
The many faces of online learning
Hoeven, D. van der

Citation
Hoeven, D. van der. (2021, March 4). The many faces of online learning. Retrieved from
https://hdl.handle.net/1887/3147345

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3147345

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3147345

Cover Page

The handle https://hdl.handle.net/1887/3147345 holds various files of this Leiden
University dissertation.

Author: Hoeven, D. van der
Title: The many faces of online learning
Issue Date: 2021-03-4

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3147345
https://openaccess.leidenuniv.nl/handle/1887/1�

CHAPTER 1
Introduction

Online Learning is a fundamental task in Machine Learning. It is the task of
sequentially making predictions given previous feedback and possibly additional
information. Online Learning tasks have many interesting theoretical properties
and practical applications. Examples of Online Learning tasks include gambling
on sport matches (Vovk and Zhdanov, 2009), spam filtering, weather prediction,
portfolio selection (Cover, 1991), training machine learning models on very large
data, and many more.

Online Learning proceeds in a sequence of rounds t = 1, . . . , T , where in each
round t the learner has to issue a prediction. In specialized cases of Online Learning
such as Online Classification these predictions may come from a very limited set
of a finite number of possible labels. In other settings in Online Learning such as
Online Convex Optimization predictions may come from any convex set. After
the learner has issued his prediction he receives feedback from the environment in
the form of a loss function `t, which tells the learner the error in his prediction. In
the full-information setting the learner sees the entire loss function, which means
that the learner can also assess the quality of alternative predictions. In the more
difficult bandit setting the learner only sees the value of the loss function evaluated
at his prediction, which means the learner cannot assess the quality of alternative
predictions.

As a simple example let us consider predicting whether or not it is going to rain
tomorrow. Suppose that we encode "it will not rain" as -1 and "it will rain" as
1. We will denote the prediction of the learner with ŷt ∈ {−1, 1} and the actual
outcome as yt ∈ {−1, 1}. If the learner makes a prediction today he will only
get feedback tomorrow, which he may use to make his prediction for the next day.
The loss function in this case could be the zero-one loss, i.e. `t(ŷt) = 11[ŷt 6= yt],
where 11 is the indicator function. This loss function is easy for the learner to
come by as he only has to pay attention to the weather throughout the day. The

1. Introduction

C
H

A
P

T
E

R
1 goal here is straightforward, the learner wants to make as few mistakes as possible.

As a more involved example let us consider online regression. Suppose that the
learner is interested in predicting how much it is going to rain. Before making his
prediction the learner might have some additional information, such as barometric
pressure, whether or not there are clouds, and all the tweets from the preceding
twenty-four hours that contain the word weather. In each round t, the learner could
use a hypothesis ht from hypothesis setH to map the additional information, which
we will denote by xt, to amount of rain. In this example, the learner could be
interested in minimizing the quadratic difference between his prediction and the
actual amount of rain yt ∈ [0,m], i.e. `t(ht) = (ht(xt)− yt)2, where m is the size
of the cup the learner uses to measure the amount of rain with.

In both examples the goal of the learner is to minimize the cumulative loss he suffers,
summed over rounds t = 1, . . . , T . The learner could try to use the feedback he
received the previous days to continuously improve his predictions. However, the
learner could have a neighbour who is accidentally disturbing his measurements by
spraying his garden with water. Clearly, this makes the task of the learner harder
as the relation between his observations is weakened. Even more problematic,
the learner could face an adversarial neighbour who actively tries to disrupt the
learner’s measurements. This adversarial neighbour makes learning very difficult,
as any correlation between previous days and the next is removed.

Unlike in classical statistical learning theory, which makes probabilistic assumptions
about the environment, Online Learning is able to provide some guarantees about the
cumulative loss of the learner without probabilistic assumptions, even in adversarial
environments. The guarantees of Online Learning are about the regret, which
measures how "sorry" the learner is for making the predictions he has made. To
ensure that the regret can be suitably bounded we often require that the predictions
and best fixed prediction strategy come from the same set, which is often bounded
and convex. Suppose that the predictions ht of the learner come from an abstract
hypothesis classH. This hypothesis class can be anything from the set of vectors
in a unit ball to a set of functions that map additional information to outcomes, to
a simple class that only consists of -1 and 1 as in the example above. The regret
is defined as the difference between the cumulative loss of the learner and the
cumulative loss of the best fixed prediction strategy in hindsight:

RT =

T∑
t=1

`t(ht)−min
h∈H

T∑
t=1

`t(h).

The goal of the learner is to have small regret. This does not mean that the best
strategy is a good strategy; it is merely a benchmark with which the learner compares

2

C
H

A
P

T
E

R
1

himself. The learner is satisfied as long as the regret is sublinear, which is to say
that the average loss of the learner minus the average loss of the best fixed strategy
goes to zero as T grows.

Overview of the dissertation The chapters in this dissertation can be read in-
dependently, but for a full appreciation of each chapter it is recommended that
the reader starts with the current chapter. The remainder of this chapter serves to
provide a gentle introduction for the chapters that follow.

A common theme in several chapters of this dissertation is how to design algorithms
that can handle adversarial environments but also exploit benign environments. In
Chapter 2 we show how we can design adaptive algorithms for the Prediction with
Expert Advice setting, which we introduce in Section 1.1, by using a reduction
based on the Exponential Weights algorithm (Vovk, 1990; Littlestone and Warmuth,
1994). In Chapter 3 we derive algorithms that are adaptive to unknown noise in the
Online Convex Optimization setting, a setting which we will introduce together
with the Bandit Convex Optimization setting in Section 1.2. In Chapter 4 we derive
the first algorithms that are adaptive to the norm of the offline optimizer for the
Bandit Convex Optimization setting. Finally, in Chapter 5 we describe MetaGrad,
which operates in the Online Convex Optimization setting. MetaGrad is adaptive to
a large class of loss functions, including exp-concave and various other types of
functions.

Since the learner updates his predictions each round it is important that the updates
can be performed reasonably fast. For many Online learning settings algorithms
with per round running time larger than quadratic in the dimension of the problem
are considered impractical. In several chapters we will show how to improve the
running time of Online Learning algorithms while maintaining similar or even
improved guarantees. In Chapter 6 we consider the full-information and bandit
Online Multiclass Classification settings, which we introduce in Section 1.3. We
introduce a new approach to Online Multiclass Classification which allows us to
use an algorithm that has a per round running time that is linear in the dimension
of the problem that guarantees small regret bounds. Interestingly, our algorithm
often improves upon the regret bounds of slower algorithms. In Chapter 5 we show
how to improve the running time of MetaGrad by using matrix sketching methods
at the cost of a slightly larger regret bound. Finally, in Chapter 7 we pose an open
problem that asks for a fast and optimal algorithm for online portfolio selection.
We propose a fast algorithm and an analysis of this algorithm that shows that in
some special cases of online portfolio selection this algorithm indeed obtains the
optimal regret bound.

3

1. Introduction

C
H

A
P

T
E

R
1 1.1 Prediction with Expert Advice

Our first setting in Online Learning is perhaps the most well-studied setting: the
prediction with expert advice setting. In the prediction with expert advice setting the
learner has access to d experts. In a given round t, each expert i sends his prediction
ŷit to the learner, who may use these expert predictions to form his own prediction.
These experts can be anything, for example the learner’s neighbours who predict
how much rain is going to fall, static experts i = 1, . . . , d who always say it is
going to rain i mm, or arbitrary points in a convex set. To issue his predictions,
the learner forms a distribution pt over the experts. The learner’s loss becomes
ˆ̀
t = E

i∼pt
[`it], where `it = `t(ŷ

i
t) is the loss of expert i at time t. Loss ˆ̀

t can be

motivated in several ways:

(a) If the learner randomly chooses an expert i ∼ pt then this is the expected
loss.

(b) If `t is convex and the learner predicts ŷt = Ept [ŷit] then by Jensen’s inequal-
ity ˆ̀

t is an upper bound on the learner’s loss.

The goal of the learner in the prediction with expert advice setting is to predict
almost as well as the best expert in hindsight, which is to say that the regret with
respect to the best expert in hindsight is sublinear.

A fundamental algorithm in the prediction with Expert Advice setting and Online
Learning in general is the Exponential Weights algorithm. With a discrete set of
experts, the distribution of Exponential Weights has the following form:

pt(i) ∝ π(i)e−η
∑t−1
s=1 `

i
s ,

where η > 0 is called the learning rate and π(i) is the prior mass on expert i.
Unsurprisingly, Exponential Weights gets its name from the exponentially weighted
losses of each expert. Somewhat surprisingly, Exponential Weights can be applied
in many different settings and several other algorithms are special cases of it. For
example, in Chapter 2 we will see that with a continuous set of experts and a
Gaussian prior Online Gradient Descent (Zinkevich, 2003) is a special case of
Exponential Weights.

For losses such that `t(ŷit) ∈ [0, 1], Exponential Weights with learning rate η =√
8 ln(d)
T provides the following guarantee (see for example Theorem 2.2 by Cesa-

4

1.2. Online Convex Optimization

C
H

A
P

T
E

R
1

Bianchi and Lugosi (2006)):

T∑
t=1

ˆ̀
t −min

i

T∑
t=1

`it ≤
√

ln(d)T

2
.

As we can see, as T grows the difference between the average loss of the learner
and the average loss of the best expert decreases.

In an adversarial environment the learner can not do better than the above regret
bound (see section 3.7 by Cesa-Bianchi and Lugosi (2006)). However, in more
benign environments the learner could have had a better guarantee. For example, it
could have been clear from the start that the predictions from the neighbour who
works at the KNMI1 are the best predictions. In fact, if the learner only listens to
the KNMI neighbour after a few rounds he will no longer suffer any additional
regret after these initial rounds. This means that the learner will have to quickly
learn to only listen to the KNMI neighbour to get a small regret bound.

With the Exponential Weights algorithm the speed at which the algorithm learns
is governed by the learning rate η. In adversarial settings the learning rate is set
such that the distribution over the experts pt does not change drastically between
rounds. However, to quickly learn that one expert is clearly the best expert, η would
have to be tuned so that pt quickly converges to a point mass on the best expert.
Unfortunately, the learner usually does not know beforehand whether or not his
environment is adversarial, benign, or something in between adversarial and benign.
This means that the safest thing for the learner to do is to tune his algorithms to
deal with an adversarial setting. In Chapter 2 we will show that with a reduction
based on Exponential Weights we recover the Squint (Koolen and Van Erven, 2015)
and coin betting for experts (Orabona and Pál, 2016) algorithms that adjust their
learning rate automatically, which allows these algorithms to adapt to different
environments.

1.2 Online Convex Optimization

The Prediction with Expert Advice setting is a special case of the Online Convex
Optimization setting. In the Online Convex Optimization setting the predictions of
the learner can come from any convex set, for example an L2 ball or the probability
simplex. This setting is called the Online Convex Optimization setting because
the loss functions are assumed to be convex. Applications of Online Convex

1Dutch National Weather Institute

5

1. Introduction

C
H

A
P

T
E

R
1 Optimization include training machine learning models on very large data and

online classification.

In Online Convex Optimization, in each of t = 1, . . . , T rounds, the learner has
to make a prediction wt in a convex domain W before observing a convex loss
function `t :W → R. The goal is to obtain a guaranteed bound on the regret

RT =
T∑
t=1

`t(wt)− min
w∈W

T∑
t=1

`t(w)

that holds for any possible sequence of loss functions `t. To be able to bound
the regret a standard assumption is that the domain is bounded, but in Chapter
3 we consider algorithms that are able to achieve suitable regret bounds with an
unbounded domain.

To see how the Prediction with Expert Advice setting is a special case of the Online
Convex Optimization setting we set the domainW = {w ∈ Rd+ |

∑d
i=1wi = 1}

to be the probability simplex and let the losses be linear: `t(wt) = wᵀ
t gt = ˆ̀

t,
where gt = (`1t , . . . , `

d
t). With this loss the definition of the regret in the Online

Convex Optimization setting coincides with the regret of the Prediction with Expert
Advice setting.

Another example of an Online Convex Optimization task is online portfolio selection
(Cover, 1991). Online portfolio selection corresponds to the special case that
the domain is the probability simplex and the loss functions are restricted to be
of the form `t(w) = − ln(wᵀxt) for vectors xt ∈ Rd+. With online portfolio
selection the goal of the learner is to distribute his funds over several assets. Online
portfolio selection was introduced by Cover (1991) with the interpretation that
xt,i represents the factor by which the value of an asset i ∈ {1, . . . , d} grows in
round t and wt,i represents the fraction of our capital we re-invest in asset i in
round t. The factor by which our initial capital grows over T rounds then becomes∏T
t=1w

ᵀ
t xt = e−

∑T
t=1 `t(wt).

Cover (1991); Cover and Ordentlich (1996) show that the best possible guar-
antee on the regret is of order RT = O(d lnT) and that this is achieved by
choosing wt+1 as the mean of a continuous Exponential Weights distribution
dPt+1(w) ∝ e−

∑t
s=1 `s(w)dπ(w) with Dirichlet-prior π (and learning rate η = 1).

Unfortunately, this approach has a runtime of order O(T d), which scales exponen-
tially in the number of assets d, and is therefore computationally infeasible when d
exceeds, say, 3. A sampling-based implementation by Kalai and Vempala (2002)
greatly improves the runtime to Õ(T 4(T + d)d2), but even this is still infeasible
already for modest d and T .

6

1.2. Online Convex Optimization

C
H

A
P

T
E

R
1

A common approach to runtime problems in Online Convex Optimization is instead
of optimizing the loss `t directly, optimizing a linear or quadratic approximation of
`t. With a linear approximation, we make use of the convexity to upper bound the
regret

T∑
t=1

(`t(wt)− `t(u)) ≤
T∑
t=1

(wt − u)ᵀ∇`t(wt) =
T∑
t=1

˜̀
t(wt)− ˜̀

t(u),

where u = arg minw∈W
∑T

t=1 `t(w), ˜̀
t(w) = wᵀ∇`t(wt), and ∇`t(wt) is the

gradient of `t evaluated atwt. Instead of having to optimize the complicated `t we
can now run our algorithms on the linear ˜̀

t. For example, we could now run Online
Gradient Descent (Zinkevich, 2003), which has a running time of order O(dT), and
obtain a regret bound of O(G

√
T), where G is an upper bound on the L2 norm of

∇`t(wt).

For many loss functions running Online Gradient Descent or a related algorithm
often gives satisfying guarantees. However, for online portfolio selection assuming
a bound on ∇`t(wt) = − xt

wᵀ
t xt

involves making assumptions on either xt or wt.
This means that bounding the gradients is very restrictive: we either need to (i)
assume that xt is lower bounded i.e. the asset prices do not fluctuate too rapidly,
which defeats the purpose of using adversarial online learning; or (ii) we need to
allocate a minimum amount of capital wt,i ≥ α to each asset, which means we
cannot drop any poorly performing assets from our portfolio. To see how these
assumptions affect the gradient suppose that we manage two assets and that up to
round t the first asset has been performing poorly compared to the second asset.
This means that we would want to put (almost) all of our money on the second asset
to maximize revenue. Suppose that in round t the asset prices fluctuate rapidly: in
round t the first asset remains constant, i.e. xt,1 = 1, but the second asset loses all
of its value, i.e. xt,2 = 0. The gradient would be 1

wt,2
, which would ruin the regret

bound of for example Online Gradient Descent if wt,2 is very small, for example of
order O(1

T). Even when we are willing to assume a bound on the gradient, running
Online Gradient Descent gives unsatisfactory results as the regret is O(

√
T), which

is far from optimal. For online portfolio selection and other problems with exp-
concave losses Online Newton Step (Hazan et al., 2007) often has better regret
at the cost of increased running time, which is of order O(d3T). However, with
Online Newton Step we still need a bound on the gradient as its regret bound is of
order O(Gd ln(T)), making the algorithm too restrictive. Because of these issues
with standard algorithms, online portfolio selection is a challenging research area,
as illustrated by the open problem in Chapter 7.

In Chapter 2 we will provide a unifying view of several algorithms in the Online

7

1. Introduction

C
H

A
P

T
E

R
1 Convex Optimization setting by viewing them as special cases of (Continuous) Ex-

ponential Weights. This unified view leads to a straightforward analysis of various
algorithms in Online Convex Optimization, including Exponentiated Gradient Plus-
Minus (Kivinen and Warmuth, 1997), Online Mirror Descent (Beck and Teboulle,
2003), and Online Newton Step (Hazan et al., 2007).

1.2.1 Bandit Convex Optimization

The Bandit Convex Optimization setting (Flaxman et al., 2005; Kleinberg, 2005) is
a more difficult version of the Online Convex Optimization setting. In the Bandit
Convex Optimization setting, rather than seeing the loss function `t, the learner only
observes the loss function evaluated at his prediction, `t(wt). This significantly
hinders the learner, as there is less information to improve his predictions for the
next round. An application of the Bandit Convex Optimization setting is online
auctions (Kleinberg and Leighton, 2003). In online auctions the learner has to set
a price for products he wants to sell. Unfortunately the price at which people are
willing to buy the learner’s products is unknown, so he will have to guess a price
and infer information based on whether or not people are buying the product at
the guessed price. The learner’s goal is to maximize his revenue, but the buyers
are trying to get the lowest price, which means that learner could be facing an
adversarial environment: a perfect place to apply ideas from Online Learning. Other
applications of the Bandit Convex Optimization setting include recommendation
systems and the online shortest path problem (see for example Hazan et al. (2016)).

The most straightforward instance of the Bandit Convex Optimization setting is
when the losses are linear, i.e. `t(w) = wᵀgt, where gt ∈ Rd is a loss vector. To
still be able to update the predictions the learner will estimate the loss vector, which
the learner will do by randomizing his predictions. Since the learner randomizes
his predictions the guarantees in the Bandit Convex Optimization setting are about
the expected regret, where the expectation is with respect to the randomness of
the learner. To see how the learner estimates the loss vectors with the use of
randomisation suppose that the learner plays w̃t = wt + εt, where εt is sampled
from a distribution with mean E[εt] = 0 and covariance matrix E[εtε

ᵀ
t] = Σ. This

means that the learner observes w̃ᵀ
t gt, which in expectation is equivalent to wᵀ

t gt
because E[εt] = 0. To estimate gt the learner can now use ĝt = Σ−1εtw̃

ᵀ
t gt. If we

take the expectation of ĝt we can see that ĝt is an unbiased estimate of gt:

E[ĝt] = E
[
Σ−1εt(wt + εt)

ᵀgt
]

= Σ−1 E [εtε
ᵀ
t] gt = gt.

We can use this to say something about the expected regret because E [w̃ᵀ
t gt] =

wᵀ
t gt = E [wᵀ

t ĝt], where the expected regret is defined as E
[∑T

t=1 w̃
ᵀ
t gt

]
−

8

1.3. Online Multiclass Classification

C
H

A
P

T
E

R
1

minu∈W E
[∑T

t=1 u
ᵀgt

]
. Algorithms in bandit information setting often suffer an

additional factor d regret compared to their counterparts in the full-information
setting. One of the most well-known algorithm in the Bandit Convex Optimiza-
tion setting is SCRiBLe (Abernethy et al., 2012), which achieves an O(d3/2

√
T)

expected regret bound with linear losses.

In several chapters we will provide new algorithms or analysis of algorithms in the
Bandit Convex Optimization setting. In Chapter 2 we use Continuous Exponential
Weights to sample w̃t. As already observed by Bubeck and Eldan (2015), this
improves the regret of SCRiBLe by a factor of d1/2. As we mentioned before,
in Chapter 4 we provide several Bandit Convex Optimization algorithms that are
adaptive to the norm of the offline optimizer.

1.3 Online Multiclass Classification

Another setting in Online Learning is the Online Multiclass Classification setting. In
each round t in the Online Multiclass Classification setting the learner has to predict
the true label yt out of N possible labels given some extra information xt ∈ Rd.
An example of this setting is the weather forecasting example. The learner might
want to predict whether it is going to rain or not and he probably has some extra
information such as humidity or barometric pressure. As in the Online Convex
Optimization setting there is a distinction between the full-information setting, in
which the learner gets to see the true label, and the bandit setting, in which the
learner only sees whether his prediction was correct or not. The loss function in both
the full-information and bandit settings is the zero-one loss: `t(ŷt) = 11[ŷt 6= yt],
where ŷt is the prediction of the learner and 11 is the indicator function. The
goal of both settings is to control the number of mistakes the learner makes i.e.∑T

t=1 `t(ŷt).

1.3.1 Full-Information

We start by introducing the full-information multiclass classification setting. Since
the zero-one loss is a non-convex loss the standard approach is to make use of
a surrogate loss, which is a convex upper bound on the zero-one loss. In the
case where there are only two possible labels the surrogate loss is a function of
zt = ytw

ᵀ
t xt, where yt ∈ {−1, 1}. The learner predicts with ŷt = sign(wᵀ

t xt) (if
wᵀ
t xt = 0 the learner can arbitrarily pick −1 or 1). One of the most well-known

surrogate losses is the hinge loss: ˜̀(z) = max{1 − z}. Another well known

9

1. Introduction

C
H

A
P

T
E

R
1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
1

2
3

4

z

lo
ss

zero−one loss
hinge loss
logistic loss

Figure 1.1: A depiction of the zero-one loss and various surrogate losses.

surrogate loss function is the logistic loss, ˜̀(z) = log2(1 + exp(z)),2 which is used
for logistic regression. In Figure 1.1 we can see how the hinge loss and the logistic
loss are convex upper bounds for the zero-one loss.

Below we will provide a standard approach to controlling the number of mistakes
the learner makes with the use of surrogate losses. The analysis of the well-known
Perceptron (Rosenblatt, 1958), which uses the hinge loss as the surrogate loss, as
well as many other algorithms follows a similar approach. We start the analysis by
bounding the zero-one loss in terms of the surrogate loss:

T∑
t=1

`t(ŷt) ≤
T∑
t=1

˜̀(zt). (1.3.1)

Now, we will slightly change notation and write ˜̀
t(w) = ˜̀(ytw

ᵀxt). In the next
step we will add and subtract the surrogate loss again, but now evaluated at the
offline optimizer u ∈ arg min{w∈W}

∑T
t=1

˜̀
t(w):

T∑
t=1

`t(ŷt) ≤
T∑
t=1

˜̀
t(wt) =

T∑
t=1

(
˜̀
t(wt)− ˜̀

t(u) + ˜̀
t(u)

)
.

We now almost have a guarantee on the number of mistakes we make, we only
need to control

∑T
t=1

(
˜̀
t(wt)− ˜̀

t(u)
)

. Fortunately we can use various tools
from Online Convex Optimization, for example Continuous Exponential Weights

2The logarithm has base 2 because with base 2 at z = 0 the surrogate loss is equivalent to the
zero-one loss.

10

1.3. Online Multiclass Classification

C
H

A
P

T
E

R
1

or Online Gradient Descent, to guarantee that
∑T

t=1

(
˜̀
t(wt)− ˜̀

t(u)
)

is suitably
bounded. As we have seen before, each of these Online Convex Optimization
algorithms have their own advantages and disadvantages: Continuous Exponential
Weights can be slow but has good guarantees and while Online Gradient Descent is
very fast it may not have optimal guarantees for some (surrogate) loss functions.

In the end, the guarantee of this type of classifiers is of the form

R̃T =
T∑
t=1

`t(ŷt)−
T∑
t=1

˜̀
t(u).

We will refer to R̃T as the surrogate regret. In the worst-case, the Perceptron, which
uses Online Gradient Descent to optimize the surrogate loss, has O(

√
T) surrogate

regret with respect to the hinge loss. An alternative to the Perceptron is Online Lo-
gistic Regression. Foster et al. (2018a) show that if we use continuous Exponential
Weights to optimize the logistic loss the surrogate regret is O(dN log(T + 1)), with
the drawback that continuous Exponential Weights on the logistic loss has running
time O(max{dN, T}12T).

Even though more sophisticated versions of the analysis above exist, many al-
gorithms in the Online Multiclass Classification setting roughly follow the same
approach. In Chapter 6 we will introduce a new approach that provides a ran-
domized linear time algorithm with O(K) expected surrogate regret, where the
expectation is with respect to the learner’s randomness. In particular, we will exploit
the gap between the zero-one loss and the surrogate loss from equation 1.3.1. As
can be seen in Figure 1.1 this upper bound is wasteful for many values of z as the
gap between the zero-one loss and the surrogate loss can be quite substantial. By
exploiting the aforementioned gap we are able to significantly reduce the impact of∑T

t=1
˜̀
t(wt)− ˜̀

t(u) on the surrogate regret bound, which leads to our new result.

1.3.2 Bandit Information

In the Bandit Multiclass Classification setting (Kakade et al., 2008) the learner only
receives 11[ŷt 6= yt] as feedback. This means that we can no longer directly use
the surrogate loss approach to bound the number of mistakes the learner makes.
However, since the learner does know 11[ŷt 6= yt] in all rounds, in rounds where
ŷt = yt the learner also knows yt. So how does the learner leverage this to guarantee
a suitable bound on the number of mistakes?

As in Section 1.2.1 the learner will have to randomize his prediction: ŷt ∼ qt. If we
use a technique called importance weighting, which multiplies the surrogate loss by

11

1. Introduction

C
H

A
P

T
E

R
1 11[ŷt = yt]qt(ŷt)

−1, the learner can use the weighted surrogate losses to update wt.
Note that this means that we only update whenever we have guessed the correct
label, which hopefully happens often. In expectation the weighted surrogate losses
are equivalent to their full-information counterparts, which means the learner could
use the standard techniques from the previous section to provide surrogate regret
guarantees.

As in the full-information setting the learner can use algorithms from Online Convex
Optimization to optimize the weighted surrogate losses. In the bandit setting the
predictions of the learner are randomized so the guarantees are for the expected
surrogate regret, where the expectation is with respect to the randomness of the
learner. Several authors have proposed polynomial time algorithms that have a
O(N

√
dT ln(T + 1)) expected surrogate regret bound (see for example Hazan and

Kale (2011); Beygelzimer et al. (2017); Foster et al. (2018a)). In Chapter 6 we will
exploit the gap between the surrogate loss and the zero-one loss to provide the first
linear time algorithm with O(N

√
T) expected surrogate regret bounds with respect

to various surrogate losses. Interestingly, our new algorithm improves upon the
expected surrogate regret bound of slower algorithms by a factor of

√
d log(T + 1),

which makes our new algorithm the first answer to the open question of Abernethy
and Rakhlin (2009) with an expected surrogate regret bound that does not depend
on the dimension of the feature vectors.

1.4 Organisation

The remainder of this dissertation is concerned with various settings and algorithms
in Online Learning. In Chapter 2 we show that many algorithms in Online Learning
are special cases of Exponential Weights. We also provide a reduction for several
adaptive expert algorithms based on Exponential Weights, which recovers Squint
(Koolen and Van Erven, 2015), iProd (Koolen and Van Erven, 2015), and Coin
Betting for experts (Orabona and Pál, 2016).

Throughout this dissertation we provide several new adaptive algorithms. In Chapter
3 we show how we can adapt to unknown noise in the unconstrained Online Convex
Optimization setting, which allows users to choose their privacy requirements
without having to disclose them to whoever receives their data. In Chapter 4
we study Bandit Convex Optimization methods that adapt to the norm of the
offline optimizer, a topic that has only been studied before for its full-information
counterpart. We show that algorithms from the full information setting can be
adapted to develop algorithms that adapt to the norm of the offline optimizer for
linear bandits. These ideas are then extended to the Bandit Convex Optimization

12

1.4. Organisation

C
H

A
P

T
E

R
1

setting by using a new single-point gradient estimator and carefully designed
surrogate losses. In Chapter 5 we introduce MetaGrad, which is an algorithm that
is adaptive to a broad class of loss functions. We then improve the running time of
MetaGrad by applying sketching methods and evaluate the performance of several
versions of MetaGrad in numerous experiments.

As we mentioned above, in Chapter 6 we provide a new approach to Online
Multiclass Classification based on exploiting the gap between the zero-one loss
and a surrogate loss. In the Bandit Multiclass Classification setting we use our new
approach to provide the first linear time algorithm with O(N

√
T) surrogate regret.

Furthermore, the surrogate regret of this new bandit algorithm is independent of the
dimension of the feature vector, contrary to algorithms with similar surrogate regret
bounds in the Bandit Multiclass Classification setting.

Finally, in Chapter 7 we pose an open problem which asks for a fast and optimal
algorithm for online portfolio selection. We provide an algorithm and the first steps
of the analysis which shows that in some special cases this algorithm indeed yields
the optimal regret bound.

13

1. Introduction

C
H

A
P

T
E

R
1

14

