1 = argmin ;[ w — Wi
wew weW

Figure 2.2: The lazy and greedy versions of Gradient Descent

are scaled to o1 by the prior variance o®. Moreover, Lemma 1 directly implies:

T
lw—wi3 | o 2
Re(w) € 55+ 5 Zﬁt—lngtuz (lazy GD)
maxy ||u — 'th2
Ro(u) < 207 Z mellgell3 (greedy GD).

We note that in this case the parametrization of EW is redundant, because changing
the prior variance o has the same effect on the predictions w; and the regret bounds
as scaling all 7.

Proof. P, = N (1, 02T) may be verified analytically from (2.2.1) and (2.2.2). The
fact that the projections P; onto P preserve Gaussianity with the same covariance
matrix is a property of projecting a member of an exponential family onto a set of
distributions defined by a convex constraint on their means. (This follows from
Lemma 3 in Section 2.10 or see (van Erven and Koolen, 2016, Lemma 9) for the
Gaussian case.) The regret bounds follow by taking Q = N (u, oI, for which
KL(Q||P,) = # ||w —w,||3, and evaluating the mixability gap in closed form. [J

2.3.3 Mirror Descent and FTRL as EW

The fact that Gradient Descent is an instance of EW raises the question of whether
other instances of MD or FTRL are special cases of EW as well. Let F*(w) =
supg(w, @) — F(0) denote the convex conjugate of F', and let Bp«(ulw) =
F*(u)—F*(w)—VF*(w)T(u—w) denote the corresponding Bregman divergence.
Then MD and FTRL are defined in Figure 2.3 for Legendre functions F'(6) on
R? (Cesa-Bianchi and Lugosi, 2006). We consider exponential families that take
the form £ = {Py | dPp(w) = @) ~FO)dK (w),0 € O} for a nonnegative
carrier measure K, cumulant generating function F'(8) = In [ e!%%)dK (w) and
parameter space © = {0 | ['(0) < oo} C RY. These are called regular if © is an
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2.3. Linearized Losses

Input: Legendre function F, convex set VWV, and learning rates 71 > 12 > ... > nr > 0
FTRL / Lazy Mirror Descent Greedy Mirror Descent

Wi = argmin Y (w, gs) + - Bp- (w[lw) | W1 = argmin(w, g;) + ;- Br- (w]w;)
w w

Wipq = arg min B« (w||wi41) W1 = argmin By« (w||we1)
wew wew

Figure 2.3: The lazy and greedy versions of Mirror Descent. Lazy MD is usually called
FTRL.

open set. We then start with the following relation between MD and EW, which is
proved in Section 2.10:

Theorem 3 (Mirror Descent as EW). Suppose F' is the cumulant generating
function of a regular exponential family £. Then the lazy and greedy versions
of MD predict with the means w; = Ep,[w] of lazy and greedy EW on the
linearized losses (2.3.1) with the same 1, prior Py, for 01 = VF*(w;) and
P = {P : Ep[’w] € W}

To answer our question, we therefore need to know whether, for any Legendre func-
tion F*, the convex conjugate (F™*)* = I corresponds to the cumulant generating
function of some exponential family, which means we need to find a corresponding
carrier K. Nonconstructive existence of such K has been studied by Banerjee
et al. (2005, Theorem 6), who show that there is in fact a bijection between regular
Bregman divergences and regular exponential families, where regular Bregman
divergences based on F™* are defined to be those for which ef'(®) is a continuous,
exponentially convex? function such that © = {8 | F() < oo} is open and F is
strictly convex.

There is no easy general procedure to construct the corresponding carrier K for
a given Legendre function F*. However, for the Gradient Descent example from
Section 2.3.2 we see that F™*(w) = ﬁ”w”% is the convex conjugate of the
cumulant generating function for K (w) = N(0,0%I). We also give another
example:

Example 2 (Unnormalized Relative Entropy). Consider MD with regularization
based on the unnormalized relative entropy Bp+(w||u) = Zgzl (wiln Tt — w; +
u;) for w,u € R, which is the Bregman divergence generated by F*(w) =
S°4_ wi(In(w;) —1) (Cesa-Bianchi and Lugosi, 2006). We have F(8) = S0 e,
Interestingly, the exponential family with this cumulant generating function is the

ZExponentially convex in the sense of Banerjee et al. (2005, Definition 7).
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CHAPTER 2

2. The Many Faces of Exponential Weights in Online Learning

Input: Convex set W and learning rate > 0

Lazy EW Gaussian prior quadratic loss Greedy EW Gaussian prior quadratic loss
—1 _ g1 —1 _ g1
Et+1 =X, +nM, 2t+1 =¥, +nM;
Wyy1 = Wi — NE419¢ Wiyt = Wi — NE¢419t

Wi = argmin(w — W) TS (W — Wipr) | wepr = argmin(w — Wyg1) S (W — W)
wew wew

Figure 2.4: The means and covariances of both versions of Exponential Weights with a

multivariate normal prior and a constant learning rate n run on the quadratic surrogate
loss (2.4.1)

set of Poisson distributions, extended i.i.d. to d dimensions. To see this for d = 1,
note that if we start with the usual parametrization of Poisson, we have
P _ —)\&_i —At+wln X

Nw) =e ol = o onw € {0,1,2,...},
for which the natural parameter is 0 = In A and we see that the cumulant
generating function is F(0) = X = €. Thus, EW with the product prior
P (w) = H;j:l Py, (w;) corresponds to MD with unnormalized relative entropy,
where we need to set (A1, ..., \q) = exp(01) = exp(VF*(w;)) = w; to match
the starting point of MD: Ep, [w| = w;. Note that in this case the EW distributions
P, are discrete.

2.4 Quadratic Losses
In this section we assume that the losses f; satisfy quadratic lower bounds:
1
ft(w) — ft(wt) > (w — ’UJt,gt> + 5(’11) — wt)TMt(w — wt) =: Et(w), (241)
where M, is a positive semi-definite matrix. Generalizing the results from Sec-
tion 2.3, EW with Gaussian prior on the surrogate loss ¢; yields explicitly com-

putable Gaussian distributions F; (see also van Erven and Koolen, 2016; Koolen,
2016):

Theorem 4. Let Py = N (wi,X1). Both versions of the Exponential Weights
algorithm, run on ly with learning rate n and P = {P : Ep[w]| € W}, yield a mul-
tivariate normal distribution Piy1 = N (w11, Xt41) with mean and covariance
matrix given in Figure 2.4. Furthermore, Lemma I implies that for all u € YV both
versions of EW satisfy:

1
Rr(u) < %(wl — )T (wy —u) +

N3

T
> g% (24.2)
t=1

24



2.4. Quadratic Losses

The proof of Theorem 4 in Section 2.11.1 is a straightforward generalization of
Theorem 2 for constant learning rate n; = 7, which is recovered with M; = 0.
Like in Theorem 2, the parametrization by 7 and o2 is redundant in that only the
product no? affects the predictions w; or the bound (2.4.2).

2.4.1 Gradient Descent: Quadratic Approximation of Strongly Con-
vex Losses

For a-strongly convex loss functions, (2.4.1) holds with M; = «I. The standard
approach for these loss functions is to use greedy Gradient Descent with a time-
varying learning rate 7; = 1/(at) (Hazan et al., 2007). Interestingly, greedy GD
with the closely related choice 1, = 1/ (77@% + at) turns out to be a special case
of greedy EW with fixed learning rate 7 and prior P, = N(0,0%I). Applying
Theorem 4 results in the following corollary, proved in Section 2.11.2:

Corollary 4.1. Suppose ||ull2 < D and ||gi||2 < G. Then the regret of both

versions of the Exponential Weights algorithm with prior N'(0, oI and constant
learning rate n, run on the surrogate loss (2.4.1) with My = o, satisfies:

G21 (71(172_5_0417) G2 D2
n

Rr(u) < — + + .
7 )_2a 77@%—l—oz m%—i—?a 2no?

The standard learning rate and corresponding regret bound for GD (Hazan et al.,
2007) correspond to the limiting case o> — oco. Formally speaking, this case
is not covered here, but for  — oo EW reduces to Follow-the-Leader (on the
surrogate loss (2.4.1)), and taking o2 — oo would lead to EW with an improper
prior, which becomes a proper EW posterior P, after one round.

2.4.2 Online Newton Step: Quadratic Approximation of Exp-concave
Losses

For a-exp-concave loss functions, (2.4.1) holds with M; = BgtgtT , wWhere
B = imin{; i3, a}, assuming [|g;[l < G and B = maxyuew |w — ul
(Hazan et al., 2007, Lemma 3). Running Exponential Weights on ¢;(w) with prior
N (0, 021I) leads to the Online Newton Step algorithm (Hazan et al., 2007) with the
following regret bound, shown in Section 2.11.3:

Corollary 4.2. Suppose ||u|l2 < D and ||gt||2 < G. Then the regret of both
versions of the Exponential Weights algorithm with prior N'(0, 0*I) and learning

25
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CHAPTER 2

2. The Many Faces of Exponential Weights in Online Learning

rate 1, run on the surrogate loss (2.4.1) with M, = 9.9}, satisfies:

(2.4.3)

d no?BG*T D?
< —
RT(u)_Qﬁln(l—'_ P

2no2’

The results of Hazan et al. (2007) correspond to setting no? = D2, together with
some simplifying upper bounds on (2.4.3).

2.5 Adaptivity by Reduction to Exponential Weights

In this section we show how several recent adaptive methods in the prediction with
experts setting — namely iProd (Koolen and Van Erven, 2015), Squint (Koolen and
Van Erven, 2015) and a variation of Coin Betting for experts (Orabona and P4l,
2016) —, whose original analyses seem unrelated at first sight, can all be viewed as
applying exponential weights after reductions of the original OCO task to various
closely related surrogate OCO tasks. The known regret bounds for these methods
are also recovered from the reductions upon plugging in regret bounds for EW in
the surrogate tasks.

2.5.1 Reduction for iProd

The experts setting consists of linear losses f;(w) = (w, g;) over the simplex
W={w:w; >0, Zle w; = 1}, with g¢; € [0, 1]. The instantaneous regret in
round ¢ with respect to expert i is 7¢(i) = fi(w;) — fi(e;) and Ry (i) = o1 7:4(7)
is the total regret. iProd achieves a second-order regret bound in terms of the
data-dependent quantity V(i) = Zthl 7¢(7)2, which is much smaller than the
worst-case regret in many common cases (Koolen et al., 2016).

In the surrogate OCO task for iProd, predictions take the form of joint distributions
P, on (n,i) forn € [0,1] and i € {1,...,d}. These map back to predictions in the
original task via

Ep,[nei]

= 2.5.1
" Eal] I

which is like the marginal mean of P; on experts, except that it is tilted to favor
larger 1. The surrogate loss in the surrogate task is

Kt(na Z) =—In (1 + Wt(l)) ) (252)

and our aim will be to achieve small mix-regret with respect to any comparator
distribution Q on (i), which we define as S(Q) = 3°/_, —InEp, [e~%()] —
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Eg [Zz;l L (n, z)} The mix-regret allows exponential mixing of predictions
according to P; just like for exp-concave losses, so there is no mixability gap to
pay. Exponential weights with constant learning rate 1 on the losses ¢; therefore
achieves S(Q) < KL(Q||Py) for any Q.> The resulting predictions w; are those of
the iProd algorithm. As shown in Section 2.12.1, they achieve the following regret
bound, which depends on the surrogate regret of EW:

Theorem 5 (iProd Reduction to EW). Restrict the domain for 1 to [0, %] Then any
choice of Py in the surrogate OCO task defined above induces regret bounded by

T T
Eol) Y filwy) —Eq |1 filed)| <Eq [n?Ve()| +8(@) 253
t=1 t=1

for any Q on (n,1) in the original prediction with expert advice task.

In particular, if we use EW in the surrogate OCO task with learning rate 1 and any
product prior Py = ~ X  for ~y a distribution on n € |0, %] and T a distribution on
i, and we take as comparator Q = ~y(n | n € [17/2,7]) X 7 for any 1 € |0, %] and
distribution 7 on i that can both depend on all the losses, then

s [Re(9)] < 20E (Vi) + (KL oy (a/2.). @54

Crucially, the algorithm does not need to know 7 in advance, but (2.5.4) still holds
for all ) simultaneously. To minimize (2.5.4) in 7} we can restrict ourselves to
71 > 1/+/T without loss of generality, so that a prior density dvy(n)/dn o 1/7
on [1/4/T,1/2] achieves — In~([f}/2,7]) = O(InInT). After optimizing 7, this
leads to an adaptive regret bound of

E. [Rr(i)] = O <\/Eﬁ[VT(i)](KL(7ﬂ|7T) +1n1nT)> for all #, (2.5.5)

which recovers the results of Koolen and Van Erven (2015) (see also (Koolen,
2015)).
2.5.2 Reduction for Squint

Running EW with a continuous prior on 7 for the iProd surrogate losses from (2.5.2)
requires evaluating a t-degree polynomial in 7 in every round, and therefore leads to

3This follows e.g. from Lemma 1 by subtracting 3 . ft(w:) on both sides of (2.2.3) and rearran-

ging.
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O(T?) total running time. This may be reduced to O(T InT') by using a prior - on
an exponentially spaced grid of 7 (as in MetaGrad (van Erven and Koolen, 2016)),
but in the experts setting even the extra In I’ factor in run time can be avoided. This
is possible by moving the ‘prod bound’ that occurs in the proof of Theorem 5, from
the analysis into the algorithm by replacing the surrogate loss from (2.5.2) by the
slightly larger surrogate loss

C(n, i) = —nre(i) + nPre(i)?, (2.5.6)

which turns iProd into Squint. Because this surrogate is quadratic in 7, it becomes
possible to run EW in the resulting surrogate OCO task and evaluate the resulting
integrals over 7 in closed form for suitable choices of the prior on 7, so that Squint
has O(T) run time (see Koolen and Van Erven (2015) for a detailed discussion of
the choice of prior). Moreover, as shown in Section 2.12.2, it satisfies exactly the
same guarantees as iProd.

2.5.3 Reduction for Coin Betting

If we are willing to give up on second-order bounds, but still want to learn 7,
then there is another way to obtain an algorithm with O(7T’) run time by bounding
the iProd surrogate loss, which leads to a variant of the Coin Betting algorithm
for experts of Orabona and Pal (2016). Our presentation and analysis are very
different from (Orabona and P4l, 2016), but we obtain exactly the same regret
bound for essentially the same algorithm, and we can explain some design choices
that required clever insights by Orabona and Pal (2016), as natural consequences of
running EW in the surrogate OCO task that we end up with.

The idea is to split the learning of 1 € [0, 1] and 7 into separate steps: for each i, we
restrict P;(n | 7) to be a point mass on some 7¢, and we will choose 7} to achieve
small regret for the surrogate loss

which upper bounds (2.5.2) by convexity of the negative logarithm. We then
plug in the choices of 7} in (2.5.2) and learn i for the resulting surrogate losses
0:(i) = —In(1 4 nir()). For n € [0,1] and 7 a distribution on 4, let

—In2,

St(n) =Y Gm) — Y ),
t=1 t=1

T _ T
Sr(7) =Y —InEip, [e—‘ft(i)} _E. [Z Zt(i)]
t=1

t=1
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be the mix-regret in the two surrogate OCO tasks. (Notice that in Sép the mix-regret
has collapsed to the ordinary regret, because we are restricting ourselves to play
point masses on 7.) Also let R.(i) = max{Rr(i), O} be the nonnegative part of
the regret, and define B(z||y) = In § + (1 — ) In 1= , to be the Kullback-Leibler
divergence between two Bernoulli dlstnbutlons Wthh satlsﬁes B(z|ly) > 2(x—y)?
by Pinsker’s inequality. Then this reduction gives the following regret bound, proved
in Section 2.12.3:

Theorem 6 (Coin Betting Reduction to EW). Any choice of distributions P, on
i and learning rates 1} in the surrogate OCO task defined above induces regret
bounded by

Ex [B <2+R;T 5 )] < T( [ST( T(Z))} —i—S'T(fr)) forany on'i
(2.5.7)

in the original prediction with expert advice task.

In particular, if we use EW with learning rate 1 and prior 7 on i for the losses
?,, and for the losses Eé we let n,f be the mean of lazy EW with learning rate 1
and with prior on n € [—1,+1] such that H?” has a beta-distribution 3(a, a) with
a =L + 1 and with projections onto P = {P | Ep[n)] € [0, 1]}, then

Ex [Rr(i)] < /3T (KL(7||7) +3)  forany 7 oni. (2.5.8)

Compared to (2.5.5), (2.5.8) avoids a InIn 7" term, but it has lost the benefits of the
second-order factor E;[Vr(i)] < T'. This may be explained by its upper bound
¢i(n) > £4(n, 1), which is tight only in the extreme case that 74(i) € {—1, +1}.

The Resulting Coin Betting Algorithm EW on the losses ¢¢ with the (conjug-
ate) ((a, a) prior is a generalization of the Krichevsky-Trofimov estimator (see
?_tl‘}r(;g Lazily projecting onto
‘P then simply amounts to clipping at 0 (by convexity of KL-divergence in its
first argument, which implies that the constraint Ep[n] > 0 will be satisfied with

equality when we project from a distribution with negative mean). This means

?_tl‘jr(;g , O}. By (2.5.1) the Coin Betting algorithm from the the-

orem predicts with weights w; ; obtained by normalizing the unnormalized weights
Wwy; = Pr(i)ni, where py(i) is the unnormalized probability P;(i) of EW on the

Example 1) and its mean has the closed form

that 7} = max {
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losses ¢;, which recursively satisfies

t—1
(i) :=m (i) [T (1 + mirs(d)) = Be-1(i) + wp—1ire—1(i) = ...

s=1
t—1
=m(i) + > sirs(i).
s=1

Interestingly, Orabona and P4l (2016) interpret the unnormalized EW probabilities
Pt (1) as the Wealth for expert i that is achieved by a gambler.

The interpretation in Theorem 6 explains three design choices by Orabona and Pal
(2016): first, their choice of potential function, which naturally arises in our proof
when we bound the regret S%.(R7.(i)/T) for EW using Lemma 1. Second, the
choice for a, which in the original analysis comes from defining a shifted potential
function, is simply specifying a prior with most mass in a region of order 1/ VT
around n = 0. And, third, the clipping of the unnormalized weights w; ; to 0 when
R¢—1(i) < 0, which in our presentation happens automatically because the learning
rate 1)} is projected to be 0 if it would otherwise become negative. Defining a
prior on positive learning rates directly would be possible in theory, but not with a
conjugate prior, so the computational efficiency of the algorithm is made possible
by the projections.

There is one slight difference between the algorithm we obtain here and the original
Coin Betting algorithm of Orabona and P4l (2016): in the original method the
instantaneous regrets are clipped to max{r;(¢),0} when R;_1(¢) < 0, which our
method does not do. Apparently there is some amount of freedom in the design of
this type of algorithm.

2.6 Online Linear Optimization with Bandit Feedback

A benefit of the EW interpretation of MD is that it opens up the possibility of
sampling from the EW posterior distribution instead of playing the mean. Here
we show how this option can be leveraged to obtain an algorithm for online linear
optimization with bandit feedback (Dani et al., 2008; Abernethy et al., 2008), which
recovers the best known rate O(dv/'T InT'). A proof of this fact has already been
outlined by Bubeck and Eldan (2015), but here we fill in the technical details.

The linear bandit setting consists of linear losses fi(w) = (w,g;) € [-1,+1],
but instead of seeing the vectors g; we only observe f;(w;) for the algorithm’s
choice w;. The algorithm can randomize its choice wy, and g; is fixed before
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2.7. Discussion

the outcome of this randomization. The goal is to minimize the expected regret
E[Rr(u)], where the expectation is with respect to the algorithm’s randomness.

We consider the EW algorithm with fixed learning rate  and uniform prior distribu-
tion P; over W. In each round ¢, after observing f;(w;) = (w, g;), the algorithm
constructs a random, unbiased estimate g; of the loss vector g; and uses this estim-
ate to update P; to Ppyq. Itis easy to verify that, for each ¢, P; is a member of the
exponential family with cumulant generating function F'(0) = In fW w9 duw.
At trial ¢, the algorithm samples w; ~ @, where Q); = (1 —~) P, +~R is a mixture
of the EW distribution FP; and a fixed “exploration” distribution 2, chosen to be
John’s exploration (Bubeck et al., 2012). Using that the convex conjugate of F’ is
a universal O(d)-self concordant barrier on VW (Bubeck and Eldan, 2015), it can
be shown that, when 1 and ~ are appropriately chosen, this algorithm achieves
expected regret of order O(dv T InT') (see Section 2.13).

It is interesting to compare with the SCRiBLe algorithm (Abernethy et al., 2012),
which replaces EW by MD. By the results of Section 2.3.3, this is an essentially
equivalent approach, except that SCRiBLe employs a sampling strategy based
on the spectrum of the Hessian of F*, without reference to the EW distribution,
and achieves a regret bound that is suboptimal in d. This shows that the EW
interpretation of MD is clearly beneficial in the bandit setting.

2.7 Discussion

We conclude with several remarks: first, we point out that there may be computa-
tional reasons to avoid defining the prior directly on the domain WV of interest: as
shown for instance in Sections 2.3.2 and 2.4, defining a Gaussian prior on all of R?
and then projecting the mean onto W can be computationally more efficient. In the
context of sampling from the EW distribution, discussed in Section 2.6, this might
also make sense if we project onto the alternative (smaller) set of distributions
P ={P| PW) =1} c {P | Ep|w] € W} that are supported on WV, which
amounts to conditioning on V. Second, there seems to be a discrepancy between
the body of work for the log loss cited in the introduction, which strongly suggests
using Jeffreys’ prior, and the uniform prior suggested in Section 2.6 in the context
of the universal barrier.

2.8 Proof of Lemma 1 from Section 2.2

Proof. In the following we make use of the generalized Pythagorean inequality for
Kullback-Leibler divergence (Csiszér, 1975): for P, = argminpcp KL(P||F;)
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and any Q € P:
KL(Q|P) > KL(Q||P:) + KL(P4| ;). (2.8.1)
For greedy EW we have
L(KL(@|IP) - KL@Q|P1)
> ; (KL(QIIP) ~ KL(Q|| Pt1)) (from (2.8.1))
= —Eo[fi(w)] - ;tln]Ept [e*mf%w)} (from (2.2.2))

in any trial ¢. Summing over trials gives:

T T
>~ Eqlfiw)] = = InEp, [ ] < 3 L (KLQIR) ~ KL(QIIP+1)
1

—1 Mt

t=
_ ;KL(QIIH) L KL@Q|Pri)
Py Kur) (Lo L)
P . M-1

1 1 1
< — KL P;)+ max KL PYl———].
KL@IP) + g, KLQIED) (- o)

Rearranging the terms and adding Zthl fi(wy) on both sides results in (2.2.4).
We now proceed with the proof of lazy EW, starting from:

1
o InEp, [eM-17t(w)] (2.8.2)

. 1
—-— { Erlfiw)] + - KL(PHPt)}

1
< Ep, ., [ft(w)] + p— KL(Py1]| )

1 ~ 1 N
< Ep[fi(w)] + —— KL(Pa || ) — —— KL(B| F), (2.8.3)
Mt—1 Mt—1
where the last inequality is from the Pythagorean inequality (2.8.1) applied with

Q = Py1. By 22.1):

dlf’t(’w)

- _ — —e-1 3o fs(w)
0 07 o) = 1 Do) I [ =

)
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which gives:

1 ~ 1 -
—— KL(Py1||P;) — —— KL(FR|| 7)
Mt—1 Nt—1

1 1
= — KL(P1||P1) — — KL(P|| 1)
Nt—1 -1

VEn,, [gmm} ~En [gfsm]-

Plugging this into (2.8.3) and using n; < 1y_1 results in:

1 1 1
———InEp,[e"1H®W)] < — KL(Ppyq||P1) — —— KL(P|Py)
Mt Nt—1

-1
+Ep,, [gfsuu)] ~En, [z_; fi(w)|

Summing over trials makes the terms on the right-hand side telescope and gives:

T

T
1 1
> ———InEp[e " W] < — KL(Pry|P) + Epy,y [E ft(w)]
= -1 nr =1

= 3l {EP [Z Jilw ] - KL(PIIPl)}

<Eq [fow)] + LrL@QIP),
t=1

where the equality expresses an equivalent way to define lazy EW. Rearranging the
terms and adding Zle fi(wy) on both sides results in (2.2.3). O

2.9 Proof of Theorem 1

Proof. Rather than scaling canonical vectors e;, i = 1, ..., d and the comparator u
by M, we scale the loss vectors by defining g; = M gy, so that the losses remain the
same: (e;,g,) = (Me;,g;) for all i and all ¢. Let w1 = (w]",w] ), and let w;,
w, be the result of running EG plus-minus on g;. For any u with Z?il u; =1
and u; > 0 invoking Lemma 1 gives:

T T
D (wy—u,gj) < - KL (ulw) + > (w;t,g}) — (w; ,g})
t=1 =1
1 d
+ —1In (Z(w;rie_m<ei’gf> + wy, e"t<e“9f>)) (2.9.1)
" =1
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The first term on the right-hand side of (2.9.1) can be bounded by:

max KL(u|w1) = In(2d).
u:Z?il u;=1, u; >0
To bound the second term on the right-hand side of (2.9.1), we make use of Hoeffd-

ing’s Lemma (Cesa-Bianchi and Lugosi, 2006, Lemma A.1), which together with
(e, g1)| < MG gives:

T d
1 o o M2G?
S (wi,gl)— (wy,gl)+~ In (Z(wﬁe—nxe“g»+wt—iem<eugt>)) < _
t=1 " -1 7 2
Summing over trials results in a bound on the regret:
T 2,72
In(2d) TM*G
Z wy —u, g;) < +n .
n 2
t=1
. . . o 2In(2d) _ . .

Plugging in the optimal 1) = |/ 7577 yields the desired result. O

2.10 Proof of Theorem 3

Before proving the theorem, we need two lemmas:

Lemma 2 (Banerjee et al. (2005); Nielsen and Nock (2010)). The KL divergence
between two members, P and @), of the same regular exponential family € with
cumulant generating function F' can be expressed by the Bregman divergence
between their natural parameters, O p and 0, or their expectation parameters, pip
and pg. The first Bregman divergence is generated by the cumulant generating
function F' and the second Bregman divergence is generated by the convex conjugate
of the cumulant generating function F*:

KL(P||Q) = Br(0q||0p) = Br-(nrllpqg)-
Lemma 3. (lhara, 1993, Theorem 3.1.4) Let p be arbitrary and define P = {P :

Ep|w] = p}. Then, for any member Q) of an exponential family E,

min KL(P||Q)

is achieved by P € & such that Ep[w]| = p, provided such a P exists.
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Proof of Theorem 3. Let w; be the weights produced by the greedy version of MD.

Then

pin {Brllw.o0] + . KL(PIP) |

1
= min min E u)7 + _ KL P P
HEW P:lEp[w]=;L{ rl{w.gy)] e (Pl t)}

1
=i e Hin Jg1) + — KL(P||P,) },
HEW Pesz]Ep[w}:”{m gt) m (Pl t)}

where in the second step we can restrict to minimization over £ by Lemma 3.

Introducing the short-hand notation up = Ep[w], we thus get for the greedy
version of EW:

. 1
aﬂza@mn{m3w+Kumm@
PeE:ppew m

— argmin {00 + B (urlan) |
PeE:ppew Nt

where we used Lemma 2. But the last expression coincides with the definition of
the greedy MD weight update, and since it applies to all ¢, we have pup, ,, = w1
for all ¢, provided pp, = w; (which holds by assumption). An analogous argument
can be made to show the equivalence of the lazy versions of MD and EW. O

2.11 Proofs for Section 2.4

2.11.1 Proof of Theorem 4

Proof. P, =N (wy, ¥¢) may be verified analytically from (2.2.1) and (2.2.2). The
fact that projections P; onto P preserve Gaussianity with the same covariance
matrix follows from Lemma 9 in van Erven and Koolen (2016). Lemma 1 gives a
bound on the regret w.r.t. randomized forecaster Q@ = N (u, Xg):

T
Z Et('wt
t=1

The KL divergence between two Gaussians is given by (Ihara, 1993, Theorem
1.8.2):

||Mq

1
< KL(QHPl +Z£t 'UJt Eh’l}Ept |:6*7]Zt(w):|'
t=1

det(X1)

KL(Q[[P1) = 1( <dt()

> +Tr(ZoX ) + (uw—w) T (u —w;) —d).
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The mixability gap can be evaluated in closed form by calculating the Gaussian
integral:

2 1 det (%)
WE n(ﬂt('wt)—ft(’w))] _ gy S (o
nkp, |e g Je=tn1gr— 5 det(X¢11)

Also, the expectation of the instantaneous regret can be computed exactly:
1
€t(wt) — EQ [ét(w)] = Kt(wt) — ﬁt(u) — 5 TI‘(EQMt)
Summing the above over the trials, we get the following upper bound on the regret:

T T T
D t(w) = li(w) <nd_ glSimgr
t=1 t=1

t=1
det(2 — _
In ( di(t(zTg)l)) +Tr(SQ¥ry,) — d+ (w1 — w)T8 (wi — u)
2n

which holds for all ¥¢. By plugging in the optimal value X = Y71, the bound
simplifies to:

T
Z ft (’LUt
t=1

which concludes the proof after using (2.4.1). O

_|_

Y

T
1 71 77
? (wy — U)TE1 wi — u) 5 z_: EtJrlgzta

||M%

2.11.2 Proof of Corollary 4.1

Proof. Using Theorem 4 gives:

1 e~ 1
i 2, N 2
0 e 1
< D? + 1G?
~ 2no? 2 ; L +ant
1 nG? U 2/T Lo
2no? 2(% +an) 2 1 + ant
1 G? G?
= + —(In 4+ aT) —In + a)),
2102 2(7%% +a) 2« (In( ) ( )
which was to be shown. O
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2.11.3 Proof of Corollary 4.2
Proof. Using Theorem 4 gives:

D? 77T
Re(u) < 525 52 Str1:- (2.11.1)

We start by bounding the second term on the right-hand side of (2.11.1). Using
Lemma 12 from Hazan et al. (2007) we bound:

det(Et 1)

™ =TS (27 -2 h)) < lp ———
77/3915 t+19t I‘( t+1( t+1 t ))_ det(E )

which after summing over trials gives:

d T det(2T+1) 2
Z 189! Zit1gr < In ————= = Indet (I + 0o E 9:9¢)
pt det(X] h par

d 24,12
=3 In(1+\) <dln <1+77(’€fT>,

=1

where )1, ..., \q are the eigenvalues of no?p3 Z?Zl g:g/, and the last inequality
follows by maximizing under the constraint that Y, \; = Tr(no?8 Zthl g:9f) <
o?nBG?T. As discussed by Cesa-Bianchi and Lugosi (2006, proof and discussion
of Theorem 11.7), the maximum is achieved when \; = o?n3G>T /d for all i.

All together we find:
D? d no?BG?T
R < — In(1l+————
0 < 5+ gpin (1475
which was to be shown.
O
2.12 Proofs for Section 2.5
2.12.1 Proof of Theorem 5
Abbreviate m;(P) = —InEp [e—ft(w')] and define the potential &7 =
e Zthlmt(Pt). Then &7 = &p_1 = --- = &y = 1 since

Br — By = e Tizt PR, [nrr(3)] = 0,
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where the last identity holds for any loss vector g; by the definition of wr. For any
comparator ) on (7, 7), it follows that

T T

T
0= th(Pt) = ZEQ[&(TL Z —nre(0)+n°r()%]+5(Q),

t=1 t=1

where the last inequality is an application of the ‘prod-bound’ —In(1 + z) <
—x + 22 with = nr(i), which holds for any z > —% (Cesa-Bianchi et al.,
2007, Lemma 1). The result (2.5.3) is a direct consequence, and (2.5.4) follows
upon bounding Eg[n] > /2 and Eg[n?] < 7? and plugging in that S(Q) <
KL(Q||P) = KL(#|lx) — Iny([i/2, 7]) for EW.

2.12.2 Proof of Theorem 7

Theorem 7 (Squint Reduction to EW). The exact same statement as in Theorem 5
also holds when we replace the surrogate loss (2.5.2) by (2.5.6).

Thus (2.5.5) also holds, and we recover the results of (Koolen and Van Erven, 2015)
for Squint.

Remark 8. The Metagrad algorithm (van Erven and Koolen, 2016) is similar to
Squint on a continuous set of experts indexed by w € R with losses fi(w) = wTg,
and the analysis of Theorem 7 can be extended to handle this case.

Proof. Let m;(P) and ®7 be as in the proof of Theorem 5, but for the new surrogate
loss (2.5.6). Then &7 < &p_1 < ... < $y = 1, because

Bp — Bp_y —e~ Lizt () (EPT [e=femd)] — 1)
<e T B, 9] =0

where the inequality follows from the ‘prod bound’ (see the proof of Theorem 5)
and the final equality is again by definition of wr. For any @), it follows that

T
Z ZEQ l(n, )] +5(Q ZEQ —nre()+07r(0)*]+5(Q),

t=1

which implies that (2.5.3) also holds for Squint. Since (2.5.4) is a corollary, it also
follows directly. O
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2.12.3 Proof of Theorem 6

The proof of Theorem 6 follows the same general steps as the proofs for Theorems 5
and 7. However, bounding the mix-regret S}(n) using a similar analysis as for the
Krichevsky-Trofimov estimator from Example 1 would lead to an extra In 7" factor
in the regret. This is avoided using a more delicate analysis that holds specifically
for the regret with respect to 7 = R(i)/T, which requires a technical analytic
inequality by Orabona and Pl (2016, Lemma 16).

Proof. For {; as in (2.5.2), let my = —InE;p, [e‘gt(’ﬁ"i)]. Then, by the same
argument as in the proof of Theorem 5, &7 = e~ >i-imt = 1. For any distribution
7 on i and any 7)° € [0, 1], we therefore have

T T T
0=2 m =Es [Z G(ny i) |+ Sr(F) <Ba | >4 | + Sr(#)
t=1 t=1 t=1
T . . . . ~
= Ex | Y4 + Si(i) | + Sr(n). 2.12.1)
t=1

The minimizer of ., £i(n) over i € [0,1] is 7 = R+(i)/T. Plugging this in,

we find that
T

i(ai RE(G
> (i) = -TB(3 + QTT()H%). (2.12.2)

Substituting (2.12.2) in (2.12.1) and reorganizing we obtain (2.5.7).

If we specialize to EW, then Sy (7 ) < KL(#||) by the same argument as for iProd.

In addition, to bound Si(%), let 5(z, y) be the distribution on 7 € [—1,+1] such
that (1 + 7)/2 has a B(x, y) distribution. Then Lemma 1 and the observation that
the mixability gap is at most 0 because /¢ is 1-exp-concave, together imply that

T T
Sin(i )<mm{ s Ze; ]+ KL(QIIA(a,a)) } = > (7).

AQu) B(i)

We first rewrite B(7) using (2.12.2). Then it remains to bound the term with A(Q, 7)
in expectation under 7. To this end we may assume that Rp(7) := Ez[Rr(i)] > 0
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without loss of generality (otherwise (2.5.8) holds trivially). Hence

T 01 T—Rp(k), 1-
— min {EWNQ[ FRe(®) ) Lbn T -Re(®) ) T -T2

QeP 2 2 2 2
+KL<@||B<a,a>>}

R (#) —Rp (%)
— —1I1 (2T EXN,B(a,a) |:XT+ 2T (1 — X)T 2T :|)

o (2R r 5 )

I'(a)?I(T + 2a)
~Rr(#)? . TH+2a-1
A/ UP R S M L |
S Wtda—z I TV,
where we have plugged in the minimizing Q = /3 (T+RQT( 0 4 oa, = RT( ) 4+ a),

which has nonnegative mean under our assumption that Rp(7) > 0, and where
the last inequality holds by (Orabona and Pal, 2016, Lemma 16), which applies for
a>1/2,Rp(n) € [-T,T)and T > 1.

With these regret bounds for EW, (2.5.7) specializes to

T+2a—1

R (7) < \/(ZT +4a - 2) <§ In o

+ In(ey/7) + KL(ﬁ'HT())

The result so far holds for any a > 1 Plugging in the choice a = —l— , suggested
by Orabona and Pél (2016), and us1ng % In -2 Tog +2 + In(ey/7) < 3 completes the
proof. O

2.13 Analysis of the Algorithm from Section 2.6

Let W C R? be a compact convex set. Following Bubeck et al. (2012), we assume
without loss of generality that WV is full rank, meaning that the linear combinations
of W span R? (otherwise we can express the elements of JV in a lower dimensional
space).

Attrials t = 1,2,...,T, the algorithm plays with a randomized choice w; € W,
the adversary chooses an unobserved loss vector g;, which is not allowed to depend
on the realization of w;, and the learner suffers and observes bounded loss (wy, g;).
The goal is to minimize the expected regret: E[Rr(u)] = E [Zthl (w; — u, gr))

for any choice of the comparator u € WW. We consider EW with a fixed learning
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rate 17 and a prior distribution Pj that is uniform over WW. At each trial ¢, after
observing the loss (wy, g;), the algorithm constructs a random, unbiased estimate
g: of the loss vector g; (described below), and uses this estimate to update the
posterior. Since the projection step can be dropped (as P; is supported on W), the
greedy and lazy versions of EW coincide and the posterior is given by d P;(w)
exp(—n 22;11 (w, gs))dw for all w € W. Defining 8; = —n Zi;ll gs (with
0, = 0), we can concisely write:

APy (w) = efW 0= FO)qy v e W, where F(0) = ln/ e w0 qoy
w

is the cumulant generating function. At trial ¢, the EW algorithm samples w; ~ @,

where Q; = (1 — )P, + vR for v € (0, 1) is a mixture of the posterior P; and

a fixed “exploration” distribution R. The exploration distribution is chosen to be

John’s exploration, defined as follows (Bubeck et al., 2012). Let K be the ellipsoid

of minimal volume enclosing VV:

K={weR%: (w—w))TH Y(w—wy) <1} (2.13.1)

for some positive definite matrix H and wy € R?. In what follows we assume
without loss of generality that JV is centered in the sense that wy = O (otherwise all
w € W need to be shifted by wg). Bubeck et al. (2012) show that one can choose
M < d(d+1)/2 + 1 contact points w1, ...,up € K NW, and a distribution R
over these points that satisfies:

Ew~r[wwT] = %H (2.13.2)
The estimate g; is constructed based on the observed loss (wy, x;), by:
gt = (we, gt) (Eq, [wa])_l Wy.
We now show the following regret bound for the resulting algorithm:

Theorem 9. Assume the losses are bounded: |(w,g:)| < 1 for all w € W and

allt. Letn = 4/ ”31517? , where v = O(d) is the self-concordant barrier parameter

of F*, and let v = nd. Then the expected regret for the EW algorithm described
above is bounded by

E[Rr(u)] <2V3vdl'InT +2 = 0(dVTInT).

Proof. We first verify that the estimate g; of g, is unbiased:

Eum (9] = Buinr |(Burg, [weoT)) ™ wi(wr, g1}
= (EWNQt [waD_l EthQt [wtw;fr] gt = g
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Furthermore, due to the inclusion of the exploration distribution R, we have:
Eung,[we] = (1= 7) Eyep [ww] + 7 Epplww’] = 1H,

(where A = B means A — B is positive semidefinite), and hence for any u € W:

<u, (EwNQt [wa])1u> < <u jH‘1u> < ;l, (2.13.3)

where the last inequality is from the fact that YW C K and from the definition of X
in (2.13.1). This, however, implies that the linear losses induced by g, are bounded
for any u € W:

(u,ge)
— twi.g) (1, (Bur fww) w0

Lo\ 12 172

< w9 (i (Bunofww)) ) (Bueoww]) u)

Sga (2.13.4)
Y

where the first inequality is from the Cauchy-Schwarz inequality (for positive
semidefinite A, T Ay < (T Az)'/?(yT Ay)'/?), while the second inequality is
due to assumption |(w, g;)| < 1 and due to (2.13.3) applied twice (first to u and
then to wy).

Let pu; be the mean value of P;: py = Ep, [w]. As a general property of exponential
families or as a consequence of Theorem 3, we have p; = VF(6,), and p; and 6,
are conjugate parameters of the exponential family. Let us fix a comparator u € W
and define P, to be the member of the exponential family with cumulant generating
function F' that has mean value u: B, p, [w] = u. We now apply Lemma 1 for
the EW algorithm on the sequence of linear losses induced by g1, .. ., gr to get:

T
Z —u,gy)

t=1

T
0,30) =3 B, [(w, 1)
=1 t=1

Mﬂ

~+

T
< SKL(PLIP) + > (b §0) —1nEwwpt [e n(w »gﬂ
t=1

I |

(note that in this section we use p; to denote the mean of P, while w; is reserved
for the randomized action at trial ¢ sampled from ;). Since P,, and P; are members
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of the same exponential family, the KL-term can be re-expressed using Lemma 2:

KL(Py|Pr) =Dp+(ulp1)
=F"(u) — F*(p1) = VF (1) (1 — p1)
0
=F*(u) — F* (),

where we used the fact that g has conjugate parameter 8; = 0, and thus
VF*(u) = 67 = 0. To bound the mixability gap, we will now use that by
assumption 77 = 7, so that by (2.13.4) we have |n(w, g;)| < 1 for any w € W.
Using the fact that e™® < 1 — s + s2 holds for s > —1, and combining with
In(1+ z) < x gives:

- 1 o
(1e, Gr) + glnEwNPt {e 77<w79t>:|

1 i )
< (e, Ge) + ;ln (L4 Ewep, [—n(w, g) + n*(w,ge)?])

< <lJ/t7gt> - EwNPt[<w7gt>] +n EwNPt [<w7 gt>2]
=0
= ng] Ew~p, [wwT] g;.

Combining the bounds on the KL-term and the mixability gap gives:

T T
F* u) — F* 5 R

E —u,gt) (w) 7 (p1) +n E 9] Ewep, [ww'] g, (2.13.5)

t=1 t=1

We can use this result to bound the regret of the original algorithm in the following
way. First, note that:

EthQt [(wt - ’U/,gt>] = 7<Ewt~R[wt] - U, gt> + (1 B 7) <EthPt [wt] N U,gt>
<2y + (1 —7) (e — u, g1)
=27+ (1 =) Ewinq, {0t — w, g1)]

where the random quantity in the last expectation is g;, because it depends on w;.
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Therefore:

T
Z szNQt [<wt - u, gt)]
t=1

T
<NHT+(1=7) Y Bung, [(1e — w, G1)]
t=1
F*(u) — F* () a
_ . _
< 29T + 7 ZEwaz 9! Ewnp, [wwT] g
t=1
F*(u) — F* N N
< 99T + (w) ; (1) +nZEthQt ] Bwg, [wwT] g, (2.13.6)

t=1

where the second inequality is from (2.13.5), while the last inequality is due to:
Ew~g [wwT] = (1 —7) Ep~p, [wwT]+v Ep rlww’] = (1—7) Eyop, [wwT].
Using the definition of §; and (wy, g;)? < 1, we further bound:

B @, 9] Bwnq, [wwT] gi]

< Eungy |07 Bumgy [007]) ™ Eungy [007) (Eung, [ww)) ™ w,

= iEwat [ﬂ ((Eth [wwT)) ™ wyw] )}
t=1

= i Tr(I) =
t=1

Plugging the above into (2.13.6) and taking expectation with respect to the random-
ness of the algorithm results in the following bound on the expected regret:

E[Rr(u)]

T
F*(u)— F*
=F E EthQtKwt—u,gtﬂ] < 29T + () ” (p1) +nTd.
=1

What is left to bound is F*(u) — F*(p1). To this end, define the Minkowski
function (Abernethy et al., 2012) on W as:
Tu(w) = inf{t > 0: p+tHw—p) € W}.

Bubeck and Eldan (2015) show that '™ is a v-self concordant barrier on YV with

v = O(d). Using this property and Theorem 2.2 from Abernethy et al. (2012) we
get:

mefwMﬁgym<ll>.

T (u)
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If w is such that 7, (u) < 1 — l , then F*(u) — F*(p,l) <vInT. On the other
hand, if 7, (u) < 1— L, we deﬁne anew comparator ' = (1 — £)u + £ 1, for
which 7, (v) <1 — % (Abernethy et al., 2012), and use the regret bound above

for u’ to get:

E

T
E[Rr(w)] = B[Rz ()] + 3 (u' — u,g,) = E[R Z E——
=1

—_

T

F*(u') —

o vInT
< 29T + (”1)+an+2§2fyT+—+an+2.
"

3

Recalling that v = nd and tuning n = ”Slé‘TT gives the claimed bound. O
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