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CHAPTER 1
Introduction

Online Learning is a fundamental task in Machine Learning. It is the task of
sequentially making predictions given previous feedback and possibly additional
information. Online Learning tasks have many interesting theoretical properties
and practical applications. Examples of Online Learning tasks include gambling
on sport matches (Vovk and Zhdanov, 2009), spam filtering, weather prediction,
portfolio selection (Cover, 1991), training machine learning models on very large
data, and many more.

Online Learning proceeds in a sequence of rounds t = 1, . . . , T , where in each
round t the learner has to issue a prediction. In specialized cases of Online Learning
such as Online Classification these predictions may come from a very limited set
of a finite number of possible labels. In other settings in Online Learning such as
Online Convex Optimization predictions may come from any convex set. After
the learner has issued his prediction he receives feedback from the environment in
the form of a loss function `t, which tells the learner the error in his prediction. In
the full-information setting the learner sees the entire loss function, which means
that the learner can also assess the quality of alternative predictions. In the more
difficult bandit setting the learner only sees the value of the loss function evaluated
at his prediction, which means the learner cannot assess the quality of alternative
predictions.

As a simple example let us consider predicting whether or not it is going to rain
tomorrow. Suppose that we encode "it will not rain" as -1 and "it will rain" as
1. We will denote the prediction of the learner with ŷt ∈ {−1, 1} and the actual
outcome as yt ∈ {−1, 1}. If the learner makes a prediction today he will only
get feedback tomorrow, which he may use to make his prediction for the next day.
The loss function in this case could be the zero-one loss, i.e. `t(ŷt) = 11[ŷt 6= yt],
where 11 is the indicator function. This loss function is easy for the learner to
come by as he only has to pay attention to the weather throughout the day. The



1. Introduction

C
H

A
P

T
E

R
1 goal here is straightforward, the learner wants to make as few mistakes as possible.

As a more involved example let us consider online regression. Suppose that the
learner is interested in predicting how much it is going to rain. Before making his
prediction the learner might have some additional information, such as barometric
pressure, whether or not there are clouds, and all the tweets from the preceding
twenty-four hours that contain the word weather. In each round t, the learner could
use a hypothesis ht from hypothesis setH to map the additional information, which
we will denote by xt, to amount of rain. In this example, the learner could be
interested in minimizing the quadratic difference between his prediction and the
actual amount of rain yt ∈ [0,m], i.e. `t(ht) = (ht(xt)− yt)2, where m is the size
of the cup the learner uses to measure the amount of rain with.

In both examples the goal of the learner is to minimize the cumulative loss he suffers,
summed over rounds t = 1, . . . , T . The learner could try to use the feedback he
received the previous days to continuously improve his predictions. However, the
learner could have a neighbour who is accidentally disturbing his measurements by
spraying his garden with water. Clearly, this makes the task of the learner harder
as the relation between his observations is weakened. Even more problematic,
the learner could face an adversarial neighbour who actively tries to disrupt the
learner’s measurements. This adversarial neighbour makes learning very difficult,
as any correlation between previous days and the next is removed.

Unlike in classical statistical learning theory, which makes probabilistic assumptions
about the environment, Online Learning is able to provide some guarantees about the
cumulative loss of the learner without probabilistic assumptions, even in adversarial
environments. The guarantees of Online Learning are about the regret, which
measures how "sorry" the learner is for making the predictions he has made. To
ensure that the regret can be suitably bounded we often require that the predictions
and best fixed prediction strategy come from the same set, which is often bounded
and convex. Suppose that the predictions ht of the learner come from an abstract
hypothesis classH. This hypothesis class can be anything from the set of vectors
in a unit ball to a set of functions that map additional information to outcomes, to
a simple class that only consists of -1 and 1 as in the example above. The regret
is defined as the difference between the cumulative loss of the learner and the
cumulative loss of the best fixed prediction strategy in hindsight:

RT =

T∑
t=1

`t(ht)−min
h∈H

T∑
t=1

`t(h).

The goal of the learner is to have small regret. This does not mean that the best
strategy is a good strategy; it is merely a benchmark with which the learner compares

2
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himself. The learner is satisfied as long as the regret is sublinear, which is to say
that the average loss of the learner minus the average loss of the best fixed strategy
goes to zero as T grows.

Overview of the dissertation The chapters in this dissertation can be read in-
dependently, but for a full appreciation of each chapter it is recommended that
the reader starts with the current chapter. The remainder of this chapter serves to
provide a gentle introduction for the chapters that follow.

A common theme in several chapters of this dissertation is how to design algorithms
that can handle adversarial environments but also exploit benign environments. In
Chapter 2 we show how we can design adaptive algorithms for the Prediction with
Expert Advice setting, which we introduce in Section 1.1, by using a reduction
based on the Exponential Weights algorithm (Vovk, 1990; Littlestone and Warmuth,
1994). In Chapter 3 we derive algorithms that are adaptive to unknown noise in the
Online Convex Optimization setting, a setting which we will introduce together
with the Bandit Convex Optimization setting in Section 1.2. In Chapter 4 we derive
the first algorithms that are adaptive to the norm of the offline optimizer for the
Bandit Convex Optimization setting. Finally, in Chapter 5 we describe MetaGrad,
which operates in the Online Convex Optimization setting. MetaGrad is adaptive to
a large class of loss functions, including exp-concave and various other types of
functions.

Since the learner updates his predictions each round it is important that the updates
can be performed reasonably fast. For many Online learning settings algorithms
with per round running time larger than quadratic in the dimension of the problem
are considered impractical. In several chapters we will show how to improve the
running time of Online Learning algorithms while maintaining similar or even
improved guarantees. In Chapter 6 we consider the full-information and bandit
Online Multiclass Classification settings, which we introduce in Section 1.3. We
introduce a new approach to Online Multiclass Classification which allows us to
use an algorithm that has a per round running time that is linear in the dimension
of the problem that guarantees small regret bounds. Interestingly, our algorithm
often improves upon the regret bounds of slower algorithms. In Chapter 5 we show
how to improve the running time of MetaGrad by using matrix sketching methods
at the cost of a slightly larger regret bound. Finally, in Chapter 7 we pose an open
problem that asks for a fast and optimal algorithm for online portfolio selection.
We propose a fast algorithm and an analysis of this algorithm that shows that in
some special cases of online portfolio selection this algorithm indeed obtains the
optimal regret bound.

3
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Our first setting in Online Learning is perhaps the most well-studied setting: the
prediction with expert advice setting. In the prediction with expert advice setting the
learner has access to d experts. In a given round t, each expert i sends his prediction
ŷit to the learner, who may use these expert predictions to form his own prediction.
These experts can be anything, for example the learner’s neighbours who predict
how much rain is going to fall, static experts i = 1, . . . , d who always say it is
going to rain i mm, or arbitrary points in a convex set. To issue his predictions,
the learner forms a distribution pt over the experts. The learner’s loss becomes
ˆ̀
t = E

i∼pt
[`it], where `it = `t(ŷ

i
t) is the loss of expert i at time t. Loss ˆ̀

t can be

motivated in several ways:

(a) If the learner randomly chooses an expert i ∼ pt then this is the expected
loss.

(b) If `t is convex and the learner predicts ŷt = Ept [ŷit] then by Jensen’s inequal-
ity ˆ̀

t is an upper bound on the learner’s loss.

The goal of the learner in the prediction with expert advice setting is to predict
almost as well as the best expert in hindsight, which is to say that the regret with
respect to the best expert in hindsight is sublinear.

A fundamental algorithm in the prediction with Expert Advice setting and Online
Learning in general is the Exponential Weights algorithm. With a discrete set of
experts, the distribution of Exponential Weights has the following form:

pt(i) ∝ π(i)e−η
∑t−1
s=1 `

i
s ,

where η > 0 is called the learning rate and π(i) is the prior mass on expert i.
Unsurprisingly, Exponential Weights gets its name from the exponentially weighted
losses of each expert. Somewhat surprisingly, Exponential Weights can be applied
in many different settings and several other algorithms are special cases of it. For
example, in Chapter 2 we will see that with a continuous set of experts and a
Gaussian prior Online Gradient Descent (Zinkevich, 2003) is a special case of
Exponential Weights.

For losses such that `t(ŷit) ∈ [0, 1], Exponential Weights with learning rate η =√
8 ln(d)
T provides the following guarantee (see for example Theorem 2.2 by Cesa-

4
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Bianchi and Lugosi (2006)):

T∑
t=1

ˆ̀
t −min

i

T∑
t=1

`it ≤
√

ln(d)T

2
.

As we can see, as T grows the difference between the average loss of the learner
and the average loss of the best expert decreases.

In an adversarial environment the learner can not do better than the above regret
bound (see section 3.7 by Cesa-Bianchi and Lugosi (2006)). However, in more
benign environments the learner could have had a better guarantee. For example, it
could have been clear from the start that the predictions from the neighbour who
works at the KNMI1 are the best predictions. In fact, if the learner only listens to
the KNMI neighbour after a few rounds he will no longer suffer any additional
regret after these initial rounds. This means that the learner will have to quickly
learn to only listen to the KNMI neighbour to get a small regret bound.

With the Exponential Weights algorithm the speed at which the algorithm learns
is governed by the learning rate η. In adversarial settings the learning rate is set
such that the distribution over the experts pt does not change drastically between
rounds. However, to quickly learn that one expert is clearly the best expert, η would
have to be tuned so that pt quickly converges to a point mass on the best expert.
Unfortunately, the learner usually does not know beforehand whether or not his
environment is adversarial, benign, or something in between adversarial and benign.
This means that the safest thing for the learner to do is to tune his algorithms to
deal with an adversarial setting. In Chapter 2 we will show that with a reduction
based on Exponential Weights we recover the Squint (Koolen and Van Erven, 2015)
and coin betting for experts (Orabona and Pál, 2016) algorithms that adjust their
learning rate automatically, which allows these algorithms to adapt to different
environments.

1.2 Online Convex Optimization

The Prediction with Expert Advice setting is a special case of the Online Convex
Optimization setting. In the Online Convex Optimization setting the predictions of
the learner can come from any convex set, for example an L2 ball or the probability
simplex. This setting is called the Online Convex Optimization setting because
the loss functions are assumed to be convex. Applications of Online Convex

1Dutch National Weather Institute
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online classification.

In Online Convex Optimization, in each of t = 1, . . . , T rounds, the learner has
to make a prediction wt in a convex domain W before observing a convex loss
function `t :W → R. The goal is to obtain a guaranteed bound on the regret

RT =
T∑
t=1

`t(wt)− min
w∈W

T∑
t=1

`t(w)

that holds for any possible sequence of loss functions `t. To be able to bound
the regret a standard assumption is that the domain is bounded, but in Chapter
3 we consider algorithms that are able to achieve suitable regret bounds with an
unbounded domain.

To see how the Prediction with Expert Advice setting is a special case of the Online
Convex Optimization setting we set the domainW = {w ∈ Rd+ |

∑d
i=1wi = 1}

to be the probability simplex and let the losses be linear: `t(wt) = wᵀ
t gt = ˆ̀

t,
where gt = (`1t , . . . , `

d
t ). With this loss the definition of the regret in the Online

Convex Optimization setting coincides with the regret of the Prediction with Expert
Advice setting.

Another example of an Online Convex Optimization task is online portfolio selection
(Cover, 1991). Online portfolio selection corresponds to the special case that
the domain is the probability simplex and the loss functions are restricted to be
of the form `t(w) = − ln(wᵀxt) for vectors xt ∈ Rd+. With online portfolio
selection the goal of the learner is to distribute his funds over several assets. Online
portfolio selection was introduced by Cover (1991) with the interpretation that
xt,i represents the factor by which the value of an asset i ∈ {1, . . . , d} grows in
round t and wt,i represents the fraction of our capital we re-invest in asset i in
round t. The factor by which our initial capital grows over T rounds then becomes∏T
t=1w

ᵀ
t xt = e−

∑T
t=1 `t(wt).

Cover (1991); Cover and Ordentlich (1996) show that the best possible guar-
antee on the regret is of order RT = O(d lnT ) and that this is achieved by
choosing wt+1 as the mean of a continuous Exponential Weights distribution
dPt+1(w) ∝ e−

∑t
s=1 `s(w)dπ(w) with Dirichlet-prior π (and learning rate η = 1).

Unfortunately, this approach has a runtime of order O(T d), which scales exponen-
tially in the number of assets d, and is therefore computationally infeasible when d
exceeds, say, 3. A sampling-based implementation by Kalai and Vempala (2002)
greatly improves the runtime to Õ(T 4(T + d)d2), but even this is still infeasible
already for modest d and T .
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A common approach to runtime problems in Online Convex Optimization is instead
of optimizing the loss `t directly, optimizing a linear or quadratic approximation of
`t. With a linear approximation, we make use of the convexity to upper bound the
regret

T∑
t=1

(`t(wt)− `t(u)) ≤
T∑
t=1

(wt − u)ᵀ∇`t(wt) =
T∑
t=1

˜̀
t(wt)− ˜̀

t(u),

where u = arg minw∈W
∑T

t=1 `t(w), ˜̀
t(w) = wᵀ∇`t(wt), and ∇`t(wt) is the

gradient of `t evaluated atwt. Instead of having to optimize the complicated `t we
can now run our algorithms on the linear ˜̀

t. For example, we could now run Online
Gradient Descent (Zinkevich, 2003), which has a running time of order O(dT ), and
obtain a regret bound of O(G

√
T ), where G is an upper bound on the L2 norm of

∇`t(wt).

For many loss functions running Online Gradient Descent or a related algorithm
often gives satisfying guarantees. However, for online portfolio selection assuming
a bound on ∇`t(wt) = − xt

wᵀ
t xt

involves making assumptions on either xt or wt.
This means that bounding the gradients is very restrictive: we either need to (i)
assume that xt is lower bounded i.e. the asset prices do not fluctuate too rapidly,
which defeats the purpose of using adversarial online learning; or (ii) we need to
allocate a minimum amount of capital wt,i ≥ α to each asset, which means we
cannot drop any poorly performing assets from our portfolio. To see how these
assumptions affect the gradient suppose that we manage two assets and that up to
round t the first asset has been performing poorly compared to the second asset.
This means that we would want to put (almost) all of our money on the second asset
to maximize revenue. Suppose that in round t the asset prices fluctuate rapidly: in
round t the first asset remains constant, i.e. xt,1 = 1, but the second asset loses all
of its value, i.e. xt,2 = 0. The gradient would be 1

wt,2
, which would ruin the regret

bound of for example Online Gradient Descent if wt,2 is very small, for example of
order O( 1

T ). Even when we are willing to assume a bound on the gradient, running
Online Gradient Descent gives unsatisfactory results as the regret is O(

√
T ), which

is far from optimal. For online portfolio selection and other problems with exp-
concave losses Online Newton Step (Hazan et al., 2007) often has better regret
at the cost of increased running time, which is of order O(d3T ). However, with
Online Newton Step we still need a bound on the gradient as its regret bound is of
order O(Gd ln(T )), making the algorithm too restrictive. Because of these issues
with standard algorithms, online portfolio selection is a challenging research area,
as illustrated by the open problem in Chapter 7.

In Chapter 2 we will provide a unifying view of several algorithms in the Online
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ponential Weights. This unified view leads to a straightforward analysis of various
algorithms in Online Convex Optimization, including Exponentiated Gradient Plus-
Minus (Kivinen and Warmuth, 1997), Online Mirror Descent (Beck and Teboulle,
2003), and Online Newton Step (Hazan et al., 2007).

1.2.1 Bandit Convex Optimization

The Bandit Convex Optimization setting (Flaxman et al., 2005; Kleinberg, 2005) is
a more difficult version of the Online Convex Optimization setting. In the Bandit
Convex Optimization setting, rather than seeing the loss function `t, the learner only
observes the loss function evaluated at his prediction, `t(wt). This significantly
hinders the learner, as there is less information to improve his predictions for the
next round. An application of the Bandit Convex Optimization setting is online
auctions (Kleinberg and Leighton, 2003). In online auctions the learner has to set
a price for products he wants to sell. Unfortunately the price at which people are
willing to buy the learner’s products is unknown, so he will have to guess a price
and infer information based on whether or not people are buying the product at
the guessed price. The learner’s goal is to maximize his revenue, but the buyers
are trying to get the lowest price, which means that learner could be facing an
adversarial environment: a perfect place to apply ideas from Online Learning. Other
applications of the Bandit Convex Optimization setting include recommendation
systems and the online shortest path problem (see for example Hazan et al. (2016)).

The most straightforward instance of the Bandit Convex Optimization setting is
when the losses are linear, i.e. `t(w) = wᵀgt, where gt ∈ Rd is a loss vector. To
still be able to update the predictions the learner will estimate the loss vector, which
the learner will do by randomizing his predictions. Since the learner randomizes
his predictions the guarantees in the Bandit Convex Optimization setting are about
the expected regret, where the expectation is with respect to the randomness of
the learner. To see how the learner estimates the loss vectors with the use of
randomisation suppose that the learner plays w̃t = wt + εt, where εt is sampled
from a distribution with mean E[εt] = 0 and covariance matrix E[εtε

ᵀ
t ] = Σ. This

means that the learner observes w̃ᵀ
t gt, which in expectation is equivalent to wᵀ

t gt
because E[εt] = 0. To estimate gt the learner can now use ĝt = Σ−1εtw̃

ᵀ
t gt. If we

take the expectation of ĝt we can see that ĝt is an unbiased estimate of gt:

E[ĝt] = E
[
Σ−1εt(wt + εt)

ᵀgt
]

= Σ−1 E [εtε
ᵀ
t ] gt = gt.

We can use this to say something about the expected regret because E [w̃ᵀ
t gt] =

wᵀ
t gt = E [wᵀ

t ĝt], where the expected regret is defined as E
[∑T

t=1 w̃
ᵀ
t gt

]
−
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minu∈W E
[∑T

t=1 u
ᵀgt

]
. Algorithms in bandit information setting often suffer an

additional factor d regret compared to their counterparts in the full-information
setting. One of the most well-known algorithm in the Bandit Convex Optimiza-
tion setting is SCRiBLe (Abernethy et al., 2012), which achieves an O(d3/2

√
T )

expected regret bound with linear losses.

In several chapters we will provide new algorithms or analysis of algorithms in the
Bandit Convex Optimization setting. In Chapter 2 we use Continuous Exponential
Weights to sample w̃t. As already observed by Bubeck and Eldan (2015), this
improves the regret of SCRiBLe by a factor of d1/2. As we mentioned before,
in Chapter 4 we provide several Bandit Convex Optimization algorithms that are
adaptive to the norm of the offline optimizer.

1.3 Online Multiclass Classification

Another setting in Online Learning is the Online Multiclass Classification setting. In
each round t in the Online Multiclass Classification setting the learner has to predict
the true label yt out of N possible labels given some extra information xt ∈ Rd.
An example of this setting is the weather forecasting example. The learner might
want to predict whether it is going to rain or not and he probably has some extra
information such as humidity or barometric pressure. As in the Online Convex
Optimization setting there is a distinction between the full-information setting, in
which the learner gets to see the true label, and the bandit setting, in which the
learner only sees whether his prediction was correct or not. The loss function in both
the full-information and bandit settings is the zero-one loss: `t(ŷt) = 11[ŷt 6= yt],
where ŷt is the prediction of the learner and 11 is the indicator function. The
goal of both settings is to control the number of mistakes the learner makes i.e.∑T

t=1 `t(ŷt).

1.3.1 Full-Information

We start by introducing the full-information multiclass classification setting. Since
the zero-one loss is a non-convex loss the standard approach is to make use of
a surrogate loss, which is a convex upper bound on the zero-one loss. In the
case where there are only two possible labels the surrogate loss is a function of
zt = ytw

ᵀ
t xt, where yt ∈ {−1, 1}. The learner predicts with ŷt = sign(wᵀ

t xt) (if
wᵀ
t xt = 0 the learner can arbitrarily pick −1 or 1). One of the most well-known

surrogate losses is the hinge loss: ˜̀(z) = max{1 − z}. Another well known
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Figure 1.1: A depiction of the zero-one loss and various surrogate losses.

surrogate loss function is the logistic loss, ˜̀(z) = log2(1 + exp(z)),2 which is used
for logistic regression. In Figure 1.1 we can see how the hinge loss and the logistic
loss are convex upper bounds for the zero-one loss.

Below we will provide a standard approach to controlling the number of mistakes
the learner makes with the use of surrogate losses. The analysis of the well-known
Perceptron (Rosenblatt, 1958), which uses the hinge loss as the surrogate loss, as
well as many other algorithms follows a similar approach. We start the analysis by
bounding the zero-one loss in terms of the surrogate loss:

T∑
t=1

`t(ŷt) ≤
T∑
t=1

˜̀(zt). (1.3.1)

Now, we will slightly change notation and write ˜̀
t(w) = ˜̀(ytw

ᵀxt). In the next
step we will add and subtract the surrogate loss again, but now evaluated at the
offline optimizer u ∈ arg min{w∈W}

∑T
t=1

˜̀
t(w):

T∑
t=1

`t(ŷt) ≤
T∑
t=1

˜̀
t(wt) =

T∑
t=1

(
˜̀
t(wt)− ˜̀

t(u) + ˜̀
t(u)

)
.

We now almost have a guarantee on the number of mistakes we make, we only
need to control

∑T
t=1

(
˜̀
t(wt)− ˜̀

t(u)
)

. Fortunately we can use various tools
from Online Convex Optimization, for example Continuous Exponential Weights

2The logarithm has base 2 because with base 2 at z = 0 the surrogate loss is equivalent to the
zero-one loss.
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or Online Gradient Descent, to guarantee that
∑T

t=1

(
˜̀
t(wt)− ˜̀

t(u)
)

is suitably
bounded. As we have seen before, each of these Online Convex Optimization
algorithms have their own advantages and disadvantages: Continuous Exponential
Weights can be slow but has good guarantees and while Online Gradient Descent is
very fast it may not have optimal guarantees for some (surrogate) loss functions.

In the end, the guarantee of this type of classifiers is of the form

R̃T =
T∑
t=1

`t(ŷt)−
T∑
t=1

˜̀
t(u).

We will refer to R̃T as the surrogate regret. In the worst-case, the Perceptron, which
uses Online Gradient Descent to optimize the surrogate loss, has O(

√
T ) surrogate

regret with respect to the hinge loss. An alternative to the Perceptron is Online Lo-
gistic Regression. Foster et al. (2018a) show that if we use continuous Exponential
Weights to optimize the logistic loss the surrogate regret is O(dN log(T + 1)), with
the drawback that continuous Exponential Weights on the logistic loss has running
time O(max{dN, T}12T ).

Even though more sophisticated versions of the analysis above exist, many al-
gorithms in the Online Multiclass Classification setting roughly follow the same
approach. In Chapter 6 we will introduce a new approach that provides a ran-
domized linear time algorithm with O(K) expected surrogate regret, where the
expectation is with respect to the learner’s randomness. In particular, we will exploit
the gap between the zero-one loss and the surrogate loss from equation 1.3.1. As
can be seen in Figure 1.1 this upper bound is wasteful for many values of z as the
gap between the zero-one loss and the surrogate loss can be quite substantial. By
exploiting the aforementioned gap we are able to significantly reduce the impact of∑T

t=1
˜̀
t(wt)− ˜̀

t(u) on the surrogate regret bound, which leads to our new result.

1.3.2 Bandit Information

In the Bandit Multiclass Classification setting (Kakade et al., 2008) the learner only
receives 11[ŷt 6= yt] as feedback. This means that we can no longer directly use
the surrogate loss approach to bound the number of mistakes the learner makes.
However, since the learner does know 11[ŷt 6= yt] in all rounds, in rounds where
ŷt = yt the learner also knows yt. So how does the learner leverage this to guarantee
a suitable bound on the number of mistakes?

As in Section 1.2.1 the learner will have to randomize his prediction: ŷt ∼ qt. If we
use a technique called importance weighting, which multiplies the surrogate loss by

11
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−1, the learner can use the weighted surrogate losses to update wt.
Note that this means that we only update whenever we have guessed the correct
label, which hopefully happens often. In expectation the weighted surrogate losses
are equivalent to their full-information counterparts, which means the learner could
use the standard techniques from the previous section to provide surrogate regret
guarantees.

As in the full-information setting the learner can use algorithms from Online Convex
Optimization to optimize the weighted surrogate losses. In the bandit setting the
predictions of the learner are randomized so the guarantees are for the expected
surrogate regret, where the expectation is with respect to the randomness of the
learner. Several authors have proposed polynomial time algorithms that have a
O(N

√
dT ln(T + 1)) expected surrogate regret bound (see for example Hazan and

Kale (2011); Beygelzimer et al. (2017); Foster et al. (2018a)). In Chapter 6 we will
exploit the gap between the surrogate loss and the zero-one loss to provide the first
linear time algorithm with O(N

√
T ) expected surrogate regret bounds with respect

to various surrogate losses. Interestingly, our new algorithm improves upon the
expected surrogate regret bound of slower algorithms by a factor of

√
d log(T + 1),

which makes our new algorithm the first answer to the open question of Abernethy
and Rakhlin (2009) with an expected surrogate regret bound that does not depend
on the dimension of the feature vectors.

1.4 Organisation

The remainder of this dissertation is concerned with various settings and algorithms
in Online Learning. In Chapter 2 we show that many algorithms in Online Learning
are special cases of Exponential Weights. We also provide a reduction for several
adaptive expert algorithms based on Exponential Weights, which recovers Squint
(Koolen and Van Erven, 2015), iProd (Koolen and Van Erven, 2015), and Coin
Betting for experts (Orabona and Pál, 2016).

Throughout this dissertation we provide several new adaptive algorithms. In Chapter
3 we show how we can adapt to unknown noise in the unconstrained Online Convex
Optimization setting, which allows users to choose their privacy requirements
without having to disclose them to whoever receives their data. In Chapter 4
we study Bandit Convex Optimization methods that adapt to the norm of the
offline optimizer, a topic that has only been studied before for its full-information
counterpart. We show that algorithms from the full information setting can be
adapted to develop algorithms that adapt to the norm of the offline optimizer for
linear bandits. These ideas are then extended to the Bandit Convex Optimization
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setting by using a new single-point gradient estimator and carefully designed
surrogate losses. In Chapter 5 we introduce MetaGrad, which is an algorithm that
is adaptive to a broad class of loss functions. We then improve the running time of
MetaGrad by applying sketching methods and evaluate the performance of several
versions of MetaGrad in numerous experiments.

As we mentioned above, in Chapter 6 we provide a new approach to Online
Multiclass Classification based on exploiting the gap between the zero-one loss
and a surrogate loss. In the Bandit Multiclass Classification setting we use our new
approach to provide the first linear time algorithm with O(N

√
T ) surrogate regret.

Furthermore, the surrogate regret of this new bandit algorithm is independent of the
dimension of the feature vector, contrary to algorithms with similar surrogate regret
bounds in the Bandit Multiclass Classification setting.

Finally, in Chapter 7 we pose an open problem which asks for a fast and optimal
algorithm for online portfolio selection. We provide an algorithm and the first steps
of the analysis which shows that in some special cases this algorithm indeed yields
the optimal regret bound.
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CHAPTER 2
The Many Faces of Exponential

Weights in Online Learning

This chapter is based on: Van der Hoeven, D., Van Erven, T., and Kotłowski, W.
(2018). The many faces of exponential weights in online learning. In Proceedings
of the 31st Annual Conference on Learning Theory (COLT), pages 2067–2092.1

Abstract

A standard introduction to online learning might place Online Gradient Descent at its
center and then proceed to develop generalizations and extensions like Online Mirror
Descent and second-order methods. Here we explore the alternative approach of
putting Exponential Weights (EW) first. We show that many standard methods and
their regret bounds then follow as a special case by plugging in suitable surrogate
losses and playing the EW posterior mean. For instance, we easily recover Online
Gradient Descent by using EW with a Gaussian prior on linearized losses, and,
more generally, all instances of Online Mirror Descent based on regular Bregman
divergences also correspond to EW with a prior that depends on the mirror map.
Furthermore, appropriate quadratic surrogate losses naturally give rise to Online
Gradient Descent for strongly convex losses and to Online Newton Step. We further
interpret several recent adaptive methods (iProd, Squint, and a variation of Coin
Betting for experts) as a series of closely related reductions to exp-concave surrogate
losses that are then handled by Exponential Weights. Finally, a benefit of our EW
interpretation is that it opens up the possibility of sampling from the EW posterior
distribution instead of playing the mean. As already observed by Bubeck and Eldan
(2015), this recovers the best-known rate in Online Bandit Linear Optimization.

1The author of this dissertation performed the following tasks: co-deriving the theoretical results
and co-writing the paper.
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2.1 Introduction

Exponential Weights (EW) (Vovk, 1990; Littlestone and Warmuth, 1994) is a method
for keeping track of uncertainty about the best action in sequential prediction tasks.
It is most commonly considered for a finite number of actions in the prediction
with expert advice setting, where each of the actions corresponds to following the
advice of one of a finite number of experts, and in this context it is asymptotically
minimax optimal (Cesa-Bianchi and Lugosi, 2006, Section 2.2). However, in the
present work we mostly consider EW on continuous action spaces in the more
general setting of Online Convex Optimization (Hazan et al., 2016), where we show
that surprisingly many standard methods turn out to be special cases of EW.

EW keeps track of a probability distribution over actions that is updated in each
round of the prediction task by multiplying the probability of each action by a
factor that is exponentially decreasing in the action’s error or loss in that round,
and renormalizing. This type of update is quite flexible: by assigning appropriate
surrogate losses to the actions, it covers any kind of multiplicative probability
updates, including, for instance, those of the Prod algorithm (Cesa-Bianchi et al.,
2007). For best performance, losses often need to be scaled by a positive parameter
called the learning rate, and the algorithm may also be biased towards particular
actions by the choice of its initial distribution, which is called the prior. For
continuous sets of actions, efficient implementations of EW are often restricted
to conjugate priors for which the EW distribution can be analytically computed,
but sampling approximations based on random walks can also provide appealing
trade-offs between computational complexity and prediction accuracy, even for
a single random walk step per round (Narayanan and Rakhlin, 2017; Kalai and
Vempala, 2002).

The usual presentation of Online Convex Optimization would introduce EW as a
special case of Mirror Descent (MD) or Follow-the-Regularized-Leader (FTRL)
with the Kullback-Leibler divergence as the regularizer. However, here we turn
this view on its head and show that all instances of MD based on regular Bregman
divergences (Banerjee et al., 2005) in fact correspond to EW on a continuous set of
actions (Section 2.3.3). In particular, Gradient Descent (GD) comes from using a
Gaussian prior on linearized losses (Section 2.3.2), which is striking because GD has
been contrasted with the Exponentiated Gradient Plus-Minus algorithm (Kivinen
and Warmuth, 1997) that is readily seen to be an instance of EW (Section 2.3.1). In
addition, the unnormalized relative entropy regularizer (Helmbold and Warmuth,
2009), which is normally considered a generalization of EW, turns out to be a special
case of EW as well for a multivariate Poisson prior (Section 2.3.3). Furthermore,
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in Section 2.4 we show that running EW on suitable quadratic approximations
of the losses recovers Gradient Descent for strongly convex losses (Hazan et al.,
2007) and, as already observed by van Erven and Koolen (2016), Online Newton
Step (Hazan et al., 2007). The Vovk-Azoury-Warmuth forecaster would also be an
example of running EW on quadratic losses, but we refer to (Vovk, 2001) for its
analysis, which requires a generalized proof technique (see also the discussion by
Orabona et al. (2015a)). We do consider the recent adaptive iProd, Squint and Coin
Betting methods of Koolen and Van Erven (2015); Orabona and Pál (2016), which
learn the optimal learning rate for prediction with expert advice, and show that
these may also be viewed as running EW after a reduction of the original prediction
task to various closely related surrogate tasks in which the learning rate is just one
of the parameters that does not need to be treated specially (Section 2.5). Finally,
in the context of Bandit Linear Optimization, the SCRiBLe method (Abernethy
et al., 2008) may be viewed as an approximation to EW, and an application of EW
outlined by Bubeck and Eldan (2015) achieves the best-known rate (we provide the
technical details they omit in Section 2.6).

Related Work The diverse applications of EW on a finite number of actions
range, for instance, from boosting (Freund and Schapire, 1997) to differential
privacy (Dwork and Roth, 2014) to multi-armed bandits (Auer et al., 2002), and
many algorithms in computer science can be viewed as special cases of EW (Arora
et al., 2012). EW has also been considered for continuous sets of actions, often
in the context of universal coding in information theory, where the goal is to
sequentially compress a sequence of symbols. In this case, actions parametrize a set
of probability distributions and the loss of an action is the logarithmic loss for the
corresponding probability distribution on the symbol that is being compressed (Cesa-
Bianchi and Lugosi, 2006, Chapter 9). EW (with learning rate 1) then simplifies
to Bayesian probability updating. The choice of prior has received much attention
in this literature, with Jeffreys’ prior being shown to be asymptotically minimax
optimal for exponential families with parameters restricted to suitable bounded
sets (Grünwald, 2007, Chapter 8). Without parameter restrictions, Jeffreys’ prior
is still minimax optimal up to constants for the Bernoulli and multinomial models
(Krichevsky and Trofimov, 1981; Xie and Barron, 2000). Several applications
to other losses are also closely related to the log loss: Online Ridge Regression
corresponds to EW on the squared loss, which matches the log loss for Gaussian
distributions; and Cover’s method for portfolio selection (Cover, 1991), which is
EW on Cover’s loss, may be interpreted as learning a mixture model under the log
loss (Orseau et al., 2017). In general, continuous EW is not restricted to the log loss,
however, and has been considered e.g. for general convex losses (Dick et al., 2014)
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Input: a convex set of distributions P over w, a prior P1 ∈ P and learning rates η1 ≥ η2 ≥ · · · ≥ ηT > 0
Lazy Exponential Weights Greedy Exponential Weights

P̃t+1 = arg min
P

EP
[∑t

s=1 fs(w)
]

+ 1
ηt

KL(P‖P1)

Pt+1 = arg min
P∈P

KL(P‖P̃t+1)

P̃t+1 = arg min
P

EP [ft(w)] + 1
ηt

KL(P‖Pt)

Pt+1 = arg min
P∈P

KL(P‖P̃t+1)

Figure 2.1: The lazy and greedy versions of Exponential Weights

or as a computationally inefficient gold standard for exp-concave losses (Hazan
et al., 2007).

2.2 Exponential Weights

In Online Convex Optimization (OCO) (Shalev-Shwartz, 2011; Hazan et al., 2016)
a learner repeatedly chooses actions wt from a convex setW ⊆ Rd during rounds
t = 1, . . . , T , and suffers losses ft(wt), where ft :W → R is a convex function.
The learner’s goal is to achieve small regret RT (u) =

∑T
t=1 ft(wt)−

∑T
t=1 ft(u)

with respect to any comparator action u ∈ W , which measures the difference
between the cumulative loss of the learner and the cumulative loss it could have
achieved by playing the oracle action u from the start. We will assume the domain
of the losses ft is extended fromW to Rd with convexity of ft being preserved.
This comes without loss of generality as one can always set ft(w) =∞ outsideW ,
but we will use more natural and straightforward extensions throughout the chapter
(e.g. when the ft are linear or quadratic functions).

The central topic of this work is the Exponential Weights (EW) algorithm, which
keeps track of uncertainty over actions expressed by a distribution Pt and comes in
the two flavors shown in Figure 2.1 (our naming follows Zinkevich (2004)), where
we let KL(P‖Q) = EP

[
ln dP

dQ

]
denote the Kullback-Leibler (KL) divergence

between distributions P and Q. The algorithm gets its name from the distributions
P̃t, whose densities have the following exponential forms:

dP̃t+1(w) =
e−ηt

∑t
s=1 fs(w) dP1(w)∫

e−ηt
∑t
s=1 fs(w) dP1(w)

(lazy EW) (2.2.1)

dP̃t+1(w) =
e−ηtft(w) dPt(w)∫
e−ηtft(w) dPt(w)

(greedy EW). (2.2.2)

In the case that P contains all possible distributions over Rd (for which the projec-
tion step becomes void) and the learning rates ηt are constant η1 = · · · = ηT = η,
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both versions of EW are equivalent. In general they differ, and enjoy the following
regret bounds with respect to a potentially randomized comparator drawn from a
comparator distribution Q, which follow from a standard MD analysis (Hazan et al.,
2016) and a reformulation of the standard FTRL analysis that works for distribu-
tions Pt on continuous spaces, which cannot be expressed as the finite-dimensional
vectors that are usually assumed (the proof details are in Section 2.8):

Lemma 1 (EW Regret). Suppose that η1 ≥ η2 ≥ . . . ≥ ηT > 0, and that the
minima that define P̃t and Pt are uniquely achieved. Let Q ∈ P be any comparator
distribution such that KL(Q‖P̃t) <∞ for all t, let {wt ∈ W}Tt=1 be the actions

of any learner, and define η0
def
= η1. Then lazy EW satisfies

Eu∼Q[R(u)] ≤ 1

ηT
KL(Q‖P1)

+
T∑
t=1

{
ft(wt) +

1

ηt−1
lnEPt(w)

[
e−ηt−1ft(w)

]
︸ ︷︷ ︸

“mixability gap”

}
(2.2.3)

and greedy EW satisfies

Eu∼Q[R(u)] ≤ 1

η1
KL(Q‖P1) +

(
1

ηT
− 1

η1

)
max

t=2,...,T
KL(Q‖Pt)

+
T∑
t=1

{
ft(wt) +

1

ηt
lnEPt(w)

[
e−ηtft(w)

]
︸ ︷︷ ︸

“mixability gap”

}
. (2.2.4)

While the predictions wt in Lemma 1 are arbitrary actions fromW , one always
chooseswt to be some function of Pt. A general mapping from Pt towt is called a
substitution function (Vovk, 2001) and is usually designed to give the best bound
on the mixability gap in trial t. Throughout the chapter, we will use the mean
wt = EPt [w] as our substitution function, which is a typical choice, although
alternatives may be better in specific cases (Vovk, 2001). To ensure that wt ∈ W ,
we will also generally assume that P = {P : EP [w] ∈ W}, which is convex.

Bounding the mixability gap is a crucial part of the regret analysis of EW (Vovk,
2001; De Rooij et al., 2014). In the special case that the losses are α-exp-concave
for α > 0 (i.e. if e−αf(w) is concave), the mixability gap for ηt ≤ α is at most 0.
This happens in the following example.

Example 1 (The Krichevsky-Trofimov Estimator). Let W = [0, 1] and let the
loss function be the log loss: ft(w) = −xt ln(w) − (1 − xt) ln(1 − w), where
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xt ∈ {0, 1}. A standard algorithm in this case is the Krichevsky-Trofimov forecaster
wt = (

∑t−1
s=1 xs + 1

2)/t (Cesa-Bianchi and Lugosi, 2006, Chapter 9), which is is
well known to be the mean wt = EPt [w] of non-projected EW with a β(1

2 ,
1
2) prior

and a fixed learning rate ηt = 1. For the log loss, the mixability gap is 0. To bound
the remaining terms in Lemma 1, we choose Q = PT+1, which gives:

T∑
t=1

ft(wt) ≤ EPT+1(w)

[
T∑
t=1

ft(w)

]
+ KL(PT+1‖P1)

= − lnEP1(w)[w
∑T
t=1 xt(1− w)T−

∑T
t=1 xt ]

≤ − ln max
w

{
w
∑T
t=1 xt(1− w)T−

∑T
t=1 xt

}
+ ln(2

√
T )

= min
w

T∑
t=1

ft(w) + ln(2
√
T ),

where the last inequality holds by (Cesa-Bianchi and Lugosi, 2006, Lemma 9.3).

For most regret bounds derived from Lemma 1 the structure of the proof remains
the same: we need both a bound on the mixability gap, and a choice for Q for which
the expected loss under Q together with KL(Q‖P1) can be related to the loss of a
deterministic comparator.

2.3 Linearized Losses

A standard approach in OCO is to lower-bound the convex losses ft by their
tangent at wt, which leads to the following upper bound on the regret in terms
of the linearized surrogate losses `t(w) = 〈w, gt〉, where gt = ∇ft(wt) =

(gt,1, . . . , gt,d)
ᵀ is the gradient at wt:

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

(
`t(wt)− `t(u)

)
. (2.3.1)

2.3.1 Exponentiated Gradient Plus-Minus as Exponential Weights

The Exponentiated Gradient Plus-Minus (EG±) algorithm (Kivinen and Warmuth,
1997) starts with weight vectors w−t = w+

t = (1/d, . . . , 1/d) ∈ Rd, which are
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updated according to

w+
t+1,i =

w+
t,ie
−ηt〈ei,gt〉∑d

j=1(w+
t,je
−ηt〈ej ,gt〉 + w−t,je

ηt〈ej ,gt〉)
,

w−t+1,i =
w−t,ie

ηt〈ei,gt〉∑d
j=1(w+

t,je
−ηt〈ejgt〉 + w−t,je

ηt〈ej ,gt〉)
,

and predicts by wt ∈ {w : ‖w‖1 ≤ 1} with components wt,i = w+
t,i − w

−
t,i.

This is readily seen to be the mean wt = EPt [w] of EW (without projections)
on the linearized losses (2.3.1) with a discrete uniform prior P1 on the standard
basis vectors e1, . . . , ed, which form the corners of the probability simplex, and
their negations −e1, . . . ,−ed. The regular Exponentiated Gradient algorithm is
recovered by initializing w−1 = (0, . . . , 0), which corresponds to placing prior
mass only on e1, . . . , ed. Kivinen and Warmuth (1997) also extend the algorithm
to scale up the domain by a factor M > 0, which corresponds to a discrete prior on
Me1, . . . ,Med for EG and also on −Me1, . . . ,−Med for EG±. Hence we may
analyze these methods using Lemma 1, which leads to the following regret bound
for EG± (see Section 2.9):

Theorem 1 (EG± as EW). Suppose ‖gt‖∞ ≤ G for all t. Then the regret of EG±

for scale factor M > 0 and constant learning rate ηt =
√

2 ln(2d)
TM2G2 satisfies

RT (u) ≤ GM
√

2T ln(2d) for all u such that ‖u‖1 ≤M .

2.3.2 Gradient Descent as Exponential Weights

The prior of EG± is adapted to comparators u with small L1-norm. How do
we change the prior to favor comparators with small L2-norm? A natural and
computationally efficient choice is to use a Gaussian prior P1 = N (w1, σ

2I),
where I is the identity matrix. Then it turns out that all EW distributions Pt are
Gaussian with the Gradient Descent (GD) predictions as their means:

Theorem 2 (Gradient Descent as EW). Let P = {P : EP [w] ∈ W}. Then, for
Gaussian prior P1(w) = N (w1, σ

2I), lazy and greedy EW with learning rates ηt
on the linearized losses (2.3.1) yield Gaussian distributions P̃t = N (w̃t, σ

2I) and
Pt = N (wt, σ

2I) with the same covariance as the prior. The means w̃t and wt

coincide with lazy and greedy GD (Figure 2.2), except that the learning rates in GD
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Input: Convex setW , and learning rates η1 ≥ η2 ≥ . . . ≥ ηT > 0
Lazy Gradient Descent Greedy Gradient Descent

w̃t+1 = w1 − ηt
∑t
s=1 gs

wt+1 = arg min
w∈W

1
2‖w − w̃t+1‖22

w̃t+1 = wt − ηtgt
wt+1 = arg min

w∈W

1
2‖w − w̃t+1‖22

Figure 2.2: The lazy and greedy versions of Gradient Descent

are scaled to σ2ηt by the prior variance σ2. Moreover, Lemma 1 directly implies:

RT (u) ≤ ‖u−w1‖22
2σ2ηT

+
σ2

2

T∑
t=1

ηt−1‖gt‖22 (lazy GD)

RT (u) ≤ maxt ‖u−wt‖22
2σ2ηT

+
σ2

2

T∑
t=1

ηt‖gt‖22 (greedy GD).

We note that in this case the parametrization of EW is redundant, because changing
the prior variance σ2 has the same effect on the predictionswt and the regret bounds
as scaling all ηt.

Proof. P̃t = N (w̃t, σ
2I) may be verified analytically from (2.2.1) and (2.2.2). The

fact that the projections Pt onto P preserve Gaussianity with the same covariance
matrix is a property of projecting a member of an exponential family onto a set of
distributions defined by a convex constraint on their means. (This follows from
Lemma 3 in Section 2.10 or see (van Erven and Koolen, 2016, Lemma 9) for the
Gaussian case.) The regret bounds follow by taking Q = N (u, σ2I), for which
KL(Q‖Pt) = 1

2σ2 ‖u−wt‖22, and evaluating the mixability gap in closed form.

2.3.3 Mirror Descent and FTRL as EW

The fact that Gradient Descent is an instance of EW raises the question of whether
other instances of MD or FTRL are special cases of EW as well. Let F ∗(w) =

supθ〈w,θ〉 − F (θ) denote the convex conjugate of F , and let BF ∗(u‖w) =

F ∗(u)−F ∗(w)−∇F ∗(w)ᵀ(u−w) denote the corresponding Bregman divergence.
Then MD and FTRL are defined in Figure 2.3 for Legendre functions F (θ) on
Rd (Cesa-Bianchi and Lugosi, 2006). We consider exponential families that take
the form E = {Pθ | dPθ(w) = e〈θ,w〉−F (θ)dK(w),θ ∈ Θ} for a nonnegative
carrier measure K, cumulant generating function F (θ) = ln

∫
e〈θ,w〉dK(w) and

parameter space Θ = {θ | F (θ) <∞} ⊂ Rd. These are called regular if Θ is an
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Input: Legendre function F , convex setW , and learning rates η1 ≥ η2 ≥ . . . ≥ ηT > 0
FTRL / Lazy Mirror Descent Greedy Mirror Descent

w̃t+1 = arg min
w

∑t
s=1〈w, gs〉+ 1

ηt
BF∗(w‖w1)

wt+1 = arg min
w∈W

BF∗(w‖w̃t+1)

w̃t+1 = arg min
w
〈w, gt〉+ 1

ηt
BF∗(w‖wt)

wt+1 = arg min
w∈W

BF∗(w‖w̃t+1)

Figure 2.3: The lazy and greedy versions of Mirror Descent. Lazy MD is usually called
FTRL.

open set. We then start with the following relation between MD and EW, which is
proved in Section 2.10:

Theorem 3 (Mirror Descent as EW). Suppose F is the cumulant generating
function of a regular exponential family E . Then the lazy and greedy versions
of MD predict with the means wt = EPt [w] of lazy and greedy EW on the
linearized losses (2.3.1) with the same ηt, prior Pθ1 for θ1 = ∇F ∗(w1) and
P = {P : EP [w] ∈ W}.

To answer our question, we therefore need to know whether, for any Legendre func-
tion F ∗, the convex conjugate (F ∗)∗ = F corresponds to the cumulant generating
function of some exponential family, which means we need to find a corresponding
carrier K. Nonconstructive existence of such K has been studied by Banerjee
et al. (2005, Theorem 6), who show that there is in fact a bijection between regular
Bregman divergences and regular exponential families, where regular Bregman
divergences based on F ∗ are defined to be those for which eF (θ) is a continuous,
exponentially convex2 function such that Θ = {θ | F (θ) <∞} is open and F is
strictly convex.

There is no easy general procedure to construct the corresponding carrier K for
a given Legendre function F ∗. However, for the Gradient Descent example from
Section 2.3.2 we see that F ∗(w) = 1

2σ2 ‖w‖22 is the convex conjugate of the
cumulant generating function for K(w) = N (0, σ2I). We also give another
example:

Example 2 (Unnormalized Relative Entropy). Consider MD with regularization
based on the unnormalized relative entropy BF ∗(w‖u) =

∑d
i=1(wi ln wi

ui
− wi +

ui) for w,u ∈ Rd+, which is the Bregman divergence generated by F ∗(w) =∑d
i=1wi(ln(wi)−1) (Cesa-Bianchi and Lugosi, 2006). We have F (θ) =

∑d
i=1 e

θi .
Interestingly, the exponential family with this cumulant generating function is the

2Exponentially convex in the sense of Banerjee et al. (2005, Definition 7).
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Input: Convex setW and learning rate η > 0
Lazy EW Gaussian prior quadratic loss Greedy EW Gaussian prior quadratic loss

Σ−1t+1 = Σ−1t + ηMt

w̃t+1 = w̃t − ηΣt+1gt

wt+1 = arg min
w∈W

(w − w̃t+1)ᵀΣ−1t+1(w − w̃t+1)

Σ−1t+1 = Σ−1t + ηMt

w̃t+1 = wt − ηΣt+1gt

wt+1 = arg min
w∈W

(w − w̃t+1)ᵀΣ−1t+1(w − w̃t+1)

Figure 2.4: The means and covariances of both versions of Exponential Weights with a
multivariate normal prior and a constant learning rate η run on the quadratic surrogate
loss (2.4.1)

set of Poisson distributions, extended i.i.d. to d dimensions. To see this for d = 1,
note that if we start with the usual parametrization of Poisson, we have

Pλ(w) = e−λ
λw

w!
=

1

w!
e−λ+w lnλ on w ∈ {0, 1, 2, . . .},

for which the natural parameter is θ = lnλ and we see that the cumulant
generating function is F (θ) = λ = eθ. Thus, EW with the product prior
P1(w) =

∏d
i=1 Pλi(wi) corresponds to MD with unnormalized relative entropy,

where we need to set (λ1, . . . , λd) = exp(θ1) = exp(∇F ∗(w1)) = w1 to match
the starting point of MD: EP1 [w] = w1. Note that in this case the EW distributions
Pt are discrete.

2.4 Quadratic Losses

In this section we assume that the losses ft satisfy quadratic lower bounds:

ft(w)− ft(wt) ≥ 〈w−wt, gt〉+
1

2
(w−wt)

ᵀMt(w−wt) =: `t(w), (2.4.1)

where Mt is a positive semi-definite matrix. Generalizing the results from Sec-
tion 2.3, EW with Gaussian prior on the surrogate loss `t yields explicitly com-
putable Gaussian distributions Pt (see also van Erven and Koolen, 2016; Koolen,
2016):

Theorem 4. Let P1 = N (w1,Σ1). Both versions of the Exponential Weights
algorithm, run on `t with learning rate η and P = {P : EP [w] ∈ W}, yield a mul-
tivariate normal distribution Pt+1 = N (wt+1,Σt+1) with mean and covariance
matrix given in Figure 2.4. Furthermore, Lemma 1 implies that for all u ∈ W both
versions of EW satisfy:

RT (u) ≤ 1

2η
(w1 − u)ᵀΣ−1

1 (w1 − u) +
η

2

T∑
t=1

gᵀt Σt+1gt. (2.4.2)
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The proof of Theorem 4 in Section 2.11.1 is a straightforward generalization of
Theorem 2 for constant learning rate ηt = η, which is recovered with Mt = 0.
Like in Theorem 2, the parametrization by η and σ2 is redundant in that only the
product ησ2 affects the predictions wt or the bound (2.4.2).

2.4.1 Gradient Descent: Quadratic Approximation of Strongly Con-
vex Losses

For α-strongly convex loss functions, (2.4.1) holds withMt = αI . The standard
approach for these loss functions is to use greedy Gradient Descent with a time-
varying learning rate ηt = 1/(αt) (Hazan et al., 2007). Interestingly, greedy GD
with the closely related choice ηt = 1/( 1

ησ2 + αt) turns out to be a special case
of greedy EW with fixed learning rate η and prior P1 = N (0, σ2I). Applying
Theorem 4 results in the following corollary, proved in Section 2.11.2:

Corollary 4.1. Suppose ‖u‖2 ≤ D and ‖gt‖2 ≤ G. Then the regret of both
versions of the Exponential Weights algorithm with prior N (0, σ2I) and constant
learning rate η, run on the surrogate loss (2.4.1) withMt = αI , satisfies:

RT (u) ≤ G2

2α
ln

(
1
ησ2 + αT

1
ησ2 + α

)
+

G2

2
ησ2 + 2α

+
D2

2ησ2
.

The standard learning rate and corresponding regret bound for GD (Hazan et al.,
2007) correspond to the limiting case ησ2 → ∞. Formally speaking, this case
is not covered here, but for η → ∞ EW reduces to Follow-the-Leader (on the
surrogate loss (2.4.1)), and taking σ2 → ∞ would lead to EW with an improper
prior, which becomes a proper EW posterior P2 after one round.

2.4.2 Online Newton Step: Quadratic Approximation of Exp-concave
Losses

For α-exp-concave loss functions, (2.4.1) holds with Mt = βgtg
ᵀ
t , where

β = 1
2 min{ 1

4GB , α}, assuming ‖gt‖2 ≤ G and B = maxw,u∈W ‖w − u‖2
(Hazan et al., 2007, Lemma 3). Running Exponential Weights on `t(w) with prior
N (0, σ2I) leads to the Online Newton Step algorithm (Hazan et al., 2007) with the
following regret bound, shown in Section 2.11.3:

Corollary 4.2. Suppose ‖u‖2 ≤ D and ‖gt‖2 ≤ G. Then the regret of both
versions of the Exponential Weights algorithm with prior N (0, σ2I) and learning
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rate η, run on the surrogate loss (2.4.1) withMt = βgtg
ᵀ
t , satisfies:

RT (u) ≤ d

2β
ln

(
1 +

ησ2βG2T

d

)
+

D2

2ησ2
. (2.4.3)

The results of Hazan et al. (2007) correspond to setting ησ2 = βD2, together with
some simplifying upper bounds on (2.4.3).

2.5 Adaptivity by Reduction to Exponential Weights

In this section we show how several recent adaptive methods in the prediction with
experts setting – namely iProd (Koolen and Van Erven, 2015), Squint (Koolen and
Van Erven, 2015) and a variation of Coin Betting for experts (Orabona and Pál,
2016) –, whose original analyses seem unrelated at first sight, can all be viewed as
applying exponential weights after reductions of the original OCO task to various
closely related surrogate OCO tasks. The known regret bounds for these methods
are also recovered from the reductions upon plugging in regret bounds for EW in
the surrogate tasks.

2.5.1 Reduction for iProd

The experts setting consists of linear losses ft(w) = 〈w, gt〉 over the simplex
W = {w : wi ≥ 0,

∑d
i=1wi = 1}, with gt,i ∈ [0, 1]. The instantaneous regret in

round t with respect to expert i is rt(i) = ft(wt)−ft(ei) andRT (i) =
∑T

t=1 rt(i)

is the total regret. iProd achieves a second-order regret bound in terms of the
data-dependent quantity VT (i) =

∑T
t=1 rt(i)

2, which is much smaller than the
worst-case regret in many common cases (Koolen et al., 2016).

In the surrogate OCO task for iProd, predictions take the form of joint distributions
Pt on (η, i) for η ∈ [0, 1] and i ∈ {1, . . . , d}. These map back to predictions in the
original task via

wt =
EPt [ηei]
EPt [η]

, (2.5.1)

which is like the marginal mean of Pt on experts, except that it is tilted to favor
larger η. The surrogate loss in the surrogate task is

`t(η, i) = − ln (1 + ηrt(i)) , (2.5.2)

and our aim will be to achieve small mix-regret with respect to any comparator
distribution Q on (η, i), which we define as S(Q) =

∑T
t=1− lnEPt

[
e−`t(η,i)

]
−
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EQ
[∑T

t=1 `t(η, i)
]
. The mix-regret allows exponential mixing of predictions

according to Pt just like for exp-concave losses, so there is no mixability gap to
pay. Exponential weights with constant learning rate 1 on the losses `t therefore
achieves S(Q) ≤ KL(Q‖P1) for any Q.3 The resulting predictionswt are those of
the iProd algorithm. As shown in Section 2.12.1, they achieve the following regret
bound, which depends on the surrogate regret of EW:

Theorem 5 (iProd Reduction to EW). Restrict the domain for η to [0, 1
2 ]. Then any

choice of Pt in the surrogate OCO task defined above induces regret bounded by

EQ[η]

T∑
t=1

ft(wt)− EQ
[
η

T∑
t=1

ft(ei)
]
≤ EQ

[
η2VT (i)

]
+ S(Q) (2.5.3)

for any Q on (η, i) in the original prediction with expert advice task.

In particular, if we use EW in the surrogate OCO task with learning rate 1 and any
product prior P1 = γ × π for γ a distribution on η ∈ [0, 1

2 ] and π a distribution on
i, and we take as comparator Q = γ(η | η ∈ [η̂/2, η̂])× π̂ for any η̂ ∈ [0, 1

2 ] and
distribution π̂ on i that can both depend on all the losses, then

Eπ̂
[
RT (i)

]
≤ 2η̂ Eπ̂[VT (i)] +

2

η̂

(
KL(π̂‖π)− ln γ([η̂/2, η̂])

)
. (2.5.4)

Crucially, the algorithm does not need to know η̂ in advance, but (2.5.4) still holds
for all η̂ simultaneously. To minimize (2.5.4) in η̂ we can restrict ourselves to
η̂ ≥ 1/

√
T without loss of generality, so that a prior density dγ(η)/dη ∝ 1/η

on [1/
√
T , 1/2] achieves − ln γ([η̂/2, η̂]) = O(ln lnT ). After optimizing η̂, this

leads to an adaptive regret bound of

Eπ̂
[
RT (i)

]
= O

(√
Eπ̂[VT (i)]

(
KL(π̂‖π) + ln lnT

))
for all π̂, (2.5.5)

which recovers the results of Koolen and Van Erven (2015) (see also (Koolen,
2015)).

2.5.2 Reduction for Squint

Running EW with a continuous prior on η for the iProd surrogate losses from (2.5.2)
requires evaluating a t-degree polynomial in η in every round, and therefore leads to

3This follows e.g. from Lemma 1 by subtracting
∑
t ft(wt) on both sides of (2.2.3) and rearran-

ging.
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O(T 2) total running time. This may be reduced to O(T lnT ) by using a prior γ on
an exponentially spaced grid of η (as in MetaGrad (van Erven and Koolen, 2016)),
but in the experts setting even the extra lnT factor in run time can be avoided. This
is possible by moving the ‘prod bound’ that occurs in the proof of Theorem 5, from
the analysis into the algorithm by replacing the surrogate loss from (2.5.2) by the
slightly larger surrogate loss

`t(η, i) = −ηrt(i) + η2rt(i)
2, (2.5.6)

which turns iProd into Squint. Because this surrogate is quadratic in η, it becomes
possible to run EW in the resulting surrogate OCO task and evaluate the resulting
integrals over η in closed form for suitable choices of the prior on η, so that Squint
has O(T ) run time (see Koolen and Van Erven (2015) for a detailed discussion of
the choice of prior). Moreover, as shown in Section 2.12.2, it satisfies exactly the
same guarantees as iProd.

2.5.3 Reduction for Coin Betting

If we are willing to give up on second-order bounds, but still want to learn η,
then there is another way to obtain an algorithm with O(T ) run time by bounding
the iProd surrogate loss, which leads to a variant of the Coin Betting algorithm
for experts of Orabona and Pál (2016). Our presentation and analysis are very
different from (Orabona and Pál, 2016), but we obtain exactly the same regret
bound for essentially the same algorithm, and we can explain some design choices
that required clever insights by Orabona and Pál (2016), as natural consequences of
running EW in the surrogate OCO task that we end up with.

The idea is to split the learning of η ∈ [0, 1] and i into separate steps: for each i, we
restrict Pt(η | i) to be a point mass on some ηit, and we will choose ηit to achieve
small regret for the surrogate loss

`it(η) = −1 + rt(i)

2
ln

1 + η

2
− 1− rt(i)

2
ln

1− η
2
− ln 2,

which upper bounds (2.5.2) by convexity of the negative logarithm. We then
plug in the choices of ηit in (2.5.2) and learn i for the resulting surrogate losses
˜̀
t(i) = − ln(1 + ηitrt(i)). For η ∈ [0, 1] and π̂ a distribution on i, let

SiT (η) =
T∑
t=1

`it(η
i
t)−

T∑
t=1

`it(η),

S̃T (π̂) =

T∑
t=1

− lnEi∼Pt
[
e−

˜̀
t(i)
]
− Eπ̂

[ T∑
t=1

˜̀
t(i)
]
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be the mix-regret in the two surrogate OCO tasks. (Notice that in SiT the mix-regret
has collapsed to the ordinary regret, because we are restricting ourselves to play
point masses on η.) Also letR+

T (i) = max{RT (i), 0} be the nonnegative part of
the regret, and define B(x‖y) = x ln x

y + (1− x) ln 1−x
1−y to be the Kullback-Leibler

divergence between two Bernoulli distributions, which satisfies B(x‖y) ≥ 2(x−y)2

by Pinsker’s inequality. Then this reduction gives the following regret bound, proved
in Section 2.12.3:

Theorem 6 (Coin Betting Reduction to EW). Any choice of distributions Pt on
i and learning rates ηit in the surrogate OCO task defined above induces regret
bounded by

Eπ̂
[
B
(

1
2 +

R+
T (i)
2T ‖

1
2

)]
≤ 1

T

(
Eπ̂
[
SiT

(
R+
T (i)
T

)]
+ S̃T (π̂)

)
for any π̂ on i

(2.5.7)
in the original prediction with expert advice task.

In particular, if we use EW with learning rate 1 and prior π on i for the losses
˜̀
t, and for the losses `it we let ηit be the mean of lazy EW with learning rate 1

and with prior on η ∈ [−1,+1] such that 1+η
2 has a beta-distribution β(a, a) with

a = T
4 + 1

2 and with projections onto P = {P | EP [η] ∈ [0, 1]}, then

Eπ̂ [RT (i)] ≤
√

3T (KL(π̂‖π) + 3) for any π̂ on i. (2.5.8)

Compared to (2.5.5), (2.5.8) avoids a ln lnT term, but it has lost the benefits of the
second-order factor Eπ̂[VT (i)] ≤ T . This may be explained by its upper bound
`it(η) ≥ `t(η, i), which is tight only in the extreme case that rt(i) ∈ {−1,+1}.

The Resulting Coin Betting Algorithm EW on the losses `it with the (conjug-
ate) β(a, a) prior is a generalization of the Krichevsky-Trofimov estimator (see
Example 1) and its mean has the closed form Rt−1(i)

t−1+2a . Lazily projecting onto
P then simply amounts to clipping at 0 (by convexity of KL-divergence in its
first argument, which implies that the constraint EP [η] ≥ 0 will be satisfied with
equality when we project from a distribution with negative mean). This means
that ηit = max

{
Rt−1(i)
t−1+2a , 0

}
. By (2.5.1) the Coin Betting algorithm from the the-

orem predicts with weights wt,i obtained by normalizing the unnormalized weights
w̃t,i = p̃t(i)η

i
t, where p̃t(i) is the unnormalized probability Pt(i) of EW on the
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losses ˜̀
t, which recursively satisfies

p̃t(i) :=π(i)

t−1∏
s=1

(1 + ηisrs(i)) = p̃t−1(i) + w̃t−1,irt−1(i) = . . .

=π(i) +

t−1∑
s=1

w̃s,irs(i).

Interestingly, Orabona and Pál (2016) interpret the unnormalized EW probabilities
p̃t(i) as the Wealth for expert i that is achieved by a gambler.

The interpretation in Theorem 6 explains three design choices by Orabona and Pál
(2016): first, their choice of potential function, which naturally arises in our proof
when we bound the regret SiT (R+

T (i)/T ) for EW using Lemma 1. Second, the
choice for a, which in the original analysis comes from defining a shifted potential
function, is simply specifying a prior with most mass in a region of order 1/

√
T

around η = 0. And, third, the clipping of the unnormalized weights w̃t,i to 0 when
Rt−1(i) < 0, which in our presentation happens automatically because the learning
rate ηit is projected to be 0 if it would otherwise become negative. Defining a
prior on positive learning rates directly would be possible in theory, but not with a
conjugate prior, so the computational efficiency of the algorithm is made possible
by the projections.

There is one slight difference between the algorithm we obtain here and the original
Coin Betting algorithm of Orabona and Pál (2016): in the original method the
instantaneous regrets are clipped to max{rt(i), 0} whenRt−1(i) < 0, which our
method does not do. Apparently there is some amount of freedom in the design of
this type of algorithm.

2.6 Online Linear Optimization with Bandit Feedback

A benefit of the EW interpretation of MD is that it opens up the possibility of
sampling from the EW posterior distribution instead of playing the mean. Here
we show how this option can be leveraged to obtain an algorithm for online linear
optimization with bandit feedback (Dani et al., 2008; Abernethy et al., 2008), which
recovers the best known rate O(d

√
T lnT ). A proof of this fact has already been

outlined by Bubeck and Eldan (2015), but here we fill in the technical details.

The linear bandit setting consists of linear losses ft(w) = 〈w, gt〉 ∈ [−1,+1],
but instead of seeing the vectors gt we only observe ft(wt) for the algorithm’s
choice wt. The algorithm can randomize its choice wt, and gt is fixed before
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the outcome of this randomization. The goal is to minimize the expected regret
E[RT (u)], where the expectation is with respect to the algorithm’s randomness.

We consider the EW algorithm with fixed learning rate η and uniform prior distribu-
tion P1 overW . In each round t, after observing ft(wt) = 〈wt, gt〉, the algorithm
constructs a random, unbiased estimate g̃t of the loss vector gt and uses this estim-
ate to update Pt to Pt+1. It is easy to verify that, for each t, Pt is a member of the
exponential family with cumulant generating function F (θ) = ln

∫
W e〈w,θ〉 dw.

At trial t, the algorithm sampleswt ∼ Qt, whereQt = (1−γ)Pt+γR is a mixture
of the EW distribution Pt and a fixed “exploration” distribution R, chosen to be
John’s exploration (Bubeck et al., 2012). Using that the convex conjugate of F is
a universal O(d)-self concordant barrier onW (Bubeck and Eldan, 2015), it can
be shown that, when η and γ are appropriately chosen, this algorithm achieves
expected regret of order O(d

√
T lnT ) (see Section 2.13).

It is interesting to compare with the SCRiBLe algorithm (Abernethy et al., 2012),
which replaces EW by MD. By the results of Section 2.3.3, this is an essentially
equivalent approach, except that SCRiBLe employs a sampling strategy based
on the spectrum of the Hessian of F ∗, without reference to the EW distribution,
and achieves a regret bound that is suboptimal in d. This shows that the EW
interpretation of MD is clearly beneficial in the bandit setting.

2.7 Discussion

We conclude with several remarks: first, we point out that there may be computa-
tional reasons to avoid defining the prior directly on the domainW of interest: as
shown for instance in Sections 2.3.2 and 2.4, defining a Gaussian prior on all of Rd
and then projecting the mean ontoW can be computationally more efficient. In the
context of sampling from the EW distribution, discussed in Section 2.6, this might
also make sense if we project onto the alternative (smaller) set of distributions
P = {P | P (W) = 1} ⊂ {P | EP [w] ∈ W} that are supported on W , which
amounts to conditioning onW . Second, there seems to be a discrepancy between
the body of work for the log loss cited in the introduction, which strongly suggests
using Jeffreys’ prior, and the uniform prior suggested in Section 2.6 in the context
of the universal barrier.

2.8 Proof of Lemma 1 from Section 2.2

Proof. In the following we make use of the generalized Pythagorean inequality for
Kullback-Leibler divergence (Csiszár, 1975): for Pt = arg minP∈P KL(P‖P̃t)

31



2. The Many Faces of Exponential Weights in Online Learning

C
H

A
P

T
E

R
2

and any Q ∈ P:

KL(Q‖P̃t) ≥ KL(Q‖Pt) + KL(Pt‖P̃t). (2.8.1)

For greedy EW we have

1

ηt

(
KL(Q‖Pt)−KL(Q‖Pt+1)

)
≥ 1

ηt

(
KL(Q‖Pt)−KL(Q‖P̃t+1)

)
(from (2.8.1))

= −EQ[ft(w)]− 1

ηt
lnEPt

[
e−ηtft(w)

]
(from (2.2.2))

in any trial t. Summing over trials gives:

T∑
t=1

−EQ[ft(w)]− 1

ηt
lnEPt

[
e−ηtft(w)

]
≤

T∑
t=1

1

ηt

(
KL(Q‖Pt)−KL(Q‖Pt+1)

)
=

1

η1
KL(Q‖P1)− 1

ηT
KL(Q‖PT+1)

+

T∑
t=2

KL(Q‖Pt)
(

1

ηt
− 1

ηt−1

)
≤ 1

η1
KL(Q‖P1) + max

t=2,...,T
KL(Q‖Pt)

(
1

ηT
− 1

η1

)
.

Rearranging the terms and adding
∑T

t=1 ft(wt) on both sides results in (2.2.4).

We now proceed with the proof of lazy EW, starting from:

− 1

ηt−1
lnEPt [e−ηt−1ft(w)] (2.8.2)

= min
P

{
EP [ft(w)] +

1

ηt−1
KL(P‖Pt)

}
≤ EPt+1 [ft(w)] +

1

ηt−1
KL(Pt+1‖Pt)

≤ EPt+1 [ft(w)] +
1

ηt−1
KL(Pt+1‖P̃t)−

1

ηt−1
KL(Pt‖P̃t), (2.8.3)

where the last inequality is from the Pythagorean inequality (2.8.1) applied with
Q = Pt+1. By (2.2.1):

ln
dP̃t(w)

dP1(w)
= −ηt−1

t−1∑
s=1

fs(w)− lnEP1

[
e−ηt−1

∑t−1
s=1 fs(w)

]
,
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which gives:
1

ηt−1
KL(Pt+1‖P̃t)−

1

ηt−1
KL(Pt‖P̃t)

=
1

ηt−1
KL(Pt+1‖P1)− 1

ηt−1
KL(Pt‖P1)

+ EPt+1

[ t−1∑
s=1

fs(w)

]
− EPt

[ t−1∑
s=1

fs(w)

]
.

Plugging this into (2.8.3) and using ηt ≤ ηt−1 results in:

− 1

ηt−1
lnEPt [e−ηt−1ft(w)] ≤ 1

ηt
KL(Pt+1‖P1)− 1

ηt−1
KL(Pt‖P1)

+ EPt+1

[ t∑
s=1

fs(w)

]
− EPt

[ t−1∑
s=1

fs(w)

]
.

Summing over trials makes the terms on the right-hand side telescope and gives:
T∑
t=1

− 1

ηt−1
lnEPt [e−ηt−1ft(w)] ≤ 1

ηT
KL(PT+1‖P1) + EPT+1

[ T∑
t=1

ft(w)

]

= min
P∈P

{
EP
[ T∑
t=1

ft(w)

]
+

1

ηT
KL(P‖P1)

}

≤ EQ
[ T∑
t=1

ft(w)

]
+

1

ηT
KL(Q‖P1),

where the equality expresses an equivalent way to define lazy EW. Rearranging the
terms and adding

∑T
t=1 ft(wt) on both sides results in (2.2.3).

2.9 Proof of Theorem 1

Proof. Rather than scaling canonical vectors ei, i = 1, . . . , d and the comparator u
by M , we scale the loss vectors by defining g′t = Mgt, so that the losses remain the
same: 〈ei, g′t〉 = 〈Mei, gt〉 for all i and all t. Let w1 = (w+

1 ,w
−
1 ), and let w+

t ,
w−t be the result of running EG plus-minus on g′t. For any u with

∑2d
i=1 ui = 1

and ui ≥ 0 invoking Lemma 1 gives:
T∑
t=1

〈wt − u, g′t〉 ≤
1

η
KL(u‖w1) +

T∑
t=1

〈w+
t , g

′
t〉 − 〈w−t , g′t〉

+
1

η
ln
( d∑
i=1

(w+
t,ie
−ηt〈ei,g′t〉 + w−t,ie

ηt〈ei,g′t〉)
)
. (2.9.1)
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The first term on the right-hand side of (2.9.1) can be bounded by:

max
u:
∑2d
i=1 ui=1, ui≥0

KL(u‖w1) = ln(2d).

To bound the second term on the right-hand side of (2.9.1), we make use of Hoeffd-
ing’s Lemma (Cesa-Bianchi and Lugosi, 2006, Lemma A.1), which together with
|〈ei, g′t〉| ≤MG gives:

T∑
t=1

〈w+
t , g

′
t〉−〈w−t , g′t〉+

1

η
ln
( d∑
i=1

(w+
t,ie
−ηt〈ei,g′t〉+w−t,ie

ηt〈ei,g′t〉)
)
≤ ηM2G2

2
.

Summing over trials results in a bound on the regret:

T∑
t=1

〈wt − u, g′t〉 ≤
ln(2d)

η
+ η

TM2G2

2
.

Plugging in the optimal η =
√

2 ln(2d)
TM2G2 yields the desired result.

2.10 Proof of Theorem 3

Before proving the theorem, we need two lemmas:

Lemma 2 (Banerjee et al. (2005); Nielsen and Nock (2010)). The KL divergence
between two members, P and Q, of the same regular exponential family E with
cumulant generating function F can be expressed by the Bregman divergence
between their natural parameters, θP and θQ, or their expectation parameters, µP
and µQ. The first Bregman divergence is generated by the cumulant generating
function F and the second Bregman divergence is generated by the convex conjugate
of the cumulant generating function F ∗:

KL(P‖Q) = BF (θQ‖θP ) = BF ∗(µP ‖µQ).

Lemma 3. (Ihara, 1993, Theorem 3.1.4) Let µ be arbitrary and define P = {P :

EP [w] = µ}. Then, for any member Q of an exponential family E ,

min
P∈P

KL(P‖Q)

is achieved by P ∈ E such that EP [w] = µ, provided such a P exists.
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Proof of Theorem 3. Let wt be the weights produced by the greedy version of MD.
Then

min
P∈P

{
EP [〈w, gt〉] +

1

ηt
KL(P‖Pt)

}
= min
µ∈W

min
P :EP [w]=µ

{
EP [〈w, gt〉] +

1

ηt
KL(P‖Pt)

}
= min
µ∈W

min
P∈E :EP [w]=µ

{
〈µ, gt〉+

1

ηt
KL(P‖Pt)

}
,

where in the second step we can restrict to minimization over E by Lemma 3.
Introducing the short-hand notation µP = EP [w], we thus get for the greedy
version of EW:

Pt+1 = arg min
P∈E:µP∈W

{
〈µP , gt〉+

1

ηt
KL(P‖Pt)

}
= arg min
P∈E:µP∈W

{
〈µP , gt〉+

1

ηt
BF ∗(µP ‖µPt)

}
,

where we used Lemma 2. But the last expression coincides with the definition of
the greedy MD weight update, and since it applies to all t, we have µPt+1 = wt+1

for all t, provided µP1 = w1 (which holds by assumption). An analogous argument
can be made to show the equivalence of the lazy versions of MD and EW.

2.11 Proofs for Section 2.4

2.11.1 Proof of Theorem 4

Proof. P̃t = N (w̃t,Σt) may be verified analytically from (2.2.1) and (2.2.2). The
fact that projections Pt onto P preserve Gaussianity with the same covariance
matrix follows from Lemma 9 in van Erven and Koolen (2016). Lemma 1 gives a
bound on the regret w.r.t. randomized forecaster Q = N (u,ΣQ):

T∑
t=1

`t(wt)−
T∑
t=1

EQ[`t(w)] ≤ 1

η
KL(Q‖P1) +

T∑
t=1

`t(wt) +
1

η
lnEPt

[
e−η`t(w)

]
.

The KL divergence between two Gaussians is given by (Ihara, 1993, Theorem
1.8.2):

KL(Q‖P1) =
1

2
(ln

(
det(Σ1)

det(ΣQ)

)
+ Tr(ΣQΣ−1

1 ) + (u−w1)ᵀΣ−1
1 (u−w1)− d).
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The mixability gap can be evaluated in closed form by calculating the Gaussian
integral:

lnEPt
[
eη(`t(wt)−`t(w))

]
=
η2

2
gᵀt Σt+1gt −

1

2
ln

(
det(Σt)

det(Σt+1)

)
.

Also, the expectation of the instantaneous regret can be computed exactly:

`t(wt)− EQ[`t(w)] = `t(wt)− `t(u)− 1

2
Tr(ΣQMt).

Summing the above over the trials, we get the following upper bound on the regret:

T∑
t=1

`t(wt)−
T∑
t=1

`t(u) ≤ η
T∑
t=1

gᵀt Σt+1gt

+
ln
(

det(ΣT+1)
det(ΣQ)

)
+ Tr(ΣQΣ−1

T+1)− d+ (w1 − u)ᵀΣ−1
1 (w1 − u)

2η
,

which holds for all ΣQ. By plugging in the optimal value ΣQ = ΣT+1, the bound
simplifies to:

T∑
t=1

`t(wt)−
T∑
t=1

`t(u) ≤ 1

2η
(w1 − u)ᵀΣ−1

1 (w1 − u) +
η

2

T∑
t=1

gᵀt Σt+1gt,

which concludes the proof after using (2.4.1).

2.11.2 Proof of Corollary 4.1

Proof. Using Theorem 4 gives:

T∑
t=1

ft(wt)−
T∑
t=1

ft(u)

≤ 1

2ησ2
‖u‖22 +

η

2

T∑
t=1

1
1
σ2 + αηt

‖gt‖22

≤ 1

2ησ2
D2 +

η

2
G2

T∑
t=1

1
1
σ2 + αηt

≤ 1

2ησ2
D2 +

ηG2

2( 1
σ2 + αη)

+
η

2
G2

∫ T

1

1
1
σ2 + αηt

dt

=
1

2ησ2
D2 +

G2

2( 1
ησ2 + α)

+
G2

2α

(
ln( 1

ησ2 + αT )− ln( 1
ησ2 + α)

)
,

which was to be shown.
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2.11.3 Proof of Corollary 4.2

Proof. Using Theorem 4 gives:

RT (u) ≤ D2

2ησ2
+
η

2

T∑
t=1

gᵀt Σt+1gt. (2.11.1)

We start by bounding the second term on the right-hand side of (2.11.1). Using
Lemma 12 from Hazan et al. (2007) we bound:

ηβgᵀt Σt+1gt = Tr(Σt+1(Σ−1
t+1 − Σ−1

t )) ≤ ln
det(Σ−1

t+1)

det(Σ−1
t )

,

which after summing over trials gives:

T∑
t=1

ηβgᵀt Σt+1gt ≤ ln
det(Σ−1

T+1)

det(Σ−1
1 )

= ln det
(
I + ησ2β

T∑
t=1

gtg
ᵀ
t

)
=

d∑
i=1

ln(1 + λi) ≤ d ln

(
1 +

ησ2βG2T

d

)
,

where λ1, . . . , λd are the eigenvalues of ησ2β
∑T

t=1 gtg
ᵀ
t , and the last inequality

follows by maximizing under the constraint that
∑

i λi = Tr(ησ2β
∑T

t=1 gtg
ᵀ
t ) ≤

σ2ηβG2T . As discussed by Cesa-Bianchi and Lugosi (2006, proof and discussion
of Theorem 11.7), the maximum is achieved when λi = σ2ηβG2T/d for all i.

All together we find:

RT (u) ≤ D2

2ησ2
+

d

2β
ln

(
1 +

ησ2βG2T

d

)
,

which was to be shown.

2.12 Proofs for Section 2.5

2.12.1 Proof of Theorem 5

Abbreviate mt(P ) = − lnEP
[
e−`t(η,i)

]
and define the potential ΦT =

e−
∑T
t=1mt(Pt). Then ΦT = ΦT−1 = · · · = Φ0 = 1 since

ΦT − ΦT−1 = e−
∑T−1
t=1 mt(Pt) EPT

[
ηrT (i)

]
= 0,
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where the last identity holds for any loss vector gt by the definition of wT . For any
comparator Q on (η, i), it follows that

0 =

T∑
t=1

mt(Pt) =

T∑
t=1

EQ[`t(η, i)]+S(Q) ≤
T∑
t=1

EQ[−ηrt(i)+η2rt(i)
2]+S(Q),

where the last inequality is an application of the ‘prod-bound’ − ln(1 + x) ≤
−x + x2 with x = ηrt(i), which holds for any x ≥ −1

2 (Cesa-Bianchi et al.,
2007, Lemma 1). The result (2.5.3) is a direct consequence, and (2.5.4) follows
upon bounding EQ[η] ≥ η̂/2 and EQ[η2] ≤ η̂2 and plugging in that S(Q) ≤
KL(Q‖P1) = KL(π̂‖π)− ln γ([η̂/2, η̂]) for EW.

2.12.2 Proof of Theorem 7

Theorem 7 (Squint Reduction to EW). The exact same statement as in Theorem 5
also holds when we replace the surrogate loss (2.5.2) by (2.5.6).

Thus (2.5.5) also holds, and we recover the results of (Koolen and Van Erven, 2015)
for Squint.

Remark 8. The Metagrad algorithm (van Erven and Koolen, 2016) is similar to
Squint on a continuous set of experts indexed byw ∈ Rd with losses ft(w) = wᵀgt,
and the analysis of Theorem 7 can be extended to handle this case.

Proof. Letmt(P ) and ΦT be as in the proof of Theorem 5, but for the new surrogate
loss (2.5.6). Then ΦT ≤ ΦT−1 ≤ . . . ≤ Φ0 = 1, because

ΦT − ΦT−1 =e−
∑T−1
t=1 mt(Pt)

(
EPT

[
e−ft(η,i)

]
− 1
)

≤e−
∑T−1
t=1 mt(Pt) EPT

[
ηrT (i)

]
= 0,

where the inequality follows from the ‘prod bound’ (see the proof of Theorem 5)
and the final equality is again by definition of wT . For any Q, it follows that

0 ≤
T∑
t=1

mt(Pt) =
T∑
t=1

EQ[`t(η, i)]+S(Q) =
T∑
t=1

EQ[−ηrt(i)+η2rt(i)
2]+S(Q),

which implies that (2.5.3) also holds for Squint. Since (2.5.4) is a corollary, it also
follows directly.
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2.12.3 Proof of Theorem 6

The proof of Theorem 6 follows the same general steps as the proofs for Theorems 5
and 7. However, bounding the mix-regret SiT (η) using a similar analysis as for the
Krichevsky-Trofimov estimator from Example 1 would lead to an extra lnT factor
in the regret. This is avoided using a more delicate analysis that holds specifically
for the regret with respect to η = R+

T (i)/T , which requires a technical analytic
inequality by Orabona and Pál (2016, Lemma 16).

Proof. For `t as in (2.5.2), let mt = − lnEi∼Pt
[
e−`t(η

i
t,i)
]
. Then, by the same

argument as in the proof of Theorem 5, ΦT = e−
∑T
t=1mt = 1. For any distribution

π̂ on i and any η̂i ∈ [0, 1], we therefore have

0 =
T∑
t=1

mt = Eπ̂

[
T∑
t=1

`t(η
i
t, i)

]
+ S̃T (π̂) ≤ Eπ̂

[
T∑
t=1

`it(η
i
t)

]
+ S̃T (π̂)

= Eπ̂

[
T∑
t=1

`it(η̂
i) + SiT (η̂i)

]
+ S̃T (π̂). (2.12.1)

The minimizer of
∑T

t=1 `
i
t(η) over η ∈ [0, 1] is η̂i = R+

T (i)/T . Plugging this in,
we find that

T∑
t=1

`it(η̂
i) = −T B(1

2 +
R+
T (i)
2T ‖

1
2). (2.12.2)

Substituting (2.12.2) in (2.12.1) and reorganizing we obtain (2.5.7).

If we specialize to EW, then S̃T (π̂) ≤ KL(π̂‖π) by the same argument as for iProd.
In addition, to bound SiT (η̂i), let β̃(x, y) be the distribution on η ∈ [−1,+1] such
that (1 + η)/2 has a β(x, y) distribution. Then Lemma 1 and the observation that
the mixability gap is at most 0 because `it is 1-exp-concave, together imply that

SiT (η̂i) ≤ min
Q∈P

{
Eη∼Q

[ T∑
t=1

`it(η)
]

+ KL(Q‖β̃(a, a))︸ ︷︷ ︸
A(Q,i)

}
−

T∑
t=1

`it(η̂
i)︸ ︷︷ ︸

B(i)

.

We first rewriteB(i) using (2.12.2). Then it remains to bound the term withA(Q, i)

in expectation under π̂. To this end we may assume thatRT (π̂) := Eπ̂[RT (i)] ≥ 0
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without loss of generality (otherwise (2.5.8) holds trivially). Hence

Ei∼π̂
[

min
Q∈P

A(Q, i)
]
≤ min

Q∈P
Ei∼π̂

[
A(Q, i)

]
= min

Q∈P

{
Eη∼Q

[
− T +RT (π̂)

2
ln

1 + η

2
− T −RT (π̂)

2
ln

1− η
2
− T ln 2

]
+ KL(Q‖β̃(a, a))

}
= − ln

(
2T EX∼β(a,a)

[
X

T+RT (π̂)

2 (1−X)
T−RT (π̂)

2

])
= − ln

(
2TΓ(2a)Γ

(T+RT (π̂)
2 + a

)
Γ
(T−RT (π̂)

2 + a
)

Γ(a)2Γ(T + 2a)

)

≤ −RT (π̂)2

2T + 4a− 2
+ 1

2 ln
T + 2a− 1

2a
+ ln(e

√
π),

where we have plugged in the minimizing Q = β̃(T+RT (π̂)
2 + a, T−RT (π̂)

2 + a),
which has nonnegative mean under our assumption that RT (π̂) ≥ 0, and where
the last inequality holds by (Orabona and Pál, 2016, Lemma 16), which applies for
a ≥ 1/2,RT (π̂) ∈ [−T, T ] and T ≥ 1.

With these regret bounds for EW, (2.5.7) specializes to

RT (π̂) ≤

√
(2T + 4a− 2)

(
1
2 ln

T + 2a− 1

2a
+ ln(e

√
π) + KL(π̂‖π)

)
.

The result so far holds for any a ≥ 1
2 . Plugging in the choice a = T

4 + 1
2 , suggested

by Orabona and Pál (2016), and using 1
2 ln 3T

T+2 + ln(e
√
π) ≤ 3 completes the

proof.

2.13 Analysis of the Algorithm from Section 2.6

LetW ⊂ Rd be a compact convex set. Following Bubeck et al. (2012), we assume
without loss of generality thatW is full rank, meaning that the linear combinations
ofW span Rd (otherwise we can express the elements ofW in a lower dimensional
space).

At trials t = 1, 2, . . . , T , the algorithm plays with a randomized choice wt ∈ W ,
the adversary chooses an unobserved loss vector gt, which is not allowed to depend
on the realization ofwt, and the learner suffers and observes bounded loss 〈wt, gt〉.
The goal is to minimize the expected regret: E[RT (u)] = E

[∑T
t=1〈wt − u, gt〉

]
for any choice of the comparator u ∈ W . We consider EW with a fixed learning
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rate η and a prior distribution P1 that is uniform over W . At each trial t, after
observing the loss 〈wt, gt〉, the algorithm constructs a random, unbiased estimate
g̃t of the loss vector gt (described below), and uses this estimate to update the
posterior. Since the projection step can be dropped (as P1 is supported onW), the
greedy and lazy versions of EW coincide and the posterior is given by dPt(w) ∝
exp(−η

∑t−1
s=1〈w, g̃s〉)dw for all w ∈ W . Defining θt = −η

∑t−1
s=1 g̃s (with

θ1 = 0), we can concisely write:

dPt+1(w) = e〈w,θt〉−F (θt)dw ∀w ∈ W, where F (θ) = ln

∫
W
e〈w,θ〉 dw

is the cumulant generating function. At trial t, the EW algorithm sampleswt ∼ Qt,
where Qt = (1 − γ)Pt + γR for γ ∈ (0, 1) is a mixture of the posterior Pt and
a fixed “exploration” distribution R. The exploration distribution is chosen to be
John’s exploration, defined as follows (Bubeck et al., 2012). Let K be the ellipsoid
of minimal volume enclosingW:

K = {w ∈ Rd : (w −w0)ᵀH−1(w −w0) ≤ 1} (2.13.1)

for some positive definite matrix H and w0 ∈ Rd. In what follows we assume
without loss of generality thatW is centered in the sense thatw0 = 0 (otherwise all
w ∈ W need to be shifted byw0). Bubeck et al. (2012) show that one can choose
M ≤ d(d+ 1)/2 + 1 contact points u1, . . . ,uM ∈ K ∩W , and a distribution R
over these points that satisfies:

Ew∼R[wwᵀ] =
1

d
H. (2.13.2)

The estimate g̃t is constructed based on the observed loss 〈wt,xt〉, by:

g̃t = 〈wt, gt〉 (EQt [wwᵀ])−1wt.

We now show the following regret bound for the resulting algorithm:

Theorem 9. Assume the losses are bounded: |〈w, gt〉| ≤ 1 for all w ∈ W and

all t. Let η =
√

ν lnT
3dT , where ν = O(d) is the self-concordant barrier parameter

of F ∗, and let γ = ηd. Then the expected regret for the EW algorithm described
above is bounded by

E[RT (u)] ≤ 2
√

3νdT lnT + 2 = O(d
√
T lnT ).

Proof. We first verify that the estimate g̃t of gt is unbiased:

Ewt∼Qt [g̃t] =Ewt∼Qt
[
(Ew∼Qt [wwᵀ])−1wt〈wt, gt〉

]
= (Ew∼Qt [wwᵀ])−1 Ewt∼Qt [wtw

ᵀ
t ] gt = gt.
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Furthermore, due to the inclusion of the exploration distribution R, we have:

Ew∼Qt [wwᵀ] = (1− γ)Ew∼Pt [wwᵀ] + γ Ew∼R[wwᵀ] � γ

d
H,

(whereA � B meansA−B is positive semidefinite), and hence for any u ∈ W:〈
u,
(
Ew∼Qt [wwᵀ]

)−1
u

〉
≤
〈
u,
d

γ
H−1u

〉
≤ d

γ
, (2.13.3)

where the last inequality is from the fact thatW ⊆ K and from the definition of K
in (2.13.1). This, however, implies that the linear losses induced by g̃t are bounded
for any u ∈ W:

〈u, g̃t〉

= 〈wt, gt〉
〈
u,
(
Ew∼Qt [wwᵀ]

)−1
wt

〉
≤ |〈wt, gt〉|

〈
wt,

(
Ew∼Qt [wwᵀ]

)−1
wt

〉1/2〈
u,
(
Ew∼Qt [wwᵀ]

)−1
u

〉1/2

≤ d

γ
, (2.13.4)

where the first inequality is from the Cauchy-Schwarz inequality (for positive
semidefinite A, xᵀAy ≤ (xᵀAx)1/2(yᵀAy)1/2), while the second inequality is
due to assumption |〈w, gt〉| ≤ 1 and due to (2.13.3) applied twice (first to u and
then to wt).

Let µt be the mean value of Pt: µt = EPt [w]. As a general property of exponential
families or as a consequence of Theorem 3, we have µt = ∇F (θt), and µt and θt
are conjugate parameters of the exponential family. Let us fix a comparator u ∈ W
and define Pu to be the member of the exponential family with cumulant generating
function F that has mean value u: Ew∼Pu [w] = u. We now apply Lemma 1 for
the EW algorithm on the sequence of linear losses induced by g̃1, . . . , g̃T to get:

T∑
t=1

〈µt − u, g̃t〉 =
T∑
t=1

〈µt, g̃t〉 −
T∑
t=1

Ew∼Pu [〈w, g̃t〉]

≤ 1

η
KL(Pu‖P1) +

T∑
t=1

〈µt, g̃t〉+
1

η
lnEw∼Pt

[
e−η〈w,g̃t〉

]
(note that in this section we use µt to denote the mean of Pt, while wt is reserved
for the randomized action at trial t sampled fromQt). Since Pu and P1 are members
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of the same exponential family, the KL-term can be re-expressed using Lemma 2:

KL(Pu‖P1) =DF ∗(u‖µ1)

=F ∗(u)− F ∗(µ1)−∇F ∗(µ1)ᵀ︸ ︷︷ ︸
0

(µ− µ1)

=F ∗(u)− F ∗(µ1),

where we used the fact that µ1 has conjugate parameter θ1 = 0, and thus
∇F ∗(µ1) = θ1 = 0. To bound the mixability gap, we will now use that by
assumption η = γ

d , so that by (2.13.4) we have |η〈w, g̃t〉| ≤ 1 for any w ∈ W .
Using the fact that e−s ≤ 1 − s + s2 holds for s ≥ −1, and combining with
ln(1 + x) ≤ x gives:

〈µt, g̃t〉+
1

η
lnEw∼Pt

[
e−η〈w,g̃t〉

]
≤ 〈µt, g̃t〉+

1

η
ln
(
1 + Ew∼Pt

[
−η〈w, g̃t〉+ η2〈w, g̃t〉2

])
≤ 〈µt, g̃t〉 − Ew∼Pt [〈w, g̃t〉]︸ ︷︷ ︸

=0

+η Ew∼Pt
[
〈w, g̃t〉2

]
= ηg̃ᵀt Ew∼Pt [wwᵀ] g̃t.

Combining the bounds on the KL-term and the mixability gap gives:

T∑
t=1

〈µt − u, g̃t〉 ≤
F ∗(u)− F ∗(µ1)

η
+ η

T∑
t=1

g̃ᵀt Ew∼Pt [wwᵀ] g̃t. (2.13.5)

We can use this result to bound the regret of the original algorithm in the following
way. First, note that:

Ewt∼Qt [〈wt − u, gt〉] = γ〈Ewt∼R[wt]− u, gt〉+ (1− γ)〈Ewt∼Pt [wt]− u, gt
〉

≤ 2γ + (1− γ)〈µt − u, gt
〉

= 2γ + (1− γ)Ewt∼Qt [〈µt − u, g̃t〉] ,

where the random quantity in the last expectation is g̃t, because it depends on wt.
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Therefore:
T∑
t=1

Ewt∼Qt [〈wt − u, gt〉]

≤ 2γT + (1− γ)
T∑
t=1

Ewt∼Qt [〈µt − u, g̃t〉]

≤ 2γT +
F ∗(u)− F ∗(µ1)

η
+ η(1− γ)

T∑
t=1

Ewt∼Qt [g̃ᵀt Ew∼Pt [wwᵀ] g̃t]

≤ 2γT +
F ∗(u)− F ∗(µ1)

η
+ η

T∑
t=1

Ewt∼Qt [g̃ᵀt Ew∼Qt [wwᵀ] g̃t] , (2.13.6)

where the second inequality is from (2.13.5), while the last inequality is due to:

Ew∼Qt [wwᵀ] = (1−γ)Ew∼Pt [wwᵀ]+γ Ew∼R[wwᵀ] � (1−γ)Ew∼Pt [wwᵀ].

Using the definition of g̃t and 〈wt, gt〉2 ≤ 1, we further bound:

Ewt∼Qt [g̃ᵀt Ew∼Qt [wwᵀ] g̃t]

≤ Ewt∼Qt
[
wᵀ
t (Ew∼Qt [wwᵀ])−1 Ew∼Qt [wwᵀ] (Ew∼Qt [wwᵀ])−1wt

]
=

T∑
t=1

Ewt∼Qt
[
Tr
(

(Ew∼Qt [wwᵀ])−1wtw
ᵀ
t

)]
=

T∑
t=1

Tr (I) = Td.

Plugging the above into (2.13.6) and taking expectation with respect to the random-
ness of the algorithm results in the following bound on the expected regret:

E[RT (u)] = E

[
T∑
t=1

Ewt∼Qt [〈wt − u, gt〉]

]
≤ 2γT +

F ∗(u)− F ∗(µ1)

η
+ ηTd.

What is left to bound is F ∗(u) − F ∗(µ1). To this end, define the Minkowski
function (Abernethy et al., 2012) onW as:

πµ(w) = inf{t ≥ 0: µ+ t−1(w − µ) ∈ W}.

Bubeck and Eldan (2015) show that F ∗ is a ν-self concordant barrier onW with
ν = O(d). Using this property and Theorem 2.2 from Abernethy et al. (2012) we
get:

F ∗(u)− F ∗(µ1) ≤ ν ln

(
1

1− πµ1(u)

)
.
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If u is such that πµ1(u) ≤ 1− 1
T , then F ∗(u)− F ∗(µ1) ≤ ν lnT . On the other

hand, if πµ1(u) ≤ 1− 1
T , we define a new comparator u′ = (1− 1

T )u+ 1
T µ1, for

which πµ1(u′) ≤ 1− 1
T (Abernethy et al., 2012), and use the regret bound above

for u′ to get:

E[RT (u)] = E[RT (u′)] +

T∑
t=1

〈u′ − u, gt〉 = E[RT (u′)] +
1

T

T∑
t=1

〈µ1 − u, gt〉

≤ 2γT +
F ∗(u′)− F ∗(µ1)

η
+ ηTd+ 2 ≤ 2γT +

ν lnT

η
+ ηTd+ 2.

Recalling that γ = ηd and tuning η =
√

ν lnT
3dT gives the claimed bound.
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CHAPTER 3
User-Specified Local Differential

Privacy in Unconstrained Adaptive
Online Learning

This chapter is based on Van der Hoeven, D. (2019). User-specified local differ-
ential privacy in unconstrained adaptive online learning. In Advances in Neural
Information Processing Systems 32, pages 14103–14112.

Abstract

Local differential privacy is a strong notion of privacy in which the provider of
the data guarantees privacy by perturbing the data with random noise. In the
standard application of local differential privacy the distribution of the noise is
constant and known by the learner. In this chapter we generalize this approach by
allowing the provider of the data to choose the distribution of the noise without
disclosing any parameters of the distribution to the learner, under the constraint
that the distribution is symmetrical. We consider this problem in the unconstrained
Online Convex Optimization setting with noisy feedback. In this setting the learner
receives the subgradient of a loss function, perturbed by noise, and aims to achieve
sublinear regret with respect to some competitor, without constraints on the norm
of the competitor. We derive the first algorithms that have adaptive regret bounds in
this setting, i.e. our algorithms adapt to the unknown competitor norm, unknown
noise, and unknown sum of the norms of the subgradients, matching state of the art
bounds in all cases.
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3.1 Introduction

In learning, a natural tension exists between learners and the providers of data.
The learner aims to make optimal use of the data, perhaps even at the cost of the
privacy of the providers. To nevertheless ensure sufficient privacy the provider
can add random noise to the data that he sends to the learner. This idea is called
ε-local differential privacy (Wasserman and Zhou, 2010; Duchi et al., 2014) and the
standard implementation has constant ε for all providers. However, not all providers
care equivalently about their privacy (Song et al., 2015). Some providers may wish
to aid the learner in making optimal use of their data, while other providers value
their privacy over helping the learner. For instance, celebrities might care more for
their privacy than others because they want to preserve the privacy they have left.
To complicate things further, the providers of the data may not wish to reveal how
much they care about their privacy, because when privacy levels differ between
providers these privacy levels become privacy sensitive themselves. Furthermore,
not all parts of the data are equally privacy sensitive. For example, tweets are
already publicly available, but browsing history may contain sensitive information
that should be kept private. To capture these varying privacy constraints we allow
each provider to choose how much noise is added for each dimension of the data.

In this chapter, we consider these problems in the Online Convex Optimization
(OCO) setting (Hazan et al., 2016) with local differential privacy guarantees. The
OCO framework is a popular and successful framework to design and analyse many
algorithms used to train machine learning models. The OCO setting proceeds in
rounds t = 1, . . . , T . In a given round t the learner is to provide a prediction
wt ∈ Rd. An adversary then chooses a convex loss function `t and sends a
subgradient gt ∈ ∂`t(wt) to the learner. We work with an unconstrained domain
forw, which has recently grown in popularity (see McMahan and Orabona (2014);
Foster et al. (2015); Orabona and Pál (2016); Foster et al. (2017); Cutkosky and
Boahen (2017); Kotłowski (2017); Cutkosky and Orabona (2018); Foster et al.
(2018b); Jun and Orabona (2019)). We aim to develop online learning methods that
make the best use of data providers who wish to help the learner while at the same
time guaranteeing the desired level of privacy for providers that care about their
privacy, without knowing how much each provider cares for their privacy.

We consider the local differential privacy model with varying levels of privacy
unknown to the learner. Differential privacy (Dwork and Roth, 2014) is a privacy
model that is used in many recent machine-learning applications. The local differ-
ential privacy model is a variant of differential privacy in which the learner can only
access the data of the provider via noisy estimates (Wasserman and Zhou, 2010;
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Duchi et al., 2014). The local differential privacy model with varying levels of
privacy appeared before in Song et al. (2015), but with known levels of noise and
only two levels of noise.

Learning in our setting is modelled by the OCO framework with noisy estimates
of the subgradient (see also Jun and Orabona (2019)). To ensure local differential
privacy the provider adds zero-mean noise ξt ∈ Rd to the subgradient gt. The
learner then receives the perturbed subgradient g̃t = gt + ξt. We allow each ξt to
follow a different distribution each round to satisfy different privacy guarantees. In
the standard OCO framework the goal of the learner is to minimize the regret with
respect to some parameter u ∈ Rd:

RT (u) =
T∑
t=1

(`t(wt)− `t(u)) .

However, since the learner receives perturbed subgradients we consider the ex-
pected regret E[R(u)], where the expectation is over the randomness in wt due
to the noisy subgradients. The setting will be formally introduced in Section
3.2. Because g̃t ∈ Rd, standard algorithms for unconstrained domains do not
work since they require bounded g̃t. Initial work in this setting by Jun and Ora-
bona (2019) was motivated by a lower bound of Cutkosky and Boahen (2017),
which shows that one can suffer an exponential penalty when both the domain
and subgradients are unbounded. They replace the boundedness assumption on
g̃t by a boundedness assumption on E[g̃t] and an assumption on the tails of the
noise distribution. Jun and Orabona (2019) achieved expected regret guarantees
of O(‖u‖

√
(G2 + σ2)T ln(1 + ‖u‖T )), where σ2 is a uniform upper bound on

E[‖ξt‖2?], G2 is a uniform upper bound on ‖gt‖2?, and ‖ · ‖ and ‖ · ‖? are dual norms.
This bound is useful when the distribution of the noise is constant and known and
an adversary selects gt. We derive an algorithm that satisfies

E[RT (u)] = O

(
‖u‖

√√√√(G2T +

T∑
t=1

σ2
t ) ln(1 + ‖u‖T ))

)
, (3.1.1)

where σ2
t = E[‖ξt‖2?]. This bound can be smaller in cases where only a few σt

are large but most are small, for example when only few providers have privacy
requirements. In fact, we will prove something stronger than (3.1.1):

E[RT (u)] = O

(
E[‖u‖

√√√√ T∑
t=1

‖g̃t‖2? ln(1 + ‖u‖T ))]

)
, (3.1.2)
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which implies (3.1.1) via Jensen’s inequality and E[‖g̃t‖2?] ≤ 3E[‖ξt‖2?] +

3E[‖gt‖2?]. This bound was motivated by work in the noiseless setting, where

O(‖u‖
√∑T

t=1 ‖gt‖2? ln(1 + ‖u‖T ))) bounds are possible (Cutkosky and Ora-
bona, 2018). With these type of bounds, when the sum of the squared norms
of the subgradients is small the regret is also small. To achieve (3.1.2) we require
two assumptions: bounded ‖gt‖? and zero-mean symmetrical noise ξt. The as-
sumption on gt is common in standard OCO. The symmetrical noise assumption
is satisfied for common mechanisms to ensure local differential privacy. The de-
pendence on E[‖ξt‖2?] and E[‖gt‖2?] is unimprovable, which is shown by the lower
bound for this setting by Jun and Orabona (2019).

The algorithms in this chapter are built using the recently developed wealth-regret
duality approach (Mcmahan and Streeter, 2012). We provide two algorithms. The
first achieves the bound in (3.1.2). The second algorithm satisfies (3.1.2) for each
dimension separately. This second algorithm can exploit sparse privacy structures,
which combined with sparse subgradients yields low expected regret bounds.

Contributions We extend the known results in several directions. Many common
local differential privacy applications use symmetric additive noise (Laplace mech-
anism, normal mechanism). We use the symmetry of the noise to adapt to unknown
levels of privacy and achieve adaptive expected regret bounds. We also adapt to
dimension specific privacy requirements, again without requiring knowledge of
the structure of the noise other than symmetry in each dimension. Our algorithms
interpolate between no noise and maximum noise, matching state of the art bounds
in both cases. This can reduce the cost of privacy in some cases, outlined in Section
3.4. Our work partially answers two problems left open by Jun and Orabona (2019).
The first question asks whether or not data-dependent bounds are possible in the
noisy OCO setting, which we answer affirmatively. The second question is how to
adapt to different levels of noise without using extra parameters compared to the
noiseless setting, which we do for symmetric noise.

Related work There has been significant work on unconstrained and adaptive
methods in OCO with noiseless subgradients gt (Foster et al., 2015; Orabona
and Pál, 2016; Foster et al., 2017; Cutkosky and Boahen, 2017; Kotłowski, 2017;
Cutkosky and Orabona, 2018; Foster et al., 2018b). However, these results do not
extend to the setting with noisy unbounded subgradients g̃t, which is possible with

our work. For bounded domains regret bounds of O(D
√∑T

t=1 ‖g̃t‖2?) are possible
without knowledge of the noise (Duchi et al., 2011; Orabona and Pál, 2018), where
D is an upper bound on ‖u‖. However, these bounds do not adapt to unknown ‖u‖,

50



3.2. Problem Formulation and Preliminaries

C
H

A
P

T
E

R
3

which may be costly for large D but small ‖u‖. We provide an algorithm that both
scales with ‖u‖ instead of D and does not require knowledge of the noise.

There is a body of literature in the differential privacy setting with online feedback
(Jain et al., 2012; Jain and Thakurta, 2014; Thakurta and Smith, 2013; Agarwal and
Singh, 2017; Abernethy et al., 2019). In this chapter we consider local differential
privacy (Wasserman and Zhou, 2010; Duchi et al., 2014), which is a stronger notion
of privacy than differential privacy. Duchi et al. (2014) provide an algorithm with
constant local differential privacy that learns by using SGD. (Song et al., 2015)
derive how to use knowledge of several levels of local differential privacy for SGD,
but only with two different levels of noise. Jun and Orabona (2019) consider local
privacy with an unbounded domain and constant noise. With knowledge of the
noise it is possible to extend the results of Jun and Orabona (2019) to achieve
(3.1.1), but not (3.1.2).

Outline In Section 3.2 we introduce our problem formally and introduce the key
techniques. In Section 3.3 we derive a one-dimensional algorithm that achieves
our goals, which we use in a black-box reduction in Section 3.3.1 and we apply it
coordinate-wise in Section 3.3.2. Section 3.4 contains two scenarios in which our
new algorithm achieves improvements compared to current algorithms. Finally, in
Section 3.5 we present our conclusions.

3.2 Problem Formulation and Preliminaries

In this Section we describe our notation, introduce the version of local differential
privacy we use, briefly introduce the OCO setting with noisy subgradients, and
provide some background to the reward-regret duality paradigm.

Notation. A random variable x is called symmetric if the density function ρ of the
random variable z = x−E[x] satisfies ρ(z) = ρ(−z). The inner product between
vectors g ∈ Rd and w ∈ Rd is denoted by 〈w, g〉. The Fenchel conjugate of a
convex function F , F ? is defined as F ?(w) = supg〈w, g〉 − F (g). ‖ · ‖ denotes a
norm and ‖g‖? = supw:‖w‖≤1〈w, g〉 denotes the dual norm. gt,j indicates the jth

component of vector gt.

3.2.1 User-Specified Local Differential Privacy

In the local differential privacy setting each datum is kept private from the learner.
The standard definition of local privacy requires a randomiser R that perturbs gt
with random noise ξt, where ξ1, . . . , ξT are independently distributed (Wasserman
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and Zhou, 2010; Kasiviswanathan et al., 2011; Duchi et al., 2014). The amount
of perturbation is controlled by ε, where smaller ε means more privacy. We allow
the provider to specify his desired level of privacy, so in a given round t we have
εt-local differential privacy.

Definition 1. [Duchi et al. (2014)] Let A = (X1, . . . , XT ) be a sensitive dataset
where each Xt ∈ A corresponds to data about individual t. A randomiser R which
outputs a disguised version of S = (U1, . . . , UT ) of A is said to provide ε-local
differential privacy to individual t, if for all x, x′ ∈ A and for all S ⊆ S,

Pr(Ut ∈ S|Xt = x) ≤ exp(ε) Pr(Ut ∈ S|Xt = x′).

In this chapter we make use of randomisers of the form Rt(gt) = gt + ξt, where
ξt is generated by a zero-mean symmetrical distribution ρt. A common choice
for ρt is ρt(z) ∝ exp(− εt

2 ‖z‖) (Song et al., 2015). This randomiser is εt-local
differentially private for ‖gt‖ ≤ 1 (Song et al., 2015, Theorem 1). We use a
small variation of this randomiser, which we call the local Laplace randomiser:
ρt(z) ∝ exp(−

∑d
j=1

τt,j
2 |zj |), where

∑d
j=1 τt,j = εt, τt,j ≥ 0. The following

result shows that the local Laplace randomiser preserves εt-local differential privacy.

Lemma 4. Suppose |gt,j | ≤ 1, then the local Laplace randomiser is εt-local
differentially private, where εt =

∑d
j=1 τt,j .

The proof follows from applying Theorem 1 of Song et al. (2015) to each dimension
and summing the τt,j . For completeness the proof is provided in Section 3.6. This
randomiser is the Laplace randomiser (Dwork and Roth, 2014) applied to each
dimension with a possibly different ε per dimension. The local Laplace randomiser
gives the user more control over the details of the privacy guarantees: with the local
Laplace randomiser each dimension j is τt,j-local differentially private. This can
also lead to lower regret in some cases, of which we give an example in Section 3.4.

3.2.2 Online Convex Optimization with Noisy Subgradients

The analysis of many efficient online learning tools has been influenced by the
Online Convex Optimization framework. As mentioned in the introduction, the
OCO setting with noisy subgradients proceeds in rounds t = 1, . . . , T . In each
round t

1. The learner sends wt ∈ Rd to the provider of the tth subgradient.

2. The provider samples ξt from zero-mean and symmetrical ρt and computes
subgradient gt ∈ ∂`t(wt), where ‖gt‖? ≤ G.
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3. The provider sends g̃t = gt + ξt ∈ Rd to the learner.

This protocol is a slight adaptation of the protocol of Duchi et al. (2014), where we
allow a different ρt in each round t instead of using a constant ρ. In each round the
provider only sends g̃t to the learner. The learner has no information about ρt other
than that ρt is symmetrical and zero-mean. Also note that ρt is allowed to change
with each round t, complicating things even further. Since the feedback the learner
receives is random we are interested in the expected regret. To bound the expected
regret we upper bound the losses by their tangents:

E[RT (u)] ≤ E[
T∑
t=1

〈wt − u, gt〉] = E[
T∑
t=1

〈wt − u, g̃t〉], (3.2.1)

where the equality holds because of the law of total expectation. The analysis
focusses on bounding the r.h.s of (3.2.1), which is a standard approach in OCO.
In the following we introduce a recently popularized method to control the regret
when wt and u are unbounded.

3.2.3 Reward Regret Duality

In this Section we introduce the main technical workhorse in this chapter: the reward
regret duality (McMahan and Orabona, 2014, Theorem 1). Informally, for noiseless
gt, suppose we are able to guarantee −

∑T
t=1〈wt, gt〉 ≥ FT (−

∑T
t=1 gt) − cT

for a convex FT and cT ∈ R. We will refer to FT as the potential function.
Here, −

∑T
t=1〈wt, gt〉 is seen as the reward. By Fenchel’s inequality we have

FT (−
∑T

t=1 gt) ≥ −F ?T (u)−
∑T

t=1〈u, gt〉, which gives us a bound on the regret
after using that −

∑T
t=1〈wt, gt〉 ≥ FT (−

∑T
t=1 gt)− cT and reordering the terms.

For noisy g̃t, the formal result is found in the following lemma (see also Theorem 3
of Jun and Orabona (2019)).

Lemma 5. If −E[
∑T

t=1〈wt, gt〉] ≥ E[FT (−
∑T

t=1 g̃t) − cT ] for some convex
function FT and cT ∈ R, then E[RT (u)] ≤ E[cT ] + F ?T (u).

Proof. From the definition of Fenchel conjugates we have E[FT (−
∑T

t=1 g̃t)] ≥
E[−F ?T (u) −

∑T
t=1〈u, g̃t〉] = −F ?T (u) −

∑T
t=1〈u, gt〉. Using

−E[
∑T

t=1〈wt, gt〉] ≥ E[FT (−
∑T

t=1 g̃t) − cT ] and reordering the terms
completes the proof.

The difficulty lies in finding a suitable FT and cT . For example, we could use
gradient descent with learning rate η to find FT (−

∑T
t=1 g̃t) = η

2‖
∑T

t=1 g̃t‖22
and cT =

∑T
t=1

η
2‖g̃t‖

2
2. However, it would be impossible to tune η optimally
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due to the dependence on the unknown u in F ∗T (u) = 1
2η‖u‖

2
2. For noiseless

subgradients gt (Cutkosky and Orabona, 2018) provide a route to find a suitable FT ,
with a constant cT . Jun and Orabona (2019) extend this idea to noisy subgradients
g̃t: one needs to find an Ft, Ft−1, and wt that satisfy Ft−1(x) − 〈wt, gt〉 ≥
Eg̃t [Ft(x−g̃t)]. By assuming that−E[

∑t
s=1〈ws, gs〉] ≥ E[Ft(−

∑t
s=1 g̃s)] holds

one can show that if Ft and Ft−1 satisfy Ft−1(x) − 〈wt, gt〉 ≥ Eg̃t [Ft(x − g̃t)],
then −E[

∑T
t=1〈wt, gt〉] ≥ E[FT (−

∑T
t=1 g̃t)] holds by induction. The result is

given in the following lemma, of which the proof can be found in Section 3.6.

Lemma 6. Suppose that Ft−1(x) − 〈wt, gt〉 ≥ Eg̃t [Ft(x − g̃t)] holds for all t,
then

−E[

T∑
t=1

〈wt, gt〉] ≥ E[FT (−
T∑
t=1

g̃t)].

3.3 One-Dimensional Private Adaptive Potential Func-
tion

Algorithm 1 Local Differentially Private Adaptive Potential Function

Input: G such that |E[g̃t]| ≤ G and prior P on v ∈ [− 1
5G ,

1
5G ].

1: for t = 1, . . . , T do
2: Play wt = Ev∼P [v exp(−

∑t−1
s=1

(
vg̃s + (vg̃s)

2
)
)].

3: Receive symmetric g̃t ∈ R.
4: end for

In this Section we derive a suitable potential function for a one-dimensional problem.
In the remainder of this chapter we use this one-dimensional potential to derive
new algorithms. To derive our one-dimensional potential function we we rely on
a property of symmetric random variables with bounded means. The following
Lemma is key deriving our potential function FT .

Lemma 7. Suppose x is a symmetrical random variable with |E[〈v,x〉]| ≤ 1
5 for

some v. Then E[exp(〈v,x〉 − 〈v,x〉2)] ≤ 1 + E[〈v,x〉].

The proof of Lemma 7 can be found in Section 3.7. We can now use Lemma 7
to derive a one-dimensional potential function. Suppose g̃t ∈ R is a symmetrical
random variable with |E[g̃t]| ≤ G. Then vg̃t with v ∈ [− 1

5G ,
1

5G ] satisfies the
assumptions in Lemma 7. Multiplying the lower bound of Lemma 7 for 1− E[vg̃t],
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for t = 1, . . . , T , yields a potential function via Lemma 6. The potential we find is

Ft(−
t∑

s=1

g̃s) = Ev∼P [exp(−
t∑

s=1

(
vg̃s + (vg̃s)

2
)
)− 1], (3.3.1)

where P is an (improper) prior on v ∈ [− 1
5G ,

1
5G ], the first expectation is over

g̃1, . . . , g̃t, and F0(0) = 0. This kind of potential function has been used before by
Chernov and Vovk (2010); Koolen and Van Erven (2015); Jun and Orabona (2019).
The novelty in this particular potential function is that it allows for the incorporation
of the symmetrical noise in the analysis. The

∑t
s=1(vg̃s)

2 term is unique to our
potential function and allows us to derive adaptive regret bounds for unconstrained
u. Note that the cT = 1 term has moved inside the definition of FT . While this
does not influence the analysis for proper priors it does influence the analysis for
improper priors. The corresponding prediction strategy is given by

wt = Ev∼P [v exp(−
t−1∑
s=1

(
vg̃s + (vg̃s)

2
)
]. (3.3.2)

Algorithm 1 summarizes the strategy. Note that Algorithm 1 does not require any
extra parameters compared to the setting with noiseless subgradients.

The following result shows that FT defined by (3.3.1) and wt defined by (3.3.2)
satisfy our assumptions.

Lemma 8. Suppose g̃t is a symmetrical random variable with |E[g̃t]| ≤ G. Then
Ft defined by (3.3.1) and wt defined by (3.3.2) satisfy Eg̃t [Ft(−

∑t
s=1 g̃s)] ≤

Ft−1(−
∑t−1

s=1 g̃s)− wt E[g̃t].

The proof follows from an application of Lemma 7 and can be found in Section
3.7. We consider two types of priors. The first type are proper priors that are of the
form:

dP (v)

dv
=
ν(v) exp(−bv2)

Z
, (3.3.3)

Where b ≥ 0, ν : [− 1
5G ,

1
5G ] 7→ R+, and Z =

∫ 1
5G

− 1
5G

ν(v)e−bv
2
dv is a normalizing

constant. This captures several priors used in literature, including the conjugate
prior dP

dv = exp(−bv2)
Z (Koolen and Van Erven, 2015), a variant of the CV prior

dP
dv = 1

Z|v| ln(|v|)2 (for G > 1
5 ), (Chernov and Vovk, 2010; Koolen and Van Erven,

2015), and the uniform prior on [− 1
5G ,

1
5G ] (Jun and Orabona, 2019).

The second type of prior is an improper prior: dP
dv = 1

|v| . A variant of this prior
was previously used by (Koolen and Van Erven, 2015). For all priors we derive a
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regret bound by computing an upper bound on the convex conjugate of FT , F ?T . For
conciseness we only present the regret bound for the conjugate prior in the main
text. In Section 3.8 we present the analysis of the regret of the improper prior, for
which a slightly different analysis is required compared to the proper priors. The
analysis for all priors can be seen as performing a Laplace approximation of the
integral over v to show that the prior places sufficient mass in a neighbourhood of
the optimal v.

Abbreviating Bt = b+
∑t−1

s=1 g̃
2
s , Lt = −

∑t−1
s=1 g̃s, and C = 1

5G , the predictions
(3.3.2) with the conjugate prior are given by:

wt =

√
bLt exp

(
(L+2CBt)

2

4Bt

)(
erf
(
Lt−2CBt

2
√
Bt

)
− erf

(
Lt+2CBt

2
√
Bt

))
erf(C

√
b) exp(C (Lt + CBt))4B

3
2
t

+
2
√
Bt (exp(2CLt)− 1)

erf(C
√
b) exp(C (Lt + CBt))4B

3
2
t

.

(3.3.4)

These wt can be computed efficiently, but see Koolen and Van Erven (2015) for
numerically stable evaluation. With the conjugate prior we find the following result:

Theorem 10. Suppose g̃t is a symmetrical random variable with |E[g̃t]| ≤ G for
all t. The predictions (3.3.4) satisfy:

E[RT (u)] ≤1 + |u|max

{
11G

(
ln(|u|11G)− 1 + ln

(√
5G
√
π

4
√
b

))
,

E


√√√√√8

(
b+

T∑
t=1

g̃2
t

)
ln(16|u|2

(
b+

T∑
t=1

g̃2
t

) 3
2 √

π√
b

+ 1)


}
.

The proof of Theorem 10 can be found in Section 3.7.1 and follows from computing
the Fenchel conjugate of the potential function. For noisy subgradients this is the
first bound that is adaptive to the sum of the squares of the noisy subgradients.
Compared to the expected regret bound for the improper prior (see Theorem 12 in
Section 3.8) this bound has worse constants. However, with the conjugate prior all
non-constant terms scale with |u|, which is not the case with the improper prior. For
all proper priors of the form (3.3.3) a similar regret bound can be computed. This
can be seen from Lemma 11 in Section 3.7.1, which shows that the convex conjugate

of the potential function for these priors is O(E[|u|
√∑T

t=1 g̃
2
t ln(|u|T + 1))]).
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Algorithm 2 Black-Box Reduction

Input: G such that ‖E[g̃t]‖? ≤ G and Algorithm AZ with domain Z = {z :
‖z‖ ≤ 1}

1: for t = 1, . . . , T do
2: Get zt ∈ Z from AZ
3: Get vt ∈ R from Algorithm 1
4: Play wt = vtzt, receive symmetrical g̃t such that ‖E[g̃t]‖? ≤ G
5: Send g̃t to AZ
6: Send 〈zt, g̃t〉 to Algorithm 1
7: end for

3.3.1 Black-Box Reductions

In this Section we use our potential function in a black-box reduction: we take a
constrained noisy OCO algorithm AZ and turn it into an unconstrained algorithm
using our potential function. The same reduction is used by Cutkosky and Orabona
(2018) and Jun and Orabona (2019). The algorithm can be found in Figure 2. The
potential function and the OCO algorithm each have their task: the potential function
is to learn the norm of u and the constrained OCO algorithm is to learn the direction
of u. In each round t we play wt = vtzt, where zt ∈ Z , Z = {z : ‖z‖ ≤ 1}, is
the prediction of the OCO algorithm and vt is the prediction of Algorithm 1. We
feed g̃t as feedback to AZ and 〈zt, g̃t〉 as feedback to Algorithm 1. Since g̃t is a
symmetrical random variable and E[〈zt, g̃t〉] ≤ G, 〈zt, g̃t〉 satisfies the assumptions
in Lemma 7. This allows us to control the regret for learning the norm of u using
Theorem 10.

As outlined by Cutkosky and Orabona (2018) the expected regret of Algorithm 2
decomposes into two parts. The first part of the regret is for learning the norm of
u, and is controlled by Algorithm 1. The second part of the regret for learning
the direction of u and is controlled by AZ . The proof is given by Cutkosky and
Orabona (2018), but for completeness we provide the proof in Section 3.7.2.

Lemma 9. Suppose g̃t is a symmetrical random variable with ‖E[g̃t]‖? ≤ G for
all t. LetRVT (‖u‖) = E[

∑T
t=1(vt−‖u‖)〈zt, g̃t〉] be the regret for learning ‖u‖ by

Algorithm 1 and letRZT ( u
‖u‖) = E[

∑T
t=1〈zt −

u
‖u‖ , g̃t〉] be the regret for learning

u
‖u‖ by AZ . Then Algorithm 2 satisfies E[RT (u)] = RVT (‖u‖) + ‖u‖RZT

(
u
‖u‖

)
.

Orabona and Pál (2018) show that Mirror Descent with learning rates ηt =

(
√∑t

s=1 ‖g̃s‖2?)−1 yields RZT ( u
‖u‖) = O(E[

√∑T
t=1 ‖g̃t‖2?]). Since Algorithm 1
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satisfiesRVT (‖u‖) = O(E[‖u‖
√∑T

t=1 ‖g̃t‖2? ln(‖u‖
∑T

t=1 ‖g̃t‖2? + 1)]) the total
regret of Algorithm 2 is

E[RT (u)] = O

‖u‖E

√√√√ T∑

t=1

‖g̃t‖2? ln(‖u‖
T∑
t=1

‖g̃t‖2? + 1)

 . (3.3.5)

This bound matches state of the art bounds for for noiseless subgradients and is
never worse than the bound of Jun and Orabona (2019) for noisy subgradients, but
can be substantially better.

3.3.2 Private Unconstrained Adaptive Sparse Gradient Descent

Algorithm 3 Private Unconstrained Adaptive Sparse Gradient Descent

Input: G such that |E[g̃t,j ]|? ≤ G.
1: for t = 1, . . . , T do
2: Play wt

3: for j = 1, . . . , d do
4: Receive symmetrical g̃t,j such that |g̃t,j | ≤ G
5: Send g̃t,j to the j-th instance of Algorithm 1
6: Receive vt+1,j ∈ R from the j-th instance of Algorithm 1 with the

conjugate prior
7: Set wt+1,j = vt+1,j

8: end for
9: end for

In this Section we propose a noisy unconstrained OCO algorithm that can exploit
sparse subgradients. The algorithm is summarized in Algorithm 3. Algorithm 3
runs a copy of Algorithm 1 with the conjugate prior coordinate-wise. A similar
strategy is used by Orabona and Tommasi (2017). This strategy can exploit sparse
privacy structures, which, combined with sparse subgradients, may yield low regret
(see Section 3.4). Its expected regret bound is given below. The proof follows from
applying Theorem 10 per dimension.

Theorem 11. Suppose g̃t,j is a symmetric random variable with |E[g̃t,j ]| ≤ G for
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all t and j. Then the expected regret of Algorithm 3 satisfies

E[RT (u)] ≤ d+
d∑
j=1

|uj |max

{
11G

(
ln(|uj |11G)− 1 + ln

(√
5G
√
π

4
√
bj

))
,

E


√√√√√8

(
bj +

T∑
t=1

g̃2
t,j

)
ln(16|uj |2

(
bj +

T∑
t=1

g̃2
t,j

) 3
2 √

π√
bj

+ 1))


}
.

3.4 Motivating Examples

In this Section we present two scenarios in which our algorithms provide better
expected regret guarantees than standard algorithms. The first scenario concerns
a case where many providers do not care for their privacy (so they do not perturb
the subgradients) and few providers care substantially for their privacy. Suppose
that the providers who care for their privacy are dln(T )e of the total number of
providers T . Suppose that ‖gt‖22 ≤ 1 and that the providers who care for their
privacy use ρ(z) ∝ exp(− ε

2‖z‖2), then E[‖ξt‖22] ≤ 4 + 4d
2+d
ε2

(Song et al., 2015,
Theorem 1). Using Algorithm 2, Jensen’s inequality, and the fact that the square
root is subadditive we see from (3.3.5) that the expected regret is upper bounded

by O(‖u‖2
√∑T

t=1 ‖gt‖22 ln(1 + ‖u‖2T ) + ‖u‖2 dε ln(‖u‖2T + T )) instead of

O(‖u‖2 dε
√
T ln(1 + ‖u‖2T )) had we used the maximum privacy guarantee for

all providers instead of letting the providers choose their desired level of privacy.

In the second scenario the providers use the local Laplace randomiser. Sup-
pose that gt is sparse. A standard algorithm that has good perform-
ance for sparse gt is AdaGrad (Duchi et al., 2011). AdaGrad achieves

O(E[D
∑d

j=1

√∑T
t=1 g̃

2
t,j ]) expected regret, where maxj |uj | ≤ D, and D

has to be guessed prior to running AdaGrad. Using Jensen’s inequality and
the fact that the square root is subadditive the expected regret can be upper

bounded byO(D
∑d

j=1(
√

3
∑T

t=1 g
2
t,j+

√∑T
t=1 3E[ξ2

t,j ])). Algorithm 3 achieves

O(
∑d

j=1 |uj |(
√

3
∑T

t=1 g
2
t,j ln(|uj |T + 1) +

√
3
∑T

t=1 E[ξ2
t,j ] ln(|uj |T + 1))) re-

gret, which can be significantly smaller than the bound of AdaGrad if D is much
larger than all uj or if u is sparse. Furthermore, since we allow the provider of the
data to choose τt,j , the parameter of the Laplace randomiser for dimension j, ξt
can be sparse as well. While this does not give local differential privacy guarantees
for all attributes it does give local differential privacy guarantees for attributes with
τj <∞.
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3.5 Conclusions

In this chapter, we extended the local differential privacy framework in uncon-
strained Online Convex Optimization by allowing the provider of the data to choose
their privacy guarantees. Standard algorithms do not yield satisfactory regret bounds
in this setting, either due to dependence on the unknown parameters of the noise
or due to dependence on bounded subgradients. Hence, we proposed two new
algorithms that match state of the art regret algorithms in both the noisy and noise-
less setting, without requiring knowledge of the noise other than symmetry. Our
algorithms do not require parameters other than a bound on the norm of the expect-
ation of the subgradients, which allows the privacy requirements of all providers to
be private itself. The new algorithms are a step towards practically useful algorithms
with local differential privacy guarantees that have sound theoretical guarantees.
Furthermore, our algorithms are the first adaptive unconstrained algorithms in the
noisy OCO setting without requiring extra parameters compared to the standard
OCO setting, solving two problems left open by Jun and Orabona (2019).

3.6 Details from Section 3.2

Proof. (of Lemma 4) Evaluating and rewriting Definition 1 gives
d∏
j=1

exp(− τt,j
2 |g̃t,j − gt,j′ |)

exp(− τt,j
2 |g̃t,j − gt,j′ |)

≤
d∏
j=1

exp(
τt,j
2

(|gt,j |+ |gt,j′ |))

≤
d∏
j=1

exp(τt,j) = exp(εt),

where the first inequality follows from applying the triangle inequality for each j
and the second inequality follows from the assumption that |gt,j | ≤ 1.

Proof. (of Lemma 6) We will prove the result by induction. In a given round t
assume that −E[

∑t
s=1〈ws, gs〉] ≥ E[Ft(−

∑t
s=1 g̃s)] holds. Now,

−E[

t+1∑
s=1

〈ws, gs〉] =E[−〈wt+1, gt+1〉 −
t∑

s=1

〈ws, gs〉]

≥E[Ft(−
t∑

s=1

g̃s)− 〈wt+1, gt+1〉]

≥E[Ft+1(−
t+1∑
s=1

g̃s)],
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where the first inequality comes from the inductive hypothesis and the second
inequality is by the assumption that Ft−1(x)− 〈wt, gt〉 ≥ Eg̃t [Ft(x− g̃t)] for all
t. Now, by induction −E[

∑T
t=1〈wt, gt〉] ≥ E[FT (−

∑T
t=1 g̃t)].

3.7 Details from Section 3.3

Proof. (of Lemma 7) We start by rewriting the l.h.s.:

E[exp(〈v,x〉 − 〈v,x〉2)]

= E[exp(y〈v, z〉 − 〈v, z〉2)] exp(E[〈v,x〉]− E[〈v,x〉]2).

where z = x− E[x] and y = 1− 2E[〈v,x〉]. z is a random variable with mean 0

and |y| ≤ 1.4 due to the restrictions on E[〈v,x〉]. By Lemma 10, E[exp(y〈v, z〉 −
〈v, z〉2)] ≤ 1. It remains to show that exp(E[〈v,x〉]−E[〈v,x〉]2) ≤ 1+E[〈v,x〉],
which holds for E[〈v,x〉] ≥ −1

2 (Cesa-Bianchi and Lugosi, 2006, Lemma 2.4).

Lemma 10. Let z ∈ Rd be a zero-mean symmetrical random variable. Then for
|y| ≤ 1.4 and arbitrary v ∈ Rd

E[exp(y〈v, z〉 − 〈v, z〉2)] ≤ 1.

Proof. Due to symmetry of z we can write

E[exp(y〈v, z〉 − 〈v, z〉2)]

= E[
1

2
exp(−y〈v, z〉 − 〈v, z〉2) +

1

2
exp(y〈v, z〉 − 〈v, z〉2)].

We continue by showing that the expression inside the expectation is smaller than 1:

1

2
exp(−y〈v, z〉 − 〈v, z〉2) +

1

2
exp(y〈v, z〉 − 〈v, z〉2) ≤1

ln(cosh(y〈v, z〉))− 〈v, z〉2 ≤0.

which holds because for |y| ≤ 1.4 f(x) = ln(cosh(yx)) − x2 is concave and
maximized at x = 0, which gives f(0) = 0.
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Proof. (of Lemma 8) Let `t(v) = vg̃t + (vg̃t)
2

Eg̃t [Ft(−
t∑

s=1

g̃s)] =Ev[Eg̃t [exp(−`t(v)−
t−1∑
s=1

`t(v))− 1]]

≤Ev[(1− v E[g̃t]) exp(−
t−1∑
s=1

`t(v))− 1]]

=Ft−1(−
t−1∑
s=1

g̃s)− wt E[g̃t]

where the first equality is due to Tonelli’s theorem and the inequality is due to
Lemma 7, which applies due to the restrictions on v and E[g̃t]. Since F0(x) = 0

the proof is complete.

3.7.1 Regret Analysis for Proper Priors

Proof. (of Theorem 10). By Lemma 5, Lemma 6, and Lemma 8 we only have
to compute the convex conjugate of the potential function. We do the analysis
for −

∑T
t=1 g̃t ≥ 0. The analysis for −

∑T
t=1 g̃t ≤ 0 is analogous. We have

−
∑T

t=1wtg̃t ≥ FT (−
∑T

t=1 g̃t) ≥ −1. Suppose
∑T

t=1 g̃t ≤
√

2(
∑T

t=1 g̃
2
t + b),

then E[RT (u)] = E[
∑T

t=1wtg̃t − ug̃t] ≤ E[
∑T

t=1 |u||
∑T

t=1 g̃t|] + 1 ≤
|u|E[

√
2(
∑T

t=1 g̃
2
t + b)] + 1, which implies the result.

Now, suppose
∑T

t=1 g̃t ≥
√

2(
∑T

t=1 g̃
2
t + b). For the conjugate prior ν([η, µ]) =

η − µ and Z ≤
√
π√
b

. In the case where −
∑T

t=1 g̃t ≤
2

5G(
∑T

t=1 g̃
2
t + b) set

µ =
−
∑T
t=1 g̃t

2(
∑T
t=1 g̃

2
t+b)

. Using Lemma 11 we obtain:

F ?T (u)

≤

√√√√√8|u|2
(

T∑
t=1

g̃2
t + b

)
ln(16|u|2

(
T∑
t=1

g̃2
t + b

)
√
π

√∑T
t=1 g̃

2
t + b

√
b

+ 1) + 1.

(3.7.1)

In the case where −
∑T

t=1 g̃t ≥
2

5G(
∑T

t=1 g̃
2
t + b) set η = 5−

√
5

50G and µ = 1
2 to

obtain:

F ?T (u) ≤ 11G|u|(ln(|u|11G)− 1 + ln

(√
5G
√
π

4
√
b

)
) + 1. (3.7.2)

Combining the expectations of (3.7.1) and (3.7.2) completes the proof.
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Lemma 11. Suppose L >
√

2(V + b). Let FT (L) = Ev∼P [exp(vL− v2V )− 1]

with P as in (3.3.3). If L ≤ 2
5G(V + b) then

F ?T (u) ≤
√

8|u|2(V + b) ln(16|u|2(V + b)St([η1, µ1]) + 1) + 1,

where St([η, µ]) = Z
ν([η,µ]) , η1 = L

2(V+b) −
1√

2(V+b)
, |µ1| ∈ [η1,

1
5G ] such that

µ1 ≤ L
2(V+b) , and ν([η, µ]) =

∫ µ
η ν(v)dv. If L ≥ 2

5G(V + b) then

F ?T (u) ≤ |u|
η − η2 5

2G
(ln

(
|u|

η2 − η2
2

5
2G

)
− 1 + ln(ST ([η2, µ2]))) + 1,

where [η2, µ2] ⊆ [− 1
5G ,

1
5G ] such that µ2 ≤ L

2(V+b) .

Proof. The initial part of the analysis is parallel to the analysis of Theorem 3 by
Koolen and Van Erven (2015). Denote by B = V + b. For v ≤ η̂ = L

2B , vL− v2B

is non-decreasing in v. Therefore, for [η, µ] ⊆ [− 1
5G ,

1
5G ] such that µ ≤ η̂:

FT (−
T∑
t=1

xt) =
1

Z

∫ 1
5G

− 1
5G

ν(v) exp(vL− v2B)dv − 1

≥ 1

Z
ν([η, µ]) exp(ηL− η2B)− 1,

where ν([η, µ]) =
∫ µ
η ν(v)dv. First suppose that η̂ ≤ 1

5G . Take η = η̂ − 1√
2B

,
which yields

FT (L) ≥ ν([η, µ])

Z
exp

(
L2

4B
− 1

2

)
− 1 = g(m(L))− 1

where g(x) = exp(x − 1
2 − ln

(
Z

ν([η,µ])

)
) and m(x) = x2

4B . By Hiriart-Urruty
(2006, Theorem 2) we have

F ?T (u) ≤ (g(m(u)))? = inf
γ≥0

g?(γ) + γm?(
u

γ
)

= inf
γ≥0

γ ln(γ) + γ(ln(
Z

ν([η, µ])
)− 1

2
) +

1

γ
4|u|2B + 1.

(3.7.3)

Denote by S = ln( Z
ν([η,µ])) and H = 4|u|2B. Setting the derivative to 0 we find

that γ̂ =
√

2H
W (2H exp(SaT+ 1

2
))

minimizes (3.7.3), where W is the Lambert function.
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Plugging γ̂ in (3.7.3) gives

F ?T (u) ≤
H(2W (2H exp(S + 1

2))− 1)√
2H(W (2H exp(S + 1

2))
+ 1 ≤

√
2H(W (2H exp(S + 1

2)) + 1.

Using W (x) ≤ ln(x+ 1) (Orabona and Pál, 2016, Lemma 17) we obtain

F ?T (u) ≤
√

2H ln(2H exp(S +
1

2
) + 1) ≤

√
8|u|2B ln(16|u|2B exp(S) + 1)+1.

Now suppose that η̂ > 1
5G , which is equivalent to 5

2GL > B . Then

FT (L) ≥ ν([η, µ])

Z
exp((η − η2 5

2
G)L)− 1.

The convex conjugate of this lower bound is well known and is an upper bound on
F ?T :

F ?T (u) ≤ |u|
η − η2 5

2G
(ln

(
|u|

η − η2 5
2G

)
− 1 + ln

(
Z

ν([η, µ])

)
) + 1,

which concludes the proof.

3.7.2 Details From section 3.3.1

Proof. (of Lemma 9) We have

E[Ru(u)] =E

[
T∑
t=1

〈wt − u, g̃t〉

]

=E

[
T∑
t=1

〈zt, g̃t〉(vt − ‖u‖)

]
+ ‖u‖E

[
T∑
t=1

〈zt −
u

‖u‖
, g̃t〉

]

=RVT (‖u‖) + ‖u‖RZT
(
u

‖u‖

)

3.8 Regret Analysis for the Improper Prior

Abbreviating Bt =
∑t−1

s=1 g̃
2
s , Lt = −

∑t−1
s=1 g̃s, and C = 1

5G , the predictions
(3.3.2) with the improper prior are given by:

√
π exp( L

2

4B )
(

2 erf
(

L
2
√
B

)
− erf

(
L+2CB

2
√
B

)
− erf

(
L−2CB

2
√
B

))
2
√
B

. (3.8.1)
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With the predictions in (3.8.1) we can show the following result.

Theorem 12. Suppose g̃t is a symmetrical random variable with |E[g̃t]| ≤ G for
all t. The the expected regret of algorithm 1 with the improper prior dP

dv = 1
|v|

satisfies

E[RT (u)] ≤ max

{
|u|E


√√√√8

T∑
t=1

g̃2
t


√√√√ln(8|u|2

T∑
t=1

g̃2
t + 1) + 1

 ,
|u|11G(ln(|u|11G ln(2))− 1) + ln(2),

|u|E[

√√√√2
T∑
t=1

g̃2
t ] + 1 + E

ln

1 + 2

√√√√2
T∑
t=1

g̃2
t

}.
(3.8.2)

Proof. By Lemma 5, Lemma 6, and Lemma 8 we only have to compute the convex
conjugate of the potential function. The initial part of the analysis is parallel to the
analysis of Theorem 4 by Koolen and Van Erven (2015). Denote by L = −

∑T
t=1 g̃t

and by V =
∑T

t=1 g̃
2
t . We do the analysis for L ≥ 0. The analysis for L ≤ 0 is

analogous. We start by considering the case where L ≤
√

2V . We have

FT (L) ≥
∫ ε

0

1

v
(exp(−vL− v2V )− 1) +

∫ 1
5G

ε

1

v
(exp(−vL− v2V )− 1)

≥− εL− ε2V + ln(5Gε),

where we used exp(x) ≥ 1 + x. Choosing ε = 1
5G+2

√
2V

gives −E[
∑T

t=1wtg̃t] ≥

E[FT (L)] ≥ −1−E[ln
(

1 + 2
√

2V
)

]. Now, E[RT (u)] = E[
∑T

t=1wtg̃t−ug̃t] ≤

E[
∑T

t=1 |u||L|]+1+E[ln
(

1 + 2
√

2V
)

] ≤ |u|E[
√

2V ]+1+E[ln
(

1 + 2
√

2V
)

].

Now consider the case where L >
√

2V . For v ≤ η̂ = L
2V , vL − v2V is non-

decreasing in v. Therefore, for [η, µ] ⊆ [0, 1
5G ] such that µ ≤ η̂, we have:

FT (L) =

∫ 1
5G

− 1
5G

1

|v|
(exp(vL− v2V )− 1)dv

≥(exp(ηL− η2V )− 1)

∫ µ

η

1

v
dv −

∫ 1
5G

µ

1

v
dv

=(exp(ηL− η2V )− 1) ln

(
µ

η

)
+ ln(5Gµ).
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First, suppose that η̂ ≤ 1
5G . Set µ = η̂ and η = η̂ − 1√

2V
and use L ≥ 2

√
V to

obtain

FT (L) ≥ exp

(
L2

4V
− 1

2

)
ln

(
1

1−
√

2V
L

)
+ ln

(
L

V

)

≥ exp

(
L2

4V
− 1

2

)
ln

(
1

1−
√

2V
L

)
− 1

2
ln

(
V

4

)

≥ exp

(
1

2

(
L√
2V
− 1

)2
)
− 1,

where the last inequality follows by using exp
(

1
2(x2 − 1)

)
≥

exp
(

1
2(x− 1)2

)
x,−1 ≥ − L√

2V
, and − ln(1 − x) ≥ x. Write

exp

(
1
2

(
L√
2V
− 1
)2
)
− 1 = g(m(x)), where g(x) = exp(x) − 1 and

m(x) =
(

x√
2V
− 1
)2

. By Hiriart-Urruty (2006, Theorem 2) we have

F ?T (u) ≤ (g(m(u)))? = inf
γ≥0

g?(γ) + γm?(
u

γ
)

= inf
γ≥0

γ ln(γ)− γ +
1

γ
4|u|2V + 2|u|

√
2V .

(3.8.3)

Setting the derivative to 0 we find that γ̂ = exp
(

1
2W (8|u2|V )

)
minimizes (3.8.3),

where W is the Lambert function. Plugging γ̂ in (3.8.3) gives

F ?T (u) ≤ |u|
√

8VW (8|u2|V )− γ̂ + 2|u|
√

2V .

Using W (x) ≤ ln(x+ 1) (Orabona and Pál, 2016, Lemma 17) and dropping the
negative term we obtain

F ?T (u) ≤ |u|
√

8V
(√

ln(8|u|2V + 1) + 1
)
.

Now suppose that η̂ > 1
5G . Using that 5G

2 L ≥ V , choosing µ = 1
5G , and η = 5−

√
5

50G

we obtain

FT (L) ≥(exp(

(
2(
√

5− 1)

25G

)
L)− 1) ln

(
1

1− 1√
5

)

≥(exp(

(
1

11G

)
L)− 1) ln(2).

(3.8.4)

The convex conjugate of the last expression in (3.8.4) is well known and given by

F ?T (u) ≤ |u|11G(ln(|u|11G ln(2))− 1) + ln(2).

Combining the above completes the proof.
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CHAPTER 4
Comparator-Adaptive Convex

Bandits

This chapter is based on: Van der Hoeven, D., Cutkosky, A., and Luo, H. (2020).
Comparator-adaptive convex bandits. To Appear in Advances in Neural Information
Processing Systems 33.1

Abstract

We study bandit convex optimization methods that adapt to the norm of the compar-
ator, a topic that has only been studied before for its full-information counterpart.
Specifically, we develop convex bandit algorithms with regret bounds that are
small whenever the norm of the comparator is small. We first use techniques from
the full-information setting to develop comparator-adaptive algorithms for linear
bandits. Then, we extend the ideas to convex bandits with Lipschitz or smooth
loss functions, using a new single-point gradient estimator and carefully designed
surrogate losses.

1The author of this dissertation performed the following tasks: co-deriving the theoretical results
and co-writing the paper. Part of the work on this Chapter was done while the author of this dissertation
was visiting Haipeng Luo at the University of Southern California.
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4.1 Introduction

In many situations, information is readily available. For example, if a gambler
were to bet on the outcome of a football game, he can observe the outcome of the
game regardless of what bet he made. In other situations, information is scarce.
For example, the gambler could be deciding what to eat for dinner: should I eat a
salad, a pizza, a sandwich, or not at all? These actions will result in different and
unknown outcomes, but the gambler will only see the outcome of the action he
actually takes, with one notable exception: not eating results in a predetermined
outcome of being very hungry.

These two situations are instantiations of two different settings in online convex
optimization: the full information setting and the bandit setting. More formally, both
settings are sequential decision making problems where in each round t = 1, . . . , T ,
a learner has to make a prediction wt ∈ W ⊆ Rd and an adversary provides a
convex loss function `t : W → R. Afterwards, in the full information setting
(Zinkevich, 2003) the learner has access to the loss function `t, while in the bandit
setting (Kleinberg, 2005; Flaxman et al., 2005) the learner only receives the loss
evaluated at the prediction, that is, `t(wt). In both settings the goal is to minimize
the regret with respect to some benchmark point u in hindsight, referred to as the
comparator. More specifically, the regret against u is the difference between the
total loss incurred by the predictions of the learner and that of the comparator:

RT (u) =

T∑
t=1

(`t(wt)− `t(u)) .

When the learner’s strategy is randomized, we measure the performance by the
expected regret E [RT (u)].

Standard algorithms in both the full information setting and the bandit set-
ting assume that the learner’s decision space W is a convex compact set and
achieve sublinear regret against the optimal comparator in this set: u =

arg minu∗∈W
∑T

t=1 `t(u
∗). To tune these standard algorithms optimally, how-

ever, one requires knowledge of the norm of the comparator ‖u‖, which is un-
known. A common work-around is to simply tune the algorithms in terms of
the worst-case norm: maxu∈W ‖u‖, assumed to be 1 without loss of generality.
This results in worst-case bounds that do not take advantage of the case when
‖u‖ is small. For example, when the loss functions are L-Lipschitz, classic On-
line Gradient Descent (Zinkevich, 2003) guarantees RT (u) = O(L

√
T ) in the

full information setting, while the algorithm of (Flaxman et al., 2005) guarantees
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E [RT (u)] = O(d
√
LT 3/4) in the bandit setting, both of which are independent of

‖u‖.

Recently, there has been a series of works in the full information setting that
addresses this problem by developing comparator-adaptive algorithms, whose
regret against u depends on ‖u‖ for all u ∈ W simultaneously (see for example
McMahan and Orabona (2014); Orabona and Pál (2016); Foster et al. (2017);
Cutkosky and Boahen (2017); Kotłowski (2017); Cutkosky and Orabona (2018);
Foster et al. (2018b); Jun and Orabona (2019); Van der Hoeven (2019)). These
bounds are often not worse than the standard worst-case bounds, but could be
much smaller in the case when there exists a comparator with small norm and
reasonably small total loss. Moreover, most of these results also hold for the so-
called unconstrained setting whereW = Rd, that is, both the learner’s predictions
and the comparator can be any point in Rd. For example, Cutkosky and Orabona
(2018) achieve RT (u) = Õ(‖u‖L

√
T ) for all u, in both the constrained and

unconstrained settings, under full information feedback.2

While developing comparator-adaptive algorithms is relatively well-understood at
this point in the full information setting, to the best of our knowledge, this has not
been studied at all for the more challenging bandit setting. In this work, we take
the first attempt in this direction and develop comparator-adaptive algorithms for
several situations, including learning with linear losses, general convex losses, and
convex and smooth losses, for both the constrained and unconstrained settings. Our
results are summarized in Table 4.1. Ignoring other parameters for simplicity, for the
linear case, we achieve Õ(‖u‖

√
T ) regret (Section 4.3.2); for the general convex

case, we achieve Õ(‖u‖T
3
4 ) regret in both the constrained and unconstrained

setting (Sections 4.4.1 and 4.4.2); and for the convex and smooth case, we achieve
Õ
(

max{‖u‖2, ‖u‖}β(dLT )
2
3

)
regret in the unconstrained setting (Section 4.4.1).

In order to achieve our results for the convex case, we require an assumption on the
loss, namely that the value of `t(0) is known for all t.3 While restrictive at first sight,
we believe that there are abundant applications where this assumption holds. As
one instance, in control or reinforcement learning problems, 0 may represent some
nominal action which has a known outcome: not eating results in hunger, or buying
zero inventory will result in zero revenue. Another application is a classification
problem where the features are not revealed to the learner. For example, end-users
of a prediction service may not feel comfortable revealing their information to the

2Throughout the chapter, the notation Õ hides logarithmic dependence on parameters T ,L, and
‖u‖.

3For the linear case, this clearly holds since `t(0) = 0.
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Table 4.1: Summary of main results. Regret is measured with respect to the total loss of
an arbitrary point u ∈ Rd in the unconstrained setting, or an arbitrary point u ∈ W in
the constrained setting with a decision spaceW contained in the unit ball. T is the total
number of rounds and 1/c is radius of the largest ball contained byW . c is bounded by
O(d).

Loss functions (L-Lipschitz) Regret for unconstrained settings Regret for constrained settings

Linear (Section 4.3.2) Õ
(
‖u‖dL

√
T
)

Õ
(
‖u‖cdL

√
T
)

Convex (Section 4.4.1 and 4.4.2) Õ
(
‖u‖L

√
dT

3
4

)
Õ
(
‖u‖cL

√
dT

3
4

)
Convex and β-smooth (Section 4.4.2) Õ

(
max{‖u‖2, ‖u‖}β(dLT )

2
3

)
-

service. Instead, they may be willing to do some local computation and report the
loss of the service’s model. Most classification models (e.g. logistic regression)
have the property that the loss of the 0 parameter is a known constant regardless
of the data, and so this situation would also fit into our framework. Common loss
functions that satisfy this assumption are linear loss, logistic loss, and hinge loss.

Techniques Our algorithms are based on sophisticated extensions of the black-
box reduction introduced by Cutkosky and Orabona (2018), which separately learns
the magnitude and the direction of the prediction. To make the reduction work in the
bandit setting, however, new ideas are required, including designing an appropriate
surrogate loss function and a new one-point gradient estimator with time-varying
parameters. Note that (Cutkosky and Orabona, 2018) also proposes a method to
convert any unconstrained algorithm to a constrained one in the full information
setting, but this does not work in the bandit setting for technical reasons. Instead, we
take a different approach by constraining the magnitude of the prediction directly.

Related work As mentioned, there has been a line of recent works on comparator-
adaptive algorithms for the full information setting. Most of them do not transfer
to the bandit setting, except for the approach of Cutkosky and Orabona (2018)
from which we draw heavy inspiration. To the best of our knowledge, comparator-
adaptive bandit algorithms have not been studied before. Achieving “adaptivity” in
a broader sense is generally hard for problems with bandit feedback; see negative
results such as (Daniely et al., 2015; Lattimore, 2015) as well as recent progress
such as (Chen et al., 2019; Foster et al., 2019).

In terms of worst-case (non-adaptive) regret, the seminal work of (Abernethy et al.,
2008) is the first to achieve O(

√
T ) regret for bandit with linear losses, and (Klein-

berg, 2005; Flaxman et al., 2005) are the first to achieve sublinear regret for general
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convex case. Over the past decade, the latter result has been improved in many
different ways (Agarwal et al., 2010; Saha and Tewari, 2011; Agarwal et al., 2011;
Hazan and Levy, 2014), and regret of order O(

√
T ) under no extra assumptions

was recently achieved (Bubeck et al., 2015; Bubeck and Eldan, 2016; Bubeck et al.,
2017). However, theseO(

√
T ) bounds are achieved by very complicated algorithms

that incur a huge dependence on the dimension d. Our algorithms are more aligned
with the simpler ones with milder dimension-dependence (Abernethy et al., 2008;
Flaxman et al., 2005; Saha and Tewari, 2011) and achieve the same dependence on
T in different cases. How to achieve comparator-adaptive regret of order O(

√
T )

for the general convex case is an important future direction.

4.2 Preliminaries

In this section, we describe our notation, state the definitions we use, and introduce
the bandit convex optimization setting formally. We also describe the black-box
reduction of Cutkosky and Orabona (2018) we will use throughout the chapter.

Notation and definitions The inner product between vectors g ∈ Rd andw ∈ Rd
is denoted by 〈w, g〉. R+ denotes the set of positive numbers. The Fenchel
conjugate F ? of a convex function F is defined as F ?(w) = supg〈w, g〉 − F (g).
‖ · ‖ denotes a norm and ‖g‖? = supw:‖w‖≤1〈w, g〉 denotes the dual norm of g.
The Bregman divergence associated with convex function F between points x and
y is denoted by BF (x‖y) = F (x) − F (y) − 〈∇F (y),x − y〉, where ∇F (x)

denotes the gradient of F evaluated at x. The unit ball equipped with norm ‖ · ‖ is
denoted by B = {w : ‖w‖ ≤ 1}. The unit sphere with norm ‖ · ‖ is denoted by
S = {w : ‖w‖ = 1}. The unit ball and sphere with norm ‖ · ‖2 are denoted by B
and S respectively. x ∼ U(Z) denotes that x follows the uniform distribution over
Z . We say a function f is β-smooth over the setW if the following holds:

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
β

2
‖x− y‖22, ∀x,y ∈ W.

We say a function f is L-Lipschitz over the setW if the following holds:

|f(y)− f(x)| ≤ L‖y − x‖2, ∀x,y ∈ W.

Throughout the chapter we will assume that β, L ≥ 1. Also, by mild abuse of
notation, we use ∂f(x) to indicate an arbitrary subgradient of a convex function f
at x.

All of our algorithms are reductions that use prior algorithms in disparate ways
to obtain our new results. In order for these reductions to work, we need some
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Algorithm 4 Black-Box Reduction with Full Information
1: Input: “Direction” algorithm AZ and “scaling” algorithm AV
2: for t = 1 . . . T do
3: Get zt ∈ Z from AZ
4: Get vt ∈ R from algorithm AV
5: Play wt = vtzt, receive gt
6: Send gt to algorithm AZ as the t-th loss vector
7: Send 〈zt, gt〉 to algorithm AV as the t-th loss value
8: end for

assumptions on the base algorithms. We will encapsulate these assumptions in
interfaces that describe inputs, outputs, and guarantees described by an algorithm
rather than its actual operation (see Interfaces 6 and 7 for examples). We can use
specific algorithms from the literature to implement these interfaces, but our results
depend only on the properties described in the interfaces.

4.2.1 Bandit Convex Optimization

The bandit convex optimization protocol proceeds in rounds t = 1, . . . , T . In each
round t the learner plays wt ∈ W ⊆ Rd. Simultaneously, the environment picks
an L-Lipschitz convex loss function `t :W → R, after which the learner observes
`t(wt). Importantly, the learner only observes the loss function evaluated atwt, not
the function itself. This forces the learner to play random points and estimate the
feedback he wants to use to update wt. Therefore, in the bandit feedback setting,
the goal is to bound the expected regret E [RT (u)], where the expectation is with
respect to randomisation of the learner.

We make a distinction between linear bandits, where `t(w) = 〈w, gt〉, and convex
bandits, where `t can be any L-Lipschitz convex function. Throughout the chapter,
ifW 6= Rd we assume thatW is compact, has a non-empty interior, and contains 0.
Without loss of generality we assume that 1

cB ⊆ W ⊆ B for some c ≥ 1. Some of
our bounds depend on c, which, without loss of generality, is always bounded by d,
due to a reshaping trick discussed in (Flaxman et al., 2005).

4.2.2 Black-Box Reductions with Full Information

Our algorithms are based on a black-box reduction from (Cutkosky and Orabona,
2018) for the full information setting (see Algorithm 4). The reduction works as
follows. In each round t the algorithms playswt = vtzt, where zt ∈ Z for some
domain Z , is the prediction of a constrained algorithm AZ , and vt is the prediction
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of a one-dimensional algorithm AV . The goal of AZ is to learn the directions of
the comparator while the goal of AV is to learn the norm of the comparator. Let gt
be the gradient of `t at wt, which is known to the algorithm in the full information
setting. We feed gt as feedback to AZ and 〈zt, gt〉 as feedback to AV . Although
the original presentation considers only Z = B, we will need to extend the analysis
to more general domains.

As outlined by Cutkosky and Orabona (2018), the regret of Algorithm 4 decomposes
into two parts. The first part of the regret is for learning the norm of u, and is
controlled by Algorithm AV . The second part of the regret is for learning the
direction of u and is controlled by AZ . The proof is provided in Section 4.6 for
completeness.

Lemma 12. Let RVT (‖u‖) =
∑T

t=1(vt − ‖u‖)〈zt, gt〉 be the regret for learning

‖u‖ by Algorithm AV and letRZT
(
u
‖u‖

)
=
∑T

t=1〈zt −
u
‖u‖ , gt〉 be the regret for

learning u
‖u‖ by AZ . Then Algorithm 4 satisfies

RT (u) = RVT (‖u‖) + ‖u‖RZT
(
u

‖u‖

)
. (4.2.1)

Cutkosky and Orabona (2018) provide an algorithm to ensure RVT (‖u‖) ≤ 1 +

‖u‖8L
√
T log(‖u‖T + 1), given that ‖gt‖? ≤ L. This algorithm satisfies the

requirements described later in Interface 6, and will be used throughout this chapter.

4.3 Comparator-Adaptive Linear Bandits

Now, we apply the reduction of section 4.2.2 to develop comparator-adaptive
algorithms for linear bandits. We will see that in the unconstrained case, the
reduction works almost without modification. In the constrained case we will need
to be more careful to enforce the constraints.

4.3.1 Unconstrained Linear Bandits

We begin by discussing the unconstrained linear bandit setting, which turns out
to be the easiest setting we consider. Following Algorithm 4, we will still play
wt = vtzt. However, instead of taking a fixed zt from a full-information algorithm,
we take a random zt from a bandit algorithm. Importantly, we can recover 〈zt, gt〉
exactly since 〈wt, gt〉 1

vt
= 〈zt, gt〉. This means that we have enough information

to send appropriate feedback to bothAV andAZ and apply the argument of Lemma
12. Interestingly, we use a full-information one-dimensional algorithm for AV , and
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Algorithm 5 Black-Box Reduction for Linear Bandits
1: Input: Constrained Linear Bandit Algorithm AZ and unconstrained 1-d Al-

gorithm AV
2: for t = 1 . . . T do
3: Get zt ∈ Z from AZ
4: Get vt ∈ R from AV
5: Play wt = vtzt
6: Receive loss 〈wt, gt〉
7: Compute Lt = 1

vt
〈wt, gt〉 = 〈zt, gt〉.

8: Send Lt to Algorithm AZ as t-th loss value.
9: Send Lt to Algorithm AV as t-th loss value.

10: end for

only need AZ to take bandit input. This is because AV gets full information in the
form of 〈zt, gt〉.

The algorithm AZ for learning the direction, on the other hand, now must be a
bandit algorithm because intuitively we do not immediately get the full direction
information gt from the value of the loss alone. We will need this algorithm to fulfill
the requirements described by Interface 7. An important requirement is that the ex-
pected regret of the direction learning algorithm is bounded by dLτ

√
T log(T + 1),

where τ is a constant. One such algorithm is given by continuous Exponential
Weights on a constrained set (see Van der Hoeven et al. (2018, section 6) for details).

Our unconstrained linear bandit algorithm then is constructed from Algorithm 5
by choosing an algorithm that implements Interface 7 as AZ and Interface 6 with
l = R asAV . Plugging in the guarantees of the individual algorithms and taking the
expectation of (4.2.1), the total expected regret is Õ(1 + ‖u‖dL

√
T ). Compared

to the full information setting we have lost a factor d in the regret bound, which
is unavoidable given the bandit feedback (Dani et al., 2008). The formal result is
below.

Theorem 13. Suppose AZ implements Interface 7 with domain Z = B and AV
implements Interface 6 with l = R+. Then Algorithm 5 satisfies for all u ∈ Rd:

E[R(u)] = 1 + ‖u‖(dLτ
√
T log(T + 1) + L

√
TB(v̂)).

4.3.2 Constrained Linear Bandits

The algorithm in the previous section only works forW = Rd. In this section, we
consider a compact setW ⊂ Rd.
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Interface 6 Scale Learning Interface (see example implementation in Cutkosky
and Orabona (2018))

1: Input: A line segment l ⊆ R
2: for t = 1 . . . T do
3: Play vt ∈ l
4: Receive loss value gt such that |gt| ≤ LV
5: end for
6: Ensure: for all v̂ ∈ l,

∑T
t=1(vt − v̂)gt ≤ 1 + |v̂|LV

√
TB(v̂)

Interface 7 Direction Learning Interface for Linear Bandits (see example imple-
mentation in Van der Hoeven et al. (2018))

1: Input: Domain Z
2: for t = 1 . . . T do
3: Play zt ∈ Z
4: Receive loss value 〈zt, gt〉 such that |〈zt, gt〉| ≤ L
5: end for
6: Ensure: for all u ∈ Z , E

[∑T
t=1〈zt − u, gt〉

]
≤ dLτ

√
T log(T + 1)

In the full-information setting, Cutkosky and Orabona (2018) provide a projection
technique for producing constrained algorithms from unconstrained ones. Unfortu-
nately, this technique does not translate directly to the bandit setting, and we must
be more careful in designing our constrained linear bandit algorithm. The key idea
is to constrain the internal scaling algorithmAV , rather than attempting to constrain
the final predictionswt. Enforcing constraints on the scaling algorithm’s outputs vt
will naturally translate into a constraint on the final predictions wt.

To produce a constrained linear bandit algorithm, we again use Algorithm 5, but
now we instantiateAV implementing Interface 6 with l = [0, 1] rather than l = R+,
and instantiate AZ implementing Interface 7 with Z =W rather than Z = B. As
in the unconstrained setting, this allows us to feed full information feedback to AV .
At the same time, restricting Interface 6 to l = [0, 1] also guarantees that wt ∈ W .
The regret bound of this algorithm is given in Theorem 14. The proof follows from
combining Lemma 12 with the guarantees of Interfaces 6 and 7 and can be found in
Section 4.7.

Theorem 14. SupposeAZ implements 7 with domain Z =W andAV implements
Interface 6 with l = [0, 1]. Then Algorithm 5 satisfies for all u ∈ W ,

E[RT (u)] ≤ 1 + ‖u‖cL
(
dτ
√
T log(T + 1) +

√
TB(c‖u‖)

)
.
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IfW is a unit ball, then c = 1. For other shapes ofW , recall that c is at most d,
which leads to a expected regret bound of Õ

(
1 + ‖u‖d2L

√
T
)

.

4.4 Comparator-Adaptive Convex Bandits

In the general convex bandit problem, it is not clear how to use the single evaluation
point feedback `t(wt) to derive any useful information about `t. Fortunately,
Flaxman et al. (2005) solved this problem by using randomness to extract the
gradients of a smoothed version of `t. To adapt to the norm of the comparator, we
employ the following tweaked version of smoothing used by Flaxman et al. (2005):

`vt (w) = Eb∼U(B)[`t(w + vδb)], (4.4.1)

where v, δ > 0. In contrast to prior work using this framework, our smoothing now
depends on the scaling parameter v. Lemma 13 gives the gradient of `vt (w) and is
a straightforward adaptation of Lemma 2.1 by Flaxman et al. (2005).

Lemma 13. For δ ∈ (0, 1], v > 0:

∇`vt (w) =
d

vδ
Es∼U(S)[`t(w + vδs)s]. (4.4.2)

With this lemma, we can estimate the gradient of the smoothed version of `t by
evaluating `t at a random point, essentially converting the convex problem to a linear
problem, except that one also needs to control the bias introduced by smoothing.
Note that this estimate scales with 1

v , which can be problematic if v is small. To deal
with this issue, we require one extra assumption: the value of `t(0) is known to the
learner. As discussed in section 4.1, this assumption holds for several applications,
including some control or reinforcement learning problems, where 0 represents a
nominal action with a known outcome. Furthermore, certain loss functions satisfy
the second assumption by default, such as linear loss, logistic loss, and hinge loss.
Without loss of generality we assume that `t(0) = 0, as we can always shift `t
without changing the regret.

Our general algorithm template is provided in Algorithm 8. It incorporates the
ideas of Algorithm 5, but adds new smoothing and regularization elements in
order to deal with the present more general situation. More specifically, it again
makes use of subroutine AV , which learns the scaling. The direction is learned by
Online Gradient Descent (Zinkevich, 2003), as was also done by Flaxman et al.
(2005). Given zt and vt, our algorithm plays the point wt = vt(zt + δst) for some

76



4.4. Comparator-Adaptive Convex Bandits

C
H

A
P

T
E

R
4

parameter δ and st drawn uniformly at random from S. By equation (4.4.2), we
have

E
[
d

vtδ
`t(wt)st

]
= ∇`vtt (vtzt). (4.4.3)

This means that we can use ĝt = d
vtδ
`t(wt)st as an approximate gradient estimate,

and we send this ĝt to Online Gradient Descent as the feedback. In other words,
Online Gradient Descent itself is essentially dealing with a full-information problem
with gradient feedback and is required to ensure a regret bound E[

∑T
t=1〈zt −

u, ĝt〉] = Õ(dLδ
√
T ) for all u in some domain Z . For technical reasons, we will

also need to enforce zt ∈ (1 − α)Z for some α ∈ [0, 1]. This restriction will be
necessary in the constrained setting to ensure vt(zt + δst) ∈ W .

Next, to specify the feedback to the scaling learning black-box AV , we define
a surrogate loss function ¯̀

t(v) which contains a linear term v〈zt, ĝt〉 and also a
regularization term (see Algorithm 8 for the exact definition). The feedback to AV
is then ∂ ¯̀

t(vt). Therefore, AV is essentially learning these surrogate losses, also
with full gradient information. The regularization term is added to deal with the
bias introduced by smoothing. This term does not appear in prior work on convex
bandits, and it is one of the key components needed to ensure that the final regret is
in terms of the unknown ‖u‖.

Algorithm 8 should be seen as the analogue of the black-box reduction of Algorithm
4, but for bandit feedback instead of full information. The expected regret guarantee
of Algorithm 8 is shown below, and the proof can be found in Section 4.8.

Lemma 14. Suppose AV implements Interface 6 with l ⊆ R+. Suppose wt ∈ W
for all t, `t(0) = 0, and letLV = maxt ∂ ¯̀

t(vt). Then Algorithm 8 with δ, α ∈ (0, 1]

and η =
√

δ2

4(dL)2T
satisfies for all ‖u‖ ∈ l and r > 0 with ur

‖u‖ ∈ Z ,

E [RT (u)] ≤1 + 2TδL
‖u‖
r

+
‖u‖
r
LV

√
TB

(
‖u‖
r

)
+

2‖u‖dL
rδ

√
T + α‖u‖2TL.

In addition, if `t is also β-smooth for all t, then we have

E [RT (u)] ≤1 + Tβδ2

(
‖u‖
r

)2

+
‖u‖
r
LV

√
TB

(
‖u‖
r

)
+

2‖u‖dL
rδ

√
T + α‖u‖2TL.
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Algorithm 8 Black-Box Comparator-Adaptive Convex Bandit Algorithm

1: Input: Scaling algorithm AV , δ ∈ (0, 1], α ∈ [0, 1], domain Z ⊆ B, and
learning rate η

2: Set z1 = 0
3: for t = 1 . . . T do
4: Get vt from AV
5: Sample st ∼ U(S)
6: Set wt = vt(zt + δst)
7: Play wt

8: Receive `t(wt)
9: Set ĝt = d

vtδ
`t(wt)st

10: if `t is β-smooth then
11: Set ¯̀

t(v) = v〈zt, ĝt〉+ βδ2v2

12: else
13: Set ¯̀

t(v) = v〈zt, ĝt〉+ 2δL|v|
14: end if
15: Send ∂ ¯̀

t(vt) to algorithm AV as the t-th loss value
16: Update zt+1 = arg minz∈(1−α)Z η〈z, ĝt〉+ ‖zt − z‖22
17: end for

This bound has two main points not obviously under our direct control: the assump-
tion that the wt lie inW , and the value of LV , which is a bound on |∂ ¯̀

t(vt)|. In
the remainder of this section we will specify the various settings of Algorithm 8
that guarantee that wt ∈ W and that LV is suitably bounded: two setting for the
unconstrained setting and one for the constrained setting. The α‖u‖TL term due
to zt ∈ (1− α)Z rather than zt ∈ Z , which induces a small amount of bias. The
r in Lemma 14 is to ensure that we satisfy the requirements for Online Gradient
Descent to have a suitable regret bound. For unconstrained convex bandits r = 1.
For constrained convex bandits we will find that 1

r = c (recall that we assume that
1
cB ⊆ W ⊆ B).

4.4.1 Unconstrained Convex Bandits

In this section we instantiate Algorithm 8 and derive regret bounds for either general
convex losses or convex and smooth losses. We start with general convex losses.
SinceW = Rd, we do not need to ensure that zt + δst ∈ W and we can safely set
α = 0. This choice guarantees that zt + δst ∈ 2B and that |∂ ¯̀

t(vt)| ≤ 2dL
δ + 2δL.

Then, Lemma 14 directly leads to Theorem 15 (the proof is deferred to Section
4.8.1).
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Theorem 15. SuppposeAV implements Interface 6 with l = R+ and that `t(0) = 0.

Then Algorithm 8 with δ = min{1,
√
dT−

1
4 }, Z = B, α = 0, and η =

√
δ2

4(dL)2T

satisfies for all u ∈ Rd,

E [RT (u)] = 2 +
(

4‖u‖Ld
√
T + 5‖u‖L

√
dT

3
4

)
(1 +

√
B(‖u‖)).

For unconstrained smooth bandits, we face an extra challenge. To bound the regret
of Algorithm 8, |∂ ¯̀

t(vt)| = |〈zt, ĝt〉+ β2δ2vt| must be bounded. Now in contrast
to the linear or Lipschitz cases, in the smooth case ¯̀

t(vt) is not Lipschitz over
R+. We will address this by artificially constraining vt. Specifically, we ensure
that vt ≤ 1

δ3
, which implies |δ2vt| = O

(
1
δ

)
. This makes the Lipschitz constant

of ¯̀
t to be dominated by the gradient estimate ĝt rather than the regularization.

To see how this affects the regret bound, consider two cases, ‖u‖2 ≤ 1
δ3

and
‖u‖2 > 1

δ3
. If ‖u‖2 ≤ 1

δ3
then we have not hurt anything by constraining vt since

‖u‖2 satisfies the same constraint. If instead ‖u‖2 > 1
δ3

then the consequences for
the regret bound are not immediately clear. However, following a similar technique
in Cutkosky (2019), we use the fact that the regret against 0 is O(1) and the
Lipschitz assumption to show that we have added a penalty of only O(‖u‖2LT ):

E[RT (u)] = E[RT (0)] +

T∑
t=1

E[`t(0)− `t(u)] = O(1 + ‖u‖2LT ).

Since ‖u‖2 > 1
δ3

the penalty for constraining vt is O(‖u‖2LT ) = O(‖u‖22Lδ3T ),
which is O(‖u‖22L

√
T ) if we set δ = O(T−1/6). The formal result can be found

below and its proof can be found in Section 4.8.1.

Theorem 16. Suppose AV implements Interface 6 with l = (0, 1
δ3

], that `t(0) = 0,
and that `t is β-smooth for all t. Then Algorithm 8 with δ = min{1, (dL)1/3T−1/6},
Z = B, α = 0, and η =

√
δ2

4(dL)2T
satisfies for all u ∈ Rd,

E

[
T∑
t=1

`t(wt)− `t(u)

]
≤ 2 + 2

(
‖u‖22dL

√
T + ‖u‖2(dLT )2/3β

)
+ 6‖u‖

(
β
√
B(‖u‖) + 1

)(
(dL+ 1)

√
T + ((dL)2/3 + (dL)−1/3)T 2/3

)
.

4.4.2 Constrained convex bandits

For the constrained setting we will set Z = W and α = δ. This ensures that
vt(zt+ δst) ∈ W and we can apply Lemma 14 to find the regret bound in Theorem
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17 below. Compared to the unconstrained setting, the regret bound now scales with
c, which is due to the reshaping trick discussed in Flaxman et al. (2005).

Theorem 17. Suppose AV implements Interface 6 with l = (0, 1] and that `t(0) =

0. Then Algorithm 8 with Z = W , α = δ = min{1,
√
dT−1/4}, and η =√

δ2

4(dL)2T
satisfies for all u ∈ W ,

E [RT (u)] =2 +
(

3‖u‖Ld
√
T + 4‖u‖L

√
dT

3
4

)
(1 +

√
B(‖u‖))

+ ‖u‖2dLT 3/4.

4.5 Conclusion

In this chapter, we develop the first algorithms that have comparator-adaptive regret
bounds for various bandit convex optimization problems. The regret bounds of our
algorithms scale with ‖u‖, which may yield smaller regret in favourable settings.

For future research, there are a number of interesting open questions. First, our
current results do not encompass improved rates for smooth losses on constrained
domains. At first blush, one might feel this is relatively straightforward via methods
based on self-concordance (Saha and Tewari, 2011), but it turns out that while such
techniques provide good direction-learning algorithms, they may cause the gradients
provided to the scaling algorithm to blow-up. Secondly, there is an important class
of loss functions for which we did not obtain norm adaptive regret bounds: smooth
and strongly convex losses. It is known that in this case an expected regret bound of
O(d
√
T ) can be efficiently achieved (Hazan and Levy, 2014). However, to achieve

this regret bound the algorithm of Hazan and Levy (2014) uses a clever exploration
scheme, which unfortunately leads to sub-optimal regret bounds for our algorithms.

4.6 Details from section 4.2

Proof of Lemma 12. By definition we have

RT (u) =

T∑
t=1

〈wt − u, gt〉 =

T∑
t=1

〈zt, gt〉(vt − ‖u‖) + ‖u‖
T∑
t=1

〈zt −
u

‖u‖
, gt〉

=RVT (‖u‖) + ‖u‖RZT
(
u

‖u‖

)
.
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4.7 Details from section 4.3

Proof of Theorem 14. For any fixed u ∈ W , let r = max r′u
‖u‖∈W

r′. Note that by

definition we have ‖u‖r ∈ [0, 1] and ru
‖u‖ ∈ W . Therefore, similar to the proof of

Lemma 12, we decompose the regret against u as:

RT (u) =
T∑
t=1

〈wt − u, gt〉

=
T∑
t=1

〈zt, gt〉
(
vt −

‖u‖
r

)
+
‖u‖
r

T∑
t=1

〈zt −
ru

‖u‖
, gt〉,

which, by the guarantees of AV and AZ ,4 is bounded in expectation by

‖u‖
r
L

√
TB

(
‖u‖
r

)
+
‖u‖
r
dL
√
T log(T + 1).

Finally noticing 1
c ≤ r by the definition of c finishes the proof.

4.8 Details from section 4.4

Proof of Lemma 14. Denote by w̃t = vtzt. By Jensen’s inequality we have

T∑
t=1

E [`t(wt)− `t(u)] =
T∑
t=1

E [`vtt (wt)− `t(u)] +
T∑
t=1

E [`t(wt)− `vtt (wt)]

≤
T∑
t=1

E [`vtt (wt)− `t(u)] .

(4.8.1)

We now continue under the assumption that `t is L-Lipschitz. After completing the
proof of the first equation of Lemma 14 we use the β-smoothness assumption to
prove the second equation of Lemma 14.

4Note that the condition |〈zt, gt〉| ≤ 1 in Algorithm 7 indeed holds in this case sinceZ =W ⊆ B
and ‖gt‖2 ≤ L by the Lipschitzness condition.
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Using the L-Lipschitz assumption we proceed:

T∑
t=1

E [`vtt (wt)− `t(u)]

≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] +

T∑
t=1

E [`vtt (u)− `t(u)]

≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] + E[L|vt|‖δst‖2]

≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] + E[δL|vt|]

=
T∑
t=1

E [`vtt (w̃t)− `vtt (u)] + E[δL|vt|]

+
T∑
t=1

E [`vtt (wt)− `vtt (w̃t)]

≤
T∑
t=1

E [`vtt (w̃t)− `vtt (u)] + 2E[δL|vt|].

Now, by using the L-Lipschitz assumption once more we find that

T∑
t=1

E[`vtt ((1− α)u)− `vtt (u)] ≤ α‖u‖2TL (4.8.2)
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By using equation (4.8.2), the convexity of `vtt , and Lemma 13 we continue with:

T∑
t=1

E [`t(wt)− `t(u)]

≤
T∑
t=1

E [〈w̃t − (1− α)u, ĝt〉] + 2E[δL|vt|] + α‖u‖2TL

=
T∑
t=1

E
[(
vt −

‖u‖
r

)
〈zt, ĝt〉

]
+ E

[
‖u‖
r
〈zt − ũ, ĝt〉

]

+
T∑
t=1

2E[δL|vt|] + α‖u‖2TL

=
T∑
t=1

E
[

¯̀
t(vt)− ¯̀

t

(
‖u‖
r

)]
+

T∑
t=1

‖u‖
r

E [〈zt − ũ, ĝt〉]

+ 2TδL
‖u‖
r

+ α‖u‖2TL

where ¯̀
t(v) = v〈zt, ĝt〉 + 2δL|v| as defined in Algorithm 8, ũ = r

‖u‖(1 − α)u,
and r > 0 is such that ur

‖u‖ ∈ Z .

Finally, by using the convexity of ¯̀
t, plugging in the guarantee of AV , and using

Theorem 18 we conclude the proof of the first equation of Lemma 14:

T∑
t=1

E [`t(wt)− `t(u)]

≤ 2TδL
‖u‖
r

+ E

[
T∑
t=1

(
vt −

‖u‖
r

)
∂ ¯̀
t(vt)

]

+
‖u‖
r

E

[
T∑
t=1

〈zt − ũ, ĝt〉

]
+ α‖u‖2TL

≤ 1 + 2TδL
‖u‖
r

+
‖u‖
r
LV

√
TB

(
‖u‖
r

)
+

2‖u‖dL
rδ

√
T + α‖u‖2TL.

Next, we continue from equation (4.8.1) under the smoothness condition. Using
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the definition of smoothness we find
T∑
t=1

E [`vtt (wt)− `t(u)]

≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] +
T∑
t=1

E [`vtt (u)− `t(u)]

≤
T∑
t=1

E [`vtt (wt)− `vtt (u)] + E
[

1
2β|vt|

2‖δst‖22
]

=
T∑
t=1

E [`vtt (wt)− `vtt (u)] + E
[

1
2δ

2|vt|2β
]

=
T∑
t=1

E [`vtt (w̃t)− `vtt (u)] + E
[

1
2δ

2|vt|2β
]

+
T∑
t=1

E [`vtt (wt)− `vtt (w̃t)]

≤
T∑
t=1

E [`vtt (w̃t)− `vtt (u)] + E
[
βδ2|vt|2

]
.

Using equation (4.8.2), the convexity of `vtt , and Lemma 13 we continue with:

T∑
t=1

E [`t(wt)− `t(u)]

≤
T∑
t=1

E [〈w̃t − (1− α)u, ĝt〉] + E
[
βδ2|vt|2

]
+ α‖u‖2TL

=

T∑
t=1

E
[(
vt −

‖u‖
r

)
〈zt, ĝt〉

]
+ E

[
βδ2|vt|2

]
+

T∑
t=1

‖u‖
r

E [〈zt − ũ, ĝt〉] + α‖u‖2TL

= Tβδ2

(
‖u‖
r

)2

+
T∑
t=1

E
[

¯̀
t(vt)− ¯̀

t

(
‖u‖
r

)]

+

T∑
t=1

‖u‖
r

E [〈zt − ũ, ĝt〉] + α‖u‖2TL,

where ¯̀
t(v) = v〈zt, ĝt〉 + βδ2v2 as defined in Algorithm 8. Finally, by using
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the convexity of ¯̀
t, plugging in the guarantee of AV , and using Theorem 18 we

conclude the proof:

T∑
t=1

E [`t(wt)− `t(u)]

≤ Tβδ2

(
‖u‖
r

)2

+ E

[
T∑
t=1

(
vt −

‖u‖
r

)
∂ ¯̀
t(vt)

]

+
‖u‖
r

E

[
T∑
t=1

〈zt − ũ, ĝt〉

]
+ α‖u‖2TL

≤ 1 + Tβδ2

(
‖u‖
r

)2

+
‖u‖
r
LV

√
TB

(
‖u‖
r

)
+

2‖u‖dL
rδ

√
T + α‖u‖2TL.

Theorem 18. Suppose that `t(0) = 0, that `t is L-Lipschitz for all t, and that
Z ⊆ B. For u ∈ (1− α)Z , Online Gradient Descent on (1− α)Z with learning

rate η =
√

δ2

(dL)24T
satisfies

E

[
T∑
t=1

〈zt − u, ĝt〉

]
≤2

dL

δ

√
T .

Proof. The proof essentially follows from the work of Zinkevich (2003); Flaxman
et al. (2005) and using the assumptions that `t(0) = 0 and that `t is L-Lipschitz.
We start by bounding the norm of the gradient estimate:

‖ĝt‖2 =
d

vtδ
|`t(wt)|‖st‖2

=
d

vtδ
|`t(vt(zt + δst))− `t(0)|

≤dL‖zt + δst‖2
δ

≤ dL(1− α+ δ)

δ

(4.8.3)

By using equation (4.8.3) and the regret bound of Online Gradient Descent
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(Zinkevich, 2003) we find that

T∑
t=1

〈zt, ĝt〉 − min
z∈(1−α)Z

T∑
t=1

〈z, ĝt〉 ≤
(1− α)

2η
+
η

2

T∑
t=1

‖ĝt‖22

≤(1− α)

2η
+
η

2

(
dL(1− α+ δ)

δ

)2

T

≤ 1

2η
+ 2η

(
dL

δ

)2

T

Plugging in η =
√

δ2

(dL)24T
completes the proof.

4.8.1 Details of section 4.4.1

Proof of Theorem 15. First, since `t(0) = 0, `t is L-Lipschitz, and zt ∈ (1 −
α)Z = (1− α)B we have that

〈zt, ĝt〉 ≤ ‖zt‖2‖ĝt‖2 ≤ (1− α)
dL(1− α+ δ)

δ
≤ 2dL

δ
, (4.8.4)

where the first inequality is the Cauchy-Schwarz inequality and the second is due
to equation (4.8.3). Since |∂ ¯̀

t(vt)| ≤ |〈zt, ĝt〉| + 2δL ≤ 4dL
δ = LV we can use

Lemma 14 to find

E [RT (u)] ≤1 + 2TδL
‖u‖
r

+
‖u‖
r

4dL

δ

√
TB

(
‖u‖
r

)
+

2‖u‖dL
rδ

√
T + α‖u‖2TL.

Plugging in α = 0 and δ = min{1,
√
dT−

1
4 } completes the proof.

Proof of Theorem 16. By equation (4.8.4) |〈zt, ĝt〉| ≤ 2dL
δ . Since vt ≤ 1

δ3
we have

that

|∂ ¯̀
t(vt)| ≤

2dL

δ
+ 2|vt|βδ2 ≤ 2

dL+ β

δ
≤ 2β(dL+ 1)

δ

If ‖u‖2 ≤ 1
δ3

applying Lemma 14 with α = 0 gives us

T∑
t=1

E [`t(wt)− `t(u)]

≤ 1 + Tβδ2‖u‖2 + 2‖u‖(dL+ 1)β

δ

√
TB(‖u‖) +

2‖u‖dL
δ

√
T .

(4.8.5)
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If ‖u‖2 > 1
δ3

then using the Lipschitz assumption on `t and equation (4.8.5) with
u = 0 gives us

T∑
t=1

E [`t(wt)− `t(u)] =
T∑
t=1

E [`t(wt)− `t(0) + `t(0)− `t(u)]

≤ 1 + ‖u‖2LT
≤ 1 + ‖u‖22δ3LT,

(4.8.6)

where we used that ‖u‖2 ≥ 1
δ3

. Adding equations (4.8.5) and (4.8.6) gives

T∑
t=1

E [`t(wt)− `t(u)]

≤ 2 + ‖u‖22δ3LT + Tβδ2‖u‖2 + 2‖u‖(dL+ 1)β

δ

√
TB(‖u‖) +

2‖u‖dL
δ

√
T

Setting δ = min{1, (dL)1/3T−1/6} gives us

T∑
t=1

E [`t(wt)− `t(u)]

≤ 2 + 2
(
‖u‖22dL

√
T + ‖u‖2(dLT )2/3β

)
+ 6‖u‖

(
β
√
B(‖u‖) + 1

)(
(dL+ 1)

√
T + ((dL)2/3 + (dL)−1/3)T 2/3

)

4.8.2 Details of section 4.4.2

Proof of Theorem 17. First, to see that zt + δst ∈ W recall that by assumption
W ⊆ B. Since α = δ we have that zt+δst ∈ (1−α)W+δS ⊆ (1−δ)W+δW =

W . For any fixed u ∈ W , let r = max r′u
‖u‖∈W

r′. Note that by definition we

have ‖u‖r ∈ [0, 1] and ru
‖u‖ ∈ W . By using equation (4.8.4) we can see that

|∂ ¯̀
t(vt)| ≤ dL

δ + 2δL. By definition, 1
r ≤ c. This implies that the regret of AV is

Õ
(

1 + ‖u‖
r

dL
δ

√
T
)

. Applying Lemma 14 with the parameters above we find

T∑
t=1

E [`t(wt)− `t(u)]

= 1 + 2TδL
‖u‖
r

+
3dL‖u‖

r

√
TB

(
‖u‖
r

)
+

2‖u‖dL
rδ

√
T + α‖u‖2TL.
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Finally, setting δ = min{1,
√
dT−1/4} completes the proof:

T∑
t=1

E [`t(wt)− `t(u)] ≤2 +
(

3‖u‖Ld
√
T + 4‖u‖L

√
dT

3
4

)
(1 +

√
B(‖u‖))

+ ‖u‖2dLT 3/4.
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CHAPTER 5
MetaGrad: Universal Adaptation
using Multiple Learning Rates in

Online Learning

This chapter is based on: Van Erven, T., Koolen, W. M., and Van der Hoeven, D.
(2020a). Metagrad: Universal adaptation using multiple learning rates in online
learning. Manuscript in preparation.1

Abstract

In online convex optimization it is well known that certain subclasses of objective
functions are much easier than arbitrary convex functions. We are interested in
designing universally adaptive methods that can automatically get fast rates in
as many such subclasses as possible, without any manual tuning. We provide
a new universally adaptive method, MetaGrad, that is robust to general convex
losses but adapts to a broad class of functions, including exp-concave and strongly
convex functions, but also various types of stochastic and non-stochastic functions
without any curvature. For instance, MetaGrad can achieve logarithmic regret on
the unregularized hinge loss over the unit ball, even though the hinge loss has no
curvature, if the data come from a favorable probability distribution. We prove this
by drawing a connection to the Bernstein condition, which is known to imply fast
rates in offline statistical learning. MetaGrad further adapts automatically to the
size of the gradients. Its main feature is that it simultaneously considers multiple
learning rates. Unlike previous methods with provable regret guarantees, however,
its learning rates are not monotonically decreasing over time and are not tuned based
on a theoretically derived bound on the regret. Instead, they are weighted directly
proportional to their empirical performance on the data using a tilted exponential

1The author of this dissertation performed the following tasks: performing the experiments,
co-deriving part of the theoretical results, and co-writing the paper
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weights meta-algorithm. We provide three versions of MetaGrad. The full matrix
version maintains a full covariance matrix and is applicable to learning tasks for
which we can afford update time quadratic in the dimension. The other two versions
provide speed-ups for high-dimensional learning tasks with an update time that is
linear in the dimension: one is based on sketching, the other on running a separate
copy of the basic algorithm per coordinate. We compare all versions of MetaGrad on
benchmark online classification and regression tasks, showing that they consistently
outperform both online gradient descent and AdaGrad.
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5.1 Introduction

Methods for online convex optimization (OCO) (Shalev-Shwartz, 2011; Hazan et al.,
2016) make it possible to optimize parameters sequentially, by processing convex
functions in a streaming fashion. This is important in time series prediction where
the data are inherently online; but it may also be convenient to process offline data
sets sequentially, for instance if the data do not all fit into memory at the same time
or if parameters need to be updated quickly when extra data become available.

The difficulty of an OCO task depends on the convex functions f1, f2, . . . , fT that
need to be optimized. The argument of these functions is a d-dimensional parameter
vectorw from a convex domainW . Although this is abstracted away in the general
framework, each function ft usually measures the loss of the parameters on an
underlying example (xt, yt) in a machine learning task. For example, in classifica-
tion ft might be the hinge loss ft(w) = max{0, 1− yt〈w,xt〉} or the logistic loss
ft(w) = log

(
1 + e−yt〈w,xt〉

)
, with yt ∈ {−1,+1}. Thus the difficulty depends

both on the choice of loss and on the observed data.

There are different methods for OCO, depending on assumptions that can be made
about the functions. The simplest and most commonly used strategy is online
gradient descent (GD). GD updates parameterswt+1 = wt− ηt∇ft(wt) by taking
a step in the direction of the negative gradient, where the step size is determined
by a parameter ηt called the learning rate. The goal is to minimize the regret
over T rounds, which measures the difference in cumulative loss between the
online iterates wt and the best offline parameters u. For learning rates ηt ∝ 1/

√
t,

GD guarantees that the regret for general convex functions is bounded by O(
√
T )

(Zinkevich, 2003). Alternatively, if it is known beforehand that the functions are
of an easier type, then better regret rates are sometimes possible. For instance, if
the functions are strongly convex, then logarithmic regret O(log T ) can be achieved
by GD with much smaller learning rates ηt ∝ 1/t (Hazan et al., 2007), and, if they
are exp-concave, then logarithmic regret O(d log T ) can be achieved by the Online
Newton Step (ONS) algorithm (Hazan et al., 2007).

This partitions OCO tasks into categories, leaving it to the user to choose the
appropriate algorithm for their setting. Such a strict partition, apart from being
a burden on the user, depends on an extensive cataloguing of all types of easier
functions that might occur in practice. (See Section 5.3 for several ways in which
the existing list of easy functions can be extended.) It also immediately raises the
question of whether there are cases in between logarithmic and square-root regret
(there are, see Theorem 21 in Section 5.3), and which algorithm to use then. And,
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third, it presents the problem that the appropriate algorithm might depend on (the
distribution of) the data (again see Section 5.3), which makes it entirely impossible
to select the right algorithm beforehand.

These issues motivate the development of adaptive methods, which are no worse
than O(

√
T ) for general convex functions, but also automatically take advantage

of easier functions whenever possible. An important step in this direction are the
adaptive GD algorithm of Bartlett et al. (2007) and its proximal improvement by
Do et al. (2009), which are able to interpolate between strongly convex and general
convex functions if they are provided with a data-dependent strong convexity para-
meter in each round, and significantly outperform the main non-adaptive method
(i.e. Pegasos, (Shalev-Shwartz et al., 2011)) in the experiments of Do et al.. Here
we consider a significantly richer class of functions, which includes exp-concave
functions, strongly convex functions, general convex functions that do not change
between rounds (even if they have no curvature), and stochastic functions whose
gradients satisfy the so-called Bernstein condition, which is well-known to enable
fast rates in offline statistical learning (Bartlett and Mendelson, 2006; Van Erven
et al., 2015; Koolen et al., 2016). The latter group can again include functions
without curvature, like the unregularized hinge loss. All these cases are covered
simultaneously by a new adaptive method we call MetaGrad, for multiple eta
gradient algorithm. Theorem 23 below implies the following:

Theorem 19. Suppose the diameter of the domain W and the `2-norms of the
gradients gt = ∇ft(wt) are both bounded by constants, and define V uT =∑T

t=1 ((u−wt)
ᵀgt)

2. Then MetaGrad’s regret is simultaneously bounded by
O(
√
T log log T ), and by

T∑
t=1

f(wt)−
T∑
t=1

ft(u) ≤
T∑
t=1

(wt−u)ᵀgt ≤ O

(√
V uT d ln(T/d) + d ln(T/d)

)
(5.1.1)

for any u ∈ W .

Theorem 19 bounds the regret in terms of a measure of variance V uT that depends
on the distance of the algorithm’s choices wt to the optimum u, and which, in
favorable cases, may be significantly smaller than T . Intuitively, this happens, for
instance, when there is a stable optimum u that the algorithm’s choiceswt converge
to. Formal consequences are given in Section 5.3, which shows that this bound
implies faster than O(

√
T ) regret rates, often logarithmic in T , for all functions

in the rich class mentioned above. In all cases the dependence on T in the rates
matches what we would expect based on related work in the literature, and in most
cases the dependence on the dimension d is also what we would expect. Only for
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strongly convex functions is there an extra factor d. It seems that this is a real
limitation of the method as presented here. In Section 5.9 we discuss a recent
extension of MetaGrad by Zhang et al. (2019) that removes this limitation.

The main difficulty in achieving the regret guarantee from Theorem 19 is tuning a
learning rate parameter η. In theory, η should be roughly proportional to 1/

√
V uT ,

but this is not possible using any existing techniques, because the optimum u is
unknown in advance, and tuning in terms of a uniform upper bound maxu V

u
T ruins

all desired benefits. MetaGrad therefore runs multiple supporting expert algorithms,
each with a different learning rate η, and combines them with a novel controller
algorithm that learns the empirically best learning rate for the OCO task in hand.
Crucially, the overhead for learning the best expert is not of the usual order O(

√
T ),

which would ruin all desired benefits, but only costs a negligible O(log log T ).

The experts are instances of exponential weights on the continuous parameters u
with a suitable surrogate loss function, which in particular causes the exponential
weights distributions to be multivariate Gaussians. The resulting updates are closely
related to the ONS algorithm on the original losses, where each expert receives the
controller’s gradients instead of its own. It is shown that dlog2 T e experts suffice,
which is at most 30 as long as T ≤ 109, and therefore seems computationally
acceptable. If not, then the number of experts can be further reduced at the cost of
slightly worse constants in the bound.

An important practical consideration for OCO algorithms is whether they can adapt
to the Lipschitz-constant of the losses ft, i.e. the maximum norm of the gradients.
For instance, this is an important feature of AdaGrad (Duchi et al., 2011; McMahan
and Streeter, 2010). The MetaGrad algorithm is also adaptive in this way. Our
approach is a refinement of the techniques of Mhammedi et al. (2019): whereas
their procedure may occasionally restart the whole MetaGrad algorithm, we only
restart the controller but not the experts. Wherever possible, we further measure
the size of the gradients by the (semi-)norm maxw∈W |wᵀgt| instead of the larger
maxw,v∈W ‖w − v‖2‖gt‖2. The difference is crucial in Section 5.5.1, where we
consider a domain for which the diameter is infinite, but our norms are under
control.

The version of MetaGrad described so far maintains a full covariance matrix of size
d× d, where d is the parameter dimension. This requires at leastO(d2) computation
steps per round to update, which is prohibitive for large d. We therefore also present
two extensions: the first applies the matrix sketching approach of Luo et al. (2017)
to approximate the matrix by a rank k sketch, and requires O(kd) update time on
average per round. Our second extension was inspired by the diagonal version of
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AdaGrad (Duchi et al., 2011; McMahan and Streeter, 2010) and runs a separate
copy of full MetaGrad per coordinate, which takes O(d) computation per round,
just like vanilla GD and AdaGrad. While the full matrix version of MetaGrad and
its sketching approximation naturally favor parameters u with small `2-norm, the
coordinatewise extension is appropriate for the `∞-norm.

Related Work If we disregard computational efficiency and omit Lipschitz-
adaptivity, then the result of Theorem 19 can be achieved by finely discretizing the
domainW and running the Squint algorithm for prediction with experts with each
discretization point as an expert (Koolen and Van Erven, 2015). MetaGrad may
therefore also be seen as a computationally efficient extension of Squint to the OCO
setting.

As already mentioned, Zhang et al. (2019) extend MetaGrad to adapt to strongly
convex functions. They further provide an extension for the case that the optimal
parameters u vary over time, as measured in terms of the adaptive regret. See also
the closely related extension of Squint for the adaptive regret by Neuteboom (2020).

Our focus in this work is on adapting to sequences of functions ft that are easier
than general convex functions, but we require an estimate D̂ of the `2-norm of the
optimum u as a hyperparameter. In contrast, a different line of work designs meth-
ods that can adapt to the norm of u over all of Rd, but without providing adaptivity
to the functions ft (Mcmahan and Streeter, 2012; Orabona, 2014; Cutkosky and
Orabona, 2018). It was thought for some time that these two directions could not be
reconciled, because the impossibility result of Cutkosky and Boahen (2017) blocks
simultaneous adaptivity to both the size of the gradients of the functions ft and the
norm of u. The perspective has recently shifted, however, following discoveries
of ways to partially circumvent this lower bound (Kempka et al., 2019; Cutkosky,
2019; Mhammedi and Koolen, 2020).

Another notion of adaptivity is explored in a series of work obtaining tighter bounds
for linear functions ft that vary little between rounds, as measured either by their
deviation from the mean function or by successive differences (Hazan and Kale,
2010; Chiang et al., 2012; Steinhardt and Liang, 2014). Such bounds imply super
fast rates for optimizing a fixed linear function, but reduce to slow O(

√
T ) rates

in the other cases of easy functions that we consider. Finally, the way MetaGrad’s
experts maintain a Gaussian distribution on parameters u is similar in spirit to
AROW and related confidence weighted methods, as analyzed by (Crammer et al.,
2009) in the mistake bound model.
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Outline We start with the main definitions in the next section. Then Section 5.3
contains an extensive set of examples where Theorem 19 leads to fast rates, Sec-
tion 5.4 presents the Full Matrix version of the MetaGrad algorithm, and Section 5.5
describes the faster sketching and coordinatewise extensions. Section 5.6 provides
the analysis leading to Theorem 23 for the Full Matrix version of MetaGrad, which
is a more detailed statement of Theorem 19 with several quantities replaced by
data-dependent versions and with exact constants. Section 5.7 extends this analysis
to the two other versions of MetaGrad. Then, in Section 5.8, we compare all ver-
sions of MetaGrad to GD and to AdaGrad in experiments with several benchmark
classification and regression data sets. We conclude with possible further extensions
of MetaGrad in Section 5.9.

5.2 Setup

We consider algorithms for OCO, which operate according to the protocol displayed
in Protocol 9. In each round, the environment reveals a closed convex domainWt,
which we assume contains the origin 0 (if not, it needs to be translated). In the
introduction, we assumed thatWt =W was fixed beforehand, but for the remainder
of the paper we allow it to vary between rounds, which is needed in the context
of the sketching version of MetaGrad (Section 5.5.1). Let wt ∈ Wt be the iterate
produced by the algorithm in round t, let ft :Wt → R be the convex loss function
produced by the environment and let gt = ∇ft(wt) be the (sub)gradient, which is
the feedback given to the algorithm.2 The regret over T rounds RuT , its linearization
R̃uT and our measure of variance V uT are defined as

RuT =

T∑
t=1

(ft(wt)− ft(u)) , R̃uT =

T∑
t=1

(wt − u)ᵀgt,

V uT =

T∑
t=1

((u−wt)
ᵀgt)

2 with respect to any u ∈
T⋂
t=1

Wt.

By convexity of ft, we always have ft(wt)− ft(u) ≤ (wt−u)ᵀgt, which implies
the first inequality in Theorem 19: RuT ≤ R̃uT . Finally, wherever possible we
measure the size of the gradient gt in the intrinsic (semi-)norm for the domainWt:

‖g‖t = max
w∈Wt

|wᵀg|.

This is a norm in the typical case that Wt has full dimension d, and it is still a
semi-norm in general. We note that the intrinsic norm is smaller than the usual

2If ft is not differentiable at wt, any choice of subgradient gt ∈ ∂ft(wt) is allowed.
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Algorithm 9 Online Convex Optimization from First-order Information
1: for t = 1, 2, . . . do
2: Environment reveals convex domainWt ⊆ Rd containing the origin 0
3: Learner plays wt ∈ Wt

4: Environment chooses a convex loss function ft :Wt → R
5: Learner incurs loss ft(wt) and observes (sub)gradient gt = ∇ft(wt)
6: end for

upper bounds based on Hölder’s inequality: ‖g‖t ≤ ‖g‖maxw∈Wt ‖w‖∗ for any
dual norms ‖ · ‖ and ‖ · ‖∗. The difference becomes essential in Section 5.5.1, where
we consider a domainWt that has an infinite radius maxw∈Wt ‖w‖∗ in any norm
‖ · ‖∗, but for which ‖gt‖t is still bounded. MetaGrad depends on (upper bounds
on) the sizes of the gradients per round bt, as well as their running maximum Bt:

bt ≥ ‖gt‖t, Bt = max
s≤t

bs, (5.2.1)

with the convention that B0 = 0. We would normally take the best upper bound
bt = ‖gt‖t, except if this is difficult to compute. In such cases, we may for example
let bt = ‖gt‖maxu∈Wt ‖u‖∗.

Further Notation We denote by dze+ = max{dze, 1} the smallest integer that
is at least z and at least 1.

5.3 Fast Rates Examples

In this section, we motivate our interest in the adaptive bound (5.1.1) by giving a
series of examples in which it provides fast rates. Although MetaGrad is designed
to handle time varying domains, for simplicity we will assume that the domain is
fixed in this section. In this section we will also assume that the following standard
boundedness assumptions hold for all u,w ∈ W and all t: ‖u −w‖2 ≤ D′ and
‖gt‖2 ≤ G′. The fast rates are all derived from two general sufficient conditions:
one based on the directional derivative of the functions ft and one for stochastic
gradients that satisfy the Bernstein condition, which is the standard condition for fast
rates in off-line statistical learning. Simple simulations that illustrate the conditions
are provided in Section 5.10.1 and proofs are also postponed to Section 5.10.

Directional Derivative Condition In order to control the regret with respect to
some point u, the first condition requires a quadratic lower bound on the curvature
of the functions ft in the direction of u:
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Theorem 20. Suppose, for a given u ∈ W , there exist constants a, b > 0 such that
the functions ft all satisfy

ft(u) ≥ ft(w)+a(u−w)ᵀ∇ft(w)+b ((u−w)ᵀ∇ft(w))2 for all w ∈ W .
(5.3.1)

Then any method with regret bound (5.1.1) incurs logarithmic regret, RuT =

O(d lnT ), with respect to u.

The case a = 1 of this condition was introduced by (Hazan et al., 2007), who show
that it is satisfied for all u ∈ W by exp-concave and strongly convex functions.
These are both requirements on the curvature of ft that are stronger than mere
convexity: α-exp-concavity of f for α > 0 means that e−αf is concave or, equival-
ently, that ∇2f � α∇f∇fᵀ; α-strong convexity means that ∇2f � αI . We see
that α-strong convexity implies (α/‖∇f‖22)-exp-concavity. The rate O(d log T ) is
also what we would expect by summing the asymptotic offline rate obtained by
ridge regression on the squared loss (Srebro et al., 2010, Section 5.2), which is
exp-concave. Our extension to a > 1 is technically a minor step, but it makes the
condition much more liberal, because it may then also be satisfied by functions
that do not have any curvature. For example, suppose that ft = f is a fixed convex
function that does not change with t. Then, when u∗ = arg minu f(u) is the
offline minimizer, we have (u∗ −w)ᵀ∇f(w) ∈ [−G′D′, 0], so that

f(u∗)− f(w) ≥(u∗ −w)ᵀ∇f(w)

≥2(u∗ −w)ᵀ∇f(w) +
1

D′G′
((u∗ −w)ᵀ∇f(w))2 ,

where the first inequality uses only convexity of f . Thus condition (5.3.1) is
satisfied by any fixed convex function, even if it does not have any curvature at all,
with a = 2 and b = 1/(G′D′).

Bernstein Stochastic Gradients The possibility of getting fast rates even without
any curvature is intriguing, because it goes beyond the usual strong convexity or
exp-concavity conditions. In the online setting, the case of fixed functions ft = f

seems rather restricted, however, and may in fact be handled by offline optimization
methods. We therefore seek to loosen this requirement by replacing it by a stochastic
condition on the distribution of the functions ft. The relation between variance
bounds like Theorem 19 and fast rates in the stochastic setting is studied in depth
by (Koolen et al., 2016), who obtain fast rate results both in expectation and in
probability. Here we provide a direct proof only for the expected regret, which
allows a simplified analysis.
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Suppose the functions ft are independent and identically distributed (i.i.d.), with
common distribution P. Then we say that the gradients satisfy the (B, β)-Bernstein
condition with respect to the stochastic optimum u∗ = arg minu∈W Ef∼P[f(u)] if
for all w ∈ W .

(w−u∗)ᵀ E
f

[∇f(w)∇f(w)ᵀ] (w−u∗) ≤ B
(
(w−u∗)ᵀ E

f
[∇f(w)]

)β
. (5.3.2)

This is an instance of the well-known Bernstein condition from offline statistical
learning (Bartlett and Mendelson, 2006; Van Erven et al., 2015), applied to the
linearized excess loss (w − u∗)ᵀ∇f(w). As shown in Section 5.14, imposing the
condition for the linearized excess loss is a weaker requirement than imposing it
for the original excess loss f(w)− f(u∗).

Theorem 21. If the gradients satisfy the (B, β)-Bernstein condition for B > 0 and
β ∈ (0, 1] with respect to u∗ = arg minu∈W Ef∼P[f(u)], then any method with
regret bound (5.1.1) incurs expected regret

E[Ru
∗

T ] = O
(

(Bd lnT )1/(2−β) T (1−β)/(2−β) + d lnT
)
.

For β = 1, the rate becomes O(d lnT ), just like for fixed functions, and for smaller
β it is in between logarithmic and O(

√
dT ). For instance, the hinge loss on the

unit ball with i.i.d. data satisfies the Bernstein condition with β = 1, which implies
an O(d log T ) rate. (See Section 5.10.4.) It is common to add `2-regularization to
the hinge loss to make it strongly convex, but this example shows that that is not
necessary to get logarithmic regret.

5.4 Full Matrix Version of the MetaGrad Algorithm

In this section, we explain the full matrix version of the MetaGrad algorithm:
METAGRADFULL. Computationally more efficient extensions follow in Section 5.5.
METAGRADFULL will be defined by means of the following surrogate loss `ηt (u):

`ηt (u) := η(u−wt)
ᵀgt +

(
η(u−wt)

ᵀgt
)2
. (5.4.1)

This surrogate loss consists of a linear and a quadratic part, whose relative import-
ance is controlled by a learning rate parameter η > 0. The sum of the quadratic parts
is what appears in the regret bound of Theorem 19. They may be viewed as causing
a “time-varying regularizer” (Orabona et al., 2015b) or “temporal adaptation of the
proximal function” (Duchi et al., 2011).
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METAGRADFULL is a two-level hierarchical construction: at the top is a main
controller, shown in Algorithm 10, which manages multiple η-experts, shown in
Algorithm 11. Each η-expert produces predictions for the surrogate loss `ηt with its
own value of η, and the controller is responsible for learning the best η by starting
and stopping multiple η-experts on demand, and aggregating their predictions.

Algorithm 10 Full MetaGrad: Controller
1: for t = 1, 2, . . . do
2: Receive domainWt

3: Start and stop η-experts to manage active set At (see (5.4.2)).
Give newly started η-experts weight pt(η) = 1.

4: if Nobody active: At = ∅ then
5: Predict wt = 0 . Make a default prediction
6: else
7: Have active η-experts project ontoWt

8: Collect prediction wη
t for every active η-expert

9: Predict

wt =

∑
η∈At pt(η)ηwη

t∑
η∈At pt(η)η

10: end if
11: Receive gradient gt = ∇ft(wt) and range bound bt (see (5.2.1))
12: Update every active η-expert with unclipped surrogate loss `ηt
13: if No reset needed after round t (see (5.4.3)) then
14: Update based on the clipped surrogate losses (see (5.4.4)):

pt+1(η) =
pt(η) exp(−¯̀η

t (wηt ))∑
η∈At

pt(η) exp(−¯̀η
t (wηt ))

(
∑

η∈At pt(η)) for all η ∈ At.
15: else
16: Set pt+1(η) = 1 for all η ∈ At . Reset
17: end if
18: end for

Controller Online learning of the best learning rate η is notoriously difficult
because the regret is non-monotonic over rounds and may have multiple local
minima as a function of η (see (Koolen et al., 2014) for a study in the expert
setting). The standard technique is therefore to derive a monotonic upper bound
on the regret and tune the learning rate optimally for the bound. In contrast,
our approach, inspired by the approach for combinatorial games of Koolen and
Van Erven (2015, Section 4), is to weigh the different η depending on their empirical
performance using exponential weights with sleeping experts (line 14), except that
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in the predictions the weights of the η-experts are tilted by their learning rates
(line 9), having the effect of giving a larger weight to larger η. Although we provide
a formal analysis of the regret, the controller algorithm does not depend on the
outcome of this analysis, so any slack in our bounds does not feed back into the
algorithm.

To be able to adapt to the norms of the gradients, the controller maintains a finite
grid At of active learning rates η, which is dynamically adjusted over time:

At =


∅ while Bt−1 = 0,

{2i | i ∈ Z} ∩

(
1

4
(∑t−1

s=1 bs
Bs−1
Bs

+Bt−1

) , 1
4Bt−1

]
afterwards.

(5.4.2)
Using that bs

Bs−1

Bs
≤ Bt−1, it can be seen that the number of active learning rates

never exceeds |At| ≤ dlog2 T e. In the first two rounds, or if there is a sudden
enormous gradient such that Bt−1 dwarfs

∑t−1
s=1 bsBs−1/Bs, it may also happen

that At is empty, which signals that all previous rounds were negligible compared
to the last round. In such cases the controller decides it has not yet learned anything,
and makes a default prediction: wt = 0.

There are two further mechanisms to deal with extreme changes in the size of the
gradients. The first mechanism is that extremely large gradients may trigger a reset
of the controller’s weights on η-experts. This splits the controller’s learning process
into epochs. When running in an epoch starting at time τ +1, a reset and new epoch
will be triggered after the first round t such that

Bt > Bτ

t∑
s=1

bs
Bs
. (5.4.3)

As the sum on the right-hand side will typically grow linearly in t, we only expect a
reset to occur when the effective size of the gradients grows by more than a factor t
compared to the largest size seen before the start of the epoch. This should normally
be very rare except perhaps for a few initial rounds when t is still small.

The second mechanism to protect against extreme gradients is that the controller
measures performance of the experts by a clipped version of their corresponding
surrogate losses:

¯̀η
t (u) := η(u−wt)

ᵀḡt +
(
η(u−wt)

ᵀḡt
)2
, (5.4.4)

which are based on the clipped gradients

ḡt :=
Bt−1

Bt
gt.
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This is a trick first used by Cutkosky (2019), which makes the effective sizes of the
gradients predictable one round in advance: maxu∈Wt |uᵀḡt| ≤ Bt−1.

Algorithm 11 Full MetaGrad: η-Expert

Input: Learning rate η > 0, estimate D̂ > 0 of comparator norm ‖u‖2,
activation round a ≡ aη

1: Initialize w̃η
a = 0,Ση

a = D̂2I and Λη
a = 1

D̂2
I

2: for t = a, a+ 1, . . . do
3: Project wη

t = arg minu∈Wt
(u− w̃η

t )ᵀΛη
t (u− w̃

η
t )

4: Predict wη
t

5: Observe gradient gt = ∇ft(wt) . Gradient at controller predictionwt

6: Update:

Ση
t+1 = Ση

t −
2η2(Ση

t gt)(g
ᵀ
tΣ

η
t )

1 + 2η2gᵀtΣ
η
t gt

Λη
t+1 = Λη

t + gsg
ᵀ
s

w̃η
t+1 = wη

t − (1 + 2η(wη
t −wt)

ᵀgt) ηΣη
t+1gt

7: end for

η-Experts Each η-expert is active for a single contiguous sequence of rounds
for which η ∈ At. Upon activation, its job is to issue predictions wη

t ∈ Wt for
the (unclipped) surrogate loss `ηt that achieve small regret compared to any u ∈⋂
t:η∈AtWt. This is a standard online convex optimization task with a quadratic

loss function and time-varying domain, which we assume is non-empty. We use
continuous exponential weights with a Gaussian prior, which is a standard approach
for quadratic losses (Vovk, 2001), because the corresponding posterior exponential
weights distribution is also Gaussian with mean wη

t and covariance matrix Ση
t =(

1
D̂2
I + 2η2

∑t
s=a gsg

ᵀ
s

)−1
. Algorithm 11 presents the update equations in a

computationally efficient form. To avoid inverting Ση
t , it maintains its inverse

Λη
t = (Ση

t )
−1 separately. For a recent overview of continuous exponential weights

see Van der Hoeven et al. (2018). It can be seen that our η-expert algorithm is nearly
identical to Online Newton Step (ONS) (Hazan et al., 2007), which is not surprising
because ONS is minimizing a quadratic loss that is nearly identical to our `ηt . The
differences are that each η-expert receives the controller’s gradient gt = ∇ft(wt)

instead of its own ∇ft(wη
t ), and that an additional term (1 + 2η(wη

t −wt)
ᵀgt)

in line 6 adjusts for the difference between the η-expert’s parameters wη
t and the

controller’s parameterswt. MetaGrad is therefore a bona fide first-order algorithm
that only accesses ft through gt. We also note that we have chosen the Greedy
projections version that iteratively updates and projects (see line 6). One might
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alternatively consider the Lazy Projection version (as in Zinkevich (2004); Nesterov
(2009); Xiao (2010)) that forgets past projections when updating on new data. Since
projections are typically computationally expensive, we have opted for the Greedy
projection version, which we expect to project less often, since a projected point
seems less likely to update to a point outside of the domain than an unprojected
point.

5.4.1 Practical Considerations

Although METAGRADFULL is adaptive to the maximum effective size of the gradi-
ents BT , its performance degrades when BT becomes too large. In applications, it
is therefore important that the domainWt is small enough along the direction of gt
to keep the effective gradient size bt under control.

It is further required to choose the hyperparameter D̂, which is an estimate of
the `2-norm of the comparator u. Theorem 23 quantifies the trade-off between
underestimating and overestimating this parameter. Note that overestimating ‖u‖2
only incurs a logarithmic penalty, so it is less expensive to use a too large value
rather than a too small value.

Finally, we note that there is no gain in pre-processing the data by scaling all
gradients by a fixed constant factor, since the regret bound in Theorem 23 is
scale-free. In fact, the METAGRADFULL algorithm is almost invariant under such
rescaling, except for the term {2i | i ∈ Z} in the definition of At. If one wants to
make the algorithm fully invariant under rescaling, this term may be replaced by
{2i/Bτ | i ∈ Z}, where τ is the first round that Bτ > 0. Or, equivalently, one may
replace all gradients by gt/Bτ for t > τ . Since we do not expect any noticeable
difference in performance from this modification, we have left it out.

Run Time The run time of METAGRADFULL is dominated by computations for
the η-experts. Ignoring the projection step, an η-expert takes O(d2) time to update.
If there are at most k′ active η-experts in any round, this makes the overall computa-
tional effortO(k′d2), both in time per round and in memory. Since |At| ≤ dlog2 T e,
it is guaranteed that k′ ≤ 30 as long as T ≤ 109. We note that all η-experts share
the same gradient gt, which is only computed once. We remark that a potential
speed-up is possible by running the η-experts in parallel. If the factor k′ is still
considered too large, it is possible to reduce the size of |At| by spacing the learning
rates by a factor larger than 2, at the cost of a worse constant in the regret bound.

In addition, each η-expert may incur the cost of a projection, which depends on
the shape of the domainWt. To get a sense for the projection cost, we consider
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the Euclidean ball as a typical example. If the matrix Ση
t were diagonal, we could

project to any desired precision using a few iterations of Newton’s method. Since
each such iteration takes O(d) time, this would be affordable. But for the non-
diagonal Ση

t that occur in the algorithm, we first need to reduce to the diagonal case
by a basis transformation, which takes O(d3) to compute using a singular value
decomposition. We therefore see that the projection dwarfs the other run time by
an order of magnitude. This has motivated Luo et al. (2017) to define a different
domain (see Section 5.5.1), for which projections can be computed in closed form
with O(d) computation steps. In this case, the computation for the projections is
negligible and the total computational complexity is O(d2) per round. We refer to
Duchi et al. (2011) for examples of how to compute projections for various other
domainsWt.

5.5 Faster Extension Algorithms

As discussed above, METAGRADFULL requires at leastO(d2) computation per round,
which makes it slow in high dimensions. We therefore present two extensions to
speed up the algorithm. The first is a straightforward adaption of the sketching
approach of Luo et al. (2017), which we apply to approximate the matrix Ση

t in
the η-experts. This reduces the computation per round to O(kd), where k is a
hyper-parameter that determines the sketch size. The second extension is to run a
separate copy of the algorithm per dimension, which was inspired by the diagonal
version of AdaGrad (Duchi et al., 2011). This requires O(d) computation per round.

5.5.1 Sketched MetaGrad with Closed-form Projections

In this section, we are mixing matrices of different dimensions. The identity
matrix Id ∈ Rd and the all-zeros matrix 0a×b ∈ Ra×b are therefore annotated
with subscripts to make their dimensions explicit. To simplify notation, we further
assume without loss of generality that the η-experts are started in round aη = 1.

Luo et al. (2017) develop several sketching approaches for Online Newton Step,
which transfer directly to our η-experts. They combine these with a computationally
efficient choice of the domain that applies to loss functions of the form ft(w) =

ht(w
ᵀxt), where the input vectors xt ∈ Rd are assumed to be known at the start

of round t, but the convex functions ht : R → R are not. They then choose the
domain to be

Wt = {w : |wᵀxt| ≤ C} for a fixed constant C. (5.5.1)
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Let Gt = (g1, . . . , gt)
ᵀ ∈ Rt×d, such that Ση

t+1 = ( 1
D̂2
Id + 2η2Gᵀ

tGt)
−1. The

idea of sketching is to replace Ση
t+1 by an approximation

Σ̃η
t+1 =

(
1
D̂2
Id + 2η2Sᵀ

t St

)−1
,

where St ∈ Rk×d for a given sketch size k ≤ d, so that Sᵀ
t St has rank at most k.

Abbreviating ĝt = (1 + 2η(wη
t −wt)

ᵀgt) ηgt, we then need to compute

wη
t = arg min

u∈Wt

(u− w̃η
t )ᵀ(Σ̃η

t )
−1(u− w̃η

t ) (projection)

w̃η
t+1 = wη

t − Σ̃η
t+1ĝt. (update)

The key to an efficient implementation of these steps is to rewrite Σ̃η
t+1 using the

Woodbury identity (Golub and Van Loan, 2012):

Σ̃η
t+1 = D̂2(Id − 2η2Sᵀ

t ( 1
D̂2
Ik + 2η2StS

ᵀ
t )−1St) = D̂2(Id − 2η2Sᵀ

tH
η
t St),

where we have introduced the abbreviation Hη
t = ( 1

D̂2
Ik + 2η2StS

ᵀ
t )−1. Let

sC(y) = sign(y) max{|y|−C, 0}. By Lemma 1 of Luo et al. (2017), the projection
step then becomes

wη
t = w̃η

t −
sC(xᵀ

t w̃
η
t )

(xᵀ
txt − 2η2xᵀ

tS
ᵀ
tH

η
t Stxt)

(xt − 2η2Sᵀ
tH

η
t Stxt),

and the update step can be written as

w̃η
t+1 = wη

t − D̂2(ĝt − 2η2Sᵀ
tH

η
t Stĝt).

Assuming that St andHη
t can be efficiently maintained, the operations involving

Stxt or Stĝt require O(kd) computation time and matrix-vector products with
Hη
t can be performed in O(k2) time. As noted by Luo et al. (2017), both of these

are only a factor k more than the O(d) time required by first-order methods. They
describe two sketching techniques to maintain St and Hη

t , each requiring O(kd)

storage and O(kd) average computation time per round. The first technique is
based on Frequent Directions (FD) sketching; the other one on Oja’s algorithm.
We adopt the FD approach, which comes with a guaranteed bound on the regret.
Luo et al. (2017) further develop an extension of FD for sparse gradients, and yet
another option would have been the Robust Frequent Directions sketching method
of Luo et al. (2019).
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Frequent Directions Sketching

Some sketching approaches are randomized, but Frequent Directions sketching
(Ghashami et al., 2016) is a deterministic method. The simplest version (Luo
et al., 2017, Algorithm 2) performs a singular value decomposition (SVD) of St
every round at the cost of O(k2d) computation time, but there also exists a refined
epoch-based version which only performs an SVD once per epoch. Each epoch
takes m rounds and k = 2m, leading to an average runtime of O(kd) per round.
We describe here the epoch version, adapted from Algorithm 6 of Luo et al. (2017)
and summarized in Algorithm 12.

Algorithm 12 Frequent Directions Sketching

1: Initialize S0 = 02m×d, andHη
0 = D̂2I2m.

2: for t = 1, 2, . . . do
3: Let τ = t mod m and insert gᵀt in the (m+ τ)-th row of St−1 to

obtain S̃.
4: if τ 6= 0 then
5: Set St = S̃.

6: Let e ∈ R2m be the basis vector in direction m + τ and
q = 2η2(S̃gt −

gᵀt gt
2 e).

7: UpdateHη
t = H̃ − H̃eqᵀH̃

1+qᵀH̃e
, where H̃ = Hη

t−1 −
Hη
t−1qe

ᵀHη
t−1

1+eᵀHη
t−1q

.
8: else
9: From the SVD of S̃, compute the top-m singular values

σ1 ≥ · · · ≥ σm and corresponding right-singular vectors
as V ∈ Rd×m.

10: Set St = diag(σ2
1 − σ2

m, . . . , σ
2
m − σ2

m)1/2V ᵀ.

11: Set Hη
t = diag( 1

D̂−2+2η2(σ2
1−σ2

m)
, . . . , 1

D̂−2+2η2(σ2
m−σ2

m)
,

1
D̂−2

, . . . , 1
D̂−2

).
12: end if
13: end for

Recall that Sᵀ
t St is an approximation ofGᵀ

tGt. At the start of each epoch, we have
the invariant that only the first m− 1 rows of St contribute to this approximation
and the remaining m+ 1 rows are filled with zeros. During the τ -th round in any
epoch we first add the incoming gradient gᵀt to row m + τ of St−1 to obtain an
intermediate result S̃. If we are not yet in the last round of the epoch (i.e. τ < m),
then we simply set St = S̃, and we use that

(Hη
t )−1 = (Hη

t−1)−1 + qeᵀ + eqᵀ,
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where e ∈ R2m is the basis vector in direction m+ τ and q = 2η2(S̃gt −
gᵀt gt

2 e).
It follows that we can compute Hη

t from Hη
t−1 using two rank-one updates with

the Sherman-Morrison formula:

Hη
t = H̃ − H̃eqᵀH̃

1 + qᵀH̃e
, where H̃ = Hη

t−1 −
Hη
t−1qe

ᵀHη
t−1

1 + eᵀHη
t−1q

.

Otherwise, if we are in the last round of the epoch (i.e. τ = m), the invariant is
restored by eigen decomposing S̃ᵀS̃ intoWΛW ᵀ, where Λ = diag(λ1, . . . , λ2m)

contains the potentially non-zero eigenvalues in non-decreasing order λ1 ≥ · · · ≥
λ2m and the columns of W ∈ Rd×2m contain the corresponding eigenvectors.
Then we set St = diag(λ1 − λm, . . . , λm − λm, 0, . . . , 0)1/2W ᵀ. Since the rows
of St are now orthogonal,

Hη
t = ( 1

D̂2
I2m + 2η2StS

ᵀ
t )−1

= diag
( 1

D̂−2 + 2η2(λ1 − λm)
, . . . ,

1

D̂−2 + 2η2(λm − λm)
,

1

D̂−2
, . . . ,

1

D̂−2

)
is a diagonal matrix.

Implementation Details When implementing the FD procedure, we can calcu-
late the eigen decomposition of S̃ᵀS̃ via an SVD of S̃, which can be performed
in O(m2d) computation steps. The eigenvalues λi then correspond to the squared
singular values σ2

i of S̃, and W contains the corresponding right-singular vec-
tors. In fact, we only need the top-m singular values and the corresponding m
right-singular vectors V ∈ Rd×m to compute St = diag(λ1 − λm, . . . , λm −
λm, 0, . . . , 0)1/2W ᵀ = diag(σ2

1 − σ2
m, . . . , σ

2
m − σ2

m)1/2V ᵀ.

We further observe that, since St does not depend on η, we only need to compute
it once when sketching for multiple η-experts with different learning rates η. The
matrixHη

t , however, does need to be computed for each η separately.

Practical Considerations

Sketching introduces an extra hyper-parameter k = 2m, which controls the sketch
size. In theory, larger k provides a better approximation of the full version of
MetaGrad, at the cost of more computation.

5.5.2 Coordinate MetaGrad

Duchi et al. (2011) introduce a full and a diagonal version of their AdaGrad
algorithm. The diagonal version, which is the version that is widely used in
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applications, may be interpreted as running a copy of online gradient descent
(Zinkevich, 2003) for each dimension separately, with a separate data-dependent
tuning of the step size per dimension. This approach of running a separate copy
per dimension can be applied to any online learning algorithm, and works out as
follows.

We output a joint prediction wt = (wt,1, . . . , wt,d)
ᵀ, where each wt,i is the output

of the copy of the algorithm for dimension i. Each of these copies gets as inputs the
1-dimensional losses ft,i(w) = wgt,i, where gt,i is the i-th component of the joint
gradient gt = ∇ft(wt). This works because the linearized regret decomposes per
dimension:

T∑
t=1

(wt − u)ᵀgt =
d∑
i=1

T∑
t=1

(ft,i(wt,i)− ft,i(ui)),

so our joint linearized regret is simply the sum of the linearized regrets per dimen-
sion.

One limitation of this approach, if we apply it as is, is that the domain cannot
introduce dependencies between the dimensions, so we are limited to rectangular
domains:

W rect
t = {w ∈ Rd | at,i ≤ wi ≤ zt,i for i = 1, . . . , d},

with our only freedom consisting of choosing the boundaries at,i and zt,i.

Practical Considerations

Running a copy of MetaGrad per dimension potentially introduces a separate
hyperparameter D̂i per dimension i. Like Duchi et al. (2011), we reduce the
complexity of hyperparameter tuning by letting D̂i = D̂ be the same for all
dimensions. If no specific domain is required and the components of the gradients
are approximately standardized, it is also generally sufficient to set the dimensions
of the rectangular domain to at,i = −q and zt,i = q for a fixed parameter q.

5.6 Analysis of the Full Matrix Version of MetaGrad

The high-level goal of MetaGrad is to deliver a tight data-dependent regret bound.
Such bounds could be achieved in principle by existing algorithms, were their
learning rate tuned certain a-priori unknown data-dependent quantities. The prac-
tical approach implemented in MetaGrad is to run multiple instances of a baseline
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“η-expert” algorithm, each with different candidate tuning. A controller then ag-
gregates these η-expert predictions and manages their lifetimes to always have the
required tuning present.

The METAGRADFULL η-experts are Exponentially Weighted Average forecasters
starting from a Gaussian prior and taking in our quadratic surrogate losses. Their
efficient implementation is a variant of Online Newton Step, where the losses are
centred at the prediction of the controller instead of that of the η-expert. In turn, the
controller is a specialists (also known as sleeping experts) algorithm to deal with
the starting and retiring of η-experts. It is further designed to give a non-uniform
regret guarantee, obtaining especially small regret when the best learning rate turns
out to be high. Finally, our approach for adapting to the Lipschitz constant is
speculative. Starting at zero, we monitor the implied Lipschitz constant of the
incoming gradients. If it is increasing slowly, the controller is able to accommodate
the overshoots in a lower-order term. If it makes a large jump, then the controller
may need to reset. We do so by resetting the controller weights without changing
the state of the affected η-experts.

5.6.1 Controller

Denote by G = {2i : i ∈ Z} and by aη the starting time of an η-expert (for the
exact definition of aη see definition 3 in Section 5.11). Let us introduce the concept
of expiration.

Definition 2. We say that η ∈ G is expired after T rounds (or, equivalently, after
round T ) if η > 1

4BT−1
.

Note that expiration can be checked before the round happens (it is “predictable”).
All learning rates used by Algorithm 10 by means of the active set At (5.4.2) are
not expired. Also note the “lifecycle” of any fixed learning rate η. It starts inactive
unexpired. Then it becomes active unexpired. And finally it expires, after which it
loses all relevance.

For the controller, we prove that it behaviour approximates that of any η-expert not
expired, when measured in the η surrogate loss (5.4.1).

Lemma 15 (Controller Surrogate Regret Bound). For any learning rate η ∈ G
not expired after T rounds and any comparator u ∈

⋂T
t=1Wt, METAGRADFULL
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ensures

Rηt (u) ≤ 1

2
+ 4ηBT︸ ︷︷ ︸

small

+2 ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
+︸ ︷︷ ︸

specialist regret for epoch, O(ln lnT )

+
T∑

t=aη

(`ηt (w
η
t )− `ηt (u))︸ ︷︷ ︸

`η-regret of η-expert w.r.t. u

.

The proof is in Section 5.11. It follows the MetaGrad analysis of Mhammedi et al.
(2019), including the range clipping technique due to Cutkosky (2019), and the reset
technique of Mhammedi et al. (2019), which in particular ensures that whenever a
reset occurs, the accumulated regret up until the previous reset is small. As such,
we only have to pay for the controller regret for the last two epochs.

We further streamline the approach by using a standard specialists (sleeping experts)
algorithm on a discrete grid of η-experts as our controller algorithm. Of note here
is our use of the improper log-uniform prior. We also employ a slightly tightened
measure bt of the effective loss range.

To make further progress, we need to make use of the details of the η-experts.

5.6.2 Full η-Experts

Next we establish a O(d log T ) regret bound in terms of the surrogate loss for
each METAGRADFULL η-expert. The η-experts implement Follow-the-Regularised-
Leader with the quadratic losses `ηt and the squared Euclidean norm regulariser.
Equivalently, we can see them as implementing the exponentially weighted average
forecaster for the quadratic losses `ηt starting from a Gaussian prior. Algorithms for
the specific quadratic loss arising in linear regression were designed and analysed
by Vovk (2001). The general quadratic case goes back (at least) to Hazan et al.
(2007), who unfortunately do not separate the analysis for general quadratic losses
from the reduction of exp-concave losses to quadratics, even though these ideas are
clearly present. The explicit analysis by van Erven and Koolen (2016) includes an
unnecessary range restriction, which was subsequently removed by Van der Hoeven
et al. (2018). As pointed out by Luo et al. (2017), the extension to time-varying
domains is trivial.

Lemma 16 (Surrogate regret bound). Consider the METAGRADFULL η-expert in
Algorithm 11 with learning rate η ≤ 1

4BT
starting from time aη. Its surrogate regret

after round T ≥ aη w.r.t. any comparator u ∈
⋂T
t=aηWt is bounded by

T∑
t=aη

(`ηt (w
η
t )− `ηt (u)) ≤ 1

2D̂2
‖u‖22 + ln det

(
I + 2η2D̂2

T∑
t=aη

gtg
ᵀ
t

)
.
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The proof of Lemma 16 can be found in Section 5.12. We note that the condition
on η in the lemma is slightly stricter than not being expired (Definition 2), which
only requires η ≤ 1

4BT−1
. The reason is that the η-expert operates off the unclipped

surrogate loss and gradients.

5.6.3 Composition (bounding the actual regret)

To complete the analysis of METAGRADFULL, we put the regret bounds for the
controller and η-experts together. We then optimize η over the grid G to get our
main result. For the purpose of this section, let us define the essential horizon and
gradient covariance by

QT :=
T−1∑
t=1

bt
Bt

+ 1 and FT :=
T∑
t=1

gtg
ᵀ
t .

Theorem 22 (Grid point regret). Let η ∈ G be such that η ≤ 1
4BT

. Then
METAGRADFULL guarantees that the linearized regret w.r.t. any comparator
u ∈

⋂T
t=1Wt is at most

R̃uT ≤ ηV uT +
ln det

(
I + 2η2D̂2FT

)
+ 1

2D̂2
‖u‖22 + 2 ln d2 log2QT e+ + 1

2

η
+4BT .

Proof. Combining the controller and η-expert surrogate regret bounds Lemma 15
and Lemma 16, we obtain

T∑
t=1

(`ηt (wt)− `ηt (u)) ≤ 1

2
+ 4ηBT + 2 ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
+

+
1

2D̂2
‖u‖22 + ln det

(
I + 2η2D̂2

T∑
t=1

gtg
ᵀ
t

)
.

The definition of the surrogate loss (5.4.1) gives `ηt (wt)−`ηt (u) = η(wt−u)ᵀgt−(
η(u−wt)

ᵀgt
)2 and the theorem follows by reorganising and dividing by η.

The final step is to properly select the learning rate η ∈ G in the regret bound
Theorem 22. This leads to our main result. The proof is in Section 5.13.

Theorem 23 (MetaGrad Full Regret Bound). For all u ∈
⋂T
t=1Wt the linearized

regret of METAGRADFULL is simultaneously bounded by

R̃uT ≤
5

2

√
V uT ( 1

2D̂2
‖u‖22 + ZT ) + 10BT ( 1

2D̂2
‖u‖22 + ZT ) + 4BT ,
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where ZT = rk(FT ) ln
(

1 +
D̂2
∑T
t=1 ‖gt‖22

8B2
T rk(FT )

)
+ 2 ln d2 log2 T e+ + 1

2 , and by

R̃uT ≤
5

2

√√√√(V uT + 2D̂2

T∑
t=1

‖gt‖22
)(

1
2D̂2
‖u‖22 + Z ′T

)
+ 10BT

(
1

2D̂2
‖u‖22 + Z ′T

)
+ 4BT ,

where Z ′T = 2 ln d2 log2 T e+ + 1
2 .

Since rk(FT ) ≤ d, Theorem 19 follows when we assume that the diameter of the
domainWt and the gradient norms are both uniformly bounded over all rounds,
which implies ZT = O(d log(T/d)). If the eigenvalues of FT satisfy a decay
condition, then a more refined bound is possible instead of the first term in the
definition of ZT , as can be seen from the proof.

5.7 Extensions for Faster MetaGrad Analysis

5.7.1 Sketching: Analysis

The analysis for the frequent directions sketching version of MetaGrad with sketch
size k = 2m proceeds like the analysis of the full matrix version, except that we
obtain a different bound for the η-expert regret. This bound depends on the spectral
decay of FT = Gᵀ

TGT =
∑T

t=1 gtg
ᵀ
t . Let λi be the i-th eigenvalue ofGᵀ

TGT and
define Ωq =

∑d
i=q+1 λi. Then the surrogate regret of the η-expert algorithm with

FD sketching is bounded as follows:

Lemma 17. Consider the sketching version of the MetaGrad η-expert algorithm
with learning rate η ≤ 1

4BT
starting from time aη. Its surrogate regret after round

T ≥ aη w.r.t. any comparator u ∈
⋂T
t=aηWt is bounded by

T∑
t=aη

(`ηt (w
η
t )− `ηt (u))

≤ 1

2D̂2
‖u‖22 + log(det(I + 2η2D̂2Sᵀ

TST )) +
2η2D̂2mΩq

m− q

for any q = 0, . . . ,m− 1.

Compared to Lemma 16, we see that Gᵀ
TGT =

∑T
t=1 gtg

ᵀ
t in the logarithmic

term has been replaced by its sketching approximation Sᵀ
TST . We therefore pay

logarithmically for the top m directions, which are captured by the sketch. What we
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lose is the rightmost term of order O(η2Ωq), which corresponds to the remaining
d− q directions that are not captured.

The proof of Lemma 17 is a straightforward adaptation of the proof of Theorem 3
by Luo et al. (2017). For the details, we refer to Chapter 4 of Deswarte (2018),
with two minor remarks: the first is that Deswarte uses a slightly stricter bound on
η, which allows him to bound 1

2 (1 + 2η 〈wt −wη
t , gt〉)

2 ≤ 1, whereas we get an
upper bound of 2 from (5.12.1) and therefore obtain a final result that is a factor
of 2 larger. The other remark is that we have described the fast version of FD
sketching, which corresponds to Algorithm 6 of Luo et al. (2017) instead of the
simpler slow version in their Algorithm 2. They and Deswarte consider the slow
version in their analysis, but this makes no difference for the proof because the fast
algorithm satisfies the same guarantees (Ghashami et al., 2016).

Analogously with Theorem 22, we find:

Theorem 24 (Sketching Grid Point Regret). Let η ∈ G be such that η ≤ 1
4BT

.
Then METAGRADSKETCH guarantees that the linearized regret w.r.t. any comparator
u ∈

⋂T
t=1Wt is at most

R̃uT ≤
ln det

(
I + 2η2D̂2Sᵀ

TST

)
+ 1

2D̂2
‖u‖22 + 2 ln d2 log2QT e+ + 1

2

η

+ ηV uT +
2ηD̂2mΩq

m− q
+ 4BT ,

for any q = 0, . . . ,m− 1.

As shown in Section 5.13, optimizing η leads to the following final result:

Theorem 25 (MetaGrad Sketching Regret Bound). For all u ∈
⋂T
t=1Wt the

linearized regret of METAGRADSKETCH is simultaneously bounded by

R̃uT ≤
5

2

√
(V uT +

2D̂2mΩq

m− q
)( 1

2D̂2
‖u‖22 + ZT )+10BT ( 1

2D̂2
‖u‖22 +ZT )+4BT ,

where ZT = rk(Sᵀ
TST ) ln

(
1 +

D̂2 Tr(Sᵀ
TST )

8B2
T rk(Sᵀ

TST )

)
+ 2 ln d2 log2 T e+ + 1

2 , and by

R̃uT ≤
5

2

√√√√(V uT + 2D̂2

T∑
t=1

‖gt‖22 +
2D̂2mΩq

m− q

)(
1

2D̂2
‖u‖22 + Z ′T

)
+ 10BT

(
1

2D̂2
‖u‖22 + Z ′T

)
+ 4BT ,

for any q = 0, . . . ,m− 1, where Z ′T = 2 ln d2 log2 T e+ + 1
2 .
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Compared to Theorem 23, all occurrences ofGᵀ
TGT have been replaced by their

sketched approximations: FT = Gᵀ
TGT has become Sᵀ

TST everywhere, with
rk(Sᵀ

TST ) ≤ 2m, and
∑T

t=1 ‖gt‖22 = tr(Gᵀ
TGT ) is now tr(Sᵀ

TST ). We further
see the additional term involving Ωk, which corresponds to the directions not
captured by the sketch.

5.7.2 MetaGrad Coordinate: Analysis

First, we define bt,i = |gt,i|max{|at,i|, |zt,i|} and Bt,i = maxs≤t bs,i. The analysis
of the coordinate version of MetaGrad, which we denote by METAGRADCOOR, is
straightforward as we can simply apply the regret bound of METAGRADFULL to
each dimension. The formal statement can be found below.

Theorem 26. Let V ui
T,i = (ui − wt,i)2g2

t,i. For any u ∈
⋂T
t=1W rect

t , the linearized
regret of METAGRADCOOR is simultaneously bounded by

R̃uT ≤
d∑
i=1

5

2

√
V ui
T,i(

1
2D̂2

u2
i + ZT,i) + 10BT,i(

1
2D̂2

u2
i + ZT,i) + 4BT,i,

where ZT,i = ln

(
1 +

D̂2
∑T
t=1 g

2
t,i

8B2
T,i

)
+ 2 ln d2 log2 T e+ 1

2 , and by

R̃uT ≤
d∑
i=1

5

2

√√√√(V ui
T,i + 2D̂2

T∑
t=1

g2
t,i

)(
1

2D̂2
u2
i + Z ′T

)
+ 10BT,i

(
1

2D̂2
u2
i + Z ′T

)
+ 4BT,i,

where Z ′T = 2 ln d2 log2 T e+ 1
2 .

5.8 Experiments

For an experimental evaluation we implemented six versions of MetaGrad, Ad-
aGrad, Online Gradient Descent with learning rate ηT = D̂√∑t

s=1 ‖gs‖22+1e−8
(ab-

breviated as GDn), Online Gradient Descent with learning rate ηt = D̂
G
√
t

(ab-
breviated as GDt) in python. The six versions of MetaGrad we used are the full
version(abbreviated as MGFull), the coordinate version(abbreviated as MGCo), and
two versions of MetaGrad that employ either Frequent Directions sketching with
m = 1, m = min{10, d}, m = min{25, d}, and m = min{50, d} (abbreviated as
MGF1, MGF10, MGF25, and MGF50 respectively). We compared the algorithms
on seventeen datasets from the LIBSVM library (Chang and Lin, 2011), with T
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ranging from 252 to 581012 and d ranging from 6 to 300. Of the seventeen datasets
six had real outcomes and eleven had binary outcomes. A summary of the datasets
can be found in Table 5.2 in Section 5.15. If available we used scaled versions of
the datasets. For all datasets we used the features xt without any adjustments in the
following manner: we estimate ŷ = wᵀ

t xt and feed this prediction to loss function
f(ŷt, yt). For binary datasets we used logistic loss and hinge loss. For datasets
with real outcomes we made use of squared loss and absolute loss. The settings
of the algorithms can be found in Table 5.1 in Section 5.15. For AdaGrad and the
coordinate version of MetaGrad we used U = {w : ‖w‖∞ ≤ D}, whereD was set
to 3‖u‖∞, where u = arg minu

∑T
t=1 f(uᵀxt, yt). For the other algorithms we

usedW = ∩Tt=1Wt = {w : |xTt w| ≤ C} as domain, where C = 3 maxt |uᵀxt|.
Hyperparamaters for algorithms involving a norm of the minimizer were set to
three times the norm of the comparator u. In other words D̂ = D. Hyperpara-
meters involving an upper bound on a norm of gt were set as follows. For t = 1,
G1 = ‖g1‖2 and then we update. For any subsequent round, if Gt−1 ≤ ‖gt‖2 set
Gt = ‖gt‖2, otherwise Gt = Gt−1.

5.8.1 Experimental Results

In Figure 5.1 we plotted the regret of three versions of MetaGrad and AdaGrad
versus the regret of GDt on a logarithmic scale. We decided to use GDt as a baseline
algorithm since it is the algorithm with the lowest regret that is not MetaGrad (in
nine experiments either AdaGrad or GDn had lower regret than GDt). Table 5.3 in
Section 5.15 contains the regrets of all algorithms on all datasets.

Out of 34 experiments in nine experiments a version of MetaGrad did not have the
lowest regret. Among the six version of MetaGrad MGFull appears to be the best
version as it had the lowest regret for the most datasets (thirteen). As predicted by
theory, increasing the sketching size mostly improved the performance of Frequent
Directions. With m = min{50, d}, the Frequent Directions version of MetaGrad
is very close to the performance of the full version of MetaGrad. Overall, the
coordinate version of MetaGrad is close to the performance of the Full version
of MetaGrad, which suggests that on the datasets that we used the correlations
between the features are of little importance.

At first sight it may seem surprising that Online Gradient Descent outperformed
MetaGrad on a9a, bodyfat, housing, ijcnn, and mg when the loss had curvature.
However, upon closer inspection of the regret bounds we see that even in theory
the regret bound of GDt is no worse than the regret of MetaGrad. For example,
on the dataset bodyfat (d = 14, T = 252) with the squared loss the full version
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Figure 5.1: Comparison of the logarithm of the regret of three versions of MetaGrad and
AdaGrad and the logarithm of the regret of GDt.

of MetaGrad has O(min{d log T,
√
T}) = O(

√
T ) regret, whereas GDt also has

O(
√
T ) regret.

To our surprise, AdaGrad had the worst performance of all algorithms. However,
upon closer review of the literature we see that in the experiments of Luo et al.
(2017) and Chen et al. (2018) AdaGrad also had the worst performance, albeit
in a different measure of performance (progressive misclassification rate and log
objective gap, respectively).

Overall, we see that MetaGrad often outperforms AdaGrad and Online Gradient
Descent with various learning rates.
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5.9 Conclusion and Possible Extensions

We provide a new universally adaptive method, MetaGrad, which is robust to
general convex losses but simultaneously can take advantage of special structure in
the losses, like curvature or if the data come from a fixed distribution. The main new
technique is to consider multiple learning rates in parallel: each learning rate η has
its own surrogate loss (5.4.1) and there is a single controller method that aggregates
the predictions of η-experts corresponding to the different surrogate losses.

An important feature of the controller is that its contribution to the final regret
is the log of the number of experts, which is typically dominated by other terms
in the bound. It is therefore cheap to add more experts for possibly different
surrogate losses. To make the proof go through, a sufficient requirement on any
such surrogates is that they replace the term

(
η(u−wt)

ᵀgt
)2 in (5.4.1) by an upper

bound. This possibility is exploited by Zhang et al. (2019), who add extra experts
with surrogates that contain

(
η‖gt‖2‖u−wt‖2

)2 instead. Since these surrogates
are quadratic in all directions, and not just in the direction of gt, they are better
suited for strongly convex losses, which then leads to an even more universally
applicable extension of MetaGrad that also gets the optimal rate O(log T ) for
strongly convex losses.

Another way to extend MetaGrad is to replace the exponential weights update in the
controller by a different experts algorithm. Zhang et al. (2019) use this to extend
MetaGrad for the case that the optimal parameters u vary over time, as measured
in terms of the adaptive regret. See also Neuteboom (2020), who provides a similar
extension of the closely related Squint algorithm for adaptive regret.

As a final possible extension, we mention the sliding window variant of Full Matrix
AdaGrad (Agarwal et al., 2018). The same sliding window idea could be used
to base the covariance matrix Ση

t in our Algorithm 11 only on the k most recent
gradients. This has both computational advantages, because Ση

t then becomes a
matrix of fixed rank d+ k, and it could be beneficial for non-convex optimization
when older covariance information needs to be discarded.

5.10 Extra Material Related to Section 5.3

In this section we gather extra material related to the fast rate examples from Sec-
tion 5.3. We first provide simulations. Then we present the proofs of Theorems 20
and 21. And finally we give an example in which the unregularized hinge loss
satisfies the Bernstein condition.
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5.10.1 Simulations: Logarithmic Regret without Curvature
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(a) Offline: ft(u) = |u− 1/4|
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(b) Stochastic Online: ft(u) = |u−xt| where
xt = ± 1

2
i.i.d. with probabilities 0.4 and 0.6.

Figure 5.2: Examples of fast rates on functions without curvature. MetaGrad incurs
logarithmic regret O(log T ), while AdaGrad incurs O(

√
T ) regret, matching its bound.

We provide two simple simulation examples to illustrate the sufficient conditions
from Theorems 20 and 21, and to show that such fast rates are not automatically
obtained by previous methods for general functions. Both our examples are one-
dimensional, and have a stable optimum (that good algorithms will converge to);
yet the functions are based on absolute values, which are neither strongly convex
nor smooth, so the gradient norms do not vanish near the optimum. As our baseline
we include AdaGrad (Duchi et al., 2011), because it is commonly used in practice
(Mikolov et al., 2013; Schmidhuber, 2015) and because, in the one-dimensional
case, it implements GD with an adaptive tuning of the learning rate that is applicable
to general convex functions.

In the first example, we consider offline convex optimization of the fixed function
ft(u) ≡ f(u) = |u− 1

4 |, which satisfies (5.3.1), because it is convex. In the second
example, we look at stochastic optimization with convex functions ft(u) = |u−xt|,
where the outcomes xt = ±1

2 are chosen i.i.d. with probabilities 0.4 and 0.6. These
probabilities satisfy (5.3.2) with β = 1. Their values are by no means essential, as
long we avoid the worst case where the probabilities are equal.

Figure 5.2 graphs the results. We see that in both cases the regret of AdaGrad
follows its O(

√
T ) bound, while MetaGrad achieves an O(lnT ) rate, as predicted

by Theorems 20 and 21. This shows that MetaGrad achieves a type of adaptivity
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that is not achieved by AdaGrad. We should be careful in extending this conclusion
to higher dimensions, though: whereas (the diagonal version of) AdaGrad uses a
separate learning rate per dimension, METAGRADFULL shares learning rates between
dimensions (unless we run a METAGRADCOOR rather than METAGRADFULL).

5.10.2 Proof of Theorem 20

Proof. By (5.3.1), applied with w = wt, and Theorem 19, there exists a C > 0

(depending on a) such that, for all sufficiently large T ,

RuT ≤ aR̃uT − bV uT ≤ C
√
V uT d lnT + Cd lnT − bV uT

≤ γ

2
CV uT +

(
1

2γ
+ 1

)
Cd lnT − bV uT for all γ > 0,

where the last inequality is based on
√
xy = minγ>0

γ
2x+ y

2γ for all x, y > 0. The
result follows upon taking γ = 2b

C .

5.10.3 Proof of Theorem 21

Proof. Abbreviate r̃ut = (wt − u)ᵀgt. Then, by (5.1.1), Jensen’s inequality and
the Bernstein condition, there exists a constant C > 0 such that, for all sufficiently
large T , the expected linearized regret is at most

E
[
R̃u
∗

T

]
≤ C E

[√
V u

∗
T d lnT

]
+ Cd lnT ≤ C

√
E
[
V u

∗
T

]
d lnT + Cd lnT

≤ C

√√√√B
T∑
t=1

(
E
[
r̃u
∗

t

])β
d lnT + Cd lnT.

We will repeatedly use the fact that

xαy1−α = cα inf
γ>0

(
x

γ
+ γ

α
1−α y

)
for any x, y ≥ 0 and α ∈ (0, 1), (5.10.1)

where cα = (1 − α)1−ααα. Applying this first with α = 1/2, x = Bd lnT and
y =

∑T
t=1

(
E[r̃u

∗
t ]
)β , we obtain√√√√B

T∑
t=1

(
E[r̃u

∗
t ]
)β

d lnT ≤ c1/2γ1

T∑
t=1

(
E[r̃u

∗
t ]
)β

+
c1/2

γ1
Bd lnT for any γ1 > 0.

If β = 1, then
∑T

t=1

(
E[r̃u

∗
t ]
)β

= E[R̃u
∗

T ] and the result follows by taking γ1 =
1

2Cc1/2
. Alternatively, if β < 1, then we apply (5.10.1) a second time, with α = β,
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x = E[r̃u
∗

t ] and y = 1, to find that, for any γ2 > 0,√√√√B
T∑
t=1

(
E[r̃u

∗
t ]
)β

d lnT

≤ cβc1/2γ1

T∑
t=1

(
E[r̃u

∗
t ]

γ2
+ γ

β/(1−β)
2

)
+
c1/2

γ1
Bd lnT

=
cβc1/2γ1

γ2
E[R̃u

∗
T ] + cβc1/2γ1γ

β/(1−β)
2 T +

c1/2

γ1
Bd lnT.

Taking γ1 = γ2
2cβc1/2C

, this yields

E[R̃u
∗

T ] ≤ γ1/(1−β)
2 T +

4C2c2
1/2cβBd lnT

γ2
+ 2Cd lnT.

We may optimize over γ2 by a third application of (5.10.1), now with x =

4C2c2
1/2cβBd lnT , y = T and α = 1/(2− β), such that α/(1− α) = 1/(1− β):

E[R̃u
∗

T ] ≤ 1

c1/(2−β)

(
4C2c2

1/2cβBd lnT
)1/(2−β)

T (1−β)/(2−β) + 2Cd lnT

= O
(

(Bd lnT )1/(2−β) T (1−β)/(2−β) + d lnT
)
,

which completes the proof.

5.10.4 Unregularized Hinge Loss Example

As shown by Koolen et al. (2016), the Bernstein condition is satisfied in the
following classification task:

Lemma 18 (Unregularized Hinge Loss Example). Suppose that
(X1, Y1), (X2, Y2), . . . are i.i.d. with Yt taking values in {−1,+1}, and let
ft(u) = max{0, 1 − Yt〈u,Xt〉} be the hinge loss. Assume that both W and
the domain for Xt are the d-dimensional unit ball. Then the (B, β)-Bernstein
condition is satisfied with β = 1 and B = 2λmax

‖µ‖2 , where λmax is the maximum
eigenvalue of E [XXᵀ] and µ = E[YX], provided that ‖µ‖2 > 0.

In particular, ifXt is uniformly distributed on the sphere and Yt = sign(〈ū,Xt〉)
is the noiseless classification ofXt according to the hyperplane with normal vector
ū, then B ≤ c√

d
for some absolute constant c > 0.

Thus the version of the Bernstein condition that implies anO(d log T ) rate is always
satisfied for the hinge loss on the unit ball, except when ‖µ‖2 = 0, which is very
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natural to exclude, because it implies that the expected hinge loss is 1 (its maximal
value) for all u, so there is nothing to learn. It is common to add `2-regularization
to the hinge loss to make it strongly convex, but this example shows that that is not
necessary to get logarithmic regret.

5.11 Controller Regret Bound (Proof of Lemma 15)

We prove Lemma 15 in two parts.

5.11.1 Decomposing the Surrogate Regret

Fix a comparator point u ∈
⋂T
t=1Wt. We will first bound the surrogate regret

RηT (u) :=
T∑
t=1

(`ηt (wt)− `ηt (u))

for any η ∈ G not expired after T rounds (see Definition 2). Note that by definition
(5.4.1), the surrogate loss `ηt (wt) of the controller is always zero, but we believe
writing it helps interpretation. We will then use this surrogate regret bound to
control the (non-surrogate) regret.

For the first half of this section, we fix a final time T , and a grid-point η ∈ G that is
still not expired after time T , (see Definition 2)

Definition 3. We define the wakeup time of learning rate η ∈ G by

aη := inf

t ≤ T
∣∣∣∣∣∣η > 1

4
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

)
 ∧ (T + 1).

Note that we manually set to T + 1 the wakeup time of an η that does not wake up
during the first T rounds. We do this so that [1, aη − 1] and [aη, T ] always partition
rounds [1, T ].

Our strategy will be to split the regret in three parts, which we will analyse separ-
ately.
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Proposition 1. We have

RηT (u) =
aη−1∑
t=1

(`ηt (wt)− `ηt (u))︸ ︷︷ ︸
`η-regret of controller w.r.t. u

+
T∑

t=aη

(`ηt (wt)− `ηt (w
η
t ))︸ ︷︷ ︸

`η-regret of controller w.r.t. η-expert

+

T∑
t=aη

(`ηt (w
η
t )− `ηt (u))︸ ︷︷ ︸

`η-regret of η-expert w.r.t. u

Proof. The choice of aη makes all wη
t defined. We can hence merge the sums.

We think of the three sums as follows. The first sum is “startup nuisance”, and it
will turn out to be small. The second sum is controlled by the controller, and it only
depends on its construction. The third sum is controlled by the η-experts, and it
only depends on their construction.

We will now proceed to bound the three parts above. First, we reduce to the clipped
surrogate losses (5.4.4) at almost negligible cumulative cost using the clipping
technique of Cutkosky (2019).

Lemma 19 (Clipping in the controller is cheap).
aη−1∑
t=1

(`ηt (wt)− `ηt (u))︸ ︷︷ ︸
`η-regret of controller w.r.t. u

+
T∑

t=aη

(`ηt (wt)− `ηt (w
η
t ))︸ ︷︷ ︸

`η-regret of controller w.r.t. η-expert

≤
aη−1∑
t=1

(
¯̀η
t (wt)− ¯̀η

t (u)
)

︸ ︷︷ ︸
¯̀η-regret of controller w.r.t. u

+

T∑
t=aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t )
)

︸ ︷︷ ︸
¯̀η-regret of controller w.r.t. η-expert

+2ηBT

Proof. For any u ∈ Wt (which includes the case u = wη
t ), we may use the

definition of the range bound (5.2.1), the surrogate loss (5.4.1) and its clipped
version (5.4.4) to find

(`ηt (wt)− `ηt (u))−
(
¯̀η
t (wt)− ¯̀η

t (u)
)

= η
Bt −Bt−1

Bt
(wt − u)ᵀgt − η2B

2
t −B2

t−1

B2
t

(
(u−wt)

ᵀgt
)2

︸ ︷︷ ︸
≥0

≤ 2η
Bt −Bt−1

Bt
bt ≤ 2η (Bt −Bt−1) .
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Summing over rounds completes the proof.

Next we deal with the clipped surrogate regret. We first handle the case of the early
rounds before aη. The key idea is that when η has not yet woken up, it is very small.
Since the surrogate loss scales with η, it is small as well, even in sum.

Lemma 20. For any η and any u ∈
⋂aη−1
s=1 Ws

aη−1∑
t=1

(
¯̀η
t (wt)− ¯̀η

t (u)
)

︸ ︷︷ ︸
¯̀η-regret of controller w.r.t. u

≤ 1

2
.

Proof. By definition of the clipped surrogate loss ¯̀η
t in (5.4.4), the range bound bt

in (5.2.1) and the wakeup time at in Definition 3,

aη−1∑
t=1

¯̀η
t (wt)− ¯̀η

t (u) ≤
aη−1∑
t=1

η(wt − u)ᵀḡt

≤
∑

t:η≤ 1

4

(∑t−1
s=1 bs

Bs−1
Bs

+Bt−1

)
η2bt

Bt−1

Bt
≤ 1

2
.

In the next subsection we deal with the middle sum in Proposition 1. This part only
depends on the construction of the controller. We deal with the final sum in the
section after that.

5.11.2 Controller surrogate regret bound

The controller is a specialists algorithm, which sometimes resets. We call the time
segments between resets epochs. In every epoch, the controller guarantees a certain
specialists regret bound w.r.t. any η-expert in its grid.

The η-expert that we need can be active during several epochs. Our strategy,
following Mhammedi et al. (2019), will be the following. We incur the controller
regret in the last and one-before-last epochs. We further separately prove, using the
reset condition, that the total regret in all earlier epochs is small.

Theorem 27. Consider an epoch starting at time τ + 1 and fix any later time t in
that same epoch. Fix any grid point η ∈ G not expired after t rounds (meaning
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η ≤ 1
2Bt−1

). Then the MetaGrad controller guarantees

∑
s∈(τ,t]:s≥aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t )
)

︸ ︷︷ ︸
specialist ¯̀η-regret of controller w.r.t. η-expert on (τ, t]

≤ ln

⌈
2 log2

(
t−1∑
s=1

bs
Bs

+ 1

)⌉
+

.

Note that it is not important what the η-experts do at this point, the only feature that
we use in the proof is thatwη

t ∈ Wt for each active η. Also, note that the right-hand
side is O(ln lnT ). We choose to stay with the current more detailed expression as
it can be much smaller. This occurs whenever the actually observed loss ranges bs
are smaller than their respective upper bounds Bs.

Proof. We first observe that Algorithm 10, as far as it maintains the weights pt(η)

between resets, implements Specialists Exponential Weights (called SBayes by
Freund et al., 1997). In our particular case it is applied to specialists η ∈ G, loss
function η 7→ `ηt (w

η
t ), active set At ⊆ G and uniform (improper) prior on G. The

specialists regret bound (Freund et al., 1997, Theorem 1) directly yields3

∑
s∈(τ,t]:s≥aη

− ln E
pt(η)

[
e−

¯̀η
t (wηt )

]
≤ ln

∣∣∣∣∣∣
⋃

s∈(τ,t]

As

∣∣∣∣∣∣+
∑

s∈(τ,t]:s≥aη

¯̀η
t (w

η
t ).

Algorithm 10 further chooses the controller iterate

wt =
Ept(η) [ηwη

t ]

Ept(η) [η]

which we claim ensures that

0 ≤ − ln E
pt(η)

[
e−

¯̀η
t (wηt )

]
.

To see why, we use the definition (5.4.4) of clipped loss and gradient to obtain
(wt −wη

t )ᵀḡt ≥ −2Bt−1, and we further use that pt is supported on At, which
implies that η ≤ 1

4Bt−1
. Together these license4 the “prod bound” (ex−x

2 ≤ 1 + x

3Our improper prior does not cause any trouble here, because renormalizing the prior, in hindsight,
to the finite set of η-experts that were ever active preserves the algorithm’s output and hence its regret
bound.

4Here we motivate our controller algorithm using the loss function η 7→ ¯̀η
t (wη

t ). One can
alternatively base it on the loss function η 7→ − ln (1 + η(wt −wη

t )ᵀḡt) (These two versions are
called Squint and iProd respectively by Koolen and Van Erven, 2015). As the second is always
smaller (by the prod bound), using it would give a strictly tighter theorem here. We do not see a way
to ultimately harvest this gain, as we would still need to invoke the prod bound at a later point in the
analysis to express our regret bound in second-order form. We chose to present the “Squint-style”
version here as we believe it is the more intuitive of the two.
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for x ≥ −1
2 ) yielding

− ln E
pt(η)

[
e−

¯̀η
t (wηt )

]
≥ − ln E

pt(η)
[1 + η(wt −wη

t )ᵀḡt] = 0.

Inserting `ηt (wt) = 0, this implies

∑
s∈(τ,t]:s≥aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t )
)
≤ ln

∣∣∣∣∣∣
⋃

s∈(τ,t]

As

∣∣∣∣∣∣ .
It remains to bound the maximum number of awake grid-points during any epoch.
Recall that the active set at any time t is

At =

 1

4
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

) , 1

4Bt−1


Both endpoints are decreasing with t. Since our epoch starts at time τ + 1, the
maximal η awake in the epoch is

max
{
η ∈ G

∣∣∣ η ≤ 1

4Bτ

}
.

As the epoch lasts until at least time t ≥ τ + 1, the smallest η active in the epoch is

min

{
η ∈ G

∣∣∣∣ η ≥ 1

4
(∑t−1

s=1 bs
Bs−1

Bs
+Bt−1

)}.
And since G is exponentially spaced with base 2, the maximum number of η that
could possibly have been awake islog2

(∑t−1
s=1 bs

Bs−1

Bs
+Bt−1

)
Bτ

 ≤
log2

Bt−1

(∑t−1
s=1

bs
Bs

+ 1
)

Bτ


(5.4.3)

≤

⌈
log2

((
t−1∑
s=1

bs
Bs

)(
t−1∑
s=1

bs
Bs

+ 1

))⌉

≤

⌈
2 log2

(
t−1∑
s=1

bs
Bs

+ 1

)⌉
+

,

so our prior costs for the improper (uniform on G) prior are upper bounded by

ln

∣∣∣∣∣∣
⋃

s∈(τ,t]

As

∣∣∣∣∣∣ ≤ ln

⌈
2 log2

(
t−1∑
s=1

bs
Bs

+ 1

)⌉
+

. (5.11.1)
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We now have a specialists regret bound that we can apply to each epoch.

Lemma 21 (Total regret in far past is small). Consider two consecutive epochs,
starting after τ1 < τ2, and let η be not expired after τ1 rounds. Then∑

s∈[1,τ1],s≥aη

(
¯̀η
s(ws)− ¯̀η

s(w
η
s )
)
≤ 2ηBτ2

Proof.

−
∑

s∈[1,τ1],s≥aη

¯̀η
s(w

η
s ) ≤ 2η

τ1∑
s=1

bs
Bs−1

Bs
≤ 2ηBτ1

τ1∑
s=1

bs
Bs

≤ 2ηBτ1

τ2∑
s=1

bs
Bs

≤ 2ηBτ2 ,

where the last inequality is the reset condition (5.4.3) at time τ2.

We are now ready to compose the main theorem.

Theorem 28 (Overall controller specialists regret bound). Let η be not expired after
T rounds. Then

T∑
t=aη

(
¯̀η
t (wt)− ¯̀η

t (w
η
t )
)
≤ 2ηBT + 2 ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
. (5.11.2)

Proof. We make a case distinction based on the number of epochs started by the
algorithm. First, let us check the general case of ≥ 3 epochs (at least two normal
epochs after the startup epoch). We apply the controller regret bound, Theorem 27,
to the last two epochs each. Suppose these start after τ1 and τ2. For any η ∈ G not
expired, we find

−
∑

t∈(τ1,τ2],t≥aη

¯̀η
t (w

η
t )−

∑
t∈(τ2,T ],t≥aη

¯̀η
t (w

η
t )

≤ ln

⌈
2 log2

(
τ2−1∑
s=1

bs
Bs

+ 1

)⌉
+ ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
.

The regret on all epochs except the last two is bounded by Lemma 21. So together
we obtain the theorem. Alternatively, suppose there are 2 epochs. Then, since we
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get no clipped regret in the 1st epoch, we apply the controller regret bound only in
the second epoch to get

−
∑

t∈[1,T ],t≥aη

¯̀η
t (w

η
t ) ≤ ln

⌈
2 log2

(
T−1∑
t=1

bt
Bt

+ 1

)⌉
,

and (5.11.2) also holds. Finally, if there is only 1 epoch, then our clipped regret is 0
because nobody is awake, so (5.11.2) also holds.

5.12 Proof of Lemma 16

Proof. The η-expert algorithm implements the exponentially weighted average fore-
caster with `ηt as the quadratic loss, unit learning rate, and with greedy projections
(of the mean) ontoWt. By (Hazan et al., 2007, Proof of Theorem 2), we obtain that

T∑
t=aη

(`ηt (w
η
t )− `ηt (u)) ≤

‖u‖22
2D̂2

+
1

2

T∑
t=aη

g′ᵀt Ση
t+1g

′
t

where g′t = η (1 + 2η 〈wt −wη
t , gt〉) gt and where we recall that (Ση

t+1)−1 =
1
D̂2
I + 2η2

∑t
s=aη gsg

ᵀ
s . Expanding, we obtain

g′ᵀt Ση
t+1g

′
t =

1

2
(1 + 2η 〈wt −wη

t , gt〉)
2 · 2η2gᵀt

(
1

D̂2
I + 2η2

t∑
s=aη

gsg
ᵀ
s

)−1

gt

Now we may use that

1

2
(1 + 2η 〈wt −wη

t , gt〉)
2 ≤ 1

2
(1 + 4ηbt)

2 ≤ 1

2
(1 + 1)2 = 2 (5.12.1)

by the assumed upper bound on η. Moreover, by concavity of the log determinant,
we have

2η2gᵀt

(
1

D̂2
I + 2η2

t∑
s=aη

gsg
ᵀ
s

)−1

gt

≤ ln det

(
1

D̂2
I + 2η2

t∑
s=aη

gsg
ᵀ
s

)
− ln det

(
1

D̂2
I + 2η2

t−1∑
s=aη

gsg
ᵀ
s

)
.

Summing over rounds and telescoping, we find

1

2

T∑
t=aη

g′ᵀt Ση
t+1g

′
t ≤ ln det

(
I + 2η2D̂2

T∑
t=aη

gtg
ᵀ
t

)
and obtain the result.
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5.13 Composition Proofs of Theorems 23 and 25

We combine the proofs of Theorems 23 and 25, which are both special cases of the
following more abstract result:

Theorem 29. Suppose there exist a number ω ≥ 0 and a positive semi-definite
matrix F ′ such that the linearized regret is at most

R̃uT ≤ ηω+
ln det

(
I + 2η2D̂2F ′

)
+ 1

2D̂2
‖u‖22 + 2 ln d2 log2QT e+ + 1

2

η
+4BT .

Then the linearized regret is both bounded by

R̃uT ≤
5

2

√
ω( 1

2D̂2
‖u‖22 + ZT ) + 10BT ( 1

2D̂2
‖u‖22 + ZT ) + 4BT ,

where ZT = rk(F ′) ln
(

1 +
D̂2
∑T
t=1 ‖gt‖22

8B2
T rk(F ′)

)
+ 2 ln d2 log2 T e+ + 1

2 , and by

R̃uT ≤
5

2

√(
ω + 2D̂2 tr(F ′)

)(
1

2D̂2
‖u‖22 + Z ′T

)
+10BT

(
1

2D̂2
‖u‖22+Z ′T

)
+4BT ,

where Z ′T = 2 ln d2 log2 T e+ + 1
2 .

Theorem 23 corresponds to the case ω = V uT and F ′ = FT , such that Tr(F ′) =∑T
t=1 ‖gt‖22; Theorem 25 is obtained with ω = V uT +

2D̂2mΩq
m−q and F ′ = Sᵀ

TST .
The precondition of Theorem 29 is established by Theorems 22 and 24, respectively.

To prove Theorem 29 we start with a general lemma about optimizing in η:

Lemma 22. For any X,Y > 0,

min
η∈G : η≤ 1

4BT

ηX +
Y

η
≤ 5

2

√
XY + 10BTY.

Proof. Let us denote the unconstrained optimizer of the left-hand side by η̂ =√
Y/X . We distinguish two cases: first, when η̂ ≤ 1

4BT
, we upper bound the

left-hand side by choosing the closest grid point η ∈ G below η̂ (which, in the worst
case, is at η̂/2) to obtain

min
η∈G : η≤ 1

4BT

ηX +
Y

η
≤ max

η∈[η̂/2,η̂]
ηX +

Y

η
=

5

2

√
XY .
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In the second case, if η̂ > 1
4BT

, we plug in the highest available grid point (for
which the worst case is 1

8BT
) to find

min
η∈G : η≤ 1

4BT

ηX +
Y

η
≤ 1

8BT
X + 8BTY < 10BTY,

where the second inequality follows by the assumption that η̂ > 1
4BT

. In both cases
the conclusion of the lemma follows.

Proof. (Theorem 29) We start with the first claim of the theorem. By assumption,
for any η ≤ 1

4BT
in the grid G, we have

R̃uT ≤ ηω +
A

η
+ 4BT

where A = ln det

(
I +

1

8B2
T

D̂2F ′
)

+
1

2D̂2
‖u‖22+2 ln d2 log2 T e+

1

2
.

Lemma 22 therefore implies that

R̃uT ≤
5

2

√
ωA+ 10BTA+ 4BT .

The proof of the first claim follows by applying the inequality log det(I +M) ≤
rk(M) log

(
1 + Tr(M)

rk(M)

)
(see Lemma 23 below) to the matrixM = 1

8B2
T
D̂2F ′.

For the second claim of the theorem, we again start from Theorem 22 and now
bound ln det(I +M) ≤ Tr(M) for M = 2η2D̂2F ′ (again see Lemma 23) to
obtain

R̃uT ≤ ηω + 2ηD̂2 tr(F ′) +
A′

η
+ 4BT

where
A′ =

1

2D̂2
‖u‖22 + 2 ln d2 log2 T e+

1

2
.

Using Lemma 22, the second claim follows, which completes the proof of the
theorem.

Lemma 23. For any positive semi-definite matrixM ∈ Rd

log det(I +M) ≤ rk(M) log

(
1 +

Tr(M)

rk(M)

)
and

log det(I +M) ≤ Tr(M).
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Proof. Let λ1, . . . , λd be the eigenvalues ofM . Then (1 + λ1), . . . , (1 + λd) are
the eigenvalues of I +M , and Jensen’s inequality implies

log det(I +M) =

d∑
i=1

log(1 + λi) = rk(M)
∑
i:λi 6=0

1

rk(M)
log(1 + λi)

≤ rk(M) log

1 +
∑
i:λi 6=0

λi
rk(M)

 = rk(M) log

(
1 +

Tr(M)

rk(M)

)
,

which proves the first inequality. The second inequality follows because

log det(I +M) =
d∑
i=1

log(1 + λi) ≤
d∑
i=1

λi = Tr(M).

5.14 Bernstein for Linearized Excess Loss

Let f : W → R be a convex function drawn from distribution P with stochastic
optimum u∗ = arg minu∈W Ef∼P[f(u)]. For anyw ∈ W , we now show that the
Bernstein condition for the excess loss X := f(w)− f(u∗) implies the Bernstein
condition with the same exponent β for the linearized excess loss Y := (w −
u∗)ᵀ∇f(w). These variables satisfy Y ≥ X by convexity of f and Y ≤ C :=

D′G′.

Lemma 24. For β ∈ (0, 1], let X be a (B, β)-Bernstein random variable:

E[X2] ≤ B E[X]β.

Then any bounded random variable Y ≤ C with Y ≥ X pointwise satisfies the
(B′, β)-Bernstein condition

E[Y 2] ≤ B′ E[Y ]β

for B′ = max
{
B, 2

βC
2−β
}

.

Proof. For β ∈ (0, 1) we will use the fact that

zβ = cβ inf
γ>0

(
z

γ
+ γ

β
1−β

)
for any z ≥ 0,
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with cβ = (1− β)1−βββ . For γ =
(

1−β
β E[Y ]

)1−β
we therefore have

E[X2]−B′ E[X]β ≥ E[X2]−B′cβ
(
E[X]

γ
+ γ

β
1−β

)
≥ E[Y 2]−B′cβ

(
E[Y ]

γ
+ γ

β
1−β

)
(5.14.1)

= E[Y 2]−B′ E[Y ]β, (5.14.2)

where the second inequality holds because x2 − cβB′x/γ is a decreasing function
of x ≤ C for γ ≤ cβB

′

2C , which is satisfied by the choice of B′. This proves the
lemma for β ∈ (0, 1). The claim for β = 1 follows by taking the limit β → 1 in
(5.14.2).

5.15 Details of Experiments

Algorithm D̂ Domain Domain Parameter G

AdaGrad 3‖u‖∞ Wt = {w : ‖w‖∞ ≤ D} D = 3‖u‖∞ ·

GDn 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| ·

GDt 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| maxs≤t ‖gs‖2

MGFull 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| ·

MGDiag 3‖u‖∞ Wt = {w : ‖w‖∞ ≤ D} D = 3‖u‖∞ ·

MGF1 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| ·

MGF10 3‖u‖2 Wt = {w : |〈w,xt〉| ≤ C} C = 3 maxt |〈u,xt〉| ·

Table 5.1: The settings of each algorithm.
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Dataset T d Outcome P(y = 1)

a9a 32561 123 binary 0.24

abalone 4177 8 real

australian 690 14 binary 0.44

bodyfat 252 14 real

breast-cancer 683 9 binary 0.35

covtype 581012 54 binary 0.49

cpusmall 8192 12 real

diabetes 768 8 binary 0.65

heart 270 13 binary 0.44

housing 506 13 real

ijcnn1 91701 22 binary 0.10

ionosphere 351 34 binary 0.64

mg 1385 6 real

space_ga 3107 6 real

splice 1000 60 binary 0.52

w1atest 47272 300 binary 0.03

w8a 49479 300 binary 0.03

Table 5.2: Summary of the datasets used in the experiments.
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Dataset Loss AdaGrad GDnorm GDt MGCo MGF1 MGF10 MGF25 MGF50 MGFull

a9a hinge 85411 12712 7619 17012 14064 10821 10354 9858 9743

a9a logistic 9185 2158 1109 1340 2306 1732 1668 1590 1568

abalone absolute 4144 2529 1959 1317 2738 938 938 938 939

abalone squared 23051 12484 10545 6725 9607 5900 5900 5900 5901

australian hinge 124 42 32 41 46 35 35 35 35

australian logistic 511 156 112 48 42 39 39 39 39

bodyfat absolute 125 38 30 30 34 24 24 24 24

bodyfat squared 60 5 4 10 10 10 10 10 10

breast-cancer hinge 98 36 28 24 25 25 25 25 25

breast-cancer logistic 107 41 33 25 36 36 36 36 36

covtype hinge 445023 83124 48461 66797 121064 67126 59301 42043 41985

covtype logistic 24043 11065 5157 4713 17698 10009 8662 5155 5147

cpusmall absolute 183731 67098 61563 40537 89234 13974 13818 13818 13946

cpusmall squared 2671536 806408 894232 561505 728070 358831 358832 358832 358833

diabetes hinge 203 107 91 75 95 56 56 56 55

diabetes logistic 147 80 58 53 54 49 49 49 49

heart hinge 127 77 59 35 46 38 38 38 38

heart logistic 127 71 47 30 30 30 30 30 30

housing absolute 3301 1282 1147 946 1044 888 886 886 886

housing squared 33324 15560 15909 20191 22244 22333 22336 22336 22336

ijcnn1 hinge 4413 1216 537 885 1522 1156 883 883 883

ijcnn1 logistic 4912 1404 795 976 1559 1219 1013 1013 1013

ionosphere hinge 1245 431 299 169 166 150 150 150 150

ionosphere logistic 2564 730 480 240 172 157 156 156 156

mg absolute 85 33 26 30 45 29 29 29 28

mg squared 31 10 4 19 28 28 28 28 28

space_ga absolute 441 314 208 133 370 92 92 92 91

space_ga squared 354 115 71 40 69 53 53 53 53

splice hinge 1296 369 315 243 242 235 234 234 225

splice logistic 1636 323 293 183 175 173 171 168 166

w1atest hinge 134146 52780 67627 16910 17951 17436 16815 17143 16636

w1atest logistic 28340 7500 8735 2498 2436 2271 2229 2207 2182

w8a hinge 152227 60303 90302 18789 20764 19872 19783 19239 19229

w8a logistic 36683 8370 13620 3324 2725 2519 2449 2421 2392

Table 5.3: The regret of each algorithm for the various datasets and loss functions. Boldface
indicates smallest regret.
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CHAPTER 6
Exploiting the Surrogate Gap in
Online Multiclass Classification

This chapter is based on Van der Hoeven, D. (2020). Exploiting the surrogate gap
in online multiclass classification. To Appear in Advances in Neural Information
Processing Systems 33.

Abstract

We present GAPTRON, a randomized first-order algorithm for online multiclass
classification. In the full information setting we show expected mistake bounds
with respect to the logistic loss, hinge loss, and the smooth hinge loss with O(K)

expected surrogate regret, where the expectation is with respect to the learner’s
randomness and K is the number of classes. In the bandit classification setting
we show that GAPTRON is the first linear time algorithm with O(K

√
T ) expected

surrogate regret. Additionally, the expected mistake bound of GAPTRON does not
depend on the dimension of the feature vector, contrary to previous algorithms with
O(K

√
T ) surrogate regret in the bandit classification setting. We present a new

proof technique that exploits the gap between the zero-one loss and surrogate losses
rather than exploiting properties such as exp-concavity or mixability, which are
traditionally used to prove logarithmic or constant regret bounds.
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6.1 Introduction

In online multiclass classification a learner has to repeatedly predict the label that
corresponds to a feature vector. Algorithms in this setting have a wide range of
applications ranging from predicting the outcomes of sport matches to recommender
systems. In some applications such as sport forecasting the learner obtains the
true label regardless of what outcome the learner predicts, but in other applications
such as recommender systems the learner only learns whether or not the label he
predicted was the true label. The setting in which the learner receives the true
label is called the full information multiclass classification setting and the setting in
which the learner only receives information about the predicted label is called the
bandit multiclass classification setting.

In this chapter we consider both the full information and bandit multiclass clas-
sification settings. In both settings the environment chooses the true outcome
yt ∈ {1, . . . ,K} and feature vector xt ∈ Rd. The environment then reveals the
feature vector to the learner, after which the learner issues a (randomized) pre-
diction y′t ∈ {1, . . . ,K}. The goal of both settings is to minimize the number of
expected mistakes the learner makes with respect to the best offline linear predictor
U ∈ RK×d, where each row of U essentially keeps track of a linear predictor for
each class. Standard practice in both settings is to upper bound the non-convex
zero-one loss with a convex surrogate loss `t (see for example Bartlett et al. (2006)).
This leads to guarantees of the form

E

[
T∑
t=1

11[y′t 6= yt]

]
= E

[
T∑
t=1

`t(U)

]
+ R̃T ,

where 11 is the indicator function, yt is the true label, the expectation is taken with
respect to the learner’s randomness, and R̃T is the surrogate regret after T rounds.

We introduce GAPTRON, which is a randomized first-order algorithm that exploits
the gap between the zero-one loss and the surrogate loss. In the full information
multiclass classification setting GAPTRON has O(K) surrogate regret with respect
various surrogate losses. In the bandit multiclass classification setting we show
that GAPTRON has O(K

√
T ) surrogate regret with respect to the same surrogate

losses as in the full information setting. Importantly, our surrogate regret bounds
do not depend on the dimension of the feature vector in either the full or bandit
information setting, contrary to previous results with comparable surrogate regret
bounds. Furthermore, in the bandit multiclass classification setting GAPTRON is
the first O(dK) running time algorithm with O(K

√
T ) surrogate regret.
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To achieve these results we develop a new proof technique. Standard approaches
that lead to small surrogate regret bounds exploit properties of the surrogate loss
function such as strong convexity, exp-concavity (Hazan et al., 2007), or mixability
(Vovk, 2001). Instead, inspired by the recent success of Neu and Zhivotovskiy
(2020) in online classification with abstention1, we exploit the gap between the
zero-one loss, which is used to measure the performance of the learner, and the
surrogate loss, which is used to measure the performance of the comparator U ,
hence the name GAPTRON.

For an overview of our results and a comparison to previous work see Table
6.1. Here we briefly discuss the most relevant literature to place our results into
perspective. A more detailed comparison can be found in the relevant sections. The
full information multiclass classification setting is well understood and has been
studied by many authors. Perhaps the most well known algorithm in this setting
is the PERCEPTRON (Rosenblatt, 1958) and its multiclass versions (Crammer and
Singer, 2003; Fink et al., 2006). The PERCEPTRON is a deterministic first-order
algorithm which has O(

√
T ) surrogate regret with respect to the hinge loss in the

worst-case. Variants of the PERCEPTRON such as AROW (Crammer et al., 2009)
and the second-order PERCEPTRON (Cesa-Bianchi et al., 2005) are second-order
methods which result in a possibly smaller surrogate regret at the cost of longer
running time. Online logistic regression (Berkson, 1944) is an alternative to the
PERCEPTRON which has been thoroughly studied. For an overview of results for
online logistic regression we refer the reader to Shamir (2020). We mention a
recent result by Foster et al. (2018a), who use Exponential Weights (Vovk, 1990;
Littlestone and Warmuth, 1994) to optimize the logistic loss and obtain a surrogate
regret bound of order O(dK ln(DT + 1)), where D is an upper bound on the
Frobenius norm of U , with a polynomial time algorithm.

The bandit multiclass classification setting was first studied by Kakade et al. (2008)
and is a special case of the contextual bandit setting (Langford and Zhang, 2008).
Kakade et al. (2008) present a first-order algorithm called BANDITRON with a
O((DK)1/3T 2/3) surrogate regret bound with respect to the hinge loss. The im-
practical EXP4 algorithm (Auer et al., 2002) has aO(

√
TdK ln(T + 1)) surrogate

regret bound and Abernethy and Rakhlin (2009) posed the problem of obtaining
a practical algorithm which attains an O(K

√
T ) surrogate regret bound. Several

authors have proposed polynomial running time algorithms that have a surrogate
regret bound of order O(K

√
dT log(T + 1)) such as NEWTRON (Hazan and Kale,

2011), SOBA (Beygelzimer et al., 2017), and OBAMA (Foster et al., 2018a).
1In fact, in Section 6.10 we slightly generalize the results of Neu and Zhivotovskiy (2020).
2These results hold for a family of loss functions parametrized by κ ∈ [0, 1], which includes the
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Table 6.1: Main results and comparisons with previous work (see Section 6.2 for notation).
The references are for the surrogate regret bounds, not necessarily for the first analysis of
the algorithm. For this table we assume that ‖xt‖ ≤ 1 ∀t and denote by LT =

∑T
t=1 `t(U)

the sum of the surrogate losses of the comparator.

Algorithm Loss surrogate regret full information setting surrogate regret bandit setting Time (per round)

PERCEPTRON(Fink et al.,
2006; Kakade et al., 2008)

hinge O(‖U‖2 + ‖U‖
√
LT ) O((DK)1/3T 2/3) O(dK)

Second-Order PER-
CEPTRON (Orabona et al.,
2012; Beygelzimer et al.,
2017)

hinge2 O( κ
2−κ‖U‖

2 + dK
κ(2−κ) ln(LT )) O(‖U‖2 + K

κ

√
dT ln(T )) O((dK)2)

ONS (Hazan et al., 2014;
Hazan and Kale, 2011)

logistic O(exp(D)dK ln(T )) O(dK3DT 2/3) O((dK)2)

Vovk’s Aggregating Al-
gorithm (Foster et al.,
2018a)

logistic O(dK ln(DT )) O(K
√
dT ln(DT )) O(max{dK, T}12)

GAPTRON (This work) logistic,
hinge,
smooth
hinge

O(K‖U‖2) O(KD
√
T ) O(dK)

6.2 Preliminaries

Notation. Let 1 and 0 denote vectors with only ones and zeros respectively and
let ek denote the basis vector in direction k. The inner product between vectors
g ∈ Rd and w ∈ Rd is denoted by 〈w, g〉. The rows of matrix W ∈ RK×d are
denoted by W 1, . . . ,WK . We will interchangeably use W to denote a matrix
and a column vector in RKd to avoid unnecessary notation. The vector form of
matrix W is (W 1, . . . ,WK)ᵀ. The Frobenius norm of matrix W is denoted by

‖W ‖ =
√∑K

k=1

∑d
i=1W

2
k,i. Likewise the l2 norm of vector x is denoted by

‖x‖ =
√∑d

i=1 x
2
i . We denote the Kronecker product between matricesW and U

byW ⊗U . For a given round t we use Et[·] to denote the conditional expectation
given the predictions y′1, y

′
2, . . . , y

′
t−1.

6.2.1 Multiclass Classification

The multiclass classification setting proceeds in rounds t = 1, . . . , T . In each
round t the environment first picks an outcome yt ∈ {1, . . .K} and feature vector
xt such that ‖xt‖ ≤ X for all t. Before the learner makes his prediction y′t the
environment reveals the feature vector xt which the learner may use to form y′t.
In the full information multiclass classification setting, after the learner has issued
y′t, the environment reveals the outcome yt to the learner. In the bandit multiclass

hinge loss.
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Algorithm 13 GAPTRON

Input: Learning rate η > 0, exploration rate γ ∈ [0, 1], and gap map a : RK×d ×
Rd → [0, 1]

1: InitializeW1 = 0
2: for t = 1 . . . T do
3: Obtain xt
4: Let y?t = arg maxk〈W k

t ,xt〉
5: Set p′t = (1−max{a(Wt,xt), γ})ey?t + max{a(Wt,xt), γ} 1

K1
6: Predict with label y′t ∼ p′t
7: Obtain 11[y′t 6= yt] and set gt = ∇`t(Wt)
8: UpdateWt+1 = arg minW∈W η〈gt,W 〉+ 1

2‖W −Wt‖2
9: end for

classification setting (Kakade et al., 2008) the environment only reveals whether
the prediction of the learner was correct or not, i.e. 11[y′t 6= yt]. We only consider
the adversarial setting, which means that we make no assumptions on how yt or xt
is generated. In both settings we allow the learner to use randomized predictions.
The goal of the multiclass classification setting is to control the number of expected
mistakes the learner makes in T rounds: MT = E

[∑T
t=1 11[y′t 6= yt]

]
, where the

expectation is taken with respect to the learner’s randomness.

Since the zero-one loss is non-convex a standard approach is to use a surrogate loss
`t as a function of a weight matrixWt ∈ W , whereW = {W : ‖W ‖ ≤ D}. The
surrogate loss function is a convex upper bound on the zero-one loss, which is then
optimized using an Online Convex Optimization algorithm such as Online Gradient
Descent (OGD) (Zinkevich, 2003), Online Newton Step (ONS) (Hazan et al., 2007),
or Exponential Weights (EW) (Vovk, 1990; Littlestone and Warmuth, 1994). In
this chapter we treat three surrogate loss functions: logistic loss, the hinge loss, and
the smooth hinge loss, all of which result in different guarantees on the number of
expected mistakes a learner makes.

6.3 GAPTRON

In this section we discuss GAPTRON (Algorithm 13). The prediction y′t is sampled
from

p′t = (1−max{a(Wt,xt), γ})ey?t + max{a(Wt,xt), γ}
1

K
1,

where γ ∈ [0, 1], a : RK×d × Rd → [0, 1], y?t = arg maxk〈W k
t ,xt〉, and ey?t is

the basis vector in direction y?t . In the full information setting γ is set to 0 but in
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the bandit setting γ is used to guarantee that each label is sampled with at least
probability γ

K , which is a common strategy in bandit algorithms (see for example
Auer et al. (2002)). The fact that each label is sampled with at least probability γ

K

is important because in the bandit setting we use importance weighting to form
estimated surrogate losses `t and their gradients gt = ∇`t(Wt) and we need to
control the variance of these estimates. The main difference between GAPTRON and
standard algorithms for multiclass classification is the a function, which governs
the mixture that forms p′t. In fact, if we set a(W ,x) = 0, γ = 0, and choose `t to
be the hinge loss we recover an algorithm that closely resembles the PERCEPTRON

(Rosenblatt, 1958), which can be interpreted as OGD on the hinge loss3. GAPTRON

also uses OGD, which is used to update weight matrixWt, which in turn is used to
form distribution p′t. For convenience we will define at = a(Wt,xt).

The role of a, which we will refer to as the gap map, is to exploit the gap between
the surrogate loss and the zero-one loss. Before we explain how we exploit said gap
we first present the expected mistake bound of GAPTRON in Lemma 25. The proof
of Lemma 25 follows from applying the regret bound of OGD and working out the
expected number of mistakes. The formal proof can be found in Section 6.7.

Lemma 25. For any U ∈ W Algorithm 13 satisfies

E

[
T∑
t=1

11[y′t 6= yt]

]

≤ E

[
T∑
t=1

`t(U)

]
+
‖U‖2

2η
+ γ

K − 1

K
T

+

T∑
t=1

E
[
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

]
︸ ︷︷ ︸

surrogate gap

.

As we mentioned before, standard classifiers such as the PERCEPTRON simply set
a(W ,x) = 0 and upper bound 11[y?t 6= yt]− `t(Wt) by 0. In the full information

setting we can set γ = 0 and η =

√
‖U‖2∑T
t=1 ‖gt‖2

to obtain4 MT ≤
∑T

t=1 `t(U) +

‖U‖
√∑T

t=1 ‖gt‖2. However, the gap between the surrogate loss and the zero-one

3Other interpretations exist which lead to possibly better guarantees, see for example Beygelzimer
et al. (2017).

4Although such tuning is impossible due to not knowing ‖U‖ or
∑T
t=1 ‖gt‖

2 there exist al-
gorithms that are able to achieve the same guarantee up to logarithmic factors, see for example
Cutkosky and Orabona (2018).
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Figure 6.1: The surrogate gap for the smooth hinge loss as a function of margin z with
η = 1

8 , γ = 0, and ‖x‖ = 1. The solid red line is given by 11[z ≤ 0] + η
2‖g‖

2, where
‖g‖2 = 4(1 − z)2 if z > 0 and ‖g‖2 = 4 otherwise. The solid blue line is given by
(1− (1− |z|)2)11[z ≤ 0] + 1

2 (1− |z|)2 + η
2‖g‖

2. The surrogate gap is positive whenever
the red or blue line is above the green line.

loss can be large. In fact, even with a(W ,x) = 0, the gap between the zero-one
loss and the surrogate loss is large enough to bound 11[y?t 6= yt]− `t(Wt) + η

2‖gt‖
2

by 0 for some loss functions and values ofWt and xt.

In Figure 6.1 we can see a depiction of the surrogate gap for the smooth hinge loss
for K = 2 (Rennie and Srebro, 2005) in the full information setting (see Section
6.4.3 for the definition of the smooth multiclass hinge loss). In the case where
K = 2,W is a vector rather than a matrix and outcomes yt are coded as {−1, 1}.
We see that with a(W ,x) = 0, only when margin z = y〈W ,x〉 ∈ [−0.125, 0] the
surrogate gap is not upper bounded by 0. Decreasing η would increase the range for
which the surrogate gap is bounded by zero, but only for η = 0 the surrogate gap
is bounded by 0 everywhere. However, with a(W ,x) = (1− |z|)2 the surrogate
gap is upper bounded by 0 for all z, which leads to constant surrogate regret. The
remainder of the chapter is concerned with deriving different a for different loss
functions for which the surrogate gap is bounded by 0. In the following section we
start in the full information setting.

6.4 Full Information Multiclass Classification

In this section we derive gap maps that allow us to upper bound the surrogate gap
by 0 for the logistic loss, hinge loss, and smooth hinge loss in the full information
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setting. Throughout this section we will set γ = 0. We start with the result for
logistic loss.

6.4.1 Logistic Loss

The logistic loss is defined as

`t(W ) =− log2(σ(W ,xt, yt)), (6.4.1)

where σ(W ,x, k) = exp(〈W k,x〉)∑K
k̃=1

exp(〈W k̃,x〉)
is the softmax function. For the logistic

loss we will use the following gap map:

a(Wt,xt) = 1− 11[p?t ≥ 0.5]p?t ,

where p?t = maxk σ(Wt,xt, k). This means that GAPTRON samples a label
uniformly at random as long as p?t ≤ 0.5. While this may appear counter-intuitive
at first sight note that when p?t < 0.5 the zero-one loss is upper bounded by the
logistic loss regardless of what we play since − log2(p) ≥ 1 for p ∈ [0, 0.5], which
we use to show that the surrogate gap is bounded by 0 whenever p?t < 0.5. The
mistake bound of GAPTRON can be found in Theorem 30. To prove Theorem 30 we
show that the surrogate gap is bounded by 0 and then use Lemma 25. The formal
proof can be found in Section 6.8.1.

Theorem 30. Let a(Wt,xt) = 1 − 11[p?t ≥ 0.5]p?t , η = ln(2)
2KX2 , γ = 0, and let `t

be the logistic loss defined in (6.4.1). Then for any U ∈ W Algorithm 13 satisfies

E

[
T∑
t=1

11[y′t 6= yt]

]
≤

T∑
t=1

`t(U) +
KX2‖U‖2

ln(2)
.

Let us compare the mistake bound of GAPTRON with other results for logistic
loss. Foster et al. (2018a) circumvent a lower bound for online logistic regres-
sion by Hazan et al. (2014) by using an improper learning algorithm and achieve
O(dK ln(DT + 1)) surrogate regret. Unfortunately this algorithm is impractical
since the running time can be of order O(D6 max{dK, T}12T ). In the case where
K = 2 Jézéquel et al. (2020) provide a faster improper learning algorithm called
AIOLI based on the Vovk-Azoury-Warmuth forecaster (Vovk, 2001; Azoury and
Warmuth, 2001) that has running time O(d2T ) and a surrogate regret of order
O(dD ln(T )). Unfortunately it is not known if AIOLI can be extended to K > 2.
An alternative algorithm is ONS, which has running time O((dK)2T ) but a surrog-
ate regret bound of order O(exp(D)dK ln(T + 1)). With standard OGD we could
degrade the dependence on T to improve the dependence on D to find a surrogate
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regret of order O(D
√
T ) with an algorithm that has running time O(dKT ). De-

pending on ‖U‖2 the surrogate regret of GAPTRON can be significantly smaller
than the surrogate regret of the aforementioned algorithms as the surrogate regret of
GAPTRON is independent of T and d. Furthermore, since GAPTRON uses OGD to
updateWt the running time is O(dKT ), significantly improving upon the running
time of previous algorithms with comparable mistake bounds.

6.4.2 Multiclass Hinge Loss

We use a variant of the multiclass hinge loss of Crammer and Singer (2001), which
is defined as:

`t(W ) =


max{1−mt(W , yt), 0} if m?

t ≤ β
max{1−mt(W , yt), 0} if y?t 6= yt and m?

t > β

0 if y?t = yt and m?
t > β,

(6.4.2)

where mt(Wt, y) = 〈W y
t ,xt〉 −maxk 6=y〈W k

t ,xt〉 and m?
t = maxkmt(Wt, k).

Note that we set `t(W ) = 0 when y?t = yt and m?
t > β. In common implementa-

tions of the PERCEPTRON `t(W ) = 0 whenever y?t = yt (see for example Kakade
et al. (2008)). However, for the surrogate gap to be bounded by zero we need `t
to be positive whenever at > 0 otherwise there is nothing to cancel out the at K−1

K

term. The gap map for the hinge loss is a(Wt,xt) = 1−max{11[m?
t > β],m?

t }.
This means that whenever m?

t > β the predictions of GAPTRON are identical to the
predictions of the PERCEPTRON. The mistake bound of GAPTRON for the hinge
loss can be found in Theorem 31 (its proof is deferred to Section 6.8.2).

Theorem 31. Set a(Wt,xt) = 1−max{11[m?
t > β],m?

t }, η = 1−β
KX2 , γ = 0, and

let `t be the multiclass hinge loss defined in (6.4.2) with β = 1
K . Then for any

U ∈ W Algorithm 13 satisfies

E

[
T∑
t=1

11[y′t 6= yt]

]
≤

T∑
t=1

`t(U) +
K2X2‖U‖2

2(K − 1)
.

Let us compare the mistake bound of GAPTRON with the mistake bound of the
PERCEPTRON. The PERCEPTRON guarantees MT ≤

∑T
t=1 `t(U) + X2‖U‖2 +

2X‖U‖
√

2
∑T

t=1 `t(U) (see Beygelzimer et al. (2017) for a proof). The factor K
in the surrogate regret of GAPTRON is due to the cost of exploring uniformly at
random. For small K the mistake bound of GAPTRON can be significantly smaller
in the adversarial case, but for large K the cost of sampling uniformly at random
can be too high and the mistake bound of GAPTRON can be larger than that of
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the PERCEPTRON. In the separable case the PERCEPTRON has a strictly better
guarantee for any K since then only the X2‖U‖2 term remains.

Orabona et al. (2012) show that for all loss functions of the form `t(W ) = max{1−
2

2−κmt(W , yt) + κ
2−κmt(W , yt)

2, 0} the second-order PERCEPTRON guarantees
MT ≤

∑T
t=1 `t(U) + O( κ

2−κX
2‖U‖2 + dK

κ(2−κ) ln(
∑T

t=1 `t(U) + 1). Thus, for
small K GAPTRON always has a smaller surrogate regret term but for larger K the
guarantee of GAPTRON can be worse, although this also depends on the performance
and norm of the comparator U .

6.4.3 Smooth Multiclass Hinge Loss

The smooth multiclass hinge loss (Rennie and Srebro, 2005) is defined as

`t(W ) =

{
max{1− 2mt(W , yt), 0} if mt(W , yt) ≤ 0

max{(1−mt(W , yt))
2, 0} if mt(W , yt) > 0,

(6.4.3)

where mt(Wt, y) = 〈W y
t ,xt〉 −maxk 6=y〈W k

t ,xt〉 as in Section 6.4.3. This loss
function is not exp-concave nor is it strongly-convex. This means that with standard
methods from Online Convex Optimization we cannot hope to achieve a better
surrogate regret bound than O(D

√
T ) in the worst-case. Theorem 32 shows that

with gap map a(Wt,xt) = (1 − min{1,m?
t })2, where m?

t = maxkmt(Wt, k),
GAPTRON has a O(K) surrogate regret bound. The proof of Theorem 32 follows
from bounding the surrogate gap by zero and can be found in Section 6.8.3.

Theorem 32. Set a(Wt,xt) = (1 − min{1,m?
t })2, η = 1

4KX2 , γ = 0, and let
`t be the smooth multiclass hinge loss defined in (6.4.3). Then for any U ∈ W
Algorithm 13 satisfies

E

[
T∑
t=1

11[y′t 6= yt]

]
≤

T∑
t=1

`t(U) + 2KX2‖U‖2.

6.5 Bandit Multiclass Classification

In this section we will analyse GAPTRON in the bandit multiclass classification
setting. While in the full information setting the fact that GAPTRON is a randomized
algorithm can be seen as a drawback, in the adversarial bandit setting it is actually a
requirement (see for example chapter 11 by Lattimore and Szepesvári (2018)). We
will use the same gap maps as in the full information setting. The only difference is
how we feed the surrogate loss to GAPTRON. We will use the same loss functions
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as in the full information setting but now multiplied by 11[y′t = yt]p
′
t(y
′
t)
−1, which

is simply importance weighting. This also means that, compared to the full informa-
tion setting, the gradients that OGD uses to update weight matrixWt are multiplied
by 11[y′t = yt]p

′
t(y
′
t)
−1. To control the surrogate gap we set γ > 0, which allows us

to bound the variance of the norm of the gradients. The proofs in this section follow
the same structure as in the full information setting, with the notable change that
we suffer increased surrogate regret due to the γK−1

K T bias term and the increased
E[‖gt‖2] = O(Kγ ) term.

The results in this section provide three new answers to the open problem by
Abernethy and Rakhlin (2009), who posed the problem of obtaining an efficient
algorithm with O(K

√
T ) surrogate regret. Several solutions with various loss func-

tion have been proposed. Beygelzimer et al. (2017) solved the open problem using
an algorithm called SOBA. SOBA is a second-order algorithm which is analysed us-
ing a family of surrogate loss functions introduced by Orabona et al. (2012) ranging
from the standard multiclass hinge loss to the squared multiclass hinge loss. The
loss functions are parameterized by κ, where κ = 0 corresponds to the multiclass
hinge loss and κ = 1 corresponds to the squared hinge loss. Simultaneously for all
surrogate loss functions in the family of loss functions SOBA suffers a surrogate
regret of order O(‖U‖2X2 + K

κ

√
dT ln(T + 1)) and has a running time of order

O((dK)2T ). Hazan and Kale (2011) consider the logistic loss and obtain surrog-
ate regret of order O(dK3 min{exp(DX) ln(T + 1), DXT

2
3 }). Hazan and Kale

(2011) also obtain DX
√
T surrogate regret for a variant of the logistic loss function

we consider in this chapter. Both results of Hazan and Kale (2011) are obtained by
running ONS on (a variant of) the logistic loss, which has running timeO((dK)2T ).
Foster et al. (2018a) introduce OBAMA, which improves the results of Hazan and
Kale (2011) and suffers O(min{dK2 ln (TDX + 1) ,K

√
dT ln (TDX + 1)})

surrogate regret for the logistic loss. Unfortunately, OBAMA has running time
O(D6 max{dK, T}12T ).

GAPTRON is the first O(dKT ) running time algorithm which has O(DK
√
T )

surrogate regret in bandit multiclass classification with respect to the logistic, hinge,
or smooth hinge loss. GAPTRON also improves the surrogate regret bounds of pre-
vious algorithms with O(DK

√
T ) surrogate regret by a factor O(

√
d log(T + 1)).

The remainder of this section provides the settings for GAPTRON to achieve these
results, starting with the logistic loss.
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6.5.1 Bandit Logistic Loss

The bandit version of the logistic loss is defined as:

`t(W ) = −11[y′t = yt]p
′
t(y
′
t)
−1

log2(σ(W ,xt, yt)). (6.5.1)

A similar definition of the bandit logistic loss is used by Hazan and Kale (2011);
Foster et al. (2018a). It is straightforward to verify that Et[`t(w)] is equivalent to
its full information counterpart (6.4.1). This loss is a factor 1

ln(2) larger than the loss
used by Hazan and Kale (2011); Foster et al. (2018a), who use the natural logarithm
instead of the logarithm with base 2. To stay consistent with the full information
setting we opt to use base 2 in the bandit setting. Using GAPTRON with the natural
logarithm will give similar results.

The mistake bound of GAPTRON for this loss can be found in Theorem 33 (its proof
can be found in Section 6.9.1). Compared to OBAMA, which achieves a surrog-
ate regret bound of order O(min{dK2 ln (TDX + 1) ,K

√
dT ln (TDX + 1)}),

GAPTRON has a larger dependency on D and X . However, the mistake bound of
GAPTRON does not depend on d, which can be a significant improvement over
the surrogate regret bound of OBAMA. Theorem 33 answers the two questions
by Hazan and Kale (2011) affirmatively; GAPTRON is a linear time algorithm
with exponentialy improved constants in the surrogate regret bound compared to
NEWTRON.

Theorem 33. Let a(Wt,xt) = 1−11[p?t ≥ 0.5]p?t , η =
ln(2)((1−γ) exp(−2DX) 1

K
+γ)

2K2X2 ,
and let `t be the bandit logistic loss (6.5.1). Then there exists a setting of γ such
that Algorithm 13 satisfies

E

[
T∑
t=1

11[y′t 6= yt]

]

≤ E

[
T∑
t=1

`t(U)

]
+KXDmin

{
max

{
2KXD

ln(2)
, 2

√
T

ln(2)

}
,

KXD

e−2DX ln(2)

}
.

6.5.2 Bandit Multiclass Hinge Loss

We use the following definition of the bandit multiclass hinge loss:

`t(Wt) =
11[y′t = yt]p

′
t(y
′
t)
−1 max{1−mt(Wt, yt), 0} if m?

t ≤ β
11[y′t = yt]p

′
t(y
′
t)
−1 max{1−mt(Wt, yt), 0} if y?t 6= yt and m?

t > β

0 if y′t = y?t = yt and m?
t > β.

(6.5.2)
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It is straightforward to see that the conditional expectation of the bandit multiclass
hinge loss is the full information multiclass hinge loss. Both the BANDITRON

algorithm (Kakade et al., 2008) and SOBA (Beygelzimer et al., 2017) use a similar
loss function.

As we mentioned before, Beygelzimer et al. (2017) present SOBA, which is a
second-order algorithm with surrogate regret O(‖U‖2X2 + K

κ

√
dT ln(T + 1)).

BANDITRON is a first-order algorithm based on the PERCEPTRON algorithm and
suffersO((KDX)1/3T 2/3) surrogate regret. For the more general setting of contex-
tual bandits (Foster and Krishnamurthy, 2018) use continuous Exponential Weights
with the hinge loss to also obtain an O(KDX

√
dT ln(T + 1)) surrogate regret

bound with a polynomial time algorithm. The expected mistake bound of GAPTRON

can be found in Theorem 34 and its proof can be found in Section 6.9.2. Compared
to the BANDITRON GAPTRON has larger surrogate regret in terms of D, K, and
X , but smaller surrogate regret in terms of T . Compared to the surrogate regret of
SOBA the surrogate regret of GAPTRON does not contain a factor

√
d ln(T + 1).

Theorem 34. Set a(Wt,xt) = 1−max{11[m?
t > β],m?

t }, η = γ(1−β)
K2X2 ,

γ = min
{

1,
√

K3X2D2

2(1−β)(K−1)T

}
, and let `t be the bandit multiclass hinge loss

defined in (6.5.2) with β = 1
K . Then for any U ∈ W Algorithm 13 satisfies

E

[
T∑
t=1

11[y′t 6= yt]

]
≤E

[
T∑
t=1

`t(U)

]
+ max

{
K3X2D2

K − 1
, 2KXD

√
T

2

}
.

6.5.3 Bandit Smooth Multiclass Hinge Loss

In this section we use the following loss function:

`t(W ) =

{
11[y′t = yt]p

′
t(y
′
t)
−1 max{1− 2mt(W , yt), 0} if mt(W , yt) ≤ 0

11[y′t = yt]p
′
t(y
′
t)
−1 max{(1−mt(W , yt))

2, 0} if mt(W , yt) > 0.
(6.5.3)

This loss function is the bandit version of the smooth multiclass hinge loss that we
we used in Section 6.4.3 and its expectation is equivalent to its full information
counterpart in equation (6.4.3). The surrogate regret of GAPTRON with this loss
function can be found in Theorem 35. The proof of Theorem 35 can be found in
Section 6.9.3.

Theorem 35. Set a(Wt,xt) = (1−min{1,m?
t })2, η = γ

4K2X2 ,

γ = min

{
1,
√

4K2X2D2

T

}
, and let `t be the bandit smooth multiclass hinge loss
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defined in (6.5.3). Then for any U ∈ W Algorithm 13 satisfies

E

[
T∑
t=1

11[y′t 6= yt]

]
≤E

[
T∑
t=1

`t(U)

]
+ max

{
4K2X2D2, 2KXD

√
2T
}
.

6.6 Conclusion

In this chapter we introduced GAPTRON, a randomized first-order algorithm for
the full and bandit information multiclass classification settings. Using a new
technique we showed that GAPTRON has a O(K) surrogate regret bound in the
full information setting and a surrogate regret bound of order O(K

√
T ) in the

bandit setting. One of the main drawbacks of GAPTRON is that it is a randomized
algorithm. Our bounds only hold in expectation and it would be interesting to
show similar bounds also hold with high probability. Another interesting venue to
explore is how to extend the ideas in this chapter to the stochastic setting or the
more general contextual bandit setting. In future work we would like to conduct
experiments to compare GAPTRON with other algorithms, particularly in the bandit
setting.

6.7 Details of Section 6.3

Proof of Lemma 25. As we said before, the updates of Wt are Online Gradient
Descent (Zinkevich, 2003), which guarantees

T∑
t=1

(`t(Wt)− `t(U)) ≤ ‖U‖
2

2η
+

T∑
t=1

η

2
‖gt‖2. (6.7.1)

146



6.8. Details of Full Information Multiclass Classification

C
H

A
P

T
E

R
6

Now, by using (6.7.1) and Et[11[y′t 6= yt]] = (1 − max{at, γ})11[y?t 6= yt] +

max{at, γ}K−1
K we find

E

[
T∑
t=1

(
11[y′t 6= yt]− `t(U)

) ]

= E

[
T∑
t=1

(
11[y′t 6= yt]− `t(Wt)

)
+

T∑
t=1

(`t(Wt)− `t(U))

]

≤ ‖U‖
2

2η
+ E

[
T∑
t=1

(
11[y′t 6= yt]− `t(Wt) +

η

2
‖gt‖2

)]

=
‖U‖2

2η
+ E

[ T∑
t=1

(
(1−max{at, γ})11[y?t 6= yt]

+ max{at, γ}
K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)]
≤ ‖U‖

2

2η
+ γ

K − 1

K
T + E

[ T∑
t=1

(
(1− at)11[y?t 6= yt]

+ at
K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)]
,

(6.7.2)

where in the last inequality we used (1−max{at, γ}) ≤ (1−at) and max{at, γ} ≤
at + γ. Adding E

[∑T
t=1 `t(U)]

]
to both sides of equation (6.7.2) completes the

proof.

6.8 Details of Full Information Multiclass Classification

6.8.1 Details of Section 6.4.1

Proof of Theorem 30. We will prove the Theorem by showing that the surrogate
gap is bounded by 0 and then using Lemma 25. The gradient of the logistic loss
evaluated atWt is given by:

∇`t(Wt) =
1

ln(2)
(p̃t − eyt)⊗ xt,

where p̃t = (p̃t(1), . . . , p̃t(k))ᵀ and p̃t(k) = σ(Wt,xt, k).
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We continue by writing out the surrogate gap:

(1− at)11[y?t 6= yt] + at
K − 1

K
− `t(Wt) +

η

2
‖gt‖2

≤ (1− at)11[y?t 6= yt] + at
K − 1

K
− `t(Wt)−

η

ln(2)
‖xt‖2 log2(p̃t(yt))

≤ (1− at)11[y?t 6= yt] + at
K − 1

K
− `t(Wt)−

η

ln(2)
X2 log2(p̃t(yt))

=


0 + K−1

K + log2(p̃t(yt))− η
ln(2)X

2 log2(p̃t(yt)) if p?t < 0.5

p?t + (1− p?t )K−1
K + log2(p̃t(yt))

− η
ln(2)X

2 log2(p̃t(yt)) if y?t 6= yt and p?t ≥ 0.5

(1− p?t )K−1
K + log2(p?t )−

η
ln(2)X

2 log2(p?t ) if y?t = yt and p?t ≥ 0.5,

(6.8.1)

where the first inequality is due to Lemma 26 below.

We now split the analysis into the cases in (6.8.1). We start with p?t < 0.5. In this
case we use 1 ≤ − log2(x) for x ∈ [0, 1

2 ] and obtain

K − 1

K
+ log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt))

≤ −K − 1

K
log2(p̃t(yt)) + log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt))

=
1

K
log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt)),

which is bounded by 0 since η < ln(2)
KX2 .

The second case we consider is when y?t 6= yt and p?t ≥ 0.5. In this case we use
x ≤ −1

2 log2(1− x) for x ∈ [0.5, 1] and 1− x ≤ −1
2 log2(1− x) for x ∈ [0.5, 1]
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and obtain

p?t + (1− p?t )
K − 1

K
+ log2(p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt))

≤ −1
2 log2(1− p?t )−

K − 1

K
1
2 log2(1− p?t ) + log2(p̃t(yt))

− η

ln(2)
X2 log2(p̃t(yt))

= −1
2 log2

 K∑
k 6=yt

p̃t(k)

− K − 1

K
1
2 log2

 K∑
k 6=yt

p̃t(k)

+ log2(p̃t(yt))

− η

ln(2)
X2 log2(p̃t(yt))

≤ −1
2 log2 (p̃t(yt))−

K − 1

K
1
2 log2 (p̃t(yt)) + log2(p̃t(yt))))

− η

ln(2)
X2 log2(p̃t(yt))

=
1

2K
log2 (p̃t(yt))−

η

ln(2)
X2 log2(p̃t(yt)),

which is 0 since η = ln(2)
2KX2 .

The last case we need to consider is y?t = yt and p?t ≥ 0.5. In this case we use
1− x ≤ − log2(x) and obtain

(1− p?t )
K − 1

K
+ log2(p?t )−

η

ln(2)
X2 log2(p?t )

≤ −K − 1

K
log2(p?t ) + log2(p?t )−

η

ln(2)
X2 log2(p?t ),

which is bounded by 0 since η = ln(2)
2KX2 .
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We now apply Lemma 25, plug in γ = 0, and use the above to find:

E

[
T∑
t=1

11[y′t 6= yt]

]

≤ ‖U‖
2

2η
+

T∑
t=1

`t(U) + γ
K − 1

K
T

+

T∑
t=1

(
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)
≤ ‖U‖

2

2η
+

T∑
t=1

`t(U).

Using η = ln(2)
2KX2 completes the proof.

Lemma 26. Let `t be the logistic loss (6.4.1), then

‖∇`t(Wt)‖2 ≤
2

ln(2)
‖xt‖2`t(Wt).

Proof. We have

‖∇`t(Wt)‖2 =
1

ln(2)2
‖xt‖2

(
K∑
k=1

(11[yt = k]− p̃t(k))2

)

≤ 1

ln(2)2
‖xt‖2

(
K∑
k=1

|11[yt = k]− p̃t(k)|

)2

≤− 2
1

ln(2)
‖xt‖2 log2(p̃t(yt))

=2
1

ln(2)
‖xt‖2`t(Wt),

where the last inquality follows from Pinsker’s inequality (Cover and Thomas, 1991,
Lemma 12.6.1).

6.8.2 Details of Section 6.4.2

Proof of Theorem 31. We will prove the Theorem by showing that the surrogate
gap is bounded by 0 and then using Lemma 25. Let k̃ = arg maxk 6=yt〈W

k
t ,xt〉.
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The gradient of the smooth multiclass hinge loss is given by

∇`t(Wt) =


(ek̃ − eyt)⊗ xt if y?t 6= yt

(ek̃ − eyt)⊗ xt if y?t = yt and m?
t ≤ β

0 if y?t = yt and m?
t > β.

We continue by writing out the surrogate gap:

(1− at)11[y?t 6= yt] + at
K − 1

K
− `t(Wt) +

η

2
‖gt‖2 =

m?
t + (1−m?

t )
K−1
K − (1−mt(Wt, yt)) + η‖xt‖2 if y?t 6= yt and m?

t ≤ β
(1−m?

t )
K−1
K − (1−m?

t ) + η‖xt‖2 if y?t = yt and m?
t ≤ β

1− (1−mt(Wt, yt)) + η‖xt‖2 if y?t 6= yt and m?
t > β

0 if y?t = yt and m?
t > β.

(6.8.2)

In the remainder of the proof we will repeatedly use the following useful inequality
for whenever yt 6= y?t :

m?
t +mt(Wt, yt) =〈W y?t

t ,xt〉 −max
k 6=y?t
〈W k

t ,xt〉+ 〈W yt
t ,xt〉 −max

k 6=yt
〈W k

t ,xt〉

=〈W yt
t ,xt〉 −max

k 6=y?t
〈W k

t ,xt〉

≤〈W yt
t ,xt〉 − 〈W

yt
t ,xt〉 = 0.

(6.8.3)

We now split the analysis into the cases in (6.8.2). We start with y?t 6= yt and m?
t ≤

β, in which case the surrogate gap can be bounded by 0 when η ≤ 1
KX2 :

m?
t + (1−m?

t )
K − 1

K
− (1−mt(Wt, yt)) + η‖xt‖2

= m?
t +mt(Wt, yt) + (1−m?

t )
K − 1

K
− 1 + η‖xt‖2

≤ − 1

K
+ ηX2 (by equation (6.8.3))

≤ 0.

We continue with the case where y?t = yt and m?
t ≤ β. In this case we have:

(1−m?
t )
K − 1

K
− (1−m?

t ) + η‖xt‖2 = −(1−m?
t )

1

K
+ η‖xt‖2

≤ −1− β
K

+ ηX2,
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which is zero since η = 1−β
KX2 .

Finally, in the case where y?t 6= yt and m?
t > β we have:

1− (1−mt(Wt, yt)) + η‖xt‖2 =mt(Wt, yt) + η‖xt‖2

≤−m?
t + η‖xt‖2 (by equation (6.8.3))

≤− β + ηX2,

which is bounded by zero since β = 1
K and η ≤ 1

KX2 .

We now apply Lemma 25, plug in γ = 0, and use the above to find:

E

[
T∑
t=1

11[y′t 6= yt]

]
≤‖U‖

2

2η
+

T∑
t=1

`t(U) + γT+

T∑
t=1

(
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)
≤‖U‖

2

2η
+

T∑
t=1

`t(U).

Using η = 1−β
KX2 = K−1

K2X2 completes the proof.

6.8.3 Details of Section 6.4.3

Proof of Theorem 32. We will prove the Theorem by showing that the surrogate
gap is bounded by 0 and then using Lemma 25. Let k̃ = arg maxk 6=yt〈W

k
t ,xt〉.

The gradient of the smooth multiclass hinge loss is given by

∇`t(Wt) =


2(ek̃ − eyt)⊗ xt if y?t 6= yt

2(ek̃ − eyt)(1−m
?
t )⊗ xt if y?t = yt and m?

t < 1

0 if y?t = yt and m?
t ≥ 1.

We continue by writing out the surrogate gap:

(1− at)11[y?t 6= yt] + at
K − 1

K
− `t(Wt) +

η

2
‖gt‖2 =

2m?
t −m?

t
2 + (1−m?

t )
2K−1

K

−(1− 2mt(Wt, yt)) + η4‖xt‖2 if y?t 6= yt and m?
t < 1

(1−m?
t )

2K−1
K − (1−m?

t )
2 + η4‖xt‖2(1−m?

t )
2 if y?t = yt and m?

t < 1

1− (1− 2mt(Wt, yt)) + η4‖xt‖2 if y?t 6= yt and m?
t ≥ 1

0 if y?t = yt and m?
t ≥ 1.

(6.8.4)
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We now split the analysis into the cases in (6.8.4). We start with the case where
y?t 6= yt and m?

t < 1. By using (6.8.3) we can see that with η = 1
4KX2 the surrogate

gap is bounded by 0:

2m?
t −m?

t
2 + (1−m?

t )
2K − 1

K
− (1− 2mt(Wt, yt)) + η4‖xt‖2

= 2(m?
t +mt(Wt, yt))−m?

t
2 + (1−m?

t )
2K − 1

K
− 1 + η4‖xt‖2

≤ −m?
t

2 + (1−m?
t )

2K − 1

K
− 1 + η4X2 (by equation (6.8.3))

≤ − 1

K
+ η4X2 ≤ 0.

The next case we consider is when y?t = yt and m?
t < 1. In this case we have

(1−m?
t )

2K − 1

K
− (1−m?

t )
2 + η4‖xt‖2(1−m?

t )
2

= −(1−m?
t )

2 1

K
+ η4‖xt‖2(1−m?

t )
2,

which is bounded by 0 since η = 1
4KX2 .

Finally, if y?t 6= yt and m?
t ≥ 1 then

1− (1− 2mt(Wt, yt)) + η4‖xt‖2 =2mt(Wt, yt) + η4‖xt‖2

≤− 2m?
t + η4‖xt‖2 (by equation (6.8.3))

≤− 2 + η4X2,

which is bounded by 0 since η < 1
2X2 . We apply Lemma 25 with γ = 0 and use

the above to find:

E

[
T∑
t=1

11[y′t 6= yt]

]
≤‖U‖

2

2η
+

T∑
t=1

`t(U) + γ
K − 1

K
T+

T∑
t=1

(
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

)
≤‖U‖

2

2η
+

T∑
t=1

`t(U).

Using η = 1
4KX2 completes the proof.
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6.9 Details of Bandit Multiclass Classification

6.9.1 Details of Section 6.5.1

Proof of Theorem 33. First, by straightforward calculations we can see that
p′t(yt) ≥

(1−γ) exp(−2DX)+γ
K = δ. As in the full information case we will

prove the Theorem by showing that the surrogate gap is bounded by 0 and then
using Lemma 25. By using Et[`t(Wt)] = − log2(p̃t(yt)) and Et

[
‖gt‖2

]
=

1
ln(2)p′t(yt)

‖(p̃t − eyt)⊗ xt‖2 we write out the surrogate gap:

E
[
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

]
= E

[
(1− at)11[y?t 6= yt] + at

K − 1

K
+ log2(p̃t(yt))

+
η

2 ln(2)2p′t(yt)
‖(p̃t − eyt)⊗ xt‖2

]
≤ E

[
(1− at)11[y?t 6= yt] + at

K − 1

K
+ log2(p̃t(yt))

− η

ln(2)p′t(yt)
X2 log2(p̃t(yt))

]

=



K−1
K + E

[
log2(p̃t(yt))

− η
ln(2)p′t(yt)

X2 log2(p̃t(yt))

]
if p?t < 0.5

E
[
p?t + (1− p?t )K−1

K + log2(p̃t(yt))

− η
ln(2)p′t(yt)

X2 log2(p̃t(yt))

]
if y?t 6= yt and p?t ≥ 0.5

E
[
(1− p?t )K−1

K + log2(p?t )

− η
ln(2)p′t(y

?
t )
X2 log2(p?t )

]
if y?t = yt and p?t ≥ 0.5,

(6.9.1)

where the first inequality is due to Lemma 26.

We now split the analysis into the cases in (6.9.1). We start with p?t < 0.5. In this
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case we use 1 ≤ − log2(x) for x ∈ [0, 1
2 ] and obtain

K − 1

K
+ E[log2(p̃t(yt))−

η

ln(2)p′t(yt)
X2 log2(p̃t(yt))]

≤ E
[
−K − 1

K
log2(p̃t(yt)) + log2(p̃t(yt))−

η

ln(2)p′t(yt)
X2 log2(p̃t(yt))

]
≤ E

[
−K − 1

K
log2(p̃t(yt)) + log2(p̃t(yt))−

η

ln(2)δ
X2 log2(p̃t(yt))

]

which is bounded by 0 when η ≤ ln(2)δ
KX2 .

The second case we consider is when y?t 6= yt and p?t ≥ 0.5. In this case we use
x ≤ −1

2 log2(1− x) for x ∈ [0.5, 1] and 1− x ≤ −1
2 log2(1− x) for x ∈ [0.5, 1]

and obtain

E
[
p?t + (1− p?t )

K − 1

K
+ log2(p̃t(yt))−

η

ln(2)p′t(yt)
X2 log2(p̃t(yt))

]
≤ E

[
− 1

2 log2(1− p?t )−
K − 1

K
1
2 log2(1− p?t ) + log2(p̃t(yt))

− η

ln(2)δ
X2 log2(p̃t(yt))

]

= E
[
− 1

2 log2

 K∑
k 6=yt

p̃t(k)

− K − 1

K
1
2 log2

 K∑
k 6=yt

p̃t(k)

+ log2(p̃t(yt))

− η

ln(2)δ
X2 log2(p̃t(yt))

]
≤ E

[
− 1

2 log2 (p̃t(yt))−
K − 1

K
1
2 log2 (p̃t(yt)) + log2(p̃t(yt))

− η

ln(2)δ
X2 log2(p̃t(yt))

]
= E

[
1

2K
log2(p̃t(yt))−

η

ln(2)δ
X2 log2(p̃t(yt))

]
,

which is bounded by 0 since η = ln(2)δ
2KX2 .

The last case we need to consider is when y?t = yt and p?t ≥ 0.5. In this case we
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use 1− x ≤ − log2(x) and obtain

E
[
(1− p?t )

K − 1

K
+ log2(p?t )−

η

ln(2)p′t(y
?
t )
X2 log2(p?t )

]
≤ E

[
−K − 1

K
log2(p?t ) + log2(p?t )−

η

ln(2)δ
X2 log2(p?t )

]
,

which is bounded by 0 when η ≤ ln(2)δ
KX2 .

We now apply Lemma 25 and use the above to find:

E

[
T∑
t=1

11[y′t 6= yt]

]

≤ ‖U‖
2

2η
+ E

[
T∑
t=1

`t(U)

]
+ γ

K − 1

K
T

+

T∑
t=1

E
[
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

]

≤ ‖U‖
2

2η
+ γT + E

[
T∑
t=1

`t(U)

]
.

Using η = ln(2)δ
2KX2 gives us:

E

[
T∑
t=1

11[y′t 6= yt]

]
≤ K2X2‖U‖2

ln(2)((1− γ) exp(−2DX) + γ)
+ γT + E

[
T∑
t=1

`t(U)

]
,

Setting γ = 0 gives us

E

[
T∑
t=1

11[y′t 6= yt]

]
≤ K2X2D2

ln(2) exp(−2DX)
+ E

[
T∑
t=1

`t(U)

]
.

If instead we set γ = min
{

1,
√

K2X2D2

ln(2)T

}
we consider two cases. In the case

where 1 ≤
√

K2X2D2

T we have that T ≤ K2X2D2 and therefore

E

[
T∑
t=1

11[y′t 6= yt]

]
≤2

K2X2D2

ln(2)
+ E

[
T∑
t=1

`t(U)

]
.

In the case where 1 >
√

K2X2D2

T we have that

E

[
T∑
t=1

11[y′t 6= yt]

]
≤2KXD

√
T

ln(2)
+ E

[
T∑
t=1

`t(U)

]
,
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which after combining the above completes the proof.

6.9.2 Details of Section 6.5.2

Proof of Theorem 34. First, note that p′t(yt) ≥
γ
K . The proof proceeds in a similar

way as in the full information setting (Theorem 31), except now we use that p′t(yt) ≥
γ
K to bound Et[‖gt‖2]. We will prove the Theorem by showing that the surrogate gap

is bounded by 0 and then using Lemma 25. By using Et
[
11[y′t = yt]p

′
t(y
′
t)
−1
]

= 1

and Et
[(

11[y′t = yt]p
′
t(y
′
t)
−1
)2
]

= 11[y′t = yt]p
′
t(y
′
t)
−1 we start by splitting the

surrogate gap in cases:

E
[
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

]

=



E
[
m?
t + (1−m?

t )
K−1
K − (1−mt(Wt, yt))

+ η
p′t(yt)

‖xt‖2
]

if y?t 6= yt and m?
t ≤ β

E
[
(1−m?

t )
K−1
K − (1−m?

t ) + η
p′t(yt)

‖xt‖2
]

if y?t = yt and m?
t ≤ β

E
[
1− (1−mt(Wt, yt)) + η

p′t(yt)
‖xt‖2

]
if y?t 6= yt and m?

t > β

0 if y?t = yt and m?
t > β.

(6.9.2)

We now split the analysis into the cases in (6.9.2). We start with y?t 6= yt and m?
t ≤

β. The surrogate gap can now be bounded by 0 when η ≤ γ
K2X2 :

E
[
m?
t + (1−m?

t )
K − 1

K
− (1−mt(Wt, yt)) +

η

p′t(yt)
‖xt‖2

]
= E

[
m?
t +mt(Wt, yt) + (1−m?

t )
K − 1

K
− 1 +

η

p′t(yt)
‖xt‖2

]
≤ − 1

K
+
Kη

γ
X2 (equation (6.8.3))

≤ 0.

We continue with the case where y?t = yt and m?
t ≤ β. In this case we have:

E
[
(1−m?

t )
K − 1

K
− (1−m?

t ) + η‖xt‖2
]

= E
[
−(1−m?

t )
1

K
+

η

p′t(yt)
‖xt‖2

]
≤ −1− β

K
+
Kη

γ
X2,
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which is bounded by zero since η = γ(1−β)
K2X2 .

Finally, in the case where y?t 6= yt and m?
t > β we have:

E
[
1− (1−mt(Wt, yt)) +

η

p′t(yt)
‖xt‖2

]
= E

[
mt(Wt, yt) +

η

p′t(yt)
‖xt‖2

]
≤ E

[
−m?

t +
η

p′t(yt)
‖xt‖2

]
(by equation (6.8.3))

≤ −β +
Kη

γ
X2,

which is bounded by zero since η = γ(1−β)
K2X2 and β ≤ 0.5.

We now apply Lemma 25 and use the above to find:

E

[
T∑
t=1

11[y′t 6= yt]

]

≤ ‖U‖
2

2η
+ E

[
T∑
t=1

`t(U)

]
+ γ

K − 1

K
T

+
T∑
t=1

E
[
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

]

≤ D2

2η
+ γ

K − 1

K
T + E

[
T∑
t=1

`t(U)

]
.

Plugging in η = γ(1−β)
K2X2 and β = 1

K gives us:

E

[
T∑
t=1

11[y′t 6= yt]

]
≤ K3X2D2

2γ(K − 1)
+ γ

K − 1

K
T + E

[
T∑
t=1

`t(U)

]
.

We now set γ = min
{

1,
√

K3X2D2

2(1−β)(K−1)T

}
. In the case where 1 ≤√

K3X2D2

2(1−β)(K−1)T we have

E

[
T∑
t=1

11[y′t 6= yt]

]
≤K

3X2D2

K − 1
+ E

[
T∑
t=1

`t(U)

]
.
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In the case where 1 >
√

K3X2D2

2(1−β)(K−1)T we have

E

[
T∑
t=1

11[y′t 6= yt]

]
≤2KXD

√
T

2
+ E

[
T∑
t=1

`t(U)

]
,

which completes the proof.

6.9.3 Details of Section 6.5.3

Proof of Theorem 35. First, note that p′t(yt) ≥
γ
K . The proof proceeds in a sim-

ilar way as in the full information case. We will prove the Theorem by show-
ing that the surrogate gap is bounded by 0 and then using Lemma 25. By us-

ing Et
[
11[y′t = yt]p

′
t(y
′
t)
−1
]

= 1 and Et
[(

11[y′t = yt]p
′
t(y
′
t)
−1
)2
]

= 11[y′t =

yt]p
′
t(y
′
t)
−1 we can expand the surrogate gap:

E
[
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

]

=



E
[
2m?

t −m?
t

2 + (1−m?
t )

2K−1
K

−(1− 2mt(Wt, yt)) + η
p′t(yt)

4‖xt‖2
]

if y?t 6= yt and m?
t < 1

E
[
(1−m?

t )
2K−1

K − (1−m?
t )

2

+ η
p′t(yt)

4‖xt‖2(1−m?
t )

2

]
if y?t = yt and m?

t < 1

E
[
1− (1− 2mt(Wt, yt)) + η

p′t(yt)
4‖xt‖2

]
if y?t 6= yt and m?

t ≥ 1

0 if y?t = yt and m?
t ≥ 1.

(6.9.3)

We now split the analysis into the cases in (6.9.3). We start with the case where
y?t 6= yt and m?

t < 1. By using (6.8.3) we can see that for η = γ
4K2X2

E
[
2m?

t −m?
t

2 + (1−m?
t )

2K − 1

K
− (1− 2mt(Wt, yt)) +

η

p′t(yt)
4‖xt‖2

]
= E

[
2(m?

t +mt(Wt, yt))−m?
t

2 + (1−m?
t )

2K − 1

K
− 1 +

η

p′t(yt)
4‖xt‖2

]
≤ E

[
−m?

t
2 + (1−m?

t )
2K − 1

K
− 1 +

η

p′t(yt)
4X2

]
(by equation (6.8.3))

≤ − 1

K
+
Kη

γ
4X2 ≤ 0.
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The next case we consider is when y?t = yt and m?
t < 1. In this case we have

E
[
(1−m?

t )
2K − 1

K
− (1−m?

t )
2 +

η

p′t(yt)
4‖xt‖2(1−m?

t )
2

]
= E

[
−(1−m?

t )
2 1

K
+

η

p′t(yt)
4‖xt‖2(1−m?

t )
2

]
= E

[
−(1−m?

t )
2 1

K
+
Kη

γ
4X2(1−m?

t )
2

]
,

which is bounded by 0 since η = γ
4K2X2 .

Finally, if y?t 6= yt and m?
t ≥ 1 then

E
[
1− (1− 2mt(Wt, yt)) +

η

p′t(yt)
4‖xt‖2

]
= E

[
2mt(Wt, yt) +

η

p′t(yt)
4‖xt‖2

]
≤ E

[
−2m?

t +
η

p′t(yt)
4‖xt‖2

]
(by equation (6.8.3))

≤ −2 +
Kη

γ
4X2,

which is bounded by 0 since η < γ
2K2X2 . We apply Lemma 25 and use the above

to find:

E

[
T∑
t=1

11[y′t 6= yt]

]

≤ ‖U‖
2

2η
+ E

[
T∑
t=1

`t(U)

]
+ γT

+
T∑
t=1

E
[
(1− at)11[y?t 6= yt] + at

K − 1

K
− `t(Wt) +

η

2
‖gt‖2

]

≤ D2

2η
+ γT + E

[
T∑
t=1

`t(U)

]
.

Plugging in η = γ
4K2X2 gives us:

E

[
T∑
t=1

11[y′t 6= yt]

]
≤2K2X2D2

γ
+ γT + E

[
T∑
t=1

`t(U)

]
.
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Algorithm 14 ADAHEDGE with abstention
Input: ADAHEDGE

1: for t = 1 . . . T do
2: Obtain expert predictions yt = (y1

t , . . . , y
d
t )ᵀ

3: Obtain expert distribution p̂t from ADAHEDGE

4: Set ŷt = 〈p̂t,yt〉
5: Let y?t = sign(ŷt)
6: Set bt = 1− |ŷt|
7: Predict y′t = y?t with probability 1− bt and predict y′t = ∗ with probability
bt

8: Obtain `t and send `t to ADAHEDGE

9: end for

Now we set γ = min

{
1,
√

2K2X2D2

T

}
. In the case where 1 ≤

√
2K2X2D2

T we

have

E

[
T∑
t=1

11[y′t 6= yt]

]
≤4K2X2D2 + E

[
T∑
t=1

`t(U)

]
.

In the case where 1 >
√

2K2X2D2

T we have

E

[
T∑
t=1

11[y′t 6= yt]

]
≤2DKX

√
2T + E

[
T∑
t=1

`t(U)

]
,

which completes the proof.

6.10 Online Classification with Abstention

The online classification with abstention setting was introduced by Neu and
Zhivotovskiy (2020) and is a special case of the prediction with expert advice
setting Vovk (1990); Littlestone and Warmuth (1994). For brevity we only consider
the case where there are only 2 labels, -1 and 1. The online classification with
abstention setting is different from the standard classification setting in that the
learner has access to a third option, abstaining. Neu and Zhivotovskiy (2020) show
that when the cost for abstaining is smaller than 1

2 in all rounds it is possible to
tune Exponential Weights such that it suffers constant regret with respect to the best
expert in hindsight. Neu and Zhivotovskiy (2020) only consider the zero-one loss,
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but we show that a similar bound also holds for the hinge loss (and also for the zero
one loss as a special case of the hinge loss). We use a different proof technique
from Neu and Zhivotovskiy (2020), which was the inspiration for the proofs of the
mistake bounds of GAPTRON. Instead of vanilla Exponential Weights we use a
slight adaptation of ADAHEDGE (De Rooij et al., 2014) to prove constant regret
bounds when all abstention costs ct are smaller than 1

2 . In online classification with
abstention, in each round t

1 the learner observes the predictions yit ∈ [−1, 1] of experts i = 1, . . . , d

2 based on the experts’ predictions the learner predicts y′t ∈ [−1, 1] ∪ ∗, where
∗ stands for abstaining

3 the environment reveals yt ∈ {−1, 1}

4 the learner suffers loss `t(y′t) = 1
2(1− yty′t) if y′t ∈ [−1, 1] and ct otherwise.

The algorithm we use can be found in Algorithm 14. A parallel result to Lemma 25
can be found in Lemma 27, which we will use to derive the regret of Algorithm 14.

Lemma 27. For any expert i, the expected loss of Algorithm 14 satisfies:

T∑
t=1

((1− bt)`t(y?t ) + btct)

≤
T∑
t=1

`t(y
i
t) + inf

η>0

 ln(d)

η
+

T∑
t=1

((1− bt)`t(y?t ) + ctbt + ηvt − `t(ŷt))︸ ︷︷ ︸
Abstention gap


+

4

3
ln(d) + 2,

where vt = Ei∼p̂t [(`t(ŷt)− `t(yit))2].

Before we prove Lemma 27 let us compare Algorithm 14 with GAPTRON. The
updates of weight matrixWt in GAPTRON are performed with OGD. In Algorithm
14 the updates or p̂t are performed using ADAHEDGE. The roles of at in GAPTRON

and bt in Algorithm 14 are similar. The role of at is to ensure that the surrogate gap
is bounded by 0, the role of bt is to ensure that the abstention gap is bounded by 0.

Proof of Lemma 27. First, ADAHEDGE guarantees that

T∑
t=1

(
`t(ŷt)− `t(yit)

)
≤ 2

√√√√ln(d)

T∑
t=1

vt + 4/3 ln(d) + 2.
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Using the regret bound of ADAHEDGE we can upper bound the expectation of the
loss of the learner as

T∑
t=1

((1− bt)`t(y?t ) + btct)

=

T∑
t=1

(
(1− bt)`t(y?t ) + btct + `t(y

i
t)− `t(ŷt)

)
+

T∑
t=1

(
`t(ŷt)− `t(yit)

)

≤
T∑
t=1

(
(1− bt)`t(y?t ) + btct + `t(y

i
t)− `t(ŷt)

)
+ 2

√√√√ln(d)

T∑
t=1

vt

+ 4/3 ln(d) + 2

=
T∑
t=1

`t(y
i
t) + inf

η>0

{
ln(d)

η
+

T∑
t=1

((1− bt)`t(y?t ) + btct + ηvt − `t(ŷt))

}
+ 4/3 ln(d) + 2.

To upper bound the abstention gap by 0 is more difficult than to upper bound the
surrogate gap as the negative term is no longer an upper bound on the zero-one
loss. Hence, the abstention cost has to be strictly better than randomly guessing
as otherwise there is no η or bt such that the abstention gap is smaller than 0. The
result for abstention can be found in Theorem 36 below.

Theorem 36. Suppose maxt ct <
1
2 for all T . Then Algorithm 14 guarantees

T∑
t=1

((1− bt)`t(y?t ) + btct)

≤
T∑
t=1

`t(y
i
t) + min

 ln(d)

1− 2 maxt ct
, 2

√√√√ln(d)
T∑
t=1

vt

+ 4/3 ln(d) + 2.

Proof. We start by upper bounding the vt term. We have

vt =
1

4
Ep̂t

[
(yit − ŷt)2

]
≤ 1

4
(1− ŷt)(ŷt + 1) ≤ 1

2(1− |ŷt|),

where the first inequality is the Bhatia-Davis inequality (Bhatia and Davis, 2000).
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As with the proofs of GAPTRON we split the abstention gap in cases:

(1− bt)`t(y?t ) + ctbt + ηvt − `t(ŷt)
≤ (1− bt)`t(y?t ) + ctbt + η 1

2(1− |ŷt|)− `t(ŷt)

=

{
ct(1− |ŷt|) + η 1

2(1− |ŷt|)− 1
2(1− |ŷt|) if y?t = yt

|ŷt|+ ct(1− |ŷt|) + η 1
2(1− |ŷt|)− 1

2(1 + |ŷt|) if y?t 6= yt.

(6.10.1)

Note that regardless of the the true label (1− bt)`t(y?t ) + ctbt − `t(ŷt) ≤ 0 since
ct <

1
2 . Hence, by using Lemma 27, we can see that as long as ct < 1

2

T∑
t=1

((1− bt)`t(y?t ) + btct) ≤
T∑
t=1

`t(y
i
t) + 2

√√√√ln(d)

T∑
t=1

vt + 4/3 ln(d) + 2.

Now consider the case where y?t = yt. In this case, as long as η ≤ 1 − 2ct the
abstention gap is bounded by 0. If y?t 6= yt then

|ŷt|+ ct(1− |ŷt|) + η 1
2(1− |ŷt|)− 1

2(1 + |ŷt|)
= ct(1− |ŷt|) + η 1

2(1− |ŷt|)− 1
2(1− |ŷt|).

So as long as η ≤ 1− 2ct the abstention gap is bounded by 0. Applying Lemma 27
now gives us

T∑
t=1

(
(1− bt)`t(y?t ) + btct − `t(yit)

)
≤ inf

η>0

{
ln(d)

η
+

T∑
t=1

((1− bt)`t(y?t ) + ctbt + ηvt − `t(ŷt))

}
+ 4/3 ln(d) + 2

≤ ln(d)

1− 2 maxt ct
+ 4/3 ln(d) + 2,

which completes the proof.

With a slight modification of the proof of Theorem 36 one can also show a similar
result as Theorem 8 by Neu and Zhivotovskiy (2020), albeit with slightly worse
constants. We leave this as an exercise for the reader.
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CHAPTER 7
Open Problem: Fast and Optimal

Online Portfolio Selection

This chapter is based on Van Erven, T., Van der Hoeven, D., Kotłowski, W., and
Koolen, W. M. (2020b). Open problem: Fast and optimal online portfolio selection.
In Proceedings of the 33rd Annual Conference on Learning Theory (COLT), pages
3864–3869.1

Abstract

Online portfolio selection has received much attention since its introduction by
Cover, but all state-of-the-art methods fall short in at least one of the following ways:
they are either i) computationally infeasible; or ii) they do not guarantee optimal
regret; or iii) they assume the gradients are bounded, which is unnecessary and
cannot be guaranteed. We are interested in a natural follow-the-regularized-leader
(FTRL) approach based on the log barrier regularizer, which is computationally
feasible. The open problem we put before the community is to formally prove
whether this approach achieves the optimal regret. Resolving this question will
likely lead to new techniques to analyse FTRL algorithms. There are also interesting
technical connections to self-concordance, which has previously been used in the
context of bandit convex optimization.

1The author of this dissertation performed the following tasks: co-deriving the theoretical results
and co-writing the paper.
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7.1 Introduction

Online portfolio selection (Cover, 1991) may be viewed as an instance of online
convex optimization (OCO) (Hazan et al., 2016): in each of t = 1, . . . , T rounds,
a learner has to make a prediction wt in a convex domainW before observing a
convex loss function ft : W → R. The goal is to obtain a guaranteed bound on
the regretRT =

∑T
t=1 ft(wt)−minw∈W

∑T
t=1 ft(w) that holds for any possible

sequence of loss functions ft. Online portfolio selection corresponds to the special
case that the domainW = {w ∈ Rd+ |

∑d
i=1wi = 1} is the probability simplex

and the loss functions are restricted to be of the form ft(w) = − ln(wᵀxt) for
vectors xt ∈ Rd+. It was introduced by Cover (1991) with the interpretation that
xt,i represents the factor by which the value of an asset i ∈ {1, . . . , d} grows in
round t and wt,i represents the fraction of our capital we re-invest in asset i in
round t. The factor by which our initial capital grows over T rounds then becomes∏T
t=1w

ᵀ
t xt = e−

∑
t=1 ft(wt). An alternative interpretation in terms of mixture

learning is given by Orseau et al. (2017).

For an extensive survey of online portfolio selection we refer to Li and Hoi
(2014). Here we review only the results that are most relevant to our open prob-
lem. Cover (1991); Cover and Ordentlich (1996) show that the best possible
guarantee on the regret is of order RT = O(d lnT ) and that this is achieved
by choosing wt+1 as the mean of a continuous exponential weights distribution
dPt+1(w) ∝ e−

∑t
s=1 fs(w)dπ(w) with Dirichlet-prior π (and learning rate η = 1).

Unfortunately, this approach has a run-time of order O(T d), which scales exponen-
tially in the number of assets d, and is therefore computationally infeasible when d
exceeds, say, 3. A sampling-based implementation by Kalai and Vempala (2002)
greatly improves the run-time to Õ(T 4(T + d)d2), but even this is still infeasible
already for modest d and T .

As shown in Table 7.1, much faster algorithms are available, but they either do not
achieve the optimal regret or they assume that the gradients are uniformly bounded
by a known bound G: ‖∇ft(wt)‖2 ≤ G, and the bounds deteriorate rapidly when
G is large. Bounding the gradients is very restrictive: we either need to (i) assume
that the asset prices do not fluctuate too rapidly, which defeats the purpose of using
adversarial online learning; or (ii) we need to allocate a minimum amount of capital
wt,i ≥ α to each asset, which means we cannot drop any poorly performing assets
from our portfolio.

We are interested in a natural follow-the-regularized-leader algorithm, previously
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Table 7.1: Overview of achievable trade-offs between regret and run-time

Method Regret Run-time Assumes References

Bounded Gradients

Universal Portfolio O(d ln(T )) Õ(T 4(T + d)d2) No (Cover and Ordentlich, 1996;
Kalai and Vempala, 2002)

Online Newton Step O(Gd ln(T )) O(d3T ) Yes (Agarwal et al., 2006;
Hazan et al., 2007;
Hazan and Kale, 2015)

Exponentiated Gradient O(G
√
T ln(d)) O(dT ) Yes Helmbold et al. (1998)

Gradient Descent O(G
√
dT ) O(dT ) Yes Zinkevich (2003)

Soft-Bayes O(
√
dT ln(d)) O(dT ) No Orseau et al. (2017)

Ada-BARRONS O(d2 ln4(T )) O(d2.5T 2) No Luo et al. (2018)

FTRL ? O(d2T 2) No Agarwal and Hazan (2005)

proposed by Agarwal and Hazan (2005):

wt+1 = arg min
w∈W

{ t∑
s=1

fs(w) + λ
d∑
i=1

− lnwi

}
(7.1.1)

for some λ > 0. The regularizer R(w) =
∑d

i=1− lnwi is a self-concordant barrier
function (Nesterov and Nemirovskii, 1994) that is the log barrier for the positive
orthant and has a natural interpretation as adding d extra rounds in which x equals
e1, . . . , ed.

The optimization problem (7.1.1) can be solved to machine precision in O(d2t)

steps using Newton’s method, so a naive implementation in which we solve the
optimization problem independently for each round would already lead to a total
run-time of O(d2T 2), which is computationally feasible for practical values of
d and T . One might further hope that sharing calculations between rounds or
solving (7.1.1) approximately may lead to additional speed-ups, similar to those
obtained for FTRL with linear losses by Abernethy et al. (2008). Thus the method
is computationally feasible, at least for an interesting range of d and T . The open
problem we now pose is whether it is also worst-case optimal in terms of regret:

Open Problem: Does the FTRL algorithm (7.1.1) guarantee the optimal regret
O(d lnT ) without further assumptions like bounded gradients?

Our motivation is twofold: efficient algorithms for portfolio selection (and beyond)
are desirable, and FTRL is the simplest natural candidate. In addition, our current
inability to analyse it highlights frustrating blind spots in our FTRL toolbox, which
solving this problem will need to address.
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Agarwal and Hazan (2005) already prove O(G2d ln(dT )) regret when the gradients
are bounded, but we believe that the bound should not depend on G at all. It seems
that the key difficulty in analyzing the regret is to control the sum of so-called local
norms of the gradients. As we will discuss below, this is possible at least in several
encouraging special cases.

7.2 Technical Discussion

It is convenient to reparametrize by v ∈ Rd−1
+ such that

∑d−1
i=1 vi ≤ 1, obtaining

wt = Avt + b for A =
(
I
−1ᵀ

)
, and b = ed. With some abuse of notation, we will

also write ft(v) for ft(Av+ b) and R(v) for R(Av+ b). Then the criterion being
minimized is

φT (v) =
T∑
t=1

ft(v) + λR(v).

As the loss is 1-exp-concave, we have ∇2ft(v) � ∇ft(v)∇ft(v)ᵀ (Bubeck, 2015,
pp. 324–325). In fact, this holds with equality in the present case:

∇ft(v) =
−Aᵀxt

(Av + b)ᵀxt
, ∇2ft(v) =

Aᵀxtx
ᵀ
tA(

(Av + b)ᵀxt
)2 = ∇ft(v)∇ft(v)ᵀ.

7.2.1 Regret Bounded by Local Norms via Self-concordance

We observe that both the losses ft and the regularizer R are self-concordant func-
tions (Abernethy et al., 2008). Assume for simplicity that λ ≥ 1, in which case
φT is a sum of self-concordant functions and hence also self-concordant. Like
Abernethy et al. (2008), define the local norms ‖g‖t =

√
gᵀ∇−2φt(vt)g. By

Lemma 28 below we know that the gradients are always bounded in these local
norms.

Lemma 28. ‖∇ft(vt)‖2t ≤ 1
λ+1

Proof. We start by observing that

‖∇ft(vt)‖2t ≤∇ft(vt)ᵀ(∇ft(vt)∇ft(vt)ᵀ + λ∇2R(vt))
−1∇ft(vt)

=λ−1‖∇ft(vt)‖2R(vt)
−

λ−2‖∇ft(vt)‖4R(vt)

1 + λ−1‖∇ft(vt)‖2R(vt)

=
‖∇ft(vt)‖2R(vt)

λ+ ‖∇ft(vt)‖2R(vt)

,
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where ‖g‖R(vt) =
√
gᵀ∇−2R(vt)g and the first equality follows from

the Sherman-Morrison formula. Note that ∇2R(vt) is positive definite, so
∇ft(vt)ᵀ∇2R(vt)∇ft(vt) = 0 only when ∇ft(vt) = 0, for which the result
holds. If∇ft(vt)ᵀ∇2R(vt)∇ft(vt) > 0, because∇2R(v) � ∇ft(v)∇ft(v)ᵀ for
all v by Lemma 29 below we have

∇ft(vt)ᵀ∇−2R(vt)∇ft(vt)∇ft(vt)ᵀ∇2R(vt)∇ft(vt)
≤ ∇ft(vt)ᵀ∇2R(vt)∇ft(vt)

and thus ∇ft(vt)ᵀ∇−2R(vt)∇ft(vt) ≤ 1. Using that s(x) = x/(λ + x) is
increasing for x > −λ we conclude that the gradients are indeed bounded in the
local norms:

‖∇ft(vt)‖2t ≤
‖∇ft(vt)‖2R(vt)

λ+ ‖∇ft(vt)‖2R(vt)

≤ 1

λ+ 1
. (7.2.1)

Lemma 29. ∇2R(v) � ∇ft(v)∇ft(v)ᵀ for all v.

Proof. We need to show that, for all x and w:

Aᵀ
( d∑
i=1

eie
ᵀ
i(

wᵀei
)2)A � AᵀxxᵀA(

wᵀx
)2 .

It is sufficient to show that:
d∑
i=1

eie
ᵀ
i(

wᵀei
)2 � xxᵀ(

wᵀx
)2 .

Both sides are positive semi-definite. The right-hand side is rank 1, with eigenvector
x. Hence it is sufficient to show that

xᵀ
( d∑
i=1

eie
ᵀ
i(

wᵀei
)2)x ≥ xᵀ

( xxᵀ(
wᵀx

)2)x
d∑
i=1

x2
i

w2
i

≥ ‖x‖42(
wᵀx

)2
(
wᵀx

)2 d∑
i=1

x2
i

w2
i

≥ ‖x‖42

‖y‖21‖z‖22 ≥ (yᵀz)2

‖y‖1‖z‖2 ≥ yᵀz
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where y = (y1, . . . , yd) for yi = wixi, z = (z1, . . . , zd) for zi = xi/wi, and we
are using thatwi, xi ≥ 0. The result then follows upon observing that ‖z‖1 ≥ ‖z‖2,
and applying the Cauchy-Schwarz inequality.

To bound the regret the following Lemma is useful.

Lemma 30. For λ ≥ 5
4 , the regret is bounded in terms of the local norms:

RT ≤ λd ln(2T ) + 1 +
T∑
t=1

‖∇ft(vt)‖2t .

Proof. Let v∗ ∈ arg minv
∑T

t=1 ft(v). Then

RT = φT (vT+1)− λR(v1)−
T∑
t=1

ft(v
∗) +

T∑
t=1

(
φt(vt)− φt(vt+1)

)
.

We start by bounding

φT (vT+1)− λR(v1) ≤φT
(
(1− 1

2T )v∗ + 1
2T v1

)
− λR(v1)

≤
T∑
t=1

− ln((1− 1
2T )(Av∗ + b)ᵀxt)

+
d∑
i=1

−λ ln( 1
2T (Av1 + b)ᵀei)− λR(v1)

=
T∑
t=1

ft(v
∗)− T ln(1− 1

2T ) + dλ ln(2T )

≤
T∑
t=1

ft(v
∗) + λd ln(2T ) +

1

2(1− 1
2T )

≤
T∑
t=1

ft(v
∗) + λd ln(2T ) + 1

Next, by using (2.16) of Nemirovski (2004) for the self-concordant function φt we
find

φt(vt)− φt(vt+1) ≤ − ln(1− ‖∇ft(vt)‖t)− ‖∇ft(vt)‖t
≤ ‖∇ft(vt)‖2t ,
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where we used that∇φt(vt) = ∇ft(vt), − ln(1− s)− s ≤ s2 for s ∈ [0, 2
3 ], and

‖∇ft(vt)‖2t ≤ 4
9 by equation (7.2.1). To complete the proof we combine the above

and find

RT =φT (vT+1)− λR(v1)−
T∑
t=1

ft(v
∗) +

T∑
t=1

(
φt(vt)− φt(vt+1)

)
≤λd ln(2T ) + 1 +

T∑
t=1

(
φt(vt)− φt(vt+1)

)
≤λd ln(2T ) + 1 +

T∑
t=1

‖∇ft(vt)‖2t .

Combining Lemma 30 with (7.2.1), we immediately see that the regret is bounded
by

RT = O(
√
dT lnT ) for λ ≈

√
T

d lnT ,

but if we hope to get the optimal rate, we need to use constant λ, so this is what we
will assume from now on. Below we list several promising corollaries of Lemma 30.

7.2.2 Assuming Bounded Gradients

Suppose that, for some reason, the gradients with respect tow (not v!) are bounded:
‖∇ft(wt)‖2 = ‖ −xt

wᵀ
t xt
‖2 ≤ G. Then, abbreviating yt = Aᵀxt/‖xt‖2, we can use

that ∇2ft(vt) � Aᵀxtx
ᵀ
tA

‖xt‖2∞
� Aᵀxtx

ᵀ
tA

‖xt‖22
= yty

ᵀ
t to get

T∑
t=1

‖∇ft(vt)‖2t ≤G2
T∑
t=1

‖yt‖2t

≤G2
T∑
t=1

yᵀt

( t∑
s=1

ysy
ᵀ
s + λAᵀA

)−1
yt

=O
(
G2d lnT

)
,

where the last step follows analogously to Hazan et al. (2007, Lemma 11) and using
that det(AᵀA) = det(I + 11ᵀ) = (1 + 1ᵀ1) det(I) = d by Sylvester’s determin-
ant theorem. This gives the optimal rate if G is small.
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7.2.3 Source Coding and xt in Finite Set

We call the case that xt ∈ {e1, . . . , ed} the source coding setting. This case is
easy to analyse, because wt has a simple closed-form solution that coincides with
Cover’s universal portfolio algorithm. More generally, let us assume that xt takes
values in some finite set X of size k, so k = d in the source coding setting, and let
nt(x) denote the number of times that xs = x for s ≤ t. Then

T∑
t=1

‖∇ft(vt)‖2t

≤
T∑
t=1

∇ft(vt)ᵀ
(
nt(xt)∇ft(vt)∇ft(vt)ᵀ + λ∇2R(vt)

)−1∇ft(vt)

≤
T∑
t=1

1

nt(xt) + λ
=
∑
x∈X

nT (x)∑
j=1

1

j + λ
= O

( ∑
x∈X

lnnT (x)
)

= O
(
k lnT

)
.

In particular, algorithm (7.1.1) achieves the optimal rate in the source coding setting.

7.2.4 A (Suboptimal) General Bound without Bounded Gradients

Since R(v) is a barrier, it should be the case that wt,i ≥ C/t for some constant
C > 0. We may therefore cover the effective domain of wt by m = O((lnT )d)

sets B1, . . . , Bm such that wᵀx ≤ 2uᵀx for all w,u ∈ Bi. It follows that
T∑
t=1

‖∇ft(vt)‖2t

≤
m∑
i=1

∑
t:vt∈Bi

∇ft(vt)ᵀ
( ∑
s≤t:vs∈Bi

∇fs(vt)∇fs(vt)ᵀ + λ∇2R(vt)
)−1∇ft(vt)

≤ 4

m∑
i=1

∑
t:wt∈Bi

∇ft(vt)ᵀ
( ∑
s≤t:ws∈Bi

∇fs(vs)∇fs(vs)ᵀ + λAᵀA
)−1∇ft(vt)

= O(md lnT ) = O
(
d(lnT )d+1

)
,

where the first equality follows like Lemma 11 of Hazan et al. (2007) with
‖∇ft(vt)‖ ≤ t/C. This of course has wildly suboptimal dependence in d, but
shows near-optimal regret for very small d.

7.3 Discussion

The partial analysis presented above relies on (2.16) of Nemirovski (2004). An
alternative approach could be to use (2.4) of Nemirovski (2004) instead, as is done
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by Bilodeau et al. (2020) to analyse the logarithmic loss. Another attempt could
be made to improve the approach of Section 7.2.4 by employing other techniques
from literature on self-concordant barriers. Inside the Dikin ellipsoid the hessians
of self-concordant barriers are roughly proportional (see for example Proposition
2.3.2 by Nesterov and Nemirovskii (1994) or (2.2) by Nemirovski (2004)). Instead
of covering the domain as described in Section 7.2.4 perhaps it is possible to cover
the domain in Dikin ellipsoids more efficiently, although several unfruitful attempts
have already been made.
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Samenvatting

Samenvatting

Online Learning is een fundamentele machine learning setting waarin een leerder
sequentieel voorspellingen moet doen gegeven (partiële) informatie over voorgaande
correcte voorspellingen en mogelijk extra informatie. Over de omgeving van de
leerder wordt vaak aangenomen dat het een vijandige omgeving is die de taak van de
leerder, zo min mogelijk verlies lijden, zo moeilijk mogelijk maakt. Desalniettemin
zijn er in de afgelopen drie decennia veel Online Learning algoritmes ontwikkeld
die bevredigende garanties bieden in verschillende settings. De garanties van Online
Learning algoritmes gaan over spijt: het verschil tussen het cumulatieve verlies van
de leerder en het cumulatieve verlies van een offline optimizer van het cumulatieve
verlies, waar de offline optimizer ook wel bekend staat als de vergelijker. In dit
proefschrift presenteren wij verschillende nieuwe inzichten in verschillende settings
van Online Learning. Vandaar ook de titel van het proefschrift: de vele gezichten
van Online Learning.

In Hoofdstuk 2 bestuderen we een van de fundamenteelste algoritmes in Online
Learning: Exponential Weights. We laten zien hoe Exponential Weights moet
worden afgestemd zodat het in verschillende settings kan worden toegepast en we
laten tevens zien hoe met specifieke keuzes voor de parameters verschillende be-
langrijke algoritmes worden teruggevonden als een speciaal geval van Exponential
Weights. Dit inzicht leidt tot een gecentraliseerd begrip van verscheidene algoritmes
in Online Learning en verenigt de analyse van deze algoritmes.

Een belangrijk onderscheid in Online Learning is het verschil tussen de volledige-
informatie en bandit settings. In de volledige-informatie setting onthult de omgeving
de gehele verliesfunctie, maar in de meer uitdagende bandit setting onthult de
omgeving enkel partiële informatie. Een belangrijke eigenschap van veel algoritmes
in zowel de volledige-informatie setting als de bandit setting is dat ze gepaste
grenzen op de spijt garanderen, zelfs in een vijandige omgeving. Echter worden
deze algoritmes dusdanig afgesteld dat ze enkel met een vijandige omgeving om
kunnen gaan en niet meer goedaardige omgevingen kunnen uitbuiten. Een van de
hoofdonderwerpen in dit proefschrift is hoe men algoritmes kan ontwerpen die
zowel in een vijandige omgeving als in een goedaardige omgeving bevredigende
garanties bieden, zonder dat van tevoren bekend is in wat voor omgeving de leerder
zich bevindt. Omdat deze algoritmes zich aanpassen aan de omgeving staan dit
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soort algoritmes bekend als adaptieve algoritmes. In Hoofdstuk 2 laten we zien
hoe we verschillende adaptieve algoritmes terugvinden als een speciaal geval van
Exponential Weights. In Hoofdstukken 3 en 4 bestuderen we een speciaal soort
adaptief algoritme, namelijk vergelijker-adaptieve algoritmes. De spijt grens van
een vergelijker-adaptief algoritme hangt af van de norm van de vergelijker, wat in
sommige gevallen tot minder spijt kan leiden vergeleken met standaard algoritmes.
In Hoofdstuk 3 laten we zien hoe we vergelijker-adaptieve algoritmes kunnen
aanpassen zodat ze adaptief zijn aan onbekende ruis. Dit is nuttig wanneer mensen
willen kiezen hoeveel privacy zij hebben maar dit niet willen laten weten. In
Hoofdstuk 4 ontwikkelen wij de eerste vergelijker-adaptieve algoritmes in de Bandit
Convex Optimisation setting. In Hoofdstuk 5 presenteren wij MetaGrad, dat zich
kan aanpassen aan een grote klasse van functies.

Omdat de leerder in elke ronde zijn voorspellingen update is een belangrijke ei-
genschap van een Online Learning algoritme de looptijd. De per ronde looptijd
wordt vaak als te hoog gezien wanneer de updates meer tijd in beslag nemen dan
kwadratisch in de dimensie van het probleem. Hierdoor is er een aanzienlijke ho-
eveelheid werk verzet door verschillende auteurs om de looptijd van Online Learn-
ing algoritmes te verminderen. Ook in dit proefschrift is er aandacht besteed aan
het versnellen van Online Learning algoritmes. In Hoofdstuk 6 presenteren we een
nieuw algoritme voor de Online Multiclass Classification setting die vaak vergelijk-
bare of betere garanties bied op de spijt dan tragere algoritmes. In deze setting moet
de leerder in elke ronde een label voorspellen gegeven een d-dimensionale feature
vector die mogelijk extra informatie bevat. In de Online Multiclass Classification
setting lijdt de leerder de één-nul verliesfunctie. De één-nul verliesfunctie is één
wanneer de voorspelling van de leerder incorrect is en nul wanneer de voorspelling
van de leerder correct is. De benchmark in de Online Multiclass Classification
setting is een convexe surrogaat verliesfunctie. Deze surrogaat verliesfunctie is
een bovengrens op de één-nul verliesfunctie. Het doel van de leerder in de Online
Multiclass Classification setting is de surrogaat spijt te minimaliseren: het verschil
tussen de som van de één-nul verliesfuncties en het offline minimum van de som
van de surrogaat verliesfuncties. Voorgaande algoritmes in de Online Multiclass
Classification setting bouwden vaak voort op tweede-orde algoritmes om lage spijt
te garanderen. Tweede-orde algoritmes houden een d bij d matrix bij die elke ronde
wordt geupdate, wat de per ronde looptijd minstens d2 maakt. Wij introduceren
een nieuw algoritme genaamd GAPTRON dat een per ronde looptijd heeft van O(d).
GAPTRON heeft vaak een vergelijkbare of zelfs betere garantie op de spijt dan
tragere algoritmes. Bijvoorbeeld, in de Bandit Online Multiclass Classification
setting is de surrogaat spijt bovengrens van GAPTRON een factor

√
d kleiner dan de

surrogaat spijt bovengrens van langzamere algoritmes. We behalen deze resultaten
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door het gat tussen de één-nul verliesfunctie en de surrogaat verliesfunctie uit te
buiten. Door deze nieuwe aanpak kan de leerder gebruik maken van eerste-orde
algoritmes om zijn voorspellingen te updaten en tegelijkertijd kleine surrogaat spijt
te garanderen.

Verdere verbeteringen van looptijd worden gemaakt in Hoofdstuk 5. In Hoofdstuk
5 laten we zien hoe de looptijd van MetaGrad kan worden verlaagd met behulp van
sketching methoden. In Hoofdstuk 7 bestuderen we de online portfolio selectie
setting. Het optimale algoritme voor de online portfolio selectie setting is een
versie van Exponential Weights. Helaas is de looptijd van deze specifieke versie
van Exponential Weights te groot om als praktisch te worden beschouwd. Voor
de online portfolio selectie setting zijn veel andere algoritmes overwogen, maar
allemaal hebben ze tekortkomingen. We stellen een open probleem waarin we
vragen om een snel en optimaal algoritme. Wij geven een gedeeltelijke analyse van
wat wij denken dat een snel en optimaal algoritme is. Hierbij laten we zien dat het
algoritme wat wij voorstellen inderdaad de optimale bovengrens op de spijt behaalt
in specifieke gevallen.
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Summary

Online Learning is a fundamental machine learning setting in which a learner is
to sequentially issue predictions given some (partial) knowledge about previous
correct predictions and possibly additional information. The environment of the
learner is often assumed to be adversarial, making the learner’s task of suffering
as little loss as possible difficult. Nevertheless, in the last three decades many
different Online Learning algorithms have been successfully shown to provide
satisfying guarantees in various settings. The guarantees in Online Learning are
about regret, which is the difference between the cumulative loss of the learner and
the cumulative loss the offline optimizer of the loss, which is also known as the
comparator. In this dissertation we provide several new insights in many different
settings of Online Learning, hence the title of the dissertation.

In Chapter 2 we study one of the most fundamental algorithms in Online Learning:
Exponential Weights. We show how to tune Exponential Weights such that it can be
applied to several different settings and show that with specific parameter choices
we recover several other important algorithms in Online Learning as special cases of
Exponential Weights. This provides a centralized understanding of many algorithms
in the Online Learning setting and unifies the analysis of these algorithms.

An important distinction in Online Learning is between the full-information and
bandit settings. In the full-information setting the environment reveals all informa-
tion to the learner but in the more challenging bandit setting the environment only
reveals partial information. An important property of many algorithms in both the
full-information and bandit settings is that they are able to provide suitable regret
bounds even in adversarial environments. However, these algorithms are often tuned
to only deal with adversarial environments and are not able to exploit more benign
environments. A recurring subject in this dissertation is how to design algorithms
that are able to exploit benign environments but also provide suitable guarantees in
adversarial environments, without knowing what type of environment the learner
faces beforehand. These algorithms are known as adaptive algorithms as they adapt
to the environment. In Chapter 2 we show how we can recover several adaptive
algorithms as special cases of Exponential Weights. In Chapters 3 and 4 we study a
particular type of adaptive algorithms, namely comparator-adaptive algorithms. The
regret bounds of comparator-adaptive algorithms depend on properties of the offline
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minimizer of the loss, which in some cases can lead to smaller regret compared
to the regret of standard algorithms. In Chapter 3 we show how we can modify
comparator-adaptive algorithms to adapt to unknown noise, which is useful when
people want to choose how much privacy they have without disclosing how much
they value their privacy. Additionally, when the losses are nice in a particular
sense we show that our modified comparator-adaptive algorithm has low regret. In
Chapter 4 we provide the first comparator-adaptive algorithms for the Bandit Con-
vex Optimization setting. This can be especially advantageous when the comparator
is small when measured in a particular norm, as this leads to smaller regret bounds
compared to non-adaptive algorithms. In Chapter 5 we present MetaGrad, which
adapts to a broad class of functions. The class of functions to which MetaGrad is
adaptive includes exp-concave losses, losses with unknown lipschitz constants, and
various other types of stochastic or non-stochastic functions.

Since the learner updates his prediction in each round an important property of
Online Learning algorithms is the running time. The per round running time is often
considered too high to be practical whenever the updates take more than quadratic
time in the dimension of the problem. Because of this reason considerable effort
has been made to improve the running time of many Online Learning algorithms,
including in this dissertation. In Chapter 6 provide a new algorithm with often
similar or better guarantees than slower algorithms for the Online Multiclass Clas-
sification setting. In this setting in each round the learner has to predict a label
given a d-dimensional feature vector which contains additional information. In
the Online Multiclass Classification setting the learner suffers the zero-one loss,
which is one whenever the learner makes a mistake and zero whenever he correctly
predicts the label. The benchmark in the Online Multiclass Classification setting
is a convex surrogate loss which upper bounds the zero-one loss and the goal of
the learner is to minimize the surrogate regret: the difference between the sum of
the zero-one losses and the offline minimum of the sum of the surrogate losses.
Previous algorithms in the Online Multiclass Classification setting often relied on
second-order algorithms to guarantee small regret. Second-order algorithms keep
track of a d by d matrix of parameters, which the learner updates in each round,
making the per round running time at least d2. We introduce a novel algorithm
called GAPTRON which has a per round running time of order O(d). Surprisingly,
GAPTRON often matches or improves upon the guarantees of slower algorithms.
For example, in the Bandit Multiclass Classification setting the surrogate regret
bound of GAPTRON is a factor

√
d smaller than slower algorithms. We achieve

our results by using a new approach which exploits the gap between the zero-one
loss and a surrogate loss. This new approach allows the learner to use a linear
time algorithm to update the predictions while still obtaining small surrogate regret
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bounds. Other improvements in running time of algorithms are made in Chapter 5,
in which we show how to improve the running time of the aforementioned adaptive
algorithm MetaGrad by using sketching methods. In Chapter 7 we consider online
portfolio selection. The optimal algorithm for online portfolio selection is a version
of Exponential Weights. Unfortunately the running time of this particular version
of Exponential Weights is too high to be considered practical. Many different
algorithms for online portfolio selection have been considered, all of them with
different shortcomings. We pose an open problem which asks for a fast and optimal
algorithm and provide the first steps of the analysis of an algorithm we think is the
answer to the open problem. We then show that in particular cases the proposed
algorithm indeed yields the optimal regret bound.
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