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Chapter 5

On Abelianized Absolute Galois
Groups of Global Function Fields

5.1 Introduction

As we mentioned in the first chapter the famous theorem of Uchida [57] states that the isomor-
phism class of a global function field K is determined by the isomorphism class of the absolute
Galois group GK = Gal(Ksep : K) considered as topological group. One of the essential steps
in the Uchida’s proof is to recover from GK its abelian part GabK with some additional data,
like decomposition and inertia subgroups. The following questions are natural to ask: what
kind of information can one recover from the isomorphism class of the pro-finite abelian group
GabK ? More concretely, does the abelian part of the absolute Galois group determine the global
function field K up to isomorphism? If not, which function fields share the same isomorphism
class of GabK ?

For a global function field K of characteristic p with exact constant field Fq, q = pn we define
the invariant dK as the natural number such that n = pkdK with gcd(dK , p) = 1, k ∈ Z≥0.
Let Cl0(K) denotes the degree zero part of the class-group of K. In other words, Cl0(K) is
the abelian group of Fq-rational points of the Jacobian variety associated to the curve X. For
any abelian group A and a prime number l we denote by Al its l-part: Al = A⊗ Zl, where Zl
denotes the ring of l-adic integers. We also denote by Anon-l the non-l part of A : Anon-l = A/Al.
The main purpose of this chapter is to prove the following result:

Theorem 5.1. Suppose K and K ′ are two global function fields. Then GabK ' GabK′ as pro-finite
groups if and only if the following three conditions hold:

1. K and K ′ share the same characteristic p;

2. Invariants dK and dK′ coincide: dK = dK′;

3. The non p-parts of class-groups of K and K ′ are isomorphic:

Cl0non-p(K) ' Cl0non-p(K
′).

In particular, two function fields with the same field of constants Fq have isomorphic GabK if and
only if they have isomorphic Cl0non-p(K).
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The proof of Theorem 5.1 includes explicit reconstruction of the invariants p, dK and
Cl0non-p(K) from GabK . More concretely, let sl(GabK ) be the least integer k such that GabK has

direct summand of the form Z/lkZ and let p? denotes (−1)
p−1
2 p if p is odd and p otherwise,

then:

Theorem 5.2. Given the isomorphism class of the topological group GabK we have:

1. The characteristic of K is the unique prime p such GabK has no elements of order p;

2. The non-p part Cl0non-p(K) of the class-groups of K is isomorphic to the torsion of the

quotient GabK /GabK [tors], where GabK [tors] denotes the closure of the torsion subgroup of GabK :

Cl0non-p(K) ' (GabK /GabK [tors])[tors].

3. The natural number dK is the unique number co-prime to p such that for any prime
number l 6= p:

ordl(dK) =

{
0, if l = 2 and s2(GabK ) = 1;

sl(GabK )− ordl((p
?)l−1 − 1), otherwise.

Proof. See corollaries 5.12 and 5.13.

By using these theorems we will establish the following:

Corollary 5.3. Let K be the rational function field (with genus zero) over a fixed constant field
Fq and let E be an elliptic function field (with genus one) defined over the same constant field,
such that1 # Cl0(E) = q. Then there exists isomorphism of topological groups GabK ' GabE .

This corollary provides some answers to the above questions. For example, it follows that
for every q there exists a pair of function fields K, K ′ over Fq with g(K) = 0, g(K ′) = 1 and
GabK ' GabK′ . In particular, the genus gK of K and therefore the Dedekind zeta-function ζK(s)
of K are not determined by the isomorphism class of GabK even if the constant field Fq is fixed.
The above example also shows that:

Corollary 5.4. For every p there exist infinitely many pairwise non-isomorphic function fields
K of characteristic p with isomorphic GabK .

Proof. Fix a prime number p and let q = pp
k
, where k is a non-negative integer. Let Fk and

Ek denote rational and elliptic function fields from the previous example with exact constant
field Fq. Then, according to the our main theorem for any non-negative integers k, l we have:
GabKl ' G

ab
Ek
.

Applying some classical results about the two-part of Cl0(K) of hyper-elliptic function fields
we will also show that:

1the existence of such field is guaranteed by the Waterhouse theorem, see section 5.4.
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Corollary 5.5. For any given q with p > 2 infinitely many distinct isomorphism types of GabK
occur for function fields with exact constant field Fq.

Proof. See theorem 5.42 from the last section.

Unfortunately, the answer to the question about distribution of global fields over fixed
constant field Fq sharing the same GabK is not clear at the moment, since we don’t know if there
are infinitely many such fields with a given non p-part of the class group. In particular, it
seems to be reasonable to state the following conjecture: there are infinitely many curves
defined over fixed finite field Fq, q = pn with order of the group of Fq-rational points of the
Jacobian varieties associated to them to be a power of p. If the conjecture is true then what is
the proportion of such curves, say as q fixed and g tends to infinity?

The main idea towards our result was inspired by the work [1], where authors produced an
elegant description for the isomorphism class of the topological group GabK , where K denotes
imaginary quadratic number field. But note also that there are many completely different
technical details, which point in a different direction.

This chapter has the following structure: in the next section we will sketch the proof of
Theorem 5.1. Then we prove all the necessarily lemmas in the section 5.3. Finally, we will
discuss the question about construction of non-isomorphic function fields with isomorphic and
non-isomorphic abelian parts of their absolute Galois groups and prove corollaries 5.3, 5.4 and
5.5.

5.2 Outline of the Proof

Global class field theory provides an internal description of the abelian part of the absolute
Galois group of a global or local field K in terms of arithmetic objects associated to K. We
will use the idèle-theoretical approach: see section 5.3.2 for details and the classical books [36],
[59], [2] for complete discussion. For a given global function field K we denote by IK the group
of idèles of K and by CK the idèle class-group of K, i.e. the quotient group of IK by the
multiplicative group K×. Recall that we have a split exact sequence:

0→ C0
K → CK

deg−−→ Z→ 0,

where C0
K is the degree zero part of the idèle class group and the map from CK to Z is the

degree map.

Theorem 5.6 (The Main Theorem of Class Field Theory for Global Function FIelds). In the

above settings there exists an isomorphism of topological groups: C0
K ⊕ Ẑ ' Gab

K .

Proof. See section 5.3.2.

We will show that GabK ' GabK′ if and only if C0
K ' C0

K′ . The key ingredient in the our proof
is Pontryagin duality for locally compact abelian groups, which allows us to reduce question
about pro-finite abelian groups to the question about discrete torsion groups.

Lemma 5.7. Let A and B be two pro-finite abelian groups. If A⊕ Ẑ ' B ⊕ Ẑ then A ' B in
the category of pro-finite abelian groups.
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Proof. See section 5.3.1.

This lemma reduces our question to the description of C0
K as a topological group. Let v

denote a place of K and Kv, Ov denotes the corresponding completion and its ring of integers
respectively. Then we derive the following exact sequence.

Lemma 5.8. There exists an exact sequence of topological groups, where the finite groups have
the discrete topology:

1→ F×q →
∏
v

O×v → C0
K → Cl0(K)→ 1.

Proof. See section 5.3.3.

For the next step we recall in lemma 5.17 the isomorphism O×v ' F×qn × Z∞p , where n is the
degree of a place v and Zp denotes the group of p-adic integers. Denoting by TK the group
(
∏

v F
×
qdeg(v)

)/F×q we will get the following exact sequence, see section 5.3.3:

1→ TK × Z∞p → C0
K → Cl0(K)→ 1 (5.1)

There are two crucial observations about this sequence. First we will prove the following
structure theorem for the group TK :

Theorem 5.9. Given a function field K with exact constant field Fq, where q = pn there exists
an isomorphism TK '

∏
l,m(Z/lmZ)al,m, where the product is taken over all prime numbers l

and all positive integers m and al,m denotes a finite or countable cardinal number. Moreover,
the coefficients al,m depend only on q and the following holds:

1. Each al,m is either zero or the infinite countable cardinal;

2. For l = p we have ap,m = 0 for all m;

3. For l 6= p, l 6= 2 there exists a unique non-negative integer Nq(l) such that al,m is infinite
if and only if m ≥ Nq(l);

4. For p 6= 2 and l = 2 there exists a unique non-negative integer Nq(2) such that for q = 1
mod 4 we have a2,m is infinite if and only if m ≥ Nq(2), and for q = 3 mod 4 we have
a2,m is infinite if and only if m = 1 or m ≥ Nq(2);

5. Given two prime powers q1, q2 the numbers Nq1(l) and Nq2(l) coincide for all l if and only
if q1 = pn1, q2 = pn2 with n1

n2
= pm, for some integer m.

Proof. See section 5.3.4. For expression of Nq(l) see lemma 5.21 and lemma 5.22.

Definition 5.10. The exact sequence of abelian groups 0→ A→ B
ψ−→ C → 0 is called totally

non-split if there is no non-trivial subgroup S of C such that the sequence 0→ A→ ψ−1(S)→
S → 0 splits.

The second observation about 5.1 is the key point in the our proof.
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Theorem 5.11. All torsion elements of C0
K are in TK. Therefore the exact sequence 5.1

is totally non-split. Moreover, the topological closure of the torsion subgroup of C0
K is TK :

C0
K [tors] = TK.

Proof. See section 5.3.5.

Because of the description of TK this theorem gives us:

Corollary 5.12. If GabK ' GabK′ as pro-finite groups then TK ' TK′, in particular the charac-
teristic p and the invariant dK are determined by the isomorphism class of GabK .

Proof. Since GabK ' C0
K ⊕Ẑ and the group Ẑ is torsion free, we have that TK is also the closure

of the torsion subgroup of GabK . Then theorem 5.9 shows that p is a unique prime such that this
group has no elements of order p.

For the natural number dK consider the torsion group GabK [tors]. By Theorem 5.9 this group
has direct summand of the form Z/lkZ for a fixed prime l 6= p if and only if k ≥ Nq(l) or
l = 2, k = 1, p = 3 mod 4 and dK = 1 mod 2. In the proof of Theorem 5.9 we will show that
Nq(l) = ordl(dK) + ordl((p

?)l−1 − 1), where p? = −p if p = 3 mod 4 and p? = p otherwise.
Which implies the formula:

ordl(dK) =

{
0, if l = 2 and s2 = 1

sl(GabK )− ordl((p
?)l−1 − 1), otherwise.

Since each pro-finite abelian group is isomorphic to the limit of finite abelian groups, by
the Chinese remainder theorem it is also isomorphic to the product over prime numbers of its
primary components. We will work with these components separately instead of working with
the whole group. Keeping the same notation as for finite abelian groups, for any pro-finite
abelian group G and a prime number l we denote by Gl the l-part of G: G⊗ Zl. Now let l be
a prime number different from p, we have:

1→ TK,l → C0
K,l → Cl0l (K)→ 1.

Which shows that:
Cl0l (K) ' C0

K,l /C0
K,l[tors].

Corollary 5.13. If GabK ' GabK′ as pro-finite groups then the non p-parts of the class-groups of
K and K ′ are isomorphic: Cl0non-p(K) ' Cl0non-p(K

′).

Proof. We know that GabK ' C0
K ⊕Ẑ and that TK = GabK [tors]. Considering the l-part we get:

GabK,l/GabK,l[tors] ' (C0
K,l /TK,l)⊕ Zl.

Since Zl is torsion free, we have:

(GabK,l/GabK,l[tors])[tors] ' C0
K,l /TK,l ' Cl0l (K).
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Finally, note that the p-part of the torsion group of GabK is trivial and hence combining all
primes l different from p we get:

Cl0non-p(K) ' (GabK /GabK [tors])[tors].

Proof of Theorem 5.1. The above two corollaries imply the only if part of Theorem 5.1. Now,
we are going to discuss the question about the other implication. Our goal is to show that for
a given isomorphism class of TK and non p-part of the class group there is only one possibility
for C0

K to fit in the exact sequence 5.1.
Consider the p-part of the exact sequence 5.1:

1→ Z∞p → C0
K,p → Cl0p(K)→ 1.

By using the fact that this sequence is totally non-split we will show, see lemma 5.31 that
this implies C0

K,p ' Z∞p , in particular the isomorphism type of GabK,p doesn’t depend on Cl0p(K).
We fix a prime number l 6= p and consider the l-part which is of course also totally non-split:

1→ TK,l → C0
K,l → Cl0l (K)→ 1. (5.2)

Obviously, if Cl0l (K) ' 0 then C0
K,l ' TK,l. Our goal is to show that even if Cl0l (K) is not

the trivial group then the isomorphism type of C0
K,l is uniquely determined by isomorphism

types of TK,l, Cl0l (K) and the fact that the exact sequence 5.2 is totally non-split.
In order to achieve our goal we need the following:

Theorem 5.14. Let {Ci} be a countable set of finite cyclic abelian l-groups with orders of
Ci are not bounded as i tends to infinity and let A be any finite abelian l-group. Then up to
isomorphism there exists a unique torsion abelian l-group B satisfying two following conditions:

1. There exists an exact sequence: 1→ A→ B → ⊕i≥1Ci → 1;

2. A is the set of all divisible elements of B: A = ∩n≥1nB.

Proof. See section 5.3.6

Applying Pontryagin duality to the exact sequence 5.2 we get:

1← (TK,l)∨ ← (C0
K,l)

∨ ← (Cl0l (K))∨ ← 1.

We will show in corollary 6.7 that this sequence dual to the sequence 5.2 satisfies conditions
of Theorem 5.14 and therefore (C0

K,l)
∨ is uniquely determined. So its dual C0

K,l is uniquely
determined.

5.3 Proof of Lemmas

In this section we are going to prove all the results needed for our proof. Let us start from
recalling some basic facts about pro-finite abelian groups. Standard references are [26] and [18].
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5.3.1 Preliminaries

Let A be an abelian group. If this group is finitely generated then the structure theorem says
that A is isomorphic to Zr ⊕ Ators where r is a non-negative integer called rank and Ators

is a finite abelian group. Given two such groups we have that they are isomorphic if and
only if their ranks are equal and torsion parts are isomorphic. The structure of an infinitely
generated abelian group is more complicated. An element x of the abelian group A is divisible
if for any n ∈ N there exists y ∈ A such that x = ny. The group A is divisible if all its
elements are divisible. For example Q is divisible. Another example is the so-called Prüfer
p-group which is defined as union of all pk roots of unity in C× for a fixed prime number p:
Z(p∞) = {ζ ∈ C×|ζpk = 1, k ∈ N}. Note that we have an isomorphism of abstract groups:
Z(p∞) ' Qp/Zp, where Qp denotes the abelian group of p-adic numbers and Zp is a subgroup
of all p-adic integers.

A group is called reduced if it has no non-zero divisible elements.

Lemma 5.15. Each abelian group A contains a unique maximal divisible subgroup D and it is
the direct sum of D and some reduced subgroup R: A ' D ⊕R.

The structure of the divisible subgroup is clear.

Lemma 5.16. Every divisible group D is isomorphic to a direct sum of copies of Q and Z(p∞)
for different prime numbers p.

Proof. The proofs can be found in chapter 3 of [18].

The structure of the reduced part of A can be more complicated and usually involves the
theory of Ulm invariants. In this chapter we will work with the reduced part directly not
referring to the Ulm invariants at all.

Pontryagin Duality

We need to recall some properties of Pontryagin duality for locally compact abelian groups. A
good reference including some historical discussion is [29]. Let T be the topological group R/Z
given with the quotient topology. If A is any locally compact abelian group then one considers
Pontryagin dual A∨ of A which is the group of all continuous homomorphisms from A to T :

A∨ = Hom(A,T).

This group has the so-called compact-open topology and is a topological, locally compact group.
Here we list some properties of Pontryagin duality we use during the proof:

1. Pontryagin duality is a contra-variant functor from the category of locally compact abelian
groups to itself;

2. If A is a finite abelian group with the discrete topology then A∨ ' A non-canonically;

3. We have the canonical isomorphism: (A∨)∨ ' A;

4. Pontryagin dual of a pro-finite abelian group A is a discrete torsion group and vice versa;
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5. Pontryagin duality sends direct products to direct sums and vice versa;

6. Pontryagin dual of Zp is Z(p∞) and dual of Q/Z equipped with the discrete topology is

the group of pro-finite integers Ẑ;

7. Pontryagin dual of a divisible group A is torsion free and vice versa.

Having stated this we are able to prove our lemmas.

Proof of Lemma 5.7. Let A and B be two pro-finite abelian groups such that A⊕Ẑ ' B⊕Ẑ.
Applying Pontryagin duality to the above isomorphism we obtain:

(A)∨ ⊕Q/Z ' (B)∨ ⊕Q/Z.

By lemma 5.15 each abelian group is isomorphic to the direct sum of its reduced and divisible
components. Using the fact that Q/Z is divisible we have that reduced part of (A)∨ and (B)∨

are isomorphic. Now, according to the Lemma 5.16 the divisible part of (A)∨⊕Q/Z is a direct
sum of copies of Q and Z(p∞) and since Q/Z ' ⊕pZ(p∞) divisible parts of (A)∨ and (B)∨ are
isomorphic. Therefore (A)∨ and (B)∨ are isomorphic and hence A ' B.

5.3.2 Class Field Theory

In this paragraph we briefly review the class field theory for global and local fields of positive
characteristic.

The Case of Local Fields

We will start from the description of local aspects of the class field theory. Let L be a local field
of positive characteristic p > 0. In other words L is a completion of a global function field K
with respect to the discrete valuation associated to the place v of K. The field L is isomorphic
to the field of Laurant series with constant field Fqn and the corresponding ring of integers OL
is the ring of formal power series: L ' Fqn((x)), OL ' Fqn [[x]]. One way to construct abelian
extensions of L is to take the algebraic closure Fqn of the constant field Fqn which has Galois

group Gal(Fqn : Fqn) ' Ẑ. This is the maximal unramified abelian extension of L.
Denoting by IL = Galram(Lab : L) the inertia subgroup of GabL we have the following split

exact sequence:
1→ IL → GabL → Ẑ→ 1.

Recall that we also have the split exact sequence given via the valuation map:

1→ O×L → L× → Z→ 1.

The local Artin map: L× → GabL induces isomorphism of topological groups between the

pro-finite completion L̂× of L× and GabL such that two exact sequences are isomorphic:

1 // Ô×L ' O
×
L

//

��

L̂× //

��

Ẑ

��

// 1

1 // IL // GabL // Gal(Fqn : Fqn) // 1
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The Case of Global Fields

It is possible to give a similar description of GabK in the case where K is a global function field via
the so-called idèle-class group. First we note that for a global function field K there also exists
the maximal unramified abelian extension M of K. The Galois group Gal(M : K) is isomorphic

to the direct sum Ẑ ⊕ Gal(HK : K), where Ẑ corresponds to the constant field extension and
HK is maximal unramified geometric extension of K. The Galois group Gal(HK : K) is finite
and one of the theorems of the class field theory establishes an isomorphism of abelian groups:

Gal(HK : K) ' Cl0(K),

where Cl0(K) denotes the ideal class group of K.

Let IK denotes the multiplicative group of idèles of K. This is the restricted direct product
IK =

∏′
vK

×
v , where the product is taken over places v of K with respect to O×v . One defines

the basic open sets as U =
∏′

v Uv, where Uv open in K×v and for almost all v we have Uv = O×v .
Under the topology generated by such U this becomes a topological group. The multiplicative
group K× is embedded to IK diagonally as a discrete subgroup and the quotient CK is the
idèle class group of K. This is a topological group, but it is not pro-finite.

Proof of Theorem 5.6. One defines the global Artin map CK → GabK . This map is injective, but
not surjective. Similar to the local case it induces isomorphism of the pro-finite completion of
CK and GabK as topological groups: ĈK ' GabK , see theorem 6, chapter 9 of [59].

Recall from the introduction that we have a split exact sequence:

0→ C0
K → CK

deg−−→ Z→ 0,

where the map from CK to Z is the degree map and C0
K is the degree zero part of the idèle class

group. We have that C0
K is pro-finite, hence complete and therefore ĈK ' C0

K ⊕Ẑ.

5.3.3 Deriving the main exact sequence

Now our goal is to prove lemma 5.8. Let I0
K be the group of degree zero idèles of K, i.e. means

the kernel of the degree map from IK to Z. We have:

1→ K× → I0
K → C0

K → 1.

Let Div(K) denote the divisor group and let Div0(K) be the subgroup of degree zero divisors.
We also have the natural exact sequence, where Fq is exact field of constants of K:

1→ F×q → K× → Div0(K)→ Cl0(K)→ 1.

There is a surjective homomorphism α of topological groups from I0
K to P0(K), sending

an idèle (aP1 , aP2 , . . . ) to the divisor
∑
vPi(aPi) · Pi. This is well-defined since for a given idèle

almost all aP ∈ O×vP . The kernel of this map is
∏

vO×v . Moreover, this map sends principal
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idèle to principal ideals and hence induces the surjective quotient map α̂ from C0
K to Cl0(K).

We have the following snake-lemma diagram:

1

��

1

��

1

��

1 // F×q //

��

∏
vO×v //

��

ker α̂

��

1 // K× //

��

I0
K

//

��

C0
K

//

��

1

1 // K×/F×q //

��

Div0(K) //

��

Cl0(K)

��

// 1

1// 1 1

And therefore we have:

1→ F×q →
∏
v

O×v → C0
K → Cl0(K)→ 1.

This proves lemma 5.8.

5.3.4 On the Structure of the Kernel

Now we will give an explicit description of the group ker α̂ ' (
∏

vO×v )/F×q . If v is a place
of degree n of a global function field K with exact constant field Fq, then Kv is the field of
Laurant series with constant field Fqn and Ov is the ring of formal power series: Kv ' Fqn((x)),
Ov ' Fqn [[x]]. A formal power series is invertible if and only if it has non-zero constant term
and therefore:

O×v ' F×qn × (1 + tFqn [[t]]).

Lemma 5.17. We have an isomorphism of topological groups: 1 + tFqn [[t]] ' Z∞p , where ∞
means the countable cardinal number.

Proof. See [36], section on local fields.

Denoting by TK the group (
∏

v F
×
qdeg(v)

)/F×q , we obtain:

(
∏
v

O×v )/F×q ' TK × Z∞p .

Description of TK
At the first time it seems that the group TK depends on K since the product

∏
vO×v is taken

over all places of K. Our first goal is to show that it actually depends only on q.
Recall the following classical statement needed in the proof:
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Lemma 5.18. For a fixed global function field K there exists a natural number N such that
for every n ∈ N, n ≥ N there exists a place of K of degree n.

Proof. See chapter 5 of [42].

Consider the group AK =
∏

v F
×
qdeg(v)

. By the Chinese reminder theorem we have:

AK =
∏

(Z/lmZ)al,m ,

where al,m is either a non-negative integer or infinite countable cardinal number. Since F×qn is
a cyclic group of order qn − 1 we have the direct description of al,m: it is the cardinality of the
set {v ∈ Pl(K)| ordl(q

deg(v) − 1) = m}. Note that ap,m = 0 for all m ∈ N.

Lemma 5.19. Each al,m is either 0 or infinity.

Proof. Suppose that there exists a place v of degree n such that ordl(q
n − 1) = m. We will

show that then there are infinitely many such v. Our assumption implies that qn = 1 mod lm,
but qn 6= 1 mod lm+1. The order of the group (Z/lm+1Z)× is φ(lm+1) = lm+1 − lm, where φ
denotes the Euler φ-function. It means if qn satisfies our condition then for any k ∈ N the
quantity qn+kφ(lm+1) also satisfies our condition. In other words, this condition depends only
on n mod φ(lm+1). Since by lemma 5.18 each function field K has places of all except finitely
many degrees if there is one v with ordl(q

deg(v) − 1) = m then there are infinitely many such
places.

Now, given l 6= p we would like to understand for how many m we have al,m = 0. First we
will prove the following elementary number theory lemma.

Lemma 5.20. Let a be a positive integer such that ordl(a−1) = n ≥ 1 for some prime number
l. Then if l 6= 2 or n ≥ 2 we have ordl(a

l − 1) = n+ 1.

Proof. By the assumption of the lemma there exists an integer b such that gcd(b, l) = 1 and
a = 1 + bln mod ln+1. Suppose that l 6= 2. For some integer c we have:

al = (1 + bln + cln+1)l = 1 + l(bln + cln+1) +
l(l − 1)

2
(bln + cln+1)2 + · · · =

= 1 + ln+1(b+ cl) +
l(l − 1)

2
l2n(b+ cl)2 + . . . .

Since l 6= 2 we have al = 1 + bln+1 mod ln+2.

Now let l = 2 and n ≥ 2. We have: a = 1+2n+b2n+1 mod 2n+2 and therefore a2 = 1+2n+1

mod 2n+2.

Lemma 5.21. For each odd prime number l different from p there exists N(l) such that al,m
is infinite if and only if m ≥ N(l). Moreover N(l) depends only on q and not on K.
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Proof. Let d = l−1 and N(l) = ordl(q
d−1). Then qd = 1 in the group (Z/lN(l)Z)×, but qd 6= 1

in the group (Z/lN(l)+1Z)×. Therefore, for each u ∈ N such that u = d mod φ(lN(l)+1) we have:
ordl(q

u − 1) = N(l). Since K has places of almost all degrees the set {v ∈ Pl(K)| deg(v) = d
mod φ(lN(l)+1)} is infinite and hence al,N(l) 6= 0. We would like to show that if al,m 6= 0 then
al,m+1 6= 0. We know that there exists a place of the degree d0 such that ordl(q

d0 − 1) = m.
By the previous lemma we have ordl(q

ld0 − 1) = m + 1. Then for any place v from the set
{v ∈ Pl(K)| deg(v) = ld0 mod φ(lm+2)} we have ordl(q

deg(v) − 1) = m+ 1. This shows that if
m ≥ N(l) then al,m is infinite.

The last step is to show that al,m = 0 if m is less than ordl(q
d − 1). Indeed, the order a

of q in the group F×l divides (l − 1) and then ordl(q
a − 1) = ordl(q

a l−1
a − 1) = ordl(q

l−1 − 1),
since l−1

a
is co-prime to l. It means that if for some u we have qu = 1 mod l, then u = ab and

ordl(q
u − 1) = ordl(q

ab − 1) ≥ ordl(q
a − 1) = ordl(q

l−1 − 1).

Lemma 5.22. For l = 2 the following holds.

1. If p = 2, then a2,m = 0 for all m;

2. if q = 1 mod 4, then there exists N(2) such that a2,m is infinite if and only if m ≥ N(2);

3. if q = 3 mod 4, then there exists N(2) such that a2,m is infinite if and only if m ≥ N(2)
or m = 1;

Proof. The first statement is trivial. For the second one let N(2) = ord2(q−1), then N(2) ≥ 2.
As before we have q = 1 mod 2N(2), but q 6= 1 mod 2N(2)+1. The group (Z/2N(2)+1Z)×

has order φ(2N(2)+1) and hence, for each m such that m = 1 mod φ(2N(2)+1) we have that
qm = 1 mod 2N(2), but q 6= 1 mod 2N(2)+1. Since K has places of almost all degrees the set
{v ∈ Pl(K)| deg(v) = 1 mod φ(lN(2)+1)} is infinite and hence a2,N(2) 6= 0. Now, as in the
previous lemma if al,m 6= 0, then al,m+1 is not zero and obviously if m < N(2) we have a2,m = 0,
here we use the fact that m ≥ 2.

Finally suppose that q = 3 mod 4. By the same argument as before we have that a2,1 is
infinite, but then q2 = 1 mod 8 and hence a2,2 = 0. Let N(2) = ord2(q2 − 1) ≥ 3. We have
that for a2,N(2) is infinite and for all k such that 1 < k < N(2) we have a2,k = 0. Because of
the same argument as before a2,m is infinite for all m ≥ N(2).

The next step is to show that Tq ' Aq. In order to do that we need one elementary lemma.

Lemma 5.23. For a given prime power q there are infinitely many integer numbers n such
that gcd( q

n−1
q−1

, q − 1) = 1.

Proof. Consider the factorization of q − 1 into different prime factors: q − 1 = lk11 . . . lkmm . We
know that q = 1 mod lkii and q 6= 1 mod lki+1

i , for all i in {1, . . . ,m}. In other words there
exists a natural number ai co-prime to li such that q = 1 + ail

ki
i mod lki+1

i . Therefore if the
natural number n is co-prime to q−1 then qn = 1+ainl

ki
i mod lki+1

i and then gcd( q
n−1
q−1

, q−1) =
1.
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Corollary 5.24. We have an isomorphism Aq ' Tq. The characteristic p of the constant field
of K is determined by Tq.

Proof. For the first statement recall that F×q is embedded diagonally to the product
∏

v F
×
qdeg(v)

.

Now pick any prime β of K of degree m such that gcd( q
m−1
q−1

, q−1) = 1 and split the last product

into two parts F×qm⊕
∏

v 6=β F
×
qdeg(v)

. Note that F×q is a subgroup of F×qm which is direct summand.

Since all these finite groups have the discrete topology, the quotient
∏

v 6=β F
×
qdeg(v)

⊕ (F×qm/F×q )

is topologically isomorphic to Tq. Finally, since each an,l is either zero or infinity we have that
Aq ' Tq.

For the second statement note that p is unique prime such that ap,m = 0 for all m ∈ N.

Lemma 5.25. For odd prime number l we have N(l) = ordl(p
l−1 − 1) + ordl dK.

Proof. Recall the isomorphism Z×l ' (Zl)×tors × (1 + lZl), for any odd prime number l. The
multiplicative group 1 + lZl has the following filtration:

Z×l ⊃ 1 + lZl ⊃ 1 + l2Zl ⊃ . . .

For fixed q and l 6= p let d be the order of q mod l. Then by the proof of lemma 5.21 we have:
N(l) is the greatest integer such that qd ∈ 1 + lN(l)Zl. Raising q to the power p doesn’t change
its position in the filtration. On the other hand, lemma 5.20 shows that raising q to the power
l shifts the position of q in the filtration exactly by one. Hence for q = pdKp

n
, gcd(dK , p) = 1

we have:

N(l) = ordl(q
l−1 − 1) = ordl(p

(l−1)dKp
k − 1) = ordl(p

l−1 − 1) + ordl(dK)

Recall that for a prime number l different from p we define sl(Tq) to be the least integer k
such that Tq has direct summand of the form Z/lkZ. Obviously, if l 6= 2 then sl(Tq) = N(l).
More generally, we have:

Lemma 5.26. For a prime number l different from p the order ordl(dK) is given by the following
formula:

ordl(dK) =

{
0, if (l = 2 and s2 = 1)

sl(Tq)− ordl((p
?)l−1 − 1), otherwise.

Proof. The case of the odd l is clear, since p? = (−1)
p−1
2 p if p is odd and hence for l = 1 mod 2

we have (p?)l−1 = pl−1. If l = 2 then there are two cases. If p = 1 mod 4 then s2(Tq) = N(2)
and obviously p? = p, hence our formula holds trivially. If p = 3 mod 4 then either q = 3
mod 4 or q = 1 mod 4. In the first case we have dK = 1 mod 2 and s2(Tq) = 1 which leads
to the our ”exceptional case”: l = 2, s2 = 1. In the second case we have dK = 0 mod 2 and

then N(2) = s2(Tq) ≥ 2 and hence s2(Tq) = ord2(q − 1) = ord2(pp
kdK − 1) = ord2(p2

dK
2 − 1) =

ord2(p2 − 1) + ord2(dK)− 1 = ord2(p + 1) + ord2(dK) = ord2(p? − 1) + ord2(dK), since in this
case p? = −p.
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Now we are able to prove our main result concerning the isomorphism type of the abelian
group Tq. For a prime power q = pn we define dq to be the non-p part of n : dq = n

pordp n
.

Trivially, for a function field K with exact constant field Fq we have dK = dq.

Theorem 5.27. Given two powers of p: q1 = pn1 and q2 = pn2 groups Tq1 and Tq2 are isomor-
phic if and only if dq1 = dq2, i.e. n1

n2
∈ pZ.

Proof. The only invariants of Tq are the sequence of coefficients al,m for different l, m. We will
show that they coincide for all l, m if and only if the condition of the our theorem holds.

First we will prove the if part. We assume that dq1 = dq2 . Let l be an odd prime number
different from p, then by the formula from the above lemma sl(Tq1) = sl(Tq2) and we have
al,m = 0 if and only if m < sl(Tq1) which shows that coefficients am,l coincide for Tq1 and Tq2 .
Suppose that l = 2. If p = 2 then a2,m = 0 for all m in both groups. If p = 1 mod 4 or dq1 = 0
mod 2 then as before a2,m = 0 if and only if m < N2(l) = s2(Tq1) = ord2(dq1) + ord2(p− 1) and
hence a2,m coincide for both groups. Finally, if p = 3 mod 4 and dq1 = dq2 = 1 mod 2 then
a2,m = 0 if and only if either m = 1 or m > N(2) = ord2(q2

1 − 1) = ord2(q2
2 − 1). The equality

ord2(q2
1 − 1) = ord2(q2

2 − 1) holds since: ord2(q2
1 − 1) = ord2(q1 + 1) + 1 = ord2(pdq1p

k
+ 1) + 1 =

ord2(p+ 1) + 1.
Now, suppose that Tq1 ' Tq2 . Then by the formula from lemma 5.26 for any odd prime

number l different from p we have ordl(dq1) = ordl(dq2). By definition we have ordp(dq1) =
ordp(dq2) = 0. Finally, for l = 2 there are two cases. Either both groups contain direct
summand of the form Z/2Z and then ord2(dq1) = ord2(dq2) = 0, or otherwise the formula from
lemma 5.26 holds and then ord2(dq1) = ord2(dq2).

This already gives some important corollary. If q = 22k for some non-negative integer k,
then coefficients al,m defined as follows:

al,m =

{
N, if l 6= 2 and m ≥ ordl(2

l−1 − 1)

0, otherwise.
(5.3)

Corollary 5.28. Each of the following function fields K satisfies: GabK '
∏

l,m(Z/lmZ)al,m ×∏
N Z2 ⊕ Ẑ, where al,m are given by the formula 5.3 :

1. The rational function field with g = 0 over F
22k

, for any non-zero integer k;

2. The elliptic function field y2 + y = x3 + x+ 1, with g = 1 over F2;

3. The hyper elliptic function field y2 + y = x5 + x3 + 1, with g = 2 over F2;

4. The hyper elliptic function field y2 + y = (x3 +x2 + 1)(x3 +x+ 1)−1 , with g = 2 over F2;

5. The function field of the plane quartic y4 + (x3 + x+ 1)y + (x4 + x+ 1) = 0, with g = 3
over F2.

6. The elliptic function field y2 + y = x3 + µ, with g = 1 over F4, where µ is the generator
of F×4 .
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In particular, the genus, the constant field and the zeta-function of K are not determined by
Gab
K .

Proof. All these fields have trivial Cl0(K), see [28]. Because of Theorem 5.27 we have T2 ' T22k
.

It means that for any K listed above C0
K ' T2 ×

∏
N Z2.

Remark: For given q we will call a prime l exceptional if N(l) > 1. The question which
l are exceptional seems to be very difficult. Of course, if l2|(q − 1), then al,1 = 0, so N(l) ≥ 2.
For example if q = 9 then a2,1 = a2,2 = 0. But also there are exceptional primes l with
gcd(l, q − 1) = 1. For example if q = 7 and l = 5. Then 7d = 1 mod 5 if and only if d = 4k,
k ∈ Z, but then 7d = 492k = (−1)2k = 1 mod 25. This means that 5 is exceptional. We
expect that for a given q there are infinitely many exceptional primes, but we have no idea
how to prove it even for the case q = 2: the first exceptional prime for this case is 1093. This
phenomena is closely related to the so-called Wieferich primes.

Our next goal is to understand what happens with the exact sequence:

1→ Tq × Z∞p → C0
K → Cl0(K)→ 1,

when Cl0(K) is not trivial. Since we are working with infinite groups C0
K can still be isomorphic

to Tq × Z∞p . In the next paragraph we will show that all torsion elements of C0
K are in Tq.

5.3.5 On the torsion of C0
K

Theorem 5.29. All the torsion elements of C0
K are in Tq and the exact sequence 5.1 is totally

non-split. Moreover, the topological closure of the torsion subgroup of C0
K is Tq.

Proof. Suppose that there exists a non-zero x ∈ C0
K such that xl = 1 for some prime number l.

We will show that this element has trivial image in the class group. Pick a representative
(xv1 , xv2 , . . . ) for x as element of IK , we know that almost all i we have xvi ∈ O×vi and that
xl = (xlv1 , x

l
v2
, . . . ) is a principal idèle. Let a be the element of K× whose image in IK is xl. We

have that a is locally an l-th power and hence by Theorem 1, chapter 9 from [2] we have that
a is globally an l-th power and hence x is a principal idèle up to multiplication by the element
(ζv1 , ζv2 , . . . ) ∈ Tq, where each ζvi denotes an l-th root of unity in K×vi and hence its image in
the class group is trivial.

Since Zp is torsion free we have that all the torsion of C0
K lies in Tq. Note that each element

of the direct sum ⊕l,m(Z/lmZ)al,m is an element of finite order in Tq and closure of this direct
sum is Tq itself.

As it was mentioned in the introduction this statement implies the ”only if” part of our
main Theorem 5.1.

5.3.6 Proof of the inverse implication

Our task in this section is for given K show that the data Cl0non-p(K), Tq determines C0
K up to

isomorphism.
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The p-part

Our first goal is to show that the p-part of C0
K is isomorphic to Z∞p .

We start from an easy example. Consider the exact sequence: 0→ Zp → Zp → Z/pkZ→ 0,
where the second map is multiplication by pk. This sequence is totally non-split. We claim that
Zp is the unique group which can occur in the middle of such a sequence. More concretely:

Example 5.30. Let A be an abelian pro-p group such that the following sequence is totally
non-split: 0→ Zp → A→ Z/pkZ→ 0, then A ' Zp.

Proof. Since Zp is torsion free and the sequence is totally non-split then A is also torsion
free. Let us denote the quotient map A → Z/pkZ by φ. There exists x ∈ A such that
φ(x) is the generator of Z/pkZ. Moreover, since A is torsion free we know that pkx is a non-
zero element a of Zp. We claim that the first non-zero coefficient in the p-adic expression
a = a0 + a1p + a2p

2 + . . . is a0. Indeed, if a is divisible by p then p(pk−1x − a
p
) = 0 and

hence pk−1x = a
p
∈ Zp since A is torsion free. But then φ(pk−1x) = 0, which contradicts

to the our choice of x and hence a0 6= 0. Then A is generated by {x,Zp} with the relation
pkx = a. Consider the map ψ : A → Zp, which sends element x to a and Zp → pkZp. Then ψ
is homomorphism: ψ(pkx) = ψ(a) = pka = pkψ(x). The kernel of this map is trivial and since
a0 6= 0 then this map is onto.

This example gives an idea how to prove the following:

Lemma 5.31. Let A be an abelian pro-p group and let B be a finite abelian p-group such that
the following sequence is totally non-split: 0→ Z∞p → A→ B → 0. Then A ' Z∞p .

Proof. Since the sequence is totally non-split and Zp is torsion free, then A is torsion free also.
This means that multiplication by any natural number is injective. It means that Pontryagin
dual A∨ of A is torsion (since A is pro-finite) and divisible (since the dual to the injection is
surjection). Consider the dual sequence: 0 → B∨ → A∨ → ⊕Z(p∞) → 0. By the structure
theorem of divisible groups A∨ is isomorphic to the direct sum of copies of Z(p∞) and Q. But
A∨ is torsion and hence A ' Z∞p .

This shows that the isomorphism class of C0
K,p depends only on p. Therefore given two global

function fields K1, K2 with isomorphic groups Tq1 ' Tq2 they share the same characteristic p
and hence the p-parts of their idèle-class groups are isomorphic: C0

K1,p
' C0

K2,p
.

The non p-part

Now we pick the prime number l 6= p and consider the l-part C0
K,l of C0

K . If l is such that

Cl0l (K) ' {0} then obviously Tq,l ' C0
K,l. Let l be a prime such that Cl0l (K) is not trivial. We

know that the following sequence is totally non-split:

1→ Tq,l → C0
K,l → Cl0l (K)→ 1.

Fix a natural number n. Then multiplication by ln map induces the following commutative
diagram:
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1 // Tq,l[ln]
� _

��

� � // // C0
K,l[l

n]
� _

��

0 // Cl0l (K)[ln]� _

��

1 // Tq,l
ln

��

// C0
K,l

ln

��

// Cl0l (K)

ln

��

// 1

1 // Tq,l //

����

C0
K,l

//

����

Cl0l (K) //

����

1

Tq,l/lnTq,l // C0
K,l /l

n C0
K,l

// Cl0l (K)/ln Cl0l (K) // 1

Since our main sequence is totally non-split the map from C0
K,l[l

n] to Cl0l (K)[ln] is the zero

map and the map from Tq,l[l
n] to C0

K,l[l
n] is an isomorphism. Now applying Pontryagin duality

to the above diagram we get:

1 (Tq,l[ln])∨oo (C0
K,l[l

n])∨_?
oooo (Cl0l (K)[ln])∨

0
oo

1 (Tq,l)∨

OOOO

oo (C0
K,l)

∨

OOOO

oo (Cl0l (K))∨

OOOO

oo 1oo

1 (Tq,l)∨oo

ln

OO

(C0
K,l)

∨

ln

OO

oo (Cl0l (K))∨oo

ln

OO

1oo

(Tq,l/lnTq,l)∨
?�

OO

(C0
K,l /l

n C0
K,l)

∨
?�

OO

oo (Cl0l (K)/ln Cl0l (K))∨
?�

OO

oo 1oo

Because of the construction of Tq,l the group (Tq,l)∨ is isomorphic to the direct sum of
finite cyclic groups, for example for l 6= 2 we have (Tq,l)∨ ' ⊕k≥N(l) ⊕N Z/lkZ, and therefore
∩nln(Tq,l)∨ = {0}. It means we have (∩nln(C0

K,l)
∨) ⊂ (Cl0l (K))∨. Our goal is to show that

(∩nln(C0
K,l)

∨) = (Cl0l (K))∨.

Lemma 5.32. Given any non-zero element x of (Cl0l (K))∨ ⊂ (C0
K,l)

∨ and any natural number

n there exists an element cx ∈ (C0
K,l)

∨ such that lncx = x.

Proof. For fixed n consider the above diagram. Since the second row is exact the image of x in
(Tq,l)∨ is zero. Then its image in (Tq,l[ln])∨ is also zero. Since (Tq,l[ln])∨ ' (C0

K,l[l
n])∨ it means

that image of the non-zero element x in (C0
K,l[l

n])∨ is zero. Since the second column is exact

this means that x lies in the image of the multiplication by ln map from (C0
K,l)

∨ to (C0
K,l)

∨ and
therefore there exists cx such that lncx = x.

It means that we have proved:

Corollary 5.33. The exact sequence 1 ← (Tq,l)∨ ← (C0
K,l)

∨ ← (Cl0l (K))∨ ← 1 satisfies condi-
tions of Theorem 5.14.

In order to finish our proof of Theorem 5.1 we will to prove theorem 5.14.
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Proof of Theorem 5.14

First, let us recall the settings.

Theorem 5.34. Let {Ci} be a countable set of finite cyclic abelian l-groups with orders of
Ci are not bounded as i tends to infinity and let A be any finite abelian l-group. Then up to
isomorphism there exists a unique torsion abelian l-group B satisfying two following conditions:

1. There exists an exact sequence: 1→ A→ B → ⊕i≥1Ci → 1;

2. A is the set of all divisible elements of B: A = ∩n≥1nB.

Proof of the existence. Given a group A and ⊕i≥1Ci let ki denotes the order of the
group Ci. Because of the assumptions of the Theorem, the sequence of orders ki is not bounded
and hence for each natural number N there exists i such that ki ≥ N . Let us pick an increasing
sequence of indexes ji, i ∈ N such that kji ≥ li. Let α0, . . . , αn−1 be any finite set of generators
of A. Consider the sequence am of elements of A defined as follows:

am =

{
αi mod n, if m = ji

0, otherwise.

Consider the abelian group B which is the quotient of the direct sum A ⊕ (⊕i∈NXiZ) of
countably many copies of Z and one copy of A by the relations kiXi = ai. We have that B
contains A as a subgroup and the quotient of B by A is isomorphic to ⊕iCi. This means that
the group B satisfies the first condition of the theorem. Now, consider the group Z = ∩n≥1nB.
Obviously, Z ⊂ A and we would like to show that actually Z = A. This follows from the
fact that for any fixed number N > 1 the set {kjiXji|i ≥ loglN} generates A and satisfies
kji ≥ li ≥ llogl(N) ≥ N .

Proof of the uniqueness. Suppose we are given an abelian torsion l-group B which
satisfies both conditions of the our theorem. Denote the map from B to ⊕i≥1Ci by φ. Let x̃i
denotes a generator of the cyclic group Ci and let ki denotes the order of Ci. Let xi be an
element of B such that φ(xi) = x̃i, then kixi ∈ A.

Lemma 5.35. For any positive integer M which is a power of l the set AM = {kixi|ki ≥ M}
generates A.

Proof. Without loss of generality we assume that M ≥ #A. Pick a non-zero element a ∈ A.
Because of the second property a can be written as M2y, where y ∈ B. Since the sequence
1→ A→ B → ⊕i≥1Ci → 1 is exact we can write y as finite Z-linear combination of xij and an
element of A: y = bi1xi1 + bi2xi2 + · · · + binxin + a0. Pick the subset S of i1, . . . , in consisting
of indexes of ij such that kij ≥ M . Since M2xij = 0 if kij < M we have : M2

∑
j∈S bijxij = a.

On the other hand 0 = φ(a) = M2
∑

j∈S bij x̃ij and hence M2bij is divisible by kij and a =∑
j∈S

bijM
2

kij
kijxij . This means that {kixi|ki ≥M} generates A.

Remark: consider the sequence ai = kixi of elements of A from the above lemma. We
will say that this sequence (ai) strongly generates A, i.e. that for any integer M the set
SM = {ai|i ∈ S, ki ≥M} generates A.
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Note that B as abstract abelian group is isomorphic to the group generated by elements Xi

and ai such that kiXi = ai: B = 〈Xi, ai〉/〈kiXi−ai〉. Given another abelian group B′ satisfying
conditions of our theorem we know that B′ = 〈X ′i, a′i〉/〈kiX ′i − a′i〉. If for any i we have ai = a′i
as elements of A then, obviously B ' B′. Our goal is to show that B ' B′ in any case.

Definition 5.36. Given two such groups B, B′ with generating sequences (ai), (a′i) consider
the set S = {i|ai = a′i}. We will say that (ai) and (a′i) have large overlap if the set {ai|i ∈ S}
strongly generates A.

We have the following observation:

Lemma 5.37. If two generating sequences (ai), (a′i) of groups B and B′ have large overlap,
then groups B and B′ are isomorphic.

Proof. For each index i consider the difference ai−a′i. Since B and B′ have large overlap, we can
write this difference as finite sum

∑
m∈S λ

i
mkmX

′
m with km ≥ ki, λ

i
m ∈ Z. Since both km and ki

are powers of l the ratio km
ki

is an integer. Consider the map ψ from B to B′ defined as follows.

The map ψ is identity on A. If i ∈ S then ψ(Xi) = X ′i, otherwise ψ(Xi) = X ′i+
∑

m∈S λ
i
m
km
ki
X ′m.

We claim that ψ is a homomorphism: if i ∈ S then ai = ψ(kiXi) = kiψ(Xi) = kiX
′
i = a′i.

If i 6∈ S, we have ai = ψ(kiXi) = ki(X
′
i +

∑
m∈S λ

i
m
km
ki
X ′m) = ki(X

′
i) +

∑
m∈S λ

i
mkmX

′
m =

a′i + (ai − a′i) = ai. In other words it sends generators of B to elements of B′ preserving all
relations. We claim moreover that the map ψ is an isomorphism since we will construct the
inverse map φ from B′ to B as follows. The map φ is identity on A. For i ∈ S we have
φ(X ′i) = Xi and for i 6∈ S we have φ(X ′i) = Xi −

∑
m∈S λ

i
m
km
ki
Xm. Then, for i 6∈ S we have:

φ(ψ(Xi)) = φ(X ′i +
∑
m∈S

λim
km
ki
X ′m) = φ(X ′i) + φ(

∑
m∈S

λim
km
ki
X ′m) =

= (Xi −
∑
m∈S

λim
km
ki
Xm) + (

∑
m∈S

λim
km
ki
Xm) = Xi.

In a similar way one shows that ψ(φ(X ′i)) = X ′i.

Now we will prove:

Corollary 5.38. Two groups B and B′ satisfying conditions of the above theorem are isomor-
phic.

Proof. Suppose that there exists a partition of the set of positive integers N on two sets N =
I1 ∪ I2, I1 ∩ I2 = ∅ such that each of the set {ai|i ∈ I1} and {a′i|i ∈ I2} strongly generates
A. Then we define abelian group D to be the quotient of the direct sum A ⊕ (⊕i∈NXiZ) of
countably many copies of Z and one copy of A by the relations kiXi = ai, i ∈ I1 and kiXi = a′i,
i ∈ I2. Obviously D also satisfies conditions of Theorem 5.34. Moreover D and B and also D
and B′ have large overlap, therefore by the lemma 5.37 we have: B ' D ' B′.

Now we will show that such partition exists. We will construct this partition inductively.
Let N0 = 0 and let N1 be the minimal integer such that elements of the set S1 = {ai|i ≤ N1

and ki ≥ l} generate A. The reason for this number to exists is the following. The sequence ai
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strongly generates A which implies that there exist indexes i with ki ≥ l such that ai generate
A, but A is a finite group and hence we can pick a finite number of elements with ki ≥ l
generating A. Note that dropping out finitely many indexes doesn’t affect the fact that each of
the sequences ai and a′i strongly generates A. Suppose we’ve constructed the number Nm then
let Nm+1 be a minimal integer such that elements of the set

Sm+1 =

{
{a′i|Nm < i ≤ Nm+1 and ki ≥ lm+1}, if m is odd

{ai|Nm < i ≤ Nm+1 and ki ≥ lm+1}, otherwise.

generate A. Finally, we define I1 = ∪m≥0{i ∈ N|N2m < i ≤ N2m+1} and I2 = ∪m≥1{i ∈
N|N2m−1 < i ≤ N2m}.

5.4 Proof of Corollaries

In this section we will prove corollaries 5.3, 5.4 and 5.5. The first two will follow from the
existence for a given constant field k = Fq an elliptic curve E over k with the group E(Fq) of
Fq-rational points having order q, since in the case of elliptic curves we have E(Fq) ' Cl0(KE),
where KE denotes the associated to E global function field.

Definition 5.39. Fix a finite field Fq. Let N be an integer number in the Hasse interval:
N ∈ [−2

√
q; 2
√
q]. We will call it admissible if there exists an elliptic curve E over Fq with

q + 1−#E(Fq) = N .

The following statement is a part of the classical statement due to Waterhouse [45]:

Theorem 5.40 (Waterhouse). If gcd(p,N) = 1 then the number N is admissible.

Corollary 5.41. Given a finite field Fq there exists an elliptic curve E over Fq with #E(Fq) =
q.

The above remarks finish the proof of corollaries 5.3 and 5.4. Now we will discuss the proof
of the corollary 5.5. Our goal is to show :

Theorem 5.42. Given a constant field k = Fq with characteristic p 6= 2 there are infinitely
many non-isomorphic curves X over k with different two-parts of the group of k-rational points
on the Jacobian varieties associated to them.

Proof. For any positive integer N there exists a monic irreducible polynomial of degree N
with coefficients in Fq. Let us pick any sequence of such polynomials Dn(x), n ∈ N with the
property that deg(Dn(x)) = n+ 2. Consider the family of affine curves defined by the equation
Cm : y2 = D1(x)D2(x) . . . Dm(x). Since Di, i ∈ N are mutually distinct these affine curves
are smooth. Let Xm denotes the normalization of the projective closure of Cm. Then Xm is
a hyper-elliptic curve of the genus gm = bdeg(D1(x))+···+deg(Dm(x))−1

2
c. The Weil-bound insures

that the order of the group of Fq-rational points of the Jacobian variety Jm associated to Xm

satisfies the following:
(
√
q − 1)2gm ≤ #Jm(Fq) ≤ (

√
q + 1)2gm ,
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and therefore the two-part of Jm(Fq) is bounded from above by (
√
q+1)2gm . On the other hand

theorem 1.4 from [7] states that the two-rank of Jm(Fq) is at least m − 2. Therefore, among
the family Xm there are infinitely many curves with different two-part of the group Jm(Fq) and
therefore their function fields Km have non-isomorphic GabKm .
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