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8
Summary and Discussion

8.1. SUMMARY

This thesis aimed to gain more insight into the role of iron in neurodegenerative dis-

eases using high-field MRI. I investigated the pathological correlates of susceptibility-

based contrasts on MRI, and how iron accumulation is associated with disease pro-

gression both ex vivo and in vivo. Several MRI techniques sensitive to tissue iron con-

centration have been used in the last decades to investigate and quantify brain iron

accumulation in neurodegenerative diseases. Increased R∗
2 values, phase shifts and

changes in susceptibility values have been reported not only in the cortex of patients

with Alzheimer’s disease (AD) and striatum of patients with Huntington’s disease (HD)

[1–6], diseases studied in this thesis, but also in other diseases such as Parkinson’s dis-

ease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Even more

promising, some studies showed the potential of iron-sensitive MRI as a marker for

disease progression by identifying iron accumulation in early disease stages and corre-

lating iron accumulation to clinical decline [3, 7]. However, there is still a large gap be-

tween the MRI observations and the interpretation of these observed changes in terms

of the microscopic distribution and molecular nature of iron in the brain, as well as

a lack of understanding of the mechanistic role of iron in the processes of ageing and

disease. Validation and interpretation of in vivo MRI findings using MRI and histology

on post-mortem brain tissue provide some answers to these questions as they provide

unique information on the underlying pathological substrate of MRI contrast.

In chapter 2 I first validated MRI-based detection of iron in post-mortem cortical brain
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tissue of AD patients as well as non-demented controls using a unique pipeline that

allows a direct comparison between full spatial maps of iron detected by T ∗
2 -weighted

MRI, histochemistry, and a gold standard for iron detection, laser ablation-inductively

coupled plasma-mass spectrometry (LA-ICP-MS). Iron histochemistry as well as quan-

titative MRI methods (such as R∗
2 mapping and QSM) provide reliable measures for

iron content in the cortex. These results support the use of MRI studies of iron distri-

bution in both the healthy and the diseased brain. One of the most surprising findings

was that despite the obvious differences in iron distribution patterns within the cor-

tex between AD patients and controls, no overall significant differences were found in

absolute iron concentration as measured by LA-ICP-MS, nor in R∗
2 , phase or suscepti-

bility. Although QSM is the most reliable of the MRI methods for iron quantification,

we found that the anatomical contrast within the cortex is often better appreciated on

T ∗
2 -weighted images.

In chapter 3 I further investigated the histopathological correlates of T ∗
2 -weighted MRI

contrast changes to determine the exact pattern of iron accumulation and the colocal-

ization with specific cells in the frontal cortex of AD patients. I applied ultra-high field

MRI to post-mortem brain tissue and showed that AD patients have a different corti-

cal appearance on MRI. Histology-MRI correlation analyses of pixel intensities showed

that the MRI contrast is best explained by increased iron accumulation and changes in

cortical myelin, whereas amyloid and tau showed less spatial correspondence with the

MRI contrast changes. Subtypes of AD, namely early-onset and late-onset AD patients,

showed different patterns of cortical iron accumulation and myelin changes that may

be detected by high-field susceptibility-based MRI.

In chapter 4 I extended the research in chapter 3 to investigate the spatial distribu-

tion pattern of the observed MRI contrast changes over the entire cortex, using tissue

blocks from different cortical regions selected based on the distribution pattern of tau

pathology. Combining ex vivo high-resolution MRI and histopathology revealed that

subtypes of AD, again early-onset and late-onset AD patients, had a different distribu-

tion pattern of AD pathological hallmarks and MRI contrast changes over the cortex.

In general, early-onset AD showed more severe MRI contrast changes. Per lobe, the

severity of AD pathological hallmarks correlated with iron accumulation and with MRI.

Therefore, iron-sensitive MRI sequences allow the detection of the cortical distribution

pattern of AD pathology ex vivo.

In chapter 5 I studied the brain of patients with Huntington’s disease (HD), another

neurodegenerative disease in which mainly subcortical areas are involved. I again used

post-mortem human brain tissue and assessed the histopathological correlates of the

previously reported T ∗
2 -weighted contrast changes in the striatum in HD. Ultra-high

field ex vivo MRI showed that the striatum of HD patients has a distinctive phenotype

on T ∗
2 -weighted MRI compared to control subjects. On ex vivo MRI, these contrast

changes are heavily biased by enlarged perivascular spaces; it is currently unknown
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whether this is a fixation artefact or a disease-specific observation. Histopathology

showed that besides iron within the vessel wall, reactive astrocytes are the predomi-

nant source of the general increase of iron within the striatum and hence the observed

post-mortem MRI contrast changes.

Based on the results in chapter 5, I describe the rationale and design for an in vivo

7T MRI study in chapter 6. This study, which is currently ongoing, focusses on the

correlation of brain iron levels obtained from 7T MRI of HD patients in different dis-

ease stages, to specific and well-known clinical cerebrospinal fluid markers for iron ac-

cumulation, neurodegeneration and neuroinflammation. Results from this study will

provide a basis for the evaluation of brain iron levels as an imaging biomarker for dis-

ease state in HD and their relationship with the salient pathomechanisms of the dis-

ease on the one hand, and with clinical outcome on the other.

In chapter 7 I used QSM to investigate iron accumulation in the basal ganglia of SLE

patients with neuropsychiatric complaints. In contrast to AD and HD, SLE patients

do not have significant brain atrophy, but many of them do have significant neuroin-

flammation, particularly those that belong to the inflammatory subgroup. Therefore,

this study aimed to gain insight into the link between iron accumulation and neuroin-

flammation in the absence of neurodegeneration. Comparison of susceptibility values

between age-matched controls and SLE patients showed that iron levels in the basal

ganglia are not changed due to the disease. No subgroup of SLE showed higher sus-

ceptibility values and no correlation was found with disease activity or damage due to

SLE. Histological examination of post-mortem brain tissue including the putamen and

globus pallidus supported the in vivo findings.

In conclusion, the central findings of this thesis are that the T ∗
2 -weighted MRI contrast

changes as observed in the cortex of AD patients and striatum of HD patients are in-

deed caused by iron accumulation. However, depending on the disease and brain area

involved, the MRI contrast spatially correlates to different pathological phenomena,

including local iron deposition which may be diffuse or associated with grey and white

matter myelin organization, activated microglia and astrocytes. Lastly, although neu-

roinflammation is thought to play an important role in brain iron accumulation, this

does not seem to be true for every neuroinflammatory disease; in SLE, iron accumula-

tion within microglia does not seem to be an important contributor.

8.2. GENERAL DISCUSSION

To put the work presented in this thesis into perspective, we first go back to the earli-

est discoveries of iron accumulation within the human brain. These date back to the

previous century, when researchers did pioneering studies on the presence of iron in

brain tissue using the very limited laboratory techniques available at that time. Non-
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haem iron was first demonstrated in the brain in the late 19th century, followed by the

observation in 1915 that certain parts of the brain give stronger staining reactions than

others [8, 9]. Based on these studies, Spatz divided the centers of the brain into four

groups according their iron content [10]. This was the first, and at that time most ex-

tensive and systematic investigation reporting that the globus pallidus and substantia

nigra show the most intense iron staining, followed by the red nucleus, putamen, cau-

date nucleus, dentate nucleus and subthalamic body. Diffuse iron was observed with

the naked eye, but investigating the tissue at high magnification showed iron within

neurons and oligodendrocytes. Also infiltration of iron within the walls of blood ves-

sels of the globus pallidus was reported [11]. The form in which iron accumulated re-

mained unclear, although it was suggested that at least part of it was present in ferritin

[11].

At that time, apart from observations that less iron is present in the brains of children

than in those of adults, the effect of aging on iron content was not systematically stud-

ied. In 1958, Hallgren and colleagues acknowledged that insight into the relationship

between age and non-haem iron content is essential when investigating non-haem

iron in pathological conditions. This idea was probably based on the hypothesis raised

by Spatz [12] suggesting that pathological storage of iron within the globus pallidus

and substantia nigra caused rigid akinetic syndrome with contractures (later known as

Hallervorden-Spatz disease). Subsequently, Hallgren et al, nowadays still referred to as

‘the hallmark study for brain iron concentrations’, reported on what is now the well-

known increase of iron content with advancing age in different brain regions [13]. A

couple of years later, the same group reported that iron content was increased near se-

nile plaques in AD patients [14]. This was followed by other groups reporting disrupted

brain iron metabolism in several neurological disorders, including HD, PD, multiple

sclerosis, and Pick’s disease [15]. Already at this point and as also shown in this the-

sis, it was observed that regional iron accumulation depended on the disease involved:

diseases affecting the basal ganglia such as PD and HD showed increased iron in those

regions (chapter 4), whereas increased iron was found in cortical regions in AD pa-

tients (chapter 3 & 4). MRI studies in the 1990s also supported the accumulation of

iron within the brains of PD and AD patients. However, the interpretation of observed

regional hypointensities on T2-weighted MRI was thought to be primarily caused by

iron [15, 16], while other sources of negative contrast, such as calcium and myelin,

were not considered as important contributors to these hypointensities. Also, apart

from the brain areas being differently affected, differences in the cellular localization

of iron among the different diseases were not reported. Although the exact role of iron

in neurodegenerative diseases was unclear, the working hypotheses were quite general

and heavily focused on oxidative stress as the main pathological mechanism. Neu-

rodegeneration in PD and AD was thought to be associated with and even suggested

to be caused by the increased presence of highly reactive oxygen species which may be

generated by increased presence of redox-active iron [17].
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Since then the hypotheses on the role of iron in neurodegenerative diseases evolved

and became more disease-specific. Importantly, the first studies were published re-

porting data that point to a causal role of iron in neurodegeneration rather than just a

correlative bystander effect. Whereas in AD iron was initially found to be only spatially

related to Aβ plaques and neurofibrillary tangles, evidence from animal and in vitro

studies showed that the presence of iron actually promotes and increases the toxicity

of Aβ aggregation through the furin pathway [18]. Additionally, iron also promotes

hyperphosphorylation of tau, thus proving a causal link between iron and two key

components of AD pathology. Following the discovery that mutations in the HFE gene

are responsible for most cases with hereditary hemochromatosis [19], several studies

attempted to identify a potential link between HFE-associated hereditary hemochro-

matosis and AD [20–23]. Although still controversial, some studies showed significant

associations between HFE mutations and AD and increased frequency in AD [23]. Es-

pecially the combination of H63D HFE mutant allele together with the ApoEε4 allele

was shown to significantly reduce age of onset of AD compared to ApoEε4 carriers

alone [24].

Concurrently, the MRI field also made significant advances, and the increasing avail-

ability of clinical scanners operating at higher field strength (3T) allowed for more sen-

sitive detection of iron in the brain [25]. The number of studies investigating iron ac-

cumulation using MRI in several neurological diseases significantly increased and the

potential of MRI as a potential biomarker for the presence and progression of impor-

tant neurological disorders was increasingly recognized.

During the course of this thesis accumulating evidence hinted to iron as a potential

contributor to disease progression, with most of the evidence coming from studies

in AD. Starting from correlative studies showing that iron accumulation is negatively

correlated with cognitive performance in AD [2, 26, 27], recent studies showed that

increased CSF levels of ferritin do not only predict poorer cognition [28], but also in-

crease the risk of conversion from mild cognitive impairment to AD [29]. Subjects with

mild cognitive impairment with high CSF ferritin levels demonstrated an earlier age

of diagnosis compared to patients with low CSF ferritin levels [28]. This was further

supported by a post-mortem study from the same group investigating the association

between brain iron and the rate of cognitive decline assessed during the 12 years prior

to death [30]. A central finding of that study was that iron burden contributes to cogni-

tive decline upon the underlying AD pathology, further supporting the hypothesis that

in the presence of AD pathology, brain iron affects the symptomatic progression of the

disease. Complementary findings are reported in chapter 3 and 4 from this thesis, re-

porting that patients with early-onset AD show more severe changes on both MRI and

iron histochemistry compared to patients who develop the disease after the age of 65

(late-onset AD).

Research over the last years has also shown that iron plays an important role in ad-
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ditional mechanisms beyond oxidative stress. Interestingly, as also described in the

introduction of this thesis, a mechanism that has been shown to be present in several

neurodegenerative diseases is neuroinflammation. In both AD and HD, neuroinflam-

mation has received much attention and studies including patients without or only

mild symptoms showed an early and substantial involvement of inflammation in the

disease pathogenesis [31, 32]. Based on the observation that within the brain iron colo-

calizes with activated microglia, and that a pro-inflammatory environment induces

iron accumulation within microglia, the possibility was raised that imaging of iron us-

ing MRI would potentially reflect neuroinflammation [33]. On a cellular level, we in-

deed found iron-positive microglia in the AD cortex, particularly in the vicinity of Aβ

plaques (chapter 3). These findings put earlier observations in numerous MRI stud-

ies on the detection of Aβ plaques in a new light; much of the colocalization of iron

in Aβ plaques, visible as hypointense foci on iron-sensitive MRI, may actually reflect

neuroinflammation rather than the Aβ plaque itself [4, 34, 35].

As shown in chapter 5, iron accumulation within microglia was less prominent in the

striatum of HD patients. A possible explanation may be that brain tissue with relatively

high disease stages was used. I hypothesize that initially in HD, microglia likely play an

important role in sequestering iron, but due to prolonged activation, microglia become

dystrophic and degenerate. Finally, after microglial degeneration in end stage HD, ac-

tivated astrocytes take over the role of microglia as the predominant iron-sequestering

glia cells. Nevertheless, it remains unknown whether microglia accumulate iron as a

consequence of their pro-inflammatory activation status or is it the other way around:

do microglia become activated as a consequence of increased iron?

Results from this thesis also show that in AD, HD and SLE the MRI contrast is not nec-

essarily explained solely by iron accumulation within microglia. In chapter 3, I showed

that on a pixel-by-pixel basis iron accumulation in the AD cortex is mainly related to

changes in cortical myelination. Rather than demyelination as generally observed in

the white matter in neurodegenerative diseases, an increased myelin staining covering

layer II-IV of the cortex was found in AD patients. First, the observation of increased

myelin staining does not necessarily reflect an absolute increase of myelin content.

It might be caused by tissue compaction due to the loss of neurons and supporting

cells. However, myelin alterations and specifically the association between Aβ pathol-

ogy and focal myelin disruption in the cortex of AD patients have been previously re-

ported [36, 37]. Whereas focal myelin loss implies that myelin alterations are a con-

sequence of AD pathology, recent studies suggest that myelination might has a key

role in AD pathogenesis [38]. Using single-cell transcriptomic analysis, it was shown

that myelination-related processes were perturbed not only in oligodendrocytes and

oligodendrocyte precursor cells, but also in neuronal and other glial cells suggesting a

regulatory response to maintain myelin integrity [38]. Interestingly, changes in genes

related to myelination, such as upregulation of LINGO1, were already found early dur-
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ing pathological progression [38].

In addition to changes in myelin which are present in both AD and HD, reactive as-

trogliosis is also a pathological hallmark in both diseases and common to nearly all

neurodegenerative diseases. However, as shown in chapter 5 of this thesis, only in

the striatum of HD patients we found that iron within astrocytes significantly con-

tributed to the observed MRI contrast changes, suggesting that the glial response is

different in the striatum compared to the cortex. Indeed, several studies have shown

clear morphological, molecular and functional differences between astrocytes present

in the gray and white matter and even among the different cortical layers [39, 40]. Aging

studies showed that during aging significantly more gene expression changes related to

astrocyte reactivity were found in the mouse hippocampus and striatum, compared to

the cortex [41]. Results from studies focusing on neurons in these brain regions suggest

that astrocytes within the hippocampus and striatum are more vulnerable to oxidative

stress and the dysregulation of ion homeostasis [42]. This corresponds to a study show-

ing that striatal astrocytes have a decreased calcium mitochondrial buffering capacity

compared to cortical astrocytes [43, 44], suggesting again increased vulnerability of the

striatum.

Conversely, although the same brain regions were investigated as in HD, the amount

of iron within glial cells in SLE patients as a consequence of neuroinflammation in the

absence of neurodegeneration seems to be unchanged compared to controls (chapter

7). This raises the possibility that although brain diseases as AD, HD and SLE share

many mechanisms, the relative contribution of each of these to the pathology might

differ between the diseases.

Taken together, it seems that depending on the disease involved, iron accumulates

within specific cell types and brain regions. Why certain cell types and brain regions are

more susceptible to increased iron levels needs further investigation. Single-cell profil-

ing techniques such as single-cell RNA sequencing, can be powerful tools to give more

insight into the underlying mechanisms of selective cellular iron accumulation. Re-

cently, gene expression profiles which classify the different cell types within the human

cortex, individual cortical layers and brain regions have become available, which may

help to further understand the selective accumulation of iron within the brain[45, 46].

Although the field has clearly advanced over the last years and provided new insights

into the role and relevance of iron accumulation in neurodegenerative diseases, it is

currently unknown whether the observed increase of iron is a net increase or a redistri-

bution of iron as a consequence of neuroinflammation or atrophy. Apart from an influx

of iron due to, for example, increased blood-brain barrier permeability, vascular events

and increased expression of iron importers [47, 48], it might be more plausible that iron

redistribution explains the observed changes. As observed in AD and HD, but also in

diseases as multiple sclerosis, demyelination and an attempt to remyelinate increases
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the local availability of iron [49]. In addition, increased intracellular iron upon activa-

tion within microglia and astrocytes can be a consequence of increased extracellular

iron originating from degenerating neurons or myelin debris [50–52]. This might also

explain why we did not observe increased iron within microglia in SLE, as this disease

is characterized by significant neuroinflammation, but not significant neurodegenera-

tion. Alternatively, the observed increase of iron within the AD cortex and HD striatum

can also be a result of tissue compaction due to atrophy and loss of neurons and sup-

porting cells. In that case, the total amount of iron in the cortex would not change,

which could explain why absolute iron concentrations were not changed in chapter 2.

However, measuring atrophy is not possible in small post-mortem tissue samples such

as we used in our studies as deformation due to formalin fixation might be present.

Therefore, future in vivo or in situ post-mortem scans should link iron-based MRI scans

to local atrophy. In addition, although high-resolution MRI within clinical time frames

is becoming more realistic with increased magnetic field strength, MRI will be limited

by its inability to measure absolute iron concentrations and intracellular localization

of iron. Also, in vitro experiments with cell-type-specific human iPSC derived neurons

and microglia in combination with iron challenges will give more insight into the un-

derlying mechanisms of iron accumulation within these cells.

Iron-sensitive MRI is nowadays commonly used as a non-invasive proxy for brain iron

and several studies showed the improved quantification of iron using QSM over phase

and R∗
2 measurements [53–56]. Especially with the advent of high-field MRI, QSM at

7T is particularly advantageous, since MRI at higher magnetic field is more sensitive

to tissue-related magnetic field disturbances caused by presence of iron [57]. Also,

scanning at higher resolution due to increased signal to noise at high-field allows bet-

ter visualization of iron distribution within structures as for example the cortex [57].

High-resolution MRI will lead to more accurate parcellation of the cortex and even in-

dividual cortical layers. This is especially of interest for research on AD as, as shown in

chapter 2, sometimes a simple T ∗
2 -weighted image is still preferred over an average re-

gional susceptibility or R∗
2 value as this contains information on the spatial distribution

patterns over cortical layers. Multi-modal approaches will remain extremely valuable

as the combination of MRI and histological/molecular tools yields information on the

cellular localization and for example changes in the expression of iron regulation pro-

teins.

8.3. CONCLUSION AND FINAL REMARKS

The combination of MRI with other techniques has increased our understanding on

what iron-sensitive MRI reflects in healthy controls and patients enormously. Besides

iron, myelin is proven to be an important source of T ∗
2 -weighted MRI contrast [58–

61]. Due to observation by several studies that iron is present within Aβ plaques and
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induces hypointense foci on MRI, numerous studies focused on the detection of Aβ

plaques in vivo using iron-sensitive MRI [4, 34, 35]. Studies combining QSM as a proxy

for iron and a PET-ligand specific for fibrillary Aβ plaques showed that the 11C-PIB

ligand is indeed significantly associated with cortical iron as measured with MRI in

Aβ-positive cognitively normal, MCI as well as AD patients [7, 29]. As shown by van

Duijn et al [62], and in chapter 4 of this thesis, the amount of Aβ plaques is indeed posi-

tively correlated with iron, however, on a pixel-by-pixel basis changes in cortical myelin

and associated iron are the predominant cause of MRI contrast changes in AD (chap-

ter 3). Also, iron within microglia surrounding Aβ plaques and extracellular diffuse

iron should not be neglected as contributors to the observed MRI contrast changes. As

such, T ∗
2 -weighted MRI is not a simple proxy for just iron nor amyloid. It is the sum

of several components, like iron associated with myelin, Aβ, tau and microglia, that

together form the final image.

Maybe one of the most important outstanding questions is whether iron is a cause or

a consequence of neurodegeneration. Several studies, as also described above, have

shown that the presence of iron can lead to oxidative stress, promotes protein aggre-

gation and neuroinflammation. In addition, oxidative stress itself also potentiates the

neurotoxic oligomerization of proteins like Aβ and tau, but also promotes neuroin-

flammation by the activation of microglia and astrocytes [63, 64]. Recently, a newly

described iron-dependent form of cell death termed ‘ferroptosis’ has been described

which involves iron dysregulation, lipid peroxidation and inflammation as major hall-

marks [? ]. Taken together, all these mechanisms are known to be promoted by in-

creased levels of iron, but also the other way around: these mechanisms can lead to

increased levels or redistribution of iron within the brain. Therefore, with the currently

available evidence, regardless of the of the primary event, a flywheel concept is the

most probable hypothesis.

In vivo evidence on how iron-sensitive MRI is related to brain iron levels, neuroin-

flammation and disease progression in neurodegenerative diseases is needed and

can, as suggested in chapter 6, be accomplished by correlating MRI with specific

cerebrospinal fluid markers for iron accumulation, neurodegeneration and neuroin-

flammation. These conjectures deserve further consideration, for example by using

the wealth of data available from larger population studies such as the UK Biobank,

Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Religious Order Study

(ROS).
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