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Chapter 4

L-functions of Genus two Abelian
Coverings of Elliptic Curves over Finite
Fields

4.1 Introduction

As we already mentioned the approach to arithmetical equivalence from the previous chapter
has some disadvantages. For example it uses the map from the curve X to P1. In this chapter we
introduce a different, in some sense more geometrical approach. Our main idea is to associate
to a curve X the list of zeta-functions of abelian coverings of X. We expect to obtain some
information about X from such a list.

4.1.1 Settings

Let k = Fq be a finite field with q = pn, where p is prime, we will assume that p > 3 in all
results. Let C be a curve over k and let d be a natural number prime to p. As usual by a curve
we always mean smooth projective geometrically connected variety of dimension 1 over k. To
such a curve one associates the set XC(d, g) of all isomorphism classes of smooth projective
abelian Galois covers of degree d and genus g:

Definition 4.1. XC(d, g) is the set of isomorphism classes of curves X defined over k, such
that g(X) = g and there exists an abelian(possibly ramified) Galois-covering φ : X → C, defined
over k, and of degree d.

On the function field level, any element X in XC(d, g) corresponds to an abelian exten-
sion k(X) of degree d of the field of functions k(C) of C. Let us denote the Galois group
Gal(k(X)/ k(C)) by G. According to the formalism of Artin’s L-functions we have a decom-
position law: the ratio of zeta-functions of X and C is equal to the product of all L-functions
over all non-trivial characters of G.

Because of the interaction of algebraic geometry and the class field theory, we have a lot of
explicit information about XC(d, g). For instance, unramified geometrically connected abelian
coverings of C are parametrized by subgroups of Pic0(C), i.e. the group of Fq-rational points on
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the Jacobian variety Jac(C) and ramified coverings with ramification divisor dividing a divisor
m are parametrized by subgroups of the ray-class group associated to m. We will discuss this
in details in 4.2.2.

Let us consider the set of all zeta-functions ζX(T ) of curves X in XC(d, g). For any fixed
C, d and g this is a finite set of functions. By a famous theorem of A. Weil, they are rational
functions of the form

ζX(T ) =
fX(T )

(1− T )(1− qT )
,

where fX(T ) ∈ Z[T ] is the Weil-polynomial of the covering curve X. Such a polynomial keeps
a lot of information about X, for example we refer reader to the following classical theorem
due to Honda and Tate, see [21]:

Theorem 4.2. Let Jac(X) denote the Jacobian variety of the curve X over Fq. Let X ′ denote
another curve over Fq. Then the following are equivalent:

1. Jac(X) and Jac(X ′) are Fq-isogenous;

2. The Weil polynomials of X and X ′ are equal: fX(T ) = fX′(T ).

In this settings, suppose X is a Fq-covering of C, then we have associated map between Ja-

cobians: Jac(C)→ Jac(X) and therefore ζX(T )
ζC(T )

= fX(T )
fC(T )

is a polynomial with integer coefficients.

In this chapter we consider the set ΛC(d, g) of all polynomials fX(T )
fC(T )

for X ∈ XC(d, g).

Definition 4.3. We define ΛC(d, g) = {fX(T )
fC(T )

∈ Z[T ]|X ∈ XC(d, g)}.

It is a remarkable fact that in the case d = 2 any element in ΛC(2, g) is the unique Artin
L-function which corresponds to the unique non-trivial representation of the Galois group of
fields extension Fq(X) over Fq(C). This explains the relation with our original motivation given
in the previous chapter.

In this chapter we study ΛC(d, g), where C = E is an elliptic curve and g = 2. In other
words, we study zeta-functions of genus two abelian coverings of elliptic curves.

4.1.2 Results

Let E be an elliptic curve defined over Fq with q = pn, p is prime and p > 3. In our research we
obtain complete information about the set ΛE(d, 2). It turned out that there are two different
possibilities: d = 2 and d > 2. First we state the following corollary of Galois theory combining
with the Riemann-Hurwitz theorem:

Theorem 4.4. For d > 2 we have ΛE(d, 2) = ∅.

Proof. See section 4.3.

Our main result is the theorem for the case d = 2. For the sake of shortness here we
formulate our result for the case q = p. Before we formulate it we need to introduce some
notations. Let us denote ap = p + 1 −#E(Fp). For a given elliptic curve E as above we also
define the following sets of polynomials:
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4.2. EXPLANATIONS, CALCULATIONS AND EXAMPLES

1. AE = {(pT 2 − a′pT + 1), for a′p with |a′p| ≤ 2
√
p, a′p = ap mod (2)};

2. BE = {(pT 2 − a′pT + 1), for a′p with |a′p| ≤ 2
√
p, a′p = ap mod (4)}.

In the above notations we will prove the following:

Theorem 4.5. Assume that j(E) 6= 0, 1728. The following holds:

1. if E(Fp)[2] 6' C2 ⊕ C2 then ΛE(2, 2) = AE;

2. if E(Fp)[2] ' C2 ⊕ C2 then ΛE(2, 2) = BE;

This theorem says that there are only three distinct possibilities for ΛE(2, 2). Moreover,
which case occurs is completely determined by the structure of Fp-rational 2-torsion points on
E. The same results hold for curves with j(E) = 0 or j(E) = 1728 but with possibly a few
exceptions in this list:

Theorem 4.6. Assume that j(E) = 0 or 1728. The following holds:

1. if E(Fp)[2] 6' C2 ⊕ C2 then ΛE(2, 2) ⊂ AE; moreover, the number of elements in the
difference does not exceed six: |AE/ΛE(2, 2)| ≤ 6;

2. if E(Fp)[2] ' C2 ⊕ C2 then ΛE(2, 2) ⊂ BE; moreover, the number of elements in the
difference does not exceed six: |BE/ΛE(2, 2)| ≤ 6;

During the proof we will provide explicit geometric criteria how to find all possible excep-
tions. Also we will explain how to extend those results to the case q = pn, with n > 1. Roughly
speaking for a general field, we also have three different cases depending on the group structure
on E(Fq)[2], but now we have a little bit more restrictions on possible values of a′q: for details
see section 4.2.6. The proof is based on some classical results concerning geometry of bi-elliptic
curves. More concretely, the main ingredient in our proof is the following result:

Theorem 4.7. We have a surjective map from the set of pairs (E ′, α) to the set ΛE(2, 2), where
E ′ is an elliptic curve over Fq and α : E[2] ' E ′[2] is an isomorphism between Galois module
structure on two-torsion points of E and E ′, such that α is not the restriction of a geometric
isomorphism between E and E ′.

The chapter has the following structure: in the next section we show and explain some
experimental data for elliptic curves over F5. Next we will show how to prove our theorem for
d = 2. Then we will explain cases d > 2.

4.2 Explanations, calculations and examples

In this section we are going to study the set ΛE(2, 2) for an elliptic curve E defined over Fq.
Note that any degree 2 covering is actually a Galois covering. Hence, we could use a well-known
geometric theory. A good reference here is [17].
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4.2.1 Preliminares

Let E be an elliptic curve over Fq, with characteristic p > 3. Let C be a curve of genus g(C) = 2
together with the covering map φ : C → E of degree 2. Such a curve is called a biellptic curve.

Example 4.8. If E is given by the affine equation y2 = x3 + ax + b, then one could take C
with affine part defined by v2 = u6 + au2 + b and map φ : (x, y)→ (u2, v).

Since we have a morphism φ we have associated map of Jacobian varieties: Jac(E) →
Jac(C). Moreover, because dim(Jac(C)) = 2 we have:

Theorem 4.9. The curve C is bielliptic covering of E if and only if the Jacobian variety
Jac(C) of the curve C is (2,2)-isogenous to a product of two elliptic curves E × E ′.

In the assumptions of the theorem it is not difficult to provide explicit construction of
E ′. Namely, since C is a hyper-elliptic we have a unique involution τ ∈ Aut(C), such that
C/〈τ〉 ' P1. Since it is unique it lies in the center of Aut(C). Let us denote by σ the element
of Aut(C) such that C/〈σ〉 ' E. By our assumption it also has order two. Consider the
curve E ′ = C/〈στ〉. Now we have (στ)2 = στστ = σ2τ 2 = 1, so we have a degree two map
φ′ : C → E ′. Note that E ′ 6' P1, since otherwise we have σ = id. Then, by Riemann-Hurwitz
E ′ is an elliptic curve. Note, that we have the following commutative diagram:

C > E ′ ' C/〈στ〉

E ' C/〈σ〉
∨

> P1
∨

Finally, we claim that E×E ′ is (2,2)-isogenous to the Jacobian surface of C. For the proof
and complete discussion see [24] or [15].

Now, according to Tate’s theorem mentioned in the previous section we have the following
relation between Weil polynomials:

fC(T ) = fE(T )fE′(T ) = (qT 2 − aqT + 1)(qT 2 − a′qT + 1),

where aq = q + 1−#E(Fq) and a′q = q + 1−#E ′(Fq). So, to describe ΛE(2, 2) it is enough to
find all possible values of a′q.

In other words we just proved the following result:

Theorem 4.10. There exists a surjective map from the set ΛE(2, 2) to the set of numbers a′q
with property that there exists an elliptic curve E ′ with a′q = q+ 1−#E ′(Fq) and with property
that abelian surface E×E ′ is (2,2)-isogenous to the Jacobian surface of smooth projective curve
C defined over Fq.

4.2.2 An example over F5

Let us take q = p = 5. Our task, for any given curve E find all possible values of a′5 as in
the above discussion. In order to do that first of all we have to pick a ramification divisor M
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4.2. EXPLANATIONS, CALCULATIONS AND EXAMPLES

Table 4.1: Data for all elliptic curves over F5

Curve E j-invariant a5 Values of a′5 IsSupersingular # Autk(E)
y2 = x3 + 1 0 0 0;±2;±4 true 2
y2 = x3 + 2 0 0 0;±2;±4 true 2
y2 = x3 + x 3 2 ±2 false 4
y2 = x3 + x+ 2 1 2 0;±2;±4 false 2
y2 = x3 + x+ 1 2 -3 ±1;±3 false 2
y2 = x3 + 2x 3 4 0;±2 false 4
y2 = x3 + 2x+ 1 4 -1 ±1;±3 false 2
y2 = x3 + 3x 3 -4 0;±2 false 4
y2 = x3 + 3x+ 2 4 1 ±1;±3 false 2
y2 = x3 + 4x 3 -2 ±2 false 4
y2 = x3 + 4x+ 1 1 -2 0;±2;±4 false 2
y2 = x3 + 4x+ 2 2 3 ±1;±3 false 2

on E of genus two quadratic cover of E. By Riemann-Hurwitz theorem M is of degree two.
Then by taking the maximal abelian extension which corresponds to this divisor we obtain a
parametrization for all genus two coverings with given ramification data. More concretely from
the class field theory we have the following isomorphism:

φ : Pic0
M(E)→ Gal(FM/F )

Here, F = Fp(E) is the function field of E, FM is the Ray class field corresponding to the
pair (F,M) and Pic0

M(E) is the ray class group associated to M . Hence in order to list all
bi-elliptic coverings of E it is enough to list all possible M and for each such M calculate all
possible abelian sub-extensions of genus two. By doing that, for any E we provide list of all
possible a′5 and compare it with other invariants of E. We implement our calculations by using
Magma computer algebra system. Note that 1728 = 3 mod (5) and hence in case p = 5 we
use both values for j(E). Also note that in the table we list isomorphism classes of curves over
k = F5, not over F5.

4.2.3 Observations

From the data provided by the above table one could note that there exist to different patterns:
ap is odd or even. This is not very difficult to explain:

Lemma 4.11. For any fixed E over Fq, if (qT 2 + a′qT + 1) ∈ ΛE(2, 2) then aq = a′q mod (2).

Proof. Consider the covering φ : C → E of degree two. From Riemann-Hurwitz theorem we
have that ramification divisor of φ has to be degree two, so it is either a sum of two points of
degree one, or a one point of degree two. Here we use the fact that p > 2 and we don’t have
so-called wild-ramification. Since φ is of degree two, we get the number of Fq-points on C is
even. From the decomposition of the Weil polynomial we have q + 1 − #C(Fq) = q(aq + a′q).
Now, just take last equality modulo two and use the fact that q is odd.
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A second remarkable thing is a some sort of symmetry: if a′p occurs then also (−a′p) is in the
list. We will explain this phenomena later, but now we note that this is related to quadratic
twists of E. For proof, see corollary 4.17.

Finally, the last and the main observation is that for general curve these are the only re-
strictions. More contritely, one could note that if j(E) 6= 0, 1728 and E(Fp)[2] is not isomorphic
to the full group C2 ⊕ C2 then any a′p = ap mod (2) occurs. But if E(Fp)[2] ' C2 ⊕ C2 then
ΛE(2, 2) consists of all a′p = ap mod (4), still provided we are in the case j(E) 6= 0, 1728.

Also, the same result holds for E with j(E) = 0, 1728, but with possible up to 4 and 6
exceptions respectively, depending on which twists of E defined over Fp. Later we will give
explicit geometric criteria which answers if there are any exceptions in the list.

Example 4.12. 1. Consider the curve E defined by y2 = x3 + x. In this case a5 = 2,
j(E) = 1728 and it is easy to see that it has four rational two-torsion points: (0, 0),
(2, 0), (3, 0) and ∞. According to our prediction the only values which may occurs are
{±2}. Which is indeed the case.

2. Consider the curve E defined by y2 = x3 + 1. Here we have a5 = 0, j(E) = 0 and
E(F5)[2] ' C2, generated by (4, 0). Then we predict that the following values occurs
{0,±2,±4}. This coincides with our data.

3. Consider the curve E defined by y2 = x3 + 3x. Here we have a5 = −4, j(E) = 1728 and
E(F5)[2] ' C2, generated by (0, 0). But the values ±4 do not occur in our list. It happens
because j(E) = 1728 and so in this case we have two exceptions.

4.2.4 The basic construction

A crucial fact in our investigation is the following construction due to Kani, see [25] and [21].
Let n be a prime number with (n, p) = 1. Given two elliptic curves E and E ′ over Fq with

isomorphism α as Galois modules E[n] ' E ′[n], which is anti-isometry with respect to the
Weil-paring. Let Γα be the graph of α in E × E ′. Consider surface Aα ' E × E ′/Γα. It is
(n, n)-isogenous to E × E ′. Moreover, it turns out that it has principal polarization θ which
comes from polarization on E × E ′:

E × E ′ [n]
> Ê × Ê ′

Aα

φ

∨
θ
> Âα

φ̂

∧

According to the theorem of A.Weil [58]: the pair (Aα, θ) is a polarized Jacobain surface
of some, possible not smooth curve C of (arithmetic) genus two.

Theorem 4.13. The curve C constructed above is smooth if and only if the isomorphism α of
Galois modules is not the restriction of a geometric isogeny φ of degree d = i(n − i) between
E(k̄) → E ′(k̄), with 0 < i < n. Moreover, any smooth C such that Jac(C) is (n, n)-isogenous
to E × E ′ appears in this way.
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In our case n = 2 and hence i = 1, but geometric isogeny of degree one is necessary geometric
isomorphism, therefore we have:

Corollary 4.14. There exists a surjective map ΛE(2, 2) to the set of all a′q such that there
exists an elliptic curve E ′ over Fq with a′q = q + 1−#E ′(Fq) and an isomorphism α of Galois
modules E[2] and E ′[2] such that α is not the restriction of a geometric isomorphism between
E and E ′.

By working with the Galois module structure on E[2] we provide a proof of our main
theorem.

4.2.5 On Galois Module Structure on E[2]

According to the previous section, we must understand which isomorphisms between Galois
modules are not restrictions of geometric isomorphisms between curves. In order to do that in
this section we briefly recall possible Galois module structures on E[2] and its relations with
Autk̄(E).

Galois group Gk ' Gal(k̄/k) is generated by the Frobenius element π. Hence we could
restrict our attention to the action of π on E[2]. Recall that as abelian group E[2] ' Z/2Z⊕
Z/2Z. There are three possibilities for the Galois module structure on E[2]: either π is acting
trivially or the action is by a 2-cycle or a 3-cycle. In the first case E[2] has four rational points,
in the second case only two and in the later case only one rational point, namely the zero point.

For a given pair of elliptic curves E,E ′ over k = Fq let us consider the set Isomk̄(E,E
′).

If it is empty, then j(E) 6= j(E ′) and any isomorphism between E[2] and E ′[2] is not the
restriction of a geometric isomorphism. Otherwise, suppose now that Isomk̄(E,E

′) is not
empty. Then we have j(E) = j(E ′) and | Isomk̄(E,E

′)| = |Autk̄(E)| = |Autk̄(E
′)|. Now let

IsomAG(E[2], E ′[2]) be the set of isomorphisms between E[2] and E ′[2] considered as abelian
groups and IsomG(E[2], E ′[2]) be the set of isomorphisms as Galois-modules. We have the
following:

Isomk̄(E,E
′)→ IsomAG(E[2], E ′[2]) ⊃ IsomG(E[2], E ′[2]),

where the map is just the restriction of automorphism to the two-torsion points.
Now we are going to investigate which elements of IsomG(E[2], E ′[2]) do not come from

restriction of elements of Isomk̄(E,E
′).

Recall that if p > 3 then we have exactly the following possibilities:

1. j(E) 6= 0, 1728 and Autk̄(E) = Z/2Z;

2. j(E) = 0 and E is given by y2 = x3 + b and Autk̄(E) = µ6;

3. j(E) = 1728 and E is given by y2 = x3 + ax and Autk̄(E) = µ4.

Therefore, # Isomk̄(E,E
′) is either 0, 2, 4 or 6. Suppose # Isomk̄(E,E

′) is not zero and
hence we also have a bijective map from IsomG(E[2], E ′[2]) to AutG(E[2]) = IsomG(E[2], E[2]).
Note that there are exactly three types of AutG(E[2]):

1. If E(Fq)[2] = C2 ⊕ C2, then AutG(E[2]) ' Gl2(F2);
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2. If E(Fq)[2] = C2, then AutG(E[2]) ' C2;

3. If E(Fq)[2] = {0}, then AutG(E[2]) ' C3.

Theorem 4.15. Given two geometrically isomorphic elliptic curves E and E ′ defined over Fq,
we have that every element of IsomG(E[2], E ′[2]) is the restriction of a geometric isomorphism
if and only if one of the following pair of conditions holds:

1. j(E) = j(E ′) = 0 and E(Fq)[2] = {0} and E is a quadratic twist of E ′;

2. j(E) = j(E ′) = 1728 and E(Fq)[2] ' C2 and E is a quadratic twist of E ′.

Proof. Suppose j(E) = j(E ′) 6= 0, 1728. Let us fix any k̄-isomorphism φ : E → E ′. Then
Isomk̄(E,E

′) = {±φ}. But then, every element in Isomk̄(E,E
′) acts trivially on two-torsion

points and hence there exists at most one element in IsomG(E[2], E ′[2]) which is the restriction
of geometric isomorphism. On the other hand, we always have more than one isomorphism of
Galois module structure between E[2] and E ′[2].

Suppose j(E) = j(E ′) = 0. In this case E can be given by y2 = x3 + b and E ′ is given
by y2 = x3 + b′. Let us fix t ∈ k̄ such that t6 = b′

b
. Consider a map φ : E → E ′ such

that φ(x, y) = (t2x, t3y). Let us fix an element ρ ∈ k̄, ρ 6= 1, such that ρ3 = 1. And let us
denote by [ρ] the following element of Aut(E), namely [ρ](x, y) = (ρx, y). Then Isomk̄(E,E

′) =
{±φ,±φ[ρ],±φ[ρ]2}. By restricting these maps to the maps from E[2]→ E ′[2] we obtain three
different maps, say {1, τ, τ 2}, since as before ± acts identically on two-torsion points. Now,
two torsion points of E ′ are {∞, (c, 0), (ρc, 0), (ρ2c, 0)}, where c is any root of the equation
x3 + b′ = 0. Therefore, if E(Fq)[2] ' C2 ⊕ C2 or E(Fq)[2] ' C2, then we have an element in
IsomG(E[2], E ′[2]) which is not the restriction of a geometric isomorphism. Finally, suppose
that E(Fq)[2] = {0}. In this case it is easy to see that each element of IsomG(E[2], E ′[2]) is the
restriction of an element of Isomk̄(E,E

′) if and only if (t2)p = t2 which is equivalent to the fact
that b

b′
is a cube in Fp. Or in other words that E is a quadratic twist of E ′.

Finally, suppose we are in the case j(E) = j(E ′) = 1728. Then E can be given by y2 = x3 +
bx and E ′ is given by y2 = x3+b′x. Two-torsion points ofE are {∞, (0, 0), (

√
−b, 0), (−

√
−b, 0)}.

Note then the point (0, 0) is always a rational point on E( and E ′), hence E(Fq)[2] is either C2

or C2 ⊕ C2. Let us fix an element i ∈ k̄ such that i2 = −1. We will denote by [i] the following
automorphism of E: [i](x, y) = (−x; iy). Let us also fix an element t ∈ Fp such that t4 = b′

b

and the following geometric isomorphism φ from E → E ′ which sends (x, y) to (t2x, t3y). Then
Isomk̄(E,E

′) = {±φ,±[i]φ]}. Restriction to two-torsion points gives us two different elements.
If E(Fq)[2] ' C2, then any element of IsomG(E[2], E ′[2]) is the restriction of an element of
Isomk̄ if and only if t2 ∈ Fp or, in other words, b′

b
is a square in Fp. The last statement is

equivalent to the fact that E is a quadratic twist of E ′. In contrast, if E(Fq)[2] ' C2 ⊕ C2,
then we could always pick an isomorphism of the Galois module structure on two-torsion points
which is not the restriction of a geometric isomorphism.

4.2.6 The Proof for the case d = 2

In this section we give a proof of our main theorem. First, we prove a few auxiliary lemmas.
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4.2. EXPLANATIONS, CALCULATIONS AND EXAMPLES

Lemma 4.16. Every quadratic twists E ′ of an elliptic curve E share isomorphic Galois module
structure of two-torsion points and has opposite trace of Frobenius.

Proof. For the first statement note that Galois structure of the two-torsion points completely
determined by the roots of polynomial f(x), where the elliptic curve E is given by the equation
y2 = f(x). Now, one could check that quadratic twist of E is given by y2 = d ∗ f(x), where
d ∈ F∗q/F∗2q . Hence E ′[2] is isomorphic to the E[2] as Galois module. For the second statement
of the proposition note that #E(Fq) + #E ′(Fq) = 2q + 2 and hence aq = −a′q.

By using this lemma we obtain the following:

Corollary 4.17. Suppose pT 2 − a′pT + 1 is in ΛE(2, 2). Then also pT 2 + a′pT + 1 is.

Proof. If −a′p occurs in the list, then there exists an elliptic curve E
′
1 with isomorphism between

E
′
1[2] and E[2], which is not the restriction of a geometric isomorphism between E

′
1 and E. Then

we could take E
′
2 which is the quadratic twist of E

′
1. It has the same Galois-module structure

and negative sign of Frobenius. Obviously, we have isomorphism between E
′
2[2] and E[2], which

is not the restriction of a geometric isomorphism between E
′
2 and E.

The following result is useful for our purposes.

Lemma 4.18. aq is odd if and only if π acts as C3 on E[2].

Proof. Frobenius element π acts on E[2] as three-cycle if and only if it has exactly one fixed
point, namely the zero-point. It happens if and only if E(Fq) is not divisible by two. But
aq = q + 1−#E(Fq), which shows that aq is even if and only if π acts as C3.

Definition 4.19. Fix a finite field Fq. Let N be an integer number in the Hasse interval:
N ∈ [−2

√
q; 2
√
q]. We will call it admissible if there exists an elliptic curve E over Fq with

q + 1−#E(Fq) = N .

The following lemma is the classical statement due to Waterhouse, for reference see [45].

Theorem 4.20. The number N is admissible if and only if one of the following conditions
holds:

1. gcd(p,N) = 1;

2. q = p2n+1, n ∈ N and one of the following holds:

(a) N=0;

(b) N = ±2n+1 and p = 2;

(c) N = ±3n+1 and p = 3;

3. q = p2n, n ∈ N and one of the following holds:

(a) N = ±2pn;

(b) N = ±pn and p 6= 1 mod (3);
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(c) N = 0 and p 6= 1 mod (4);

Remark 4.21. Suppose q = p and p > 3. Then we have |a′p| ≤ 2
√
p < p and hence a condition

gcd(a′p; p) = 1 is automatically holds. Hence, in this settings any number N in the Hasse
interval is admissible.

Combing these results together we already have one cases of our theorem for case q = p:

Corollary 4.22. Let E be an elliptic curve over Fp with j(E) 6= 0 and ap = 1 mod (2). Then
ΛE(2, 2) consists of all polynomials of the form pT 2−a′pT + 1, with a′p ∈ [−2

√
p; 2
√
p] such that

a′p = 1 mod (2). If j(E) = 0 the same result holds, with up to 6 exceptions.

Proof. Suppose j(E) 6= 0, 1728. Given a′p as above we could construct an elliptic curve E ′ with
#E ′(Fq) = q + 1− a′p, by the previous remark. Now, since a′p = 1 mod (2), by corollary 4.18
there exists isomorphism as Galois-modules between E[2] and E ′[2]. We have to check that it
possible to pick an isomorphism of Galois-modules which is not the restriction of a geometric
isomorphism between E and E ′. This is possible, because of discussion in Theorem 4.15.

If j(E) = 1728, then we have at least one rational 2-torsion point, namely (0, 0) hence this
is not the case.

If j(E) = 0 then for any given a′p we still could pick an elliptic curve E ′ and find an
isomorphism of Galois-module structure. If j(E ′) 6= 0 then any such an isomorphism is not
the restriction of a geometric isomorphism. Otherwise if j(E ′) = j(E) = 0 then according to
Theorem 4.15 in this case any isomorphism between two-torsion parts comes from the restriction
of a geometric isomorphism if and only if E is a quadratic twist of E ′. This implies that all the
exceptions which could occur, come from twists of E, but there are no more than six twists of
elliptic curve defined over k.

Remark 4.23. Note that even if E ′ is geometrically isomorphic to E, then it does not imply
that a′p does not occur in ΛE(2, 2), because it may happen that in the isogeny class associated
to a′p there is a curve E ′′ which is not geometrically isomorphic to E, but with isomorphism of
Galois modules E[2] and E ′′[2]. According to our data this happens very often.

Remark 4.24. There is an obvious generalization to the case q = pn with n > 1. Namely, we
must pick an admissible a′q with a′q = 1 mod (2) and take an elliptic curve E ′. Then, by the
same reason there exists an isomorphism of Galois module structure on two-torsion points not
coming from a geometric isomorphism between curves, except cases where j(E ′) = j(E) = 0.

The case that aq is even is a little bit more delicate. The reason is that we have two
possibilities for E(Fp)[2]. It is either C2 or C2 ⊕ C2.

Namely, suppose we are in the case aq = 0 mod (2). Since q is odd, It also means that
#E(Fq) = 0 mod (2). There are two different cases:

1. #E(Fq) = 0 mod (4), hence E(Fq)[2] ' C2 or E(Fq)[2] ' C2 ⊕ C2;

2. #E(Fq) = 2 mod (4), hence E(Fq)[2] ' C2;
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We see a problem here, because a priori given an isogeny class of an elliptic curve E with
#E(Fq) = 0 mod (4), we can’t decide whether there exists curve E ′ in the same isogeny class
with E ′(Fq)[2] ' C2 or with E ′(Fq)[2] ' C2 ⊕ C2. In order to solve this problem, we need two
lemmas about two-torsion points on elliptic curves in the isogeny class of given elliptic curve
E:

Lemma 4.25. Suppose E is an elliptic curve over k = Fq such that 4 | #E(Fq). If E(Fq)[2] =
C2 then there exists an elliptic curve E ′ defined over k with two properties:

1. E ′ is Fq-isogenous to E;

2. E ′(Fq)[2] = C2 ⊕ C2.

Proof. Since 4|#E(Fq) and E(Fq)[2] = C2 we have that E(Fq)[4] = C4. We denote by P
a generator of this group. We have E[2] = {0, 2P,M,M + 2P}, where M is a non-rational
two-torsion point of E. Note that π(M) = M + 2P . Consider H = 〈2P 〉 and elliptic curve
E ′ = E/〈H〉. Obviously, E ′ is isogenous to E. We claim that E ′[2] = C2⊕C2. Indeed, consider
the equation 2R = 2P , it has exactly four solutions {P, 3P, P +M, 3P +M}. Let us denote the
map E → E/〈H〉 by i. Then i(P ), i(P +M) are two different non-trivial two-torsion points on
E ′. We claim that π acts trivially on both i(P ) and i(P +M). Indeed,

i(P ) = i(π(P )) = πi(P )

and
π(i(P +M)) = i(P + π(M)) = i(P + 2P +M) = i(P +M).

But if π acts trivially on two non-zero elements of E ′[2] then it acts trivially on all points
of E ′[2].

Recall, that for any elliptic curve E over Fq and prime number l 6= p, we associate the Tate
module Tl(E) = lim←−k(E[lk]). Now, π acts on points of E and therefore acts on Tl(E).

Lemma 4.26. Suppose E is an elliptic curve over k = Fq such that 4 | #E(Fq). If E(Fq)[2] =
C2 ⊕ C2, then the following are equivalent:

1. There exists an elliptic curve E ′ with E ′(Fq)[2] = C2 and k-isogenous to E;

2. π ∈ Aut(T2(E)) is not in Z∗2;

3. aq 6= ±2
√
q.

Proof. First we will prove equivalence between one and two.
Suppose π acts as an 2-adic integer, then any finite 2-subgroup H of E(Fq) is rational. Now

for any E ′ that is k-isogenous to E, there exists finite rational subgroup H ⊂ E(Fq) such that
E ′ ' E/H. Let H1 be a maximal group such that H ⊂ H1 and H is of index two inside H1.
Consider H1/H ⊂ E/H ' E ′. Since H1/H is a 2-subgroup, then π acts trivially on it. On the
other hand E ′[2] ' H1/H, it means that E ′[2] is rational.

Suppose π is not in Z∗2. It means that there exists P ∈ T2(E), P = (P1, P2, . . . ), Pi ∈ E[2i]
such that π(P ) 6∈ 〈P 〉. Since π(P1) = P1, there exists number i such that π(Pi) ∈ 〈Pi〉 = H,
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but π(Pi+1) 6∈ 〈Pi+1〉 = H1. It means that elliptic curve E ′ ' E/H, which is isogenous to E
has a non-rational two-torsion point, namely Pi+1 mod H.

Finally we will show that (2) is equivalent to (3). Suppose π acts as an element of Z∗2,
meaning that in some basis of T2(E) it acts as a scalar matrix. Its characteristic polynomial
is f(x) = x2 − aqx + q, which is of the form f(x) = (x±√q)2 when π is a scalar. This shows
that aq = ±2

√
q. Suppose aq = ±2

√
q, then we know that the characteristic polynomial of π

is f(x) = (x ± √q)2. Now we claim that the minimal polynomial of π is x ± √q. Indeed, we
have the following sequence:

E(Fq)
π±√q

> E(Fq)
π±√q

> E(Fq)

Where the composition of two maps is zero, since the minimal polynomial divides the
characteristic polynomial. But, this is the map between two projective curves over algebraically
closed field, which means that it is either zero or surjective map. If (π ±√q) is not zero map,
then also (π ±√q)2. Therefore the minimal polynomial of π is (x±√q), which means that π
is a diagonal matrix.

Combining this two results together we have the following theorem:

Theorem 4.27. Given elliptic curve E over Fq such that 4|#E(Fq) we have:

1. if aq 6= ±2
√
q, then in the isogeny class corresponding to E there exist elliptic curves E ′,

E ′′ with E ′(Fq)[2] = C2 and E ′′(Fq)[2] = C2 ⊕ C2;

2. if aq = ±2
√
q, then any elliptic curve E ′ isogenous to E has E ′(Fq)[2] ' C2 ⊕ C2.

Corollary 4.28. Suppose, E is an elliptic curve with j(E) 6= 1728 and with E(Fq)[2] = C2.
Then ΛE(2, 2) consists of all qT 2− a′qT + 1 for all admissible a′q with property a′q = 0 mod (2)
and aq 6= ±2

√
q. If j(E) = 1728 the same result holds with possibly four exceptions.

Proof. Suppose j(E) 6= 0, 1728. As before, for a given admissible number a′q we could construct
an elliptic curve E ′. Condition a′q = 0 mod (2) implies that either E ′(Fq)[2] ' C2 or E ′(Fq)[2] '
C2 ⊕ C2. If #E ′(Fq) = 2 mod (4) we are done because then E ′(Fq)[2] = C2 and theorem 4.15.
If #E ′(Fq) = 0 mod (4), then we are done because of theorem 4.27.

If j(E) = 0, 1728, then we only have problems with j(E) = j(E ′), but then theorem 4.15
shows that only possible exceptions could appear in the case j(E) = 1728. This exceptions
one-to-one correspond to twists of E, but there are no more than 4 twists of an elliptic curve
E with j(E) = 1728.

Corollary 4.29. Suppose, E is an elliptic curve with E(Fq)[2] = C2 ⊕ C2. Then ΛE(2, 2)
consists of all qT 2 − a′qT + 1 for all admissible a′q with property q + 1− a′q = 0 mod (4).

Proof. First note that this condition mentioned above guarantees that for given a′q there exists
an elliptic curve E ′′ in the corresponding isogeny class and as before by theorem 4.27 in this
isogeny class we could construct elliptic curve E ′ with E ′(Fq)[2] ' C2 ⊕ C2. According to
theorem 4.15 for any such pair of E and E ′ we could construct isomorphism between E[2] and
E ′[2] which is not the restriction of a geometric isomorphism.
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4.3 The case d > 2

The main purpose of this section is to show:

Theorem 4.30. For d > 2 with p 6 |d, we have ΛE(d, 2) = ∅.

Proof. We will show, that there is no abelian Galois coverings of an elliptic curve by a genus
two smooth projective curve of degree d > 2, provided that the characteristic of the base field
is prime to d. Without loss of generality we could suppose k is algebraically closed.

Suppose that C is an abelian covering of E of degree d > 2. As we already mentioned there
exists a unique involution τ ∈ Aut(C) such that C/〈τ〉 ' P1. Moreover, because τ is unique,
it lies in the center of Aut(C) and hence we have the following commutative diagram:

C
2
> P1

E

d

∨
2
> P1

d
∨

Note that all maps here are abelian Galois coverings : C → E is by our assumptions, the
shorter morphism C → P1 since it has degree 2 and the longer C → P1 is abelian covering
because of Galois theory.

Let us apply Riemann-Hurwitz theorem to the covering C → E. We have

(2gC − 2) = d(2gE − 2) +
∑
p∈C

(ep − 1),

and hence ∑
p∈C

(ep − 1) = 2.

Since by assumptions this is a Galois-covering, this means that there are only three possibilities
for the ramification divisor: either we have ramification in one point of E of type (e1, e2) = (2, 2),
two different points on E with ramification index ei = 2 or ramification exactly at one point
with ramification index e1 = 3. In the first case we have d = 4, in the second we have d = 2
and finally, in the last case we have d = 3. This proves, that d ≤ 4. Note that if d = 2 or d = 3
then the Galois-group of a covering C → E is cyclic. But if d = 4 then the Galois group is
either C4 or C2 ⊕ C2.

Now, suppose d = 3. Consider the map C → P1 which is of degree six. Riemann-Hurwitz
for this covering tells us :

2 = 6(−2) +
∑
p∈C

(ep − 1),

which implies
∑

(ep−1) = 14. Now since we have Galois covering of degree six, the only possible
ramification types are 6, (3, 3) and (2, 2, 2). Suppose we have mi points of i-th ramification
type. It implies that 5m1 + 4m2 + 3m1 = 14, but this equation has only three solutions in
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non-negative integers: (2, 1, 0), (1, 0, 3) and (0, 2, 2). Riemann-Hurwitz for the covering C → E
gives us:

(2) = 0 +
∑
p∈C

(ep − 1),

which implies that the only possible ramification index is (3) with ramification exactly at one
point. This excludes possibilities (2, 1, 0) and (0, 2, 2) because they both have at least two
points on C with ramification index divisible by 3. Now, consider the covering P1 → P1 of
degree 3. Riemann-Hurwitz for this case:

−2 = −6 +
∑
p∈P1

(ep − 1),

or 4 =
∑

(ep−1), which implies that we must have two points with ramification index (3). But
then the covering C → P1 of degree six must have at least two points with ramification index
divisible by three. This provides contradiction to the case (1, 0, 3) which has only one point
with ramification index divisible by three.

The last case is d = 4. Suppose that the Galois group is C2 ⊕ C2. It implies that there
are two different elements σ, τ of Aut(C) each of order two such that there exist two curves
X ' C/〈σ〉 and Y ' C/〈τ〉 and the following commutative diagram:

C
2
> X

Y

2

∨
2
> E

2

∨

By Riemann-Hurwitz theorem one has g(X) = g(Y ) = 1 and therefore covering Y → E is
unramified. Hence the covering C → X is also unramified, which leads to the contradiction.

Finally, suppose that the Galois group is C4.

As before, there exist two elements σ, τ ∈ Aut(C) such that

C/〈σ〉 ' E

and

C/〈τ〉 ' P1,

where τ has order two and σ has order d = 4. It implies that there exists an elliptic curve E ′ =
C/〈σ2〉 such that morphism from C to E factors through E ′. We denote G′ = 〈σ2〉, G = 〈σ〉
and H ′′ = 〈τ〉. Also we have two subgroups H = 〈σ, τ〉 ' C4 ⊕ C2, H ′ = 〈σ2, τ〉 ' C2 ⊕ C2 of
Aut(C) such that C/H ' P1 and C/H ′ ' P1.

The following diagram illustrates the whole picture :
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C

C/G′ ' E ′
<

C/H ′′ ' P1

>

C/G ' E
∨ >

C/H ′ ' P1
∨

C/H ' P1
<

>

Consider the covering C → C/H ' P1 of degree eight. Riemann-Hurwitz for this morphism
tells us:

2 = −16 +
∑
p∈C

(ep − 1),

or equivalently 18 =
∑

(ep − 1). Since degree of this covering is eight, possible ramification
types are (8), (4, 4) or (2, 2, 2, 2). Suppose we have mi points of i-th ramification type. Then
7m1 +6m2 +4m3 = 18, which has exactly the following list of solutions in non-negative integers:
(2, 0, 1), (0, 3, 0), (0, 1, 3). Riemann-Hurwitz for C → E gives us 2 = 0+

∑
(ep−1) and therefore

we have exactly one ramified point, it has ramification type (2, 2). Then solutions (2, 0, 1) and
(0, 3, 0) are automatically excluded from our consideration. Finally, suppose we are in the case
of (0, 1, 3). We will show that Galois theory implies that there are at least two points with
ramification index at least four. Indeed, if p is ramified point for morphism C/H ′ → C/H,
then its inertia group Ip ⊂ H ' C4⊕C2 does not lie in the H ′ ' C2⊕C2. But then, it means it
has an element of order at least four. The same time, Riemann-Hurwitz argument shows that
there are exactly two points which ramify in the covering C/H ′ → C/H and therefore there
should be at least two elements of ramification index at least four.
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