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1
Introduction

The brain produces our thoughts, stores our memories, and make us feel and experi-

ence; it is the most complex organ of the human body. As our brain ages, people start to

experience cognitive decline and the risk of developing a neurodegenerative disease or

dementia is increasing. However, the brain is not uniformly affected by the ageing pro-

cess, nor are individuals. The biological mechanisms behind these diseases are com-

plex and as yet not understood. Over the last decades, many unifying hypotheses were

brought up on common mechanisms underlying neurodegenerative diseases, ranging

from disturbances in protein aggregation, vascular function and energy metabolism or

faults in the brain inflammatory response, to name a few.

Accumulation of iron in the brain is also one of these phenomena occurring in many

neurodegenerative diseases. Iron deposition has recently gained attention as a poten-

tial driving factor in brain ageing and neurodegeneration. This is largely due to em-

pirical evidence from a novel technique allowing the quantification of iron in vivo in

the human brain: susceptibility-based magnetic resonance imaging (MRI). Using this

technique it was shown that iron is essential for normal brain development and brain

function, but also accumulates with age and disease. Iron accumulation is associated

with disease state and speed of progression. However, there is still a large gap between

the MRI observations and the interpretation of these observed changes in terms of the

microscopic and molecular nature of iron in the brain, let alone the mechanistic role

of iron in the processes of ageing and disease.

In this introductory chapter iron homeostasis and iron accumulation during age-

ing and neurodegeneration will be explained in more detail. Then, the potential of

susceptibility-based MRI, such as T ∗
2 -weighted MRI, as a proxy and promising imaging
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biomarker for iron is described. Important gaps in knowledge about iron imaging with

MRI and the role in neurodegeneration will be introduced. Finally, the overall aim of

the thesis and a short introduction of the various chapters will be given.

1.1. IRON IN THE BRAIN

Iron plays a crucial role in an abundance of cellular processes in the brain, including

oxygen transport, mitochondrial respiration, and the synthesis of myelin, DNA, and

neurotransmitters. Both iron excess and deficiency are detrimental and can lead to

impaired brain functioning [1, 2]. Therefore, brain iron homeostasis is tightly regulated

to provide optimum conditions for cell function and to prevent the brain from toxic

effects caused by excessive concentrations of free iron.

Within the brain, the homeostatic balance of iron is regulated through several pro-

cesses comprising iron transport, uptake, storage and export (Fig. 1.1). Iron transport

across the blood-brain barrier (BBB) in physiological conditions relies on uptake of

transferrin, a high-affinity iron-binding protein [3], and is regulated by the transferrin

receptor 1 (TFR) [4, 5]. As TFR is highly expressed on the luminal side of endothelial

cells of the blood-brain barrier, entry of iron into the brain is controlled by binding of

transferrin-bound iron to the TFR [4]. Subsequently, iron is released into the extracel-

lular compartment, allowing uptake by other cells. Iron is continuously moving be-

tween neurons, microglia, astrocytes and oligodendrocytes, depending on these cells

needs [1]. The exact mechanisms of iron import and release, however, are not fully

understood. Both neurons and microglia express TFR, facilitating iron import through

a transferrin-TFR complex [6]. Import of iron through a non-transferrin-bound-iron

transport also exists and is facilitated by divalent metal transporter 1 (DMT1) [5]. As-

trocytes are ideally positioned for iron uptake, because the perivascular end-foot pro-

cesses ensheath the blood-brain barrier [7]. As astrocytes are devoid of TFR, iron up-

take is probably regulated through DMT1 and exported through ceruloplasmin, a fer-

roxidase capable of oxidizing ferrous iron to ferric iron [8].

Iron can be stored in ferritin in a soluble, non-reactive form [9, 10]. Ferritin is pre-

dominantly found in oligodendrocytes, which import large amounts of iron for axon

myelination via the ferritin receptor Tim2 [11]. However, iron stored in ferritin is also

found in neurons, astrocytes and microglia. The major exporter of iron out the cell is

the transmembrane protein ferroportin, which predominantly facilitates the export of

iron in the form of ferrous iron [12]. Finally, hepcidin controls iron export by binding to

ferroportin resulting in internalization and degradation of the receptor-ligand complex

[13].

In healthy aging, the iron levels are increased in the substantia nigra, striatum and

cortices [14–16], and are thought to be a consequence of increased blood-brain bar-
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Figure 1.1: Iron homeostasis in a healthy brain and iron dysregulation during neurodegeneration. Figure
adapted from Daglas et al. 2018 [24]

rier permeability, inflammation, and iron dyshomeostasis [17, 18]. Interestingly, the

amount of iron accumulation does not only vary among brain regions, but also among

cell types. Neurons, astrocytes and microglia are known to accumulate iron during life,

whereas iron levels in oligodendrocytes remain stable [19]. When the storage capac-

ity of proteins or other iron-binding molecules is reached, iron levels in the labile iron

pool can increase consisting of increased availability of chelatable and redox-active

iron [20]. A well-known consequence of excess iron is oxidative stress by the gener-

ation of reactive oxygen species (ROS). ROS can further induce iron release from iron

storage proteins, which can lead to further ROS production via the Fenton reaction [21].

Eventually, iron toxicity can lead to apoptosis and ferroptosis, an iron-specific form of

non-apoptotic cell death [22, 23].

1.2. IRON AND NEURODEGENERATION

Iron accumulates in disease-specific regions to a much greater extent than dur-

ing healthy ageing, as is observed in many neurodegenerative diseases including

Alzheimer’s disease (AD) [25, 26], Huntington’s disease (HD) [27], Parkinson’s disease

[28, 29], frontotemporal dementia [30], corticobasal degeneration, and progressive

supranuclear palsy [28, 31, 32]. The potential of iron accumulation as a contributing

factor to neurodegeneration in these diseases is demonstrated by studies investigat-
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ing a class of diseases termed neurodegeneration with brain iron accumulation (NBIA)

[33, 34]. Excessive brain iron accumulation is caused by mutations that target proteins

directly implicated in iron metabolism, as for example ceruloplasmin in aceruloplas-

minaemia, resulting in impaired cellular iron efflux and thus iron accumulation [33].

As these studies show that iron can cause neurodegeneration, it is very plausible that

iron accumulation in neurodegenerative diseases also contributes to disease progres-

sion.

In AD, the most frequent cause of dementia, the pathological hallmarks amyloid beta

(Aβ) and hyperphosphorylated tau are still considered key mediators in AD pathogen-

esis [35]. However, changes in iron metabolism might also play a role and are shown

to be increased in cortical, subcortical and white matter regions affected by the dis-

eases [36, 37]. Also, high concentrations of iron are found to be present in Aβ plaques,

neurofibrillary tangles and the surrounding glial cells [38–40]. Evidence from in vitro

studies suggests that increased iron concentrations accelerate Aβ and hyperphospho-

rylated tau formation and increases the toxicity of these proteins [41]. Further support-

ive evidence comes from a longitudinal clinical study showing that levels of ferritin in

the cerebrospinal fluid of AD patients are negatively associated with cognitive perfor-

mance and predict the conversion from mild cognitive impairment to AD [42].

Increases in iron levels in disease-specific regions are also reported in diseases with

a clear monogenetic origin. In HD, a rare autosomal dominant inherited progressive

neurodegenerative disorder [43], the largest increase of iron is reported in the basal

ganglia and more specifically in the striatum [44–46]. Interestingly, iron levels were

found to be already increased in asymptomatic gene-carriers and are subsequently

shown to correlate with the severity of the disease [47, 48].

In addition, we know that the pathogenesis of many neurodegenerative diseases is

not restricted to the neuronal compartment, but includes strong interactions with im-

munological mechanisms in the brain. This pathomechanism, also known as neu-

roinflammation, is evident in both AD and HD brains through the observation of in-

creased numbers of activated microglia in disease-specific regions [49–51]. Whereas in

AD clusters of activated microglia are found in the vicinity of Aβ plaques in the cortex

[51, 52], microglia and astrocytes are found in regions with neuronal loss in HD brains

[53, 54]. Genome-wide analysis suggests that several genes encoding for immune re-

ceptors are associated with AD and increase the risk of sporadic AD [55–57]. Also in

HD, microglia activation is already evident in gene-carriers without any symptoms sug-

gesting that neuroinflammation has probably not only a passive role but might be a

key player early in the pathogenesis [54]. Also systemic inflammation, both acute and

chronic, is suggested to interfere with immunological processes of the brain, thereby

inducing or contributing to disease progression [58].

Microglia often accumulate iron, as has been shown in both AD and HD [39, 59].
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Figure 1.2: Overview of the shared mechanisms in neurodegenerative diseases as Alzheimer’s and Hunt-
ington’s disease.

The exact mechanisms of iron accumulation in microglia are not known, but mi-

croglia have been reported to have DMT1, transferrin receptors and ferroportin, and

are able to store large amounts of iron in ferritin [60, 61]. The increased release of pro-

inflammatory cytokines like TNF-alpha and IL-6 by microglia induce the synthesis of

DMT1 and promote iron accumulation in microglia [62]. Also, astrocytes that have

been activated by pro-inflammatory cytokines show increase iron uptake due to up-

regulated expression of DMT1 [63]. As such, iron accumulation is closely linked with

both microglia and astrocyte activation.

Despite all these correlative findings, it is currently unknown whether iron accumula-

tion is a cause or consequence of neurodegeneration, and what the role of iron accu-

mulation is with respect to the many other shared mechanistic links between neurode-

generative diseases (Fig. 1.2). The fact that iron accumulation is not a diffuse effect but

found in brain regions specifically affected by the disease, stresses the interaction be-

tween iron accumulation, protein aggregation and neurodegeneration. This suggests

that iron can be used as marker for neurodegeneration, but the question remains how

this is related to other disease-specific mechanisms and mechanisms such as neuroin-

flammation.
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1.3. T ∗
2 -WEIGHTED MRI AS A PROXY FOR IRON CONCENTRA-

TION

The advent of high-field MRI is of great relevance to study brain iron accumulation

non-invasively, creating the possibility to use iron as a potential imaging biomarker in

neurodegenerative diseases and to further investigate the questions raised above.

Susceptibility-based MRI techniques make use of the strong paramagnetic properties

of iron, as the presence of iron causes intravoxel dephasing of the MR signal and subse-

quently accelerated T ∗
2 decay on gradient echo (GRE) images [64]. These iron-induced

susceptibility changes can be detected as hypointense regions on T ∗
2 -weighted images.

Measuring the signal decay of subsequent echos from a multi-echo GRE scan allows

the calculation of R∗
2 = 1/T ∗

2 , which is frequently used for quantification of the ob-

served contrast changes [64]. As variations in tissue susceptibility also cause changes

in the phase image, phase data has also been used as a qualitative measure for suscep-

tibility changes. However, intrinsic limitations of the phase data are the non-local na-

ture and the high dependency of the orientation of the object with respect to the main

magnetic field [65, 66]. Susceptibility-weighted imaging (SWI) combines the magni-

tude and phase information to enhance the susceptibility contrast on T ∗
2 -weighted

images [67]. Although clinically used to image vascular structures and microhaemor-

rhages, SWI does not provide a quantitative measure for tissue susceptibility changes

[68]. Quantitative susceptibility mapping (QSM) overcomes the non-local nature of the

magnetic field distribution and might therefore be a more reliable technique to quan-

tify brain iron. Apart from being highly sensitive to iron as shown by multiple post-

mortem studies, QSM also makes it possible to distinguish between paramagnetic and

diamagnetic materials such as calcifications and myelin [69–71].

Currently, non-invasive biomarkers for detection of neurodegeneration at an early dis-

ease stage are lacking. Such a biomarker would not only increase our understanding of

the pathophysiological process, but would also allow diagnosis at an early disease stage

which is currently not possible in disease like AD, as the definitive diagnosis can only

be made post-mortem. Therefore, all above mentioned iron-sensitive MRI techniques

have been used in the last decades to investigate and quantify brain iron accumula-

tion in several neurodegenerative diseases. For example, increased R∗
2 values, phase

shifts and susceptibility values have been reported in the cortex of AD patients and

striatum of HD patients (Fig. 1.3) [26, 46, 48, 68, 72, 73]. Even more promising, some

studies showed the potential of iron-sensitive MRI as a marker for disease progression

by identifying iron accumulation in early disease stages in both these diseases [48, 74].
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Figure 1.3: Susceptibility-weighted MRI in patients with Alzheimer’s and Huntington’s disease. Phase im-
ages show enhanced contrast between cortical gray and white matter in AD patients compared to control
subjects, indicating a larger cortical phase shift. QSM shows significant susceptibility differences within the
striatum of HD patients compared to control subjects. Figure adapted from van Rooden, et al., 2014 [26] and
van Bergen et al., 2016 [48]

1.4. THE MISSING LINK

Although the potential of iron-sensitive MRI has been shown and magnetic suscepti-

bility techniques are now sufficiently developed to allow quantification, the interpre-

tation of the data in the biological context remains challenging. This is particularly dif-

ficult when there are clearly defined differences between brains from healthy controls

and patients with neurodegenerative diseases, yet the interpretation of data is mostly

restricted to a correlative level. We clearly need a better understanding of the nature

of the changes on T ∗
2 -weighted MRI and comparing them with in vivo biomarkers is

required to allow greater biological insights. Validation and interpretation of in vivo

MRI findings using post-mortem MRI and histology on post-mortem brain tissue will

provide some answers to these questions as they provide unique information on the

underlying pathological substrate of MRI contrast.
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1.5. AIM OF THIS THESIS

In this thesis I aim to gain more insight into the role of iron in neurodegenerative dis-

eases using high-field MRI. It is my goal to unravel what iron imaging reflects on the

pathological level and to determine how iron accumulation is associated with disease

progression both ex vivo and in vivo. I focus on two main neurodegenerative diseases:

Alzheimer’s disease and Huntington’s disease. Additionally, I explored the use of iron

as a potential biomarker for neuroinflammation, independent from neurodegenera-

tion, in systemic lupus erythematosus (SLE), an autoimmune disease not marked by

neurodegeneration. The thesis is further organized as follows:

In chapter 2 I first aim to validate MRI-based detection of iron in post-mortem cortical

brain tissue of both AD patients and non-demented controls using a unique pipeline

that allows a direct comparison between full spatial maps of iron detected by T ∗
2 -

weighted MRI, histochemistry, and a gold standard for iron detection, laser ablation-

inductively coupled plasma-mass spectrometry (LA-ICP-MS). In addition, I will mea-

sure iron levels in AD patients and controls with LA-ICP-MS and all three quantitative

MRI methods.

In chapter 3 I further investigate the histopathological correlates of previously observed

T ∗
2 -weighted MRI contrast changes to determine the exact pattern of iron accumula-

tion and the colocalization with specific cells in the frontal cortex of AD patients. I will

also investigate the differences in iron accumulation in two subtypes of AD, namely

early-onset and late-onset AD.

In chapter 4 I extend the research in chapter 3 to investigate the spatial distribution pat-

tern of the observed MRI contrast changes over the entire cortex, using tissue blocks

from different cortical regions selected based on the distribution pattern of tau pathol-

ogy. By applying the same pipeline as used in chapter 3, I correlate the MRI contrast

changes with the severity of AD pathology in each region. Finally, I investigate the dif-

ferences in distribution patterns of AD pathology and MRI contrast changes between

subtypes.

In chapter 5 I move to Huntington’s disease to gain insight into the histopathological

correlates of the well-known T ∗
2 -weighted contrast changes in HD. Also here, I perform

ultra-high field ex vivo MRI and histopathological examination on post-mortem tissue

of the striatum of HD patients to determine the exact pattern of iron accumulation and

the colocalization with specific cells.

Based on the results in chapter 5, I describe the rationale and design for an in vivo

7T MRI study in chapter 6. This study focusses on the correlation of brain iron levels

obtained from 7T MRI of HD patients in different disease stages, to specific and well-

known clinical cerebrospinal fluid markers for iron accumulation, neurodegeneration

and neuroinflammation.
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In chapter 7 I use QSM to investigate iron accumulation in the basal ganglia of SLE

patients with neuropsychiatric complaints to gain more insight into the link between

iron accumulation and neuroinflammation. Histological examination of post-mortem

brain tissue including the putamen and globus pallidus is done to further support the

in vivo findings.

In chapter 8 I summarize the main findings of this thesis, followed by a general discus-

sion. The thesis ends with suggestions for future research.
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