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Chapter 2

Some Remarks With Regard to the
Arithmetical Equivalence and Fields
Sharing Same L-functions

2.1 Introduction

Having stated basic features of Artin L-functions we will show how to use them to elaborate
studies of arithmetically equivalent number fields. There are three related topics we are going
to consider in this chapter:

1. The first topic concerns the discussion about the property 4 of Artin L-functions which we
called multiplicative independence over Q and analogues of Theorem 1.23 where the field
Q is replaced by an arbitrary number field. Among others this problem was extensively
studied by Nagata whose result we will describe in Theorem 2.1 and generalise later to
the function field case, see Theorems 3.1 and 3.2 in the next chapter of the thesis.

2. The second part is related to the reconstruction of the isomorphism class of a given number
field K by Artin L-functions of different representations attached to Galois extensions of
K. The main result of that topic is Theorem 2.4 of Bart de Smit which states that for
every number field K there exists an L-function which occurs only for that field. This
result will also be generalised later in Theorem 3.3 to the function field side.

3. In the final section of this chapter we consider some extension of Theorem 2.4 as well as
its applications towards a proof of the Uchida’s part of the Neukirch-Uchida Theorem.
The main results are Theorem 2.8 and Corollary 2.9.
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CHAPTER 2. SOME REMARKS WITH REGARD TO THE ARITHMETICAL
EQUIVALENCE AND FIELDS SHARING SAME L-FUNCTIONS

2.2 Non-arithmetically equivalent extensions of Number

Fields

2.2.1 Nagata’s approach

As before let K and K ′ be two number fields. Let N denote their common Galois closure over
Q and let G = Gal(N : Q), H = Gal(N : K), H ′ = Gal(N : K ′). Recall that in notations of
Theorem 1.23 by the induction property we have:

ζK(s) = LQ(IndGH(1H), s),

and therefore by the multiplicative independence of Artin L-functions over Q we obtain:

ζK(s) = ζK′(s) if and only if IndGH(1H) ' IndGH′(1H′).

Phrasing this in a different way we regard the trivial representation 1 of the group G and
restrict it to subgroups H and H ′. Considering two L-functions LK(1|H , s) and LK′(1|H′ , s)
we have: K and K ′ are arithmetically equivalent if and only if these two L-functions match.
There are at least two important questions a reader could ask here. The first one is: what if
we pick another irreducible representation ρ of G and consider its restrictions to H and H ′ and
compare the corresponding L-functions? And the second question is: what if we replace the
base field Q with another number field such that multiplicative independence does not hold?
how can we detect arithmetical equivalence over that field?

Surprisingly, by using elementary properties of representations of finite groups and prop-
erties of Artin L-functions we have discussed above, it is possible to show that the answer to
both problems stated above is given by the following result due to K. Nagata, who published
[32] in 1986:

Theorem 2.1 (Nagata). Let K and K ′ be two finite extensions of a fixed number field L. Let
N denote their common Galois closure over L and let G = Gal(N : L), H = Gal(N : K),
H ′ = Gal(N : K ′). Then K and K ′ are arithmetically equivalent over L if and only if for every
irreducible representation ρ of G we have: LK(ρ|H , s) = LK′(ρ|H′ , s).

Proof. See Theorem 3.1 from the next chapter.

Let us consider a particular instance which explains this lemma. Namely, we focus our
attention on Example 1.15 from the introduction. There we picked a Gassmann triple (G,H,H ′)
with G isomorphic to Gl2(Fp). It is easy to see that actually H and H ′ are subgroups of

the proper Borel subgroup B =

{[
∗ ∗
0 ∗

]
∈ G

}
of G and hence one can consider a triple of

finite groups (B,H,H ′) and ask whether this triple is Gassmann or not. By the evaluation of
permutation characters one has IndBH(1H) 6' IndBH′(1H′), which means that (B,H,H ′) is not
a Gassmann triple. Keeping notations of Theorem 1.23 we obtain equality of zeta-functions
ζK(s) = ζK′(s) and the following Galois correspondence diagram:
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2.2. NON-ARITHMETICALLY EQUIVALENT EXTENSIONS OF NUMBER FIELDS

N

K K ′

L = NB = K ∩K ′

Q

H H′

G

B

(2.1)

In order to see Lemma 2.1 in action we pick p = 3, in that case G has order (p2−1)(p2−p) =
48, B has order (p− 1)2p = 12 and index 4 in G and both (H, H ′) have index p− 1 = 2 in B.
It follows that H and H ′ are normal subgroups and that there is a non-trivial abelian character
χ of B which factors as a non-trivial character through the quotient B/H ′, i.e. a character
with ker(χ) = H. Then χ|H = 1|H and therefore LK(χ|H) = ζK(s), meanwhile LK′(χ|H′ ) is an
L-function of a non-trivial abelian character of H ′ and therefore it has no poles as s→ 1, which
implies that LK(χ|H) 6= LK′(χ|H′ ).

Magma scripts

As before we add a Magma script to verify the examples we discussed above. We split the
script into two parts. The first part is a group-theoretical verification:

p := 3; k := GF(p);

G := GL(2,k);

TheBorelGroup := Subgroups(G: OrderEqual := 12)[1]‘subgroup;

TheBorelSubgroups := Subgroups(TheBorelGroup: IndexEqual := 2);

for H in TheBorelSubgroups do

"Permutation Character:", PermutationCharacter(TheBorelGroup, H‘subgroup);

end for;

This script produces the following output, which shows that indeed the corresponding per-
mutation representations are not isomorphic:

Permutation Character: ( 2, 0, 2, 0, 2, 0 )

Permutation Character: ( 2, 0, 0, 2, 2, 0 )

Permutation Character: ( 2, 2, 0, 0, 2, 2 )

In the second part we construct explicitly number fields K,K ′, L which fit to the diagram
(2.1). We are doing this by using torsion points on elliptic curves, similar to the method
introduced in [9]. Recall the following main steps of the algorithm:

1. Pick a general elliptic curve E over Q. We denote by g(x, y) the polynomial y2−x3−ax−b
which defines E;
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2. Find a polynomial f(x) with roots corresponding to the x-coordinates of the 3-torsion
points E[3] of E, i.e. a 3-division polynomial of E;

3. Evaluate resultant z(x) of f and g with respect to x;

4. Finally, compute the Galois closure N of the number field defined by z(x).

According to Serre’s open image theorem for a general elliptic curve E we have:

Gal(N,Q) ' Gl2(Fp).

Here is an implementation of this algorithm:

// Steps 1, 2 and 3

a := 1; b := 1;

E := EllipticCurve([a, b]);

K := Rationals();

R<x,y> := PolynomialRing(K,2);

g<x,y> := y^2-x^3-a*x-b;

f := DivisionPolynomial(E, 3);

ResultantOfFandG := Resultant(Evaluate(f, x), g, x);

// Mapping the resultant of f and g to the polynomial ring of one variable

S<z> := PolynomialRing(Rationals());

HomRtoS := hom<R -> S | 0, z>;

h := HomRtoS(ResultantOfFandG);

// The final step: producing explicit equations

FF := NumberField(h);

G, r, N := GaloisGroup(FF) ;

TheBorelGroup := Subgroups(G: IndexEqual := 4)[1]‘subgroup;

TheBorelSubgroups := Subgroups(G: IndexEqual := 8);

B<x> := GaloisSubgroup(N, TheBorelGroup);

B;

for H in TheBorelSubgroups do

GaloisSubgroup(N, H‘subgroup);

end for;

The output of this script is:

x^4 - 11648*x^3 + 43792584*x^2 + 350900032*x - 160837688676272

x^8 + 351459648*x^6 + 25734142535892480*x^4 + 495989404881265072816128*x^2 +

6622460920576306412850701205504

((x1 - x5) * ((x2 + (x3 + x4)) - (x6 + (x7 + x8))))

x^8 + 5832*x^6 + 10983114*x^4 - 10052399428083

x1

x^8 + 17496*x^6 - 62710038*x^4 + 6198727824*x^2 - 10052399428083

(x2 + (x3 + x4))
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2.2. NON-ARITHMETICALLY EQUIVALENT EXTENSIONS OF NUMBER FIELDS

This shows that the number field L = NB can be defined for instance by the polynomial:

x4 − 11648x3 + 43792584x2 + 350900032x− 160837688676272.

2.2.2 Yet another example

Slightly generalising Nagata’s approach mentioned earlier we could ask: does there exist a
representation χ of H such that for every representation χ′ of H ′ we have LK(χ, s) 6= LK′(χ

′, s)?
Of course if χ is the restriction of a representation ρ of G then the above discussion shows it
is not possible to find such a χ, but what if we pick χ which is not the restriction of any
representation ρ of G or there are examples where it is not possible to pick such a character? It
turns out that if we look thoroughly at fields from example 1.28 then we find out that the answer
to the later question is negative: there is an example of a pair (K,K ′) of non-isomorphic number
fields with the following remarkable property. Denoting by N the common normal closure of
K and K ′ there exists a bijection φ between the set X of characters of Gal(N : K) and the set
X ′ of characters of Gal(N : K ′) such that for every χ ∈ X we have LK(χ, s) = LK′(φ(χ), s).

Let us consider the example 1.28 more carefully. The normal closure N of K = Q( 8
√
a)

is K(ζ8), where ζ8 denotes a primitive eighth root of unity. Note that K(i) = K ′(i), where
K ′ = Q( 8

√
16a). We have H ' H ′ ' V4 and the following Galois correspondence diagram:

N = Q(ζ8, 8
√
a)

K(
√
−2) K(

√
2) K(i) K ′(

√
2) K ′(

√
−2)

K = Q( 8
√
a) K ′ = Q( 8

√
16a)

Q

H H′

C8oV4

Lemma 2.2. There exists a bijection φ between characters of H to those of H ′ such that for
every character χ of H holds LK(χ, s) = LK′(φ(χ), s).

Proof. This claim is easy to establish from the following observation. First we observe that
ζK(
√

2)(s) = ζK′(
√

2)(s) and ζK(
√
−2)(s) = ζK′(

√
−2)(s). Indeed, ζK(s) = ζK′(s) and

√
2 belongs

neither to K nor K ′, which implies that K(
√

2), K ′(
√

2) are arithmetically equivalent and
also K(

√
−2), K ′(

√
−2). The same argument shows K(

√
−2), K ′(

√
−2) are arithmetically

equivalent. The group H has three non-trivial characters χ1, χ2 and χ1χ2 and up to numeration
we have:
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LK(χ1, s) =
ζK(
√

2)(s)

ζK(s)
, LK(χ2, s) =

ζK(
√
−2)(s)

ζK(s)
, LK(χ1χ2, s) =

ζK(i)(s)

ζK(s)
.

Replacing K by K ′ and χi by χ′i we establish the desired bijection.

Remark 2.3. Using the above argument for a given pair of arithmetically equivalent number
fields K, K ′ one can construct more examples of pairs of quadratic characters χ : GK → C,
χ′ : GK′ → C such that LK(χ, s) = LK′(χ

′, s). Namely, for a rational prime number p such that√
p 6∈ K, K ′ the number fields M = K(

√
p), M ′ = K ′(

√
p) are also arithmetically equivalent

and therefore: LK(χ, s) = ζM (s)
ζK(s)

=
ζM′ (s)
ζK′ (s)

= LK′(χ
′, s), where χ(resp. χ′) is the unique non-

trivial character of Gal(M : K) (resp. Gal(M ′ : K ′)).

2.3 Identifying Number Fields with Artin L-functions

Now it is reasonable to ask the following: could we somehow detect the isomorphism class of
a number field K by using Artin L-functions of Galois representations associated to the Galois
groups of normal extensions of K? The answer is yes and it is given by Theorem 2.4:

Theorem 2.4. For each number field K there exists an abelian extension NK of degree three
and a character χ of Gal(NK : K) such that LK(χ, s) occurs only for the isomorphism class of
the field K, i.e. if for any other number field K ′ and any abelian extension NK′ of K ′ there
exists a character χ′ of Gal(NK′ : K ′) such that LK(χ, s) = LK′(χ

′, s) then K ' K ′.

We begin with providing a sketch for the proof of a slightly different version of Theorem 2.4.
After that we explain how the statement of Theorem 2.4 follows from what we have discussed.

2.3.1 The First Version of Theorem

We first discuss a proof of another version of Theorem 2.4:

Theorem 2.5. For every pair of non-isomorphic number fields K, K ′ with ζK(s) = ζK′(s) we
may attach a Galois extension M over Q with the Galois group G̃ which contains both K and
K ′ with K = M H̃ , K ′ = M H̃′ for some subgroups H̃, H̃ ′ of G and an abelian character χ of
H̃ such that for any abelian character χ′ of H̃ ′ we have LK(χ, s) 6= LK′(χ

′, s). In other words
LK(χ, s) as an analytic function occurs only for K, but not for K ′.

This goal is achieved in two steps. First we need the following group-theoretical result. Let
G be a finite group, H a subgroup of index n, and Cl = µl ⊂ C× be a cyclic group of order
l, where l is an odd prime. Consider a G-set G/H of left cosets. We fix some representatives
X1, . . . Xn of G/H such that X1 is a coset corresponding to the group H. Let us regard semi-
direct products G̃ = Cn

l o G and H̃ = Cn
l o H, where G acts on the components of Cn

l by
permuting them as the cosets {X1, . . . , Xn}. Let χ be the homomorphism from H̃ to the group
Cl defined on the element h̃ = (ζ1, . . . , ζn, h) ∈ H̃ = Cn

l oH as χ(h̃) = ζ1 i.e. χ is the projection
to the first coordinate. This is indeed a homomorphism because every h ∈ H fixes the first
coset of G/H. In this setting the following holds:
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2.3. IDENTIFYING NUMBER FIELDS WITH ARTIN L-FUNCTIONS

Theorem 2.6 (Bart de Smit). For any subgroup H̃ ′ ⊂ G̃ and any character χ′ : H̃ ′ → C∗ if

IndG̃
H̃′

(χ′) ' IndG̃
H̃

(χ) then H̃ ′ and H̃ are conjugate in G̃.

Proof. See section 3.4 from the next chapter.

Next suppose K is a number field such that ζK(s) does not determine K i.e. there exists
a number field K ′ such that ζK(s) = ζK′(s), but K 6' K ′. Then as before this means the
normal closure N of K contains K ′ and there exists a non-trivial Gassmann triple (G,H,H ′)
with G = Gal(N/Q), H = Gal(N/K), H ′ = Gal(N/L). In this setting we construct a Galois
extension M of Q containing K and K ′ such that the Galois group Gal(M : Q) is G̃ and

K = M H̃ , K ′ = M H̃′ for G̃, H̃, H̃ ′ as in Theorem 2.6. This is possible due to Proposition 9.1
from [13]. See the diagram below:

M

LN

N

L

K K ′

Q

H̃′

H̃=Cnl oH

G̃=Cnl oG
H H′

G

Cl

Now consider the abelian character χ of H̃ as in the statement of Theorem 2.6. Suppose χ′

is any abelian character of H̃ ′ = Gal(M : K ′). We have:

LK(χ, s) = LK′(χ
′, s)⇒ K ' K ′.

Indeed, by the induction property we have:

LK(χ, s) = LQ(IndG̃
H̃

(χ), s).

Therefore:

LK(χ, s) = LK(χ′, s)⇔ LQ(IndG̃
H̃

(χ), s) = LQ(IndG̃
H̃′

(χ′), s)⇔ IndG̃
H̃

(χ) ' IndG̃
H̃′

(χ′),

and by Theorem 2.6 we have that H̃ and H̃ ′ are conjugate and hence K is isomorphic to K ′.
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2.3.2 Deducing Theorem 2.4 from Theorem 2.5

Now our goal is to deduce Theorem 2.4 from Theorem 2.5. First we note that denoting by ψ the
restriction of χ to the Galois group Gal(L : K) = Cl we obtain a non-trivial one-dimensional
character of Cl. By the inflation property we have LK(χ, s) = LK(ψ, s), where the latter
L-function is an abelian L-function of the abelian extension L over K.

In the same setting as before suppose that there exist an abelian extension NK′ of K ′ and
a character ψ′ of Gal(NK′ : K ′) such that LK(ψ, s) = LK′(ψ

′, s). We would like to show that
there exists an abelian character χ′ of H̃ ′ = Gal(M : K ′) such that LK′(χ

′, s) = LK(ψ′, s) and
therefore we can apply Theorem 2.5. In other words we would like to show that the character
ψ′ can be treated as an abelian character χ′ of H̃ ′ in the setting of Theorem 2.5.

We fix an algebraic closure Q of Q and denote the absolute Galois group of fields K, K ′,
Q by GK , GK′ and GQ respectively. We consider ψ as a character of GK via the projection
GK → H̃. In a similar way ψ′ is a character of GK′ . By the induction property we have:

LK(ψ, s) = LQ(Ind
GQ
GK ψ, s),

and

LK′(ψ
′, s) = LQ(Ind

GQ
GK′

ψ′, s).

Since by our assumptions LK(ψ, s) = LK′(ψ
′, s) we have:

Ind
GQ
GK ψ ' Ind

GQ
GK′

ψ′.

But then kernels of these representations of G must coincide. Since M is the fixed field of the
action of ker(Ind

GQ
GK ψ) on Q we have that M is also the fixed field of the action of ker(Ind

GQ
GK′

ψ′)

on Q. This means that the extension NK′ can be embedded into the field M and the character
ψ′ is an abelian character of H̃ ′.

2.4 Neukirch-Uchida Theorem

Recall from the first chapter that the famous Neukirch-Uchida theorem states that:

Theorem 2.7. For given number fields K,K ′ the existence of a topological isomorphism of pro-
finite groups GK ' GK′ implies the existence of an isomorphism of fields K ' K ′ themselves.

The story behind this result is the following. In 1969 Neukirch [34] gave a proof for the
case of normal extensions of Q. He proved this by recovering Dedekind zeta-function ζK(s)
of K from GK in group-theoretical terms and then applying Theorem 1.23 to show that in
this case ζK(s) determines the isomorphism class of K. A few years later in 1976 Uchida [56]
extended Neukirch’s results to the case of arbitrary number fields. Uchida’s approach was then
also used by himself and others to generalise the Theorem to the case of all global fields. For
a modern exposition, see Chapter XII in [37]. Without any doubt Uchida’s proof is beautiful
and important, but it contains some difficult technical details which make this proof a bit less
clear especially for those who are relatively new to the topic. The goal of the present section
is to provide an alternative, in some sense more elementary approach to the proof of Uchida’s
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2.4. NEUKIRCH-UCHIDA THEOREM

part. The new proof also has another advantage, since it stays closer to Neukirch’s original
idea. This new approach is based on the following idea.

Given a number field K we associate to it a set ΛK of Dedekind zeta-functions of finite
abelian extensions of K:

ΛK = {ζL(s) | L is a finite abelian extension of K}.

Our main goal is to prove the following Theorem:

Theorem 2.8. For every number field K the set ΛK determines the isomorphism class of K.
This means that if for any other number field K ′ the two sets ΛK and ΛK′ coincide, then
K ' K ′.

The following observation shows that Theorem 2.8 allows us to achieve our goal and produce
an alternative way to Uchida’s part:

Corollary 2.9. In the above setting suppose that GK ' GK′. Then ΛK = ΛK′ and therefore
K ' K ′.

Proof. Indeed, given an isomorphism class of GK we consider all closed subgroups of finite index
H ⊂ GK such that the quotient GK/H is a finite abelian group. By pro-finite Galois theory we
have one-to-one correspondence between such H and finite abelian extensions L of K within a
fixed algebraic closure K given by H → (K)H . Now by using Neukirch’s Theorem (see chapter
4 in [34]) we reconstruct ζL(s) in a group theoretical manner from H and therefore reconstruct
ΛK from GK .

From now on we concentrate our attention on the proof of 2.8.

On the Proof of Theorem 2.8

To deduce Theorem 2.8 we extend Theorem 2.4 by replacing the L-function of the abelian
character χ by the Dedekind ζ-function of the abelian extension NK of K:

Theorem 2.10. For each number field K there exists an abelian extension NK of degree three
such that the pair ζNK (s), ζK(s) occurs only for the isomorphism class of the field K, i.e. if for
any other number field K ′ and any abelian extension NK′ of K ′ we have ζK(s) = ζK′(s) and
ζNK (s) = ζN ′K′ (s) then K ' K ′.

Remark 2.11. Note that the degree of a number field K is determined by ζK(s). Therefore,
ζK(s) can be recovered from Λ(K) as unique element whose corresponding field has minimal
degree.

The above remark shows that Theorem 2.8 and Theorem 2.10 are equivalent and we can
focus on proving the last statement.
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2.4.1 The proof

First we fix l = 3 and prove the following auxiliary statement:

Lemma 2.12. In the setting of Theorem 2.6 the induced representation IndG̃
H̃

(χ) is an irre-

ducible representation of G̃.

Proof. In order to verify irreducibility of IndG̃
H̃

(χ) we regard the standard scalar product and

show that (IndG̃
H̃

(χ), IndG̃
H̃

(χ))G̃ = 1. Applying Frobenius reciprocity:

(IndG̃
H̃

(χ), IndG̃
H̃

(χ))G̃ = (χ, IndG̃
H̃

(χ)|H̃)H̃ =
1

|H̃|

∑
h̃∈H̃

χ̄(h̃) · Tr(IndG̃
H̃

(χ)|H̃(h̃)). (2.2)

Let h̃ = (ζ1, . . . , ζn, h) ∈ H̃. Then by definition of χ we have χ̄(h̃) = ζ̄1. Now consider

the matrix IndG̃
H̃

(χ)|H̃(h̃). We fix the following representatives for cosets of G̃/H̃ as X̃i =

(1, . . . , 1, Xi) ∈ G̃, where Xi are the representatives of cosets of G/H we picked before. By
definition of the induced representation and because h fixes first conjugacy class of G/H we
have that in the top left corner of that matrix ζ1 is located. Now we fix an integer 1 < i ≤ n
and consider the diagonal element ai(h̃) in the (i, i)-th position. Consider the permutation of
cosets X̃1, . . . X̃n by h̃ and denote by j an index such that h̃X̃i = X̃j. If i 6= j then ai(h̃) = 0
and therefore such i adds no contribution to the expression (2.2). Otherwise, by definition

of the induced representation IndG̃
H̃

(χ)|H̃ we have ai(h̃) = χ(X̃−1
i h̃X̃i) = ζki for some index

ki ∈ {2, . . . , n}. In other words, ki is an index such that X−1
i Xki ∈ H. For fixed h̃ and i there

are elements h̃1, h̃2 such that (h̃, h̃1, h̃2) pairwise coincide in all coordinates except the ki-th
one. Because 1 + ζki + ζ̄ki = 0 we have that sum of ai(h̃) for those h̃, h̃1, h̃2 is zero and because
they coincide on first coordinate we have χ(h̃) = χ(h̃j) for j in {1, 2}. Therefore for fixed i > 1
we have: ∑

h̃∈H̃

χ̄(h̃)ai(h̃) = 0.

Now we consider the expression (2.2):

1

|H̃|

∑
h̃∈H̃

χ̄(h̃) · Tr(IndG̃
H̃

(χ)|H̃(h̃)) =
1

|H̃|

∑
h̃∈H̃

χ̄(h̃) · (χ(h̃) +

i≤n∑
i>1

ai(h̃)) =

=
1

|H̃|

∑
h̃∈H̃

χ̄(h̃)χ(h̃) +
1

|H̃|

∑
h̃∈H̃

(χ̄(h̃) · (
i≤n∑
i>1

ai(h̃))) =

=
1

|H̃|

∑
h̃∈H̃

1 +
1

|H̃|

∑
i>1

(
∑
h̃∈H̃

χ̄(h̃)ai(h̃)) = 1 + 0.

By using this lemma we can prove the main group theoretical result of this note:
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2.4. NEUKIRCH-UCHIDA THEOREM

Theorem 2.13. In the above setting let UH̃,χ = ker(χ) = {h ∈ H̃|χ(h) = 1} and let

UH̃′,χ′ = ker(χ′). Suppose that IndG̃
H̃

(1) ' IndG̃
H̃′

(1) and IndG̃UH̃,χ(1) ' IndG̃U
H̃′,χ′

(1). Then ei-

ther IndG̃
H̃

(χ) ' IndG̃
H̃′

(χ′) or IndG̃
H̃

(χ) ' IndG̃
H̃′

(χ̄′).

Proof. Since l = 3 we have that Cl has only three characters 1, χ, χ̄ and therefore:

IndG̃UH̃,χ(1) ' IndG̃
H̃

(χ)⊕ IndG̃
H̃

(χ̄)⊕ IndG̃
H̃

(1).

Hence, from the assumption of the Theorem it follows that:

IndG̃
H̃

(χ)⊕ IndG̃
H̃

(χ̄) ' IndG̃
H̃′

(χ′)⊕ IndG̃
H̃′

(χ̄′).

In Lemma 2.12 we showed that IndG̃
H̃

(χ), IndG̃
H̃

(χ̄) are irreducible representations of G̃. But
if a direct sum of two irreducible representations of a finite group is isomorphic to a direct sum
of two other non-zero representations then those representations are pairwise isomorphic up to

a permutation. It follows that either IndG̃
H̃

(χ) ' IndG̃
H̃′

(χ′) or IndG̃
H̃

(χ) ' IndG̃
H̃′

(χ̄′).

Finally, we can provide:

Proof of Theorem 2.10. Suppose K is a number field such that ζK(s) does not determine K
i.e. there exists a number field K ′ such that ζK(s) = ζK′(s), but K 6' K ′. Then as before
we construct a Galois extension M of Q as in Theorem 2.4, see figure 2.3.1. Let L′ be any
abelian extension of K ′ such that ζL′ = ζL. Then L and L′ share the same normal closure
over Q and therefore L′ is a subfield of M . According to remark 2.11 we also have that the
degree of L′ over K ′ is three. Observe that in notations of Theorem 2.13 from the previous
section one has: Gal(M : L) = ker(χ) = UH̃,χ for a non-trivial character χ of Gal(L : K) and
Gal(M : L′) = ker(χ′) for a non-trivial character χ′ of Gal(L′ : K ′). By the induction property

of Artin L-functions we have: ζL(s) = LQ(IndG̃UH̃,χ(1), s).

Finally, because of multiplicative independence of L-functions over Q we have:

LQ(IndG̃UH̃,χ(1), s) = LQ(IndG̃U
H̃′,χ′

(1), s)⇔ IndG̃UH̃,χ(1) ' IndG̃U
H̃′,χ′

(1).

This means that from the assumptions of Theorem 2.10 we deduced conditions of Theorem
2.13. Therefore because of Theorem 2.6 we have that H̃ and H̃ ′ are conjugate and hence K is
isomorphic to K ′.
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