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Function Fields and Their L-functions
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Chapter 3

Arithmetical Equivalence for Global
Function Fields

3.1 Introduction

3.1.1 Preliminaries

Let q = pm, p be a prime number and k = Fq. Let us consider two curves X and Y over k. As
usual by a curve we mean a smooth, projective, geometrically connected variety of dimension
one over k. If we fix a k-rational generically etale morphisms of X and Y to P1, then we
obtain two finite separable geometric extensions of Fq(x) and we will denote them by K and K ′

respectively. By analogy with the number field case discussed in the previous chapter, we have
notions of arithmetical equivalence, splitting equivalence, Gassmann equivalence and Dedekind
zeta-function. For the sake of coherence let us briefly explain some notions, for details see [42],
chapters V and IX.

First we recall that the polynomial ring A = Fq[x] is an analogue of Z with prime numbers
replaced by monic irreducible polynomials. Prime ideals in Fq[x] are in one-to-one correspon-
dence with monic irreducible polynomials in Fq[x]. The ring Fq[x] is also a principal ideal
domain. Any finite separable extension K of Fq(x) is given as quotient Fq[x, y]/(g(x, y)) where
g(x, y) ∈ Fq[x, y] is a monic, separable, irreducible polynomial in y with with coefficients in
Fq[x]. We suppose that this extension is geometric which means that the exact constant field of
K is also Fq. This restriction is not very important, but makes some theorems easier to state.
Given a finite separable geometric extension K of Fq(x) we consider the integral closure OK of
Fq[x] in K. As in the number field case, in general this is not a principal ideal domain, but is a
Dedekind domain, therefore in the function field case, the analogue of the Kummer-Dedekind
theorem 1.2 from the previous chapter holds, as before see [33], chapter IV for the general
statement about factorization of primes in Dedekind domains. It means the factorization of all
except finitely many prime ideals (f) in OK is given via factorization of the image of g(x, y)
into irreducible polynomials in the polynomial ring (Fq[x]/(f(x)))[y] associated to the residue
field of (f). We say two such extensions K, K ′ split equivalently if for all except finitely many
prime ideals (f) there is a bijection from prime ideals in OK lying above (f) to those ideals
of OK′ . They are arithmetically equivalent if this bijection is degree preserving for almost all
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CHAPTER 3. ARITHMETICAL EQUIVALENCE FOR GLOBAL FUNCTION FIELDS

primes. Finally since both extensions K, K ′ are separable they have common Galois closure
which we denote by N . Note that the full constant field of N could be different from Fq. Let
G = Gal(N/Fq(x)), H = Gal(N/K), H ′ = Gal(N/L). See the diagram below.

N

K L

Fq(x)

H H′

G

As before we will say that (G,H,H ′) form a Gassmann triple if IndGH(1H) ' IndGH′(1H′),
where 1H(and 1H′) means trivial representation of H(of H ′ respectively). In this case we will
also say that K, K ′ are Gassmann equivalent. Finally to each such extension one associates its
Dedekind zeta-function. Following notations from [42], chapter V we define it as:

ζK(s) =
∑
a≥0

N (a)−s,

where a runs over effective divisors of the corresponding curve X. In particular we include in
the definition of ζK(s) infinite places of X and therefore ζK(s) does not depend on the map
from X to P1.

It is not difficult to see that in this settings notions of Gassmann equivalence, splitting
equivalence and arithmetical equivalence coincide. But in contrast to the number field case,
Theorem 1.23 from the previous chapter is false in its full generality for the function field case.
Namely, the implication from 1 to 2 is problematic. The problem is that the Dedekind zeta-
function does not determine the splitting type, since in general there exist places in K with
the same norm above different places of Fq(x). One suitable approach here is to change the
definition of the zeta-function associated to K. It turns out, that if one replace usual zeta-
function by the so-called lifted Goss zeta-function, then an analogue of Theorem 1.23 theorem
becomes true. We refer an interested reader to [8]. The main purpose of this chapter is to recall
and then extend another approach to study arithmetically equivalent global function fields.

3.1.2 Results of the Chapter

Let K/F be a Galois extension of global fields with the Galois group G = Gal(K/F ). Then
for any finite dimensional complex representation ρ of G one attaches the Artin L-function
LF (ρ, s). The definition is essentially the same as in the number field case with one exception
that we also need to include infinite primes of K. This is a meromorphic function of complex
variable s. It also satisfies induction, inflation and additivity properties. Moreover by Theorem
of A.Weil if K/F is geometric, ρ is irreducible and non-trivial then LK(ρ, s) is a polynomial in
q−s, see Theorem 9.16B, from [42]. For the sake of brevity we will denote it by LF (ρ), omitting
the variable s.
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As we already mentioned, K.Nagata in 1986 published [32] from which a careful reader can
extract the following result:

Theorem 3.1. Let K, K ′ denote two finite separable geometric extensions of Fq(x). Let N
denote the common Galois closure and G = Gal(N/Fq(x)), H = Gal(N/K), H ′ = Gal(N/K ′).
Let ρ1, . . . , ρn denote all irreducible complex representations of G. Let ψ = IndGH(1H) and
ψ′ = IndGH′(1H′). The following are equivalent:

1. For all i such that 1 ≤ i ≤ n, we have LK(ρi|H) = LK′(ρi|H′);

2. LK(ψ|H) = LK′(ψ|H′) and LK(ψ′|H) = LK′(ψ
′|H′);

3. K and K ′ are arithmetically equivalently;

4. K and K ′ split equivalently;

5. (G,H,H ′) forms a Gassmann triple.

In this chapter we improve his argument and prove the above Theorem as a particular case
of the following more general result1:

Theorem 3.2. In the above settings let α denotes a complex representation of H and α′ denotes
a complex representation of H ′. Let ψ = IndGH(α) and ψ′ = IndGH′(α

′). For any representation
ρ of G let ρ̄ denote the dual representation of ρ.The following are equivalent:

1. For all i such that 1 ≤ i ≤ n we have equality of Artin L-functions: LK(α ⊗ ρi|H) =
LK′(α

′ ⊗ ρi|H′)

2. LK(ᾱ⊗ (ψ|H)) = LK′(ᾱ′ ⊗ (ψ|H′)), and
LK(ᾱ⊗ (ψ′|H)) = LK′(ᾱ′ ⊗ (ψ′|H′));

3. Induced representations ψ and ψ′ are isomorphic.

This Theorem is not just a formal generalisation of Nagata’s results but also allows us to
use group theory to construct for any given pair of non-isomorphic global function fields a finite
list of L-functions which distinguishes them. As in the previous section this goal is achieved in
two steps. First we need the group-theoretical result discussed in the previous chapter, namely
Theorem 2.6. Next, in the settings of Theorem [3.1] we construct a Galois extension M of Fq(t)
containing K and K ′ such that the Galois group Gal(M : Fq(t)) is G̃ and K = M H̃ , K ′ = M H̃′

for G̃, H̃, H̃ ′ as in Theorem [2.6]. Altogether, this gives us:

Theorem 3.3. For a given pair K and K ′ of finite separable geometric extensions of F = Fq(t)
there exists a Galois extension M of Fq(t) with Galois group G̃, such that K = M H̃ and

K ′ = M H̃′ for some subgroups H̃, H̃ ′ of G̃ with the following properties. There exists an abelian
character α of H̃ such that for any abelian character α′ of H̃ ′ the following are equivalent :

1. For any irreducible representation ρ of G̃ we have equality of Artin L-functions:

LK(α⊗ ρ|H̃) = LK′(α
′ ⊗ ρ|H̃′);

1 In order to get Nagata’s result plug in the settings trivial representations α = 1H and β = 1H′
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2. LK(ᾱ⊗ (ψ|H̃)) = LK′(ᾱ′ ⊗ (ψ|H̃′)), and
LK(ᾱ⊗ (ψ′|H̃)) = LK′(ᾱ′ ⊗ (ψ′|H̃′)),

where ψ = IndG̃
H̃

(α) and ψ′ = IndG̃
H̃′

(α′);

3. Induced representations ψ and ψ′ are isomorphic.

Moreover, if those conditions hold then K and K ′ isomorphic as extensions of Fq(t).

The chapter has the following structure: in the next section we give a proof of Theorem 3.2.
After that we study arithmetical equivalence for global function fields: we provide few explicit
examples of non-isomorphic, but arithmetically equivalent global function fields, discuss an
algorithm to construct two-parametric family of such pairs for many base fields of different
characteristic and briefly review properties of such fields. In the next section we give a proof
of Theorem 2.6 and in the last section we give a proof of Theorem 3.3.

3.2 On the L-functions criteria

In this section we are going to prove our main Theorem 3.2, but before that, let us first consider
one particular example of Theorem 3.1. This example illustrates the following: we construct
two degree two extensions K, K ′ of F7(x) such that ζK(s) = ζK′(s), but K and K ′ are not
arithmetically equivalent. Denoting by N the common normal closure of K and K ′ and keeping
notations from the settings of 3.1 we will construct a character χ of Gal(N : F7(x)) such that

LK(χ|H , s) 6= LK′(χ|H′ , s).

Example 3.4. Consider two elliptic curves E and E ′ over F7, affine part of which defined
by equations y2 = x3 + 1 and y2 = x3 + 3x + 1 respectively. Let us denote by K and K ′ the
corresponding function fields. One checks that

ζK(T ) =
7T 2 + 4T + 1

(1− T )(1− 7T )
= ζK′(T ),

where T = 7−s. Hence by the theorem of A.Weil, E and E ′ are F7-isogenous, but j(E) = 0 and
j(E ′) = 2 so they are not isomorphic even over the algebraic closure F7 and hence K 6' K ′.

In the above example we have two quadratic extensions F7(
√
fi(x))/F7(x), where f1(x) =

x3 + 1 and f2(x) = x3 + 3x + 1. Obviously those are abelian Galois extensions with Ga-
lois group C2. It means that despite the fact that K and K ′ share the same ζ-function
they do not share splitting type(otherwise they must be isomorphic). According to The-
orem 3.1 this means that there exists an L-function which distinguishes them. More con-
cretely, let us consider the common Galois closure N . We denote by G,H,H ′ Galois groups of
Gal(N/F7(x)),Gal(N/K),Gal(N/K ′), respectively. We have G = C2 ⊕C2 and hence there ex-
ists a one-dimensional character χ of G such that χ|H = 1H and χ|H′ 6= 1H′ . Now LK(χ|H) = ζK
and therefore this function has a pole at s = 1. But, LK′(χ|H′) is an Artin L-function of a
non-trivial abelian character, hence it has no poles, see [42],chapter IX. Therefore we see that

LK(χ|H) 6= LK′(χ|H′).

This idea gives rise to Theorems 3.1 and 3.2.
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Proof of Theorem 3.2. First we show implication from (1) to (3). For any fixed representation
ρ of G we consider LK(α ⊗ ρ|H). This is a meromorphic L-function with no poles outside
s = 0 and s = 1, see [42]. By properties of Artin L-functions this function has a pole at
s = 1 of order (α ⊗ ρ|H , 1)H , possibly zero. Because of properties of complex representations:
(α ⊗ ρ|H , 1)H = (ρ|H , ᾱ)H , where ᾱ means the dual of the representation α. By Frobenius
reciprocity we have

(ρ|H , ᾱ)H = (ρ, IndGH(ᾱ))G.

In means that equality LK(α⊗ ρi|H) = LK′(α
′ ⊗ ρi|H′) implies

(ρi, IndGH(ᾱ))G = (ρi, IndGH′(ᾱ
′))G.

Since ρi runs over all irreducible representations of G it means that

IndGH(ᾱ) ' IndGH′(ᾱ
′)

and therefore IndGH(α) ' IndGH′(α
′).

From (3) to (1). By Frobenius reciprocity for each i, j ∈ {1 . . . n} we have:

(IndGH(α⊗ ρi|H), ρj)G ' (α⊗ ρi|H , ρj|H)H ' (α, (ρ̄i ⊗ ρj)|H)H ' (IndGH(α), ρ̄i ⊗ ρj)G,

By our assumptions IndGH(α) ' IndGH′(α
′), we therefore have:

(IndGH(α), ρ̄i ⊗ ρj)G ' (IndGH′(α
′), ρ̄i ⊗ ρj)G,

and hence for each irreducible representation ρi, we have:

IndGH(α⊗ ρi|H) ' IndGH′(α
′ ⊗ ρi|H′).

Finally, by the Artin induction property it follows that:

LK(α⊗ ρi|H) = LFq(x)(IndGH(α⊗ ρi|H)),

and therefore we are done.
From (2) to (3). As before from equality of L-functions we obtained equality of orders of

poles at s = 1 and therefore following equalities:

(ᾱ⊗ (ψ|H), 1H)H = (ᾱ′ ⊗ (ψ|H′), 1H′)H′

and
(ᾱ⊗ (ψ′|H), 1H)H = (ᾱ′ ⊗ (ψ′|H′), 1H′)H′ .

By Frobenius reciprocity we have:

(ᾱ⊗ (ψ|H), 1H)H = (α, ψ|H)H = (ψ, ψ)G

and
(ᾱ′ ⊗ (ψ|H′), 1H′)H′ = (α′, ψ|H′)H′ = (ψ′, ψ)G
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Therefore assumptions of (2) implies (ψ, ψ)G = (ψ, ψ′)G = (ψ′, ψ′)G. Let us consider the
scalar of product of the virtual representation ψ−ψ′ with itself: (ψ−ψ′, ψ−ψ′)G = (ψ, ψ)G−
2(ψ, ψ′)G + (ψ′, ψ′)G = 0. Which implies that ψ and ψ′ are isomorphic.

From (3) to (2)
Note that LK(ᾱ ⊗ (ψ|H)) = LFq(x)(IndGH(ᾱ ⊗ (ψ|H))). Therefore in order to get equality of

L-functions it is enough to show:

IndGH(ᾱ⊗ (ψ|H)) ' IndGH′(ᾱ
′ ⊗ (ψ|H′)).

Let ρi run over irreducible representations of G. By Frobenius reciprocity we have:

(IndGH(ᾱ⊗ (ψ|H)), ρi)G = (ᾱ⊗ ψ|H , ρi|H)H = (ᾱ, ρi|H ⊗ ψ̄|H)H = (ψ̄, ρi ⊗ ψ̄)G.

Since ψ = ψ′ we have:

(ψ̄, ρi⊗ψ̄)G = (ψ̄′, ρi⊗ψ̄)G = (ᾱ′, ρi|H′⊗ψ̄|H′)H′ = (ᾱ′⊗ψ|H′ , ρi|H′)H′ = (IndGH′(ᾱ
′⊗(ψ|H′)), ρi)G

Which means that two representations are isomorphic:

IndGH(ᾱ⊗ (ψ|H)) ' IndGH′(ᾱ
′ ⊗ (ψ|H′)).

By replacing ψ by ψ′ we obtained the second equality of L-functions.

Note that if α is the trivial representation, then LK(α⊗ ρH) = LK(ρH). Therefore equality
of L-functions for each irreducible ρ: LK(ρ|H) = LK′(ρ|H′) implies arithmetical equivalence and
vice versa.

This remark generalises the fact that equality of zeta-functions in the number field case is
the same as arithmetical equivalence. At first sight this generalisation to the function field side
seems to be not very natural, since it depends on the k-rational map of the curve X to P1 and
not given in the intrinsic terms of X, but as we will see in the next section, this map is very
important for the notion of arithmetical equivalence: it is possible to map curves X and Y to
P1 in two different ways, such that their function fields are arithmetically equivalent under the
first pair of maps, but not arithmetically equivalent under the second pair of maps.

3.3 On Gassmann Equivalence

3.3.1 Examples

In order to find examples of arithmetically equivalent function fields we must find a non-trivial
example of a Gassmann triple (G,H,H ′) and solve the inverse Galois problem for G. As we
already mentioned in 1.4.2 Gassmann triples corresponding to field extensions of degree up to
15 were classified in [5]. It follows that fields with Galois group G ' PGL3(F2) ' PSL2(F7) give
rise to at least two non-trivial Gassmann triples: one in degree seven and one in degree fourteen.
Also, fields with Galois group G ' PSL2(F11) give rise to at least one pair of arithmetically
equivalent fields of degree eleven.

Using Magma we compute the Galois group of the splitting field of a given polynomial
f ∈ Fq(x)[y] chosen in some particular way and find all intermediate subfields. By doing that
for many different f we find explicit equations of arithmetically equivalent function fields and
compare their properties.
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3.3. ON GASSMANN EQUIVALENCE

Some Constructions

Here are some examples.

Example 3.5. Let p = 7, q = p2 and let α be a generator of F∗q. Consider the function
field extension of Fq(x) given by f(y) = yp+1 + y − xp+1. Its splitting field N has degree 168
and Galois group Gal(N : Fq(x)) ' PGL3(F2). Inside this field we have at least two pairs of
arithmetically equivalent global function fields:

1. K1 : y7 + 6x8y3 + α28x12y + 4 and K ′1 : y7 + 5x8y3 + α4x12y + 6;

2. K2 : y14 + 3x8y6 + α4x12y2 + 5 and K ′2 : y14 + 3x8y6 + α28x12y2 + 5;

Note that since these fields arise from non-trivial triple (G,H,H ′) it means that they are
not isomorphic as extensions of Fq(x), but it may happen that K and K ′ isomorphic as abstract
fields. Indeed, one could check that in this case we have K1 ' K ′1 and K2 ' K ′2 as fields.

An interesting question is: is it possible to find arithmetically equivalent function fields K
and K ′ that are not isomorphic as abstract fields? It was mentioned in [6] that a result by J.P.
Serre states that the function field of the normal closure of the field given by yp+1−xy+ 1 over
Fp has Galois group PSL2(Fp). By working out this example for p = 7 and p = 11 one finds a
positive answer to the above question:

Example 3.6. Consider the curve defined by the affine equation y8 − xy + 1 over F7. The
corresponding function field N of the normal closure has degree 168 and the Galois group is
G ' PGL3(F2) ' PSL2(F7). Inside this field we have at least two pairs of arithmetically
equivalent global function fields:

1. K1 : y7 + 2y3 + 2y + 6x2 and K ′1 : y7 + y3 + 5y + 4x2;

2. K2 : y14 + 4y6 + 5y2 + 5x2 and K ′2 : y14 + 4y6 + 2y2 + 5x2;

Being arithmetically equivalent they share the same zeta-function and therefore their Weil-
polynomials fK(T ) are the same. Since # Pic0(C)[Fq] = h = fK(1) is the class number, we
have that in contrast to the number fields they share the same class numbers, see [10]. But
they have different class groups2, hence they are not isomorphic. Indeed according to Magma
we have:

Cl(K1) ' Cl(K2) ' Z/8Z

but
Cl(K ′1) ' Cl(K ′2) ' Z/4Z⊕ Z/2Z.

The fact that Cl(K1) ' Cl(K2) and Cl(K ′1) ' Cl(K ′2) is not coincidence: K1 ' K2 and K ′1 ' K ′2
as abstract fields. Another important remark here is that the genus of K1 and K ′1 is one. They
have a rational point over F7 and therefore correspond to two elliptic curves E and E ′ defined
over F7. By considering Weierstrass models of E and E ′ one gets degree two extensions of
F7(x), such that they are not arithmetically equivalent. More concretely, the curve defined by
y7 + 2y3 + 2y+ 6x2 = 0 is isomorphic to the elliptic curve E1 defined by y2−x3−x = 0 and the

2By a class group we mean the group of Fq-rational points on the Jacobian variety Jac(X) associated to X.
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curve given by the equation y7 +y3 + 5y+ 4x2 = 0 is isomorphic to the elliptic curve E2 defined
by y2 − x3 − 3x = 0. This illustrates that the notion of arithmetical equivalence completely
depends on the map from X to P1.

Example 3.7. Consider the curve defined by the affine equation y12 − xy + 1 = 0 over F11.
The corresponding function field N of the normal closure has degree 660 and the Galois group
is G ' PSL2(F11). Inside this field we have at least one pair of arithmetically equivalent global
function fields: K1 : y11 + 2y5 + 8y2 + 10x2 = 0 and K ′1 : y11 + 2y5 + 3y2 + 10x2 = 0.

One checks that K1 and K ′1 are not isomorphic as global fields, also have genus one and
that Cl(K1) ' Cl(K ′1) ' Z/12Z.

Magma scripts

Let us first check example 3.5

// Initializing the function field F

p := 7; q := p^2;

K<alpha> := GF(q);

R<x> := FunctionField(K);

P<y> := PolynomialRing(R);

f := y^(p+1) + y - x^(p+1);

FF<alpha> := FunctionField(f);

// Verifying that the Galois of the normal closure of F is isomorphic to PGL_3(F_2)

G0 := PGL(3,2);

G, r, N := GaloisGroup(FF);

"Degree of the normal closure N of K is", #G;

"Is G isomorphic to PGL_3(F_2): ", IsIsomorphic(G,G0);

h := Subgroups(G: IndexEqual := 7);

H_1 := h[1]‘subgroup;

H_2 := h[2]‘subgroup;

"Is H_1 conjugate to H_2 inside G: ", IsConjugate(G, H_1, H_2);

"The group H_1 corresponds to the field extensions: ", GaloisSubgroup(N, H_1);

"The group H_2 corresponds to the field extensions: ", GaloisSubgroup(N, H_2);

This script produces the following output which completely aligned with the expectations:

Degree of the normal closure N of K is 168

Is G isomorphic to PGL_3(F_2): true Homomorphism of GrpPerm: G, Degree 8, Order

2^3 * 3 * 7 into GrpPerm: G0, Degree 7, Order 2^3 * 3 * 7 induced by

(1, 6)(2, 4)(3, 7)(5, 8) |--> (2, 6)(4, 5)

(1, 4, 8, 2)(3, 6, 5, 7) |--> (1, 6)(2, 4, 3, 7)

Is H_1 conjugate to H_2 inside G: false

The group H_1 corresponds to the field extensions: y^7 + 6*x^8*y^3 +
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alpha^28*x^12*y + 4

((((x1 + x4) + x6) + x8)^2 + (((x2 + x3) + x5) + x7)^2)

The group H_2 corresponds to the field extensions: y^7 + 5*x^8*y^3 +

alpha^4*x^12*y + 6

((((x1 + x5)^2 + (x6 + x2)^2) + (x8 + x3)^2) + (x4 + x7)^2)

Let us also check that for instance fields K1, K ′1 from 3.6 indeed split equivalently. To
do so we pick a few random prime ideals P in Fq[x] and compare factors of reductions of
y7 + 2y3 + 2y + 6x2 and y7 + y3 + 5y + 4x2 modulo P :

p := 7;

Fq := GF(p);

k<x> := RationalFunctionField(Fq);

for i in [1..10] do

P := RandomIrreduciblePolynomial(Fq, i);

R<x> := ExtensionField<k, x | P>;

RR<y> := PolynomialRing(R);

f := y^7 + 2*y^3 + 2*y + 6*x^2;

g := y^7 + y^3 + 5*y + 4*x^2;

"Factorization of f mod", P, Factorization(f);

"Factorization of g mod", P, Factorization(g);

end for;

The above code confirms that indeed at least for some randomly chosen primes P there
exists a degree preserving bijection between ideals of OK1 lying above P to those ideals of OK′1 :

...

Factorization of f mod x^2 + 5*x + 3

[

<y + 6*x + 5, 1>,

<y^3 + (3*x + 6)*y^2 + 4*x*y + 4, 1>,

<y^3 + (5*x + 3)*y^2 + 3*x*y + 4, 1>

]

Factorization of g mod x^2 + 5*x + 3

[

<y + 3*x + 6, 1>,

<y^3 + (5*x + 3)*y^2 + (x + 5)*y + x + 6, 1>,

<y^3 + (6*x + 5)*y^2 + (6*x + 2)*y + x + 6, 1>

]

Factorization of f mod x^3 + 4*x^2 + 4*x + 6

[

<y^7 + 2*y^3 + 2*y + 6*x^2, 1>

]

Factorization of g mod x^3 + 4*x^2 + 4*x + 6

[
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<y^7 + y^3 + 5*y + 4*x^2, 1>

]

...

Construction by Torsion Points on Elliptic Curves

All the above examples work only for some particular characteristic p of the base field. Moreover,
for any example of non-isomorphic Gassmann equivalent pair (K,K ′) given above fields K and
K ′ actually become isomorphic after a constant field extension. It means that corresponding
curves X and Y are twists of each other. In this section we discuss an algorithm to construct
examples of families of pairs of arithmetically equivalent global function fields of arbitrary
characteristic p of the ground field, provided p is greater than three. By using this approach
we found geometrically non-isomorphic arithmetically equivalent global fields.

Let l denote a prime number. As it follows from [5] that extensions with Galois group
G ' Gl2(Fl) play an important role in the construction of arithmetically equivalent fields. If E
is an ordinary elliptic curve defined over Q, then the group E[l] of l-torsion points of E allows
us to construct arithmetically equivalent number fields, as in [9]. But in contrast to the number
field case, in the function field settings torsion points on elliptic curves over Fq(t) do not always
allow to construct extensions with Galois group isomorphic to Gl2(Fl). The crucial difference
appears because of constant field extensions.

More concretely, consider the function field F of the projective line defined over Fq: F '
Fq(t), where q = pm, p is prime. Suppose for simplicity that p > 3 and pick parameters a,
b ∈ Fq[t]. Consider an elliptic curve E over F defined by the equation y2 = x3 +ax+ b. For any
prime number l 6= p let us consider φl,E(u) the l-division polynomial of E. This is a polynomial
with coefficients in F and with roots corresponding to x-coordinates of l-torsion points of the
elliptic curve E, for example:

φ3,E(u) = 3u4 + au2 + 12bu− a2.

Finally, let R(t, y) = Resx(φl,E(x), y2 − (x3 + ax + b)) be the resultant with respect to x.
This is a polynomial in t and y, whose roots correspond to the coordinates of l-torsion points
of E. Generically this is separable polynomial and it generates the finite field extension K(y)

of Fq(t): K(y) = Fq(t)[y]

(R(t,y))
. We will denote the Galois group of the normal closure of K over F

by G. Let H be the subgroup of F×l generated by q. The analogue of the so-called Serre’s
open image Theorem for function fields proved by Igusa in 1959 states that for big enough l
depending on q we have the following exact sequence, see [3]:

1→ SL2(Fl)→ G→ H → 1.

Moreover, in this sequence SL2(Fl) corresponds to the geometric extension of F and H cor-
responds to the constant field extension. If q = 1 mod l then H is trivial and we obtain a
geometric extension with G ' SL2(Fl). By taking a quotient of G by ±1, we will get PSL2(Fl).
The action of ±1 is given by gluing points with the same x-coordinate. Therefore, the splitting
field of φl,E(x) is the geometric extension of Fq(t) with Galois group PSL2(Fl). Now if l = 7 or
l = 11 we obtain a family of arithmetically equivalent pairs.
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Example 3.8. In the above settings let p = 29 and l = 7, a = t, b = t + 1. Then: φ7,E(x)
is a polynomial of degree 24. The splitting field of φ7,E(x) is a finite geometric extension
K/F29(t) with the Galois group isomorphic to PSL2(F7). Inside this normal closure following
two arithmetically equivalent fields are not isomorphic:

K[x]/(x7 + 20tx6 + 14t2x5 + (6t3 + 11t2 + 22t+ 11)x4 + (5t4 + 23t3 + 17t2 + 23t)x3+

+(20t5 + 13t4 + 26t3 + 13t2)x2 + (5t6 + 20t5 + 5t3 + 21t2 + 14t+ 18)x+

+23t7 + 26t6 + 19t5 + 10t4 + 5t3 + 13t2 + 25t)

and

K[x]/(x7 + 16tx6 + 2t2x5 + (18t3 + 10t2 + 20t+ 10)x4 + (27t4 + 3t3 + 6t2 + 3t)x3+

+(27t5 + 17t4 + 5t3 + 17t2)x2 + (t6 + 7t5 + 16t4 + 15t3 + 12t2 + 8t+ 2)x+

+28t7 + t6 + 2t5 + t4).

According to Magma function fields given above have genus 1 and a F29-rational point,
therefore they are isomorphic to the function fields of two elliptic curves. Those elliptic curves
have different j-invariant, namely 16 and 15 respectively. Therefore, they are geometrically
non-isomorphic.

3.3.2 Properties of Arithmetically Equivalent Fields

In this section we will briefly discuss common properties of arithmetically equivalent global
fields that will shed some light on the previous examples. Recall the statement 1.18 from the
introduction:

Lemma 3.9. Let G be a finite group and H ⊂ G a subgroup of index n. Suppose one of the
following conditions holds:

1. n ≤ 6;

2. H is cyclic;

3. G = Sn the full symmetric group of order n;

4. n = p is prime and G = Ap is the alternating group of order p.

then any Gassmann triple (G,H,H ′) is trivial.

Taking into account our main Theorem this statement has the following application to the
function field side:

Corollary 3.10. Let K be a finite separable geometric extension of Fq(t) of degree n and let
N be its Galois closure with Galois group G. Let H be a subgroup of G such that K = NH .
Suppose one of the conditions from the previous lemma holds. Let H ′ ⊂ G be a subgroup and
let K ′ = NH′. Fields K and K ′ are isomorphic if and only if for each irreducible representation
ρ of G we have LK(ρ|H) = LK′(ρ|H′).
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Adele Rings

Let K be a global field and let AK denote the Adele ring of K. By definition this is the
restricted product of all local completions Kv with respect to Ov, where v denotes a place of
K. It has a topology coming from restricted product and therefore it is a topological abelian
group.

The first remarkable fact is that in the number field case we have the following implications:
AK ' AL ⇒ ζK = ζL ⇐⇒ K and L arithmetically equivalent. And moreover there exists an
example of arithmetically equivalent number fields with non-isomorphic Adele rings, see [44].

On the other hand in the function field side we have the following: AK ' AL ⇐⇒ ζK =
ζL ⇐ K and L arithmetically equivalent. For the proof of equivalence see [55]. Roughly
speaking the reason here is that in the function fields case the isomorphism type of the local
completion Ov depends only on the degree of v. For number fields this is not the case.

Ideal Class Group

Arithmetically equivalent function fields share the same zeta-function and therefore they also
share the same class-number. Indeed the by the analogue of the class-number formula the order
of the class group is given as L(0) where ζK(s) = L(s)

(1−q−s)(1−q1−s) . But their class-groups may be

different, as in example [3.6]. Nevertheless exactly as in the number field case we have a Perlis
invariant v associated to each Gassmann-triple (G,H,H ′) . In the function field case also for
any prime number l 6= p co-prime to v one has:

Cll(K) ' Cll(K
′).

In order to see this one could replace word-by-word the construction from the number field
case, but probably a slightly more interesting approach is the following taken from [22]. Recall
that the class-group is by definition the group of Fq-rational points on the Jacobian Jac(X)
associated to X. Now, to each relation between induced representations of trivial characters
one associates isogeny relations between Jacobians of corresponding curves. In the case of
Gassmann equivalence one has IndGH 1 ' IndGH′ 1 which leads to isogenies between Jacobians
of corresponding curves X, X ′. Degrees of these isogenies are given in terms of the triple
(G,H,H ′) and closely related to the invariant v. This shows that if l is co-prime to v then
there exists an isogeny from Jac(X) to Jac(X ′) of degree co-prime to l which leads to the
isomorphism of l-parts of class groups.

3.4 On Monomial Representations

The main purpose of this section is to prove Theorem 2.6. Before doing that let us recall
some basic facts from the theory of induced representations. Let G be a finite group and H a
subgroup. Let χ be a one-dimensional representation of H. Consider the induced representation
ψ of G: ψ = IndGH χ. By definition ψ acts on the vector space V which could be associated
with the direct sum of lines ⊕Cgi where each Cgi corresponds to the i-th left coset G/H.
Such a pair (ψ,⊕Cgi) is called a monomial representation. Let H ′ be another subgroup of G
and ψ′ = IndGH′ χ

′ for one-dimensional χ′ of H ′. We will say that we have morphism of pairs
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(ψ,⊕Cgi), (ψ′,⊕Cg′j
) if we have a morphism of representations f : ψ → ψ′ such that for each

line Cgi we have f(Cgi) ⊂ Cg′j
for some j.

Lemma 3.11. Suppose we have an isomorphism of monomial representations (ψ,⊕Cgi) ' (ψ′,⊕Cg′j
).

Then H is a conjugate of H ′ in G.

Proof. For the reference see [16].

Example 3.12. Let G be the group of multiplicative quaternions with generators a and b.
Consider the subgroups Ha = {1, a,−1,−a} and Hb = {1, b,−1,−b}. Let χa be an isomorphism
Ha ' µ∗4 sending element a to i. Let χb be the same character for Hb. Then one has IndGHa χa '
IndGHb χb as representations, but not as monomial representations.

Let us recall settings for Theorem 2.6. Let G be a finite group and H a subgroup of index
n and Cl = µl be a cyclic group of order l, where l is an odd prime. Let us consider semi-direct
products G̃ = Cn

l o G and H̃ = Cn
l o H, where G acts on Cn

l by permuting its component
as cosets G/H. Let g1, . . . , gn be representatives of left cosets G = ∪igiH. Without loss of
generality we assume that g1 = e is the identity element. Note that gi for i 6= 1 cannot
fix the first coset. We define χ to be the homomorphism from H̃ → µl, sending an element
(c1, . . . , cn, g) to c1. This is indeed a homomorphism, since H fixes the first coset. Then the
following is true:

Theorem 3.13 (Bart de Smit). For any subgroup H̃ ′ ⊂ G̃ and any abelian character χ′ :

H̃ ′ → C∗ if IndG̃
H̃′

(χ′) ' IndG̃
H̃

(χ) then H̃ ′ and H̃ are conjugate in G̃.

Proof. Step 1. Consider cosets G̃/H̃. We claim that each such coset for i > 1 can be
represented as γi = (1, 1, . . . , 1, gi), where gi ∈ G/H. This is true since elements of the form
(ζ1, ζ2, . . . , ζn, 1) are in H̃, where (ζ1, ζ2, . . . , ζn) ∈ Cn

l .
Step 2.Let us consider element α = (ζ, 1, . . . , 1, . . . , 1) ∈ H̃ where ζ ∈ µl, ζ 6= 1 is in the

first position. Such element fixes each coset γiH̃. Therefore if ψ = IndG̃
H̃

(χ) then ψ(α) is a
diagonal matrix with l-th roots of unity on the diagonal. Moreover, it is the matrix with the
first element is ζ on the diagonal and each other diagonal element equals to one. Indeed, by
definition of induced representation on the i-th position we have χ(γ−1

i αγi) and it is easy to
see that γ−1

i αγi has 1 on the first position, provided i 6= 1.

Step 3.We claim that ψ′(αi) is also a diagonal matrix, where ψ′ = IndG̃
H̃′

(χ′). We know
that this is a matrix with exactly one non-zero element in each row and column. Suppose it
is not a diagonal, therefore it changes at least two elements and hence trace of this matrix is∑n−2

k=1 ζi, where ζi are roots of unity. Since ψ ' ψ′ we have n − 1 + ζ =
∑n−2

k=1 ζi, which can’t
be true since the absolute value of the left hand side is strictly bigger than n− 2. Here we use
the fact that l > 2 and therefore ζ 6= ±1.

Step 4. Let A be an isomorphism of representations ψ and ψ′. We will show that it
is an isomorphism of monomial representations (ψ,⊕Ci) ' (ψ′,⊕Cj). Indeed, it suffices
to show that in the given basis A is written as permutation matrix. Suppose it is not and
therefore we have at least two non-zero elements in one columm. Also it has another non-zero
element in some of those two rows, otherwise det(A) must be zero which is not since A is an
isomorphism. We have Aψ(α) = ψ′(α)A which is easy to calculate since ψ(α) and ψ′(α) are
diagonal. By comparing elements from left and right hand sides one has ζ = 1 which leads to
the contradiction.
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3.5 The Proof of Theorem 3.3

In this section we will prove Theorem [3.3]. We will denote by F the rational function field
with the base field Fq: F = Fq(t), where q = pm, p is prime. It is enough to show that for any
separable geometric extension K of F of degree n, with extension N of K, N normal over F
and Galois Groups G = Gal(N/F ) and H = Gal(N/K) there exist an odd prime l and Galois
extension M over F with Gal(M/F ) ' Cn

l o G and Gal(M/K) = Cn
l o H, where G acts on

components of Cn
l by permuting them as cosets G/H. We will prove this statement in a few

steps.
The Chebotarev density Theorem for function fields see [42] theorem[9.13B], insures us that

for any sufficiently large number T we could find a prime p of F which has degree T and splits
completely in N . Note that if prime splits completely in N then it also splits completely in K.
Now, we pick an odd prime number l co-prime to the characteristic p, to q − 1, to the order
of G and to the class number hK of K. Then we pick a large enough number T divisible by
(l− 1). Finally we pick a prime p of F of degree T which splits completely in N . Let b1, . . . , bn
denote primes of K lying above it. We have:

Lemma 3.14. In the above settings there exists cyclic ramified extension Ll of K of degree l
ramifing only at b1.

Proof. Consider the modulus m = b1 and associated ray class group Clm(K). We will show
this group has a subgroup of order l. Let OK denotes the ring of integers of K with respect to
the field extension K/F . Class field theory shows that we have the following exact sequence of
abelian groups:

0→ F∗q → (OK/m)∗ → Clm(K)→ Cl(K)→ 0,

We claim that Clm(K) contains a subgroup of order l and since l is prime to the order of Cl(K)
the fixed field corresponding to this subgroup is ramified at b1.

Indeed the order of (OK/m)∗ is N(b1) − 1 = qT − 1 , where N(a) denotes the norm of an
ideal a. Since T is divisible by (l− 1) this quantity is divisible by l. It follows that the order of
Clm(K) is divisible by l and therefore we have a cyclic extension of K of degree l which ramifies
only at b1.

The next step is to take the common normal closure M of N and Ll.

Lemma 3.15. The Galois group Gal(M/F ) of the common normal closure M of N and Ll
over F is Cn

l oG.

Proof. By construction N is normal over F and K = NH . Consider the set Hom(K,N) of all
embeddings of K into N . This has an action of G on it isomorphic to the action of G on G/H.
For each element σi ∈ Hom(K,N) consider the field Kσi and corresponding cyclic extension
Lσi = L⊗Kσi N . We claim that the composites NLσi are linearly disjoint over N when σi runs
over the set Hom(K,N). Indeed, consider the set of primes of N which lie over p and ramify in
the composite NLσi over N . Since Hσi = Gal(M/Kσi) fixes Kσi this set is invariant under the
action of Hσi and not invariant under the action of g for each g ∈ G, g 6∈ Hσi . Hence all NLσi

ramifies in different primes of N lying above p. Therefore we have n disjoint Cl-extensions
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NLσi/N in M and G permutes them as cosets G/H. It follows that we have the following
exact sequence:

1→ Cn
l → Gal(M/F )→ G→ 1

Since the order of G is co-prime to l, by the Schur–Zassenhaus theorem see [43], we have a
section from γ : G→ Gal(M/F ) which means that this sequence splits and Gal(M/F ) ' Cn

l oG
as desired.
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