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Chapter 5

On Abelianized Absolute (alois
Groups of Global Function Fields

5.1 Introduction

As we mentioned in the first chapter the famous theorem of Uchida [57] states that the isomor-
phism class of a global function field K is determined by the isomorphism class of the absolute
Galois group G = Gal(K*? : K) considered as topological group. One of the essential steps
in the Uchida’s proof is to recover from Gy its abelian part G% with some additional data,
like decomposition and inertia subgroups. The following questions are natural to ask: what
kind of information can one recover from the isomorphism class of the pro-finite abelian group
G4? More concretely, does the abelian part of the absolute Galois group determine the global
function field K up to isomorphism? If not, which function fields share the same isomorphism
class of G§?

For a global function field K of characteristic p with exact constant field F,, ¢ = p" we define
the invariant d as the natural number such that n = pFdy with ged(dy,p) = 1, k € Zso.
Let CI°(K) denotes the degree zero part of the class-group of K. In other words, CI°(K) is
the abelian group of F,-rational points of the Jacobian variety associated to the curve X. For
any abelian group A and a prime number [ we denote by A; its l-part: A; = A ® Z;, where 7,
denotes the ring of l-adic integers. We also denote by Ao, the non-I part of A : Aoy = A/A;.
The main purpose of this chapter is to prove the following result:

Theorem 5.1. Suppose K and K' are two global function fields. Then G¥ ~ G%, as pro-finite
groups if and only if the following three conditions hold:

1. K and K' share the same characteristic p;

2. Invariants dix and dg coincide: dig = dgr;

3. The non p-parts of class-groups of K and K' are isomorphic:
cl, (K)~Cl, (K.

non-p non-p

In particular, two function fields with the same field of constants F, have isomorphic G% if and
only if they have isomorphic C1°,  (K).

non-p
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The proof of Theorem [5.1] includes explicit reconstruction of the invariants p, dy and
Cl. (K) from G&. More concretely, let s;(G%) be the least integer k such that G¥ has

non-p
direct summand of the form Z/I*Z and let p* denotes (—1)"z p if p is odd and p otherwise,
then:

Theorem 5.2. Given the isomorphism class of the topological group G% we have:
1. The characteristic of K is the unique prime p such G& has no elements of order p;

2. The non-p part Clmmp( ) of the class-groups of K is isomorphic to the torsion of the
quotient G& /G [tors], where G&2[tors] denotes the closure of the torsion subgroup of G&2

Lo (K) = (G /Gilt0rs]) [f0rs].

3. The natural number dyi s the unique number co-prime to p such that for any prime
number | # p:

0, if 1 =2 and s5(G%) = 1;

s1(G#2) —ordy((p*)'=t = 1),  otherwise.

ord;(dg) = {

Proof. See corollaries [5.12) and [5.13] O

By using these theorems we will establish the following:

Corollary 5.3. Let K be the rational function field (with genus zero) over a fized constant field
F, and let E be an elliptic function field (with genus one) defined over the same constant field,
such thal | # CI°(E) = q. Then there exists isomorphism of topological groups G2 ~ G,

This corollary provides some answers to the above questions. For example, it follows that
for every ¢ there exists a pair of function fields K, K’ over F, with g(K) =0, g(K’) = 1 and
b ~ Ge_ In particular, the genus gx of K and therefore the Dedekind zeta-function (g (s)
of K are not determined by the isomorphism class of G% even if the constant field F, is fixed.
The above example also shows that:

Corollary 5.4. For every p there exist infinitely many pairwise non-isomorphic function fields
K of characteristic p with isomorphic G&%

Proof. Fix a prime number p and let ¢ = ppk, where k is a non-negative integer. Let F} and
E}. denote rational and elliptic function fields from the previous example with exact constant
field F,. Then, according to the our main theorem for any non-negative integers k, [ we have:

G =~ G, O

Applying some classical results about the two-part of CIO(K ) of hyper-elliptic function fields
we will also show that:

'the existence of such field is guaranteed by the Waterhouse theorem, see section
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Corollary 5.5. For any given q with p > 2 infinitely many distinct isomorphism types of G2
occur for function fields with exact constant field IF,.

Proof. See theorem from the last section. O]

Unfortunately, the answer to the question about distribution of global fields over fixed
constant field F, sharing the same G% is not clear at the moment, since we don’t know if there
are infinitely many such fields with a given non p-part of the class group. In particular, it
seems to be reasonable to state the following conjecture: there are infinitely many curves
defined over fized finite field F,, ¢ = p"™ with order of the group of F,-rational points of the
Jacobian varieties associated to them to be a power of p. If the conjecture is true then what is
the proportion of such curves, say as ¢ fixed and g tends to infinity?

The main idea towards our result was inspired by the work [1], where authors produced an
elegant description for the isomorphism class of the topological group G#%, where K denotes
imaginary quadratic number field. But note also that there are many completely different
technical details, which point in a different direction.

This chapter has the following structure: in the next section we will sketch the proof of
Theorem [5.I] Then we prove all the necessarily lemmas in the section [5.3] Finally, we will
discuss the question about construction of non-isomorphic function fields with isomorphic and
non-isomorphic abelian parts of their absolute Galois groups and prove corollaries [5.3] and
5.0l

5.2 Outline of the Proof

Global class field theory provides an internal description of the abelian part of the absolute
Galois group of a global or local field K in terms of arithmetic objects associated to K. We
will use the idéle-theoretical approach: see section for details and the classical books [36],
[59], [2] for complete discussion. For a given global function field K we denote by Zx the group
of ideles of K and by Ck the idele class-group of K, i.e. the quotient group of Zx by the
multiplicative group K*. Recall that we have a split exact sequence:

0—CY% —Cr 2570,

where CY is the degree zero part of the idele class group and the map from Cx to Z is the
degree map.

Theorem 5.6 (The Main Theorem of Class Field Theory for Global Function Flelds). In the
above settings there exists an isomorphism of topological groups: C% ®Z ~ GL.

Proof. See section O

We will show that G ~ G%, if and only if C% ~ C%,. The key ingredient in the our proof
is Pontryagin duality for locally compact abelian groups, which allows us to reduce question
about pro-finite abelian groups to the question about discrete torsion groups.

Lemma 5.7. Let A and B be two pro-finite abelian groups. If A @ Z~B&®Z then A~ B in
the category of pro-finite abelian groups.
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Proof. See section [5.3.1] [

This lemma reduces our question to the description of C?{ as a topological group. Let v
denote a place of K and K, O, denotes the corresponding completion and its ring of integers
respectively. Then we derive the following exact sequence.

Lemma 5.8. There exists an exact sequence of topological groups, where the finite groups have
the discrete topology:

1Ty — [Jor — ¢l — Cl'(K) — 1.

Proof. See section [5.3.3] O

For the next step we recall in lemma the isomorphism O ~ . x Z,7, where n is the
degree of a place v and Z, denotes the group of p-adic integers. Denoting by T the group

(I, ]F:deg(v)) JF we will get the following exact sequence, see section |5.3.3f

1= T X Z° = Ch — CI'(K) — 1 (5.1)

There are two crucial observations about this sequence. First we will prove the following
structure theorem for the group Tk:

Theorem 5.9. Given a function field K with exact constant field F,, where ¢ = p™ there exists
an isomorphism Tx ~ [[,, (Z/I"Z)"™, where the product is taken over all prime numbers |
and all positive integers m and a;m denotes a finite or countable cardinal number. Moreover,
the coefficients a;,, depend only on q and the following holds:

1. Each a;,, is either zero or the infinite countable cardinal;
2. For l = p we have a,,, = 0 for all m;

3. Forl # p, | # 2 there exists a unique non-negative integer N,(l) such that a;, is infinite
if and only if m > Ny(1);

4. For p# 2 and | = 2 there exists a unique non-negative integer N,(2) such that for ¢ =1
mod 4 we have ay,, is infinite if and only if m > N,(2), and for ¢ =3 mod 4 we have
ag.m 1s infinite if and only if m =1 or m > N,(2);

5. Given two prime powers qi, ga the numbers Ny, (1) and Ny, (1) coincide for alll if and only
if @ =p™, q@ = p"* with Z—; =p™, for some integer m.

Proof. See section m For expression of IV, (I) see lemma and lemma O]

Definition 5.10. The ezact sequence of abelian groups 0 — A — B Y0 = 0 is called totally
non-split if there is no non-trivial subgroup S of C such that the sequence 0 — A — 71(S) —
S — 0 splits.

The second observation about is the key point in the our proof.
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Theorem 5.11. All torsion elements of C% are in Tx. Therefore the exact sequence
is totally non-split. Moreover, the topological closure of the torsion subgroup of C% is T :

CY[tors] = Txk.
Proof. See section |5.3.5 O
Because of the description of Tk this theorem gives us:

Corollary 5.12. If G¥ ~ G%, as pro-finite groups then Tx =~ Ty, in particular the charac-
teristic p and the invariant di are determined by the isomorphism class of G¥

Proof. Since G¥ ~ @2 and the group Z is torsion free, we have that T is also the closure
of the torsion subgroup of G&. Then theorem shows that p is a unique prime such that this
group has no elements of order p.

For the natural number dg consider the torsion group G#[tors]. By Theorem [5.9|this group
has direct summand of the form Z/I*Z for a fixed prime | # p if and only if k¥ > N,(I) or
l=2k=1,p=3 mod 4 and dxk =1 mod 2. In the proof of Theorem we will show that
N,(l) = ord;(dg) + ord;((p*)"~! — 1), where p* = —p if p = 3 mod 4 and p* = p otherwise.
Which implies the formula:

0, ifl=2and sy =1

si( ?{b) —ordy((p*)"* — 1), otherwise.

ord,(di) = {

]

Since each pro-finite abelian group is isomorphic to the limit of finite abelian groups, by
the Chinese remainder theorem it is also isomorphic to the product over prime numbers of its
primary components. We will work with these components separately instead of working with
the whole group. Keeping the same notation as for finite abelian groups, for any pro-finite
abelian group GG and a prime number [ we denote by G; the [-part of G: G ® Z;. Now let [ be
a prime number different from p, we have:

1= Tiy — Chy = CI(K) — 1.

Which shows that:
CI)(K) ~ C}, /C% [tors].

Corollary 5.13. If G% ~ G%, as pro-finite groups then the non p-parts of the class-groups of
K and K' are isomorphic: CI° ~CI (K.

non- p( ) non-p

Proof. We know that G2 ~ CY @®Z and that T = 9[tors]. Considering the l-part we get:

#1/Gid [vors] = (Chy [ Tica) © .

Since Z; is torsion free, we have:
(G /g ' [tors])[tors] ~ C(]](yl [T ~ CIY(K).
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Finally, note that the p-part of the torsion group of G% is trivial and hence combining all
primes [ different from p we get:

Claonp(K) 2= (G /Gi[tors]) [tors].
0

Proof of Theorem[5.1] The above two corollaries imply the only if part of Theorem [5.1] Now,
we are going to discuss the question about the other implication. Our goal is to show that for
a given isomorphism class of Tx and non p-part of the class group there is only one possibility
for CY; to fit in the exact sequence

Consider the p-part of the exact sequence [5.1}

1= Z» = Cy, — CI(K) — 1.

By using the fact that this sequence is totally non-split we will show, see lemma that
this implies C?Qp ~ Z,°, in particular the isomorphism type of g%’m doesn’t depend on Clg(K ).
We fix a prime number [ # p and consider the [-part which is of course also totally non-split:
1= Tiy — Chy = CI(K) — 1. (5.2)

Obviously, if CI}(K) =~ 0 then C%; ~ T,. Our goal is to show that even if CI}(K) is not
the trivial group then the isomorphism type of C?(’l is uniquely determined by isomorphism

types of Tk, CI)(K) and the fact that the exact sequence is totally non-split.
In order to achieve our goal we need the following:

Theorem 5.14. Let {C;} be a countable set of finite cyclic abelian l-groups with orders of
C; are not bounded as © tends to infinity and let A be any finite abelian l-group. Then up to
isomorphism there exists a unique torsion abelian l-group B satisfying two following conditions:

1. There exists an evact sequence: 1 =+ A — B — ®;>1C; = 1;
2. A is the set of all divisible elements of B: A = N,>1nB.

Proof. See section [5.3.6 []
Applying Pontryagin duality to the exact sequence [5.2] we get:

1+ (Tiy)" + (C)Y + (CI(K))Y « 1.

We will show in corollary that this sequence dual to the sequence [5.2] satisfies conditions
of Theorem and therefore (C},;)¥ is uniquely determined. So its dual C}; is uniquely
determined.

]

5.3 Proof of Lemmas

In this section we are going to prove all the results needed for our proof. Let us start from
recalling some basic facts about pro-finite abelian groups. Standard references are [26] and [18].
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5.3.1 Preliminaries

Let A be an abelian group. If this group is finitely generated then the structure theorem says
that A is isomorphic to Z" @& Aios Where r is a non-negative integer called rank and Agq
is a finite abelian group. Given two such groups we have that they are isomorphic if and
only if their ranks are equal and torsion parts are isomorphic. The structure of an infinitely
generated abelian group is more complicated. An element x of the abelian group A is divisible
if for any n € N there exists y € A such that + = ny. The group A is divisible if all its
elements are divisible. For example Q is divisible. Another example is the so-called Priifer
p-group which is defined as union of all p* roots of unity in C* for a fixed prime number p:
Z(p®) = {¢ € CX|¢*" = 1,k € N}. Note that we have an isomorphism of abstract groups:
Z(p>) ~ Q,/Z,, where Q, denotes the abelian group of p-adic numbers and Z, is a subgroup
of all p-adic integers.
A group is called reduced if it has no non-zero divisible elements.

Lemma 5.15. Each abelian group A contains a unique mazimal divisible subgroup D and it is
the direct sum of D and some reduced subgroup R: A~ D @ R.

The structure of the divisible subgroup is clear.

Lemma 5.16. Every divisible group D is isomorphic to a direct sum of copies of Q and Z(p*)
for different prime numbers p.

Proof. The proofs can be found in chapter 3 of [1§]. O]

The structure of the reduced part of A can be more complicated and usually involves the
theory of Ulm invariants. In this chapter we will work with the reduced part directly not
referring to the Ulm invariants at all.

Pontryagin Duality

We need to recall some properties of Pontryagin duality for locally compact abelian groups. A
good reference including some historical discussion is [29]. Let T be the topological group R/Z
given with the quotient topology. If A is any locally compact abelian group then one considers
Pontryagin dual AY of A which is the group of all continuous homomorphisms from A to T :

AY = Hom(A,T).

This group has the so-called compact-open topology and is a topological, locally compact group.
Here we list some properties of Pontryagin duality we use during the proof:

1. Pontryagin duality is a contra-variant functor from the category of locally compact abelian
groups to itself;

2. If A is a finite abelian group with the discrete topology then AY ~ A non-canonically;
3. We have the canonical isomorphism: (AY)Y ~ A;

4. Pontryagin dual of a pro-finite abelian group A is a discrete torsion group and vice versa;
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5. Pontryagin duality sends direct products to direct sums and vice versa;

6. Pontryagin dual of Z, is Z(p>) and dual of Q/Z equipped with the discrete topology is
the group of pro-finite integers Z;

7. Pontryagin dual of a divisible group A is torsion free and vice versa.

Having stated this we are able to prove our lemmas.

Proof of Lemma [5.7. Let A and B be two pro-finite abelian groups such that A®Z ~ B&Z.
Applying Pontryagin duality to the above isomorphism we obtain:

(A)Y®Q/Z~ (B)' & Q/Z.

By lemma [5.15| each abelian group is isomorphic to the direct sum of its reduced and divisible
components. Using the fact that Q/Z is divisible we have that reduced part of (A)" and (B)"
are isomorphic. Now, according to the Lemma the divisible part of (A)Y @ Q/Z is a direct
sum of copies of Q and Z(p*) and since Q/Z ~ @,Z(p>) divisible parts of (A)" and (B)" are
isomorphic. Therefore (A)Y and (B)Y are isomorphic and hence A ~ B.

[

5.3.2 Class Field Theory

In this paragraph we briefly review the class field theory for global and local fields of positive
characteristic.

The Case of Local Fields

We will start from the description of local aspects of the class field theory. Let L be a local field
of positive characteristic p > 0. In other words L is a completion of a global function field K
with respect to the discrete valuation associated to the place v of K. The field L is isomorphic
to the field of Laurant series with constant field F» and the corresponding ring of integers Oy,
is the ring of formal power series: L ~ Fn((x)), Op ~ F,n[[z]]. One way to construct abelian
extensions of L is to take the algebraic closure IF_qn of the constant field F;» which has Galois
group Gal(Fyn : Fyn) =~ Z. This is the maximal unramified abelian extension of L.

Denoting by I, = Gal"®™ (L% : L) the inertia subgroup of G¢ we have the following split
exact sequence: N

1 =1, = G% -7 —1.

Recall that we also have the split exact sequence given via the valuation map:
1-0f =L —=7Z—1.

The local Artin map: L* — G% induces isomorphism of topological groups between the
pro-finite completion L* of L* and G% such that two exact sequences are isomorphic:

1—>(’/)\E:OZ—>[//E ? 1
1 IL (Il/b—>Ga1<IF_qn . Fq'rL)—)l
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The Case of Global Fields

It is possible to give a similar description of G# in the case where K is a global function field via
the so-called idele-class group. First we note that for a global function field K there also exists
the maximal unramified abelian extension M of K. The Galois group Gal(M : K) is isomorphic
to the direct sum Z @ Gal(Hg : K), where 7 corresponds to the constant field extension and
Hy is maximal unramified geometric extension of K. The Galois group Gal(Hg : K) is finite
and one of the theorems of the class field theory establishes an isomorphism of abelian groups:

Gal(Hg : K) ~ CI°(K),

where CI°(K) denotes the ideal class group of K.

Let Zx denotes the multiplicative group of ideles of K. This is the restricted direct product
Tx =[], K, where the product is taken over places v of K with respect to O). One defines
the basic open sets as U = H; U,, where U, open in K and for almost all v we have U, = O}.
Under the topology generated by such U this becomes a topological group. The multiplicative
group K* is embedded to Zj diagonally as a discrete subgroup and the quotient Cx is the
idele class group of K. This is a topological group, but it is not pro-finite.

Proof of Theorem [5.6. One defines the global Artin map Cx — G% . This map is injective, but
not surjective. Similar to the local case it induces isomorphism of the pro-finite completion of
Cx and G¥ as topological groups: Cx ~ G%, see theorem 6, chapter 9 of [59].

Recall from the introduction that we have a split exact sequence:

0—CY = Cx 57 0,
where the map from Cx to Z is the degree map and C is the degree zero part of the idele class

group. We have that C% is pro-finite, hence complete and therefore Cr ~ CY BZ. O

5.3.3 Deriving the main exact sequence

Now our goal is to prove lemma . Let Z9 be the group of degree zero ideles of K, i.e. means
the kernel of the degree map from Zx to Z. We have:

1= K*—=1I% = C% — 1.

Let Div(K') denote the divisor group and let Div®(K') be the subgroup of degree zero divisors.
We also have the natural exact sequence, where I, is exact field of constants of K:

1= F — K* — Div’(K) - CI’(K) — 1.
There is a surjective homomorphism « of topological groups from Z% to P°(K), sending

an idele (ap,,ap,,...) to the divisor > vp (ap,) - P;. This is well-defined since for a given idele
almost all ap € O;,. The kernel of this map is [[, O,5. Moreover, this map sends principal
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idele to principal ideals and hence induces the surjective quotient map & from C% to CIO(K ).
We have the following snake-lemma diagram:

1 1 1
1 Fx [, 0 ——kera
l—— KX ——— 1% C% 1

1—— K> /Fy —— Div’(K) — CI°(K) —— 1

And therefore we have:

1= Fy = [Jor - ch — Cl(K) — 1.
This proves lemma [5.8|

5.3.4 On the Structure of the Kernel

Now we will give an explicit description of the group ker& ~ (J], O))/Fx. If v is a place
of degree n of a global function field K with exact constant field F,, then K, is the field of
Laurant series with constant field F,» and O, is the ring of formal power series: K, >~ F,((z)),
O, >~ Fpn[[z]]. A formal power series is invertible if and only if it has non-zero constant term

and therefore:
O) ~ F;n X (1 + tF g [[t])-

Lemma 5.17. We have an isomorphism of topological groups: 1+ tFg|[[t] = Z5°, where oo
means the countable cardinal number.

Proof. See [30], section on local fields. O
Denoting by Tx the group (], F;deg(v)) /FX, we obtain:

(J[0)/F; ~ Tic x Z7.

Description of Ty

At the first time it seems that the group 7x depends on K since the product [[, O is taken
over all places of K. Our first goal is to show that it actually depends only on q.
Recall the following classical statement needed in the proof:
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Lemma 5.18. For a fized global function field K there exists a natural number N such that
for everyn € N, n > N there exists a place of K of degree n.

Proof. See chapter 5 of [42]. O

Consider the group Ax =[], qudeg(v). By the Chinese reminder theorem we have:

Ax = [I@/mzye,

where a;,, is either a non-negative integer or infinite countable cardinal number. Since F,. is
a cyclic group of order ¢" — 1 we have the direct description of a;,,: it is the cardinality of the
set {v € PI(K)|ord;(¢%#™) — 1) = m}. Note that a,,, = 0 for all m € N.

Lemma 5.19. Each a;,, is either 0 or infinity.

Proof. Suppose that there exists a place v of degree n such that ord;(¢" — 1) = m. We will
show that then there are infinitely many such v. Our assumption implies that ¢ =1 mod ™,
but ¢" # 1 mod [™"!. The order of the group (Z/I™7Z)* is ¢p(I"™ ) = ™! — ™ where ¢
denotes the Euler ¢-function. It means if ¢" satisfies our condition then for any £ € N the
quantity q”+k¢(lm+l) also satisfies our condition. In other words, this condition depends only
on n mod ¢(I™*!). Since by lemma each function field K has places of all except finitely
many degrees if there is one v with ord;(¢4°¢") — 1) = m then there are infinitely many such
places. O

Now, given [ # p we would like to understand for how many m we have q;,, = 0. First we
will prove the following elementary number theory lemma.

Lemma 5.20. Let a be a positive integer such that ord;(a—1) = n > 1 for some prime number
. Then ifl # 2 orn > 2 we have ord;(a' — 1) =n + 1.

Proof. By the assumption of the lemma there exists an integer b such that ged(b,l) = 1 and
a =1+ bl" mod [""!. Suppose that [ # 2. For some integer ¢ we have:

I(l—1
al — (1 L p" Cln+1)l =14+ l(bln +Cln+1) + %(bln + Cln+l)2 4.

—1
=1+0""b+cl) + %F”(Hcl)2 +....

Since [ # 2 we have a' = 1+ bl"*! mod "2
Now let [ = 2 and n > 2. We have: a = 1+2"+b62"t! mod 2"*"? and therefore a? = 1+27t!
mod 272, O

Lemma 5.21. For each odd prime number | different from p there exists N(l) such that a; .,
is infinite if and only if m > N(l). Moreover N(l) depends only on q and not on K.
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Proof. Let d =1—1 and N(I) = ord;(¢* —1). Then ¢% = 1 in the group (Z/IYDZ)* but ¢¢ # 1
in the group (Z/INW+17)*. Therefore, for each u € N such that u = d mod ¢(IVW+1!) we have:
ord;(¢" — 1) = N(I). Since K has places of almost all degrees the set {v € PI(K)|deg(v) = d
mod ¢(INW+1)} is infinite and hence arn@y 7 0. We would like to show that if a;,, # 0 then
aims1 7 0. We know that there exists a place of the degree dy such that ord;(¢% — 1) = m.
By the previous lemma we have ord;(¢% — 1) = m + 1. Then for any place v from the set
{v € PI(K)| deg(v) = ldy mod ¢(I™*?)} we have ord;(¢q") — 1) = m + 1. This shows that if
m > N(I) then a;,, is infinite.
The last step is to show that a;,, = 0 if m is less than ordl(qd —1). Indeed, the order a
of ¢ in the group F; divides (I — 1) and then ord;(¢* — 1) = ordl(q“l%1 —1) = ordy(¢"t - 1),
since % is co-prime to [. It means that if for some u we have ¢* =1 mod [, then © = ab and
ord;(¢* — 1) = ord;(¢* — 1) > ord;(¢® — 1) = ord;(¢" ! — 1).
O

Lemma 5.22. For | =2 the following holds.
1. If p =2, then ay,, = 0 for all m;
2. if ¢ =1 mod 4, then there exists N(2) such that as ., is infinite if and only if m > N(2);

3. if ¢ =3 mod 4, then there exists N(2) such that as, is infinite if and only if m > N(2)
orm=1;

Proof. The first statement is trivial. For the second one let N(2) = ords(q—1), then N(2) > 2.
As before we have ¢ = 1 mod 2¥®, but ¢ # 1 mod 2V®@*!. The group (Z/2VN?+17)*
has order ¢(2V®+1) and hence, for each m such that m = 1 mod ¢(2¥®+1) we have that
¢" =1 mod 2@ but ¢ # 1 mod 2V®*1 Since K has places of almost all degrees the set
{v € PI(K)|deg(v) = 1 mod ¢(IN®*1)} is infinite and hence as n(2) # 0. Now, as in the
previous lemma if a;,,, # 0, then a; ,,,+1 is not zero and obviously if m < N(2) we have ag,,, =0,
here we use the fact that m > 2.

Finally suppose that ¢ = 3 mod 4. By the same argument as before we have that ay; is
infinite, but then ¢> = 1 mod 8 and hence ass = 0. Let N(2) = ordy(¢? — 1) > 3. We have
that for as n(2) is infinite and for all k£ such that 1 < k < N(2) we have a), = 0. Because of
the same argument as before asy,, is infinite for all m > N(2).

O

The next step is to show that T, ~ A,. In order to do that we need one elementary lemma.

Lemma 5.23. For a given prime power q there are infinitely many integer numbers n such
that gcd(%,q -1)=1.

Proof. Consider the factorization of ¢ — 1 into different prime factors: ¢ — 1 = I* ... [Fm . We

know that ¢ = 1 mod lf’ and ¢ # 1 mod lf”“, for all 7 in {1,...,m}. In other words there

exists a natural number a; co-prime to [; such that ¢ = 1 + ailfi mod lf”l. Therefore if the
1 1 n ki k; n__

natural number 7 is co-prime to ¢—1 then ¢" = 1+a;nl;* mod [; 1 and then gcd(qqfll, qg—1) =

1. O
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Corollary 5.24. We have an isomorphism A, ~ T,. The characteristic p of the constant field
of K is determined by 7T,.

Proof. For the first statement recall that F* is embedded diagonally to the product [], deeg(v)
g—1) = 1 and split the last product

Now pick any prime [ of K of degree m such that ged( 1 ,

into two parts Fyn ®]], 2 F degw Note that F is a subgroup of Fin which is direct summand.
Since all these ﬁmte groups have the discrete topology, the quotient [, 45 qdeg(v) ® (Fom JFX)
is topologically isomorphic to 7,. Finally, since each a,,; is either zero or infinity we have that
Ay~ T,
For the second statement note that p is unique prime such that a,,, = 0 for all m € N.
O

Lemma 5.25. For odd prime number | we have N(I) = ord;(p'~! — 1) + ord, dk.

Proof. Recall the isomorphism Z; ~ (Z;){,s X (1 + 1Z;), for any odd prime number /. The
multiplicative group 1 4+ [Z; has the following filtration:

le 31+lZlDl+l2ZlD

For fixed q and [ # p let d be the order of ¢ mod [. Then by the proof of lemma [5.21| we have:
N(I) is the greatest integer such that ¢? € 1 +1V(®Z,. Raising ¢ to the power p doesn’t change
its position in the filtration. On the other hand, lemma [5.20] shows that raising ¢ to the power
| shifts the position of ¢ in the filtration exactly by one. Hence for ¢ = p?P" ged(dg,p) = 1
we have:

N(I) = ordy(¢"" = 1) = ordy (p V=P — 1) = ord,(p' " — 1) + ord;(dg)
[

Recall that for a prime number [ different from p we define s;(7;) to be the least integer k
such that T}, has direct summand of the form Z/I*Z. Obviously, if [ # 2 then s,(T},) = N(I).
More generally, we have:

Lemma 5.26. For a prime number [ different from p the order ord;(dk) is given by the following
formula:

0, if (=2 and s, =1
s1(Ty) —ordy((p*)' ' —1), otherwise.

Proof. The case of the odd [ is clear, since p* = (_1),%11) if p is odd and hence for [l =1 mod 2
we have (p*)!=1 = p'~1. If [ = 2 then there are two cases. If p=1 mod 4 then s,(T},) = N(2)
and obviously p* = p, hence our formula holds trivially. If p = 3 mod 4 then either ¢ = 3
mod 4 or ¢ =1 mod 4. In the first case we have dx =1 mod 2 and s5(7,) = 1 which leads
to the our ”"exceptional case”: | = 2, s = 1. In the second case we have dx = 0 mod 2 and
then N(2) = s5(T}) > 2 and hence s5(T},) = ordy(q — 1) = ordy(p?" ¥ — 1) = ordg(p2dTK —-1)=
ordg(p? — 1) + ordy(d) — 1 = ordy(p + 1) + ordy(dg) = ordy(p* — 1) + ordy(dg ), since in this
case p* = —p. O
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Now we are able to prove our main result concerning the isomorphism type of the abelian
group 7,. For a prime power ¢ = p" we define d, to be the non-p part of n : d, = #.
Trivially, for a function field K with exact constant field [F, we have dx = d,,.

Theorem 5.27. Given two powers of p: ¢ = p™ and g = p™* groups Ty, and Ty, are isomor-

phic if and only if dg, = dg,, i.e. T2 € p~.

n

Proof. The only invariants of T, are the sequence of coefficients a; ,, for different [, m. We will
show that they coincide for all [, m if and only if the condition of the our theorem holds.

First we will prove the if part. We assume that d, = d,,. Let [ be an odd prime number
different from p, then by the formula from the above lemma s,(7;,) = s/(7,,) and we have
arm = 0 if and only if m < s,(7,,) which shows that coeflicients a,,,; coincide for 7, and T,.
Suppose that | = 2. If p = 2 then ay,,, = 0 for all m in both groups. If p=1 mod 4 or d,, =0
mod 2 then as before ay,, = 0 if and only if m < Ny(l) = s2(T,,) = orda(d,, ) +orda(p — 1) and
hence as,, coincide for both groups. Finally, if p = 3 mod 4 and d,, = d;, = 1 mod 2 then
asm = 0 if and only if either m =1 or m > N(2) = orda(¢f — 1) = orda(g3 — 1). The equality
ordy(q? — 1) = ordy (g2 — 1) holds since: ordy(¢2 —1) = ordy(gy +1) +1 = ordy(pa?” +1)+1 =
orda(p+1) + 1.

Now, suppose that T,, ~ T,,. Then by the formula from lemma for any odd prime
number [ different from p we have ord;(d,,) = ord;(d,,). By definition we have ord,(d,,) =
ord,(d,,) = 0. Finally, for | = 2 there are two cases. Either both groups contain direct
summand of the form Z/27Z and then ords(d,, ) = ords(dy,) = 0, or otherwise the formula from

lemma holds and then ords(d,, ) = orda(dy, ). O

This already gives some important corollary. If ¢ = 22" for some non-negative integer k,
then coefficients a;,, defined as follows:

if 2 > 271 1
- {N, if [ # 2 and m > ord,( ) (5.3)

0, otherwise.

Corollary 5.28. Each of the following function fields K satisfies: G3 ~ Hlym(Z/lmZ)“lvm X
[IxZy® Z where a;,, are given by the formula :

1. The rational function field with g = 0 over Fo.x, for any non-zero integer k;

2. The elliptic function field y* +y = x>+ x + 1, with g = 1 over Fy;

3. The hyper elliptic function field y*> +y = x5 + 2> + 1, with g = 2 over Fy;

4. The hyper elliptic function field v* +y = (23 + 2>+ 1)(2®> + 2+ 1)"1 |, with g = 2 over Fy;

5. The function field of the plane quartic y* + (23 +x+ D)y + (z* +z+1) =0, with g = 3
over Fy.

6. The elliptic function field y* +y = x> + p, with g = 1 over Fy, where u is the generator
of F}.
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In particular, the genus, the constant field and the zeta-function of K are not determined by

ab
GK .

Proof. All these fields have trivial C1°(K), see [28]. Because of Theoremwe have T3 ~ Tk
It means that for any K listed above C% ~ T5 X [y Za- O

Remark: For given ¢ we will call a prime [ ezceptional if N(I) > 1. The question which
| are exceptional seems to be very difficult. Of course, if I?|(q — 1), then a;; = 0, so N(I) > 2.
For example if ¢ = 9 then as; = az2 = 0. But also there are exceptional primes [ with
ged(l,q — 1) = 1. For example if ¢ = 7 and [ = 5. Then 7 = 1 mod 5 if and only if d = 4k,
k € Z, but then 7¢ = 49%* = (—1)* = 1 mod 25. This means that 5 is exceptional. We
expect that for a given ¢ there are infinitely many exceptional primes, but we have no idea
how to prove it even for the case ¢ = 2: the first exceptional prime for this case is 1093. This
phenomena is closely related to the so-called Wieferich primes.

Our next goal is to understand what happens with the exact sequence:

1= Ty x Z° — Ch — CI)(K) — 1,

when C1°(K ) is not trivial. Since we are working with infinite groups C% can still be isomorphic
to Ty X Z;°. In the next paragraph we will show that all torsion elements of C% are in Ty

5.3.5 On the torsion of C%

Theorem 5.29. All the torsion elements of C% are in T, and the exact sequence 15 totally
non-split. Moreover, the topological closure of the torsion subgroup of C% is Ty

Proof. Suppose that there exists a non-zero = € C% such that 2! = 1 for some prime number /.
We will show that this element has trivial image in the class group. Pick a representative
(To,, Tyy, ... ) for o as element of T , we know that almost all ¢ we have x,, € O and that
e (xﬁjl,xf&, ...) is a principal idele. Let a be the element of K> whose image in Zy is 2!, We
have that a is locally an I-th power and hence by Theorem 1, chapter 9 from [2] we have that
a is globally an [-th power and hence x is a principal idele up to multiplication by the element
(CorsCGoa» - -+ ) € Tg, where each (,, denotes an [-th root of unity in K and hence its image in
the class group is trivial.

Since Z, is torsion free we have that all the torsion of C} lies in 7,. Note that each element
of the direct sum @;,,,(Z/I™Z)*™ is an element of finite order in 7, and closure of this direct

sum is 7, itself. 0

As it was mentioned in the introduction this statement implies the ”only if” part of our

main Theorem B.11

5.3.6 Proof of the inverse implication

Our task in this section is for given K show that the data Clgon_p(K ), T, determines C% up to
isomorphism.
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The p-part

Our first goal is to show that the p-part of C% is isomorphic to Zy.

We start from an easy example. Consider the exact sequence: 0 — Z, — Z, — Z/p*Z — 0,
where the second map is multiplication by p*. This sequence is totally non-split. We claim that
Z,, is the unique group which can occur in the middle of such a sequence. More concretely:

Example 5.30. Let A be an abelian pro-p group such that the following sequence is totally
non-split: 0 — Z, — A — Z/p*Z — 0, then A ~7Z,.

Proof. Since Z, is torsion free and the sequence is totally non-split then A is also torsion
free. Let us denote the quotient map A — Z/p*Z by ¢. There exists # € A such that
#(x) is the generator of Z/pFZ. Moreover, since A is torsion free we know that p*z is a non-
zero element a of Z,. We claim that the first non-zero coefficient in the p-adic expression
a = ag+ aip + agp® + ... is ag. Indeed, if a is divisible by p then p(pF~tz — %) = 0 and
hence pF~lz = ¢ € Z, since A is torsion free. But then ¢(p*~'z) = 0, which contradicts
to the our choice of z and hence ag # 0. Then A is generated by {z,Z,} with the relation
p*z = a. Consider the map ¢ : A — Z,, which sends element z to a and Z, — p*Z,. Then 1
is homomorphism: ¢ (pfz) = ¥ (a) = p*a = p*1p(z). The kernel of this map is trivial and since

ag # 0 then this map is onto. m
This example gives an idea how to prove the following:

Lemma 5.31. Let A be an abelian pro-p group and let B be a finite abelian p-group such that
the following sequence is totally non-split: 0 — Z° —+ A — B — 0. Then A ~ 7.

Proof. Since the sequence is totally non-split and Z, is torsion free, then A is torsion free also.
This means that multiplication by any natural number is injective. It means that Pontryagin
dual AY of A is torsion (since A is pro-finite) and divisible (since the dual to the injection is
surjection). Consider the dual sequence: 0 - BY — AY — ®Z(p™) — 0. By the structure
theorem of divisible groups AY is isomorphic to the direct sum of copies of Z(p>) and Q. But
AY is torsion and hence A ~ Z°. O

This shows that the isomorphism class of C?(vp depends only on p. Therefore given two global
function fields K, Ky with isomorphic groups 7, =~ 7, they share the same characteristic p
and hence the p-parts of their idéle-class groups are isomorphic: C(I]ﬁ,p ~ C(I){M.

The non p-part

Now we pick the prime number [ # p and consider the [-part C(}(’l of C%. 1If [ is such that
CI)(K) ~ {0} then obviously T,; ~ C% . Let | be a prime such that CI)(K) is not trivial. We
know that the following sequence is totally non-split:
1= Toy — Chy — CL(K) — 1.
Fix a natural number n. Then multiplication by (™ map induces the following commutative

diagram:
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1 —— Toa[l" > Ci [I"] ——— CL(K)[I"]

a) ~ N

1 T Ch CI)(K) ———1
m AL AL
1 T c(;q CIY(K) ———1

Tt/ 1" gy —— C, /1" Chy —— CI(K) /1" CI)(K) —— 1

Since our main sequence is totally non-split the map from Cj,[I"] to CI)(K)[I"] is the zero
map and the map from T, [I"] to C} ,[I"] is an isomorphism. Now applying Pontryagin duality
to the above diagram we get:

L (Tqall"))" ¢———(Ci ") 5 (CL(K)[I"])

Le——(Tq)Y ¢ (Ciy) ————— (CI(K))V ¢—1
m o AL

Le—— (T)Y e+ (C)) "+ (CL(K)) e— 1

(Tot /1" Tga)" —— (Coey /I Cl )" — (CR(K) /I CI(K))” +—1

Because of the construction of 7,; the group (7,;)" is isomorphic to the direct sum of
finite cyclic groups, for example for [ # 2 we have (7)Y ~ @r>nq) On ZJI*Z, and therefore
Mal™(Tgr)" = {0}. It means we have (N,I"(C%,)") C (CI)(K))". Our goal is to show that
(Mal™(C0)¥) = (CL(K))Y.

Lemma 5.32. Given any non-zero element z of (CI)(K))¥ C (C% )" and any natural number
n there exists an element ¢, € (Ch,;)¥ such that I"c, = x.

Proof. For fixed n consider the above diagram. Since the second row is exact the image of z in
(Tqe)" is zero. Then its image in (Tq,[I"])" is also zero. Since (T [I"])" ~ (C%,[I"])" it means
that image of the non-zero element x in (Cy[I"])" is zero. Since the second column is exact
this means that « lies in the image of the multiplication by I map from (C% )" to (C},)" and
therefore there exists ¢, such that ("¢, = x. O

It means that we have proved:

Corollary 5.33. The ezact sequence 1 < (Tg;)" < (Ci,)Y < (CI)(K))Y <« 1 satisfies condi-
tions of Theorem [5.14)

In order to finish our proof of Theorem [5.1] we will to prove theorem [5.14]
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Proof of Theorem [5.14]

First, let us recall the settings.

Theorem 5.34. Let {C;} be a countable set of finite cyclic abelian l-groups with orders of
C; are not bounded as © tends to infinity and let A be any finite abelian l-group. Then up to
isomorphism there exists a unique torsion abelian l-group B satisfying two following conditions:

1. There exists an exact sequence: 1 - A — B — @;>,C; — 1;
2. A is the set of all divisible elements of B: A = Ny,>1nB.

Proof of the existence. Given a group A and @;>,C; let k; denotes the order of the
group C}. Because of the assumptions of the Theorem, the sequence of orders k; is not bounded
and hence for each natural number N there exists ¢ such that k; > N. Let us pick an increasing
sequence of indexes j;, ¢ € N such that kj;, > [*. Let ay, ..., a,_1 be any finite set of generators
of A. Consider the sequence a,, of elements of A defined as follows:

_ J @ mod n if m :.71
fim = 0, otherwise.

Consider the abelian group B which is the quotient of the direct sum A @ (B;enX;Z) of
countably many copies of Z and one copy of A by the relations k;X; = a;. We have that B
contains A as a subgroup and the quotient of B by A is isomorphic to @;C;. This means that
the group B satisfies the first condition of the theorem. Now, consider the group Z = N,>1nB.
Obviously, Z C A and we would like to show that actually Z = A. This follows from the
fact that for any fixed number N > 1 the set {k; X,,|i > log, N} generates A and satisfies
kj, > 10> learV) > N

Proof of the uniqueness. Suppose we are given an abelian torsion [-group B which
satisfies both conditions of the our theorem. Denote the map from B to ®;>1C; by ¢. Let z;
denotes a generator of the cyclic group C; and let k; denotes the order of C;. Let x; be an
element of B such that ¢(z;) = ¥;, then kx; € A.

Lemma 5.35. For any positive integer M which is a power of | the set Ay = {k;jx;|k; > M}
generates A.

Proof. Without loss of generality we assume that M > #A. Pick a non-zero element a € A.
Because of the second property a can be written as M?y, where y € B. Since the sequence
1 =+ A— B — ®>1C; — 1is exact we can write y as finite Z-linear combination of x;; and an
element of A: y = b, x;, + b,z + -+ + b, x;, + ag. Pick the subset S of 41,...,1, consisting
of indexes of i; such that k;, > M. Since M?x;, = 0 if k;; < M we have : M*3" . _ b x;, = a.
On the other hand 0 = ¢(a) = M?},

by M2 .
ZjeS ;C—Jk:zszj This means that {k;x;|k; > M} generates A. O

jes
bi,&;, and hence M?b;, is divisible by k;, and a =

Remark: consider the sequence a; = k;x; of elements of A from the above lemma. We
will say that this sequence (a;) strongly generates A, i.e. that for any integer M the set
Sy ={a;|i € S, k; > M} generates A.
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Note that B as abstract abelian group is isomorphic to the group generated by elements X;
and a; such that k; X; = a;: B = (X, a;)/{k; X; —a;). Given another abelian group B’ satisfying
conditions of our theorem we know that B’ = (X, a}) /(k;X] — a.). If for any i we have a; = a
as elements of A then, obviously B ~ B’. Our goal is to show that B ~ B’ in any case.

Definition 5.36. Given two such groups B, B’ with generating sequences (a;), (a;) consider

the set S = {ila; = a}}. We will say that (a;) and (a}) have large overlap if the set {a;|i € S}
strongly generates A.

We have the following observation:

Lemma 5.37. If two generating sequences (a;), (a.) of groups B and B’ have large overlap,
then groups B and B’ are isomorphic.

Proof. For each index i consider the difference a; —a;. Since B and B’ have large overlap, we can
write this difference as ﬁnite sum Y o Ak X Wlth km > ki, \i. € Z. Since both k,, and k;

meS 'm
are powers of [ the ratlo is an integer. Con81der the map from B to B’ defined as follows.

The map 1 is identity on A If i € S then ¢(X;) = X], otherwise ¢(X;) = X[+ ,,cq A ’2” X! .
We claim that ¢ is a homomorphism: if i € S then a; = ¥(k;X;) = k(X;) = kX! = a.
Ifi & S, we have a; = Y(kX;) = ki(X] + X, cs M2 X)) = k(X)) + X es Ankm X,

a, + (a; — a}) = a;. In other words it sends generators of B to elements of B’ preserving all
relations. We claim moreover that the map 1 is an isomorphism since we will construct the
inverse map ¢ from B’ to B as follows. The map ¢ is identity on A. For ¢ € S we have

(X!) = X; and for i € S we have ¢(X}) = X; — > _ N Em X Then, for i ¢ S we have:

mesS mk

S((X:)) = S(X]+ YA, —X’ S(X]) + o> AL, —X’

meS meS

mes ¢ mes
In a similar way one shows that ¢(o(X])) = X/. O

Now we will prove:

Corollary 5.38. Two groups B and B’ satisfying conditions of the above theorem are isomor-
phic.

Proof. Suppose that there exists a partition of the set of positive integers N on two sets N =
I UI, I NIy = 0 such that each of the set {a;|i € I} and {a}|i € I} strongly generates
A. Then we define abelian group D to be the quotient of the direct sum A & (B;enX;Z) of
countably many copies of Z and one copy of A by the relations k; X; = a;, i € I; and k; X; = a,
i € I. Obviously D also satisfies conditions of Theorem [5.34 Moreover D and B and also D
and B’ have large overlap, therefore by the lemma we have: B~ D ~ B'.

Now we will show that such partition exists. We will construct this partition inductively.
Let No = 0 and let N; be the minimal integer such that elements of the set S; = {a;|i < N
and k; > [} generate A. The reason for this number to exists is the following. The sequence a;

111



CHAPTER 5. ON ABELIANIZED ABSOLUTE GALOIS GROUPS OF GLOBAL
FUNCTION FIELDS

strongly generates A which implies that there exist indexes i with k; > [ such that a; generate
A, but A is a finite group and hence we can pick a finite number of elements with k; > [
generating A. Note that dropping out finitely many indexes doesn’t affect the fact that each of
the sequences a; and a strongly generates A. Suppose we’ve constructed the number N, then
let N,,11 be a minimal integer such that elements of the set

g {d|N;y < i < Nyppyq and k; > 1™ if mois odd
m {a;|Ny <i < Npyq and k; > 1™ otherwise.

generate A. Finally, we define Iy = Up>o{i € N|Ny,, < @ < Noppp1} and I, = U1 {i €
N|N2m_1 <1< Ngm} OJ

5.4 Proof of Corollaries

In this section we will prove corollaries [5.3] and [5.5] The first two will follow from the
existence for a given constant field k = I, an elliptic curve E over k with the group E(F,) of
IF -rational points having order ¢, since in the case of elliptic curves we have E(F,) ~ CI°(K}),
Where K g denotes the associated to E global function field.

Definition 5.39. Fiz a finite field F,. Let N be an integer number in the Hasse interval:
€ [—2/¢:2\/q]. We will call it admissible if there exists an elliptic curve E over F, with
q+1—-#E(F,) =N.

The following statement is a part of the classical statement due to Waterhouse [45]:
Theorem 5.40 (Waterhouse). If ged(p, N) =1 then the number N is admissible.

Corollary 5.41. Given a finite field IF, there exists an elliptic curve E over F, with #E(F,) =
q.

The above remarks finish the proof of corollaries [5.3]and 5.4, Now we will discuss the proof
of the corollary 5.5 Our goal is to show :

Theorem 5.42. Given a constant field k = F, with characteristic p # 2 there are infinitely
many non-isomorphic curves X over k with different two-parts of the group of k-rational points
on the Jacobian varieties associated to them.

Proof. For any positive integer N there exists a monic irreducible polynomial of degree N
with coeflicients in F,. Let us pick any sequence of such polynomials D, (z), n € N with the
property that deg(D,(z)) = n+ 2. Consider the family of affine curves defined by the equation
Cm : y*> = Di(x)Do(x) ... Dyy(x). Since D;, i € N are mutually distinct these affine curves
are smooth. Let X, denotes the normalization of the projective closure of C,,. Then X,, is
a hyper-elliptic curve of the genus g,, = Ldeg(Dl(m)H Hdeg(m@)=1 | The Weil-bound insures
that the order of the group of F,-rational points of the Jacobian variety J,,, associated to X,,
satisfies the following:

(V7 — 1)*" < #J,.(F,) < (Vg +1)%m,
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and therefore the two-part of J,,,(F,) is bounded from above by (,/g+1)?*". On the other hand
theorem 1.4 from [7] states that the two-rank of J,,(IF,) is at least m — 2. Therefore, among
the family X, there are infinitely many curves with different two-part of the group J,,(F,) and
therefore their function fields K, have non-isomorphic G& . O
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