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§1.1 Motivation and context

Number expansions are ways of representing numbers with specific symbols and con-
sistent rules. The algorithms, that combine the digits to code numbers, can be ob-
tained through the repeated iteration of particular interval maps, called number sys-
tems. The advantage of this description is that all tools coming from Ergodic Theory
are available, and they can be used to describe general properties of the expansions.
This thesis adopts this dynamical approach to study new number expansions.

The interval maps of interest are special instances of discrete-time dynamical
systems. A discrete-time dynamical system models the evolution of a phenomenon
over time through a transformation T acting on a set X. Morally, X represents all
possible states and T is the law that rules the evolution, so that, if a system is at
state x ∈ X at time zero, then it will be at state T (x) after one unit of time, and in
general at state

Tn(x) = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n

(x),

after n units of time, for any n ∈ N. For interval maps, the state space X is an
interval in R and the evolution of any number x ∈ X is described in terms of its orbit
{Tn(x)}n∈N.

The procedure that codes numbers through the iteration of an interval map
T : X → X is the following. The interval X is divided into finitely or countably
many subintervals and to each of them a digit d is assigned. A number expansion of a
point x ∈ X is obtained by considering the sequence of digits (dn(x))n∈N realised by
following the orbit of x. Specifically, the first digit of the sequence is determined by the
symbol associated to the subinterval in which x lies, the second by the one correspond-
ing to the position of T (x) and in general the n-th digit by the position of Tn−1(x).
Figure 1.1 shows examples of classical number systems: the β-transformation Tβ for
β = 1+

√
5

2 , the Lüroth map TL and the Gauss map G.
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Figure 1.1: Classical examples of interval maps producing number expansions.

This strong connection between the orbits of a point x, {Tn(x)}n∈N, and its corres-
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ponding digits sequence (dn(x))n∈N is the reason why the study of the former reveals
properties of the latter. To investigate the quantities Tn(x), rather than computing
all orbits of all points, one looks at the probability that the orbits of typical points
pass by certain areas of the spaceX, which corresponds to the probability that specific
digits are assigned. A set of high probability corresponds then to a set that is often
visited by most of the points of X. In Ergodic Theory, this information is encoded in
the so-called invariant measures.

An invariant measure is a measure that is preserved by the action of T , in the
sense that the set of points that T maps to a set in one unit of time has the same
measure as the set itself. For number systems, explicitly knowing such measures is
extremely helpful for, e.g., the computation of the frequency of the digits in the as-
sociated number expansions, which expresses the percentage of seeing a digit d in
typical expansions, or the entropy, which estimates the possible number of different
blocks of digits of length n that can be found by the repeated iteration of T . Ideally,
meaningful invariant measures should describe the long-term behaviour of the orbits
for a large set of points. Here large is intended with respect to the Lebesgue measure,
which is used as a reference measure. For this reason, of particular relevance are
invariant measures that are absolutely continuous with respect to Lebesgue and are
given in terms of density functions. While there exist various results on the existence
of such measures for interval maps, finding explicit formulas for the corresponding
density functions is still a delicate problem for very many dynamical systems.

This thesis provides explicit expressions for the density functions of absolutely con-
tinuous invariant measures for general families of interval maps, that include random
maps and infinite measure transformations, not necessarily number systems. In the
random setting, at each time step, instead of a single transformation, a set of maps is
available and one of them is applied according to a probabilistic regime. In the infinite
configuration, the measure of the state space is infinite and the tools coming from
probability theory are no longer available. Natural extensions, the Perron-Frobenius
operator and the dynamical phenomenon of matching are some of the techniques ex-
ploited to obtain such results. In particular, in this thesis the notion of matching is
for the first time recognised in an infinite measure system and the definition, known
so far for deterministic transformations only, is extended to cover random interval
maps as well.

This thesis also presents new developments in the area of number expansions,
by introducing new representations of numbers obtained through the iterations of
random maps and infinite measure transformations. These include random c-Lüroth
expansions, flipped α-continued fractions and random signed binary expansions. The
properties of these number expansions are analysed by applying the results obtained
previously on the density functions. In particular, explicit expressions for the meas-
ures are used to investigate the digit frequency, the Krengel entropy, the Hamming
weight and the quality of the approximations.
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The remaining part of this chapter introduces all the necessary mathematical tools
in more details.

§1.2 Discrete dynamical systems

Ergodic theory is the branch of dynamical systems that studies measure-preserving
transformations defined on measure spaces. Here we introduce the basic concepts.

§1.2.1 Deterministic
Let T : X → X be a transformation. To study the long term behaviour of the system
we determine the probabilities to observe typical trajectories within certain areas of
the space. This information is provided by the invariant measure.

1.2.1 Definition (Measure preserving). A measure preserving dynamical sys-
tem is defined as the quadruple (X,B, µ, T ) where the triple (X,B, µ) is a measure
space and the measurable map T : X → X preserves the measure µ, i.e. µ(T−1(B)) =

µ(B) for all B ∈ B. The system is also said to be T -invariant with respect to µ.

Equivalently, T is measure-preserving if T∗µ = µ, for T∗µ the push-forward of µ
with respect to T , i.e.,

T∗µ(B) = µ(T−1(B)), B ∈ B.

(X,B, µ) is said to be a finite or infinite measure space if µ(X) < ∞ or µ(X) = ∞,
respectively. In this dissertation, for the infinite case, we still assume X to be a
countable union of sets of finite measure, i.e., we ask the space to be σ-finite. Two
dynamical systems that present the same dynamics, that is for which the long-term
and average behaviours are essentially the same, are called isomorphic. We make this
precise in the following definition.

1.2.2 Definition (Isomorphic). (X,B, µ, T ) and (Y,F , ν, S) are said to be iso-
morphic if there exist sets B ∈ B and F ∈ F and a map θ : B → F such that

1. µ(X \B) = ν(Y \ F ) = 0,

2. T (B) ⊆ B and S(F ) ⊆ F ,

3. θ is invertible and bi-measurable,

4. S ◦ θ = θ ◦ T ,

5. ν = µ ◦ θ−1.

In the following, let (X,B, µ, T ) be a measure preserving dynamical system. A
subset B ∈ B is said to be invariant for T if T−1(B) = B. Clearly, if the space X
is the union of two or more disjoint invariant subsets of positive measure, then the
study of the properties of T on X reduces to the study of its properties on each of
these invariant subsets. It is therefore natural to study the transformations defined on
spaces that do not decompose into such subsets. Such a property is called ergodicity.
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1.2.3 Definition (Ergodicity). (X,B, µ, T ) is said to be ergodic with respect to µ
if for every B ∈ B, such that T−1(B) = B, either µ(B) = 0 or µ(X \ B) = 0, i.e., if
the only invariant sets are trivial.

A property is said to hold almost everywhere (a.e.), if the set of points for which
it does not hold is contained in a set of measure zero. In a probability space, ergodi-
city implies Birkhoff’s Ergodic Theorem, which relates spatial averages to temporal
averages.

1.2.4 Theorem (Birkhoff’s Ergodic Theorem). If (X,T, µ,B) is ergodic and
µ(X) <∞, then

lim
n→∞

1

n

n−1∑
k=0

f ◦ T k(x) =

∫
X

fdµ, µ a.e.,∀f ∈ L1(X,R).

Without the assumption µ(X) < ∞, Birkhoff’s Ergodic Theorem does not hold.
More generally, for infinite measure preserving dynamical systems many classical res-
ults of ergodic theory fail, and a new approach is required, see Section 1.2.3.

When the dynamical system under consideration is an interval map T : I →
I, that leads to number expansions, Birkhoff’s Ergodic Theorem can be used to
obtain the average number of occurrences, called frequency, of specific digits in typical
expansions. Given x ∈ I, the number of visits of x to a measurable set B of positive
measure is given by

#{0 ≤ k ≤ n− 1 : T k(x) ∈ B}
n

=
1

n

n−1∑
k=0

1B(T k(x))→ µ(B).

However, to apply Theorem 1.2.4, it is necessary to know the invariant measure µ and
finding an invariant measure for a transformation is not an easy task. The measures
in which we are interested are equivalent to the Lebesgue measure λ.

1.2.5 Definition (Absolutely continuous). A measure µ on Borel subsets of the
real line is said to be absolutely continuous with respect to λ if for every measurable
set B, λ(B) = 0 implies µ(B) = 0. Equivalently, there exists a Lebesgue integrable
non-negative function f , called density, on the real line such that

µ(B) =

∫
B

fdλ, (1.1)

for all Borel subsets B of the real line. The density, also known as the Radon-
Nikodym derivative, of the absolutely continuous measure µ is only defined up to a.e.
equivalence. If also λ is absolutely continuous with respect to µ, then the measures
are said to be equivalent.

Most of the results on the existence of such measures are proven by studying
the transfer operator P , known as Perron-Frobenius operator, of the system. The
operator P of an interval map T : I → I is defined by∫

B

PT fdλ =

∫
T−1(B)

fdλ, (1.2)
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for any f ∈ L1(I,R) and B ∈ B. If the map T is also piecewise affine, then PT can
be written as

PT f(x) =
∑

y∈T−1(x)

f(y)

|T ′(y)|
.

We refer to the book of [BG97] for a classical introduction to the subject and the
properties of this operator. An interval map T : I → I is said to be expanding if
|T ′(x)| > 1, for any point x in which the derivative is defined. For one-dimensional
piecewise monotonic and expanding transformations T ∈ C2, the existence of abso-
lutely continuous invariant measures (acim) is by now pretty well understood. Indeed
the seminal paper of [LY73] shows that a fixed point of the Perron-Frobenius operator
P of such a transformation T exists and it is the density of an absolutely continu-
ous invariant measure µ. For these transformations, [LY78] shows that the number
of acims that a map admits is strictly connected to the number of discontinuities.
Furthermore, [K90, G09] propose two similar procedures to obtain formulas for the
densities of such measures, by connecting them to the solution vectors of a matrix
equation. In Chapter 3 it is shown how to obtain the formulas for the densities when
the dynamics of the system is not deterministic, but countably many transformations
are available at each iteration.

Another way to possibly obtain the formulas for the densities of acims is via
the construction of a natural extension. Roughly speaking, a natural extension of a
system is the minimal invertible dynamical system that contains the original system
as a subsystem. Invertibility is obtained by extending the dimensions of the space of
the original system. The existence of such a construction is obtained in [R61]. In the
same article, it is also shown that any two natural extensions of the same dynamical
system are isomorphic.

1.2.6 Definition (Natural extension). Let (X,B, µ, T ) be a dynamical system
with T a non-invertible transformation. An invertible dynamical system (Y,F , ν, S)

is a natural extension of (X,B, µ, T ), if there exist two sets B ∈ B and F ∈ F and a
function θ : F → B such that:

1. µ(X \B) = ν(Y \ F ) = 0,

2. T (B) ⊆ B and S(F ) ⊆ F ,

3. θ is measurable, measure preserving and surjective,

4. θ ◦ S = T ◦ θ,

5.
∨∞
n=0 S

nθ−1(B) = F , where
∨∞
n=0 S

nθ−1(B) is the smallest σ-algebra containing
the σ-algebras Snθ−1(B) for all n ≥ 0.

This approach has been shown to be very successful in the non-affine case, es-
pecially in the field of continued fraction transformations, see Section 1.3.3 and
[N81, K91, KSS12, AS13], for example. Chapter 4 exhibits a natural extension for a
class of continued fraction transformations with infinite measure.
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For some families of transformations, e.g. continued fraction maps, the natural
extension map is quite canonical, and the difficulty of the approach lies in finding the
appropriate domain on which the map acts. See Section 1.3.3 and Figure 1.8 for an
example. For one-dimensional maps, it is often the case that the natural extension is
a planar map and the function θ from Definition 1.2.6 corresponds to the projection
on one of the two components. What has been proved to be fundamental in such
instances, in order to recover the domain of the natural extension, is the property of
matching, or synchronization, of the original system T .

1.2.7 Definition (Matching). A piecewise smooth interval map T is said to have
matching if for any discontinuity point c, of T or its derivative T ′, its orbits of the
left and right limits eventually meet. That is, there exist non-negative integers M
and N , called matching exponents, such that

TM (c−) = TN (c+), (1.3)

for
c− = lim

x↑c
T (x) and c+ = lim

x↓c
T (x).

For specific families of interval maps defined on a finite measure space, and in
particular for β-transformations and continued fraction type maps, the property of
matching has been thoroughly analysed in order to find expressions for the invariant
densities. See for instance [NN08, DKS09, KSS10, KS12, KSS12, DK17, BCK17,
BCMP18, KLMM20]. Differently from these results, Chapter 4 considers matching for
a class of infinite dynamical systems and Chapter 5 introduces the notion of random
matching for random dynamical systems. To this aim, in the following sections we
give some background on random and infinite (measure) dynamical systems.

§1.2.2 Random
The qualitative analysis of iterations of a single map can be extended to a more
general setting where, at each step, an element is chosen from a set of transform-
ations according to a stationary process. See [K86, A98] for a basic introduction.
This generalisation is quite natural when considering that, in most physical ap-
plications, at every iteration it is usually the case that not the same map, but a
slightly modified version of it, is applied. This phenomenon is usually referred to as
a stochastic perturbation. Such systems have been recently used also to study in-
terference effects in quantum mechanics, fractals and particle systems on lattices see
[BG92, B93, KY07], for example. In general, there is a rich and quite recent literature
on random maps, both considered as position independent random perturbations of
transformations, and as position dependent ones in the context of iterated function
systems, see [G84, BL92, BK93], for example. In all these situations, the dynamics
changes from deterministic to random. Roughly speaking, a random map describes
a system evolving in discrete time in which at each time step one of a number of
transformations is chosen according to a probabilistic regime and applied. One way
to describe a random map, in which the process for choosing the individual maps is

15
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i.i.d., is with a pseudo-skew product transformation.

For an at most countable set of symbols Ω, denote by ΩN the set of one-sided
sequences. The left shift σ : ΩN → ΩN maps a sequence (ωn)n∈N to a sequence
(un)n∈N such that un = ωn+1 for all n ≥ 1.

1.2.8 Definition (Pseudo-skew product map). Let {Tj : I → I}j∈Ω be a col-
lection of transformations defined on the same interval I and let Ω ⊆ N be the index
set of these available maps. Let σ : ΩN → ΩN be the left shift on one-sided sequences.
The random or pseudo-skew product map R : ΩN × I → ΩN × I is defined by

R(ω, x) = (σ(ω), Tω1
x),

such that the coordinates of ω determine which of the maps Tj is applied at each step.

1.2.9 Definition (Stationary measure for pseudo-skew product maps). Let
p = (pj)j∈Ω be a positive probability vector, i.e., pj > 0 for all j ∈ Ω and

∑
j∈Ω pj = 1.

Each pj represents the probability with which we choose the map Tj . Denote by mp

the p-Bernoulli measure on ΩN and let µp be a probability measure on I that is ab-
solutely continuous with respect to the one-dimensional Lebesgue measure λ. Denote
its density by dµp

dλ = fp. If µp satisfies for each Borel set B ⊆ I that

µp(B) =

∫
B

fp dλ =
∑
j∈Ω

pjµp(T−1
j B), (1.4)

then the product measure mp × µp is an invariant probability measure for R. µp is
called a stationary measure and fp an invariant density for the pseudo-skew product
R.

There exist various sets of conditions under which the existence of such an in-
variant measure is guaranteed, see for example [M85, P84, GB03, BG05, I12]. In
particular, for piecewise random interval maps see the results of [P84] for a finite
family of transformations and of [M85] and [I12] for the countable case.

The introduction of randomness in systems defining number expansions has some
quite remarkable consequences. For instance, a single random map produces many
more expansions per number than a deterministic transformation, allowing the study
of the properties of many number expansions simultaneously. In Chapter 5 this prop-
erty is used to compute the frequency of the digit 0 in signed binary expansions for
Lebesgue almost every point x ∈ [−1, 1].

§1.2.3 Infinite
Infinite ergodic theory studies dynamical systems with an infinite invariant measure.
These systems differ from transformations admitting a finite invariant measure, be-
cause for them most of the tools coming from probability theory are not applicable
and, as a consequence, classic results from (finite) ergodic theory do not hold. We
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refer to the books of [A97, KMS16] for an introduction to the subject.

A first, crucial example is presented by Birkhoff’s Ergodic Theorem. For a finite
measure system T : X → X, µ(X) < ∞, Theorem 1.2.4 describes the limiting
behaviour of the number of times the orbit of a typical point enters a specific region
of the space. Precisely, for any measurable set B and x ∈ X, let

SBn (x) =

n−1∑
k=0

1B ◦ T k(x), n ≥ 1.

SBn (x) counts how often the orbit of x visits the set B before time n. Birkhoff’s
Ergodic Theorem expresses the rate at which the occupation time of B diverges as
being proportional to n, asymptotically the same for typical points and dependent on
the set B only through its measure, i.e.,

1

n
SBn (x) −−−−→

n→∞

µ(B)

µ(X)
µ-a.e. x ∈ X.

For an infinite measure preserving transformation, this is no longer true, as

1

n
SBn (x) −−−−→

n→∞
0 µ-a.e. x ∈ X,

not revealing any dependence on the set. This is just the first of the many substantial
differences between finite and infinite dynamical systems. Another one involves Poin-
caré’s Recurrence Theorem. For a finite measure preserving system T , the theorem
says that for every measurable set B of positive measure, almost every point of the
set will return to the set itself under iterations of T . For the infinite scenario, this is
not always the case, since only conservative systems have this property.

1.2.10 Definition (Conservative). A measure preserving dynamical system
(X,B, µ, T ) is said to be conservative if

µ

( ∞⋃
n=1

T−nB \B
)

= 0 for all B ∈ B, µ(B) > 0.

1.2.11 Definition (Wandering sets). A set W ∈ B is said to be a wandering set
for T if {T−n(W ) : n ≥ 0} is a collection of pairwise disjoint sets.

In other words, a measure preserving dynamical system is conservative if every
wandering set has measure 0. A handy way of determining if a system is conservative
is given by the existence of sweep-out sets.

1.2.12 Definition (Sweep-out sets). A set Y ∈ B is said to be a sweep-out set
for T if 0 < µ(Y ) <∞ and

µ

(
X \

∞⋃
n=0

T−n(Y )

)
= 0.
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1.2.13 Theorem (Maharam’s Recurrence Theorem). If (X,T, µ,B) is meas-
ure preserving and has a sweep-out set, then it is conservative.

1.2.14 Theorem (Aaronson’s Ergodic Theorem). Let (X,T, µ,B) be a conser-
vative, ergodic, measure preserving infinite system, and let (an)n≥1 be any positive
sequence. Then

limn→∞
1

an
SBn (x) =∞ µ-a.e. x ∈ X,

or
limn→∞

1

an
SBn (x) = 0 µ-a.e. x ∈ X.

The theorem tells that the pointwise behaviour of occupation times is extremely
chaotic and that an analogous version of Birkhoff’s Ergodic Theorem for infinite
measure systems can’t provide the same amount of information. One powerful way
to obtain information on such systems is by looking at the dynamics that happens
only in specific subsets of finite measure. More precisely, let Y be a sweep-out set of
a conservative system T with measure µ and define the hitting time of Y , by

ϕ : X → N, ϕ(x) = inf{n ≥ 1 : Tn(x) ∈ Y }.

When restricting the function ϕ to the set Y , the map ϕ is called the return time to
Y and it counts the number of steps the orbit of x ∈ Y needs to come back to Y .
Note that the conservativity of the map T ensures that ϕ(x) < ∞ for µ-a.e. point
x ∈ Y .

1.2.15 Definition (Inducing). The map TY : Y → Y given by

TY (x) = Tϕ(x)(x)

is called the induced map of T on Y .

TY is an acceleration of T , achieved by applying as many iterates of T as is required
to come back to Y . Basic properties of T , such as invariant measures, ergodicity and
conservativity can be recovered from TY by a proper choice of a sweep-out set Y . An
example of an induced map is given in Section 1.3.3.

We now discuss in more detail some examples of classic interval maps producing
number expansions: β-transformations, Lüroth maps and continued fraction trans-
formations. We introduce them separately, in the next sections.

§1.3 Number systems

Number systems offer algorithmic ways of coding numbers with a specific set of sym-
bols, called digits. This set, called alphabet, can consist of finitely or countably many
elements. For example, in the canonical decimal system, we represent numbers as
sequences of digits 0, 1, . . . , 9, with each position in the sequence corresponding to a
specific power of 10. For computer hardware and software, we usually use the binary
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system, so that we write numbers as strings of digits 0 and 1, where the position of
each digit corresponds this time to a specific power of 2. For example, the number
37
2 , can be written as

37

2
= 1 · 101 + 8 · 100 + 5 · 10−1 = 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 0 · 20 + 1 · 2−1.

The first expression leads to the sequence 18.5, the second to 10010.1, which is the
representation of the number in the binary system. The sequences of digits can be
obtained through the iteration of one-dimensional discrete time dynamical systems
T : X → X. The idea is to discretize the space, by dividing up the state space X into
finitely or countably many subintervals and keep track of which piece the system visits
at each time step. This is done by assigning a digit to each subinterval: in this way,
the evolution of a point {Tn(x)}n is given in terms of an infinite sequence of symbols.
Infinite sequences are the main objects of study in symbolic dynamics. In the follow-
ing paragraph we give some basic definitions that will be used in the coming chapters.

For an alphabet A, the set of one-sided sequences (an)n∈N of symbols from A is
denoted by AN. A word, or a block, over the alphabet A is a finite string of symbols
from A. The empty word is denoted by ε and it represents the sequence of no symbols.
The length of a block u corresponds to the number of symbols it contains, and it is
denoted by |u|. For each n ∈ N, the set An is the set of all blocks of length n of
symbols from A, and we set A0 = {ε}. We use square brackets to denote cylinder
sets, i.e., for any block u,

[u] = {(an)n∈N ∈ AN : a1 · · · a|u| = u}.

The concatenation of a pair of words u, v is given by the word uv, of length |uv| =

|u| + |v|. For each n ∈ N, un corresponds to the concatenation of n copies of u, and
we also define u∞ = uuu . . . and u0 = ε. Recall that the left shift σ : AN → AN maps
each sequence (an)n∈N to a sequence (bn)n∈N such that bn = an+1. We refer to the
book [LM95] for a basic introduction on the topic.

The next example shows an interval map producing number expansion with al-
phabet A = {0, 1}.

1.3.1 Example. Let

D(x) =

{
2x if x ∈ [0, 1

2 ),

2x− 1 if x ∈ [ 1
2 , 1],

be the doubling map, see Figure 1.2. Consider the partition of the interval given by
I0 = [0, 1

2 ) and I1 = [ 1
2 , 1], and assign the digit 0 to I0 and the digit 1 to I1.

The iteration of the map D to each point x ∈ [0, 1] produces binary expansions,
i.e., sequences (dn(x))n∈N of 0 and 1 such that

x =

∞∑
n=1

dn(x)

2n
.
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0 1
2

1

1

I0 I1
x

Figure 1.2: The doubling map D and in red the orbit of x = 3/8.

For example, let x = 3/8 and consider its orbit under the doubling map D. Since
x ∈ I0, the first digit in its binary expansion is d1 = 0. D(x) = 3/4 ∈ I1, so d2 = 1.
D2(x) = 1/2 ∈ I1 so d3 = 1. Finally, Dn(x) = 0 ∈ I0 for n ≥ 3, since 0 is a fixed
point of the map D, i.e., D(0) = 0, and so dn = 0 for n ≥ 4, obtaining the sequence
0110∞, such that

3

8
=

0

21
+

1

22
+

1

23
+
∑
n≥4

0

2n
.

See Figure 1.2 for a visualisation of the orbit of x = 3/8.

The doubling map is a member of a family of piecewise affine maps called β-
transformations, that produce representations of numbers as series of powers of β ∈
R>1. We discuss them in the next section.

§1.3.1 β-expansions
For β > 1, any real number x ∈ [0, 1) can be written as

x =

∞∑
n=1

dn(x)

βn
, (1.5)

where the digits dn(x) are elements of the set {0, 1, . . . , bβc} and bβc is the largest
integer not exceeding β. The expression from (1.5) is called a β-expansion of x and
it is produced by the iteration of the β-transformation Tβ : [0, 1]→ [0, 1], defined by

Tβ(x) = βx mod 1. (1.6)

The digits dn(x) are recovered by setting d1(x) = bβxc and

dn(x) = d1(Tn−1
β (x)), n ≥ 1.

For an integer base β, the corresponding β-transformation has full branches, i.e.,
the map is piecewise surjective. See Figure 1.2 and 1.3(a) for an example in base 2

and base 3 respectively. In this situation the iteration of the transformation gives rise
to basically unique β-expansions. That is, Lebesgue almost all numbers in the unit
interval have a unique β-expansion and the ones that do not have a unique one, have
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(a) β = 3

0 1
β

1

1

1
β

(b) β = 1+
√

5
2

0 1
β

2
β

3
β

4
β
1

1

β − 4

(c) β = 4.37

Figure 1.3: Examples of β-transformations Tβ.

two.

Expansions in non-integer base have been introduced in [R57]. For a non-integer
base, not all branches of the associated β-transformation are full, see Figure 1.3(b)
and (c) for an example. In this context, the situation is quite different, as almost all
numbers have infinitely many different β-expansions, see [EJK90, S03, DdV07], for
example. One way to simultaneously obtain all possible β-expansions of a point x,
is described in [DK03]. The construction requires two generalizations of the map Tβ ,
given by Hβ and Lβ , both defined from the interval [0, bβcβ−1 ] to itself. More precisely,
let

Hβ(x) =

{
βx mod 1 if x ∈ [0, 1),

βx− bβc if x ∈ [1, bβcβ−1 ],

and

Lβ(x) =

{
βx if x ∈ [0, bβc

β(β−1) ],

βx− i if x ∈ ( bβc
β(β−1) + i−1

β , bβc
β(β−1) + i

β ] for i ∈ {1, 2, . . . , bβc}.

Both maps generate β-expansions, with digits

dn(x) =

{
i if Hn−1

β (x) ∈ [ iβ ,
i+1
β ) for i ∈ {0, . . . , bβc − 1},

bβc if Hn−1
β (x) ∈ [ bβcβ , bβcβ−1 ],

or

dn(x) =

{
0 if Ln−1

β (x) ∈ [0, bβc
β(β−1) ],

i if Ln−1
β (x) ∈ ( bβc

β(β−1) + i−1
β , bβc

β(β−1) + i
β ].

The expansions generated byHβ are called greedy β-expansions, since at each iteration
the map assigns the largest digit possible. On the other hand, the expansions induced
by Lβ are called lazy, since this time at each iteration the map assigns the smallest
digit possible. Superimposing the greedy and the lazy β-transformations on the same
state space breaks down the interval into overlapping regions, called switch regions,
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of the form
Si =

[
i

β
,
bβc

β(β − 1)
+
i− 1

β

]
, for i = {1, 2, . . . , bβc},

and an equaliser region,

E =

[
0,
bβc
β − 1

]
\

⋃
1≤i≤bβc

Si,

whereHβ and Lβ coincide. On the switch region Si, the mapHβ assigns the digit i and
Lβ the digit i − 1, while on E both maps assign the same digit. As a consequence,
the iteration of the pseudo-skew product map R = {Hβ , Lβ}, also called random
β-transformation, can produce for the same point x uncountably many different β-
expansions, depending on which map (and therefore on which digit) is chosen in the
switch regions. See Figure 1.4 for a visualisation of the maps Hβ and Lβ , and Figure
1.5 for the associated pseudo-skew product system.

0 1
β

2
β

bβc
β−1

bβc
β−1

1

(a) Hβ

0 bβc
β(β−1)

bβc
β(β−1)

+ 1
β
bβc
β−1

bβc
β−1

bβc
β−1
− 1

(b) Lβ

Figure 1.4: Example of the greedy and lazy β-transformations, for β = 2.39.

For further generalisation on the set of digits and more on random β-transformations,
see [DdV05, DHK09, DK10, DK13, K14], for example. In Chapter 3 we develop an
algebraic procedure to explicitly compute the invariant measure and the ergodic prop-
erties of a class of systems that include random β-transformations.

Differently from β-transformations, that represent numbers using a finite alphabet,
Lüroth series use an infinite one, given by all positive integers greater than 1. We
introduce them in the next section.

§1.3.2 Lüroth series
Any real number x ∈ (0, 1] can be written in the form

x =
1

`1(x)
+

1

`1(x)(`1(x)− 1)`2(x)
+ . . .+

1

`1(x) · · · `n−1(x)(`n−1(x)− 1)`n(x)
+ . . . ,

(1.7)
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β
bβc

β(β−1)

2
β
· · · bβc

β−1

bβc
β−1

1

bβc
β−1
− 1

Figure 1.5: The random β-transformation for β = 2.39.

for some positive integers `n(x) ≥ 2. The series from (1.7) is called the Lüroth
expansion of the point x and the digits `n(x) are obtained through the iteration of
the Lüroth map TL : [0, 1]→ [0, 1] defined by

TL(x) =

{
n(n− 1)x− (n− 1) if x ∈

(
1
n ,

1
n−1

]
for n ≥ 2,

0 if x = 0,

see Figure 1.6(a).

0 1
5

1
4

1
3

1
2

1

1

(a) TL

0 1
5

1
4

1
3

1
2

1

1

(b) TA

Figure 1.6: The standard and alternating Lüroth maps, respectively.

Specifically, for n ≥ 1, the digits are obtained by setting

`n(x) = d, if Tn−1
L (x) ∈

(
1

d
,

1

d− 1

]
, d ≥ 2.

Lüroth series have been introduced in 1883 in [L83], and studied in a more general
context in [BBDK94, KKK90, KKK91, BI09], for example. Chapter 2 introduces a
random version of Lüroth maps, given by the standard Lüroth map TL and its flipped
version, the alternating Lüroth map TA = 1 − TL, see Figure 1.6(b). The system is
then further analysed at the end of Chapter 3.
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The alternating Lüroth map TA can also be seen as a linearised version of the
Gauss map G that produces continued fraction expansions and it is introduced in the
next section.

§1.3.3 Continued fractions
Any real number x ∈ (0, 1) can be written as a continued fraction of the form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

,

with ai(x) ∈ N. The continued fraction is usually denoted by x = [0; a1, a2, a3, . . .],
for ai = ai(x), and it can be dynamically generated by iteration of the Gauss map
G : [0, 1]→ [0, 1] defined by

G(x) =

{
1
x −

⌊
1
x

⌋
, if x 6= 0,

0 if x = 0,
(1.8)

see Figure 1.7.

1
2

1
3

1
4

0 1

1

Figure 1.7: The Gauss map G.

The iteration of the Gauss map produces indeed continued fraction expansions
with digits chosen in an infinite alphabet, given by N, and defined by

ai(x) = n if Gi−1(x) ∈
(

1

n+ 1
,

1

n

]
, n ≥ 1.

It follows from Euclid’s algorithm that every rational number p
q presents a finite con-

tinued fraction, while irrational numbers have an infinite one. For rational numbers,
there exists a unique representation [0; a1, a2, . . . , an], with an ≥ 2. Without the
constraint on the last digit the representation is not unique. Indeed, if an = 1, then

[0; a1, a2, . . . , an−1 + 1] = [0; a1, a2 . . . , an−1, an].

24



§1.3. Number systems

C
h
a
pter

1

For irrational numbers the representation is unique. Furthermore, for any irrational
number x = [0; a1, a2, . . .] ∈ (0, 1), it is possible to define a sequence of rational num-
bers

(
pn
qn

(x)
)
n≥0

, that provides increasingly good approximations, alternately from
above and below, of the irrational number x. For n ≥ 0, the n-th convergent pn

qn
(x),

is defined by
pn
qn

(x) = [0; a1, a2, . . . , an],

with p0

q0
(x) = [0], p1

q1
(x) = [0; a1], and

x = lim
n→∞

pn
qn

(x).

For more details, see [DK02], for example.

Another way to obtain the Gauss map G is through an induced system. Let
X = (0,∞) and consider Y = (0, 1) ⊆ X and the transformation

T (x) =

{
1
x − 1 if x ∈ Y,
x− 1 if x ∈ Y c.

Note that T determines the digits ai(x) of the continued fraction expansions of a
point x after having successively subtracting 1 until the iterate of the point lies in Y .
The first return time map to Y , ϕ : Y → Y , is indeed given by

ϕ(x) = n, if x ∈
(

1

n+ 1
,

1

n

]
,

and the induced map from Definition 1.2.15 corresponds to

TY (x) =
1

x
−
⌊ 1

x

⌋
= G(x).

For more details, see [Z09].

G admits an absolutely continuous invariant probability measure with density
function

h(x) =
1

log 2

1

x+ 1
,

which can be recovered by projecting the density function of the measure of its natural
extension. The canonical natural extension of the transformationG is given in [NIT77]
by the map S : [0, 1]2 → [0, 1]2, and defined by

S(x, y) =

(
G(x),

1

d1(x) + y

)
, (x, y) ∈ [0, 1]2. (1.9)

The transformation S admits an acim of density function 1
(1+xy)2 . See Figure 1.8 for

a visualisation of the 2-dimensional domain of the natural extension and the action of
S on it. Chapter 4 uses the natural extension construction to obtain infinite invariant
measures for a class of continued fraction maps.
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0

Figure 1.8: The action of the map S on the domain [0, 1]2 of the natural extension for the
Gauss map G. Areas on the left are mapped to areas on the right with the same colour.

There exists a variety of continued fraction maps that provide continued fractions
expansions with different alphabets. For instance, there exist continued fraction maps
that provide expansions with negative numerators, or the odd (and even) continued
fractions that use only odd (respectively even) digits. See for example [K91, DK00,
HK02, KSS10, BCIT13, KKV17] for further generalisations.

α − 1
0

α

α − 1

α

1
α+1

− 1
α+3

Figure 1.9: Example of Tα for α = 7
10
.

In particualr, in 1981 Nakada formalised in [N81] the family of α-continued frac-
tions Tα : [α − 1, α] → [α − 1, α] depending on the parameter α ∈ [0, 1] and defined
by

Tα(x) =
1

|x|
−
⌊ 1

|x|
+ 1− α

⌋
,

see Figure 1.9. Since then, lots of research has focused on the study of the invariant
measure and the matching property of the maps Tα. See [LM08, CMPT10, N11,
CT12, CT13, T14], for instance. Note that one can recover the Gauss map G from a
map Tα, by setting α = 1, i.e., T1 = G.

§1.4 Outline

This work investigates absolutely continuous measures for several dynamical systems.
The analysis is performed in the deterministic and random setting, as well as in the
frame of finite and infinite ergodic theory.
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Chapter 2 presents a family of random maps given by the combination of gener-
alised Lüroth maps defined on a subset X of the unit interval [0, 1]. Each random
system produces for almost all x ∈ X uncountably many different generalised Lüroth
expansions, that can be studied simultaneously. The chapter suggests the need of an
algorithmic procedure to construct the density of an absolutely continuous invariant
measure for random piecewise affine systems of the interval.

Chapter 3 answers the urgency of the previous chapter. It offers an algebraic
algorithm that receives as an input a random piecewise affine system T that is ex-
panding on average, and gives a formula for a physical T -invariant measure as output.
Previously, the density was known only for very few specific cases. The heavy pro-
cedure is shown to be efficient for specific classes of transformations, such as random
β-transformations, Lüroth maps and more general for systems that present the dy-
namical features of matching, which is further analysed in Chapter 5.

Chapter 4 looks into the consequences of matching for an infinite class {Tα}α of
continued fraction maps. More specifically, the phenomenon of synchronization is
used to find the 2-dimensional domain of a planar natural extension. Such informa-
tion is used to find explicit expressions of the density for a large part of the parameter
space. Additionally, matching is proved to hold for Lebesgue almost every parameter
α, and it divides the parameter space into intervals of constant matching exponents,
called matching intervals. It is the first family of infinite measure systems in which
matching is recognized. Lastly, the chapter relates these matching intervals to the
corresponding sets of Nakada’s α-continued fraction maps.

Chapter 5 extends the notion of matching for deterministic transformations to
random matching for random interval maps. Random matching is then studied
for a variety of families of random dynamical systems, that includes generalised
β-transformations and continued fraction maps. Furthermore, for a large class of
piecewise affine random systems of the interval, the property of random matching
is proved to imply that any invariant density of a stationary measure is piecewise
constant. Lastly, the chapter introduces a family of random maps producing signed
binary expansions. The property of random matching and its consequences on the
structure of the density function are then applied to study the frequency of the digit
0 in such expansions.
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