

Global fields and their L-functions

Solomatin, P.

Citation

Solomatin, P. (2021, March 2). *Global fields and their L-functions*. Retrieved from https://hdl.handle.net/1887/3147167

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3147167

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle https://hdl.handle.net/1887/3147167 holds various files of this Leiden University dissertation.

Author: Solomatin, P. **Title:** Global field and their L-functions

Issue Date: 2021-03-02

Stellingen

behorende bij het proefschrift

Global Fields and Their L-functions

van Pavel Solomatin

- 1. The isomorphism class of a number field K is determined by the collection of ζ -functions of all finite abelian extensions of K.
- 2. The fact above can be used to give an alternative proof of the Neukirch-Uchida Theorem for the case of non-normal extensions of the field of rational numbers.
- 3. There are two non-isomorphic elliptic curves over \mathbb{F}_{29} with degree seven maps to \mathbb{P}^1 that are arithmetically equivalent in the sense of Chapter 3.
- 4. Let E be an elliptic curve defined over a finite field \mathbb{F}_q , $q = p^n$, p > 3 with $j \notin \{0, 1728\}$. The set of zeta-functions of genus 2 abelian coverings of E depends only on the number of \mathbb{F}_q -rational 2-torsion points of E.
- 5. For an imaginary quadratic number field K let \mathcal{G}_K^{ab} denote the Galois group of the maximal abelian extension of K. Imaginary quadratic fields K with the discriminant occurring in the list:

$$\{-35, -51, -91, -115, -123, -187, -235, -267, -403, -427\}$$

all share the same isomorphism class of \mathcal{G}_K^{ab} .

- 6. There are infinitely many isomorphism classes of pro-finite groups that occur as \mathcal{G}_K^{ab} for some imaginary quadratic number field K.
- 7. The isomorphism class of a pro-finite group \mathcal{G}_K^{ab} determines the characteristic of the global function field K, but not the cardinality of its constant field.
- 8. It is well-known that torsion points of Drinfeld modules of rank one can be used to construct curves with many points over finite fields. In a similar manner torsion points of higher rank Drinfeld modules can be used to construct isospectral global function fields.