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CHAPTER

Random c-Liiroth Expansions

This chapter is based on: [KM21].

Abstract

We introduce a family of random c-Liiroth transformations {Lc}.cpo, 11, obtained by
randomly combining the standard and alternating Liiroth maps with probabilities p
and 1 —p, 0 < p < 1. We prove that the pseudo-skew product map L. produces
for each ¢ < % and for Lebesgue almost all 2 € [c,1] uncountably many different
generalised Liiroth expansions that can be investigated simultaneously. Moreover,
for ¢ = %, for some ¢ € N>3 U {oo}, Lebesgue almost all  have uncountably many
universal generalised Liiroth expansions with digits less than or equal to ¢. For ¢ = 0
we show that typically the speed of convergence to an irrational number z, of the
sequence of Liiroth approximants generated by Lg, is equal to that of the standard
Liiroth approximants; and that the quality of the approximation coefficients depends
on p and varies continuously between the values for the alternating and the standard
Liiroth map. Furthermore, we show that for each ¢ € Q the map L. admits a Markov
partition. For specific values of ¢ > 0, we compute the density of the stationary
measure and we use it to study the typical speed of convergence of the approximants
and the digit frequencies.



CHAPTER 2

2. Random c-Liiroth Expansions

§2.1 Motivation and context

In 1883 Liiroth showed in [L83] that each x € [0, 1] can be expressed in the form

1 1 " 1

m>1

where d,,, € N> U {oc} for each m (and with L = 0). Such expressions are now
called Liiroth expansions. By considering the numbers

n

P _ Tl
qj'*z(dmfl)gdj(dj—l)’ n>1, (2.2)

m=1

one obtains a sequence of rationals converging to the number x, making Liiroth ex-
pansions suitable for finding rational approximations of irrational numbers. Since
their introduction in 1883 much research has been done on the approximation prop-
erties of Liiroth expansions from various perspectives. In this article we address these
questions by adopting a random dynamical systems approach. It turns out that this
yields for each z many different number expansions similar to the Liiroth expansion
from , without compromising the quality of approximation. Before we state our
results, we first give a brief summary of a selection of the known results.

A Liiroth expansion is called ultimately periodic if there exist n > 0 and r > 1
such that dp,4; = dpyrq; for all j > 1 (and periodic if n = 0). One of the most basic
results on Liiroth expansions, obtained in [L8&3], is on periodicity.

2.1.1 Theorem (page 416, [L83||). A real number x € (0,1) has an ultimately
periodic Liiroth expansion if and only if © € Q.

Many other properties of Liiroth expansions were obtained using a dynamical system.
Liiroth expansions can be obtained dynamically by iterating the Liiroth transforma-
tion Ty, : [0,1] — [0,1] given by T1(0) =0, T1(1) = 1 and

- (- (1))

for  # 0,1, where [2] denotes the smallest integer not less than x. See Figure a)
for the graph.

The digits d,,, n > 1, are obtained by setting d,(z) = k if T} (2) € (2 725)
k> 2, dy(z) =2if T} '(x) = 1 and d,(z) = oo if T} '(z) = 0. Hence, the map
Ty, produces for each x € [0,1] a Liiroth expansion as in (2.1). From the graph of
Ty, one sees immediately that Lebesgue almost all numbers z € [0,1] have a unique
Liiroth expansion and if x does not have a unique expansion, then it has exactly two
different ones, one with d,, = d and d,,; = oo and one with d, = d+1 and d,,4; = 2

for some n,d and all j > 1. This holds for any number z € [0, 1] for which there is an
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§2.1. Motivation and context
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Figure 2.1: The standard and the alternating Liroth maps in (a) and (b), respectively.

n > 1 such that 77 (x) = 0. By identifying these two expansions we can speak of the
unique Liiroth expansion of any number z € [0, 1].

From the dynamics of T, we get information on the digit frequencies in Liiroth
expansions. The map T is measure preserving and ergodic with respect to the
Lebesgue measure A on [0,1]. It is then a straightforward application of Birkhoff’s
Ergodic Theorem that, in the Liiroth expansion of Lebesgue almost every x, the
frequency of the digit d equals ﬁ, which corresponds to the length of the interval

[%, ﬁ) It was proven by Salat in [S68] that for any D > 2 the set of points
€ (0,1) for which all Liiroth expansion digits are bounded by D has Hausdorff
dimension < 1 with the dimension approaching 1 as D — oo. The articles [S68],

[BBDK94, [BI0Y, [SF11l [CWZ13, MT13], [SEM17| all consider Liiroth expansions with

certain restrictions on the digits d,,.

The quality of approximation by Liiroth expansions depends on the approzimants
or convergents 22 given in (2-2). In [BIOY] the authors give a multifractal analysis of
the speed with which the sequence (Z—:)n converges to the corresponding x using the
Lyapunov exponent. The Lyapunov exponent of Ty, at = € (0, 1) is defined by

n—1
1
Ap(x) = lim —log [T [TL(TE ()],
k=0

whenever this limit exists. It follows from another application of Birkhoff’s Ergodic
Theorem that for M-a.e. z € (0,1),

_ - log(d(d - 1))
A(z)f; R

One of the results from |BI09|, which we mention here for further reference, is the
following.
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CHAPTER 2

2. Random c-Liiroth Expansions

2.1.2 Theorem (|BI09]). For A-a.e. z € (0,1),

_ = log(d(d - 1))
== did—1)

1 n
lim flog‘xf b
q

n—o00 N n =

Moreover, the range of possible values of this rate is (—oo, —log 2].

Another way to express the quality of the approximations is via the limiting be-
haviour of the approzimation coefficients

Pn
r — —

0L (z) == qn
(z) 0

: (2.3)

where ¢, = d, H;:ll d;(d; — 1). In [DK96] the authors proved the following result.

2.1.3 Theorem (Theorem 2, [DK96]). For \-a.e. xz € [0,1] and for every z €
(0,1] the limit

. #HI<G<SN:0F(x) <z}
lim

N—o00 N
exists and equals
L4 z 1
Fr(z):= -+ . 2.4

We refer to e.g. [SYZ14l [V14l [G16] IGL16l [ZC16] [S17, LCTW18| [SX18|, TW18] for
results on other properties of Liiroth expansions.

In [BBDK94] the authors placed the map 77, in the larger framework of generalised
Liiroth series transformations (GLS). A GLS transformation is a piecewise affine onto
map Tp. : [0,1] — [0,1] given by an at most countable interval partition P on
[0,1] and a vector € = (£,), € {0,1}#7 specifying for each partition element the
orientation of T . on that interval. The Liiroth transformation can be obtained by
taking the partition Py, = {[%, ﬁ) }n22 and orientation vector € = (0),,>1, i.e., all
branches are orientation preserving. In [BBDK94| the authors considered all GLS
transformations T'p, . with partition Pr. Besides the Liiroth transformation, another
specific instance of this family is the alternating Liroth map T4 : [0,1] — [0, 1] given
by Ta(z) = 1 —Tr(x), see Figure 2.I|(b), which has ¢ = (1)n>1, so that all branches
orientation reversing. Similar to the Liiroth expansion from 7 iterations of any
GLS transformation Tp, . yield number expansions for z € [0, 1] of the form

i n—1 _. dn — 1 + Sn
p= Y (-D)Tim st (2.5)
; Hi:l di(d; — 1)

where s, € {0,1} and d,, > 2, called generalised Liiroth expansions. Here we let
S . si = 0. For each map Tp, . the authors of [BBDK94| considered the approx-
imation coefficients §72¢ and the corresponding distribution function Fp, . and they
found the following.

32



§2.1. Motivation and context

2.1.4 Theorem (Theorem 4, [BBDK94|). The distribution function of 07 for
the map Ty is given for 0 < z <1 by

For any GLS transformation Tp, . it holds that
FASFPL,E SFLM

Furthermore, the first moments of Fr, and Fa are given respectively by

2 1 2
ML::/ 1—FLd/\:®—f and MA;:/ 1—FAdA:1—@,
[0,1] 2 2 [0,1] 2

where ((2) is the zeta function evaluated at 2.

The authors of [BBDK94| remark that they suspect that the set of values that the
limit lim,, o % o QZDL’E can take is a fractal subset of the interval [M 4, M}]. Other

results on the map T4 can be found e.g. in [KKK90, [KKK91]. For results on different
families of GLS transformations, see e.g. [KMS11l, M11l, [CWY14l [CW14].

In this chapter we adopt a random approach to Liiroth expansions. We introduce a
family of random Liiroth systems {L¢p}.cpo, 11.0<p<1 that are obtained from randomly
combining the maps Ty, and T4. The parameter c is the cutting point, that defines
the interval [c, 1] on which each L., is defined. More precisely, we overlap T}, and
T4 on the interval [c, 1] and remove from both maps the pieces that map points into
[0,¢). The parameter p reflects the probability with which we apply the map 77,. To
be precise, let Ty := Tp, and T} := T4 and let o denote the left shift on sequences.
Then the random c-Liiroth transformation L., : {0, 1} x [¢, 1] = {0, 1} x [¢, 1] is
defined by

chp(LU,l‘) = (U(w)’TM (I)l[gl] (Twl (ZZZ)) + Tl—wl (I)1[07c) (Twl (I)))

By iteration, each map L., produces for each pair (w,z) a generalised Liiroth expan-
sion for x as in . So for typical = € [¢, 1] multiple generalised Liiroth expansions
of the form are obtained. If ¢ = 0 the corresponding random Liiroth expansions
have digits in the set N>o U {oo}, but for ¢ > 0 the available set of digits is bounded
from above. This makes the two cases inherently different. We summarise our main
results in the following three theorems.

1 Theorem. Letc € [O, %]

(i) If x € [¢,1] \ Q, then no generalised Liroth expansion of x produced by L., is
ultimately periodic.

(i) If x € [c,1] N Q then, depending on the values of x and c, the map L., can
produce any of the following number of different generalised Liiroth expansions:
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CHAPTER 2

2. Random c-Liiroth Expansions

— @ unique expansion,
— a finite or countable number of ultimately periodic expansions,

— countably many ultimately periodic expansions and uncountably many ex-
pansions that are not ultimately periodic.

We also give a characterisation on when each of these cases occurs. This result does
not depend on the value of p. The following results further explore the properties of the
produced generalised Liiroth expansions in case ¢ = 0 and ¢ > 0. Note that generalised
Liiroth expansions are given by a sequence of pairs ((s,,d,)), with s, € {0,1} and
dy, > 2, rather than just the sequence (d,,),. We call a generalised Liiroth expansion
generated by a map L., universal if any possible block of digits (s1,d1), ..., (sn,dn)
of any length n from the alphabet associated to L., occurs in the expansion.

2 Theorem. Letc=0and0<p<1.

(i) The map Lo, generates for Lebesgue almost every x € [0,1] uncountably many
universal generalised Liiroth expansions.

(i) The speed of convergence of the sequence (%)n to x for any generalised Liiroth

expansion produced by Ly , typically satisfies

1 Pn o log(d(d — 1))
lim —log|z — 2| =Y 22—/
Jm o= = =3

and the range of possible values of this rate is (—oo, —log2]. In particular, this
rate does mot depend on p.

(i11) Typically the approximation coefficients generated by Lo, satisfy

1, A -3 2-(2)
lim =) 60,7 =
noo 1 ; Gy T
where ((2) is the zeta function evaluated at 2. In particular, this limit can attain
any value in the interval [M, M1].

The result in (ii) is given by considering the Lyapunov exponent of the random system
Lo, as was done for Theorem @ We see that the speed of convergence is not
compromised by adding randomness to the system. For (iii) we note that instead of
a fractal set inside [M4, M| we can obtain the full interval by adding randomness.

3 Theorem. Letc>0and0<p<1.

(i) If 0 < ¢ < %, then the map L., generates for every irrational x € [c,1] un-
countably many different generalised Liiroth expansions.

(i) If ¢ = % for some £ € Nxg3, then L., generates for every irrational € [c,1]
uncountably many universal generalised Liiroth erpansions.
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§2.2. Random c-Liiroth transformations

Note that results corresponding to (ii) and (iii) from Theorem [2]in case ¢ > 0 are

missing. For ¢ > 0 the speed of convergence of the sequence (’;—")n is still governed

by the Lyapunov exponent of the map L. ,, but this is not so e;isily computed. For
¢ =0 we are in the lucky circumstance that m, x X is an invariant measure for Lo,
where m,, is the (p,1 — p)-Bernoulli measure on {0,1}" and X is the one-dimensional
Lebesgue measure. General results give the existence of an invariant measure of the
form my, X pp . where p, . < X. In most cases the random systems L., satisfy the
conditions from Theorem which gives an expression for the density % in
individual cases. In the last section we discuss some values of ¢ for which we can de-
termine a nice formula for this density. We then get a result similar to Theorem [2{ii)

and compute the frequency of the digits d in the generalised Liiroth expansions.

The chapter is organised as follows. In Section we describe how to obtain gen-
eralised Liiroth expansions from the random maps L., and we characterise numbers
with ultimately periodic expansions. Here we prove Theorem [I] Section [2:3]is dedic-
ated to the case ¢ = 0. Theorem [{(i) is proved in Proposition [2.3.1] part (ii) is covered
by Propositionand part (iii) is done in Proposition In Sectionwe focus
on ¢ > 0. Theorem [3| corresponds to the content of Theorem [2:4.3]and Theorem [2.4.7]
Proposition contains the result that L., admits a Markov partition for any
céE (0, %] NQ and is followed by various examples in which we explicitly compute the
density of the measure ji., and in some cases also the typical speed of convergence of
the convergents p—: as well as the frequency of the digits. The last section stresses the
need for computable procedures for obtaining the densities for absolutely continuous
invariant measures of random interval maps and reveals links with all the remaining
chapters of the dissertation.

§2.2 Random c-Liiroth transformations

In this section we introduce the family {Lcp}ecpo,1)0<p<1 Of random (c, p)-Liiroth
transformations and show how these maps produce generalised Liiroth expansions for
all z € [c,1]. Since the probability p does not play a role in this section, we drop the
subscript for now and refer to the map L. as the random c-Liiroth transformation
instead. First recall some notation for sequences. Let A be an at most countable set
of symbols, called alphabet. Let o : AN — AN denote the left shift on sequences, so
for a sequence a = (a;);>1 € AY we have o(a) = o/, where a, = a; 41 for all i. (With
slight abuse of notation we will always use o to denote the left shift on sequences,
regardless of the underlying alphabet.) For a finite string @ = a1 ...a; € A* and
1 <n <k or an infinite sequence a = (an)p>1 € AN and n > 1 we denote by a} the
initial part af = as - - - a,. We call a sequence a = (a;);>1 ultimately periodic if there
exist an n > 0 and an 7 > 1 such that a,4; = apyryj for all j > 1 and periodic if
n = 0. Finally, we denote cylinder sets in AY using square brackets, i.e.,

[bi,....,bp) ={ac AN : a; =b;, forall 1 <j < k}.
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CHAPTER 2

2. Random c-Liiroth Expansions

For c€[0,3] and n > 1 let z, = &

n7
2t = zn +eznzno1 and  z, = 2, — CZnZnil- (2.6)

Then z, < zF <2z, ; < z,_1. Define

Ta(z), itz {0}U U [zm =),
TO,c(x) — no:o2
Tr(z), ifze{l}u L:JZ[z,f,zn_l),

and

Tu(z), ifze{0}U U [zm ],
TLC(x) = n;Q
Tp(z), ifze{l}uU L_Jg(z;_l,zn,l).

As can be seen from Figure the interval [c, 1] is an attractor for the dynamics
of both Ty . and Ty ., so we choose [c,1] as their domains. Note that Ty, and T3 .
assume the same values on the intervals [z, 2,;7) and (z;, , 2,] and differ on [z}, 2, 4]
for n > 1. We denote the union of the subintervals on which Ty . and 77 . assume
different values by S, i.e.,

S=le1]N U [2F, 2 1], (2.7)

n>1

and call this the switch region. For ¢ = 0 we see that S = (0,1] \ {z, : n > 1} and
Too =T and T1,o = T4 except for the points z, where Tp o(2y,) = T1,0(2z,) = 1. We
combine these two maps to make a random dynamical system by defining the random
c-Liiroth transformation L. : {0,1} x [¢,1] — {0,1} x [¢, 1] by

Le(w, 2) = (0(w), To, o())-

See Figure c), for an example with ¢ = 1

L
1 1 1
1 1
4 4
0 11 1 1 0 11 1 1 i1 1 1
43 2 43 2 4 3 2
) T 4 ®) T, (©) Ly

Figure 2.2: The maps To,%’ T1,%: and the random c-Liiroth map Li on [i,

1].
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§2.2. Random c-Liiroth transformations

To denote the orbit along a specific path w € {0, 1}N we use the following notation.
For a finite string w € {0, 1}’c and 0 <n <k, let

Tw,c = ka,coTw O- - ’OTwl,c~ (28)

k—1,C n—1,C

o---oT,, . and T:}’C =Tup e =T, 0Ty
Similarly, for an infinite path w € {0,1} and n > 1 we let
T e=Tore=To,c0Tw, 1c0 0Ty e (2.9)

For any w we also set T‘S’C = ng’,c = id. Note that we have defined Ty . and 77 . in
such a way that T} .(z) # 0 for any j, ¢, z. With this notation we can obtain c-Liiroth
expansions of points in [c, 1] by defining for each (w, ) € {0, 1} x [¢, 1] two sequences
(8:)i>1 (the signs) and (d;);>1 (the digits) as follows. For (w,z) € {0, 1} x [¢, 1] set
for ¢ > 0 and for ¢ > 1,

 awa) = 0, if LY (w,x) € [0] x SU{0,1}N x (Uy (2, 20) U{1}),
A B if LY (w, 2) € [1] x SU{0,1}¥ x (U, [2n, z7) U {0}).

For ¢ =0, set s; = w; for each i. For ¢ > 0,  # 0 and for ¢ > 1 set

2, TS MNx)=1,
n, if T MNz) € [zn, 20-1), n > 2.

di = di(w,x) = {

Then one can write for  # 0 and each i > 1 that
T, (z) = (=1)*ds(d; — )T Hz) + (=1)% T (di — 1+ s5).

By inversion and iteration we obtain what we call the ¢-Liroth expansion of (w,x):

= ;(—1)2?;1 5:(w,0) Hiﬁ@;é)}m)l( ;(Zz(; i)l)’ 210

where 2?21 si(w,z) = 0 and the sum converges since d; > 2 and T}, .(z) € (0,1] for
all w,z,i. Note that this expansion of x is of the form ({2.5)), i.e., it is a generalised
Liiroth expansion.

2.2.1 Remark. (i) Due to the fact that Tj .(x) # 0 for all j,c and = # 0, the maps
L. do not produce finite generalised Liiroth expansions. That is, L. assigns to each
(w, ) an infinite sequence ((s,(w, ), d,(w,x))), with s, € {0,1} and d,, > 2.

(ii) As an immediate consequence of the above, we see that for each D > 2 every
z € [, 1] has a generalised Liiroth expansion that only uses digits d,, < D and that
is generated by any random c-Liiroth system with ¢ > %. This is in contrast to the
deterministic case, where by the result of Salat in [S68| for any D the set of points x
that has D as an upper bound for the Liiroth digits has Hausdorff dimension strictly
less than 1.

(iii) If z € S and = ¢ {23(”7;11) :n > 1} (so Tp(x) # Ta(z)), then da(w,z) = 2

for all w with T,,, (x) > T1—u, (z) and da(w,x) > 2 otherwise. For ¢ = 0 this implies,
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since (sp)p>1 = (Wn)n>1 and S = (0,1] \ {1 : n > 1}, that Lebesgue almost all
z € [0, 1] have uncountably many different random Liiroth expansions. In Section
we see that a similar statement holds for ¢ > 0 and we get that most points even have
uncountably many different generalised Liiroth expansions with all d,, < D.

Similar to the deterministic case, we call a ¢-Liiroth expansion of (w, z) (ultimately)
periodic if the corresponding sequence ((s;,d;))i>1 is (ultimately) periodic. From the
expression it is clear that the c-Liiroth expansion of (w, x) is ultimately periodic
if and only if there are n > 0 and r > 1 such that

T (x) = T i (),
for all 5 > 0, implying that = € Q. We define the following weaker notion.

2.2.2 Definition (Returning points). Let c € [0, 3]. We call a number z € [c, 1]
returning for L. if for every w € {0,1}" there exist an n = n(w) > 0 and an r =
r(w) > 1 such that T7 .(z) = T}t ().

2.2.3 Lemma. Letc e [O, %] If t € QN e, 1], then x is a returning point for L.
Hence, the set of returning points is dense in [c,1].

Proof. Let % be the reduced rational representing x, for N,Q € N. Then for any
w € {0,1}" and any ¢ € N there exist a,b € Z such that T}, (z) = a% +b € [c1].
This implies that aN +bQ € {0,1,...,Q}. It then follows by Dirichlet’s Box Principle
that for some n € N there exists an 7 > 1 such that T, .(z) = T2 " (x). O

Contrarily to the deterministic case, the fact that there are n,r with 77 .(z) =
Tt () does not necessarily imply that T/ (z) = T35 (z) for all j > 0, since
one can make a different choice when arriving at a point in S for the second time. To
characterise the ultimately periodic c¢-Liiroth expansions we define loops.

2.2.4 Definition (Loop). A string u of symbols in {0,1} is called a loop for z €
[c, 1] at the point y € [c, 1] if there exist w € {0,1}N and n =n(w) >0, r = r(w) > 1
such that

wifi =u, T (0) =y=T;7"(z) and TjH(x)#y forl<j<r (211)
We say that x admits the loop u at y.

For each z,y € [¢,1] we define an equivalence relation on the collection of loops
{u} of z at y by setting u; ~ uy if the corresponding paths wy,ws € {0, 1} satisfying
(2.11) both assign the same strings of signs and digits, i.e., if

(s(wn, @), d(wr, 2))re) 1 = (s(wa, @), d(wa, 2)) )1, (2.12)

where 7 = r(w1) = r(w2). We need this definition since for « € [¢, 1]\ S, T,, () is
independent of the choice of w € {0,1}, i.e., Ty (z) = T o(x) and the corresponding
sign and digit only depend on the position of x, and not on w. As a consequence, it
is necessary that 17 .(z) € S for some w € {0,1}" and n > 0, to have more than one
loop (that is, more than one equivalence class).
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§2.2. Random c-Liiroth transformations

2.2.5 Proposition. Letc e [0, %] and z € QN e, 1].

(i) Suppose that there exists an w € {0, 1} such that T} .(x) ¢ S for all n > 0.
Then x has a unique and ultimately periodic c-Liiroth expansion.

(ii) Suppose that for eachy € [c, 1] the point x admits at most one loop aty. Then all
c-Liiroth expansions of x are ultimately periodic, so there are at most countably
many of them.

(iii) Suppose there is a y € [c, 1], such that x admits at least two loops uy ~ uy at
y. Then x has uncountably many c-Liiroth expansions that are mot ultimately
periodic, and countably many ultimately periodic c-Liiroth expansions.

Proof. For (i) note that if there exists an w € {0,1}" such that T} (x) ¢ S for
all n > 0, then T .(v) is independent of the choice of w for any n > 0 and any
path w € {0,1}" yields the same c-Liiroth expansion. The result then follows from

Lemma 2.2.3

For (ii) suppose by contradiction that there exists an w € {0, 1} such that (w,z)
presents a c-Liiroth expansion that is not ultimately periodic. Since z € Q, the set
{T} .(w)}n>0 consists of finitely many points, and so, in particular, there exists a
point y = T7 .(x) for some j > 0, that is visited infinitely often. Let {j;}ien be the
sequence such that ngc = y for every j;. Since (w,z) does not have an ultimately
periodic expansion, there exists a k such that

(8(w7 JJ), d(w7 x));i_ﬂrl 7& (S(wv J?), d(wv x));’:illa
which means in particular that the loops wg’;il 41 and wj]’:fl are not in the same
equivalence class, contradicting the assumption on the number of admissible loops at
y. The second part follows since the sequence ((s,(w,z),d,(w,x))), takes its digits
in an at most countable alphabet.

For (iii) let u; and uy be two loops of x at y with u; ~ uy. Consider w € {0, 1}
satisfying (2.11)), i.e., such that

wplt =wy, and T (x) = T3 (2) = v,

for some n,r € N. Now take any sequence (;);>1 € NN and consider the path
@ € {0,1}" defined by the concatenation

@ = wluuzuPudiulul ..
If (¢;) is not ultimately periodic, then it is guaranteed by that the sequence
(si(@,x),d;(@, ))ien is not ultimately periodic and as a result (w,x) presents a c-
Liiroth expansion that is not ultimately periodic. Since there are uncountably many
such sequences (¢;) each yielding a different corresponding sequence of signs and digits,
the first part of the statement follows. Taking any ultimately periodic sequence (¢;)
instead will yield an ultimately periodic c-Liiroth expansion. O
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2.2.6 Proposition. Letce€ [0,3]. Ifz € [¢,1]\ Q, then any c-Liiroth expansion of
x is infinite and not ultimately periodic.

Proof. Let x € [c,1]\Q be given and assume that there exists an w € {0, 1}" such that
the corresponding c-Liiroth expansion of (w, ) is ultimately periodic. Then there is
an n > 0 and an 7 > 1 such that T .(z) = T " (x). Hence, there are a,b,c,d € 7Z
such that az 4+ b = cx + d, implying that = € Q, contradicting the choice of x. g

2.2.7 Example. To illustrate Proposition [2.2.5] we give an example of the various
possibilities for periodicity of expansions of rational numbers. Let ¢ = % and first
consider the rational number % See Figure ﬁ(a) for the random map L% with the
possible orbits of g. Figure b) is a visualisation of the random orbits of g. We
explicitly identify paths w € {0, 1}" that produce c-Liiroth expansions of g that are

periodic, ultimately periodic and not ultimately periodic and list them in Table

1
7,
e
______ . 1
I 7l
N . (v
I f-- 6 5 3
T a4 7 7> %
1,70\ :
A
A ! : 1
0 ! \ 0
AR | 4
1 =
0 1 ! : 7
1 314 5 6 1
3 7 7 7 7

() (b)
Figure 2.3: The random Liroth map L. for c = % with the random orbits of% n red in (a)
and another visualisation of the orbits ofg in (b). The digits with the arrows indicate which
one of the maps To,. or Ti . is applied. If there is no digit, then both maps yield the same
orbit point.

w Expansion of g

(011)= ((0,2), (1,2)?)* is periodic

001*° ((0,2)2,(1,3)%°) is ultimately periodic

0%210%1204130%1% ... | ((0,2)2,(1,3),(0,3),(1,2),(0,2)2,(1,3)2,(0,3),(1,2),...)
is not ultimately periodic

Table 2.1: Examples of w’s and the corresponding type of the c-Liiroth expansions.

For the point 2 it holds that for any w € {0, 1}, Tf}’c(%) =1 and T:}’C(%) =1 for
any n > 2. Hence, % has precisely two c-Liiroth expansions (for any ¢) that are given
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by the sequences
((0,2),(1,2),(0,2)®) and  ((1,2)%(0,2)).

Hence in case (ii) of Proposition there are rational x that have only a finite
number of ultimately periodic expansions and we cannot improve on the statement
without giving a further description of the specific positions of the random orbit
points.

2.2.8 Remark. Lemma gives a further bound on the number of admissible
digits (dy)nen in the c-Liiroth expansions of a rational number xz. More precisely, if
¢ = 0, any c-Liiroth expansion of z = % € QNJ0,1] has at most @+ 1 different digits.
Differently, by Proposition [2:2.6] for irrational numbers the set of admissible digits is
N>3. Note that for H% <ec< %, the bound is given by the minimum between the
previous quantities and £.

The proof of Theorem [I] is now given by Proposition 2:2.5] and Proposition [2.2.6]

§2.3 Approximations of irrationals

The approximation properties of generalised c-Liiroth expansions can be studied via
the dynamical properties of the associated random system. For this one needs to have
an accurate description of an invariant measure for the random system. Let 0 < p < 1.
The vector (p,1 — p) represents the probabilities with which we apply the maps Tp .
and 11 . respectively. One easily checks that the probability measure m, x A, where
m,, is the (p, 1—p)-Bernoulli measure on {0, 1} and X is the one-dimensional Lebesgue
measure on [0,1] is invariant and ergodic for Ly. Therefore, in this section we focus
on ¢ = 0, fix a p and drop the subscripts ¢, p, so we write L = Lo ,. We first prove
a result on the number of different generalised Liiroth expansions that L produces
for Lebesgue almost all 2 € [0, 1] and then investigate two ways of quantifying the
approximation properties of all these expansions.

§2.3.1 Universal generalised Liiroth expansions

The random dynamical system L = Lg, is capable of producing for each number
x € [0, 1] essentially all expansions generated by all the members of the family of GLS
transformations studied in [BBDK94], i.e., GLS transformations with standard Liiroth
partition, given by Pr = {[%7 ﬁ) }n>2. In the previous section we mentioned that
Lebesgue almost every x has uncountably many different 0-Liiroth expansions and
thus uncountably many different generalised Liiroth expansions. Here we prove an

even stronger statement.

Let A = {(s,d) : s € {0,1}, d € N>3} be the alphabet of possible digits for
generalised Liiroth expansions and for any (s,d) € A, set

As, d) = [s] x E ﬁ}
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for the cylinder set [s] € {0,1}" and the interval [5, 71| € [0,1]. Then m, x

1
d’
)\( (s,d)) = % > 0. Take any sequence ((s,,dy)), € A" that does not end
n ((0,d 4+ 1),(0,2)°°) for some d > 2. The set

lim A(sy,di) N L7 A(s,do) N --- N L~V A(s,,d,) € {0,1}N x [0,1]  (2.13)

n—oo

is non-empty as a countable intersection of closed sets. Moreover,

lim my, x A(A(s1,d1) N L7 A(s2,do) N+ N L™V A(sy,, dy)) =

n—oo
i P i=1 % (1 — p) iz Si
m o
nreo L=y di(ds = 1)

=0,

so the set from (2.13) consists of precisely one point, call it (w,z). Then w =
(sn)n € {0,1}Y and by the assumption that ((s,,d,)), does not end in ((0,d +
1),(0,2)°) it follows that s, (w,z) = s, and dp(w,z) = d, for all n > 1, so that

> d, — 1+ s,
T e =5 € [07 1]-
zz: Hi:l di(di - 1)

Note that if there is a k¥ > 1, such that (sg,dr) = (0,d + 1) and (s,,d,) = (0,2) for
all n > k + 1, then

Z(fl)ZL‘f Sim =Y ()= Sim
n—1 Hz 1 di (di —1) n—1 Hi:l di(d; — 1)
N (—1)Zis = ( d 1 1 )
[T difdi 1) N+ 1 (d+ Dd = Hi: 2:1
n=1 [Ti= didi = 1) dHf:f di(di -1)
— kzl(,l)Z?’:‘f o _On— 1480
— [[is, di(di — 1)
N (TS s ( d 1 Z 1 )
Hi:f di(d; —1)\d =1 d(d—1) J>1 [i-.2-1 .

In other words, the sequences

¢(((07 d—+ 1)) (07 2)00)) = w(((la d)v (07 2)00)>

correspond to the same number x. Therefore, the map 1 : AN — (0, 1] given by

5 R VRS e e e
D (80 dn))n>1) ;( 1) T ad—T (2.14)

is well defined and surjective and by the way we defined the maps Ty and 77 on
any of the points z, we get that any sequence ((s,,d,))n € AY that does not end
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n ((0,d + 1),(0,2)°°) corresponds to a 0-Liiroth expansion of a number z € (0, 1].
We call a sequence ((sn,dn))n € AV with ¥(((sy,dy))n>1) = = a universal 0-Liiroth
expansion of z if every finite block (t1,b61),...,(¢;,b;) € A7 occurs in the sequence
(($n,dn))n- Note that the sequences ending in ((0,d+1), (0,2)*°) and ((1,d), (0,2)°)
can not be universal.

2.3.1 Proposition. Lebesgue almost all x € [0,1] have uncountably many universal
0-Liiroth expansions.

Proof. Define the set
N={xec(0,1] : 3wec{0,1}N k>0,n>2 TFx) = z,}.

Then by Theorem N C Q, somy, x A({0,1} x N) = 0. For any (i,5) € A set

As, d) = [s] x (é ﬁ)

For any (w,z) € {0,1} x (0,1] \ N the block (t1,b1),...,(t;,b;) occurs in position
k > 1 of the sequence ((s,(w,),dn(w,x))), precisely 1f

LFYw,x) € A(ty, b)) N L7 A(tg, by) N --- N L™YU=DA(L, by).

Since my x A(A(t1,b1) N L7 A(te,bo) N -+~ N L™U=YA(t;,b;)) > 0 it follows from
the ergodicity of L that m, x A-a.e. (w,z) eventually enters this set, so the set of
points (w, ) for which the 0-Liiroth expansion does not contain (¢1,b1), ..., (t;,b;) is a
my, X A-null set. There are only countably many different blocks (¢1,b1),. .., (¢;,b;), so
the set of points (w, z) that have a non-universal 0-Liiroth expansion also has measure
0. From Fubini’s Theorem we get the existence of a set B C (0,1] \ N with A\(B) =1
with the property that for each x € B a set A, C {0, 1} exists with m,(A,) = 1 and
such that for any (w,z) € A, x {z} the sequence (s, (w,x),d,(w,z)), is a universal
0-Liiroth expansion of . The set A, has full measure, so contains uncountably many
w's. Let ¢ € Band w,® € A,. Then x ¢ N and thus if w, # @, for some n > 1, then
Sn(w, ) # sp(w, ). Hence, the sequences w € A, all give different universal 0-Liiroth
expansions for x. O

Note that if  has a universal 0-Liiroth expansion, then x ¢ {#11) tn > 1}.

By Remark [2.2.1fiii) the fact that s, (w,x) # s,(@,2) for some n then implies that
dpy1(w, ) # dptr (@, x).

§2.3.2 Speed of convergence
Recall that for each n > 1 the n-th convergent 2= (w, z) of (w,z) is given by

n

k
Dn Pn St dp —1+wy
w, T —1)zi= @i | [ =
dn Qn( ) ;( ) el dz(dl — 1)
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so that the study of the quantity |x — z—:‘ provides information on the quality of the
approximations of x obtained from L. In the following, we take two different per-
spectives. In this section we compute the pointwise Lyapunov exponent A and in the
next section we consider the approximation coefficients 6,, = 6% similar to the ones

defined in (2.3).

Let I be an interval of the real line, @ C N and 7 : QN x I — I the canon-
ical projection onto the second coordinate. The following definition can be found in
[GBLI7, [B13], for example.

2.3.2 Definition (Lyapunov exponent). For any random interval map R : QY x
I — QN x I and for any point (w,z) € QN x I, the pointwise Lyapunov exponent is
defined as

Alw,z) ;= lim llog

n—o00 N

d
dxw(m(w,x»‘, (2.15)
whenever the limit exists.

We use this to determine the speed of convergence of the sequence <§ ” (w x))
to a number x € [0, 1] for which T.7(z) # 0 for all n > 0. By Proposition and
Proposition [2.2.6] this includes all irrational = and part of the rationals. For any such
x and each sequence (s, (w, ), dp(w,))n>1 € AY of signs and digits for a point (w, x)
the rational 22 (w,x) is one of the endpoints of the projection onto the unit interval
of the cylinde; [(s1,d1), .-, (8n,dy)], i-e., one of the endpoints of the interval

1/)([(517d1)7 L) (smdn)D

Since the map T} is surjective and linear on this interval and T (x) = [Th; di(dip—

1), the Lebesgue measure of this interval is ([,_; dy(d — )) . The following result
compares to Theorem from [BI09].

2.3.3 Proposition. For any (w,z) € {0,1} x [0,1] with T*(z) # 0 for alln > 0
the speed of approzximation of the random Liroth map L is given by

Pn
r——(w,x
Qn( )

= exp(—nA(w, z)).

In particular, for my x A-a.e. (w, )

> log(d(d — 1
A(w7x):dz_2§ii((d(_1)))%l.98329....

Furthermore, the map A : {0, 1} x [0,1] — [log 2, 0) is onto.

Proof. Let (w,x) be such that T)}(x) # 0 for each n. Write s, = sp(w,z) and
dy = dn(w,x) for each n > 1. Since £2(w,z) is one of the endpoints of the interval
W([(s1,d1), .-, (Sn,dp)]) it follows that

x,i
an

1;[ (w,z dkwa:)—l)
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We claim that

n+1
Pn 1
z— —(w,x)| > . 2.16
n( ) l];[1 di(w, z)(dg(w, ) — 1) (2.16)
To see this, note that for n = 1 we have
1 1 s s1+1 1
fSTw(Z):(fl) 1d1(d171).’£+(71) L (d171+81)§ d 1

2 2 —

Hence,
1 dl -1 —+ 51 1

L (e )< .

dy(dy — 1)ds (=1) dy(d; — 1) di(dqy —1)(de — 1)
Since % = gi(_dllfsll) it follows that

D1 1
r——|> .
q1| — di(dy = 1)da(d2 — 1)
In the same way, from
1 m s n—1 Sn+1 1
S TH(x) = (1) dn(dn — DTG (2) + (=1)°"" (dn — 1+ 5p) < ——,
dp1 dpt1—1

we obtain

d, — 1+ s, 1
dp(dp — 1) | = dp(dy — Ddpy1(dper — 1)

T (o) —

By the definition of the convergents, we then have

x— Iﬁ(w,x)
an

[T, di(d; — 1)

(=1)*dn(dn — 1)Tﬁ_1(x) + (_1)S"+1 (dn — 1+ sn)
HZ:l di(di - 1)

_ do—1+4s,)| o 1
— T’I’L 1 7( n n .
o (@) dn(dy — 1) di(di — 1)
k=1
n+1 1
- paie dz(dl — 1)
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This gives the claim. It follows that

n
~ lim 11
nl_{I;on Og(}}_[l dk dk UJ .’E)—].))

nh~>nclo ﬁ log A(w([(sladl); R (Snv dn)]))

x—@(w,m)
n

1
lim —log

n—oo N

= lim % log [ A(w([sk, dr]))

-1

So A measures the asymptotic exponential growth of approximation, i.e.,

Pn
r——(w,x
qn( )

= exp(—nA(z,w)).

Recall now that m, x A is invariant and ergodic for L. Applying Birkhofl’s Ergodic
Theorem we get for (m, x A)-a.e. (w,z) that

. 1 d n _ k—1
Alw,z) = lim —log| - T}(z) fnlggoﬁlog H g Lo (T (@ ))|
1 n—1
= lim —1 — 7o L(c¥(w), Tk
i~ ngl;[odf”m (0" (w), w(x))|

dW(L(w,J;))‘d(mp X A)(w, x)

= log
/{0,1}Nx[0,1] dz

= / log| —
{0,1}8x0,1]

B . log(d(d — 1)) .
_dzﬂid(d_l) = Ay

d
P T, (x)|d(my x A)(w, z)

(2.17)

This gives the second part of the proposition. For the last part, it is obvious that log 2
is a lower bound for A(w,z), since |;=7}(z)| > 2 for j = 0,1. The rest follows from

Theorem since the sequence w = (0) reduces L to the standard Liiroth map T7..
U

It follows from (2.17)) that the set of points (of zero Lebesgue measure) that present
a Lyapunov exponent different from A, xx, includes fized points, i.e., points (w,z) €
{0, 1} x [0,1] for which T¥(x) = = for all k > 1. For any such point (w,z),

1 gy o (7260 = 1T 5T = (520
k=1 k=1
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for all n > 1. Hence, if € [z4, 24—1) then

n

1
Alw,z) = lim —log H %W o L(L*(w, x))

n—oo N

k=1
1
= lim —log|d"|
n—oo 1
= logd.

Since fixed points can be found in any set {0, 1} x [z4, 24—1) for d > 2, it follows that
A attains arbitrarily large values, starting from log 2 2 0.69314 . . ., which corresponds

to the Lyapunov exponent of the fixed point given by the sequence ((0,2)).

§2.3.3 Approximation coefficients

A GLS map Tp . : [0,1] — [0,1] is defined by a partition P = {I,, = (,,rs]}» and a
vector € = (g,,)p. To be specific, the intervals I, satisfy A(|JI,) = 1 and A(I,,NI;) =0
if n # k and on I,, the map Tp is given by

z—4¥,

én_rny

Tn — X

Tp.(x)=¢€p +(1—ep)

gn —Tn
and Tp (z) = 0 if z € [0,1] \ U I,. Any GLS transformation produces by iteration
number expansions similar to the Liiroth expansions from (2.1, called generalised
Liiroth expansions. In [BBDK94, [DK96] the authors studied the approximation coef-
ficients

HfLE—qnx—@, n >0
an
for GLS maps with the standard Liiroth partition Py, = { [%, ﬁ) }n>2. In particular

[BBDK94l Corollary 2] gives that amongst all GLS systems with standard Liiroth
partition, T4 presents the best approximation properties. More precisely, it states
that for any such GLS map T’p, . there exists a constant Mp, . such that for Lebesgue
a.e. x € [0,1], the limit

: 1 S Pr e
nhﬁn;() - ; 0, "% (z) (2.18)
exists and equals Mp, .. Furthermore, My < Mp, . < My. In Remark 2, below
Corollary 2, of [BBDK94], the authors remark that not every value in the interval
[M4, Mp] can be obtained by such GLS maps, and they suggest furthermore that the
achievable values of Mp, . might form a fractal set. The situation changes for the
random system L, as the next theorem shows.

For the random Liiroth map L = Ly we define for each (w,z) € {0,1}" x [0,1]
and n > 1 the n-th approximation coefficient by

Pn
T — —

n

en(w, :L‘) =dn

?

where ¢, = (d,, — s,) [T di(di — 1).
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2.3.4 Theorem. For the random Liiroth map L = Lo and 0 < p < 1 the limit
i L z”: by(w. )
Jim, 5 2 Ol

exists for my x A-a.e. (w,x) € {0,1}N x [0,1] and equals

M, :=E[8,] = p2<(22) 3,2 _2«2),

where ((2) is the zeta function evaluated at 2. The function p — M, maps the interval
[0,1] onto the interval [Ma, ML].

Proof. Fix (w,z) € {0,1}N x [0,1]. Let 6,, = 0,,(w, z), dp, = dy,(w, z) and z,, = T ().
By definition of the convergents % we have

[Tis, di(di — 1)

and the numbers ¢,, are such that we can write

‘ Pn
y_ P
In

d - 1 dptp_1 —1, if 2n = Tr(zp-1),
o= | (2.19)
d—" =—(dp — D1 +1, ifz, =Ta(zp_1).

Since the Lebesgue measure is stationary for Lo, it follows from Birkhoff’s Ergodic
Theorem that each z,, viewed as a random variable, is uniformly distributed over
the interval [0,1]. We use this fact together with to compute the cumulative
distribution function (CDF) Fy, of 6,. For P = m, x A, by definition of the CDF
and by the law of total probability, for y € [0, 1] we have

P(an S Y | Tn = TA(xn—l))P(xn = TA(xn—l))

=> P<wn1 < Ty Tp-1 € [zd,zdl))P(:rn =Tr(vp-1))+
1—y
P(In_l > — T,_1€ [Zd,Zd_l))P(xn =Ta(xn-1))

:pr (zn—l < Tya Tp—1 € [Zd,Zd_1)>—|—

Yy
—, Tp_1 € [Zd72d1)>~
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Let d > 2 besuch that z,,_; € [d, - 1) = [2d, 2d—1), then either x,, = T (2y—1) or T, =
Ta(zn—1). In the first case, since d € N,

1+y [1 1 . : 1
= f ly if < |= 1
p E[d’dl) if and only i d_{yJ—l— ,

and we obtain

, ifd<H+1,
Yy

QUlw

1
P($n1 < %, Tp—1 € [Zd72d1)> =
m, otherwise.

Similarly, in the latter

% € Lli’di1> if and only if d < {;J,

which gives

Y . 1
— fd<|=
1—y d—1’ ld_\‘yJ’
P({x,_12> i1 Tn—1 € [2d,24-1) | = 1
m7 OtherWise.
Note that
1 1 1 1
Z = and Z = .
L VR EY I B I C S VR KV

Summing over all d > 2 gives
[1/y]+1 v, 1 [1/y] y 1
Fan (o) = 2 it 1) 00 2 i1 1)
so that by and Theorem we obtain
Fo,(y) = pFr(y) + (1 —p)Fa(y).

The expectation E[f,] can be now computed by E ﬁ) y))dy, which
with the results from Theorem gives

1 1

2 2

49

g 9ELAVH)



CHAPTER 2

2. Random c-Liiroth Expansions

that is

1 — 20(2) =3 2—¢(2
nler;oﬁ;Gi(w,x):p «@=-3, C():M,ﬁ,. (2.20)

2 2

Note that for p = 0, x,, = T4 (z) for n > 0 and indeed My = M4. In the same way,
for p =1, z, = T} (x) for n > 0 and M; = M. Lastly, M, is an increasing function
in p € [0,1], so it can assume any value between M4 and M. O

Theorem [2]is now given by Proposition 2:3.1] Proposition [2.3.3|and Theorem [2.3:4]

§2.4 Generalised Liiroth expansions with bounded di-
gits

Both Proposition [2.3.3] and Theorem [2:3.4] depend on the invariant measure m,, x
A for Lo. In Proposition [2.3.3] it is used to compute the value of A(w,z) and in
Theoremwe use the fact that the numbers T (x) are uniformly distributed over
the interval [0,1] and it is used to deduce . For ¢ > 0, the random map L,
becomes fundamentally different: The maps T} . for j = 0,1 present finitely many
branches that are not always onto. These variations make the measures m, X A no
longer L.-invariant. It still follows from results in e.g. [M85] [P84] [GB03| 112] that for
any 0 < p < 1 the random map L. admits an invariant probability measure of type
My X fp.e, Where my, is the (p, 1 — p)-Bernoulli measure on {0,1} and p, . < A is a
probability measure on [c, 1] that satisfies

p.e(B) = pptp.o(Ty ¢ (B)) + (1= p)p (T 2 (B)) (2:21)
for each Borel measurable set B C [c,1]. We set f, . = dg’;\’“. Here we call pp . a

stationary measure and fp . an invariant density for L.. With [P84 Corollary 7| it
follows that since Tp . is expanding and has a unique absolutely continuous invariant
measure, the measure p, . is the unique stationary measure for L, and that L. is
ergodic with respect to m,, X pip ..

2.4.1 Example. For c = % and 0 < p < 1 consider the measure Hhp, 1 with density

One can check by direct computation that 1, 1 satisfies (2.21) and thus is the unique
stationary measure for L 1p

Since such an invariant measure exists, some of the results from the previous
section also hold for the maps L., with ¢ > 0. In particular the Lyapunov exponent
from is well defined and since the stationary measure my, X p, . is still ergodic,
we can apply Birkhoff’s Ergodic Theorem to obtain for (m, X u, c)-a.e. point (w,x)
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the following expression for the Lyapunov exponent:

A, ) = ddzu((; 1) ) tostata = 1)+ e (- ) ) Toutauta + 1)

(2.22)
where d. is the unique positive integer such that c € [%ﬂ’ di)

2.4.2 Example. Consider the map L%’p from Example again. The possible di-

gits of the generalised Liiroth expansions produced by L%,p are (0,2),(1,2),(0,3),(1,3).

It follows from Birkhoff’s Ergodic Theorem that the frequency of the digit (0,2) is
given by

T(0,2) = lim #{1<j<n:sjw,x)=0 and dj(w,z) =2}

n— oo n

- /{0,1}Nx[§,1] Hoxig g1 oy e X Hp g
_ 5 (5 2y 150 5) _5+5p
~ 3P 6 3 8 6) " 16 -

8 —5p 1+p 2—p
T = g Mo = g e = g

Similarly,

Note that for

. #H1<j<n:dj(w,x) =2
7ranlgréo { n j( ) }:W(072)+7T(172)

we also obtain

1 13 3
WQZMP’;’<|:2,].:|):16, and 73:1—772:T6.

Moreover for my, X p,, 1-a.e. (w, z) we have by (2.22)) that
> 11

1 11
=p, 1| |=,1| ) log24+p, 1| |z,= ] )log6
P>3 2 P>3 32

= Elog2+ ilog6 =0.89913... < 1.198328... = A, xx.
16 16 P
From and example it is clear that to obtain results similar to Proposi-
tionfor ¢ > 0 we need a good expression for the density of y, . and to determine
the approximation coefficient also an accurate description of the location of the points
p—: relative to x. For ¢ = 0 we saw that it immediately follows that Lebesgue almost
all z € [0, 1] have uncountably many different 0-Liiroth expansions. We start this sec-
tion by giving some results on the number of different c-Liiroth expansions a number

x can have for ¢ > 0.
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§2.4.1 Uncountably many universal expansions

Let ¢ € (0, 3] and consider the corresponding alphabet A, = {(i,7) : i € {0,1}, j €
{2,3,...,[X1}}. We call a sequence ((sy,dy))n>1 € AL c-Liiroth admissible if

n—1 _ d7l+k — 1 + S7L+k
(_1)21;:1 A — c [07 1]
7; [Tiei divn(dipr — 1)

for all k& > 0 and if moreover the sequence does not end in ((0,d + 1), (0,2)*°) for
some 2 < d < [1].

The first main result of the number of different c-Liiroth expansions a number
x € [¢, 1] can have is the following,.

2.4.3 Theorem. Let0 < ¢ < % Then every x € [c,1] \ Q has uncountably many
different c-Liiroth expansions.

Before we prove the theorem we prove three lemmata.

2.4.4 Lemma. Let c € (0,%) and let ((sn,dn))n>1 € AL be c-Liiroth admissible.
For

n—1 d -1 + s
— _1 Zi:1 s __m - 1 Tn
! nz;l( ) H;L:l di(d; — 1)

the following hold.
(i) If s1 =0, then z € [d% + T ﬁ} = [22_17%1—1]-

(i) If s1 =1, thenxg[l %1,

T a1~ w@ o) = o Za -

Proof. For x we can write

dl -1 + 51 (71)51 Zn—l . dn+1 —1 + Sn+1
xTr = —1 i=1 Sit+1 - .
di(dy —1) * di(dy —1) ;( ) [[imy dit1(dig2 — 1)

Write

n-1 . dnt1 — 1+ Spt1
r = Y (T -
,; [T dita(digr — 1)

Since ((Sn, dn))n>1 is c-Liiroth admissible, we have z; € [¢,1]. If s; = 0, then

dy—1 —1)% 1 1
1 + s1 (-1) o= — +

1 c 1
+ ———z € |—+ , .
di(dy —1) " dy(dy — 1) di  di(dy — 1) {dl di(dy — 1) dl—l}

Similarly if s; = 1, then

di—1+s (D)= 1 L U S ¢
didi—1)  di(d DT @1 dild -0 @ di -1 didi— 1))

O
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Recall the definition of the switch region S from ([2.7)), that is

S=le1In Jlal 2 4]

n>1

2.4.5 Lemma. A sequence ((sy,d,))n>1 € AY is c-Liiroth admissible if and only if
there is a point (w,z) € {0,1} x [, 1] such that the sequence (sp(w,x),dy (W, T))n>1
generated by L. satisfies s, (w,x) = s, and d,(w,z) = d,, for each n > 1.

Proof. One direction follows since L¥(w,z) € [c, 1] for all k¥ and by the definition of
L., s; and d; on the points z,. For the other direction, let ((s,,d,)), be c-Liiroth
admissible. Set

n—1 . d, —1 + Sp
p= Y (S G L
n%:l [[iz, di(di — 1)

For k > 0 define the numbers

n-lg. dn+k -1+ Sn+k
T = (_1>Zi=1 Sitk ,
7; [Tis) disk(digr — 1)

so that xp = z. Let w € {0,1}" be such that

{O, if 1s(£k_1) =1 and S = O7
W = 1

, otherwise.

By Lemma and the fact that ((sp,dn))n does not end in ((0,d + 1), (0,2)>)
it then follows that si(w,z) = s; and di(w,x) = di. Moreover, T}(x) = z1. It
then follows by induction that for each n > 1, s, = sp(w,z), d = dp(w,z) and
T7(xz) = x,,. Hence, ((sn,dy,))n corresponds to the c-Liiroth expansion of (w,z). O

2.4.6 Lemma. Let0<c< 2. Foranyz € [c,1]\ Q and any w € {0,1}" there is
ann >0, such that T (z) € S.

Proof. Let 0 < ¢ < 2, z € [¢,1]\ Q and w € {0,1}". If z € S, then we are done.
If v ¢ S, then T, (x) = Toc(x) = Th(x) € (1 —c,1). Assume that ¢ < 1, then
2y =< <1-c<1—&=z.Let f:z > 2z — 1 denote the right most branch of
Ty. Since f(z7) =1 —c, it follows that (1 —¢,1) = Ujenf?((1 — ¢, 27]) and hence

there exists a j € N such that TJt!(z) = T} (T} (z)) € (1 — ¢, 2] C S.

Now assume that % <c< % Then % <l—c< z;' and
2y <2c=Ty(1—¢)=Ti(1—c) <27

We write
(1*671):(1*072;)U[2;a21_]u(21_31)’

and we treat the subintervals separately.

23
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1. For the first subinterval note that (1 — ¢, z;) = (1 —c, 326] U (3207 %) U [%, z; .

Here % is a repelling fixed point of T’y and this subdivision is such that T4 ((1 —

G 320]) = [27,2¢) C S, TA(( 1 ,§)) = (g,ZZ) and TA(( +)) = (1 —c,%
This gives the following.

ST (2) € (1—c¢,25¢], then T2 .(z) € [23,2¢) € S.

-IE T (z) € (335, %), then T2 (x) = Ta(T} (=) and since 2 is a repelling
fixed point for T4 there must then exist a j such that 77 .(z) € (1 —¢, 25¢), so

Tit (x) € (25,2¢) C S.

-Ile
S 01"T2 (z)

;r) then either T2 .(z) € (1—c, 37¢] and T3 .(z) € [25,2¢) C

2
€[5
) € ( 7 ] and again we can find a suitable J as above.

2. If T} (%) € [25, 2, ], then T} .(z) € S.

3. If T} () € (21,1), since f(z;) = 1 — ¢ we can write (z;,1) as the disjoint
union

(21, 1) = Uiz f ([, er DU (A =6 23)
Hence, there is a j such that either T/ (z) = Tg oT} () € S and we are done
or T3t (@) = T o T} (x) € (1 — ¢, 23 ) and we are in the situation of case 1.

This finishes the proof. O

Proof of Theorem[2.7.3 Let 0 < ¢ < 2 and = € [c¢,1] \ Q be given. To prove the
result it is enough to show that for any sequence ((s,, dy))n>1 representing a c-Liiroth
expansion of x and any N > 1 there is an n > N and a c-Liiroth expansion

((s1,d1);- - (SN4n, AN +n), (5§V+n+17 §V+n+1)’ (5/N+n+2, d§V+n+2)7 )

s / !
of x with sy 11 7 SN4nt+1 OF Ay 1 # AN4nt1-

Let ((sn,dn))n>1 be any c-Liiroth admissible sequence with

n—1 _. dn -1 + Sn
T = (_1)Ei=1 5%”—.
; [Li=y di(ds — 1)

By Lemma there then exists a sequence w, such that (s,(w,z),d,(w,z)), =
((Sn,dn))n. Fix an N > 1. Lemma yields the existence of an n such that
TYF™(x) € S. Take any sequence @ € {0,1}" with @; = w; for all 1 < j < N +n,
ON+tn+1 =1 —wnint1. Then for each 1 < j < N +n,

5j(@,x) =s;(w,z) =s; and d;(0,x) =d;j(w,x)=d;
and

SN+n+1(@0,T) = ON4nt1 = 1 = WNjnt1 = 1 = SN0t (w, ).
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2
that dyynt2(@,2) = 2 and dyni2(w,z) > 2, or ng”“(x) < & and TNV () >

1 so that dyypi2(@,2) > 2 and dyini2(w,z) = 2. In any case we get a c-Liiroth

expansion of = that differs from the expansion ((s,,d,)), at indices N +n + 1 and
N +n+2. O

From ng”“(ac) ¢ Q we obtain that either ng”“(m) > & and T () < & so

The second result of this section is on universal expansions. For the remainder
of this section we assume that ¢ = ; for some ¢ € N>3. Then A. = {(i,j) : i €
{0,1}, 7 € {2,3,...,¢}} and by Lemma any sequence in AY not ending in
((0,d +1),(0,2)*) is ¢-Liiroth admissible. An expansion

n—1 . dn — ]. —+ Sn
T = (_1)21‘:1 Stn—
7;22:1 Hi:l di(di - 1)

of a number z € [¢,1] is called a universal c-Liiroth expansion if for any block
(t1,01),...,(tj,b;) € A. there is a k > 1, such that sgy; = t; and dy4; = b; for
all 1 < i <4, ie., if each finite block of digits occurs in ((Sn,dn))n-

2.4.7 Theorem. Let c = % for some £ € N>3. Then Lebesgue almost every x €
[%7 1} has uncountably many different universal c-Liiroth expansions.

The proof of this theorem requires some work and several smaller results. First
we prove a property of the measure m, X pip ..

2.4.8 Proposition. Let ¢ = % for some ¢ € N>z. Then for any 0 < p < 1 the
random transformation L. is mizing and the density of p, . is bounded away from 0.

Proof. We will show that L. has the random covering property, i.e., that for any
non-trivial subinterval J C [c, 1] there is an n > 1 and an w € {0,1}" such that
T (J) = [e,1]. The result then follows from [Proposition 2.6, [ANVIH]].

Let J C [c, 1] be any interval of positive Lebesgue measure. Since |17} .(z)| > 2,
for any w € {0,1}" there is an m such that at least one of the points 2,2, 2
is in the interior of 77"(.J) and hence T"™"2(.J) will contain an interval of the form
(a,1] for some a. Since 1 is a fixed point, this implies that there is a k such that
(1—3,1] € T#((a,1]) for each w € {0,1}". For the smallest i > log,(¢ — 1) — 1 it

1—

holds that T017C( %) =1- 2% < % + i = z; Hence

n

011 € Ty o((1- 5.1]),

giving the random covering property and the result. ]

The difference between Theorem [2.4.7] and Proposition is that in case ¢ =0
for almost all (w,x) the sequence (s,(w,x)), equals the sequence w, so that it is
immediately clear that different sequences w lead to different expansions. For ¢ > 0
typically many sequences w lead to the same sequence (s,(w,)),. In other words,
the map g : {0, 1} x [¢, 1] — A defined by

9(w,z)) = ((sl(w, x),d1(w, x)), (s2(w, x),ds(w, x)), (s3(w, x),ds(w, x)),...) (2.23)

%)
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is far from injective. To solve this issue we define another random dynamical system
Ke: {0, 1} x [¢,1] — {0, 1} x [¢, 1] given by

(w, Ta(z)), ifze Ufz:Q[vaZ;l_)’
Ke(w,x) = (w, Ty ()), ifze UfL:Q(Z;—lv Zp—1) U {l}v
(0(@). Th(x)), zes

The difference between K. and L. is that the map K. only shifts in the first coordinate
if the point x lies in S, so only if Ty (x) # T1,.(z). For K. define the function
h:{0,1}N x [¢, 1] — AN by

h((w’ CL')) = ((51(w> :E)’ dy (w’ .’L’)),(S1(Kc(w, CL')), dl(KC(w’ .Z‘))),

In the other direction set . = 1/1\@1, so that

n-1. dp—14 s,
Ve 'AIC\] - [C, 1}7 ((Snadn>)n>1 — (_1)Zi:1 S 2
- 7; Hi:l di(d; — 1)

Neither g nor h is surjective, since both maps L. and K. do not produce sequences
ending in ((0,d 4+ 1),(0,2)°°) as we saw before. To solve this and also to make h
injective, define

Zr, = {(w,z) € {0,1}" x [¢,1] : L2 (w,x) € {0,1} x S for infinitely many n > 0},
Zr = {(w,z) € {0,1}" x [¢,1] : K™(w,x) € {0,1}N x S for infinitely many n > 0},
D={ac Al : ¢.(c™a) € S for infinitely many n > 0}.

Then g : Zr, — D is surjective and h : Zx — D is bijective and by Lemma [2.4.6
my X pp(Zr) = 1. The proof of Theorem is based on the proofs of [DAV07,
Theorem 7 and Lemma 4] and uses the following result on the map K.

2.4.9 Proposition. Letc = % for some £ >3 and0 < p < 1. The measure my,X (i ¢
is invariant and ergodic for K..

Proof. First note that 0 o g = go L.. Define a measure v on A} with the o-algebra
generated by the cylinders by setting v = m;, X p, .0 g~'. Then by Lemma m
we get V(ALY \ D) = 0, that is v is concentrated on D. So g is a factor map and o
is ergodic and measure preserving with respect to v. By construction it holds that
K Y (Zk) = Zk and 0=}(D) = D and moreover, o o h = h o K. Define a measure ¥
on {0, 1} x [c, 1] by setting

(A) =v(h(AN Zk)).
Since h is a bijection from Zx to D we find that h : {0,1}Y x [¢,1] — Al is an

isomorphism and K. is measure preserving and ergodic with respect to 7. What is
left is to prove that o = my X pp ., which is what we do now.
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Sets of the form

= ([(kyyi)s - - -5 (knyin)])

generate the product o-algebra on {0, 1} x [c, 1] given by the product o-algebra on
{0,1} and the Borel o-algebra on [¢, 1]. Therefore it is enough to check that

o(h™ ([(k1yin), .- (ks in)])) = mp X pip, (B ([(R1,01), - (B, 0)]))

for any cylinder [(kq,41), ..., (kn,in)] € AY.

For i€ {2,3,...,0}, let

[z 2], Ao = {0,113 x (27, 1], Ao = {0, 1} x (2,_1,2-1), i > 3,
[Z%,Z-i 1], A3i = {0, 1}N X [Z,,Zj)

For any cylinder [(k,)] € AL we get h™*([(k,7)]) = Aki U A(k42); and

R ([(Rasin), (Rasda), s (nsin)]) = | A DK (Ayi) 00K D (45,5,),
jlv---;jn
(2.24)

where the union is disjoint and is taken over all blocks ji,..., 7, that have j; €
{ke, ke +2} € {0,1,2,3} for each t. Any set A;,;, N K A; n---nEKe " V(4;,;)
is a product set. Denote its projection on the second coordinate by I; ;, .. j,.i,. Define
the set

{tl’ e 7tm}’ = {t : (jtait) € Ac}a

where we assume that 1 <t; <ty < --- < t,, <n. These are the indices ¢ such that
Jjt = k¢ and thus the projection of A;,;, to the first coordinate does not equal {0, 13
This implies that we can write

Ajyiy VK7 (Ajyiy) 0 N KA ) = Ty g, - ke, ) % Dy i

191
and

mp X /J‘P,C(h_l([(klail)v <k17i2)7 teey (knaln)D) =
Z mp X /prc([ktu ktza ceey ktm,} X Ijlilw-jnin)'

J1seedn

To compute 7(h~t([(k1,i1), (k1,i2), ..., (kn,in)])), let S C {0,1}" denote the set

o7
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of blocks s, $2, ..., s, for which s; = k; for all t € {¢1,...,t,,}. Then

p(hH([(k1yin), (Rryi2)s s (Bnsin)]))
= v(h(Zx N h™ ([(ky,in), (kisda), - - - (Knyin)])))
=v(DN[(k1,41), (k1,i2), ..., (kn,in)])
= v([(k1,i1), (k1,72), - - -, (K, in)])

e U U sl < L,

J1s--5dn 81,825,580 €S

Z Z mp X up7c([81,52,...,8n] X Ijlh---jnin)

J1y--50n 81,82,...,8n, €S

= Z myp X /J’P,C([ktl?ktz’ R ktm] X Ijlil‘”jnin)'

J1y--dn

Hence, 7 = my, X p, . and the statement follows. O

Proof of Theorem[2.].7] Let 0 < p < 1 be given. For each s € {0,1} and d €
{2,3,...,¢} define

[0] x [z, 25 JU{0, 1} x (25, 201, ifs=0,d=2,
Ac(s,d) =< [0] x [z;,zd__l] u {0, 1} x (24_152d-1), ifs=0,d>3
(1] x [z4, 28] U {0, 1} x [24, 2] ), if s=1.

Fix (s1,d1),...,(sj,d;j) € Ac. Then the set
E = Ac(sl,dl) n Kc_lAC(SQ,dg) n---N Kc_(j_l)Ac(Sj,dj) - {O, 1}N X [C, 1]

contains precisely those points (w, z) for which s;(w, x) =s; and d;(w,z) = d; for all
1 < i< j. Since for each s,d, m, x A(A.(s,d)) = FCEyR (p—s)(— )Sdtff) >0
and K.(A.(s,d)) = {0,1}N x [¢, 1], it also follows that m,, x A\(E) > 0. The map K,
is ergodic with respect to my, X pi, . by Lemma 2.4.9)and the measures ju, . and \ are
equivalent by Proposition 2.4.8] By Birkhoff’s Ergodic Theorem it then follows that
for m, x A-a.e. (w,x) the block (s1,d1),...,(s;,d;) occurs with positive frequency
in the sequence (s1(K7(w,x)),d1(K2(w,)))n. Since there are only countably many
blocks (s1,d1),. .., (s;,d;) it follows that the ¢-Liiroth expansion of m, x A-a.e. (w, x)
is universal. Let

Z:={zele1] : Ywe {0, 11N K" (w,z) € {0,1}" x S for infinitely many n > 0}.

Then A([c, 1]\ Z) = 0 by Lemmam From Fubini’s Theorem we get the existence of
aset B C Z with \(B) = 1—cand for each z € B aset A4, C {0, 1} with m,(4,) =1
and such that for any (w,x) € A, x {z} the sequence ((s1(K?(w,x)),d1 (K} (w,))))n
is universal. Since the set A, has full measure, it contains uncountably many se-
quences. For any x € Z different sequences w define different sequences

((s1(K(w,x)),d1 (K} (w,x))))n>1. Hence, we obtain for Lebesgue almost every x
uncountably many universal c-Liiroth expansions. O
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§2.4.2 Explicit expressions for invariant densities

Explicit expressions for the probability density functions f, . = d 5‘ 2 can be obtained

from the procedure from Theorem in case p # 3 (since otherwise condition (A5)
is violated). From this result it follows that

Jpe=a1 JrCzZ Z T ( Lie, 1, c(1-c)) +03Z Z Le Ty ()

>0 we{0,1}* Toe t>1 we{0,1}* Toel

(2.25)
where ¢y, co, c3 are constants and p,, is an abbreviation for the product p, - - Du,-
The sums in this expression have finitely many terms if the random orbits T, (1 — ¢)
and T, -(c) take values in a finite set. This happens for example if the random map
L., is Markov, which is the case for any ¢ € QN (0, %} Before proving this result, we
recall the notion of a Markov map.

An interval map T : I — I, where [ is an interval, is called Markov if there exists a
finite collection of open non-empty disjoint subintervals of I defined by a set of points
{zi}1<i<n such that, for every i, T'((2;, zi4+1)) is a homeomorphism onto (z;, z¢) for
some j, £. The corresponding partition is called a Markov partition. A piecewise affine
interval map T : I — I admitting a Markov partition is isomorphic to a Markov shift
and the results from [FB81] show that the matrix P = (p; j)nxn given by

Dij 1= 613 , (2.26)

IT;]

for T; =T |(.,_, ., and

5 1, if T((Z]_l,zj)) 2 (Zi—hzi)a
N 0, otherwise,

represents the Perron-Frobenius operator from ((1.2)). From [FB81, Theorem 1] a T-
invariant density is recovered from a non-trivial eigenvector v of eigenvalue 1, i.e.,
Pv =w.

The construction extends straightforwardly to the random context. Let {T} : I —
I'}jeq be a finite family of interval maps and let p = (p;);cq be a positive probability
vector representing the probabilities with which we choose the maps 7. The random
interval map R : QY x I — QN x I is said to be Markov if each map {T}};eq is Markov.
The matrix form P of the random Perron-Frobenius operator for R is then given by

P = ijpj,
JEQ
for P; the transition matrix (2.26) of T;, and any non-trivial vector v satisfying
Pv = v identifies an invariant density for the system. For Markov maps the problem

of finding an invariant density function reduces therefore to finding a Markov partition
and solving a matrix equation.
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2.4.10 Proposition. For any c € QN (0, %] the random c-Liroth transformation L.
is Markov.

Proof. Let S. = {s;}; be the finite set of points given by
{Cv 1} U {Zm Z;’ Z;—l}?LO:Q n [67 1]3

and such that sg = ¢ < s1 < ... < s = 1. These are the critical points in [c,1] of
Lep. For j =0,1,

Tj,c(siv 5i+1) € {(1_0’ 1)7 (C’ 1_6)7 (TLC(C)’ 1)7 (C’ TJ}C(C))v (T]}C(C)’ 1_6)7 (1_Ca Tj,c(c))}v

so that, to determine a Markov partition, it is enough to study the orbit of ¢ and
1 — ¢. Since ¢ € Q, Proposition implies that the set

O.={T} . (c) rwe oY neN}U {T) . (1-¢):we oY n e N}, (2.27)
is finite. By construction, the partition obtained by the points in S, U O, is Markov.
O

The procedure described at the beginning of this section can therefore be applied
to any random map L. with rational cutting point ¢, yielding an explicit expression
for the invariant density function f,, .. As we see from Proposition [2.2.6] the rationality
of ¢ is essential here, since for ¢ € [0, %] \ Q the set O, from contains infinitely
many elements. In the following we show that the density f, . is actually continuous
in ¢ for any fixed 0 < p < 1, and that therefore the density of each map L. with
¢ € R\ Q can be approximated by the densities of maps L; for ¢ € Q sufficiently close
to ¢. The result can be proven in a similar way as [DK17, Theorem 4.1], by paying
attention to the fact that now the space of definition of the transformations depends
on the parameter.

2.4.11 Proposition. Fiz 0 <p < 1. Let ¢ € (0, %), such that ¢ # zy, 2zt 2, for
all n > 3. Let (ck)r C (0,3) be a sequence converging to ¢. Then fyc, — fpe in
LY(\). If ¢ = z,, ¢ =2 or¢e =z, | for some n > 3, then the same is true for any
sequence (ck )k that converges to ¢ from the right.

Proof. In this proof we use f. = f, . to denote the density of the unique stationary
measure (.., for any ¢ € (0, 3). Note that the domain of each of these functions is
the interval I. = [¢, 1], that depends on the parameter c. For this reason, we extend
these densities to the whole interval [0,1] by considering, with abuse of notation,
fe:10,1] = R, such that, for any z € [0,1], fe(z) = fe(2)1[q)(2).

The proof now goes along the following lines.

1. We show that there is a uniform bound, i.e., independent of k, on the total
variation and supremum norm of the densities f.,. This is the point in which
we need stronger assumptions on the sequence (¢, ), in case ¢ is one of the critical
points of the random map. It then follows from Helly’s Selection Theorem that
there is some subsequence of (f., ) for which an a.e. and L*()) limit f exist.
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2. We show that f = fz, which by the same proof implies that any subsequence
of (f¢,) has a further subsequence converging a.e. to the same limit f;. Hence,
(fe,) converges to fz in measure.

3. By the uniform integrability of (f,), it then follows from Vitali’s Convergence
Theorem that the convergence of (f.,) to fz is in L'()\).

Step 1. and 2. use Perron-Frobenius operators. For j = 0,1 the Perron-Frobenius
operator P, ; of T, ; is uniquely defined by the equation

[rungar= [sgeT.in vrern.ge =),
and the Perron-Frobenius operator P, of L. is then defined by

Pcf :ch,Of + (1 _p)Pc,lf'

Equivalently, P, is uniquely defined by the equation

/(Pcf)gd/\ :p/f(g 0Tep)dA+ (1 *p)/f(g oT.1)d\ VfeL'(X),ge LX)

(2.28)
Since each L. has a unique probability density f. it follows from [P84] Theorem 1]
that f. is the L' limit of (1 Z;ZOI P71),,>1 and that it is the unique probability
density that satisfies P.f. = f.. From [[12] Theorem 5.2] each f. is a function of
bounded variation. We proceed by finding uniform bounds on the total variation and
supremum norm of these densities.

For the second iterates of the Perron-Frobenius operators we have

1
P2f =" pipjPej(Peif)-

i,j=0

For each ¢é # z,,2,},2, 4 for n > 3, we can find a uniform lower bound § on the
length of the intervals of monotonicity of any map 7., u € Q2, for all values c that
are close enough to ¢. Indeed, for any map T ;, j € Q, the shortest interval is either
the first or the second left most subinterval of the partition. This is due to the fact
that the length of any interval that belongs to the switch region can be larger that
the length of the intervals to the right or to the left of the interval itself. Note that
inf,ep0,1) 177 ;(z)| = 2. Applying [BGI7, Lemma 5.2.1] to T¢;, j = 0,1, and any of
the second iterates T, 4, u € Q?, gives that

Var(Poyf) < Var(f) + 51fl - and - Var(Pewf) < 5Var(f) + 52l

where Var denotes the total variation over the interval [0,1]. Since these bounds
do not depend on c¢, j,u, the same estimates hold for P., so that for any function
f:10,1] — R of bounded variation and any n > 1,

Var(PLf) < spgVar(h) + (24 51711 (229)
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Let (cx)k>1 with ¢, — & be a sequence for which the lower bound § holds for each k.
This means in particular that if ¢ is a critical point, then we consider sequences (cx )
that converge to ¢ from the right. For each k and n, denote by fi , = % ZZ:Ol P, 1.
Since

Sup | fonl < Var(fen) + / Fom dA,

it follows from that there is a uniform constant C' > 0, independent of k,n,
such that Var(fen),sup |fen| < C. The same then holds for the limits f.,. Helly’s
Selection Theorem then gives the existence of a subsequence (k;) and a function f of
bounded variation, such that f., — fin LY(\) and A-a.e. and with Var(f),sup|f| <
C'. This proves part 1. '

By 2. and 3. above, what remains to finish the proof is to show that P@f = f By
([2-28) it is enough to show that for any compactly supported C! function g : [0,1] — R
it holds that

‘/(Paf)gdk—/fgdA‘ = 0.

Note that
[@pair- [ faa <o) [Fao o ar- [ Faar+
-0 [ foorar- [ jon|
For j = 0,1 we can write
[iwenpar- [fon| < |[faetyir- [ @oTar
[ tatootpar- [ o, )
" ‘/fc,cxgoTcki,j)dA—/fgdA’.

The first and third integral on the right hand side can be bounded by ||g||sollf —
fex, i — 0. For the second integral, ||fcki o <Cand [|goT:; —go Tch-,j| d\x — 0
by the Dominated Convergence Theorem. Hence, f = f; and fe, = fain LY(N). O

For each ¢ € {2z, 2,},2,_,} for some n > 3, a uniform lower bound ¢ exists if and
only if the sequence of (¢i)x converges to ¢ from the right. Indeed, if we approach é
from the left, any map T, ;, j = 0,1, presents an interval of monotonicity of length
¢ — ¢k, which becomes arbitrarily small for ¢; approaching ¢. This is the reason we
excluded these points from the theorem.

2.4.12 Example. Consider the random Liiroth map L. for ¢ = ;—g By Proposition

2.4.10| we follow the random orbits of ¢ = % and 1 —c = ;—g
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:: 0,3 0,2 0,2 :: 1,2 0,2 0,2 0,2 1,2 1,2 1,2 1,2
( )-—>( )19(—2 ¢ )24(—223(—221(—217(—216(—218(—214(—2

Figure 2.4: The random orbit of ¢ = % under the random map L.. The numbers (s,d)

above the arrows indicate which sign and digit are assigned at each iteration. The pink node
indicates the points ¢ and 1—c respectively, while the blue one the periodicity of the orbit. The
orbit points are represented through their numerator only, since the common denominator is
25.

By Figure [2.4]it is clear that for any w € {0,1}"

(12 (12
I+ 22 — 1145 22
() -7 ()
for all j > 0, so that the c-Liiroth expansion of ¢ is ultimately periodic of period of
length 10. A Markov partition of L. can be given by
12 113 14 16 17 18 37 38 21 22 23 24
25727257257 257257257507 507 257257 257257 " |’

and the corresponding Perron-Frobenius matrix P is the 13 x 13 square matrix

0 0 0 0 0 O 02*0 0 0 0 0
0 0 0 0 0 O 02%*o0 0 0 0 0
0 0 0 0 0 o02Y02v0 0o 0 o0
0 0o 0 0 020 020 o 0 o0
0 0 0 020 0o 020 0o 0 o0
o 0o 0 020 o o o020 o0 o
P = o o 020 0o 0o 0 02t o0 0 o
0 o 020 0o 0o 0 020 0 o0
o 0o 020 0o 0 0 o0 2=t 0 o0
oo 020 0o 0 0 o0 0 27t o
6 022 0o 0o 0o 0O 0 O 0 0 2°' 0
6 o2 0o o 0o 0 0 O O O o0 27%
627 o 0o o o o 0 O 0 O o0 27!

1

We can also immediately determine a Markov partition for L. in case ¢ = 5.

2.4.13 Proposition. For any integer k > 1, the Markov partition of L. for ¢ =

s given by
k
1

=2

e

Proof. First, note that for any integer £ > 3, the map 7} 1 is Markov, and its Markov

partition can be given by ‘
12

Indeed, since 3 < 1—1 < 1— 2, then Ty (1- #) = 2. If L is even, the point z, = 2

. : . 2 2 2 2 - _ _
is already in S 1 otherwise ;77 < 7 < =7 and moreover § < z 1 =

Thus, TL%(%) :%Jri 68%
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We now follow the random orbit of 1 —¢c=1 — 2% Since

L1 1 1
2=yt <y <l-gm ==,
for : =2,3,...,k then
g 11
Ozllc:{Tw{L(l—c):wEQN,nEN}:U{l—Qi,Qil,l}. O
i=2

From Proposition [2.4.13} the Markov partition obtained for L L consists of 3-(2F —
2

1) + (k — 1) intervals. Indeed for n € {3,...,2%} the subintervals [2,, z,_1) are split
into 3 parts, while [23, 21 is divided into k pieces, due to the points {1 — 3 }i=2. . -
The Perron-Frobenius matrix P can be computed by considering that

1 1 1 1
T 1—-—1- = ={1—-—=,1— =
L (< 2i—1 ’ 21)) < 21—2’ 21—1)
1 1 1 1
A(( 21—17 21)) (21—1’21—2)’

(5 (o) (- 2)) - ()

and

We obtain
0 (2k(2k—1))7! 0 w0 pe27' 0 0 - p27' 0
0 2k 2k 1))t 0 0 pe27t 0 0 - pi27' 0
0 2k 2k -1))? 0 0 po2~'pi27t 0 0 0
0 (2k(2k—1))7? 0 0 pi27 ' po27t o0 0 0
P = 0 (2F(2F—1))~* 0 0 pi2~tp2* o - o o |,
0 (2k(2kF—1))7? 0 0 pi27' 0 po27! - 0 0
0 (2k(2k—1))~! 0 0 p127t 0 0 - po27' 0
2k 2k —1))7! 0 @k@k—1)~t ... 27t o 0 o - 0 27!
2k 2k —1))? 0 @k@kF-1)"t ... 271 o 0 o - o0 27!
where pg = p and p; = 1 —p. Any non-trivial eigenvector v = (vy, ..., V325 _1)4 (k—1))

associated to the eigenvalue 1 of P defines an L.-invariant density step function that
takes value v; on the subintervals (s;_1,s;) of the chosen Markov partition. The
vector v can be picked in such a way that it defines a probability measure fip, 2 - In
the following, we give a couple of examples for k¥ = 2 and k = 3 that illustrate the
procedure used to compute the density function and show the pattern of P.

2.4.14 Example. For k = 2 a Markov partition of Li is given by the points

1131113111537,
4748736°378724727874’8 |
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This generates the matrix

SO oo o oo

12-1
121

1271
121
12-1
12-1
121
12-1
121
121
0
0

OO OO OO oo

12-1
121

|
e I =

SO OO OO oo
GJCD@@‘@OJGJCD

6—1
6=t 0

o

OO OO OO OO

1
6—1

3

The eigenspace associated to the eigenvalue 1 is

2/(2p+3)
2/(2p+3)
2/(2p+3)
2/(2p+3)
2/(2p+3)
2/(2p+3)

(2p+1)/(2p+3)
(2p+1)/(2p+3)

1
1

7

po2~!
po2~"
po2~"
po2~"
po2~!
po2~!
p1271
pi27!
1 0
2-1 0

SO OO OO OO

N

veR\{0},

and the corresponding normalised density function is

4
2p+3
dp+2
2p+3

2

ifx e

ifx e

ifrx e

(11
_4’2>’
(13
_2’4>’

(3
—,1].
)

p127!
pi127t
pi127t
pi1271
p1271
p127!
po2~!
po2~*

0

0

OO OO OO oo

The explicit formula for the unique invariant density allows to say more on the
digits frequency and the Lyapunov exponent. Recall from Example 2.4.2] that the
frequency of a digit d € {2,3,4} is given by

<ji1<n:d; =
o= lim #{1<j<n:djw,z)=d}

n—00 n

= T(0,d) T T(1,d)-

It then follows by Birkhoff’s Ergodic Theorem that, for m, x fhp, 1-€. point (w, x),

% + 2 2 1
Mo = , M3 =, M= .
*Top+3 P 32p+3) ' 3(2p+3)
Recall the definition of A from (2.15)). We obtain
plog 64 + log 27648
Ampxu,p% = 6p+9 <Amp><A-
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That is, for m, x [hp, 1-8.€. point, the approximants

’;—" obtained by the iteration of

the random %—Lﬁroth map are in general worse than the corresponding ones obtained
via the random 0-Liiroth map with countably many branches.

2.4.15 Example. For k = 3 the Markov partition of L 1 is obtained by adding to
the set Sé the points % and %, resulting in the matrix

05671
05671

05671
05671

05671
056!
05671
05671
05671
05671

00427 ... 0
00427 ... 0
00427 ... 0
00427 ... 0
00427 ... 0
00427 ... 0
00427 ... 0
00427 ... 0
00427 ... 271
00427 ... 271

po2~ 1 0
p0271 0
p0271 0

po2~ " p127!

po2~ ! p127!
p127 " po27!
p127 " po27!
p127 1 0

0 0

0 0

p1271 0
p1271 0

p1271 0
0

[}

—1

| OO0 OO

S

Po

NN

0
0
0
2
0
0

The associated L 1 -invariant probability density of the measure p,, 1 is

8 i 2 e 11
__°  freliz
2p2 +3p+5 1874)°

4 4 11
L lfﬂje - =1,
202 +3p+5 1472
4p? +2p+4 (1 3

= _— f _, =
v@) =57 aprs 1O€ 2’4)’
4p> +6p+4 . (3 7
- ifaxe |-, -],
22 +3p+5 18
4p? 12 [
4p” +6p+12 ifre 371.
202 +3p+5 K

The frequency of the digits d € {2,3,...,8} is given by

_ 2p°+2p+3 _ __2(pt]) — p+1
T2 = 2p743py5> T3 = 3(2p>+3p+5)° 4 T 3(2p+3p15)°
_ 2 _ 4 _ 2
T5 = 5(2p2+3p+5)° 6 — I5(2pZ+3p+5)’ 17 = 21(2p+3pt5)’
- 1
8 = T(2p*+3p+5)°
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Moreover for my, X pu, 1-a.c. (w,x) we have by (2.22) that

Aw,z) = dzzlog(d(d = D)hp ([;’ dil>)

- 8 logh6 log42 log30 n log 20
T 2p2 4+ 3p+5\ 56 42 30 20
dp +4 log12 log6 2p° +2p+ 3 002
22 +3p+5\ 12 6 22 +3p+5 ©
_ 1.38628p? + 3.40908p + 7.49448 3
= < = < Apxa
2p2 +3p+5 2 P

§2.5 Remarks

1. Finding an explicit formula for the density of an absolutely continuous invari-
ant measure is not straightfoward. The statement holds for deterministic as well
as for random interval transformations, including e.g. the Ito-Tanaka contin-
ued fraction transformations and the affine random map L. with finitely many
branches. Also in the Markov case, even though a priori it is possible to repres-
ent the Perron-Frobenius operator in matrix form, it might be that the matrix
is very heavy to compute due to the high number of points of the Markov par-
tition. Chapter [3] provides a procedure to explicitly determine the density for
general random piecewise affine interval maps.

2. Just as the alternating Liiroth map T4 can be seen as a linearisation of the
Gauss map G, the maps Ty . and 77, can be seen as a linearised version of
the flipped a-continued fractions maps 77_, and 7T,, that will be introduced
and examined in Chapter [l When talking about approximation theory, it is
indeed inevitable to refer to continued fractions, since the best approximants of
an irrational number x are obtained by considering the convergents of the point
in the standard continued fraction expansion.

3. For piecewise affine expanding interval maps, the Markov property makes any
invariant density a step function, i.e., a function that is constant on each element
of the Markov partition. The same is true when replacing the Markov property
with a matching condition, as shown in [BCMP18| Theorem 1.2]. The notion
of the dynamical phenomenon of matching, defined for deterministic systems in
, will be extended for random interval maps in Chapter [5, Furthermore,
an analogous results on the structure of the density function will be derived
using the algebraic procedure of Chapter [3]
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