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CHAPTER 4
Matching for flipped α-CF

This chapter is based on: [KLMM20].

Abstract

As a natural counterpart to Nakada’s α-continued fraction maps, we study a one-
parameter family of continued fraction transformations with an indifferent fixed point.
We prove that matching holds for Lebesgue almost every parameter in this family and
that the exceptional set has Hausdorff dimension 1. Due to this matching property, we
can construct a planar version of the natural extension. We use this construction to
obtain an explicit expression for the density of the unique infinite σ-finite absolutely
continuous invariant measure, and we also compute the Krengel entropy, the return
sequence and the wandering rate of the maps for a large part of the parameter space.
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§4.1 Motivation and context

Over the past decades the dynamical phenomenon of matching, or synchronisation
as described in Definition 1.2.7, has surfaced increasingly often in the study of the
dynamics of interval maps. Recall that a map T is said to have matching if for any
discontinuity point c of the map T or its derivative T ′ the orbits of the left and right
limits of c eventually meet. That is, there exist non-negative integersM and N , called
matching exponents, such that

TM (c−) = TN (c+), (4.1)

where
c− = lim

x↑c
T (x) and c+ = lim

x↓c
T (x).

General results on the implications of matching are scarce. There are many results
however on the consequences of matching for specific families of interval maps. In
[KS12, BSORG13, BCK17, BCMP18, CM18, DK17] matching was considered for
various families of piecewise linear maps in relation to expressions for the invariant
densities, entropy and multiple tilings. Another type of transformation for which
matching has proven to be convenient is for continued fraction maps, most notably
for Nakada’s α-continued fraction maps. This family was introduced in [N81] by
defining for each α ∈

[
1
2 , 1
]
the map Sα : [α− 1, α]→ [α− 1, α] by Sα(0) = 0 and for

x 6= 0,

Sα(x) =
1

|x|
−
⌊ 1

|x|
+ 1− α

⌋
. (4.2)

In [N81] Nakada constructed a planar natural extension of Sα and proved the existence
of a unique absolutely continuous invariant probability measure. In [LM08] the family
was extended to include the parameters α ∈

[
0, 1

2

)
. On this part of the parameter

space the planar natural extension strongly depends on the matching property, and
it is much more complicated. This also affects the behaviour of the metric entropy
as a function of α, which is described in detail in [LM08, NN08, CMPT10, KSS12,
CT13, T14]. In [DKS09, KU10, CIT18] matching was successfully considered for other
families of continued fraction transformations.

The matching behaviour of these different families has some striking similarities.
The parameter space usually breaks down into maximal intervals on which the expo-
nents M and N from (4.1) are constant, called matching intervals. These matching
intervals usually cover most of the space, leaving a Lebesgue null set. The set where
matching fails, called the exceptional set, is often of positive Haussdorff dimension,
see [CT12, KSS12, BCIT13, BCK17, DK17] for example.

So far, matching has been considered only for dynamical systems with a finite
absolutely continuous invariant measure. In this article, we introduce and study the
matching behaviour and its consequences for a one-parameter family of continued frac-
tion transformations on the interval that have a unique absolutely continuous, σ-finite
invariant measure that is infinite. This family of flipped α-continued fraction trans-
formations we introduce arises naturally as a counterpart to Nakada’s α-continued
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fraction maps. Due to matching we obtain a nice planar natural extension on a large
part of the parameter space, which allows us to explicitly compute dynamical features
of the maps, such as the invariant density, Krengel entropy and wandering rate.

The family of maps {Tα}α∈(0,1) we consider is defined as follows. For each α ∈
(0, 1) let

Dα =
⋃
n≥1

[ 1

n+ α
,

1

n

]
⊆ [0, 1], (4.3)

and Iα := [min{α, 1− α}, 1], and define the map Tα : Iα → Iα by

Tα(x) =


G(x) =

1

x
−
⌊

1

x

⌋
, if x ∈ Dc

α,

1−G(x) = − 1

x
+

(
1 +

⌊
1

x

⌋)
, if x ∈ Dα,

where G(x) = 1
x (mod 1) is the Gauss map and Dc

α denotes the complement of Dα

in [0, 1]. Note that for α = 0 one recovers the Gauss map G, and α = 1 gives 1−G,
which is a shifted version of the Rényi map or backwards continued fraction map. Since
these transformations have already been studied extensively, we omit them from our
analysis. Figures 4.1(c) and 4.1(f) show the graphs of the maps Tα for a parameter
α < 1

2 and a parameter α > 1
2 , respectively. We could define Tα on the whole interval

[0, 1], but since the dynamics of Tα is attracted to the interval Iα we just take that as
the domain. Since Iα is bounded away from 0, any map Tα has only a finite number
of branches. Note also that each map Tα has an indifferent fixed point at 1.

We call these transformations flipped α-continued fraction maps, due to their
relation to the family of maps described in [MMY97]. The authors defined for each α ∈
[0, 1] the folded α-continued fraction map Ŝα : [0,max{α, 1−α}]→ [0,max{α, 1−α}]
by Ŝα(0) = 0 and for x 6= 0,

Ŝα(x) =
∣∣∣ 1
x
−
⌊ 1

x
+ 1− α

⌋∣∣∣ =


G(x) =

1

x
−
⌊

1

x

⌋
, if x ∈ Dα,

1−G(x) = − 1

x
+

(
1 +

⌊
1

x

⌋)
, if x ∈ Dc

α.

The dynamical properties of the folded α-continued fraction maps are essentially equal
to those of Nakada’s α-continued fraction maps. The name represents the idea that
these maps ‘fold’ the interval [α−1, α] onto [0,max{α, 1−α}]. As shown in Figure 4.1
the families {Tα} and {Ŝα} are obtained by flipping the Gauss map on complementary
parts of the unit interval and, as such, both families are particular instances of what
are called D-continued fraction maps in [DHKM12]. Furthermore, for α = 1

2 the
transformation Tα seems to be closely related, but not isomorphic, to the object of
study of [DK00].
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(a) G

1
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1 − α
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0 1
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(b) R = 1−G

1
1+α

1
2+α

α

1 − α

0 1

1

(c) Ŝα

1
1+α

1 − α

α

0 1

1

(d) Ŝα

1
1+α

1
2+α

α

1 − α

α0 1

1

(e) Tα

1
1+α

1 − α

α

1 − α0 1

1

(f) Tα

Figure 4.1: The Gauss map G and the flipped map R = 1 − G in (a) and (b). The folded
α-continued fraction map Ŝα and the flipped α-continued fraction map Tα for α < 1

2
in (c)

and (e) and for α > 1
2
in (d) and (f).

The first main result of this article is on the matching behaviour of the family Tα.

4.1.1 Theorem. The set of parameters α ∈ (0, 1) for which the transformation Tα
does not have matching is a Lebesgue null set of full Hausdorff dimension.

We also give an explicit description of the matching intervals by relating them
to the matching intervals of Nakada’s α-continued fraction transformations. The
matching behaviour allows us to construct a planar version of the natural extension
for α ∈ [0, 1

2

√
2] leading to the following result.

4.1.2 Theorem. Let 0 ≤ α ≤ 1
2

√
2, let Bα be the Borel σ-algebra on Iα and let
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g =
√

5−1
2 . The absolutely continuous measure µα on (Iα,Bα) with density

fα(x)=



1
x1[α, α

1−α ](x) + 1
1+x1[ α

1−α ,1−α](x) + 2
1−x21[1−α,1](x), for α ∈ [0, 1

2 ),

1
1−x1[1−α,α](x) + 1

x(1−x)1[α, 1−αα ](x) + x2+1
x(1−x2)1[ 1−α

α ,1](x), for α ∈ [ 1
2 , g),

( 1
1−x + 1

x+ 1
g−1

)1[1−α, 2α−1
α ](x) + 1

1−x1[ 2α−1
α ,α](x)+

+( 1
1−x + 1

x −
1

x+ 1
g

)1[α, 2α−1
1−α ](x) + x2+1

x(1−x2)1[ 2α−1
1−α ,1](x), for α ∈ [g, 2

3 ),

( 1
1−x + 1

x+ 1
g−1

)1[1−α, 2α−1
α ](x) + 1

1−x1[ 2α−1
α ,α](x)+

+( 1
1−x + 1

x −
1

x+ 1
g

)1[α, 1−α
2α−1 ](x)+

+( 1
1−x + 1

x+1 −
1

x+ 1
g

+ 1
x −

1
x+ 1

g+1

)1[ 1−α
2α−1 ,1](x), for α ∈ [ 2

3 ,
1
2

√
2],

is the unique (up to scalar multiplication) σ-finite, infinite absolutely continuous in-
variant measure for Tα. Furthermore, for α ∈ (0, g] the Krengel entropy equals π2

6 .
For α ∈ (0, 1

2

√
2) the wandering rate is given by wn(Tα) ∼ log n and the return

sequence by an(Tα) ∼ n
logn .

The value 1
2

√
2 is the endpoint of the fourth matching interval. As α grows beyond

1
2

√
2 the matching intervals get smaller and smaller with higher matching exponents

and the natural extension domain develops a more fractal structure, see Figure 4.4.
As a consequence, it is in principle still possible to obtain results similar to those from
Theorem 4.1.2 for bigger values of α, but the natural extension and the computations
involved become increasingly complicated.

The chapter is outlined as follows. In the next section we give some preliminaries
on continued fractions and explain how the maps Tα can be used to generate them
for numbers in the interval Iα. We also prove that the maps Tα fall into the family of
what are called AFN-maps in [Z98]. In the third section we study the phenomenon of
matching, leading to Theorem 4.1.1, and we give an explicit description of the match-
ing intervals. The fourth section is devoted to defining a planar natural extension
for the maps Tα for α ≤ 1

2

√
2. This is then used to obtain the invariant densities

appearing in Theorem 4.1.2. In the last section we compute the Krengel entropy, the
wandering rate and the return sequence for Tα, giving the last part of Theorem 4.1.2.
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§4.2 More CF-maps

§4.2.1 Semi-regular CF-expansions
In 1913, Perron introduced the notion of semi-regular continued fraction expansions,
which are finite or infinite expressions for real numbers of the following form:

x = d0 +
ε0

d1 +
ε1

d2 +
. . . +

εn−1

dn +
. . .

,

where d0 ∈ Z and for each n ≥ 1, εn−1 ∈ {−1, 1}, dn ∈ N and dn + εn ≥ 1; see for
example [P57]. We denote the semi-regular continued fraction expansion of a number
x by

x = [d0; ε0/d1, ε1/d2, ε2/d3, . . .].

The maps Tα generate semi-regular continued fraction expansions of real numbers
by iteration. Define for any α ∈ (0, 1) and any x ∈ Iα the partial quotients dk =

dk(x) = d1(T k−1
α (x)) and the signs εk = εk(x) = ε1(T k−1

α (x)) by setting

d1(x) :=

{
b 1
xc, if x ∈ Dc

α,

b 1
xc+ 1, otherwise;

and ε1(x) :=

{
1, if x ∈ Dc

α,

−1, otherwise.

With this notation the map Tα can be written as Tα(x) = ε1(x)
(

1
x −d1(x)

)
, implying

x =
1

d1 + ε1Tα(x)
=

1

d1 +
ε1

d2 +
. . . +

εn−1

dn + εnTnα (x)

. (4.4)

Denote by (pn/qn)n≥1 the sequence of convergents of such an expansion, that is,

pn/qn = [0; 1/d1, ε1/d2, . . . , εn−1/dn].

Since we obtained Tα from the Gauss map, by flipping on the domain Dα from (4.3),
it follows from [DHKM12, Theorem 1] that for any x ∈ Iα we have: lim

n→∞

pn
qn

= x.

Therefore, we can write

x =
1

d1 +
ε1

d2 +
. . . +

εn−1

dn +
. . .

=: [0; 1/d1, ε1/d2, ε2/d3, . . .]α,

which we call the flipped α-continued fraction expansion of x.
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In case εn = 1 for all n ≥ 1 the continued fraction expansion is called regular
and we use the common notation [a1, a2, a3, . . .] for them. Regular continued fraction
expansions are generated by the Gauss map G : [0, 1]→ [0, 1] given by G(0) = 0 and
G(x) = 1

x (mod 1) if x 6= 0. Therefore, G acts as a shift on the regular continued
fraction expansions:

x = [a1, a2, a3, . . .] ⇒ G(x) = [a2, a3, a4, . . .].

It is well known that the regular continued fraction expansion of a number x is finite
if and only if x ∈ Q. For any x ∈ [0, 1

2

]
the following correspondence between the

regular continued fraction expansions of x and 1− x holds:

x = [a1, a2, a3, . . .] ⇔ 1− x = [1, a1 − 1, a2, a3, . . .]. (4.5)

We will need this property later.

On sequences of digits (an)n≥1 ∈ NN the alternating ordering is defined by setting
(an)n≥1 ≺ (bn)n≥1 if and only if for the smallest index m ≥ 1 such that am 6= bm
it holds that (−1)mam < (−1)mbm. The same definition holds for finite strings of
digits of the same length. The alternating ordering on continued fraction expansions
is consistent with standard ordering on the real line, i.e.,

(an)n≥1 ≺ (bn)n≥1 ⇔ [a1, a2, a3, . . .] < [b1, b2, b3, . . .].

The next proposition will be needed in the following section.

4.2.1 Proposition. Let α ∈ (0, 1) and x ∈ Iα be given. Then x ∈ Q if and only if
there is an N ≥ 0 such that TNα (x) = 1.

Proof. If there is an N ≥ 0 such that TNα (x) = 1, then it follows immediately from
(4.4) that x ∈ Q. Suppose x ∈ Q. Note that Tnα (x) ∈ Q ∩ Iα for all n ≥ 0 and write
Tnα (x) = sn

tn
with sn, tn ∈ N and tn as small as possible. Assume for a contradiction

that Tnα (x) 6= 1 for all n ≥ 1. Then sn < tn and since either Tn+1
α (x) = tn−ksn

sn
or

Tn+1
α (x) = (k+1)sn−tn

sn
, we get 0 < tn+1 < tn. This gives a contradiction. �

§4.2.2 AFN-maps
We start our investigation into the dynamical properties of the maps Tα by showing
that they fall into the category of AFN-maps considered in [Z98, Z00]. Let λ de-
note the one-dimensional Lebesgue measure and let X be a finite union of bounded
intervals. A map T : X → X is called an AFN-map if there is a finite partition
P of X consisting of non-empty, open intervals Ii, such that the restriction T |Ii is
continuous, strictly monotone and twice differentiable. Moreover, T has to satisfy the
following three properties:

(A) Adler’s condition: T ′′

(T ′)2 is bounded on ∪iIi;

(F) The finite image condition: T (P) := {T (Ii) : Ii ∈ P} is finite;
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(N) The repelling indifferent fixed point condition: there exists a finite set Z ⊆ P,
such that each Zi ∈ Z has an indifferent fixed point xZi , that is,

lim
x→xZi ,x∈Zi

Tα(x) = xZi and lim
x→xZi ,x∈Zi

T ′(x) = 1,

T ′ decreases on (−∞, xZi) ∩ Zi and increases on (xZi ,∞) ∩ Zi. Lastly, T is
assumed to be uniformly expanding on sets bounded away from {xZi : Zi ∈ Z}.

For the maps Tα we can take P to be the collection of intervals of monotonicity
(or cylinder sets) of Tα, defined for each ε ∈ {−1, 1} and d ≥ 1 by

∆(ε, d) = int{x ∈ Iα : ε1(x) = ε and d1(x) = d}, (4.6)

where we use int to denote the interior of the set.

4.2.2 Lemma. For each α ∈ (0, 1) the map Tα is an AFN-map.

Proof. Let P = {∆(ε, d)}. Then Tα is continuous, strictly monotone and twice differ-
entiable on each of the intervals in P. We check the three other conditions. For (A)
note that T ′α(x) = ± 1

x2 , so that
∣∣∣ T ′′α (x)

(T ′α(x))2

∣∣∣ =
∣∣∣ 2x4

x3

∣∣∣ = ±2x ≤ 2 for any x for which T ′α
is defined. Also, for any J ∈ P we have

Tα(J) ∈
{

(α, 1), (1− α, 1), (α, Tα(α)), (1− α, Tα(1− α)), (Tα(α), 1), (Tα(1− α), 1)
}
,

giving (F). Finally, Tα has only 1 as an indifferent fixed point. Since T ′α(x) = 1/x2 > 1

for any x ∈ Iα \ {1} where T ′α(x) is defined, we see that T ′α decreases near 1 and also
(N) holds. �

Using [Z98, Theorem 1] we then obtain the following result.

4.2.3 Proposition. For each α ∈
(
0, 1) there exists a unique absolutely continuous,

infinite, σ-finite Tα-invariant measure µα that is ergodic and conservative for Tα.

Proof. Since Tα is an AFN-map, [Z98, Theorem 1] immediately implies that there are
finitely many disjoint open sets X1, . . . , XN ⊆ Iα, such that Tα(Xi) = Xi (mod λ)

and T |Xi is conservative and ergodic with respect to λ. Each Xi is a finite union of
open intervals and supports a unique (up to a constant factor) absolutely continuous
Tα-invariant measure. Moreover, this invariant measure is infinite if and only if Xi

contains an interval (1 − δ, 1) for some δ > 0. Since each open interval contains a
rational point in its interior, Proposition 4.2.1 together with the forward invariance
of the sets Xi implies that there can only be one set Xi and that this set contains
an interval of the form (1 − δ, 1). Hence, there is a unique (up to a constant factor)
absolutely continuous invariant measure µα that is infinite, σ-finite, ergodic and con-
servative for Tα. �

From Proposition 4.2.3 and [Z00, Theorem 1] it follows that each map Tα is point-
wise dual-ergodic, i.e., there are positive constants an(Tα), n ≥ 1, such that for each
f ∈ L1(Iα,Bα, µα), where Bα is the Borel σ−algebra on Iα,

lim
n→∞

1

an(Tα)

n−1∑
k=0

P kTαf =

∫
Iα

f dµα µα-a.e., (4.7)
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where PTα denotes the Perron-Frobenius operator of the map Tα, given in Definition
1.2. The sequence (an(Tα))n≥1 is called the return sequence of Tα and will be given
for α ∈

(
0, 1

2

√
2
)
in Section 4.5.

§4.3 Matching almost everywhere

In this section we prove that matching holds for almost every α ∈ (0, 1). The discon-
tinuity points of the map Tα are of the form 1

k+α for some positive integer k. For any
such point,

c− = lim
x↑ 1

k+α

Tα(x) = α and c+ = lim
x↓ 1

k+α

Tα(x) = −(k + α) + k + 1 = 1− α.

Recall the definition of matching from equation (4.1): matching for Tα holds if there
exist non-negative integers M,N such that

TMα (α) = TNα (1− α). (4.8)

Some authors also require the evaluation of the derivative of the iterates in the left
and right limits of the critical points to coincide. In our case, we do not need this
constraint, since we prove that matching is a local property.

In the next proposition we show that the first half of the parameter space consists
of a single matching interval.

4.3.1 Proposition. For α ∈
(
0, 1

2

)
it holds that Tα(α) = T 2

α(1− α).

Proof. Fix α = [a1, a2, . . .] ∈
(
0, 1

2

)
. First note that 1

2 < 1 − α < 1
1+α , so that by

(4.5) we obtain that

Tα(1− α) = G(1− α) =
α

1− α
= [a1 − 1, a2, a3, . . .].

Hence
1

a1 + 1
< α <

1

a1 + α
⇔ 1

a1
<

α

1− α
<

1

a1 − 1 + α
,

which gives that either α and Tα(1− α) are both in Dα or in Dc
α. In both cases,

Tα(α) = T 2
α(1− α).

�

For α > 1
2 the situation is much more complicated. One explanation for this

difference comes from two operations that convert one semi-regular continued fraction
expansion of a number into another: singularisation and insertion. Both operations
were introduced in [P57] and later appeared in many other places in the literature, see
e.g. [K91, DK00, HK02, S04, DHKM12]. Singularisation deletes one of the convergents
pn
qn

from the sequence while altering the ones before and after; insertion inserts the
mediant pn+pn+1

qn+qn+1
of pnqn and pn+1

qn+1
into the sequence. It follows from [DHKM12, Section
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2.1] that for α < 1
2 the flipped α-continued fraction expansions of numbers in Iα can

be obtained from their regular continued fraction expansions by insertions only, while
for α > 1

2 one needs singularisations as well.

Define the map R : [0, 1] → [0, 1] by R(x) = 1 − G(x), see Figure 4.1(b). Before
we prove that matching holds Lebesgue almost everywhere, we describe the effect of
R on the regular continued fraction expansions of numbers in (0, 1).

4.3.2 Lemma. Let x ∈ (0, 1) have regular continued fraction expansion x = [x1, x2, x3, . . .].
Then for each j ≥ 1,

Rx2+x4+···+x2j (x) = [x2j+1 + 1, x2j+2, x2j+3, . . .]

and if 0 < ` < x2j, then

Rx2+x4+···+x2j−2+`(x) = [1, x2j − `, x2j+1, x2j+2, . . .].

Proof. By (4.5) it holds that

R(x) = 1−G(x) = 1− [x2, x3, x4, . . .] =

{
[x3 + 1, x4, x5, . . .] = Rx2(x), if x2 = 1,

[1, x2 − 1, x3, x4, . . .], if x2 > 1.

The statement then easily follows by induction. �

4.3.3 Remark. The previous lemma implies that R preserves the parity of the
regular continued fraction digits. More precisely, if x ∈ (0, 1), then (except for possibly
the first two digits) the regular continued fraction expansion of R(x) has regular
continued fraction digits of x with even indices in even positions and regular continued
fraction digits with odd indices in odd positions.

The map Tα equals the map R on Dα and G on Dc
α. The next lemma specifies

the times n at which the orbit of α (or 1− α) can enter Dc
α for the first time.

4.3.4 Lemma. Let α = [1, a1, a2, a3, . . .] ∈
(

1
2 , 1
)
. If m := min{i ≥ 0 : T iα(α) ∈

Dc
α} exists, then m = a1 +a3 + · · ·+a2j+1− 1 where j is the unique integer such that

a1 + a3 + · · ·+ a2j−1 − 1 < m ≤ a1 + a3 + · · ·+ a2j+1 − 1.

Similarly, if k := min{i ≥ 0 : T iα(1−α) ∈ Dc
α} exists, then k = a2 +a4 + · · ·+a2j−1

where j is the unique integer such that

a2 + a4 + · · ·+ a2j−2 − 1 < k ≤ a2 + a4 + · · ·+ a2j − 1.

Proof. For the first statement, by the definition of m we know that T iα(α) = Ri(α)

for all i ≤ m. From Lemma 4.3.2 it then follows that if m = a1 + a3 + · · · + a2j−1,
then

Tmα (α) = [a2j + 1, a2j+1, a2j+2, . . .],

and if m = a1 + a3 + · · ·+ a2j−1 + ` for some 0 < ` ≤ a2j+1 − 1, then

Tmα (α) = [1, a2j+1 − `, a2j+2, a2j+3, . . .].
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Recall that Dc
α =

⋃
d ∆(1, d). The right boundary point of any cylinder ∆(1, d) =

( 1
d+1 ,

1
d+α ) has regular continued fraction expansion [d, 1, a1, a2, . . .]. Since the regular

continued fraction expansion of the left boundary point also starts with the digits d, 1,
any x ∈ Dc

α has a regular continued fraction expansion of the form [x1, 1, x3, . . .]. In
particular this holds for Tmα (α), which implies that either a2j+1 = 1 or ` = a2j+1− 1.
In both cases, m = a1 + a3 + · · ·+ a2j+1− 1. For the second part of the lemma, recall
from (4.5) that 1 − α = [a1 + 1, a2, a3, . . .]. The proof of the second part then goes
along the same lines as above. �

Recall from the introduction the definition of matching intervals as the maximal
parameter intervals on which the matching exponents M,N from (4.1) are constant.
We can obtain a complete description of the matching intervals by relating them to
the matching intervals of Nakada’s α-continued fraction maps from (4.2). First we
recall some notation and results on matching for the maps from (4.2). Any rational
number a ∈ Q ∩ (0, 1) has two regular continued fraction expansions:

a = [a1, . . . , an] = [a1, . . . , an − 1, 1], an ≥ 2.

The quadratic interval Ia associated to a is the interval with endpoints

[a1, . . . , an] and [a1, . . . , an − 1, 1].

The quadratic interval I1 is defined separately by I1 = (g, 1), where g =
√

5−1
2 . A

quadratic interval Ia is called maximal if it is not properly contained in any other
quadratic interval. By [CT12, Theorem 1.3] maximal intervals correspond to matching
intervals for Nakada’s α-continued fraction maps.

Let R = {a ∈ Q ∩ (0, 1] : Ia is maximal} and a = [a1, . . . , an] ∈ R with an ≥ 2.
The map x 7→ 1

1+x is the inverse of the right most branch of the Gauss map. Therefore,
1

1+a = [1, a1, a2, . . . , an − 1, 1] = [1, a1, a2, . . . , an]. Write

JLa =
(

[1, a1, a2, . . . , an − 1, 1], [1, a1, a2, . . . , an − 1, 1]
)
,

JRa =
(

[1, a1, a2, . . . , an], [1, a1, a2, . . . , an]
)
,

if n is odd and

JLa =
(

[1, a1, a2, . . . , an], [1, a1, a2, . . . , an]
)
,

JRa =
(

[1, a1, a2, . . . , an − 1, 1], [1, a1, a2, . . . , an − 1, 1]
)
,

if n is even, so that 1
1+Ia

= JLa ∪ JRa ∪
{

1
1+a

}
. Finally, let

M = a1 + a3 + · · ·+ an and N = a2 + a4 + · · ·+ an−1 + 2 (4.9)

if n is odd and

M = a1 + a3 + · · ·+ an−1 + 1 and N = a2 + a4 + · · ·+ an + 1 (4.10)
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if n is even. The next theorem states that the intervals JLa and JRa are matching
intervals for the flipped α-continued fraction maps with matching exponents that
depend on M and N .

4.3.5 Theorem. Let a ∈ R and let M and N be as in (4.9) and (4.10). For each
α ∈ JLa the map Tα satisfies TMα (α) = TNα (1 − α) and for each α ∈ JRa the map Tα
satisfies TM+1

α (α) = TN−1
α (1− α).

Proof. First we consider the special maximal quadratic interval I1 = (g, 1) separ-
ately, for which n is odd and JL1 = ∅ and JR1 =

(
1
2 , g
)
. Let α ∈ JR1 . Then

α = [1, 1, a2, a3, . . .] and 1 − α = [2, a2, a3, . . .]. Note that M = 1 and N = 2.
From α < g it follows that α2 + α − 1 < 0. This implies that 1 − α > 1

2+α , so that
TN−1
α (1− α) = Tα(1− α) = R(1− α). It also implies that 1

2 < α < 1
1+α and that

Tα(α) = G(α) =
1

α
− 1 >

1

1 + α
,

so that TM+1
α (α) = T 2

α(α) = R ◦G(α), which by Lemma 4.3.2 equals TN−1
α (1− α).

Fix a ∈ R\{1} and write a = [a1, a2, . . . , an] = [a1, a2, . . . , an−1, 1] for its regular
continued fraction expansions. We only prove the statement for JLa , since the proof
for JRa is similar. Assume without loss of generality that n is odd. The proof is
analogous for n even and the parity is fixed only to determine the endpoints of JLa .
We start by proving that matching cannot occur for indices smaller than M and N .

Write a = a1, a2, . . . , an−1, an − 1, 1 ∈ Nn+1 and let α ∈ JLa = ([1,a], [1,a]). Then
there is some finite or infinite string of positive integers w = an+2, an+3, . . ., such that
α = [1,a,w]. The assumption that n is odd together with the fact that the Gauss
map preserves the alternating ordering imply that

a � w. (4.11)

Assume that m = min{i ≥ 0 : T iα(α) ∈ Dc
α} exists. By Lemma 4.3.4 there is a j,

such that m = a1 + a3 + · · ·+ a2j−1 − 1. Assume that 2j − 1 < n. By the definition
of m it holds that Tmα (α) ∈ Dc

α. So, using Lemma 4.3.2 we obtain that

[1, a2j , a2j+1, . . .] = G(Tmα (α)) = Tm+1
α (α) > α = [1,a,w].

Since a ∈ R, the result from [CT12, Proposition 4.5.2] implies that for any two
non-empty strings u and v such that a = uv, the inequality

v � uv (4.12)

holds. Thus, if we take v = a2j , a2j+1, . . . , an − 1, 1 and u = a1, a2, . . . , a2j−1, then
we find v � uv, which contradicts (4.12). Hence, if m exists, then m ≥ M − 1. In
a similar way we can deduce that if k = min{i ≥ 0 : T iα(1 − α) ∈ Dc

α} exists, then
k ≥ N − 2.

Now assume that there exist ` < M − 1 and i < N − 2, such that

T `α(α) = R`(α) = Ri(1− α) = T iα(1− α). (4.13)
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Recall from Remark 4.3.3 that R preserves the parity of the regular continued fraction
digits. Since α = [1, a1, a2, . . .] and 1− α = [a1 + 1, a2, a3, . . .], the assumption (4.13)
then implies the existence of an even index 2 ≤ j ≤ n−1 and an odd index 1 ≤ ` < n,
such that

aj , aj+1, aj+2, . . . = a`, a`+1, a`+2, . . . .

This implies that a has an ultimately periodic regular continued fraction expansion,
which contradicts the fact that a ∈ Q. Hence, matching cannot occur with indices
` < M − 1 and i < N − 2.

Next consider TMα (α) and TN−2
α (1 − α). From Lemma 4.3.2 applied to α =

[1, a1, a2, . . .], i.e., xi = ai−1, we get that

TM−1
α (α) = Ra1+a3+···+an−1(α) = [2,w].

From α = [1,a,w] > g, it follows that G(α) = [a,w] < g. Combining this with
the fact that the property from (4.11) implies w ≺ aw ≺ 1aw. Hence, TM−1

α (α) >

[2, 1,a,w] = 1
2+α which gives TM−1

α (α) ∈ ( 1
2+α ,

1
2 ). This implies that TMα (α) =

R(TM−1
α (α)) = R([2,w]). For 1 − α = [a1 + 1, a2, a3, . . . , an−1, an − 1, 1,w] we get

from Lemma 4.3.2 that

TN−2
α (1− α) = RN−2(1− α) = [an, 1,w].

Again using that w ≺ aw gives TN−2
α (1 − α) ∈ ∆(1, an) = ([an, 1], [an, 1,a,w]).

Since α > g, it follows that TNα (1− α) = R ◦G(TN−2
α (1− α)). Then, again by using

Lemma 4.3.2, we obtain

TNα (1− α) = R([1,w]) = R([2,w]) = TMα (α).

For α ∈ JRa , one can show similarly that TM−1
α (α) = [1, 1,w] ∈ ∆(1, 1). Since

α > g, this gives TM+1
α (α) = R ◦ G(TM−1

α (α)) = R([1,w]). On the other hand,
TN−2
α (1− α) = RN−2

α (1− α) = [an + 1,w] > 1
an+1+α . So,

TN−1
α (1− α) = RN−1

α (1− α) = R([an + 1,w]) = R([1,w]) = TM+1
α (α).

�

From this theorem we obtain the result from Theorem 4.1.1 on the size of the set
of non-matching parameters. We use dimH(A) to denote the Hausdorff dimension of
a set A and let E denote the non-matching set, that is,

E = {α ∈ (0, 1) : Tα does not have the matching property}.

Proof of Theorem 4.1.1. We use known results on the exceptional set N of non-
matching parameters for Nakada’s α-continued fraction maps from (4.2). It is proven
in [CT12] and [KSS12] that λ(N ) = 0 and in [CT12, Theorem 1.2] that dimH(N ) = 1.
Since the bi-Lipschitz map x 7→ 1

1+x on (0, 1) preserves Lebesgue null sets and Haus-
dorff dimension, the same properties hold for the set E := 1

1+N . Note that Tα has
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matching for all α ∈ Ec, since according to Theorem 4.3.5 either α is in a matching
interval or it is of the form 1

1+a for some rational number a and then both α and 1−α
eventually get mapped to 1. Hence, E ⊆ E and it follows that λ(E) = 0.

Now consider E \ E . Let a ∈ N . By [KSS12, Section 4], this is equivalent to
Gn(a) ≥ a for all n ≥ 1. Let α := 1

1+a and write [1, a1, a2, . . .] for its regular continued
fraction expansion. Suppose there exists a minimal m ≥ 0 such that Tmα (α) ∈ Dc

α.
Then there exists a positive integer d such that

1

d+ 1
< Tmα (α) <

1

d+ α
.

By Lemma 4.3.2 the inequality implies in particular that for some j > 2

[aj , aj+1, . . .] < [a1, a2, . . .],

i.e., Gj−1(a) < a, which contradicts the assumption on a. Hence, T kα(α) 6∈ Dc
α

for all k ≥ 0. Since the regular continued fraction expansion of 1 − α is given by
1 − α = [a1 + 1, a2, . . .], the same conclusion holds for 1 − α, that is, T kα(α) 6∈ Dc

α

for all k ≥ 0. Hence, T kα(α) = Rk(α) and T kα(1 − α) = Rk(1 − α) for all k. Assume
that α 6∈ E , so there are positive integers M,N such that TMα (α) = TNα (1 − α). By
Remark 4.3.3 there is an odd index ` ≥ 1 and an even index k ≥ 2 such that

a`, a`+1, . . . = ak, ak+1, . . . .

Therefore α is ultimately periodic and thus a preimage of a quadratic irrational. This
implies that dimH(E \ E

)
= 0 and hence dimH(E) = 1. �

These matching results are the main reason for the existence of the nice geometric
versions of the natural extensions that we investigate in the next section.

§4.4 Natural extensions

For non-invertible dynamical systems, especially for continued fraction transforma-
tions, the natural extension is a very useful tool to obtain dynamical properties of the
system, see Definition 1.2.6. Canonical constructions of the natural extension were
first studied by Rohlin in [R61]. Based on these results it was shown in [S88, ST91]
that for infinite measure systems like Tα a natural extension always exists and that
any two natural extensions of the same system are necessarily isomorphic. Moreover,
many ergodic properties carry over from the natural extension to the original map.
The amount of information on the original system that can be gained from the nat-
ural extension, depends to a large extent on the version of the natural extension
one considers. For continued fraction maps, there is a canonical construction, de-
scribed in Section 1.9, that has led to many useful observations; see for example
[N81, K91, KSS12, AS13, H02]. It turns out that a similar construction also works
for the family {Tα}α∈(0,1).

In this section we construct a natural extension for the system (Iα,Bα, µα, Tα),
where Bα is the Borel σ−algebra on Iα and µα is the measure from Proposition 4.2.3.
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This natural extension is given by the dynamical system (Dα,B(Dα), να, Tα), where
Dα is some domain in R2 that needs to be determined, B(Dα) is the Borel σ-algebra
on Dα, να is the measure defined by

να(A) =

∫∫
A

1

(1 + xy)2
dλ2(x, y) for any A ∈ B(Dα), (4.14)

where λ2 is the two-dimensional Lebesgue measure, and Tα : Dα → Dα is given by

Tα(x, y) =

(
Tα(x),

ε1(x)

d1(x) + y

)
.

To prove that (Dα,B(Dα), να, Tα) is the natural extension of (Iα,Bα, µα, Tα) we need
to show that να is Tα-invariant and that all of the following properties hold να-almost
everywhere:

(ne1) Tα is invertible;

(ne2) the projection map π : Dα → Iα is measurable and surjective;

(ne3) π ◦ Tα = Tα ◦ π, where π is the projection onto the first coordinate;

(ne4)
∨∞
n=0 T nα π−1(Bα) = B(Dα), where

∨∞
n=0 T nα π−1(Bα) is the smallest σ-algebra

containing the σ-algebras T nα π−1(Bα) for all n ≥ 0.

The shape of Dα will depend on the orbits of α and 1 − α up to the moment of
matching. As might be imagined in light of Proposition 4.3.1 and Theorem 4.3.5, the
situation for 0 < α < 1

2 is simpler than for 1
2 < α < 1. We will provide a detailed

description and proof for 0 < α < 1
2 and list some analytical and numerical results

for 1
2 < α < 1.

§4.4.1 For α < 1
2

We claim that for α < 1
2 the domain of the natural extension is given by

Dα :=

[
α,

α

1− α

]
× [0,∞) ∪

(
α

1− α
, 1− α

]
× [0, 1] ∪

(
1− α, 1

]
× [−1, 1],

see Figure 4.2. Before we check (ne1)–(ne4), we introduce some notation. Partition
Dα according to the cylinder sets of Tα described in (4.6). Let

∆̃(−1, 2) = ∆(−1, 2)×(−1, 1), ∆̃(1, 1) =
(1

2
, 1−α

)
×(0, 1)∪

(
1−α, 1

1 + α

)
×(−1, 1),

and for (ε, d) /∈ {(1, 1), (−1, 2)},

∆̃(ε, d) =

{
∆(ε, d)× (0, 1), if ∆(ε, d) ⊆

[
α

1−α , 1− α
]
,

∆(ε, d)× (0,∞), if ∆(ε, d) ⊆
[
α, α

1−α
]
,
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and for the ε and d such that α
1−α ∈ ∆(ε, d),

∆̃L(ε, d) =
(

∆(ε, d)∩
[
α,

α

1− α

])
×(0,∞), ∆̃R(ε, d) =

(
∆(ε, d)∩

[ α

1− α
, 1
])
×(0, 1).

Due to the matching property described in Proposition 4.3.1 we have, up to a Lebesgue
measure zero set,

• Tα(∆̃(1, 1)) =
(
α, α

1−α
)
×
(

1
2 ,∞

)
∪
(

α
1−α , 1

)
×
(

1
2 , 1
)
,

•
⋃
d≥2 Tα(∆̃(−1, d)) = (1− α, 1)× (−1, 0),

•
⋃
d≥1 Tα(∆̃(1, d)) = (α, 1)× (0, 1),

where we have included the sets ∆̃L(ε, d) and ∆̃R(ε, d) in the appropriate union.
Hence, Tα is Lebesgue almost everywhere invertible, which gives (ne1).

α

1 − α 1

0

−1

1

∞

1
2

1
31

n

1
n−1+α

1
n−1

1
1+α

1
2+α

1/(n − 1)
−1/(n + 1)

α
1−α

. . .

α

α
1−α 1 − α

0

−1
1

1

∞

1
2

1
3

1
n+α

1
n

1
n−1+α

1
1+α

1
2+α

1/(n − 1)
−1/(n + 1)

. . .

α

α
1−α

1 − α

0

−1

1

1

∞

1/2
1/3

1/(n − 1)
−1/(n + 1)−1/n

α−1+nα
α

−1/3

. . .

. . .

(a) Dα (above) and Tα(Dα) (below)
for 1

n+α
< α < 1

n
, n ≥ 2

α

α
1−α

1 − α

0

−1
1

1

∞

1/2
1/3

1/(n − 1)
−1/(n + 1)

1−nα
α

−1/3

. . .

. . .

(b) Dα (above) and Tα(Dα) (below)
for 1

n+1
< α < 1

n+α
, n ≥ 2

Figure 4.2: The transformation Tα maps areas on the top to areas on the bottom with the
same colours, respectively.

The properties (ne2) and (ne3) follow immediately. Left to prove are (ne4) and
the fact that να is Tα-invariant. To prove that να is invariant for Tα, it suffices to
check that να(A) = να(T −1

α (A)) for any rectangle A = [a, b]× [c, d] ⊆ Tα(D) for any
D = ∆̃(ε, d), D = ∆̃L(ε, d) or D = ∆̃R(ε, d). This computation is very similar to
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the corresponding ones for natural extensions of other continued fraction maps that
can be found in literature, see e.g. [N81, Theorem 1]. We reproduce it here for the
convenience of the reader. For any such rectangle A we have on the one hand,

να(A) =

∫∫
A

1

(1 + xy)2
dλ2(x, y) =

∫
[c,d]

b

1 + by
− a

1 + ay
dλ(y)

= ln

(
1 + bd

1 + bc

)
− ln

(
1 + ad

1 + ac

)
= ln

(
1 + ac+ bd+ abcd

1 + bc+ ad+ abcd

)
.

If there is a k ≥ 1 such that π(D) ⊆ ∆(1, k), then

να
(
T −1
α (A)

)
=

∫∫
T −1
α (A)

1

(1 + xy)2
dλ2(x, y)

=

∫
[ 1
d−k,

1
c−k]

1

k + a+ y
− 1

k + b+ y
dλ(y)

= ln

(
k + a+ 1

c − k
k + a+ 1

d − k

)
− ln

(
k + b+ 1

c − k
k + b+ 1

d − k

)
= ln

(
1 + ac+ bd+ abcd

1 + bc+ ad+ abcd

)
.

If there is a k ≥ 2 such that π(D) ⊆ ∆(−1, k), then

να
(
T −1
α (A)

)
=

∫∫
T −1
α (A)

1

(1 + xy)2
dλ2(x, y)

=

∫
[−k− 1

c ,−k−
1
d ]

1

k − b+ y
− 1

k − a+ y
dλ(y)

= ln

(
k − b− k − 1

d

k − b− k − 1
c

)
− ln

(
k − a− k − 1

d

k − a− k − 1
c

)
= ln

(
1 + ac+ bd+ abcd

1 + bc+ ad+ abcd

)
.

In both cases να(A) = να(T −1
α (A)) proving that να is a Tα-invariant measure.

To prove that (ne4) holds, it is enough to show that
∨∞
n=0 T nα π−1(Bα) separates

points, i.e., that for λ2-almost all (x, y), (x′, y′) ∈ Dα with (x, y) 6= (x′, y′) there are
disjoint sets A,B ∈

∨∞
n=0 T nα π−1(Bα) with (x, y) ∈ A and (x′, y′) ∈ B. Since Bα is

separating, the property is clear if x 6= x′. Furthermore, note that for λ-almost all
values of y there is an ε and a d, such that on a neighbourhood of (x, y), the inverse
of Tα is given by

T −1
α (x, y) =

(
1

d+ εx
,
ε

y
− d
)
.

The map ε
y −d is expanding and T −1

α maps horizontal strips to vertical strips. Hence,
we can also separate points that agree on the x-coordinate, giving (ne4). Therefore,
we have obtained the following result.
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4.4.1 Theorem. Let α ∈
(
0, 1

2

)
. The dynamical system (Dα,B(Dα), να, Tα) is a

version of the natural extension of the dynamical system (Iα,Bα, µα, Tα) where µα :=

να ◦ π−1.

The measure µα = να◦π−1 is the unique invariant measure for Tα that is absolutely
continuous with respect to λ from Proposition 4.2.3. Projecting on the first coordinate
gives the following explicit expression for the density fα of µα:

fα(x) =
1

x
1[α, α

1−α ](x) +
1

1 + x
1[ α

1−α ,1](x) +
1

1− x
1[1−α,1](x)

=
1

x
1[α, α

1−α ](x) +
1

1 + x
1[ α

1−α ,1−α](x) +
2

1− x2
1[1−α,1](x).

(4.15)

Here, by “unique”, we of course mean unique up to scalar multiples. We choose to work
with the above expression, because it comes from projecting the canonical measure
(4.14) for the natural extension, and is thus a natural choice.

§4.4.2 For α ≥ 1
2

As indicated by Theorem 4.3.5 the situation for α ≥ 1
2 becomes increasingly complic-

ated. Figure 4.3 shows the natural extension domain Dα for α ∈
[

1
2 ,

1
2

√
2
)
with the

action of Tα and Table 4.1 provides the corresponding densities. We do not provide
further details as the proofs are exactly like the one for 0 < α < 1

2 .

α Density fα

[ 1
2 , g) 1

1−x1[1−α,α](x) + 1
x(1−x)1[α, 1−αα ](x) + x2+1

x(1−x2)1[ 1−α
α ,1](x)

[g, 2
3 )

(
1

1−x + 1
x+ 1

g−1

)
1[1−α, 2α−1

α ](x) + 1
1−x1[ 2α−1

α ,α](x)+

+
(

1
1−x + 1

x −
1

x+ 1
g

)
1[α, 2α−1

1−α ](x) + x2+1
x(1−x2)1[ 2α−1

1−α ,1](x)

[ 2
3 ,

1
2

√
2]

(
1

1−x + 1
x+ 1

g−1

)
1[1−α, 2α−1

α ](x) + 1
1−x1[ 2α−1

α ,α](x)+

+
(

1
1−x + 1

x −
1

x+ 1
g

)
1[α, 1−α

2α−1 ](x)+

+
(

1
1−x + 1

x+1 −
1

x+ 1
g

+ 1
x −

1
x+ 1

g+1

)
1[ 1−α

2α−1 ,1](x)

Table 4.1: Invariant densities for α ∈
[

1
2
, 1

2

√
2
]
.
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α1 − α 1
1+α

1
2

1−α
α

0

−1

1

∞

(a) α ∈ [ 1
2
, g)

α1 − α 3α−2
α−1

0

−1

− 1
2

− 1
3

1

∞

α

1 − α
1

1+α
2α−1
1−α

2α−1
α

1
2+α

1
2

0

−1

g − 1

1

∞

g

(b) α ∈ [g, 2
3
)

1 − α 5α−3
2α−1

2α−1
1−α

2α−1
α

0

−1

g − 1
− 1

2

1

∞

− 1
3

α

1 − α 1
1+α

1
2

1
3

1−α
2α−1

2α−1
α

0

−1

g − 1

g
1
g + 1

∞

(c) α ∈ [ 2
3
, 1

2

√
2)

α

1 − α 3−4α
1−α

1−α
2α−1

2α−1
α

−1

g

− 1
2

1
g + 1

∞

− 1
3

− 1
g+3

Figure 4.3: The maps Tα for various values of α. Areas on the left are mapped to areas on
the right with the same color.

As α increases even further, the domain Dα starts to exhibit a fractal structure.
Figure 4.4 shows numerical simulations for various values of α > 1

2

√
2.

§4.5 Entropy, wandering rate and isomorphisms

With an explicit expression for the density of µα at hand, we can compute several
dynamical quantities associated to the systems Tα. In this section we compute the
Krengel entropy, return sequence and wandering rate of Tα for a large part of the
parameter space (0, 1).

In [K67] Krengel extended the notion of metric entropy to infinite, measure pre-
serving and conservative systems (X,B, µ, T ) by considering the metric entropy on
finite measure induced systems. More precisely, if A is a sweep-out set for T with
µ(A) < ∞, TA the induced transformation of T on A and µA the restriction of µ to
A, then the Krengel entropy of T is defined to be

hKr,µ(T ) = µ(A)hµA(TA),
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(a) α ≈ 0.73694949 (b) α ≈ 0.79347519

(c) α ≈ 0.85019348 (d) α ≈ 0.89348572

(e) α ≈ 0.92087668 (f) α ≈ 0.95234649

Figure 4.4: Numerical simulations of Dα for α > 1
2

√
2.

where hµA(TA) is the metric entropy of the system (A,B∩A, TA, µA). Krengel proved
in [K67] that this quantity is independent of the choice of A. In [Z00, Theorem 6] it is
shown that if T is an AFN-map the Krengel entropy can be computed using Rohlin’s
formula:

hKr,µ(T ) =

∫
X

log(|T ′|)dµ. (4.16)

The following theorem follows from Lemma 4.2.2, (4.15) and Table 4.1.

4.5.1 Theorem. For any α ∈
(
0, g
]
the system (Iα,Bα, µα, Tα) has hKr,µα(Tα) =

π2

6 .

Proof. First fix α ∈
(
0, 1

2

)
. By Lemma 4.2.2 we can use formula (4.16) to compute

the Krengel entropy of Tα. For this computation we use some properties of the
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dilogarithm function, which is defined by

Li2(x) :=

∞∑
n=1

xn

n2
for |x| ≤ 1,

and satisfies (see [L81] for more information)

• Li2(0) = 0;

• Li2(−1) = −π2/12;

• Li2(x) + Li2(− x
1−x ) = − 1

2 log2(1− x).

Using the density from (4.15) and these three properties of Li2 we get∫
Iα

log(|T ′α|)dµα = −2

(∫ α
1−α

α

log x

x
dx+

∫ 1−α

α
1−α

log x

1 + x
dx+ 2

∫ 1

1−α

log x

1− x2
dx

)
= [− log2 x]

α
1−α
α − 2[Li2(−x) + log x log(x+ 1)]1−αα

1−α

− 2[Li2(1− x) + Li2(−x) + log x log(x+ 1)]11−α

= − log2
( α

1− α

)
+ log2(α) + 2 Li2

( −α
1− α

)
+ 2 log

( α

1− α

)
log
( 1

1− α

)
− 2 Li2(−1) + 2 Li2(α)

= log2(α)− log2
( α

1− α
)
− log2(1− α)− 2 log

( α

1− α
)

log(1− α) +
π2

6

= log2(α)− log2(α) + 2 log(α) log(1− α)− 2 log2(1− α)+

− 2 log(α) log(1− α) + 2 log2(1− α) +
π2

6

=
π2

6
.

A similar computation yields hKr,µα(Tα) = π2

6 for α ∈ [ 1
2 , g]. �

4.5.2 Remark. Numerical evidence using the densities from Table 4.1 suggests that
hKr,µα(Tα) = π2

6 for α ∈ (g, 1
2

√
2) as well. Even though we were not able to cal-

culate the Krengel entropy for α ∈ (g, 1
2

√
2) explicitly, we conjecture that in fact

hKr,µα(Tα) = π2

6 for all α ∈ (0, 1). This claim is supported by the fact that the
Krengel entropy for Nakada’s α-continued fraction maps Sα from (4.2) is π2

6 as well,
see [KSS12, Theorem 2].

The return sequence of Tα is the sequence (an(Tα))n≥1 of positive real numbers
satisfying (4.7). The pointwise dual ergodicity of each map Tα implies that such a
sequence, which is unique up to asymptotic equivalence, exists. The asymptotic type
of Tα corresponds to the family of all sequences asymptotically equivalent to some
positive multiple of (an(Tα))n≥1. The return sequence of a system is related to its
wandering rate, which quantifies how big the system is in relation to its subsets of
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finite measure. To be more precise, if (X,B, µ, T ) is a conservative, ergodic, measure
preserving system and A ∈ B a set of finite positive measure, then the wandering rate
of A with respect to T is the sequence (wn(A))n≥1 given by

wn(A) := µ

( n−1⋃
k=0

T−kA

)
.

It follows from [Z00, Theorem 2] that for each of the maps Tα there exists a positive
sequence (wn(Tα)) such that wn(Tα) ↑ ∞ and wn(Tα) ∼ wn(A) as n→∞ for all sets
A that have positive, finite measure and are bounded away from 1. The asymptotic
equivalence class of (wn(Tα)) defines the wandering rate of Tα. Using the machinery
from [Z00] and the explicit formula of the density we compute both the return sequence
and the wandering rate of the maps Tα.

4.5.3 Proposition. For all α ∈ (0, 1) there is a constant cα > 0 such that

wn(Tα) ∼ cα log n and an(Tα) ∼ n

cα log n
.

If α ∈ (0, 1
2

√
2), then cα = 1.

Proof. Using the Taylor expansion of the maps Tα, one sees that for x → 1 we have
Tα(x) = x− (x− 1)2 + o((x− 1)2). Hence, Tα admits what are called nice expansions
in [Z00]. For x ∈

(
1

1+α , 1
]
we can write fα(x) = x−2

x−1H(x), where the function
x 7→ x−2

x−1 corresponds to the map called G in [Z00, Theorem A]. It then follows by
[Z00, Theorems 3 and 4] that the wandering rate is

wn(Tα) ∼ cα log n (4.17)

and the return sequence is
an(Tα) ∼ n

cα log n
, (4.18)

for cα = limx↑1H(x). For α ∈
(
0, 1

2

√
2
)
the explicit formula for the densities from

(4.15) and Table 4.1 gives cα = 1. �

We have now established all parts of Theorem 4.1.2.

Proof of Theorem 4.1.2. The densities are given by (4.15) and listed in Table 4.1.
The entropy is given by Theorem 4.5.1 and the wandering rate and return sequence
in Proposition 4.5.3. �

4.5.4 Remark. (i) As in Remark 4.5.2 we suspect that in fact cα = 1 for all α ∈
(0, 1).

(ii) Since all the results from [Z00] apply to our family, we can use these to get an
even more detailed description of the ergodic behaviour of the maps Tα. We briefly
mention a few more results for α ∈ (0, 1/2

√
2]. Since the return sequence (an(Tα))n≥1
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is regularly varying with index 1, by [Z00, Theorem 5] and [A97, Corollary 3.7.3], we
have

log n

n

n−1∑
k=0

f ◦ T kα
µα−−→

∫
Iα

f dµα, for f ∈ L1(Iα,Bα, µα) and
∫
Iα

f dµα 6= 0. (4.19)

where the convergence is in measure since the regularly varying index 1 of the return
sequence (an(Tα))n≥1 turns the right hand side of the Darling-Kac Theorem into a
constant. In other words, a weak law of large numbers holds for Tα.

In addition, we can obtain asymptotics for the excursion times to the interval[
1

1+α , 1
]
, corresponding to the rightmost branch of Tα. Let Y be a sweep-out set,

TY the induced map on Y and ϕ : x 7→ min{n ≥ 1 : Tn(x) ∈ Y } the first return
map. Write ϕYn :=

∑n−1
k=0 ϕ◦T kY and note that the asymptotic inverse of the sequence

(an(Tα))n≥1 is (n log n)n≥1, so that the statement from (4.19) is equivalent to the
following dual:

1

n log n
ϕYn

µα−−→ 1

µα(Y )
.

If we induce on Y :=
[

min{α, 1− α}, 1
1+α

]
, then ϕYn sums the lengths (increased by

n) of the first n blocks of consecutive digits (ε, d) = (−1, 2), and we obtain

1

n log n
ϕYn −

1

log n

µα−−→ 1

µα(Y )
.

From Theorem 4.1.2, it follows that for α < 1
2 , µα(Y ) = log(2 + α). Note that for α

decreasing the right hand side is increasing, meaning we spend on average more time
in ∆(−1, 2). Intuitively, for a smaller α, every time we enter ∆(−1, 2) we are closer
to the indifferent fixed point, and it takes longer before we manage to escape from it.

Note that the Krengel entropy, return sequence and wandering rate we found
do not display any dependence on α. These quantities give isomorphism invariants
for dynamical systems with infinite invariant measures. Two measure preserving dy-
namical systems (X,B, µ, T ) and (Y, C, ν, S) on σ-finite measure spaces are called
c-isomorphic for c ∈ (0,∞] if there are sets N ∈ B, M ∈ C with µ(N) = 0 = ν(M)

and T (X \N) ⊆ X \N and S(Y \M) ⊆ Y \M and if there is a map φ : X \N → Y \M
that is invertible, bi-measurable and satisfies φ ◦ T = S ◦ φ and µ ◦ φ−1 = c · ν. In-
variants for c-isomorphisms are the asymptotic proportionality classes of the return
sequence (see [A97, Propositions 3.7.1 and 3.3.2] and [Z00, Remark 8]) and the norm-
alised wandering rates, which combine the Krengel entropy with the wandering rates
(see e.g. [T83, Z00]). It follows from Theorem 4.1.2 that all these quantities are equal
for all Tα, α ∈ (0, 1

2

√
2). Using the idea from [K14], however, we find many pairs

α and α′ such that Tα and Tα′ are not c-isomorphic for any c ∈ (0,∞]. Consider
for example any α ∈

(√
2 − 1, 1

2

)
, so that α ∈

(
1

2+α ,
1
2

)
, and any α′ ∈

(
1
3 ,

3−
√

5
2

)
, so

that Tα′(α′) > 1 − α′, see Figure 4.5. For a contradiction, suppose that there is a
c-isomorphism φ : Iα → Iα′ for some c ∈ (0,∞]. Let J = [α, 1 − α] and note that
any x ∈ J has precisely one pre-image under Tα. Since φ ◦ Tα = Tα′ ◦ φ and φ is
invertible, any element of the set φ(J) must also have precisely one pre-image. Since
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Tα′(α
′) > 1 − α′, there are no such points, so µα′(φ(J)) = 0. On the other hand,

since J is bounded away from 1, it follows that 0 < µα(J) <∞. Hence, there can be
no c, such that µα′ ◦φ−1 = c ·µα. Obviously a similar argument holds for many other
combinations of α and α′, even for α > 1

2 , and in case the argument does not work
for Tα and Tα′ , one can also consider iterates Tnα , Tnα′ . Hence, even though the above
discussed isomorphism invariants are equal for all α ∈

(
0, 1

2

)
, it is not generally the

case that any two maps Tα are c-isomorphic. We conjecture that for almost all pairs
(α, α′), the maps Tα and Tα′ are not c-isomorphic.

α α′ 1

1− α
Tα(α)

(a) α ∈
(√

2− 1, 1
2

) α′ 1

1− α′

Tα′(α
′)

(b) α′ ∈
(

1
3
, 3−
√

5
2

)

Figure 4.5: Maps Tα and Tα′ that are not c-isomorphic for any c ∈ (0,∞].

§4.6 Remarks

1. The theory of piecewise affine interval maps is richer than the one available
for smooth transformations. This is in part due to the fact that the former
present a piecewise constant derivatives, leading for instance to a convenient
representation of the Perron-Frobenius operator. However, for the specific case
of flipped α-continued fraction maps, the contrary is true. Indeed, as remarked
at the end of Chapter 2, the c-Lüroth map T1,α can be seen as a linearisation of
the flipped α-continued fraction map Tα for α ∈ (0, 1

2 ). While the density, of the
absolutely continuous invariant measure, is explicitely given for Tα in Theorem
4.1.2 as a piecewise smooth function, for T1,α we only know from [K90] that the
density is a step function, and from Corollary 2.4.13 we can deduce that it is
defined on a finite partition for rational parameters α and on a countable one
for irrationals.

2. The consequences of matching on the structure of the density of an absolutely
continuous invariant measure are given in [BCMP18, Theorem 1.2] for piecewise
affine (or smooth) interval maps admitting a probability measure. This chapter
provides an analogous result for a specific class of continued fraction maps with
a σ-finite infinite invariant measure. In Chapter 5, we extend the notion of
matching and explore its consequences for random interval maps.
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