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Appendix A   

 
Supplementary Material for Chapter 4 
 
This file includes: 
Figure S1  
Tables S1 to S12 
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Supplementary Figure 1I Neural correlates of partners’ pupil change. Top figure: The 

whole-brain analysis contrast compares partner’s moving (dilating & constricting) versus 
static pupils (thresholded at P < 0.05 (cluster-level FWE correction with multiple 

comparisons at 2.3. (n=34)). For the visualization threshold was set at z = 2 – 4. Bottom 
figure: shows the overlap between partner’s dilating and partner’s constricting pupils. 

Neural correlates of partners’ pupil change. To determine the effect of pupillary signals 
on the brain, irrespective of whether subjects mimicked or not, we evaluated the fMRI data 

acquired during the encoding of partner pupils: constricting, static and dilating conditions. 
We created the following contrasts: constrict versus static, dilate versus static, and changing 

versus static (combination of partner dilating and constricting conditions). This analysis 
revealed that compared to static pupils both partner pupil dilation and constriction were 

associated with enhanced activity in spatially overlapping right lateral occipital gyrus [50, -

62, 2] and temporal occipital fusiform gyrus [52, -44, -6]. The contrast between dilating 
versus constricting pupils did not result in significant differences. This analysis depicts that 

processing of partner’s dilating and constricting pupil movements share common neural 
underpinnings in lateral occipital and temporal areas.  

 
  

Partners’ pupil dilate > static (pink) 
Partners’ pupil constrict > static (green) 
 
 

Lateral Occipital Cortex (V5) 

Temporal Occipital (Fusiform Cortex) 
V5 

V5 

Partners’ pupil moving > static 
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Table S1. The effect of partner’s pupil on participants’ trust 

Fixed Factors* F Df1 Df2 p-value 

Corrected Model 38 2 5,933 0.000 

Pupil Partner 38 2 5.213 0.000 
 

    

Random Factors Estimate SE Z p-value 

Variance 2.955 0.055 53.93 0.000 

Var(intercept) 1.048 0.244 4.288 0.000 

 
 

Table S2: The effect of partner’s pupil on participants’ pupil size 
 Fixed Factors F Df1 Df2 p-value 

Intercept 14.201 11 153,986 0.000 

Pupil Partner 1,274 2 153,986 0.280 

lin 19,504 1 153,986 0.000 

quadr 82,079 1 153,986 0.000 

cub 15,234 1 153,986 0.000 

Pupil Partner * lin 8,276 2 153,986 0.000 

Pupil Partner * quadr 1,923 2 153,986 0.146 

Pupil Partner * cub 15,783 2 153,986 0.000 

Random Factors Res. Eff. Est. SE Z p-value 
95% Confidence Interval 

Lower Upper 

Repeated Measures AR1  0.255 0.004 64.219 0.000 0.247 0.263 

Intercept Variance 0.015 0.004 3.906 0.000 0.009 0.0026 
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Table S3: The effect of partner’s pupil on participants’ trust 
 Fixed Factors F Df1 Df2 p-value 

Intercept 15.229 5 5,750 0.000 

Pupil Partner 32 2 5,750 0.000 

Mimicry (yes/no) 19,504 1 5,750 0.312 

Pupil Partner*Mimicry 6 2 5,750 0.003 

   95% Confidence Interval 

Random Factors Res. Eff. Estimat
e 

SE Z p-value Lower Upper 

Intercept Variance 2.954 0.056 53.099 0.000 2.847 3.066 

Int. [subject=ID*Run] Variance 0.0054 0.001 3.297 0.001 0.0029 0.0098 

 
 

Table S4. Mimicry > no mimicry 

Region BA Side Cluster size x y z Z-Max 

1. Occipital pole 18 
 

L 
 

39834 -6 -92 14 5.32 

1. Middle Temporal Cortex 37 
 

L 
 

 -58 -54 0 5.14 

1. Supramarginal Gyrus (TPJp) 39 
 

L 
 

 -54 -44 36 5.13 

1. Lateral Occipital Cortex 19 
 

L 
 

 -38 -74 26 5.13 

1. Occipital pole 18 
 

L 
 

 -10 -90 16 5.09 

1. Lingual Gyrus 18 L 
 

 -8 -76 -6 5.08 

2. Angular Gyrus (TPJp) 39 R 
 

1184 54 -48 32 5.07 

2. Middle Temporal Gyrus 22 R 
 

 64 -26 -4 4.86 

2. Angular Gyrus (TPJp) 39 
 

R  50 -48 28 4.81 

2. Angular Gyrus (TPJp) 39 
 

R 
 

 56 -48 26 4.75 

2. Parietal Operculum (TPJa) 22 
 

R 
 

 52 -34 20 4.74 

2. Superior Temporal Gyrus (STS) 22 
 

R 
 

 48 -30 -2 4.67 

The activation survives whole-brain correction (p< 0.05) for multiple comparisons at the cluster level 
2.3.  (N=34). Locations coordinates are in stereotactic MNI space with 2x2x2 voxel size. The source 
of anatomical labels: FSL Atlas tools. Subpeaks of the clusters= Z-score; R= right; L = left; BA = 
Brodmann area. 
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Table S5. Regions that show heightened activation for mimicry with constricting pupils 

Region BA Side Cluster Size x y z Z-Max 

1. Lateral Occipital Gyrus – V5 19 L 13971 -36 -82 -10 6.46 

1. Precentral Gyrus 4 L  -34 -18 56 5.74 

1. Lateral Occipital Sulcus–V5 19 L  -38 -78 -10 5.62 

1. Lateral Occipital Gyrus-V5 19 L  -42 -80 -4 5.59 

2. Lateral Occipital Gyrus-V5 19 R 7948 36 -84 -2 6.4 

2. Lateral Occipital gyrus 19 R  36 -66 62 6.4 

2. Fusiform Gyrus 20 R  40 -38 -22 5.69 

3. Precentral Gyrus 44 R 3020 44 8 30 5.76 

3. a. Insula 47 R  32 28 0 5.76 

3. Precentral Gyrus 44 R  44 10 30 5.57 

3. Middle Frontal Sulcus 6 R  32 -2 50 4.62 

4. Insula 48 L 768 -36 18 2 5.71 

4. a. Insula 47 L  -32 26 -2 5.12 

 The activation survives whole-brain correction (p 0.05) for multiple comparisons at the cluster level 2.3. 
(n=34). Locations coordinates are in stereotactic MNI space with 2x2x2 voxel size. The source of 
anatomical labels: FSL Atlas tools. Subpeaks of the clusters= Z-score; R= right; L = left; BA = Brodmann 
area. 
 
 
Table S6. Regions that show heightened activation for mimicry with dilating pupils 

Region BA Side Cluster Size x y z Z-Max 

1. Occipital temporal Gyrus 37 R 763 50 -62 -14 6.46 

1. Lateral Occipital Gyrus–V5 19 R  46 -76 -2 5.74 

1. Lateral Occipital Gyrus–V5 19 R  44 -82 -14 5.62 

1. Precentral Gyrus 3 L  -36 -18 62 5.59 

1. Paracingulate Gyrus  32 R  8 26 36 6.4 

 The activation survives whole-brain correction (p 0.05) for multiple comparisons at the cluster level 2.3.  
(n=34). Locations coordinates are in stereotactic MNI space with 2x2x2 voxel size. The source of 
anatomical labels : FSL Atlas tools. Subpeaks of the clusters= Z-score; R= right; L = left; BA = Brodmann 
area. 
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Table S7: TOM and Threat Masks’ links for download 
 Network Studies  Date of 

Download 
Link to download  

TOM 140 10/03/2015 http://neurosynth.org/analyses/terms/theory%20mind 

Threat 170 15/03/2015 http://neurosynth.org/analyses/terms/threat/ 

 
 

Table S8. Partners’ Pupils Constricting > Static 

Region BA Side Cluster Size x y z Z-Max 

1. Lateral Occipital Gyrus –V5 37 R 868 50 -62 2 4.56 

1. Lateral Occipital Gyrus –V5 37 R 
 

52 -70 0 4.12 

1. Lateral Occipital Gyrus –V5 37 R 
 

58 -70 0 4.1 

1. Inferior Temoral Gyrus (ITG) 37 R 
 

48 -46 -18 3.65 

1. Middle Temoral Gyrus 37 R 
 

52 -44 -6 3.26 

1. Middle Temoral Gyrus 37 R 
 

46 -60 14 3.17 

 The activation survives whole-brain correction (p< 0.05) for multiple comparisons at the cluster level 
2.3. (n=34). Locations coordinates are in stereotactic MNI space with 2x2x2 voxel size. The source 
of anatomical labels: FSL Atlas tools. Subpeaks of the clusters= Z-score; R= right; L = left; BA = 
Brodmann area. 
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Table S9. Partners’ Pupils Dilating > Static 

Region BA Side Cluster Size x y z Z-Max 

1. Lateral Occipital Gyrus –V5 37 R 1152 50 -62 2 2 

1. Lateral Occipital Gyrus –V5 37 R 
 

52 -70 0 -16 

1. Lateral Occipital Gyrus –V5 37 R 
 

58 -70 0 8 

1. Lateral Occipital Gyrus –V5 37 R 
 

48 -46 -18 12 

1. Lateral Occipital Gyrus –V5 37 R 
 

52 -44 -6 2 

2. Temporal occipital (Fusiform 
Gyrus) 

37 L 556 42 -50 -14 -14 

2. Lateral occipital sulcus 19 L  -40 -68 8 3.68 

2. Lateral Occipital Gyrus –V5 19 L  -40 -70 -6 3.16 

2. Lateral Occipital Gyrus –V5 19 L  -42 -58 8 3.15 

2. Lateral Occipital Gyrus –V5 19 L  -52 -66 12 2.89 

2. Lateral Occipital Gyrus –V5 37 L  -44 -62 -10 2.88 

The activation survives whole-brain correction (p< 0.05) for multiple comparisons at the cluster level 
2.3. (n=34). Locations coordinates are in stereotactic MNI space with 2x2x2 voxel size. The source of 
anatomical labels: FSL Atlas tools. Subpeaks of the clusters= Z-score; R= right; L = left; BA = Brodmann 
area. 

 
Table S10. Partners’ Pupil Changing > Static 

Region BA Side Cluster Size x y z Z-Max 

1. Lateral Occipital Gyrus –V5 37 R 1419 50 -62 2 4.75 

1. Inferior Temoral Gyrus (ITG) 37 R 
 

48 -46 -18 4.22 

1. Lateral Occipital Cortex  37 R 
 

60 -70 0 3.99 

1. Lateral Occipital Gyrus –V5 39 R 
 

46 -60 14 3.63 

1. Temporal Occipital (Fusiform Gyrus) 37 R 
 

42 -50 -14 3.54 

1. Middle Temoral Gyrus 37 R 
 

52 -44 -6 3.36 

*The activation survives whole-brain correction (p< 0.05) for multiple comparisons at the cluster level 
2.3. (n=34). Locations coordinates are in stereotactic MNI space with 2x2x2 voxel size. The source of 
anatomical labels: FSL Atlas tools. Subpeaks of the clusters= Z-score; R= right; L = left; BA = 
Brodmann area.  
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 Table S11: The subjects’ sex, age and questionnaire scores 

Participants' N Min Max Mean Std. 

BDI 36 0 18 4,08 3,988 

State 27 36 57 46,30 4,445 

Trait 35 43 56 48,66 3,412 

EC 40 0 6,57 4,686 1,275 

PT 40 0 6,71 4,814 1,203 

LSAS Fear 40 0 1,42 0,519 0,334 

LSAS Avoid 40 0 1,25 0,486 0,308 

Characteristics of subjects. The average score of the BDI questionnaire was 4, 08 which means that 
the group has minimal depression (Beck, Guth, Steer, & Ball, 1997). The average STAI score was 
46,30 and 48,6 while the cut-off score for anxiety is 54-55 (Kvaal, Ulstein, Nordhus, & Engedal, 2005), 
therefore, we can conclude that the group is not anxious. For the Interpersonal Reactivity Index (IRI), 
the average score per question is among 3.5 (the half of the seven subscales). This group has an 
average of 4.68 per empathic concern (EC) and  4,8 for perspective taking (PT), suggesting that 
participants were empathetic towards other people.  The average score for the LSAS is 0.5, 
concluding that the group does not have any fear or avoidance. BDI = Beck Depression Inventory, 
State & Trait = two subscales of State-Trait Anxiety Inventory, LSAS = Liebowitz Social Anxiety Scale. 
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Appendix B 
 
Supplementary Material for Chapter 5 

 
This file includes: 

Figure S1 to S3 

Tables S1 to S10 

Quantification of physiological synchrony 
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Figure S1 shows that while in real couples we found significant associations in expressions between 
male and female participants, in randomly paired couples, significant associations were only formed 
within subjects.  

 
Figure S1. Correlation tables summarizing the associations between males and females and within-
subject correlations in participants’ expressions, fixations and physiology for three interaction time 
periods (based on Spearman’s rank – order correlations, N = 162). The columns of the correlation matrix 
are placed according to the hierarchical clustering with similar values near each other. F = females, M 
= males. HR = heart rate, SCL = skin conductance level. (a) Real couples: The black boxes framed 
around naturally occurring clusters demonstrate that synchrony occurred on all three levels of 
expressions including males’ and females’ gaze reciprocity, expression mimicry and physiological 
synchrony. The circles represent ten types of synchrony including: smiles, laughs, head nods, hand 
gestures, face touching, eye contact, face-to-face gaze, body gaze, heart rate, and skin conductance 
level (all ρ > 0.28, p < 0.05). (b) Randomly matched couples: The heat map shows that in randomly 
paired couples the significant associations were almost exclusively formed within subjects, while in real 
couples the behavior clustered also between male and female participants, we used the FDR Benjamini-
Hochberg’s p-value < 0.05 to define significance (Benjamini and Hochberg, 1995).  

a. Naturally occurring clusters between  
the two partners’ behaviors (real couples only)
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Hypothesis 1: 
We anticipated that dating partners would synchronize on multiple levels of expression 
including motor movements (facial expressions, nodding, gestures), 
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and physiology (synchrony in heart rate and skin conductance). 
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Figure S2. These line graphs provide an example of how attraction changed over time. Time: 1 = first 
impression, 2 = second interaction, 3 = third interaction. The rating scale was 0 – 9.  
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Individuals’ expressions 

During couples’ dating interactions, we observed gender differences in naturally occurring expressions. 
Specifically, the results obtained from a Multivariate Multilevel linear mixed model (F (11, 98) = 4.06, p 
< 0.0001; Pillai’s Trace = 0.34, Partial Eta = 0.34) indicated that females were significantly more 
expressive than males: females smiled, nodded and touched their face more frequently than males did 
(all ps < 0.01, Figure S2). Males, on the other hand, stared at their female partner more; they fixated 
at the female’s head and eyes significantly longer than females looked at them (all ps < 0.01), while 
females had a tendency to look around and fixate longer at the background than males did (p = 0.025). 
Additionally, females’ heart rate (F (1, 108) = 5.39, p = 0.002) and skin conductance level (F (1, 108) = 
9.68, p < 0.0001) were higher than males’ (Fig. 2) and females also reported to feel more “aroused” 
and less self-confident than men (all ps < 0.01). Together these data suggest that during a date, males’ 
and females’ behavior and physiology differs.  
 

 
Figure S3. Bar graphs represent gender differences in the proportion of time males and females 
displayed specific (a) expressions, (b) gazed at specific areas of interest and (c) average heart rate 
(HR) and skin conductance responses (SCR) across the three interaction types; physiological 
responses were normalized by baseline correction and z-transformation. Significance was defined 

using FDR 0.05.  All *p < 0.05, **p < 0.01, ***p < 0.001, N = 54 couples, error bars: ± SE. 
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Table S1 shows synchrony associations (focusing on the circles in Figure 1) within real dating partners 
compared to randomly matched pairs. Significant evidence was found for seven types of synchrony in: 
smiles, laughs, head nods, hand gestures, face-to-face gaze, heart rate, and skin conductance. There 
is no significant difference in touching face, body gaze and eye contact fixations between true couples 
and randomly matched couples.  
 

Table S1. Correlation comparisons between true couple and randomly matched couples 

  True Male Random Male Fisher's Z p 

Female's Eyes 0.23 0.13 0.99 0.31 

Female's Face 0.22 -0.14 3.26 0.00 

Female's Body 0.28 0.15 1.24 0.21 

Female's Laugh 0.50 -0.02 5.20 0.00 

Female's Smile  0.31 0.07 2.23 0.02 

Female's Hand gestures 0.87 -0.04 12.11 0.00 

Female's Head nod 0.66 -0.07 7.71 0.00 

Female's Touch Face 0.27 0.11 1.53 0.12 

Female's Skin conductance 0.32 0.09 2.13 0.03 

Female's Heart rate 0.36 0.16 2.01 0.04 

 
 
Table S2 summarizes results of the Multilevel linear mixed models where we investigated how different 
types of interpersonal synchronies impact on participant’s attraction ratings (0-9). The multilevel model 
had following structure: three time points (Level 1) nested in participants (Level 2). We included all 7 
synchrony predictors including synchrony in (i) smiles, (ii) laughs, (iii) head nods, (iv) hand gestures, (v) 
face-to-face, (vi) heart rate, and (vii) skin conductance. The full model further included factors of gender, 
time (first impression, first interaction, second interaction), the type of interaction (first impression, 
verbal, nonverbal), the order of interaction (verbal/nonverbal first) and two-way interactions between 
the type of interaction * and the type of synchrony (smiles, laughs, head nods, hand gestures, eye-to-
eye, heart rate, and skin conductance). The final model was selected with a backward stepwise 
selection of fixed effects. The VIF values of the full and final were all smaller than 4 showing that 
multicollinearity did not influence our results. 
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Table S2. The Summary of the Full Multilevel linear mixed model Predicting Attraction Based on 
Synchrony Measures, gender, time, the type of interaction, the order of interaction and 
interactions between the type of interaction * synchrony 

 Attraction 

Predictors F df1 df2 p 

Intercept 1.616 19 285 .055 

Gender (0 = female, 1 = male) 8.365 1 285 .004 

Time  2.477 2 285 .086 

Interaction type (0 = nonverbal/ 1 = verbal) .330 1 285 .566 

Verbal interaction first (0 = no, 1 = yes)  .563 1 285 .454 

SCL synchrony 8.045 1 285 .005 

HR synchrony 3.889 1 285 .050 

Face-to-face contact .411 1 285 .522 

Smile mimicry .322 1 285 .571 

Laugh mimicry .066 1 285 .797 

Nodding mimicry .252 1 285 .616 

Gestures mimicry .001 1 285 .978 

Interaction type * SCL synchrony 1.189 1 285 .276 

Interaction type * HR synchrony .320 1 285 .572 

Interaction type * Face-to-face contact .304 1 285 .582 

Interaction type * Smile mimicry .006 1 285 .939 

Interaction type * Laugh mimicry .271 1 285 .603 

Interaction type * Nodding mimicry .078 1 285 .780 

Interaction type * Gestures mimicry .001 1 305 .987 

Residual Effect Estimate Std. Error Z p 

Variance .759 .075 10.150 .000 

Var (Intercept) Participant 2.142 .333 6.427 .000 

Note: Time had three time points: first impression, first interaction, second interaction.  
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Table S3. The Summary of the Final Multilevel linear mixed model Predicting Attraction Based 
on Synchrony Measures 

 Attraction 

Predictors F df1 df2 p 

Intercept 4.954 5 298 .000 

Gender 8.389 1 298 .004 

Time 4.330 2 298 .014 

SCL synchrony 7.332 1 298 .007 

HR synchrony 5.498 1 298 .020 

Random Effect  Estimate Std. Error Z p 

Variance .745 .072 10.304 .000 

Var (Intercept) Participant 2.154 .331 6.510 .000 

Note: Time had three time points: first impression, first interaction, second interaction.  
 
Control analysis – Does within or between dyad synchrony predict attraction? 
In the previously described model, the variables for heart rate and skin conductance level synchrony 
included within- and between-dyad level variation in synchrony. It is therefore unclear whether couples 
that are highly attracted to each other synchronize more than those who are not (i.e., between-dyad 
effect), or whether changes in physiological synchrony over time predict attraction changes (i.e., within-
dyad effect). To disentangle the two types of variations, we computed two variables: (1) Between-dyad 
SCL synchrony: the averaged synchrony level across time points per dyad, and (2) Within-dyad SCL 
synchrony: the deviation in synchrony level (per time point) from the dyad’s averaged synchrony level 
(within-dyad centering). Both variables were included in a Multilevel linear mixed model with a two-level 
structure (three-time points (Level 1), nested in participants (Level 2). We also included a random 
intercept effect (across participants) and a random slope for Time, but not allowing a correlation 
between both random effects. Time variable was specified on continuous scale (as participants 
displayed (more or less) linear trajectories over time in attraction.  The slope for time indicated the 
evolution of attraction over time. 
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Table S4. The Summary of the Final Multilevel linear mixed model Predicting Attraction Based 
on Synchrony Measures reflecting between-dyad variations (dyad’s overall level of synchrony), 
and within-dyad variation (changes in synchrony level over time within each dyad) 

  Attraction 

Predictors F df1 df2 p 

(Intercept) 3.523 7 296 .001 

Gender 8.240 1 296 .004 

Time 4.151 2 296 .017 

Within-dyad SCL synchrony 6.236 1 296 .013 

Between-dyad SCL synchrony 1.013 1 296 .315 

Within-dyad HR synchrony 4.679 1 296 .031 

Between-dyad HR synchrony .824 1 296 .365 

Random Effect  Estimate Std. Error Z p 

Variance .762 .077 9.957 .000 

Var (Intercept) Participant 2.178 .349 6.250 .000 
    

Note: Time had three time points: first impression, first interaction, second interaction. 
 
  

Figure S4: The line graphs represent slopes extracted from our Multilevel linear mixed model predicting 
attraction based on synchrony measures reflecting between-dyad variations and within-dyad variation 
(Table S4). The shaded areas represent 95% confidence intervals. Attraction based on Between-dyad 
HR synchrony [β = 1.34, SE = 1.47, CI (-1.56, 4.25), p = 0.365] and Between-dyad SCL synchrony [β 
= 1.63, SE = 1.62, CI (-0.56, 4.83), p = 0.315], Within-dyad HR synchrony [β = 0.96, SE = 0.44, CI 
(0.08, 1.83), p = 0.031] and Within-dyad SCL synchrony [β = 1.41, SE = 0.56, (CI 0.30, 2.53), p = 0.013].  
The shaded areas represent 95% confidence intervals.  
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Control analysis – does arousal predict attraction? 
In the current study we observed that synchrony in skin conductance level and heart rate could predict 
attraction. One possible confound is that it is not the synchrony on the dyadic level, but the arousal 
responses of the two individuals that drive these findings. For example, skin conductance levels might 
rise if a participant feels attracted to his/her partner. Consequently, the responses of the two participants 
would highly correlate reflecting the individuals’ decisions rather than an interpersonal process. To test 
this, we conducted a control analysis where attraction was regressed against the participants’ skin 
conductance (baseline corrected) heart rate and skin conductance levels for each interaction. For the 
skin conductance level, we first standardized the responses per participant and then computed the 
mean skin conductance and heart rate level per each interaction (first impression, verbal, nonverbal). 
Consistent with the model of the main analysis, we included gender and time as a control variable 
including individual as a random intercept effect. The model summary is shown in Table S4 which shows 
that attraction could not be predicted by the arousal responses of the two individuals.  
 
Table S5. Summary of Multilevel linear mixed model with the Heart Rate (HR) and Skin 
Conductance Level (SCL) Predicting Participants’ Attraction Ratings 

 Attraction 

Predictors F df1 df2 p 

Intercept 2.383 5 298 .039 

Gender 8.269 1 298 .004 

Time 1.637 2 298 .196 

SCL level .036 1 298 .850 

HR level .003 1 298 .955 

Random Effect  Estimate Std. Error Z p 

Variance .802 .081 9.951 .000 

Var (Intercept) Participant 2.173 .347 6.258 .000 

Note. SC = Skin Conductance; HR = Heart Rate.  
 
Control analysis – is attraction a valid outcome variable? 
One may wonder whether we really measured attraction in this study or possibly something else. To 
control for this possibility, throughout the experiment we also collected other ratings including trust, 
liking, feeling of connection and click. We also asked whether subjects felt awkward or anxious (Table 
S3). Theses scores were then compared with attraction ratings (Part 1) and participants choice to go 
for another date (yes/not) with the partner (Part 2). 
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Table S6a. Descriptive Statistics of Participants’ Ratings  

  N Minimum Maximum Mean Std. Dev. 

 Self-ratings 

Valence 362 2 9 6.01 1.632 

Arousal 362 1 9 5.94 1.757 

Self-confident 397 1 9 5.65 1.467 

Awkward 395 1 9 4.80 2.197 

Shy 398 1 9 4.34 2.003 

 Partner ratings 

Trustworthy 408 1 9 6.87 1.438 

Intelligent 409 2 9 6.59 1.318 

Funny 409 1 9 5.96 1.611 

Attractive 408 1 9 5.57 1.711 

 Self - Partner ratings 

Similar personality 408 1 8 4.86 1.712 

Connection 411 1 8 4.48 1.838 

Click 404 1 9 4.38 1.871 

Sex. Attraction 410 1 9 3.83 1.945 

The scale for all ratings ranged between 0 – 9, Descriptive statistics are based on 138 subjects (N = 69 
dyads) rating their partner three times (after first impression, verbal and nonverbal interaction). Valence 
= higher number represents positive valence. Arousal = higher number represents more arousal levels. 
 
Control analysis – is attraction a valid outcome variable? (Part 1) 
To identify the common dimensions of ratings, we took all thirteen ratings and submitted them to a 
principal component analysis (PCA), using the Oblimin with Kaiser Normalization rotation method Table 
S4). The first principal component (PC) accounted for 37.7% of the variance and the second PC 
accounted for 17.2% of the variance of the mean trait judgments. All positive judgments (e.g., attractive, 
funny, similar in personality, feeling of click, connection) had positive loadings, and all negative feelings 
(e.g., awkward, shy, low self-confidence) had negative loadings on the first PC (Table S4), suggesting 
that it can be interpreted as valence evaluation.  
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Table S6b. Principal Component Analysis: Loadings of Participants’ Ratings 

  
Component 1 

(Positive) 
Component 2 

(Negative) 

Click .876 -.035 
Connection .861 -.003 
Sexual Attraction .826 .070 
Attractive .775 .089 
Funny .720 .094 
Similar personality .699 .011 
Intelligent .562 .002 
Trustworthy .514 -.104 
Valence  .483 -.285 
Arousal .235 .169 
Awkward -.049 .880 
Shy .183 .851 
Self-confident .092 -.751 

Note. Self-confidence is negatively loaded to feelings of awkwardness and shyness because more 
confident people were less awkward and shy, they felt. The PCA was based on N = 344 valid cases. 
 
Control analysis – is attraction valid outcome variable? (Part 2) 
Multilevel binary logistic regression investigates how different types of ratings predict participants’ 
choice to go for another date (yes/ no, coded 1 and 0 respectively). The multilevel model had the 
following structure: three time points (Level 1) nested in participants (Level 2). We included all 13 ratings 
(Table ST4) as predictors. The results showed that the model was highly predictive of participants’ 
choice to date their partner again (Overall percentage reached 99.7% accuracy). Among all the ratings 
only positive affect and attraction predicted participants decisions significantly (Table S5), whereas 
attraction ratings explained the most variance in participants’ binary decision to date their partner 
(yes/no). 
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Table S7. Summary of Multilevel Binary Logistic Regression 

  Date partner (yes/no) 

Predictors F df1 df2 p 

Intercept 2.469 13 317 .003 

Valence 3.936 1 317 .048 

Arousal .049 1 317 .825 

Shy .030 1 317 .863 

Awkward .207 1 317 .650 

Self-confident .964 1 317 .327 

Attractive 6.331 1 317 .012 

Funny .096 1 317 .757 

Intelligent 1.088 1 317 .298 

Trustworthy .565 1 317 .453 

Similar personality .025 1 317 .876 

Connection .536 1 317 .464 

Sex. Attraction .591 1 317 .443 

Click 1.332 1 317 .249 

Random Effect  Estimate Std. Error Z p 

Var (Intercept) .117 .156 .749 .454 

 
 
Control analysis – do partner’s expressions predict attraction? 
We conducted a follow-up control analyses to test whether specific behavior enacted by one individual 
promotes attraction in the other individual. In the Multilevel linear mixed model, we used five predictors. 
This time, instead of synchrony measures, we used the proportion of time a participant displayed 
specific expressions (smiling, laughing, head shaking, hand gestures) or gaze fixations (looking at 
partners’ face) as predictors of partner’s attraction ratings (0 - 9). The full model further included factors 
of gender, time (first impression, first interaction, second interaction) and the interaction between 
gender * expression as additional predictors. The multilevel model had following structure: three time 
points (Level 1) nested in participants (Level 2). The VIF values of the full and final were all smaller than 
4 showing that multicollinearity did not influence our results. The results of Multilevel mixed effects 
models revealed that none of the directly visible signals such as participants’ expressions and gaze 
fixations were significant predictors of male’s or female’s partner attraction scores.  
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Table 8. Summary of Multilevel linear mixed model with Participants’ Visible Expressions 
Predicting Partners’ Attraction Ratings 

 Partners' Attraction   

Predictors F df1 df2 p 

Intercept 1.523 13 310 .108 

Gender 6.542 1 310 .011 

Time 1.467 2 310 .232 

Face-to-face contact 1.215 1 310 .271 

Smile .001 1 310 .980 

Laugh .337 1 310 .562 

Nod .030 1 310 .863 

Gestures .346 1 310 .557 

Gender * Face-to-face contact .506 1 310 .477 

Gender * Smile .507 1 310 .477 

Gender * Laugh 1.365 1 310 .244 

Gender * Nod .014 1 310 .905 

Gender * Gestures .706 1 310 .402 

Random Effect  Estimate Std. Error Z p 

Variance 2.106 .186 11.347 .000 

Var (Intercept) .865 .243 3.556 .000 
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Table S9. Participants’ Demographics and Other Descriptive Statistics 

  Female  Male  

Characteristics N M SD  N M SD t 

Age 69.00 23.45 4.18  69.00 25.71 4.64 -2.96 ** 

Weight 68.00 65.84 10.34  67.00 78.06 8.70 -7.42 *** 

Height 69.00 171.90 6.98  68.00 182.51 6.44 -9.24 *** 

Number of alcohol drinks 68.00 0.01 0.55  68.00 0.58 0.55 -3.13 ** 

How much commitment (0-9) 64.00 5.92 1.64  65.00 5.72 1.43 0.73 

Time single in months 62.00 38.69 65.31  59.00 37.03 65.45 0.14 

 Average per cent 

Education Female (N = 69)  Male (N = 69)  

   VMBO  0.02    0.00   

   HAVO  0.04    0.02   

   VWO  0.02    0.15   

   MBO  0.13    0.08   

   HBO  0.30    0.38   

   WO   0.47    0.38   

Note: *** p < .001, VMBO: the lowest completed high-school level, WO: the highest level (scientific 
education, Bachelor or Master degree). How much commitment is on 0-9 scale. 
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Table S10. Comparisons (t-test) variables by sex: Liebowitz Social Anxiety Scale (LSAS), Positive and 
Negative Affect Schedule (Watson et al., 1988)(Watson et al., 1988)(Watson et al., 1988)(Watson et 
al., 1988) (PANAS) and Sexual Desire Inventory (SDI). The SDI is comprised of 11 items about various 
sexual behaviors, on a 5-point Likert scale. The total score on the SDI is the sum of all 11 items, with 
higher scores reflecting a higher sexual desire. The LSAS is comprised of two subscales: performance 
and social interaction. The 24 questions ultimately lead to six subscale scores: total fear, fear of social 
interaction, fear of performance, total avoidance, avoidance of social interaction and avoidance of 
performance. The statements had to be answered on a 4-point scale (0 = not at all, 4 = totally).  The 
PANAS: consists of two 10-item mood scales, measuring positive affect (PA) and negative affect (NA). 
Participants are asked to rate their experience with a certain emotion on a 5-point scale (1 = very slightly 
or not at all, 5 = very much). 

 
Table S10. Comparisons (t-test) variables by sex 

 Female  Male   

Variable M SD  M SD t p 

SDI 4.25 1.47  4.68 0.93 -1.692 0.094 

LSAS Fear 0.46 0.49  0.45 0.64 0.099 0.921 

LSAS avoidance  0.77 0.67  0.81 0.69 -0.271 0.787 

PANAS negative  1.69 0.45  1.72 .40 -.280 0.780 

PANAS positive 3.20 0.56  3.41 .53 -1.853 0.067 

Trust baseline 8.10 0.94  7.75 1.02 2.084 0.039 

Trust overall 6.85 1.56  6.89 1.29 .186 0.817 

Note: Trust baseline measures how trustworthy a potential partner should be, trust overall measures 
average trust across three interaction periods.  
 
Quantifying expressive mimicry and eye fixation synchrony.  

Mimicry is defined broadly as ‘doing what others are doing’. While some studies are very loose on their 
definition of mimicry; for instance, mimicry might be defined as any movement following the other 
person's movement (Fujiwara and Daibo, 2016; Tschacher et al., 2014). We adopt a stricter definition 
of mimicry where mimicry occurs when a person A directly does the same expression as person B 
(LaFrance, 1979; LaFrance and Broadbent, 1976). The advantage of this stricter definition is that in 
contrast to movement synchrony, it can be easily operationalized. Indeed, the observation of movement 
echo proved to be difficult to define and often leads to inconsistent results (Grammer et al., 1998). Motor 
movements (smiling, laughing, head nod, hand gestures, face touching) were coded by four 
independent raters (two raters for males and two for females). Eye fixations falling on pre-defined areas 
of interests were automatically recorded using Tobii Pro Glasses 2. Both emotional expression or eye 
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fixation were classified per tenths of seconds as binary variable (1 for occurrence, 0 for no occurrence). 
We then quantified mimicry for each dyad and interaction by calculating the proportion of time both 
participants’ directly reciprocated expressions (smiling, laughing, head nod, hand gestures, face 
touching) and gaze fixations (looking at partners’ head, eyes, face, body). The proportion of mimicry 
was calculated for each condition (the first impression, verbal and nonverbal interaction) resulting in N 
dyads * 3 results * for mimicry in smiles, laughs, head nods, hand gestures, eye-to-eye fixations.  
 
Quantification of physiological synchrony 
Two methods that take non-stationarity into account are lagged windowed cross-correlation (Boker et 
al., 2002) and recurrence quantification analysis (Gates and Liu, 2016). The latter method is frequently 
used which has the advantage of having very few assumptions. However, the disadvantage is that it 
determines synchrony on a binary scale of moments being classified as either synchronized or not. The 
former method, albeit constraint by more assumptions, has the advantage of differentiating the degree 
of synchronization by quantifying it on a continuous (correlation) scale. Additionally, we feel that 
windowed cross-correlation is more intuitive to interpret. Consequently, we decided to apply this method 
which provides measures of the strength of synchrony. The objective of the lagged windows-cross 
correlations analysis (Boker et al., 2002) is to calculate the strength of association between two time 
series while taking into account the non-stationarity of the signals and the lag between responses, that 
is, to consider the dynamics of a dyadic interaction. Specifically, the time series are segmented into 
smaller intervals, calculating the cross-correlation for each segment. This allows the means and 
variances to differ between segments accounting for non-stationarity. This is important as the level of 
synchrony may change during the experiment, sometimes having moments of strong synchronization 
while during other times responding less strong to one another. Additionally, as the strength of 
association between two time points may differ depending on how far apart they are from each other, 
the segments are moved along the time series by an increment such that two adjacent segments 
overlap. Hence, segmenting the time series into smaller intervals and partially overlapping these 
intervals while moving along the time series provides a better estimate of the local strength of 
association between the physiological signals of two participants.  
 
Besides the dynamics in the strength of synchronization during the course of the experiment, 
participants differ in how fast one might respond to a certain event or the other person. In other words, 
participants might not always be perfectly “in sync” whereby one participant might sometimes respond 
to the other person or vice versa introducing a delay between the responses of two individuals. To 
account for this, for each segment, the signals of the two participants are lagged in relation to one 
another. Specifically, the signal of participant 1 is kept constant while the signal of participant 2 is shifted 
more and more by a specified lag increment until a maximum lag is reached. Next, the same procedure 
is performed the other way around with participant 2 being kept constant. The maximum lag determines 
what is still considered synchrony. For example, if the maximum lag is four seconds, responses from 
two participants that are four seconds apart from each other are still considered synchronized. On the 



 205

 
 

other hand, if one participant reacts to a certain event and the other participant shows a response 5 
seconds later, it is not considered a response to the same event anymore and therefore does not count 
as synchrony. Based on this approach, there are four parameters that need to be determined: (1) the 
length of each segment, referred to the window size wmax; (2) the increment with which the segments 
are moved along the time series, the window increment winc; (3) the maximum with which two segments 
can be lagged from one another, the maximum lag τmax; and (4) the increment with which two segments 
are lagged from each other, the lag increment τinc. We determined the parameters following an 
extensive process by comparing previous studies using similar statistical methods, by looking at what 
is physiologically plausible given the time course of the physiological signals and by employing a data-
driven bottom-up approach where we investigated how changing the parameters affected the outcomes 
using a different dataset. As expected, the absolute values of the synchrony measures varied 
depending on the parameters, but as supported by (McAssey et al., 2013), the relative results were not 
affected (e.g. a dyadic manifesting relatively high synchrony showed such tendency for the different 
parameters). Based on these three factors, we set the parameters as follows: the window size was 8 
seconds (160 samples), the window increment was 2 seconds (40 samples), the maximum lag was 4 
seconds (80 samples) and the lag increment was 100ms (2 samples).  
 
Calculating the cross correlations of each lag for each window segment generates a result matrix with 
each row representing one window segment and each column indicating a lag. The middle column 
represents the cross-correlation with a lag of zero, while the first and last column contain the cross-
correlations for the maximum lag of participant 1 and 2. Hence, the number of columns in the result 
matrix is (2* τmax / τinc) + 1. The number of rows is given by (N − wmax − τmax)/ winc, with N being the 
number of observations in the whole time series. Based on this result matrix, a so-called peak picking 
algorithm is applied. For each segment (i.e., each row in the matrix), the maximum cross-correlation 
across the lags is detected closest to the zero-lag (i.e., across all columns in a given row). If that 
maximum correlation is preceded and followed by smaller correlations, it is marked as a peak. For 
example, if participant 2 synchronizes with participant 1 with a lag of one second, the cross-correlations 
will become higher the closer the segments from the two participants are shifted towards the point 
where they are one second apart from each other. When the two signals are lagged by exactly one 
second the cross-correlation is highest (the peak). If the signals are lagged further away from each 
other, the cross-correlation decreases again. If, however, a peak cannot be detected, the algorithm 
assigns a missing value for that segment. This might be the case, for example, if people do not respond 
to an event or to each other (e.g., both participants wait and do nothing). The peak picking algorithm 
outputs a matrix with two columns, containing the value of the maximum cross-correlation (the peak) 
and the corresponding lag at which the peak cross-correlation is detected. The output has the same 
number of rows as the result matrix as it searches for a peak cross-correlation for each window 
segment.   Both the windowed cross-correlations and the peak picking algorithm were conducted 6 
times per dyad, once for the heart rate responses and once for the skin conductance responses for 
each condition (the first impression, verbal and nonverbal interaction) resulting in 54 dyads * 6 result 
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and peak picking matrices. Finally, the mean cross-correlations of all window segments were calculated 
for both physiological measures for each condition per dyad. 
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Appendix C 
 
Supplementary Material for Chapter 6 

 
This file includes: 

Figure S1 to S2 

Tables S1 to S8 
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Figure S1: The effect of facial mimicry on trust. On average, the suppression broke in 25% of CFS 
trials (27% face trials and in 22% eyes condition trials). To test whether suppression breaks quicker for 
in response to negative emotions, we selected the trials in which suppression broke and checked 
whether suppression was modulated by the stimuli type (eyes/faces) and emotional expressions 
(positive, neutral, negative). In line with previous studies, Generalized linear model showed that 
emotional expressions ([F (1, 2309)  = 17.547, P < 0.0001]) and the interaction between the stimuli type 
* emotional expressions had a main effect on reaction time within which the CFS broke ([F (1, 2309)  = 
9.416, P < 0.0001]). The pairwise comparison (Table S7) revealed that positive expressions broke the 
suppression quicker then negative ones. Table S8 demonstrates that this effect was driven mainly by 
eye stimuli, where dilated pupils broke the suppression quicker than static and constricted pupils. In 
faces, the happy facial expressions broke suppression quicker then neutral but not quicker than fearful 
faces.  
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Figure S2: The phasic skin conductance measures did not differ across conditions.  
 
 
Table S1. Summary of Generalized linear model predicting subjects’ trust (investment as DV) 

Fixed Effects F df1 df2 p 

Intercept 121.011 17 17808 .000 

Expression modality (Eyes/Face) 19.878 1 17808 .000 

Emotion 79.913 2 17808 .000 

Awareness level 770.611 2 17808 .000 

Awareness level * Emotion 10.846 4 17808 .000 

Awareness level * Expression modality .805 2 17808 .447 

Emotion * Expression modality 21.441 2 17808 .000 

Awareness level * Emotion * Expression modality 24.019 4 17808 .000 

N=2432 N=2385N=2802 N=2125 N=2861 N=2117
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Note: Emotion had 3 levels (Faces: happy, neutral, fearful/Pupils: large, medium, small), Awareness 
levels had 3 levels (conscious, semi-conscious, unconscious). 

 

 

 

Table S2. Frowning mimicry (CS signal as DV) 
   

Fixed Effects F df1 df2 p 

Intercept  3.501 17 163803 .000 

Linear trend .007 1 163803 .933 

Cubic trend .578 1 163803 .447 

Quadratic trend 4.860 1 163803 .027 

Emotion 9.935 2 163803 .000 

Awareness level 6.355 2 163803 .002 

Awareness level * Emotion 2.540 4 163803 .038 

Emotion * Linear .128 2 163803 .880 

Emotion * Cubic 1.222 2 163803 .295 

Emotion * Quadratic .569 2 163803 .566 

Table S3. Smiling mimicry (ZM signal as DV) 
   

Fixed Effects F df1 df2 p 

Intercept  3.312 17 163803 .000 

Linear trend .570 1 163803 .450 

Cubic trend .100 1 163803 .752 

Quadratic trend .081 1 163803 .775 

Emotion 7.603 2 163803 .000 

Awareness level .273 2 163803 .761 

Awareness level * Emotion 8.246 4 163803 .000 

Emotion * Linear .708 2 163803 .493 

Emotion * Cubic .291 2 163803 .747 

Emotion * Quadratic .895 2 163803 .408 
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Table S4. Pupil mimicry (pupil size as a DV) 
    

Fixed Effects F df1 df2 p 

Intercept  21.185 17 136071 .000 

Linear trend 209.712 1 136071 .000 

Cubic trend 62.896 1 136071 .000 

Quadratic trend .850 1 136071 .357 

Emotion .276 2 136071 .759 

Awareness level 8.961 2 136071 .000 

Awareness level * Emotion 1.062 4 136071 .374 

Emotion * Linear .076 2 136071 .927 

Emotion * Cubic .215 2 136071 .806 

Emotion * Quadratic .153 2 136071 .858 

Table S5. Facial Mimicry - Trust 
    

Fixed Effects F df1 df2 p 

Intercept 89.686 11 5911 .000 

Awareness level 299.688 2 5911 .000 

Emotion 167.514 1 5911 .000 

Mimicry .082 1 5911 .775 

Emotion * Awareness level 51.489 2 5911 .000 

Emotion * Mimicry .921 1 5911 .337 

Awareness level * Mimicry .496 2 5911 .609 

Emotion * Awareness level * Mimicry .432 2 5911 .649 
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Table S6. RT b-CFS 

Fixed Effects F df1 df2 p 

Corrected Model 10.203 5 2309 .000 

Emotion 17.547 2 2309 .000 

Expression modality (Eyes/Face) 1.807 1 2309 .179 

Expression modality * Emotion 9.416 2 2309 .000 

The least significant difference adjusted significance level is .05. 
 
Table S8. RT b-CFS: Pairwise Contrasts 

The least significant difference adjusted significance level is .05. 
 
  

Table S7. RT b-CFS: Pairwise Contrasts 
  

Expressions: 
 Pairwise Contrasts 

Contrast 
Estimate Std. Error t df p 

negative - neutral .012 .022 .546 2309 .585 

negative - positive .121 .022 5.466 2309 0,00 

neutral - negative -.012 .022 -.546 2309 .585 

neutral - positive .109 .023 4.821 2309 0,00 

The least significant difference adjusted significance level is .05. 
 
  

Modality Expression Pairwise Contrasts 
Contrast 
Estimate 

Std. 
Error t df p 

       
Face negative - neutral -.043 .031 -1.42 2309 .155 

 
negative - positive .025 .030 .82 2309 .411 

 
neutral - negative .043 .031 1.42 2309 .155 

 
neutral - positive .068 .030 2.29 2309 .022 

Eyes negative - neutral .067 .033 2.05 2309 .040 

 
negative - positive .218 .032 6.72 2309 0,00 

 
neutral - negative -.067 .033 -2.05 2309 .040 

 
neutral - positive .150 .032 4.73 2309 0,00 
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Figure S1  
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Figure 1. The effect of condition on participants’ pupil size. The average pupil size of 500 ms of each 
participant and the trial (thus five values) before the partners’ pupils started to change (1.000 ms-
1.500 ms after stimulus onset) served as a baseline and was subtracted from all remaining pupil size 
values. 
 
 
Table 1. The effect on participants’ uncorrected pupil size (all participants) 

  F df1 df2 Sig. 

Intercept 21.524 11 115248 .000 

Condition 11.813 2 115248 .000 

lin 185.531 1 115248 .000 

quad 18.767 1 115248 .000 

cub 1.158 1 115248 .282 

Condition*lin .206 2 115248 .814 

Condition* quad 1.546 2 115248 .213 

Condition* cub 2.423 2 115248 .089 
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Table 2. The effect on participants’ corrected pupil size 

  F df1 df2 Sig. 

Intercept 14.171 11 108997 .000 

Partner Pupil Size 14.535 1 108997 .000 

Condition .368 2 108997 .692 

lin 121.288 1 108997 .000 

quad 13.501 1 108997 .000 

cub .346 1 108997 .556 

Partner Pupil Size * lin 4.573 1 108997 .032 

Partner Pupil Size * quad .022 1 108997 .882 

Partner Pupil Size * cub .312 1 108997 .576 

Condition * Partner Pupil Size .519 2 108997 .595 

 

Table 3. The effect on participants’ investments (Trust)  

  F df1 df2 Sig. 

Intercept 2.496 5 5280 .029 

Partner Pupil Size 2.583 1 5280 .108 

Condition 1.632 2 5280 .196 

Partner Pupil Size* Condition 3.268 2 5280 .038 

 

Table 4. The effect on participants’ pupil contingent trust 

  F df1 df2 Sig. 

Intercept .780 5 138 .566 

Condition .456 2 138 .635 

Subject Pupil Size .178 1 138 .673 

Condition * Subject Pupil Size 1.292 2 138 .278 
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