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CHAPTER 5
Matching and Measure for Random

Systems

This chapter is based on: [DKM20].

Abstract

We extend the notion of matching for interval maps to random matching for pseudo-
skew products on the interval. For a certain family of piecewise affine interval random
systems the property of random matching implies that any invariant density is piece-
wise constant. Furthermore, we introduce a one-parameter family of random dynam-
ical systems that produce signed binary expansions of numbers in the interval [−1, 1].
We provide results on minimal weight expansions by proving that the frequency of the
digit 0 in the associated signed binary expansions never exceeds 1/2. We do this by
showing that the family has random matching for Lebesgue almost every parameter.
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§5.1 Motivation and context

The research on optimal algorithms that raise elements of a group into some power
has a long and rich history. It is a matter of fact that the computation of powers of
elements in a group is the basis of many public key cryptosystems, where the group
chosen is either the multiplicative group of a finite field Fq or the group of points on
an elliptic curve. The optimality of the algorithms refers to the ability of computing
high powers in a short amount of time. One way to reduce the time complexity is
given by the so-called binary method, introduced in [K69], and based on the binary
expansion of the power. More precisely, if x is an element of a given group, and
a =

∑n
i=0 di2

i ∈ N for some digits di ∈ {0, 1}, then

xa =

n∏
i=0

xdi2
i

,

and the power xa is computed by taking the product of the repeated squarings. While
the number of squarings is given by the length n of the binary expansion of a, the
number of multiplications equals the number of non-zero bits di in the expansion or
its Hamming weight . Clearly, the lower it is, the less multiplications are required and
the faster the algorithm is. To increase the number of zero bits, [B51] introduced
a signed binary representation, i.e., a binary representation with digits in the set
{−1, 0, 1}. This signed binary method was later adopted in several methods in elliptic
cryptosystems, see e.g. [CMO98, HP06] and the references therein.

For any fixed integer a, its ordinary binary representation with digits {0, 1} is
uniquely determined, but this is not the case for the signed one, with digits in
{−1, 0, 1}. In fact, each integer has infinitely many signed binary representations,
which led to the study of algorithms that choose the ones with minimal weight (see
e.g. [MO90, KT93, LK97]). The authors of [GH06] showed that typically a num-
ber has several signed binary representations with minimal weight, but already in
the 1960’s Reitwiesner proved in [R60] that the signed representation is unique when
adding the constraint didi+1 = 0. Such representations are usually known as signed
separated binary expansions, or SSB for short. In [DKL06] it is shown how to obtain
SSB expansions through the binary odometer and a three state Markov chain. Fur-
thermore, in [DKL06] the set K := {d1d2 . . . ∈ {−1, 0, 1}N : ∀i ∈ N, didi+1 = 0} is
introduced as a compactification of Z. The authors identify the set K, endowed with
the left shift σ, with the map S(x) = 2x mod Z on the interval [− 2

3 ,
2
3 ], through the

conjugation

ψ(d1d2 . . .) =

∞∑
k=1

dk
2k
. (5.1)

The dynamical viewpoint allows them to obtain metric properties of the system (K,σ),
such as a σ-invariant measure, the maximal entropy and the frequency of 0 in typical
expansions.

In [DK17] this dynamical approach was further developed by considering a family
of symmetric doubling maps {Sα : [−1, 1]→ [−1, 1]}α∈[1,2] defined by Sα(x) = 2x−dα
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and

d =


−1, if x ∈ [−1,− 1

2 ),

0, if x ∈ [− 1
2 ,

1
2 ],

1, if x ∈ ( 1
2 , 1].

The map S from [DKL06], producing SSB expansions, is then easily identified with
the map S 3

2
, through the conjugacy x 7→ 3

2x. For each α ∈ [1, 2] iterations of Sα
produce signed binary expansions of the form x =

∑∞
k=1

dk
2k

with dk ∈ {−1, 0, 1} for
each number x ∈ [−1, 1]. The authors of [DK17] showed that the frequency of 0 in
such expansions depends continuously on the parameter α and it takes its maximum
value 2

3 , corresponding to the minimum Hamming weight of 1
3 , precisely for α in the

subinterval [ 6
5 ,

3
2 ]. It follows that the SSB expansion of integers produces sequences

where typically only 1
3 of the digits is different from zero. The results from [DK17] are

achieved by finding a detailed description of the invariant probability density fα of Sα
for each value of α and then explicitly computing the frequency of the digit 0 using
Birkhoff’s Ergodic Theorem. The fact that the family {Sα} exhibits the dynamical
phenomenon of matching was essential for these results.

In this chapter we consider signed binary expansions in the framework of random
dynamical systems. The advantage of random systems in this context is that a single
random system produces many more number expansions per number than a determ-
inistic map, allowing one to study the properties of many expansions simultaneously.
See e.g. [DK03, DdV05, DdV07, DK07, KKV17, DO18] for the use of random sys-
tems in the study of different types of number expansions. We will introduce a family
of random systems {Rα}α∈[1,2], called random symmetric doubling maps, such that
each element Rα produces for typical numbers in the interval [−1, 1] infinitely many
different signed binary expansions. This is contrary to the map Sα, which produces
a unique signed binary expansion for each number in [−1, 1]. Our main result for the
family {Rα}α∈[1,2] is that the frequency of the digit 0 in typical signed binary ex-
pansions produced by any of the maps Rα is at most 1

2 , and therefore the Hamming
weight is at least 1

2 . This reinforces the result from [DK17] that the maps Sα with
α ∈

[
6
5 ,

3
2

]
perform best in terms of minimal weight.

We obtain this result from Birkhoff’s Ergodic Theorem after gathering detailed
knowledge on the invariant probability densities of the random maps Rα. We first
express these densities as infinite sums of indicator functions using the algebraic pro-
cedure from [KM18]. To compute the frequency of 0 we need to evaluate the Lebesgue
integral of these densities over part of the domain and therefore we convert the infin-
ite sums into finite sums. For this we introduce a random version of the dynamical
concept of matching that is available for one-dimensional systems (see e.g. [NN08,
DKS09, BCIT13, BSORG13, BCK17, BCMP18, CIT18, CM18, KLMM20]). Our
definition of random matching properly extends the one-dimensional notion of match-
ing and we illustrate the concept with examples of random continued fraction maps
and random generalised β-transformations. We show that under certain mild condi-
tions, if a random system of piecewise affine maps defined on the same interval has
random matching, then any invariant probability density of the system is piecewise
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constant. The precise formulation of this statement and the conditions are given in
the next section. Finally, we use this random matching property to show that for
Lebesgue almost all parameters α the invariant density of the random systems Rα,
producing signed binary expansions, is in fact piecewise constant.

This chapter is outlined as follows. The second section is devoted to random
matching for random systems defined on an interval. We first recall some prelimin-
aries on invariant measures for random interval maps. We then define the notion of
random matching and state and prove the result about densities of random systems
of piecewise affine maps with matching. We also discuss the examples of random
continued fraction transformations and random generalised β-transformations. In the
third section we introduce and discuss the family {Rα} of random symmetric doubling
maps and the corresponding signed binary expansions. We prove that Rα has ran-
dom matching for Lebesgue almost all α ∈ [1, 2]. We also provide a full description of
the matching intervals, i.e., intervals of parameters that exhibit comparable matching
behaviour, and describe the invariant densities of the maps Rα. Finally we prove that
typically the frequency of the digit 0 in the signed binary expansions produced by Rα
does not exceed 1

2 for any parameter α.

§5.2 Random matching

Matching is a dynamical phenomenon observed in certain families of piecewise smooth
interval maps. Recall that, if T : I → I is such a map on an interval I of real
numbers, then we say that T has matching if for every discontinuity point c of T or
of the derivative T ′ the orbits of the left and right limits T k(c−) = limx↑c T

k(x) and
T k(c+) = limx↓c T

k(x) eventually meet, i.e., if for each c there exist positive constants
M = Mc and Q = Qc, such that

TM (c−) = TQ(c+). (5.2)

T is then said to have strong matching if, moreover, the orbits of the left and right
limits have equal one-sided derivatives at the moment they meet, i.e., if besides (5.2)
it also holds that

(TM )′(c−) = (TQ)′(c+). (5.3)

It was proven in [BCMP18, Theorem 1.2] (see also Remark 1.3 in [BCMP18])
that for any piecewise smooth T with strong matching, any invariant probability
measure µ that is absolutely continuous with respect to the Lebesgue measure has
a piecewise smooth density. For continued fraction transformations (as in [NN08,
DKS09, KLMM20] for example) it seems that matching is sufficient to guarantee
the existence of a piecewise smooth density (since this is sufficient to construct a
natural extension with finitely many pieces). The strong matching condition then
enforces some stability in the matching behaviour of certain one-parameter families
of continued fraction maps, which becomes visible in the appearance of so called
matching intervals in the parameter space: If such a family has strong matching for
one parameter, then one can find an interval of parameters around it, such that all
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the corresponding transformations have matching in the same number of steps and
with comparable orbits.

In this section we extend the above definitions of matching and strong matching
to random dynamical systems. Let Ω ⊆ N be the index set of the available maps,
so we have a collection of transformations {Tj : I → I}j∈Ω defined on the same
interval I ⊆ R at our disposal. Let σ : ΩN → ΩN be the left shift on one-sided
sequences. Recall by Definition 1.2.8 that the random map or pseudo-skew product
R : ΩN × I → ΩN × I is defined by

R(ω, x) = (σ(ω), Tω1x).

Let p = (pj)j∈Ω be a positive probability vector, representing the probabilities with
which we choose the maps Tj . Consider the product measure mp × µp from Defini-
tion 1.2.9, for mp the p-Bernoulli measure on ΩN and µp a probability measure on I
that is absolutely continuoues with resepct to the Lebesgue measure λ, and denote its
density by fp. Here we call µp a stationary measure and fp an invariant density for R.

In the literature there exist various sets of conditions under which the existence
of such an invariant measure is guaranteed. See for example [M85, P84, B00, GB03,
BG05, I12]. Here we explicitly mention a special case of the conditions by Inoue from
[I12] which are simple to state and suit our purposes in the next sections. Assume
that the following three conditions hold:

(a1) There is a finite or countable interval partition {Ii}i∈Λ, such that each map Tj
is C1 and monotone on the interior of each interval Ii.

Let C denote the set of all boundary points of the intervals Ii that are in the interior
of I. We choose the collection {Ii} as small as possible, so that C contains precisely
those points that are a critical point of Tj or T ′j for at least one j ∈ Ω. We call
elements c ∈ C critical points for the corresponding random system R.

(a2) The random system R is expanding on average, i.e., there exists a constant
0 < ρ < 1, such that

∑
j∈Ω

pj
|T ′j(x)| ≤ ρ holds for each x ∈ I \ C.

(a3) For each j ∈ Ω the map

x 7→

{
pj

|T ′j(x)| if x 6= c,

0 otherwise,

is of bounded variation.

It then follows from [I12, Theorem 5.2] that an invariant measure for R of the form
mp×µp exists. LetR denote the class of random maps R that satisfy these conditions.
We will define random matching for maps in R, but first we recall some notation on
sequences and strings.

For each k > 0 the set Ωk = {u = u1 · · ·uk : ui ∈ Ω, 1 ≤ i ≤ k} is the set of all
k-strings of elements in Ω. We let Ω0 = {ε}, with ε the empty string. For a finite
string u let |u| denote its length, i.e., |u| = k if u ∈ Ωk. Also, for 1 ≤ n ≤ k we
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let un1 := u1 · · ·un and we set u0
1 = ε. Similarly, for an infinite sequence ω ∈ ΩN

and n ≥ 1 we use the notation ωn1 := ω1 · · ·ωn with ω0
1 = ε. Finally, we use square

brackets to denote cylinder sets, so

[u] = {ω ∈ ΩN : ω1 · · ·ω|u| = u}. (5.4)

For u ∈ Ωk and 0 ≤ n ≤ k, let

Tu = Tuk ◦ Tuk−1
◦ · · · ◦ Tu1

and Tnu = Tun1 = Tun ◦ Tun−1
◦ · · · ◦ Tu1

.

Note that T 0
u = Tu0

1
= Tε = id. Similarly if ω ∈ ΩN, we let Tnω = Tωn1 = Tωn ◦ Tωn−1 ◦

· · · ◦ Tω1 for any n ≥ 0. For u ∈ Ωk the left and right random orbits of the critical
points c ∈ C are

Tu(c−) = lim
x↑c

Tu(x) and Tu(c+) = lim
x↓c

Tu(x).

The one-sided derivatives along u are given by

T ′u(c−) = lim
x↑c

k∏
n=1

T ′un(Tun−1
1

(x)) and T ′u(c+) = lim
x↓c

k∏
n=1

T ′un(Tun−1
1

(x)).

We use the abbreviation pu := pu1
· · · puk with pε = 1.

5.2.1 Definition. (Random matching) A random map R ∈ R has random matching
if for every c ∈ C there exists an M = Mc ∈ N and a set

Y = Yc ⊆
{
T kω (c−) : ω ∈ ΩN, 1 ≤ k ≤M

}
∩
{
T kω (c+) : ω ∈ ΩN, 1 ≤ k ≤M

}
such that for every ω ∈ ΩN there exist k = kc(ω), ` = `c(ω) ≤M with T kω (c−), T `ω(c+) ∈
Y .

The main difference with one-dimensional matching as in (5.2) and (5.3) is that
in a random system R the critical points have many different random orbits. Defin-
ition 5.2.1 states that any random orbit of the left or the right limit of any critical
point c passes through the set Yc at the latest at time M . The indices k, ` are intro-
duced to cater for the possibility that these orbits pass through the set Yc at different
moments. Since all points in Yc are in the orbit of both c− and c+, this implies that
all random orbits of the left limit meet with some random orbit of the right limit
and vice versa. This corresponds to the statement in (5.2). Note that we do not ask
T kω (c−) = T `ω(c+).

5.2.2 Definition. (Strong random matching) A random map R ∈ R has strong
random matching if it has random matching and if for each c ∈ C and y ∈ Yc the
following holds. Set

Ω(y)− =
{
u ∈

M⋃
k=1

Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ωkc(ω) and Tu(c−) = y
}
,

Ω(y)+ =
{
u ∈

M⋃
k=1

Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ω`c(ω) and Tu(c+) = y
}
.
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Then, ∑
u∈Ω(y)−

pu
T ′u(c−)

=
∑

u∈Ω(y)+

pu
T ′u(c+)

. (5.5)

Definition 5.2.2 guarantees that one can choose the times k, ` such that at those
times orbits enter the set Y with the same weighted derivative. This is comparable
to (5.3). Note that ⋃

y∈Yc

⋃
u∈Ω(y)−

[u] = ΩN =
⋃
y∈Yc

⋃
u∈Ω(y)+

[u],

where [u] is a cylinder as defined in (5.4), so we have indeed captured all random
orbits of c. Note that Definition 5.2.2 depends on the choices of kc(ω) and `c(ω) for
each c in Definition 5.2.1.

If Ω consists of one element only, then the random map is actually a deterministic
map. In this case Definition 5.2.1 and Definition 5.2.2 reduce to the definitions of one-
dimensional matching and strong matching given in (5.2) and (5.3), so the random
definitions extend the deterministic ones.

In case each map Tj : I → I is piecewise affine on a finite partition c0 < c1 < . . . <

cN the conditions (a1) and (a3) are automatically satisfied and under some additional
assumptions strong random matching has consequences for invariant densities. For
this result we consider a subset of the collection of random maps R. We define the
subset RA ⊂ R to be the set of random systems in R that satisfy the following
additional assumptions:

(c1) There exists a finite interval partition {Ii}1≤i≤N of I = [c0, cN ] given by the
points c0 < c1 < . . . < cN , such that each map Tj : I → I, j ∈ Ω, is piecewise
affine with respect to this partition. In other words, for each j ∈ Ω and 1 ≤ i ≤
N we can write Tj |(ci−1,ci)(x) = ki,jx+ di,j for some constants ki,j , di,j .

(c2) For each 1 ≤ i ≤ N there is an 1 ≤ n ≤ N , such that∑
j∈Ω

pj
ki,j

di,j

1−
∑
j∈Ω

pj
ki,j

6=
∑
j∈Ω

pj
kn,j

dn,j

1−
∑
j∈Ω

pj
kn,j

. (5.6)

(c3) For each 1 ≤ i ≤ N ,
∑
j∈Ω

pj
ki,j
6= 0.

Using the results from Chapter 3, we will show that for R ∈ RA the following holds.

5.2.3 Theorem. Let R ∈ RA. If R has strong random matching, then there exists
an invariant probability measure mp × µp for R with µp absolutely continuous with
respect to Lebesgue and such that its density fp is piecewise constant. If moreover
every map Tj is expanding, i.e., if |ki,j | > 1 for each 1 ≤ i ≤ N and j ∈ Ω, then any
invariant probability density fp of R is piecewise constant.

Assumptions (c2) and (c3) are used in Chapter 3 to prove that for systems in RA
there exists an invariant probability density function that can be written as an infinite
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sum of indicator functions. We use this fact in the proof below. These conditions,
which are not very restrictive, guarantee that the method from Chapter 3 works, but
they might not be necessary for the results from Theorem 3.4.1 and Theorem 5.2.3.
In fact, the deterministic analog of Theorem 5.2.3, which can be found in [BCMP18,
Theorem 1.2], does not have a condition like (5.6). Their proof uses an induced
system with a full branched return map instead. One could try to transfer the proof
of [BCMP18, Theorem 1.2] to the setting of random interval maps to avoid (c2) and
(c3). Then, the recent results from Inoue in [I20] on first return time functions for
random systems seem relevant. These results show, however, that an induced system
for a random interval map will become position dependent instead of i.i.d., which
might make such an extension not so straightforward.

Proof. The set of critical points of R is given by C = {c1, . . . , cN−1}. Any random
map R ∈ RA satisfies the conditions of Theorem 3.4.1. Thus, there exists an invariant
probability measure mp × µp for R with a probability density fp for µp of the form

fp =

N−1∑
i=1

γi
∑
k≥1

∑
u∈Ωk

( pu

T ′u(c−i )
1[c0,Tu(c−i )) −

pu

T ′u(c+i )
1[c0,Tu(c+i ))

)
, (5.7)

for some constants γi depending only on the critical points ci. Fix an i and let M,Y

be such that R satisfies the conditions of Definition 5.2.1 and Definition 5.2.2 for ci.
Then by (5.5)∑

y∈Y

( ∑
u∈Ω(y)−

pu

T ′u(c−i )
1[c0,Tu(c−i )) −

∑
u∈Ω(y)+

pu

T ′u(c+i )
1[c0,Tu(c+i ))

)
= 0.

For each 1 ≤ i ≤ N − 1 and each 1 ≤ k ≤M , let

Ωi,k− = {u ∈ Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ωk and k < kci(ω)}

and similarly

Ωi,k+ = {u ∈ Ωk : ∃ω ∈ ΩN with u = ω1 · · ·ωk and k < `ci(ω)}.

Then fp can be written as

fp =

N−1∑
i=1

γi

M∑
k=1

( ∑
u∈Ωi,k−

pu

T ′u(c−i )
1[c0,Tu(c−i )) −

∑
u∈Ωi,k+

pu

T ′u(c+i )
1[c0,Tu(c+i ))

)
.

Hence fp is constant on each interval in the finite partition of I specified by the orbit
points in the set

N−1⋃
i=1

M⋃
k=1

(
{Tu(c−i ) : u ∈ Ωi,k− } ∪ {Tu(c+i ) : u ∈ Ωi,k+ }

)
.

This gives the first part of the result.

For the second part, note that under the additional assumption that |ki,j | > 1 for
all i, j the map R satisfies the conditions of Theorem 3.5.3. As a consequence, any
invariant density fp of R can be written as in (5.7) for some values γi. This proves
the theorem.
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§5.3 Examples

We give two examples of families of random interval maps depending on one para-
meter. We show that for each of these families there exist parameter intervals such
that the systems have strong random matching for every parameter within these in-
tervals. Moreover, within such an interval matching happens in a comparable way,
i.e., with the same M and similar sets Y . As in the deterministic case, we call these
intervals matching intervals. To ease the notation we use the symbol ? to indicate
the set of strings obtained by replacing ? with any j ∈ Ω. E.g., if Ω = {0, 1, 2}, then
0? = {00, 01, 02}.

§5.3.1 Random signed β-transformations

Let β = 1+
√

5
2 be the golden mean, so β2 = β+1. For each α ∈ (1, β2), let p = (p0, p1)

be a positive probability vector and consider the random system Rα given by two
generalised β-transformations Tα,j : [−β, β]→ [−β, β], j = 0, 1, defined as follows.

−β β

0

− 1
β

10

β

(a) Tα,0

−β β

0

−1 0 1
β

β

(b) Tα,1

Figure 5.1: The maps Tα,0 and Tα,1 for α ∈
(

3β−2
2
, 4β − 5

)
.

Consider the points

z0 = −β, z1 = −1, z2 = − 1

β
, z3 =

1

β
, z4 = 1, z5 = β,

and let

Tα,0(x) =


βx+ α if x ∈ [z0, z2),

βx if x ∈ [z2, z4),

βx− α if x ∈ [z4, z5],

and

Tα,1(x) =


βx+ α if x ∈ [z0, z1],

βx if x ∈ (z1, z3],

βx− α if x ∈ (z3, z5].

See Figure (5.1) for the graphs of Tα,0 and Tα,1, and Figure (5.2) for some examples
of Rα, for different values of α.
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−β β

0

−1− 1
β

10 1
β

β

(a) R1

−β β

0

−1− 1
β

10 1
β

β

(b) Rβ

−β β

0

−1− 1
β

10 1
β

β

(c) Rβ2

Figure 5.2: Rα for α = 1 in (a), α = β in (b), and α = β2 in (c).

Let
J1 =

(
3β − 2

2
, 4β − 5

)
and J2 =

(
6− β

2
,
β + 5

3

)
.

We will show that strong random matching happens for any α ∈ J1 ∪ J2. Note that
C =

{
− 1,− 1

β ,
1
β , 1
}

so that by the symmetry of the maps, to show that Rα has
random matching, we only need to consider the points 1

β and 1.

−β β

0

−1− 1
β

10 1
β

β

(a) J1

−β β

0

−1− 1
β

10 1
β

β

(b) J2

Figure 5.3: Rα for α ∈ J1, J2 respectively.

We start by considering α ∈ J1. See Figure (5.3)(a) for the corresponding random
system Rα. The parameter interval is constructed in such a way that for any α ∈ J1

the initial parts of the random orbits of the left and right limits to 1
β and 1 are

determined in the following way. For j = 0, 1 and any ω ∈ {0, 1}N,

Tα,0(1−) = β, Tα,ω(β) = β2 − α, T 2
α,ω(β) = β2(β − α),

Tα,1(1−) = Tα,j(1
+) = β − α, Tα,ω(β − α) = β(β − α), T 2

α,ω(β − α) = β2(β − α).

Hence, for 1 ∈ C we can take M = k1(ω) = `1(ω) = 3 for each ω, Y = {β2(β − α)}
and one easily checks the conditions of both Definition 5.2.1 and Definition 5.2.2.

For 1
β the orbits are more complicated. Firstly, Tα,j

(
1
β

−)
= 1 = Tα,0

(
1
β

+) and

Tα,1
(

1
β

+)
= 1 − α. We saw the orbit of 1 above, so we concentrate on the orbit of

1−α. We have Tα,j(1−α) = β(1−α) ∈
(
−1,− 1

β

)
, so Tα,0(β(1−α)) = β(β−α) and
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Tα,1(β(1− α)) = β2(1− α). The next couple of iterations are depicted in Figure 5.4,
where we have used the property that β2 = β + 1 to compute the orbit points.

1− α β(1− α) β(β − α) β2(β − α) β3(β − α) β4(β − α) β5(β − α)− α

β2(1− α)

β3(1− α) + α

β4(1− α) + βα

β5(1− α) + β2α

β6(1− α) + β3α+ α = β5(β − α)− βα

β5(1− α) + β2α+ α β6(1− α) + β3α+ βα = β5(β − α)− α

β4(β − α)− α

β5(β − α)− βα

0 0

1

1

0

1

Figure 5.4: The first couple of points in the orbit of 1 − α under the random generalised
β-transformation. We have boxed β2(β − α), since this point also appears in all random
orbits of 1.

Take M = k 1
β

(ω) = ` 1
β

(ω) = 7 for each ω and set Y = {β5(β − α) − α, β5(β −
α)− βα = β6 − 3β3α}. Then,

Ω(β5(β − α)− α)+ = 0 ? ? ? ?0 ? ∪1 ? 0 ? ?0 ? ∪1 ? 1 ? ?0?

and Ω(β5(β − α)− α)− = ? ? ? ? ?0?. Hence,

∑
u∈Ω(β5(β−α)−α)+

pu

T ′u( 1
β

+
)

=
p2

0 + p1p
2
0 + p2

1p0

β7
=
p0

β7
=

∑
u∈Ω(β5(β−α)−α)−

pu

T ′u( 1
β

−
)
.

A similar computation gives (5.5) for β5(β − α) − βα, so Rα has strong random
matching.

Note that also in this example the orbits of 1+ meet with some of the orbits
of 1− earlier, in this case already after one step. Hence, we could also take Y1 =

{β − α, β2(β − α)} and split the random orbits as follows:

Ω(β − α)+ = {1} = Ω(β − α)− and Ω(β2(β − α))+ = 0 ? ? = Ω(β2(β − α))−.

Then for some ω the values k1(ω), `1(ω) are lower, but we have to check condition (5.5)
for two points instead of one. For the critical point 1

β we could use Y = {β−α, β2(β−
α), β5(β−α)−α, β5(β−α)−βα} or also Y = {β2(β−α), β5(β−α)−α, β5(β−α)−βα}.
By the flexibility in the choice of Y given by Definition 5.2.1 one can choose the set
Y that is most convenient. Theorem 5.2.3 explains the need for condition (5.5) in
Definition 5.2.2.
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We now consider α ∈ J2; see Figure (5.3)(b) for the corresponding random system
Rα. For j = 0, 1, the initial parts of the random orbits of the left and right limits to
1
β and 1 are given by

Tα,j(
1
β

−
) = Tα,0( 1

β

+
) = 1, Tα,1( 1

β

+
) = 1− α.

and
Tα,j(1

+) = Tα,1(1−) = β − α, Tα,0(1+) = β.

Moreover, for any ω ∈ {0, 1}N

Tα,ω(1) = β − α,
Tα,ω(β) = β2 − α, T 2

α,ω(β) = β(β2 − α),

T 1
α,ω(1− α) = β − α(β − 1), T 2

α,ω(1− α) = β2 − α, T 3
α,ω(1− α) = β(β2 − α).

Note also that Tα,j1(β − α) = β(β2 − α). Since all possible random orbits of 1
β and

1 pass by the point β − α or by one of its iterates, β(β2 − α), to study the orbits of
these critical points is enough to follow the one of β − α. This is depicted in Figure
5.5.

β − α β(β − α) β(β2 − α) β4 − α(β2 + 1) β(β4 − 3α) β2(β4 − 3α) β3(β4 − 3α)− α

β3(β4 − 3α)β2(β2 − α)

β2(β3 − 2α)

β2(β − α)

β(β3 − 2α)

β2(β3 − 2α)

β3(β3 − 2α)

β4(β3 − 2α)

β7 − 2β4α+ α

0 1 1

001

0

1

Figure 5.5: The first couple of points in the orbit of β − α under Rα for α ∈ J2. We have
boxed β(β2 − α), since this point appears in the orbits of 1, β and 1− α.

Take M = k 1
β

(ω) = ` 1
β

(ω) = 8 for each ω and set

Y = {β4(β3 − 2α) = β3(β4 − 3α)− α, β3(β4 − 3α) = β7 − 2β4α+ α}.

Then,
Ω(β4(β3 − 2α))− = ? ? ?01 ? ?1 ∪ ? ? ?00 ? ?1 ∪ ? ? ?1 ? ? ? 1,

and

Ω(β4(β3 − 2α))+ =0 ? ?01 ? ?1 ∪ 0 ? ?00 ? ?1 ∪ 0 ? ?1 ? ? ? 1∪
1 ? ? ? 0 ? ?1 ∪ 1 ? ? ? 1 ? ?1.
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Hence, ∑
u∈Ω(β4(β3−2α))−

pu

T ′u( 1
β

−
)

=
p2

1p0 + p1p
2
0 + p2

1

β8
=
p1

β8
=

∑
u∈Ω(β4(β3−2α))+

pu

T ′u( 1
β

+
)
.

A similar computation gives (5.5) for β3(β4−3α), so Rα has strong random matching
for any α ∈ J2.

Note that also in this example the orbits of 1
β

− meet with some of the orbits of
1
β

+ earlier, in this case already after one step. Hence, we could also take the points
1, and β(β2 − α)} in the set Y and split the random orbits accordingly.

5.3.1 Remark. The random generalised β-transformations Rα from Example 5.3.1
satisfy all conditions of Theorem 5.2.3. Hence, for any α ∈ J1 ∪ J2 any invariant
density of the random system Rα is piecewise constant.

§5.3.2 Random CF-maps
For α ∈ (0, 1) let Tα,0, Tα,1 : [α − 1, α] → [α − 1, α] be the Nakada and Ito-Tanaka
α-continued fraction transformations, introduced in [N81] and in [TI81] respectively,
and given by

Tα,0(x) =
1

|x|
−
⌊

1

|x|
+ 1− α

⌋
and Tα,1(x) =

1

x
−
⌊

1

x
+ 1− α

⌋
,

for x 6= 0 and Tα,0(0) = 0 = Tα,1(0). The graphs are shown in Figure 5.6.

α − 1
0

α

α − 1

α

1
α+1

− 1
α+3

(a) Tα,0

α − 1
0

α

α − 1

α

1
α+1

1
α−5

(b) Tα,1

Figure 5.6: The Nakada α-continued fraction map Tα,0 in (a) and the Ito-Tanaka α-continued
fraction map Tα,1 in (b) for α = 7

10
∈
(

5−
√

13
2

,
√

2
2

)
.

Let Rα denote the corresponding pseudo-skew product on {0, 1}N× [α−1, α]. For
x ∈ [0, α], the two maps coincide and

Tα,0(x) = Tα,1(x) =
1

x
− n for x ∈

(
1

α+ n
,

1

α+ n− 1

]
.
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For x ∈ [α− 1, 0), we have

Tα,0(x) = − 1

x
− n for x ∈

[
− 1

α+ n− 1
,− 1

α+ n

)
,

Tα,1(x) =
1

x
+ n for x ∈

[ 1

α− n
,

1

α− (n+ 1)

)
.

We first show that for any α ∈
(√

10−2
2 , 2−

√
2
)
the map Rα has random matching.

For this note that the critical points c are all in the set { 1
α+n ,−

1
α+n ,

1
α−n : n ∈ N}.

For any positive critical point c > 0 and any j ∈ {0, 1}, Tj(c−), Tj(c
+) ∈ {α − 1, α}.

For c < 0, c is either a critical point for T0 and a continuity point for T1, or a critical
point for T1 and a continuity point for T0. Specifically, since α > 1

2 , for c = − 1
α+n we

have
T0(c−) = α, T0(c+) = α− 1, and T1(c−) = T1(c+) = 1− α,

and for c = 1
α−n

T1(c−) = α− 1, T1(c+) = α, and T0(c−) = T0(c+) = 1− α.

As a consequence, to show that Rα has random matching we only need to consider
the orbits of α − 1 and α. Due to the choice of endpoints of the parameter interval(√

10−2
2 , 2 −

√
2
)
, the first three orbit points of α and α − 1 are easily determined.

They are given in Figure 5.7. Hence, if we take M = 3 and

Y =

{
5α− 3

1− 2α
,

4− 7α

1− 2α

}
, if c > 0

and
Y =

{
5α− 3

1− 2α
,

4− 7α

1− 2α
, 1− α

}
, if c < 0,

then Rα has random matching according to Definition 5.2.1.

1 α 1 1−2α
α

5α−3
1−2α

4−7α
1−2α

0

1

α− 1 1−2α
α−1

5α−3
1−2α

2α−1
α−1

5α−3
1−2α

4−7α
1−2α

0

1

0

1

Figure 5.7: The first three elements in the orbits of α and α−1 under the random continued
fraction map Rα for α ∈

(√
10−2
2

, 2 −
√
2
)
. The digits above the arrows indicate which one

of the maps Tα,0 or Tα,1 is applied. If there is no digit, then both maps yield the same orbit
point. Orbit points in boxes with the same colour are equal.

Rα does not satisfy strong random matching with this choice of Y . To see this,
note that T ′α,1(x) = − 1

x2 for all x where the derivative exists, while T ′α,0(x) = − 1
x2 if
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x > 0 and T ′α,0(x) = 1
x2 if x < 0. Now take for example c = 1

α+n > 0 and y = 4−7α
1−2α .

Then Ω(y)− = ?11 = {011, 111} and Ω(y)+ = ? ? 1. For the quantities from (5.5), we
obtain∑

u∈Ω(y)−

pu
T ′u

(c−) = −p2
1c

2(2α− 1)2 and
∑

u∈Ω(y)+

pu
T ′u

(c+) = −p1c
2(2α− 1)2,

which are not equal for any p1 ∈ (0, 1).

We now identify a countable number of parameter intervals on which the maps Rα
have strong matching with the same exponent M = 4, i.e., we identify a countable
number of matching intervals for the family Rα. For n ≥ 4 let the interval Jn :=

(`n, rn) be defined by the left and right endpoints

`n =
n+ 1−

√
n2 − 2n+ 5

2
and rn =

√
n− 2

n
, (5.8)

respectively. Set g :=
√

5−1
2 for the small golden mean and note that g < `n < rn for

all n ≥ 4 and that limn→∞ `n = limn→∞ rn = 1. See Figure 5.8 for an illustration of
the location of these intervals.

Figure 5.8: The semicircles indicate the locations of the intervals Jn.

The intervals Jn are chosen in such a way that we can determine the first three
orbit points of α and α − 1. Let n ≥ 4 and α ∈ Jn. In particular α > g and for
j = 0, 1,

Tα,j(α) =
1− α
α

> 0.

The point `n is chosen so that α− 1 ∈ ( 1
α−n ,

α+1
1−n(α+1) ) ⊆ (− 1

α+n−2 ,−
1

α+n−1 ). Since
α+1

1−n(α+1) <
1

α−n−1 we get

Tα,1(α− 1) =
n(α− 1) + 1

α− 1
and Tα,0(α− 1) =

α(n− 1) + 2− n
1− α

.

It also implies 1−α
α ∈ ( 1

α+n−2 ,
1

α+n−3 ). As a consequence, for l = 0, 1,

Tα,jl(α) =
α(n− 1) + 2− n

1− α
= Tα,0(α− 1) > 0.

We further divide the interval Jn. For k ∈ {2, 3, . . . , n}, let

in,k =
−4 + 2n− kn+ k +

√
k2n2 − 2k2n+ k2 + 4

2(n− 1)
,
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and note that Jn ⊆ ∪n−1
k=2(in,k+1, in,k]. Therefore, for each α ∈ Jn there exists a

k ∈ {2, 3, . . . , n− 1} such that α ∈ (in,k+1, in,k]. The last condition is equivalent to

1

α+ k
<
α(n− 1) + 2− n

1− α
≤ 1

α+ k − 1
, (5.9)

so that for u ∈ Ω3 it holds that

Tα,u(α) =
1− 2k + kn− α(kn− k + 1)

α(n− 1) + 2− n
.

On the other hand, the choice of rn guarantees that Tα,1(α − 1) = 1+n(α−1)
n > 1

α+1 .
Then for j = 0, 1,

Tα,1j(α− 1) =
α(n− 1) + 2− n
−1− n(α− 1)

.

Equation (5.9) holds if and only if

1

α+ k − 1
<
α(n− 1) + 2− n
−1− n(α− 1)

≤ 1

α+ k − 2

is satisfied. In this case, for l = 0, 1

Tα,1jl(α− 1) =
1− 2k + kn− α(kn− k + 1)

α(n− 1) + 2− n
.

Figure 5.9 shows all the relevant orbit points of α and α− 1.

1 α 1 1−α
α

α(n−1)+2−n
1−α

1−2k+kn−α(kn−k+1)
α(n−1)+2−n

α− 1 α(n−1)+2−n
1−α

1−2k+kn−α(kn−k+1)
α(n−1)+2−n

n(α−1)+1
α−1

α(n−1)+2−n
−1−n(α−1)

1−2k+kn−α(kn−k+1)
α(n−1)+2−n

0

1

Figure 5.9: The first few points in the orbits of α and α − 1 under the random continued
fraction map Rα for α ∈ Jn ∩ (in,k+1, in,k].

Definition 5.2.1 holds for α ∈ Jn ∩ (in,k+1, in,k] with M = 4 and

Y =

{
1− 2k + kn− α(kn− k + 1)

α(n− 1) + 2− n

}
for any critical point c > 0. For c < 0 we add the point 1 − α to Y . Here the
values kc(ω) and `c(ω) either equal 1, 3 or 4 according to the number of orbit points
in the paths in Figure 5.9. For Definition 5.2.2, for c > 0 and y ∈ Y we have
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Ω(y)− = ?0 ? ∪ ? 1 ? ? and Ω(y)+ = ? ? ??, so that

∑
u∈Ω(y)−

pu
T ′u(c−)

= (−c2)p0(α− 1)2 · (α(n− 1) + 2− n)2

−(α− 1)2

+ (−c2)p1(−(α− 1)2) · (1 + n(α− 1))2

−(α− 1)2
· (α(n− 1) + 2− n)2

−(1 + n(α− 1))2

= c2(α(n− 1) + 2− n)2.

and∑
u∈Ω(y)+

pu
T ′u(c+)

= (−c2)(−α2)
(1− α)2

−α2
· (α(n− 1) + 2− n)2

−(1− α)2
= c2(α(n− 1) + 2−n)2,

implying that also condition (5.5) holds. For c = −1/(α + n) we get Ω(1 − α)− =

Ω(1−α)+ = {1}, Ω(y)− = 0 ? ?? and Ω(y)+ = 00 ?∪ 01 ? ?, and for c = 1/(α− n) we
obtain Ω(1 − α)− = Ω(1 − α)+ = {0}, Ω(y)− = 10 ? ∪11 ? ? and Ω(y)+ = 1 ? ??. In
both cases the result follows in a similar fashion. So, the random continued fraction
system Rα has strong random matching for any p and any α ∈ Jn.

Note that in this example the orbits of α meet with some of the orbits of α − 1

already after two time steps in the point α(n−1)+2−n
1−α . Hence,

α(n− 1) + 2− n
1− α

∈
{
T kω (c−) : ω ∈ ΩN, k ≤M

}
∩
{
T kω (c+) : ω ∈ ΩN, k ≤M

}
.

Therefore, for a critical point c > 0, we could also take

Y =
{α(n− 1) + 2− n

1− α
,

1− 2k + kn− α(kn− k + 1)

α(n− 1) + 2− n
}

and split the random orbits of α for example in the following way:

Ω

(
α(n− 1) + 2− n

1− α

)+

= ??0 and Ω

(
1− 2k + kn− α(kn− k + 1)

α(n− 1) + 2− n

)+

= ??1?.

For the orbits passing through α− 1 we have

Ω

(
α(n− 1) + 2− n

1− α

)−
= ?0 and Ω

(
1− 2k + kn− α(kn− k + 1)

α(n− 1) + 2− n

)−
= ?1 ? ?.

One can check that condition (5.5) is satisfied and Rα has strong random matching
with this choice of Y . Note that in this case many sequences ω have smaller values
kc(ω) and `c(ω) than with Y =

{ 1−2k+kn−α(kn−k+1)
α(n−1)+2−n

}
and that for some ω ∈ ΩN we

do not take kc(ω) equal to the first time that the random orbit T kω (c−) enters Y . For
example, for c > 0 and any ω with ω3 = 1 we have T 3

ω(c+) = α(n−1)+2−n
1−α ∈ Y , but

we take kc(ω) = 4. The flexibility in the choice of Y and the length of the paths
kc(ω) and `c(ω) embedded in Definition 5.2.1 allows one to choose the option that is
computationally most convenient.

151



5. Matching and Measure for Random Systems

C
h
a
pt

er
5

§5.4 Random transformations and expansions

In the second part of this Chapter we use random matching to study the frequency of
the digit 0 in the signed binary expansions produced by a family of random system of
piecewise affine maps. In this section we define this family and its relation to binary
expansions.

§5.4.1 Random symmetric doubling maps
A signed binary expansion of a number x ∈ [−1, 1] can be obtained by iterating
any piecewise affine map D : [−1, 1] → [−1, 1] that is given by D(x) = 2x − d with
d ∈ {−1, 0, 1} on each of its intervals of monotonicity. One can for example take any
a ∈

[
1
4 ,

1
2

]
and then define the symmetric map

Da(x) =


2x+ 1, if − 1 ≤ x < −a,
2x, if − a ≤ x ≤ a,
2x− 1, if a < x ≤ 1.

By setting dn(x) = d, d ∈ {−1, 0, 1}, if Dn
a (x) = 2Dn−1

a (x)− d, one obtains

x =
d1(x)

2
+
Da(x)

2
= · · · = d1(x)

2
+ · · ·+ dn(x)

2n
+
Dn
a (x)

2n
→
∑
n≥1

dn(x)

2n
,

so this gives a signed binary expansion of x. The family of maps {Da} 1
4≤a≤

1
2
is the

object of study in [DK17]. As can be seen from Figure 5.10(a) the interval [−2a, 2a] is
an attractor for the dynamics of Da. Since this interval depends on a, in [DK17] the
authors decided to work instead with the measurably isomorphic family {Sα}1≤α≤2

given by

Sα(x) =


2x+ α, if − 1 ≤ x < − 1

2 ,

2x, if − 1
2 ≤ x ≤

1
2 ,

2x− α, if 1
2 < x ≤ 1,

(5.10)

see Figure 5.10(b), which transfers the dependence on the parameter from the domain
[−1, 1] to the branches of the maps.

While each deterministic map produces for each number in its domain a single
signed binary expansion, one can define random dynamical systems that produce for
Lebesgue almost all numbers uncountably many different signed binary expansions.
The family of random maps {Rα}, which we define next, extends the family of de-
terministic maps {Sα}. So the dependence on the parameter is visible in the branches
of the maps instead of in the domains.

Let Ω = {0, 1} and define for j ∈ Ω and each parameter α ∈ [1, 2] the maps
Tj = Tα,j : [−1, 1]→ [−1, 1] by

Tα,0(x) =


2x+ α, if x ∈

[
− 1, 1−α

2

]
,

2x, if x ∈
(

1−α
2 , 1

2

]
,

2x− α, if x ∈
(

1
2 , 1
]
,

(5.11)
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−1 1

0

−1 − 1
2

1
2

c

1

2c

−2c

(a) Dc

−1 1

0

−1 − 1
2

10 1
2

1

1
2

(b) S 1
2c

Figure 5.10: The maps Dc and S 1
2c

for c = 7
20
. The grey lines indicate the remainder of the

maps x 7→ 2x + 1, x 7→ 2x and x 7→ 2x − 1. The red box in (a) shows the attractor of the
map Dc.

and

Tα,1(x) =


2x+ α, if x ∈

[
− 1,− 1

2

)
,

2x, if x ∈
[
− 1

2 ,
α−1

2

)
,

2x− α, if x ∈
[
α−1

2 , 1
]
.

(5.12)

See Figure 5.11 for three examples. The maps Tα,0 and Tα,1 differ on the intervals[
− 1

2 , 1− 2α
]
and

[
2α− 1, 1

2

]
, which are indicated by the grey areas in the pictures.

Let R = Rα : ΩN × [−1, 1]→ ΩN × [−1, 1] be the random system obtained from Tα,0
and Tα,1, i.e.,

Rα(ω, x) =
(
σ(ω), Tα,ω1

(x)
)
,

where σ is the left shift on ΩN. We call the systems Rα random symmetric doubling
maps and the subscript α will sometimes be suppressed if it does not lead to confusion.

−1 1

0

−1 − 1
2

1
2

1

(a) R1

−1 1

0

−1 − 1
2
− 1

4
10 1

2
1
4

1

1
2

(b) R 3
2

−1 1

0

−1 − 1
2

10 1
2

1

(c) R2

Figure 5.11: The maps Tα,0 and Tα,1 for α = 1 in (a), α = 3
2
in (b), and α = 2 in (c). The

blue lines correspond to Tα,0, the pink ones to Tα,1 and the purple ones to both.

Fix an α ∈ [1, 2]. Recall from (5.4) that we use square brackets to denote the
cylinder sets in ΩN. Let π : ΩN × [−1, 1] → [−1, 1] denote the canonical projection
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onto the second coordinate and set

sn(ω, x) =



−1, if Rn−1(ω, x) ∈ ΩN ×
[
− 1,− 1

2

)
∪ [0]×

[
− 1

2 ,
1−α

2

]
,

0, if Rn−1(ω, x) ∈ [1]×
[
− 1

2 ,
1−α

2

]
∪ΩN ×

(
1−α

2 , α−1
2

)
∪ [0]×

[
α−1

2 , 1
2

]
,

1, if Rn−1(ω, x) ∈ [1]×
[
α−1

2 , 1
2

]
∪ ΩN ×

(
1
2 , 1
]
.

(5.13)

Then
π(Rn(ω, x)) = 2π(Rn−1(ω, x))− sn(ω, x)α,

so that just as in the deterministic case by iteration we obtain

x =
s1(ω, x)α

2
+ · · ·+ sn(ω, x)α

2n
+
π(Rn(ω, x))

2n
→ α

∑
n≥1

sn(ω, x)

2n
.

In other words, iterations of the random system R give a signed binary expansion for
the pair (ω, x).

Note that for each x ∈ [−1, 1] there is an ω ∈ ΩN, such that π(Rnα(ω, x)) = Snα(x),
where Sα is the map in the family {Sα} from [DK17]. In particular, the random
signed binary expansions produced by the family {Rα} include, among many others,
the SSB expansions. The randomness of the system allows us to choose (up to a
certain degree) where and when we want to have a digit 0. Below we investigate the
frequency of the digit 0 in typical expansions produced by the maps R. We do so by
applying Birkhoff’s Ergodic Theorem for invariant measures for R of the form m× µ
with m a Bernoulli measure and µ absolutely continuous with respect to the Lebesgue
measure. For that we need to investigate the density of such measures µ.

§5.4.2 Random matching almost everywhere
For any α ∈ (1, 2] the common partition on which T0 and T1 are monotone is given
by the points

c0 = −1, c1 = −1

2
, c2 =

1− α
2

, c3 =
α− 1

2
, c4 =

1

2
, c5 = 1.

Set, in accordance with (a1),

I1 = [c0, c1), I2 = [c1, c2], I3 = (c2, c3), I4 = [c3, c4], I5 = (c4, c5],

then C = {c1, c2, c3, c4}. For 0 < p < 1, use p = (p0, p1) to denote the probability
vector with p0 = p and p1 = 1 − p. Since T0 and T1 from (5.11), (5.12) are both
piecewise affine with slope 2, we have pj

|T ′j(x)| =
pj

T ′j(x) =
pj
2 , j = 0, 1. So the random

system R satisfies conditions (a1), (a2), (a3), i.e., R ∈ R. Due to the symmetry in
the map, to verify whether R has strong random matching it is enough to check the
conditions of Definitions 5.2.1 and Definitions 5.2.2 for the points 1 = T0(c4)− and
1− α = T0(c4)+.
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Before we proceed with a description of the matching behaviour of the family of
random systems {Rα}, we first recall the results from [DK17, Propositions 2.1 and
2.3] on matching for the family of deterministic symmetric doubling maps {Sα}, see
(5.10). Let

Mα = inf
{
n ≥ 0 :

1

2
< Snα(1) < α− 1

2

}
+ 1. (5.14)

Then according to [DK17, Propositions 2.1 and 2.3] for all α ∈ [1, 2],

Skα(1− α) = Skα(1)− α for k < Mα (5.15)

and for Lebesgue almost all α ∈ [1, 2] in fact Mα <∞ and

SMα+1
α

(
1

2

−)
= SMα

α (1) = SMα
α (1− α) = SMα+1

α

(
1

2

+)
.

In other words, for Lebesgue almost all parameters α ∈ [1, 2] the map Sα has matching
with matching exponent M = Mα + 1 that is determined by the first time the orbit
of 1 enters the interval

(
1
2 , α−

1
2

)
. Moreover, SMα−1

α (1− α) < − 1
2 for all α, Mα = 1

for α ∈
[

3
2 , 2
]
and Mα > 1 for α ∈

(
1, 3

2

)
. Due to the constant slope and the same

matching exponent Mα of the left and right limits, in this case matching implies
strong matching.

5.4.1 Remark. The discrepancy betweenMα+1 here andMα as matching exponent
in [DK17] comes from the fact that in [DK17] the orbits are considered as starting
from 1 and 1−α, whereas in (5.2) and (5.3) we followed the convention in [BCMP18]
and start at the critical point c = 1

2 instead.

From this we deduce the following small lemma.

5.4.2 Lemma. For α ∈ [1, 2] and for all k < Mα − 1, either Sk(1) ∈ I4 and
Sk(1)− α ∈ I1 or Sk(1) ∈ I5 and Sk(1)− α ∈ I2.

Proof. From (5.15) it follows for all k < Mα − 1 that Sk(1)− α ≥ −1, implying that

α− 1 ≤ Sk(1) ≤ 1 and − 1 ≤ Sk(1)− α ≤ 1− α.

The fact that Sk(1) ∈ I4 ∪ I5 follows since α−1
2 ≤ α − 1. If Sk(1) ∈ I4, then

Sk(1)−α ≤ 1
2 −α < −

1
2 , so S

k(1)−α ∈ I1. Suppose Sk(1) ∈ I5. If Sk(1)−α < − 1
2 ,

this would imply that Sk(1) ∈
(

1
2 , α−

1
2

)
, contradicting the definition ofMα in (5.14).

Hence, Sk(1)− α ∈ I2. �

The next result states that a random equivalent of (5.15) holds for α ∈
(
1, 3

2

)
.

5.4.3 Proposition. For all α ∈ [1, 2], 0 ≤ k ≤ Mα and u ∈ Ωk, it holds that
Tu(1), Tu(1− α) ∈ {Sk(1), Sk(1)− α}.

Proof. First consider α ∈
[

3
2 , 2
]
. Then Mα = 1 and the result trivially holds. Fix an

α ∈
(
1, 3

2

)
. Since T0 and T1 agree on I5 we can find a sequence ω̂ ∈ ΩN with ω̂1 = 0

that gives
Tω̂k1 (1) = Sk(1) for all k ≥ 0.
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Note that 1 ∈ I5 and from α ∈
(
1, 3

2

)
we get 1− α ∈ I2, so

T0(1− α) = T0(1) = T1(1) = 2− α = S(1) and T1(1− α) = 2− 2α = S(1− α).

(5.16)
Hence, from the first iterate on, the orbits of 1 and 1 − α under the deterministic
map S are contained in the orbit of 1 − α under the random map R. To prove the
statement, we therefore only have to consider Tnω (1 − α) for any ω ∈ ΩN and n ≥ 1.
In particular (5.16) implies that

Tω̂k1 (1− α) = Sk(1)

for all k ≥ 1. We prove the statement by induction.
The statement obviously holds for k = 0 and by (5.16) also for k = 1. Let

1 ≤ n < Mα and suppose the statement holds for all k ≤ n. Then

Tω̂n1 (1− α) = Sn(1) and Tωn1 (1− α) ∈ {Sn(1), Sn(1)− α} for all ω ∈ ΩN.

By Lemma 5.4.2 there are three cases.
1. If Sn(1) ∈ I4, then Sn+1(1) = 2Sn(1) and Sn(1) − α ∈ I1. So for the random
images we get

T0(Sn(1)) = 2Sn(1), T1(Sn(1)) = 2Sn(1)− α,

and
T0(Sn(1)− α) = T1(Sn(1)− α) = 2Sn(1)− α.

2. If Sn(1) ∈ I5 and Sn(1)− α ∈ I2, then

T0(Sn(1)) = T1(Sn(1)) = 2Sn(1)− α = Sn+1(1)

and
T0(Sn(1)− α) = 2Sn(1)− α, T1(Sn(1)) = 2Sn(1)− 2α.

3. If Sn(1) ∈ I5 and Sn(1) ∈ I1 (so n = Mα − 1), then

T0(Sn(1)) = T1(Sn(1)) = 2Sn − α = Sn+1(1)

and
T0(Sn(1)− α) = T1(Sn(1)− α) = 2Sn(1)− α = Sn+1(1).

Hence, for all u ∈ Ωn and j = 0, 1, Tuj(1− α) ∈ {Sn+1(1), Sn+1(1)− α}, which gives
the result. �

From this proposition we can deduce that matching is prevalent for the family
{Rα} and we can find the precise matching times. We first prove the following lemma,
stating that all the orbit points Sn(1), Sn(1− α) up to the moment of matching are
different.

5.4.4 Lemma. For each k < Mα the set {Sn(1), Sn(1−α) : 0 ≤ n ≤ k} has 2(k+1)

elements.
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Proof. Since k < Mα it follows from (5.15) that Sn(1) 6= Sn(1 − α) for each n. It
also cannot hold that there are 0 ≤ n < k < Mα such that Sn(1) = Sk(1 − α) or
Sk(1) = Sn(1− α), since this would imply that |Sk(1)− Sn(1)| = α and that would
contradict the fact that Sn(1), Sk(1) ∈ I4 ∪ I5. This leaves the possibility that there
are 0 ≤ n < k < Mα such that Sn(1) = Sk(1), i.e., that the orbit of 1 under S
is ultimately periodic, or Sn(1 − α) = Sk(1 − α). Assume Sn(1) = Sk(1) for some
n < k. It follows that Sn(1− α) = Sn(1)− α = Sk(1)− α = Sk(1− α), so the orbit
of 1− α is also ultimately periodic and by Proposition 5.4.3 all these orbit points lie
at distance α of the corresponding orbit points of 1. This contradicts the fact that α
is a matching parameter. Hence, the set {Sn(1), Sn(1−α) : 0 ≤ n ≤ k} has 2(k+ 1)

elements. �

5.4.5 Theorem. For Lebesgue almost all parameters α ∈ [1, 2] the map Rα has
strong random matching with M = Mα + 1, where Mα is given by (5.14), and Y =

{SMα(1)}. Moreover, Rα does not satisfy the conditions of strong random matching
for any K < M .

Proof. First consider α ∈
[

3
2 , 2
]
. Then Tj(1 − α) = 2 − α = Tj(1) for j = 0, 1, so

random matching occurs for R with M = 2 and Y = {2 − α} and both parts of the
theorem hold.

Now, fix α ∈ [1, 3
2 ) such that S = Sα has matching. Then, Sk(1) 6= Sk(1 − α)

for 1 ≤ k < Mα and SMα−1(1) ∈
(

1
2 , α −

1
2

)
, so that SMα(1) = 2SMα−1(1) − α. By

Proposition 5.4.3 for each u ∈ ΩMα−1 either

Tu(1− α) = SMα−1(1) >
1

2

or
Tu(1− α) = SMα−1(1)− α < −1

2
.

In both cases this leads to Tuj(1− α) = 2SMα−1(1)− α for both j = 0, 1. The same
statement holds for Tu(1), so that for c = 1

2 we therefore have

T1uj

(
1

2

−)
= T0uj

(
1

2

+)
= T1uj

(
1

2

+)
= Tuj(1− α) = SMα(1)

and

T0uj

(
1

2

−)
= Tuj(1) = SMα(1).

Hence, we can take Y 1
2

= {SMα(1)}. Since this set contains one element only and the
maps Tj have the same constant slope, condition (5.5) from Definition 5.2.2 follows
immediately. The first part of the theorem now follows since the deterministic maps
Sα have matching for Lebesgue almost all parameters α. For the critical points c 6= 1

2

the statement follows by symmetry.

For the second part we assume for α ∈ [1, 3
2 ) that S = Sα has matching and

we proceed by contradiction. Therefore, assume that Rα satisfies the conditions of
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Definition 5.2.1 and Definition 5.2.2 for c = 1
2 for some minimal 1 ≤ K < M = Mα+1.

Suppose that Sn(1) ∈ Y 1
2
for some n < K − 1. By Lemma 5.4.4 any u for which

Tu
(

1
2

±)
= Sn(1) has length |u| = n + 1. Together with (5.5) and the fact that the

maps Tα,0 and Tα,1 both have constant slope 2, this implies that∑
u∈Ω(Sn(1))−

pu =
∑

u∈Ω(Sn(1))+

pu. (5.17)

For any u ∈ Ωn+1 \ Ω(Sn(1))−,u′ ∈ Ωn+1 \ Ω(Sn(1))+ we have by Proposition 5.4.3
that Tu

(
1
2

−)
= Tu′

(
1
2

+)
= Sn(1)− α. Furthermore,

1 =
∑

u∈Ωn+1

pu =
∑

u∈Ω(Sn(1))−

pu +
∑

u∈Ωn+1\Ω(Sn(1))−

pu

=
∑

u∈Ω(Sn(1))+

pu +
∑

u∈Ωn+1\Ω(Sn(1))+

pu.

From (5.17) and Proposition 5.4.3 we see that∑
u∈Ω(Sn(1−α))−

pu =
∑

u∈Ωn+1\Ω(Sn(1))−

pu =
∑

u∈Ωn+1\Ω(Sn(1))+

pu =
∑

u∈Ω(Sn(1−α))+

pu.

This implies that the conditions of Definition 5.2.1 and Definition 5.2.2 hold with
M 1

2
= n + 1 and Y 1

2
= {Sn(1), Sn(1 − α)}, contradicting the minimality of K. In a

similar way we can exclude the possibility that Sn(1− α) ∈ Y for n < K − 1. Since
there is an ω̃ ∈ ΩN such that for each k < M−1, Tω̃k1 (1−α) = Sk(1−α) = Sk(1)−α,
it must hold that

Y 1
2

= {SK−1(1), SK−1(1)− α}.

To conclude the proof we show that for this set Y 1
2
condition (5.5) cannot hold.

By the constant slope, condition (5.5) can be rephrased as
∑

u∈Ω(SK−1(1))−

pu −
∑

u∈Ω(SK−1(1))+

pu = 0,

∑
u∈Ω(SK−1(1)−α)−

pu −
∑

u∈Ω(SK−1(1)−α)+

pu = 0.
(5.18)

and by Lemma 5.4.4 any u ∈ Ω(SK−1(1))± ∪ Ω(SK−1(1)− α)± has length K. Since
K < Mα + 1, so K − 2 < Mα − 1, Lemma 5.4.2 tells us that there are only two
possibilities:

1. SK−2(1) ∈ I4 and SK−2(1)− α ∈ I1;

2. SK−2(1) ∈ I5 and SK−2(1)− α ∈ I2.

If case 1. holds, then T0(SK−2(1)) = SK−1(1) and

T1(SK−2(1)) = T0(SK−2(1)− α) = T1(SK−2(1)− α) = SK−1(1)− α,
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so that (5.18) becomes
∑

u∈Ω(SK−2(1))−

pup0 −
∑

u∈Ω(SK−2(1))+

pup0 = 0,

∑
u∈Ω(SK−2(1))−

pup1 +
∑

u∈(Ω(SK−2(1)−α)−

pu −
∑

u∈Ω(SK−2(1))+

pup1 −
∑

u∈(Ω(SK−2(1)−α)+

pu = 0.

The last system of equations implies
∑

u∈Ω(SK−2(1))−

pu −
∑

u∈Ω(SK−2(1))+

pu = 0,

∑
u∈(Ω(SK−2(1)−α)−

pu −
∑

u∈(Ω(SK−2(1)−α)+

pu = 0,

which contradicts the minimality of K. For the second case, the same contradiction
is obtained in a similar way. �

5.4.6 Remark. From the previous result we see that matching occurs for the ran-
dom systems Rα for the same parameters α and at the same time as for the determin-
istic systems Sα. [DK17] contains a complete description of the matching intervals of
the maps Sα. The interval [1, 2] can be divided into intervals of parameters for which
matching of the maps Sα occurs after the same number of steps. By the above, these
matching intervals also apply to the systems Rα.

§5.4.3 A formula for the stationary measure
Let λ be the Lebesgue measure on [−1, 1]. The existence of an invariant measure
of the form mp × µp with µp � λ for the random symmetric doubling maps Rα is
guaranteed by the results of [P84, M85]. Furthermore, since T0 is expanding and has
a unique absolutely continuous invariant measure, it follows from [P84, Corollary 7]
that also for Rα there is a unique measure mp × µp and that Rα is ergodic with
respect to this measure. To show that Rα ∈ RA, we check conditions (c1), (c2), (c3).
(c1) is immediate and (c3) follows from the constant slope 2 of the maps Tα,0 and
Tα,1. We check condition (5.6). Note that for any α 6= 2,∑

j∈Ω
pj
k3,j

d3,j

1−
∑
j∈Ω

pj
k3,j

=

∑
j∈Ω

pj
2 0

1−
∑
j∈Ω

pj
2

= 0

and ∑
j∈Ω

pj
k1,j

d1,j

1−
∑
j∈Ω

pj
k1,j

=

∑
j∈Ω

pj
2 α

1−
∑
j∈Ω

pj
2

= 2α 6= 0.

Then Theorem 3.5.3 implies that an explicit formula for the density of this measure
can be found via the algebraic procedure in Chapter 3 and from Theorem 5.2.3 and
Theorem 5.4.5 we know that for Lebesgue almost all parameters α this density is
piecewise constant. We will execute the procedure from Chapter 3 and start by
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introducing the same notation as in Chapter 3. Since Ω consists of two elements only,
from now on we will just use p as an index instead of p whenever appropriate.

Denote by ai,j and bi,j the left and right limits at each critical point ci ∈ C, i.e.,
for 1 ≤ i ≤ 4 and j ∈ Ω:

ai,j = Tj(c
−
i ) = lim

x↑ci
Tj(x), and bi,j = Tj(c

+
i ) = lim

x↓ci
Tj(x).

The images of the critical points are then given by

a1,0 = a1,1 = b1,0 = α− 1, b1,1 = −1,

a2,1 = b2,0 = b2,1 = 1− α, a2,0 = 1,

a3,0 = a3,1 = b3,0 = α− 1, b3,1 = −1,

a4,1 = b4,0 = b4,1 = 1− α, a4,0 = 1.

For y ∈ [−1, 1] and 1 ≤ n ≤ 4 set

KIn(y) =
∑
k≥1

∑
u∈Ωk

pu
2k

1In(Tuk−1
1

(y)). (5.19)

The quantity KIn(y) weighs the number of times the random orbits of y enters the
interval In. The weight depends on the length and probability of each path ω ∈ ΩN

leading the point y to In. The fundamental matrix A = (An,i) of R is the 5×4 matrix
with entries

An,i =



∑
j∈Ω

pj(1 + KIn(ai,j)−KIn(bi,j)), for n = i,

∑
j∈Ω

pj(KIn(ai,j)−KIn(bi,j)− 1), for n = i+ 1,

∑
j∈Ω

pj(KIn(ai,j)−KIn(bi,j)), else.

Since for R there is a unique invariant probability measure mp × µp with µp �
λ, Theorem 3.5.3 implies that the null space of the matrix A is one-dimensional.
According to Theorem 3.4.1 there is a unique vector γ = (γ1, γ2, γ3, γ4) ∈ R4 \ {0}
with Aγ = 0 and such that the probability density fp of µp has the form (5.7). Using
the values of ai,j and bi,j computed above, we can reduce this to

fp = (γ1 + γ3)
∑
k≥0

∑
u∈Ωk

p1u

2k+1

(
1[−1,Tu(α−1)) − 1[−1,Tu(−1))

)
+ (γ2 + γ4)

∑
k≥0

∑
u∈Ωk

p0u

2k+1

(
1[−1,Tu(1)) − 1[−1,Tu(1−α))

)
.

(5.20)

By symmetry to determine fp it is enough to know the random orbits of 1 and 1− α
only. From (5.20) we see that the density is piecewise constant when the orbits of 1

and 1−α are finite or when they merge with the same weight. In the former case the
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map admits a Markov partition, the latter case happens if R exhibits strong random
matching. We focus on the second situation, since we know from Theorem 5.4.5 that
this holds for Lebesgue almost all parameters.

Fix an α ∈ [1, 2] such that R presents strong random matching. Let M be as in
Theorem 5.4.5. Then for each i, j, n,

KIn(ai,j)−KIn(bi,j) =

M−1∑
k=1

∑
u∈Ωk

pu
2k
(
1In(Tuk−1

1
(ai,j))− 1In(Tuk−1

1
(bi,j))

)
.

From Lemma 5.4.2 and the symmetry of the map we get

KI3(1)−KI3(1− α) = 0 = KI3(−1)−KI3(α− 1),

implying that A3,1 = A3,4 = 0, A3,2 = −1 and A3,3 = 1. Hence, any solution vector
γ̂ for Aγ̂ = 0 has the form γ̂ = (γ̂1, γ̂2, γ̂2, γ̂3) and (5.20) becomes

fp = (γ1 + γ2)
p1

2

M−2∑
k=0

∑
u∈Ωk

pu
2k
(
1[−1,Tu(α−1)) − 1[−1,Tu(−1))

)
+ (γ2 + γ3)

p0

2

M−2∑
k=0

∑
u∈Ωk

pu
2k
(
1[−1,Tu(1)) − 1[−1,Tu(1−α))

)
,

(5.21)

where γ = (γ1, γ2, γ2, γ3) is the unique non-trivial vector in the null space of the
fundamental matrix A that makes fp into a probability density function. In the next
section we will derive a number of properties of fp with the goal of determining the
frequency of the digit 0 in the signed binary expansions of mp × µp typical points.

§5.4.4 Minimal weight expansions
Recall from (5.13) that the random signed binary expansion of a point (ω, x) has a
digit 0 in the n-th position precisely if

Rn−1(ω, x) ∈ [1]× I2 ∪ ΩN × I3 ∪ [0]× I4 =: D0.

Since R is ergodic with respect tomp×µp, it follows from Birkhoff’s Ergodic Theorem
that the frequency of the digit 0 in mp × µp-almost all (ω, x) equals

π0(α, p) := lim
n→∞

1

n

n−1∑
k=0

1D0
(Rk(ω, x)) = (1− p)µp(I2) + µp(I3) + pµp(I4). (5.22)

To give an example, consider α = 1, see Figure 5.11(a). It is straightforward to check
that the probability density fp = (1− p)1[−1,0] + p1[0,1] is invariant. This gives

π0(1, p) = pµp

([
0,

1

2

])
+ (1− p)µp

([
− 1

2
, 0
])

=
p2 + (1− p)2

2
≤ 1

2
(5.23)

with equality only for p = 0 or p = 1.
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To estimate π0(α, p) for other values of α we use a few lemmata. For k ≥ 1 set
Ek = {u ∈ Ωk : Tu(1) = Sk(1)} and Fk = {u ∈ Ωk : Tu(1− α) = Sk(1)}. Also, use
(bn)n≥1 to denote the digits in the signed binary expansion of 1 generated by S, i.e.,

bn =


−1, if Sn−1(1) < − 1

2 ,

0, if − 1
2 ≤ S

n−1(1) ≤ 1
2 ,

1, if Sn−1(1) > 1
2 .

Write bk = b1 · · · bk for any k ≥ 1.

5.4.7 Lemma. For all 1 ≤ k < M − 1, Fk ⊆ Ek and Ek \ Fk = {bk}.

Proof. First note that the n-th signed binary digit of 1 generated by S, n < M − 1,
equals 0 if Sn−1(1) ∈ I4 and 1 if Sn−1(1) ∈ I5. We prove the statement by induction.
For k = 1 we have E1 = {0, 1} and F1 = {0}. Assume the statement holds for some
1 ≤ k < M − 2. If Sk(1) = Tbk(1) ∈ I4, then bk+1 = 0 and we know from the
assumptions and since Sk(1)− α ∈ I1 that

Tbk0(1) = Sk+1(1), Tbk1(1) = Tbk0(1− α) = Tbk1(1− α) = Sk+1(1)− α.

Hence, bk0 ∈ Ek+1 \ Fk+1 and bk1 6∈ Ek+1 ∪ Fk+1. If Sk(1) = Tbk(1) ∈ I5, then
bk+1 = 1 and

Tbk0(1) = Tbk1(1) = Tbk0(1− α) = Sk+1(1), Tbk1(1− α) = Sk+1(1)− α.

So, bk1 ∈ Ek+1 \ Fk+1 and bk0 ∈ Ek+1 ∩ Fk+1. For any other u ∈ Ωk it holds that
Tu(1) = Tu(1 − α), so that either uj ∈ Ek+1 ∩ Fk+1 or uj 6∈ Ek+1 ∪ Fk+1, j = 0, 1.
This gives the statement. �

5.4.8 Lemma. The density fp is constant and equal to 1
α on the interval [1−α, α−1].

Proof. For any u ∈ Ωk, write ū = (1− u1) · · · (1− uk) and for a subset E ⊆ Ωk write
Ē = {u ∈ Ωk : ū ∈ E}. By Lemma 5.4.7 we have for each k < M ,

δk :=
∑
u∈Ek

pu
2k
−
∑
u∈Fk

pu
2k

=
pbk
2k

, δ̄k :=
∑
u∈Ēck

pu
2k
−
∑
u∈F̄ ck

pu
2k

=
pb̄k
2k

,
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Recall the formula for the density fp from (5.21). Using Proposition 5.4.3 we get

p0

2

M−2∑
k=0

∑
u∈Ωk

pu
2k
(
1[−1,Tu(1)) − 1[−1,Tu(1−α))

)
=
p0

2

M−2∑
k=0

∑
u∈Ωk:

Tu(1)=Sk(1),

Tu(1−α)=Sk(1)−α

pu
2k

1[Tu(1−α),Tu(1))−

p0

2

M−2∑
k=0

∑
u∈Ωk:

Tu(1)=Sk(1)−α,
Tu(1−α)=Sk(1)

pu
2k

1[Tu(1),Tu(1−α))

=
p0

2

M−2∑
k=0

δk1[Sk(1)−α,Sk(1)).

For the other side it holds similarly using the symmetry of the system that

p1

2

M−2∑
k=0

∑
u∈Ωk

pu
2k
(
1[−1,Tu(α−1)) − 1[−1,Tu(−1))

)
=
p1

2

M−2∑
k=0

δ̄k1[−Sk(1),α−Sk(1)).

By (5.15) we have for all k < M − 1,

Sk(1), α− Sk(1) ∈ [α− 1, 1] and Sk(−1), Sk(α− 1) ∈ [−1, 1− α],

so that on [1− α, α− 1] we obtain

fp |[1−α,α−1] (x) = (γ1 + γ2)
p1

2

M−2∑
k=0

δ̄k + (γ2 + γ3)
p0

2

M−2∑
k=0

δk.

Since fp is a probability density it follows that

1 =

∫
[−1,1]

fp dλ = (γ1 + γ2)
p1

2

M−2∑
k=0

δ̄kα+ (γ2 + γ3)
p0

2

M−2∑
k=0

δkα. (5.24)

Hence,

fp |[1−α,α−1] (x) =
1

α
,

which gives the result. �

With this information we can compute π0(α, p) for α ∈
[

3
2 , 2
]
. Since in this case

α− 1 ≥ 1
2 it follows from Lemma 5.4.8 that

π0(α, p) =
α− 1

α
+

2− α
2α

=
1

2
. (5.25)

That is, for α ≥ 3
2 , and any 0 < p < 1, the frequency of the digit 0 is equal to 1

2 in
the signed binary expansion of mp × µp-almost all (ω, x). For the other values of α
we need to do some more work.
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5.4.9 Lemma. Let γ = (γ1, γ2, γ2, γ3) be the unique vector in the null space of A
that makes fp into a probability density function. Then γ2 = 1

α .

Proof. Since Sk(1) ∈ I4 ∪ I5 for all k < M − 1 it follows from the definition of the
function KIn in (5.19) and Proposition 5.4.3 that for y = 1, 1− α,

KI4(y) + KI5(y) =

M−2∑
k=0

∑
j∈Ω

∑
u∈Ωk

pj
2

pu
2k

1I4∪I5(Tu(y)) =
1

2

M−2∑
k=0

∑
u∈Ωk:

Tu(y)=Sk(1)

pu
2k
,

so that
1

2

M−2∑
k=0

δk = KI4(1)−KI4(1− α) + KI5(1)−KI5(1− α).

A similar statement holds for −1 and α − 1. The fourth and fifth line of the linear
system Aγ = 0 read

p1(KI4(α− 1)−KI4(−1))(γ1 + γ2) + p0(KI4(1)−KI4(1− α))(γ2 + γ3)− γ2 + γ3 = 0

and

p1(KI5(α− 1)−KI5(−1))(γ1 + γ2) + p0(KI5(1)−KI5(1− α))(γ2 + γ3)− γ3 = 0,

respectively. Adding them up gives

γ2 = p1(γ1 + γ2)(KI4(α− 1)−KI4(−1) + KI5(α− 1)−KI5(−1))+

p0(γ2 + γ3)(KI4(1)−KI4(1− α) + KI5(1)−KI5(1− α))

=
p1

2
(γ1 + γ2)

M−2∑
k=0

δ̄k +
p0

2
(γ2 + γ3)

M−2∑
k=0

δk.

The result then follows from (5.24). �

Combining Lemma 5.4.8 and Lemma 5.4.9 gives the following expression for the
density fp:

fp =
(
γ1 +

1

α

)p1

2

M−2∑
k=0

pb̄k
2k

1[−Sk(1),α−Sk(1)) +
( 1

α
+ γ3

)p0

2

M−2∑
k=0

pbk
2k

1[Sk(1)−α,Sk(1)),

(5.26)
where bk = b1 · · · bk denote the first k digits in the signed binary expansion of 1 given
by S.

5.4.10 Lemma. Let α ∈
(
1, 3

2

)
be a parameter for which the random system R has

strong random matching. Then both γ1, γ3 ≥ 0. As a consequence, fp > 0 and µp is
equivalent to the Lebesgue measure.

Proof. Let γ = (γ1, γ2, γ2, γ3) be the unique vector in the null space of A that makes
fp into a probability density. Set

y = max
k∈{1,2,...,M−2}

{Sk(1), α− Sk(1)}.
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By Lemma 5.4.4 we can assume that y 6= 1. Then

µp([y, 1]) = mp × µp(R−1(Ω× [y, 1])) = pµp

([y − α
2

,
1− α

2

]
∪
[y

2
,

1

2

])
.

By the definition of y one can see from (5.26) that

µp([y, 1]) =
p(γ2 + γ3)

2
(1− y).

Furthermore, T0(1 − α) = 2 − α and T1(1 − α) = 2 − 2α, so in particular y ≥
max{2− α, 2α − 2}. It follows that 1− α ≤ y−α

2 < 1−α
2 . Thus by Lemma 5.4.8 and

Lemma 5.4.9, fp |[ y−α2 , 1−α2 ]= γ2. We proceed by showing that none of the points Sk(1)

or α− Sk(1), 1 ≤ k ≤ M − 2, lie in the interval
[
y
2 ,

1
2

]
, which then by (5.26) implies

that the density fp is also constant on the interval
[
y
2 ,

1
2

]
. For k = M − 2 = Mα − 1,

matching for S implies that 1
2 < SM−2(1) < α − 1

2 and α − SM−2(1) > 1
2 . Suppose

there exists a k ∈ {1, 2, . . . ,M − 3} such that y
2 < Sk(1) < 1

2 (or y
2 < α−Sk(1) < 1

2 ).
Then Sk+1(1) > y (or α−Sk+1(1) > y), which gives a contradiction with the definition
of y. The same holds for α− Sk(1). Hence, there is a constant c ≥ 0 such that

p(γ2 + γ3)

2
(1− y) = µp([y, 1]) = p

(
γ2

(1− y)

2
+ c

(1− y)

2

)
.

So, 0 ≤ µp
([
y
2 ,

1
2

])
= c = γ3. The proof that γ1 ≥ 0 goes similarly. The fact that fp

is strictly positive and the equivalence of µp and the Lebesgue measure now follow
from (5.26). �

The following result can be proven in essentially the same way as [DK17, Theorem
4.1]. We include a proof here for convenience.

5.4.11 Lemma (cf. Theorem 4.1 of [DK17]). Fix 0 < p < 1. The map α 7→
π0(α, p) is continuous on

(
1, 3

2

)
.

Proof. In this proof we use fα = fα,p to denote the unique density from (5.26). By
(5.22), for the continuity of α 7→ π0(α, p) it is sufficient to prove L1-convergence of the
densities fα; i.e., for any sequence {αk}k≥1 ⊆

(
1, 3

2

)
converging to a fixed α̂ ∈

(
1, 3

2

)
,

there is convergence fαk → fα̂ in L1(λ). The proof of this fact goes along the following
lines:

1. First we show that there is a uniform bound, i.e., independent of k, on the total
variation and supremum norm of the densities fαk . It then follows from Helly’s
Selection Theorem that there is some subsequence of (fαk) for which an a.e. and
L1 limit f̂ exist.

2. We show that f̂ = fα̂, which by the same proof implies that any subsequence
of (fαk) has a further subsequence converging a.e. to the same limit fα̂. Hence,
(fαk) converges to fα̂ in measure.

3. By the uniform integrability of (fαk) it then follows from Vitali’s Convergence
Theorem that the convergence of (fαk) to fα̂ is in L1.
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Step 1. and 2. use Perron-Frobenius operators. For j = 0, 1 the Perron-Frobenius
operator Pα,j of Tα,j is uniquely defined by the equation∫

(Pα,jf)g dλ =

∫
f(g ◦ Tα,j) dλ ∀f ∈ L1(λ), g ∈ L∞(λ)

and the Perron-Frobenius operator Pα of Rα is then defined by Pαf = pPα,0f + (1−
p)Pα,1f . Equivalently, Pα is uniquely defined by the equation∫

(Pαf)g dλ = p

∫
f(g ◦ Tα,0) dλ+ (1− p)

∫
f(g ◦ Tα,1) dλ ∀f ∈ L1(λ), g ∈ L∞(λ).

(5.27)
Since each Rα has a unique probability density fα it follows from [P84, Theorem 1]
that fα is the L1 limit of ( 1

n

∑n−1
j=0 P

j
α1)n≥1 and it is the unique probability density

that satisfies Pαfα = fα. From [I12, Theorem 5.2] each fα is a function of bounded
variation. We proceed by finding uniform bounds on the total variation and supremum
norm of these densities.

Fix α̂ ∈
(
1, 3

2

)
. For the second iterates of the Perron-Frobenius operators we have

P 2
αf =

1∑
i,j=0

pipjPα,j(Pα,if).

Since the intervals of monotonicity of any of the maps Tα,u for u ∈ Ω2, only become
arbitrarily small for α approaching 1 and 3

2 , we can find a uniform lower bound δ on
the length of the intervals of monotonicity of any map Tα,u, u ∈ Ω2, for all values α
that are close enough to α̂. Applying [BG97, Lemma 5.2.1] to Tα,j , j = 0, 1, and any
of the second iterates Tα,u, u ∈ Ω2, gives that

V ar(Pα,jf) ≤ V ar(f) +
1

δ
‖f‖1 and V ar(Pα,uf) ≤ 1

2
V ar(f) +

1

2δ
‖f‖1,

where V ar denotes the total variation over the interval [−1, 1]. Since these bounds
do not depend on α, j,u, the same estimates hold for Pα, so that for any function
f : [−1, 1]→ R of bounded variation and any n ≥ 1,

V ar(Pnα f) ≤ 1

2bn/2c
V ar(f) +

(
2 +

1

δ

)
‖f‖1. (5.28)

Let {αk}k≥1 with αk → α̂ be a sequence for which the lower bound δ holds for each
k. For each k and n, write fk,n = 1

n

∑n−1
i=0 Pαk1. Since

sup |fk,n| ≤ V ar(fk,n) +

∫
fk,n dλ,

it follows from (5.28) that there is a uniform constant C > 0 (independent of k, n)
such that V ar(fk,n), sup |fk,n| < C. The same then holds for the limits fαk . Helly’s
Selection Theorem then gives the existence of a subsequence {ki} and a function f̂ of
bounded variation, such that fαki → f̂ in L1(λ) and λ-a.e. and with V ar(f̂), sup |f̂ | <
C. This finishes 1.
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By 2. and 3. above, what remains to finish the proof is to show that Pα̂f̂ = f̂ .
By (5.27) it is enough to show that for any compactly supported C1 function g :

[−1, 1]→ R it holds that ∣∣∣∣∫ (Pα̂f̂)g dλ−
∫
f̂g dλ

∣∣∣∣ = 0.

Note that ∣∣∣∣∫ (Pα̂f̂)g dλ−
∫
f̂g dλ

∣∣∣∣ ≤p ∣∣∣∣∫ f̂(g ◦ Tα̂,0) dλ−
∫
f̂g dλ

∣∣∣∣+
(1− p)

∣∣∣∣∫ f̂(g ◦ Tα̂,1) dλ−
∫
f̂g dλ

∣∣∣∣ .
For j = 0, 1 we can write∣∣∣∣∫ f̂(g ◦ Tα̂,j) dλ−

∫
f̂g dλ

∣∣∣∣ ≤ ∣∣∣∣∫ f̂(g ◦ Tα̂,j) dλ−
∫
fαki (g ◦ Tα̂,j) dλ

∣∣∣∣
+

∣∣∣∣∫ fαki (g ◦ Tα̂,j) dλ−
∫
fαki (g ◦ Tαki ,j) dλ

∣∣∣∣
+

∣∣∣∣∫ fαki (g ◦ Tαki ,j) dλ−
∫
f̂g dλ

∣∣∣∣ .
The first and third integral on the right hand side can be bounded by ‖g‖∞‖f̂ −
fαki‖1 → 0. For the second integral, ‖fαki‖∞ < C and

∫
|g ◦ Tα̂,j − g ◦ Tαki ,j | dλ→ 0

by the Dominated Convergence Theorem. Hence, f̂ = fα̂ and fαk → fα̂ in L1. �

Figure 5.12 shows a numerical approximation of the graph of the function (α, p) 7→
π0(α, p). We can now prove that the maximal value of the frequency of the digit 0 is
in fact 1

2 .

Figure 5.12: The graph of (α, p) 7→ π0(α, p).
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5.4.12 Theorem. For any 0 < p < 1 and any α ∈ [1, 2] the frequency π0(α, p) is at
most 1

2 for mp × λ-a.e. (ω, x) ∈ ΩN × [−1, 1].

Proof. For α ∈
[

3
2 , 2
]
the statement follows from (5.25) and for α = 1 from (5.23).

Let α ∈
(
1, 3

2

)
. The deterministic map Tα,0 has density f0 = 1

α1[1−α,1] and Tα,1 has
f1 = 1

α1[−1,α−1]. Hence π0(α, p) = 1
2 for p = 0, 1. Let 0 < p < 1 and let α be a

parameter satisfying the conditions of Lemma 5.4.10. We know that fp is constant
and equal to 1

α on [1− α, α− 1]. For x > α− 1 the density can be written as

fp(x) =
1

α
−
(

(1− p)(γ1 + γ2)

2

M−2∑
k=0

pb̄k
2k

1[α−1,x](α− Sk(1))

+
p(γ2 + γ3)

2

M−2∑
k=0

pbk
2k

1[α−1,x](S
k(1))

)

=
1

α
− (1− p)(γ1 + γ2)

2
−
(

(1− p)(γ1 + γ2)

2

M−2∑
k=1

pb̄k
2k

1[α−1,x](α− Sk(1))

+
p(γ2 + γ3)

2

M−2∑
k=1

pbk
2k

1[α−1,x](S
k(1))

)
≤ 1

α
− (1− p)(γ1 + γ2)

2
.

Similarly, for x < 1− α we get fp(x) ≤ 1
α −

p(γ2+γ3)
2 . By (5.22) and Lemma 5.4.10,

π0(α, p) =
α− 1

α
+
α− 1

2α
+ pµα,p

([
α− 1,

1

2

])
+ (1− p)µα,p

([
− 1

2
, 1− α

])
≤ 3(α− 1)

2α
+

3− 2α

2α

(
1− p(1− p)α

2
min{γ1 + γ2, γ2 + γ3}

)
=

1

2
− 3− 2α

2

p(1− p)
2

min{γ1 + γ2, γ2 + γ3}

<
1

2
.

Since matching holds for Lebesgue almost all parameters α, the statement now follows
from Lemma 5.4.11 and the equivalence of µp and the Lebesgue measure. �

§5.5 Final remarks

§5.5.1 On the symmetric doubling maps
The numerical approximation of the graph of (α, p) 7→ π0(α, p) shown in Figure 5.12
seems to suggest some other features of the map that we have not proved. Firstly, it
suggests some symmetry. In fact it can be shown that for each fixed α and any x ∈
[0, 1], it holds that fp(x) = f1−p(−x). For this one needs to consider the fundamental
matrix Ã corresponding to the random system R̃α obtained by switching the roles
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of p and 1 − p. Then using the permutation (12)(45), one can relate various of the
quantities involved for Ã to the fundamental matrix A of Rα.

Secondly, for any matching parameter α and any 0 < p < 1 the density fα,p is a
finite combination of indicator functions, whose supports depend on the position of
the points in the set {Sk(1), α−Sk(1)}M−2

k=0 and whose coefficients are polynomials in
p. So, for such a fixed α and any x ∈ [−1, 1], the map p 7→ fα,p(x) is continuous in p.

Thirdly, the graph also suggests that the map presents a minimum at p = 1
2 . Using

the above two facts we were only able to show the following:

5.5.1 Proposition. Let α ∈ [1, 2] be such that R has strong random matching. Then
the map p 7→ π0(α, p) has an extremal value at p = 1

2 .

Proof. By combining (5.22) and the fact that fp(x) = f1−p(−x) we obtain

π0(α, p) = (1− p)µ1−p(I4) + µp(I3) + pµp(I4).

Computing the derivative with respect to p then gives

∂pπ0(α, p) = −µ1−p(I4)− (1− p)∂p(µ1−p(I4)) + ∂p(µp(I3)) + µp(I4) + ∂p(µp(I4)).

(5.29)
From Lemma 5.4.8 it follows that ∂p(µp(I3)) = −∂p(µ1−p(I3)), implying that

∂p(µp(I3)) = 0 at p =
1

2
.

Therefore, by (5.29) ∂pπ0(α, p) = 0 at p = 1
2 . �

§5.5.2 On random CF-maps
Theorem 5.2.3 states that for random piecewise affine maps of the interval satisfying
(c1), (c2) and (c3) strong random matching implies that there exists a piecewise
constant invariant density. Condition (5.5) was sufficient for the theorem to work,
which was one of the main motivations for Definition 5.2.2.

Theorem 5.2.3 is a random analogue of [BCMP18, Theorem 1.2], except that there
the statement has less assumptions. The authors mention in [BCMP18, Remark 1.3]
that for piecewise smooth interval maps with strong matching the corresponding in-
variant probability densities are piecewise smooth. On the other hand, as we noted
before, the natural extension construction which for continued fraction transforma-
tions is often used to find invariant densities, seems to suggest that matching alone is
sufficient to guarantee the existence of a piecewise smooth density. It would be inter-
esting to investigate this further for the random continued fraction transformation.

In a first attempt to investigate to what extent Theorem 5.2.3 can be generalised
to piecewise smooth random systems on an interval, we include some numerical sim-
ulations. Recall from Example 5.3.2 that the random continued fraction maps Rα
have strong random matching for α in the intervals Jn with endpoints as in (5.8), see
also Figure 5.8. Figure 5.13 shows two simulations of the invariant densities for such
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(a) α = 0.70315 . . ., p0 = 0.3
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(b) α = 0.77287 . . ., p0 = 0.6

Figure 5.13: Numerical simulations of the invariant probability densities of the random con-
tinued fraction maps Rα from Example 5.3.2. In (a) we take α ∈ J4 and p0 = 0.3 and in
(b) we have α ∈ J5 and p0 = 0.6. The dashed lines indicate the positions of the prematching
points, i.e., the points in the orbits of α and α− 1 before the moment of matching.

systems Rα. The densities seem to be piecewise smooth with discontinuities precisely
at the orbit points of α and α− 1 before matching. This seems to support the claim
that strong random matching is sufficient to guarantee the existence of a piecewise
smooth invariant density.
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(a) α = 0.584 . . ., p0 =
0.3
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(b) α = 0.579 . . ., p0 =
0.65
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(c) α = 0.541 . . ., p0 =
0.25

Figure 5.14: Numerical simulations of the invariant probability densities of the random con-
tinued fraction maps Rα from Example 5.3.2 for three values of α between 1

2
and 2 −

√
2.

The map in (a) has α ∈
(√

10−2
2

, 2 −
√
2
)
, which is the matching interval considered in Ex-

ample 5.3.2. The orange graph is the graph of the weighted average of the densities of Tα,0
and Tα,1 with the appropriate values of p.

In Example 5.3.2 we also considered the maps Rα for α ∈
(√

10−2
2 , 2 −

√
2
)
. We

showed that Rα has random matching with M = 3, but no strong matching at that
moment. With a similar approach it can be shown that Rα has random matching for
various other intervals in

[
1
2 ,
√

5−1
2

]
. For α ∈

[
1
2 , 2−

√
2
]
both deterministic maps Tα,0

and Tα,1 have strong matching with M,Q ≤ 2, as was shown in [N81] and [TI81], and
moreover, for both of them the invariant densities are known. In Figure 5.14 we have
plotted the weighted average of these densities together with numerical simulations
of the densities for various values of α ∈

[
1
2 , 2 −

√
2
]
and 0 < p < 1. This makes

us wonder whether we need strong random matching to guarantee the existence of
a piecewise smooth invariant density for these random systems or whether random
matching is sufficient.
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§5.6 Appendix

Figure 5.12 has been produced with the following Phyton program. Note that a
computer is indeed able to handle the heavy algebraic procedure proposed in Chapter
3 and compute, from the fundamental matrix M , the density function fp of the
stationary measure µp.

import numpy as np
import array as ar r
import sympy as sym
import random as rd
import s c ipy . opt imize as opt
from random import cho i c e s
from f r a c t i o n s import Fract ion
from decimal import Decimal
from sympy import pprint , Symbol , i n i t_p r i n t i n g
from numpy . l i n a l g import matrix_rank
from sympy import ∗
from pylab import ∗
from s c ipy import opt imize
from matp lo t l i b import pyplot
from sympy . u t i l i t i e s . lambdify import lambdify
sym . i n i t_p r i n t i n g ( )

aNumerator = 1
aDenominator = 3
print ( "Rat iona l a , s t I_a i s a maximal quadrat i c i n t e r v a l

f o r alpha−CF: " , Fract ion ( aNumerator , aDenominator ) )

# compute the r e gu l a r cont inued f r a c t i o n expansion o f odd l en g t h
def cont inuedFract ion (n , d ) :

i f d == 0 : return [ ]
q = n//d
r = n − q∗d
return [ q ] + cont inuedFract ion (d , r )

print ( "Regular cont inued f r a c t i o n expansion : " ,
cont inuedFract ion ( aNumerator , aDenominator ) )

m = np .sum( cont inuedFract ion ( aNumerator , aDenominator ) )
print ( "Matching exponent : " , m)

vectorCont inuedFract ion = cont inuedFract ion
( aNumerator , aDenominator ) [ 1 : ]

lengthVCF= len ( vectorCont inuedFract ion )
i f ( lengthVCF % 2) == 0 :

vectorCont inuedFract ion [ lengthVCF−1] =
vectorCont inuedFract ion [ lengthVCF−1]−1

vectorCont inuedFract ion = np . append
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( vectorCont inuedFract ion , 1 )
print ( "Regular cont inued f r a c t i o n expansion with odd length : " ,

vectorCont inuedFract ion )

# compute a lpha v ia the va l ua t i on func t i on
# of the a s s o c i a t e d b inary vec to r
vectorBinary = np . ones ( (m, ) , dtype=int )
part ia lSum = np . z e r o s ( ( lengthVCF , ) , dtype=int )
part ia lSum [ 0 ] = vectorCont inuedFract ion [ 0 ]
for i in range (1 , lengthVCF ) :

part ia lSum [ i ] = vectorCont inuedFract ion [ i ]+part ia lSum [ i −1]
for i in range (0 , lengthVCF−1 ,2) :

vectorBinary [ part ialSum [ i ] : part ia lSum [ i +1] ] = 0
print ( "Assoc iated binary vec to r : " , vectorBinary )

a lpha Inver s e = 0
for i in range (1 , m+1):

a lpha Inver s e += vectorBinary [ i −1]/2∗∗ i
a lpha Inve r s eFrac t i on = Fract ion ( a lpha Inver s e )
alphaVar = Fract ion ( a lpha Inve r s eFrac t i on . denominator ,

a lpha Inve r s eFrac t i on . numerator )
print ( "Alpha va r i ab l e : " , alphaVar )

#Matching i n t e r v a l
s t a r t I n t e r v a l = Fract ion (2∗∗m+1,2∗∗m∗ a lpha Inve r s eFrac t i on+1)
endInt e rva l = Fract ion (2∗∗m−1 ,2∗∗m∗ a lphaInver seFract ion −1)
print ( "Matching i n t e r v a l : " , s t a r t I n t e r v a l , end In te rva l )

#Random parameter a lpha in the matching i n t e r v a l
( s t a r t I n t e r v a l , end In t e rva l ) o f matching exponent m

alpha = rd . uniform ( s t a r t I n t e r v a l , end In t e rva l )
print ( Fract ion ( alpha ) , " alpha : " , alpha )
p = Symbol ( ’p ’ )
print ( " Probab i l i t y vec to r : " , p , 1−p)

def t ( x ) :
i f x>0.5 :

return Fract ion (2∗x−alpha )
e l i f x<−0.5:

return Fract ion (2∗x+alpha )
else :

return Fract ion (2∗x )

# compute the o r b i t s o f 1 , 1−a lpha and t h e i r oppo s i t e s
orbitOne = np . ones ( (m+1 ,) , dtype=object )
orbitOneWeighted = np . ones ( (m+1 ,) , dtype=object )
orbitOneWeighted [ 0 ] = 1−p

172



§5.6. Appendix

C
h
a
pter

5

orbitOneNegat ive = np . ones ( (m+1 ,) , dtype=object )
orbitOneAlpha = np . ones ( (m+1 ,) , dtype=object )
orbitOneAlphaNegative = np . ones ( (m+1 ,) , dtype=object )

for i in range (1 ,m+1):
orbitOne [ i ]= t ( orbitOne [ i −1])
i f ( alpha−1)/2<orbitOne [ i ] <0 .5 :

orbitOneWeighted [ i ]=p
else :

orbitOneWeighted [ i ]=1−p

orbitOne = orbitOne [ :m]
orbitOneWeighted = orbitOneWeighted [ :m]

for i in range (0 ,m) :
orbitOneAlpha [ i ]= Fract ion ( orbitOne [ i ]−alpha )
orbitOneNegat ive [ i ]= Fract ion(−orbitOne [ i ] )
orbitOneAlphaNegative [ i ]= Fract ion(−orbitOne [ i ]+alpha )

# compute the p a r t i t i o n g iven by po in t s
# in the prematching s e t and the sw i t ch reg i ons
pa r t i t i o n = np . append ( orbitOneAlphaNegative ,

np . append ( orbitOneAlpha ,
np . append ( orbitOne , orbitOneNegat ive ) ) )

pa r t i t i o nSo r t ed = np . s o r t ( p a r t i t i o n )
pa r t i t i onSw i t ch = np . append ( pa r t i t i on ,

[−Fract ion (1 , 2 ) , ( alpha −1)/2 , −(alpha −1)/2 ,
Fract ion ( 1 , 2 ) ] )

pa r t i t i onSor t edSw i t ch = np . s o r t ( pa r t i t i onSw i t ch )

functionLOne = np . ones ( (m, ) , dtype=object )
functionLOneNegative = np . ones ( (m, ) , dtype=object )

for i in range (1 ,m) :
functionLOne [ i ] = sym . s imp l i f y

( functionLOne [ i −1]∗Fract ion (1 ,2 )∗ orbitOneWeighted [ i −1])
functionLOneNegative [ i ] = sym . s imp l i f y

( functionLOneNegative [ i −1]∗Fract ion (1 ,2 )∗
(1−orbitOneWeighted [ i −1]))

print ( "L_(1)−L_(1−alpha ) : " , functionLOne )
print ( "L_( alpha−1)−L_(−1): " , functionLOneNegative )

# compute the q u a n t i t i e s KI_n
kiOne = np . z e ro s ( ( 5 , ) , dtype=object )
kiOneWeighted = np . ones ( (m+1 ,) , dtype=object )
kiOneWeighted [ 1 ] = Fract ion (1 , 2 )
for i in range (2 ,m+1):
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kiOneWeighted [ i ]= sym . s imp l i f y
( kiOneWeighted [ i −1]∗Fract ion (1 ,2 )∗ orbitOneWeighted [ i −2])

for i in range (1 ,m) :
i f orbitOneWeighted [ i−1]==p :

kiOne [ 3 ] += kiOneWeighted [ i ]
kiOne [ 0 ] += −kiOneWeighted [ i ]

else :
kiOne [ 4 ] += kiOneWeighted [ i ]
kiOne [ 1 ] += −kiOneWeighted [ i ]

kiOne [ 4 ] += kiOneWeighted [m]
kiOne [ 0 ] += −kiOneWeighted [m]
print ( "KIn(1)−KIn(1−alpha ) : " , sym . s imp l i f y ( kiOne ) )

kiOneNegative=np . z e r o s ( ( 5 , ) , dtype=object )
kiOneWeightedNegative=np . ones ( (m+1 ,) , dtype=object )
kiOneWeightedNegative [1 ]= Fract ion (1 , 2 )
for i in range (2 ,m+1):

kiOneWeightedNegative [ i ]= sym . s imp l i f y
( kiOneWeightedNegative [ i −1]∗Fract ion (1 ,2 )∗
(1−orbitOneWeighted [ i −2]))

for i in range (1 ,m) :
i f orbitOneWeighted [ i−1]==p :

kiOneNegative [ 4 ] += kiOneWeightedNegative [ i ]
kiOneNegative [ 1 ] += −kiOneWeightedNegative [ i ]

else :
kiOneNegative [ 3 ] += kiOneWeightedNegative [ i ]
kiOneNegative [ 0 ] += −kiOneWeightedNegative [ i ]

kiOneNegative [ 4 ] += kiOneWeightedNegative [m]
kiOneNegative [ 0 ] += −kiOneWeightedNegative [m]
print ( "KIn( alpha−1)−KIn(−1): " , sym . s imp l i f y ( kiOneNegative ) )

# compute the fundamental matrix
mFirstRow = np . z e r o s ( ( 3 , ) , dtype=object )
mSecondRow = np . z e ro s ( ( 3 , ) , dtype=object )
mThirdRow = np . z e ro s ( ( 3 , ) , dtype=object )

mFirstRow [ 0 ] = −Fract ion (1 ,2)+(1−p)/2∗ kiOneNegative [ 1 ]
mFirstRow [ 1 ] = Fract ion (1 ,2)+p/2∗kiOne [1]+(1−p)/2∗

kiOneNegative [ 1 ]
mFirstRow [ 2 ] = p/2∗kiOne [ 1 ]

mSecondRow [ 0 ] = (1−p)/2∗ kiOneNegative [ 3 ]
mSecondRow [ 1 ] = p/2∗kiOne [3]− Fract ion (1 ,2)+(1−p)/2∗

kiOneNegative [ 3 ]
mSecondRow [ 2 ] = Fract ion (1 ,2)+p/2∗kiOne [ 3 ]
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mThirdRow [ 0 ] = (1−p)/2∗ kiOneNegative [ 4 ]
mThirdRow [ 1 ] = p/2∗kiOne [4]+(1−p)/2∗ kiOneNegative [ 4 ]
mThirdRow [ 2 ] = −Fract ion (1 ,2)+p/2∗kiOne [ 4 ]

matrixM = np . array ( [ mFirstRow , mSecondRow , mThirdRow ] )
fundamentalMatrix = sym . Matrix (matrixM)

vectorGamma = fundamentalMatrix . nu l l s pa c e ( )
print ( " So lu t i on vec to r Gamma: " , sym . f a c t o r ( vectorGamma ) )
gamma = sym . Matrix ( vectorGamma)
x = sym . f a c t o r (gamma [ 0 ] )
y = sym . f a c t o r (gamma [ 1 ] )
z = sym . f a c t o r (gamma [ 2 ] )

d e n s i t yCo e f f i c i e n t 1 = sym . f a c t o r ( ( x+y)∗(1−p ) )
d e n s i t yCo e f f i c i e n t 2 = sym . f a c t o r ( ( y+z )∗p)

functionLOneNegativeWeighted = sym . f a c t o r
( functionLOneNegative ∗ d en s i t yCo e f f i c i e n t 1 )

functionLOneWeighted = sym . f a c t o r
( functionLOne∗ d en s i t yCo e f f i c i e n t 2 )

# compute the d en s i t y
dens i ty = np . z e ro s ( ( len ( pa r t i t i onSor t edSw i t ch ) , ) , dtype=object )
for i in range (0 ,m) :

i n i t i a l P o s i t i o n = np . where
( pa r t i t i onSor t edSw i t ch==orbitOneAlpha [ i ] ) [ 0 ] [ 0 ] + 1

f i n a l P o s i t i o n = np . where
( pa r t i t i onSor t edSw i t ch==orbitOne [ i ] ) [ 0 ] [ 0 ]

for k in range ( i n i t i a l P o s i t i o n , f i n a l P o s i t i o n +1):
dens i ty [ k ] += functionLOneWeighted [ i ]

i n i t i a l P o s i t i o nN e g a t i v e = np . where
( pa r t i t i onSor t edSw i t ch==orbitOneNegat ive [ i ] ) [ 0 ] [ 0 ] + 1

f i n a lPo s i t i o nNega t i v e = np . where
( pa r t i t i onSor t edSw i t ch==orbitOneAlphaNegative [ i ] ) [ 0 ] [ 0 ]

for k in range
( i n i t i a l P o s i t i o nNeg a t i v e , f i n a lPo s i t i o nNega t i v e +1):
dens i ty [ k ] += functionLOneNegativeWeighted [ i ]

s imp l i f i e dDen s i t y=sym . f a c t o r ( dens i ty )
print ( "Density func t i on : " , s imp l i f i e dDen s i t y )

normal iz ingConstant = 0
for i in range (1 , len ( pa r t i t i onSor t edSw i t ch ) ) :

normal iz ingConstant +=
( par t i t i onSor t edSw i t ch [ i ]− par t i t i onSor t edSw i t ch [ i −1])∗
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dens i ty [ i ]
s imp l i f i edNorma l i z ingConstant=sym . f a c t o r (1/ normal iz ingConstant )
print ( "Normal iz ing constant : " , s imp l i f i edNorma l i z ingConstant )

normal izedDens i ty= sym . f a c t o r
( s imp l i f i edNorma l i z ingConstant ∗ dens i ty )

print ( "Normalized dens i ty : " , normal izedDens i ty )

# compute the f requency o f the zero d i g i t
f requencyZero = 0
measureI4 = 0
measureI2 = 0
measureI3 = 0

s t a r t I 4 = np . where ( pa r t i t i onSor t edSw i t ch==(alpha −1)/2) [ 0 ] [ 0 ]+1
endI4 = np . where ( pa r t i t i onSo r t edSwi t ch ==1/2) [0 ] [ 0 ]

for k in range ( s t a r t I 4 , endI4 +1):
measureI4 +=

( par t i t i onSor t edSw i t ch [ k]− par t i t i onSor t edSw i t ch [ k−1])∗
normal izedDens i ty [ k ]

measureI4 = measureI4∗p

s t a r t I 2 = np . where ( pa r t i t i onSor t edSw i t ch ==−1/2)[0][0]+1
endI2 = np . where ( pa r t i t i onSo r t edSwi t ch==−(alpha − 1 ) / 2 ) [ 0 ] [ 0 ]

for k in range ( s t a r t I 2 , endI2 +1):
measureI2 +=

( par t i t i onSor t edSw i t ch [ k]− par t i t i onSor t edSw i t ch [ k−1])∗
normal izedDens i ty [ k ]

measureI2 = measureI2∗(1−p)

s t a r t I 3 = np . where ( pa r t i t i onSor t edSw i t ch==−(alpha −1)/2) [ 0 ] [ 0 ]+1
endI3 = np . where ( pa r t i t i onSo r t edSwi t ch==(alpha − 1 ) / 2 ) [ 0 ] [ 0 ]

for k in range ( s t a r t I 3 , endI3 +1):
measureI3 +=

( par t i t i onSor t edSw i t ch [ k]− par t i t i onSor t edSw i t ch [ k−1])∗
normal izedDens i ty [ k ]

f requencyZero = measureI4 + measureI2 + measureI3
print ( "Frequency o f the 0 d i g i t : " , sym . f a c t o r ( f requencyZero ) )

f requencyZeroFunct ion = lambdify ( ( p , ) ,
f requencyZero , modules=’numpy ’ )

p_scipy = np . l i n s p a c e ( 0 . 0 , 1 . 0 )
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y_sympy = frequencyZeroFunct ion ( p_scipy )

pyplot . p l o t ( p_scipy , y_sympy , ’b− ’ , l a b e l=’ Freq (p) ’ )
pyplot . x l ab e l ( r ’ $p$ ’ )
pyplot . y l ab e l ( r ’ $Frequency$ ’ )
pyplot . l egend ( l o c=’ upper r i g h t ’ )
pyplot . show ( )
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