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Chapter 6

On Abelianized Absolute Galois groups
of Imaginary Quadratic Fields

6.1 Introduction

The main purpose of the present chapter is to use techniques from the previous chapter in order
to extend results of the paper [1]. We would like to emphasise that results and proofs in this
chapter are parallel to those of the previous chapter. In particular, we use similar notations
here.

6.1.1 Results of the Chapter

Let K be an imaginary quadratic field different from Q(i), Q(
√
−2). Let T =

∏
n∈N Z/nZ and

let Cl(K) denote the ideal class group of K. Let GabK denote the abelianized absolute Galois
group of K. Summarising the results of [1] we have:

Theorem 6.1. In the above setting the following holds:

1. There exists an exact sequence of topological groups: 0→ Ẑ2×T → GabK → Cl(K) → 0;

2. The topological closure GabK [tors] of the torsion subgroup of GabK is T ;

3. The torsion subgroup of the quotient GabK /T is trivial if and only if GabK ' Ẑ2 × T ;

4. There exist an injective map from (GabK /T )[tors] to Cl(K) and an algorithm, which on
input K decides whether the group (GabK /T )[tors] is trivial or not.

Proof. See theorem 3.5, 4.4 and 5.1 from [1].

Let us denote the image of (GabK /T )[tors] in Cl(K) by Clsplit(K). Roughly speaking our
main result states that the isomorphism type of GabK is uniquely determined by the isomorphism
type of Clsplit(K). More concretely, first we will prove:

Theorem 6.2. Given the group T and a finite abelian group A there exists a unique isomor-
phism type of a pro-finite abelian group DA such that the following holds:
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1. There exists an exact sequence: 0→ T → DA → A→ 0;

2. All torsion elements of DA are in T .

Proof. See section 6.2.

Then the main result of the present chapter could be stated as:

Theorem 6.3. Let K be an imaginary quadratic field different from Q(i), Q(
√
−2). There

exists an isomorphism of topological groups GabK ' DA × Ẑ2, with A ' Clsplit(K).

Proof. See section 6.2.

The above theorem extends results of Theorem 6.1 as follows:

Corollary 6.4. For a fixed prime number p and an imaginary quadratic field K with class num-
ber hK = p there are only two isomorphism types of GabK which could occur: either Clsplit(K) = 0
or Clsplit(K) ' Z/pZ. In particular, it was shown in [1] that imaginary quadratic fields with the
discriminant DK occurring in the list {−35,−51,−91,−115, −123,−187, −235,−267,−403,
−427} all have class-number 2 and have non-trivial Clsplit(K), therefore they all share the same
isomorphism class of GabK .

Also we will use Theorem 6.3 in order to prove:

Corollary 6.5. There are infinitely many isomorphism types of pro-finite groups which occur
as GabK for some imaginary quadratic fields.

Proof. See section 6.3.

6.2 The Proof of the Theorem

Our goal in this section is to prove Theorem 6.3. We will do this in three steps. First we
will prove the group-theoretical Theorem 6.2. Secondly, in lemma 6.8 we will show that given
an imaginary quadratic field K 6= Q(i), Q(

√
−2) there exist a pro-finite group DK and an

isomorphism GabK ' DK × Ẑ2. Finally, in lemma 6.9 we will show that the group DK satisfies
conditions of Theorem 6.2 with A ' Clsplit(K). Therefore the isomorphism class of DK is
uniquely determined by the isomorphism class of the abelian group Clsplit(K) and hence we
obtain a proof of Theorem 6.3.

Remark: Since each pro-finite abelian group is isomorphic to the limit of finite abelian
groups, by the Chinese remainder theorem we have that it is also isomorphic to the product
over prime numbers of its primary components. We will work with these components separately
instead of working with the whole group.
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6.2. THE PROOF OF THE THEOREM

Proof of Theorem 6.2

As in the previous sections for a pro-finite abelian group G and a prime number l we denote
by Gl the l-primary component G⊗ Zl of G. In the setting of Theorem 6.2 the multiplication
by ln map induces the following commutative diagram:

0 // Tl[ln]� _

��

� � // // Dl[ln]� _

��

0 // A[ln]� _

��

0 // Tl
ln

��

// Dl
ln

��

// A

ln

��

// 0

0 // Tl //

����

Dl //

����

A //

����

0

Tl/lnTl // Dl/lnDl // A/lnA // 0

Since any torsion element x of Dl is in Tl the map from Dl[ln] to A[ln] is the zero map and
the map from Tl[ln] to Dl[ln] is an isomorphism. Now applying the Pontryagin duality to the
above diagram we get:

0 (Tl[ln])∨oo (Dl[ln])∨_?
oooo (A[ln])∨

0
oo

0 (Tl)∨

OOOO

oo (Dl)∨

OOOO

oo (A)∨

OOOO

oo 0oo

0 (Tl)∨oo

ln

OO

(Dl)∨
ln

OO

oo (A)∨oo

ln

OO

0oo

(Tl/lnTl)∨
?�

OO

(Dl/lnDl)∨
?�

OO

oo (A/lnA)∨
?�

OO

oo 0oo

Note that (Tl)∨ is isomorphic to the direct sum of cyclic groups (Tl)∨ ' ⊕k∈NZ/lkZ and
therefore ∩nln(Tl)∨ = {0}. It means we have (∩nln(Dl)∨) ⊂ (A)∨. Our goal is to show that
(∩nln(Dl)∨) = (A)∨.

Lemma 6.6. Given any non-zero element x of (A)∨ ⊂ (Dl)∨ and any natural number n there
exists an element cx ∈ (Dl)∨ such that lncx = x.

Proof. For fixed n consider the above diagram. Since the second row is exact the image of x
in (Tl)∨ is zero. Then its image in (Tl[ln])∨ is also zero. Since (Tl[ln])∨ ' (Dl[ln])∨ it means
that image of the non-zero element x in (Dl[ln])∨ is zero. Since the second column is exact
this means that x lies in the image of the multiplication by ln map from (Dl)∨ to (Dl)∨ and
therefore there exists cx such that lncx = x.

It means that we have proved:

Corollary 6.7. The exact sequence 0 ← (Tl)∨ ← (Dl)∨ ← (A)∨ ← 0 satisfies conditions of
Theorem 5.14.
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and therefore Dl is uniquely determined since its Pontryagin dual (Dl)∨ is uniquely determined
by Theorem 5.14.

6.2.1 Proof of Theorem 6.3

Consider the exact sequence mentioned in Theorem 6.1:

0→ Ẑ2 × T → GabK → Cl(K)→ 0. (6.1)

Taking a prime number l we get the following exact sequence of pro-l abelian groups:

0→ Zl2 × Tl → GabK,l → Cll(K)→ 0, (6.2)

where Tl =
∏

k∈N Z/lkZ and Zl denotes the group of l-adic integers. If Cll(K) is the trivial
group then obviously GabK,l ' Zl2 × Tl. Our goal is to describe the isomorphism type of GabK,l in
the case when Cll(K) is not trivial.

Lemma 6.8. There exists a pro-finite abelian group Dl such that GabK,l ' Dl × Z2
l .

Proof. By Theorem 6.1 we know that Tl is the closure of the torsion subgroup of GabK,l. Note
that Tl is a closed subgroup and hence the quotient is also pro-l group. Taking the quotient of
the sequence 6.2 by Tl we obtain:

0→ Zl2 → GabK,l/Tl → Cll(K)→ 0.

Since Zl is torsion free, (GabK,l/Tl)[tors] maps invectively to Cll(K) which is finite. Denoting the

group GabK,l/Tl by Bl we get isomorphism of topological groups1: Bl ' Bl[tors] ⊕ B′l, where B′l
denotes the non-torsion part of Bl. Since Zl is torsion free we also have the following exact
sequence:

0→ Zl2 → B′l → Cll(K)/φ(Bl[tors])→ 0.

Since B′l is torsion free this exact sequence implies that B′l is a free Zl-module of rank two and
hence B′l ' Z2

l .

Let us denote the quotient map GabK,l → Cll(K) by φ. In notations from the introduction,

φ(Bl[tors]) = Clsplit(K). Consider the pre-image Dl ⊂ GabK,l of the group φ(Bl[tors]) ⊂ Cll(K).
Note that Dl is a closed subgroup and we have the following exact sequence:

0→ Tl → Dl → φ(Bl[tors])→ 0.

1This is true because Bl[tors] is finite.
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Summing up we have the following commutative diagram of pro-l abelian groups:

0 0 0

0 // Z2
l

OO

// B′l

OO

// Cll(K)/φ(Bl[tors])

OO

// 0

0 // Tl × Z2
l

OO

// GabK,l

OO

φ
// Cll(K)

OO

// 0

0 // Tl //

OO

Dl //

OO

φ(Bl[tors]) //

OO

0

0

OO

0

OO

0

OO

Now consider the exact sequence coming from the middle column of the above diagram:

0→ Dl → GabK,l → B′l → 0.

We know that B′l ' Z2
l , but Zl is a projective module and hence we could split this sequence

to obtain an isomorphism GabK,l ' Dl ×B′l ' Dl × Z2
l .

In order to finish our proof we will show:

Lemma 6.9. The group Dl is determined uniquely by the isomorphism type of φ(Bl[tors]) =
Clsplit(K).

Proof. Consider the exact sequence:

0→ Tl → Dl → Clsplit(K)→ 0.

We know that the closure of the torsion subgroup of GabK,l is Tl, and therefore Dl contains no
torsion elements apart from elements of Tl. I.e. that the group Dl satisfies both conditions of
Theorem 6.2 and hence its isomorphism class is uniquely determined by Clsplit(K).

6.3 Corollaries

In this section we will prove corollary 6.5. First of all, we already showed that given two
imaginary quadratic fields K, K ′ different from Q(i), Q(

√
−2) the following implication holds:

Clsplit(K) 6' Clsplit(K ′)⇒ GabK 6' GabK′ .

This statement allows us to reduce our question to construction of a sequence of imaginary
quadratic fields Ki with # Clsplit(Ki)→∞ as i→∞. Given a finite abelian group A we denote
by rl(A) the rank of its l-part i.e. the dimension of the vector space Al over Z/lZ, where Al
is the l-primary component of A. Given an imaginary quadratic field K different from Q(i),
Q(
√
−2) we have:
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Lemma 6.10. The following inequalities hold:

0 ≤ rl(Cl(K))− rl(Clsplit(K)) ≤ 2.

Proof. Consider the exact sequence:

0→ Clsplitl (K)→ Cll(K)→ Cll(K)/Clsplitl (K)→ 0.

Which implies:
rl(Cl(K)) = rl(Clsplit(K)) + rl(Cll(K)/Clsplitl (K)).

The first inequality is then obvious. For the second inequality, consider an exact sequence:

0→ Z2
l → B′l → Cll(K)/Clsplitl (K)→ 0,

which shows us rl(Cll(K)/Clsplitl (K)) ≤ 2 and hence we are done.

Because of the previous lemma it is enough to show that we can construct a sequence Ki

with r2(Cl(Ki)) → ∞. This easily follows from the following statement which goes back to
Gauss’ genus theory; see [19]:

Lemma 6.11. The two rank of the class group Cl(K) of an imaginary quadratic field K =
Q(
√
−d) is ω(d)− 1, where ω(d), denotes the number of different prime divisors of d.

Finally summing up all together we obtain:

Corollary 6.12. Let pn denote the n-th prime number. Led dn =
∏n

i=1 pi. Among elements of
the sequence Kn = Q(

√
−dn) of imaginary quadratic fields there are infinitely many fields with

pairwise non-isomorphic abelianized absolute Galois groups GabKn.
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