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Number Fields and Their L-functions
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Chapter 1

Introduction

1.1 Motivation

Let f(x) be a monic irreducible polynomial in one variable with integer coefficients. An inter-
esting question to ask is the following: which prime numbers divide values of f(x) when x runs
over all integer numbers? In other words, for which prime numbers p does a solution of the
equation f(x) = 0 mod p exist? Let us call the set of such primes Af(x). Note that the case
where f(x) is of degree one is not interesting since then f(x) is a bijection Z→ Z and therefore
each prime number occurs as a divisor of some element of the set {f(x)|x ∈ Z}.

The answer for polynomials of degree two is given by the Legendre symbol and the famous
quadratic reciprocity law. Let P denote the set of all prime numbers. Consider for example the
case where f(x) = x2 + 1. Then it is well-known since Fermat’s time that for every odd prime

number p the above equation has a solution modulo p if and only if (−1)
p−1
2 = 1, i.e., if and

only if p = 1 mod 4. Obviously the equation f(x) = 0 mod 2 also has a solution and hence
we obtain a complete description:

Ax2+1 = {2} ∪ {p ∈ P|p = 1 mod 4}.

A remarkable fact is the Dirichlet’s Theorem on primes in arithmetic progressions which
implies that in this case exactly half of the primes occur in the set Ax2+1 in the sense that:

lim
x→∞

#{p ∈ Ax2+1|p ≤ x}
#{p ∈ P ≤ x}

=
1

2
.

In this case we say that Ax2+1 has a natural density 1
2
. In general, let S be any subset of

P . Suppose the following limit exists:

δ(S) = lim
x→∞

#{p ∈ S|p ≤ x}
#{p ∈ P|p ≤ x}

,

then we call the number δ(S) a natural density of S. Sometimes, it is easier to work with a
weaker definition of density. In the above setting suppose the following limit exists:

ω(S) = lim
s→1+

∑
p∈S

1
ps∑

p∈P
1
ps

,
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CHAPTER 1. INTRODUCTION

then we call the number ω(S) the Dirichlet density of S. Note that the series
∑

p∈P
1
ps

absolutely

converges for the real s > 1 and the limit in the definition of ω(S) is taken as s→ 1 from the
right. At first sight it might seem that the Dirichlet density is more artificial and complicated
notion to work with. But for many different interesting sets S we can obtain some information
about ω(S) via the theory of the so-called L-functions. The fundamental relation between the
two notions is given by the following:

Theorem 1.1. Suppose that the natural density δ(S) of the set S exists. Then also the Dirichlet
density ω(S) exists and two densities coincide: δ(S) = ω(S). The converse statement is false:
there exists an example of a set S such that the Dirichlet density of S exists and the natural
density does not.

Proof. See [36], paragraph 13 of chapter VII.

In the case where δ(S) exists we simply say that it is the density of S.

The case of a general polynomial of deg(f) = 2 is quite parallel: the answer is also given in
terms of some linear congruences modulo the number Mf(x) = 4 ·Disc(f), where Disc(f) stands
for the discriminant of the polynomial f(x). Moreover we also have that exactly half of the
primes occur in Af(x) in the sense of the above density : δ(Af(x)) = 1

2
.

Surprisingly the question about the description of the set Af(x) in the case where the degree
deg(f) is three or higher is extremely complicated in general and relates to a huge variety of
topics in modern mathematics. For some class of polynomials which we call abelian, the set
Af(x) still can be characterised in terms of linear congruences modulo an integer Mf(x) which
depends on f(x) and usually called the conductor of f(x). Investigations of properties of the
set Af(x) for this case of abelian polynomials form the main topic of the class field theory – one
of the central branches of number theory developed in 20th-century. This is already quite a
complex and sophisticated subject which took decades of thorough work to develop necessary
techniques for establishing its main results. For the present thesis class field theory itself and
these techniques will play a crucial role. Note that for a general polynomial there is no such
Mf(x) and an answer is way more mysterious. Below we consider a few well-know instances of
this phenomenon.

If the degree deg(f) is three then the polynomial f(x) is abelian if and only if the absolute
value of the discriminant of f is a square. For instance the polynomial f(x) = x3 − 3x + 1
has discriminant 81 and therefore is abelian. In this abelian case the famous Kronecker–
Weber Theorem which is itself a partial case of the Artin reciprocity law provides us with the
following description of Ax3−3x+1. Let H ⊂ (Z/81Z)× be the subgroup generated by 〈8〉. Then
p ∈ Ax3−3x+1 if and only if either p = 3 or (p mod 81) ∈ H and as before the Dirichlet’s
Theorem ensures us that:

δ(Ax3−3x+1) =
1

3
.

In contrast, consider f(x) = x3 − x − 1 of discriminant −23. This is an example of a
non-abelian polynomial, but one can still describe the set Ax3−x−1 using the so-called theory
of modular forms. Let Np(f(x)) denote the number of distinct roots of the equation f(x) = 0
mod p. In particular p ∈ Af(x) if and only if Np(f(x)) is positive. Let us consider the following
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1.1. MOTIVATION

formal power series:

q
∞∏
n=1

(1− qn)(1− q23n) =
∞∑
n=1

anq
n = q − q2 − q3 + q6 + q8 − q13 − q16 + q23 + . . .

and compare coefficients an for n = p a prime number with Np(x
3 − x− 1):

Table 1.1: Np(f) and coefficients ap
p 2 3 5 7 11 13 17 19 23 29 31 37 41 43
Np(f) 0 0 1 1 1 0 1 1 2 0 0 1 0 1
ap -1 -1 0 0 0 -1 0 0 1 -1 -1 0 -1 0

The non-trivial fact which one could easily check for the first few primes given in the table
above is:

ap + 1 = Np(f). (1.1)

In particular this means that p ∈ Ax3−x−1 if and only if ap ≥ 0. This identity is an example
of non-abelian reciprocity which leads to the so-called Langlands program, one of the central
research parts of modern number theory. Note also that the far reaching generalisation of the
Dirichlet’s Theorem mentioned above, the Chebotarev density Theorem, implies:

δ(Ax3−x−1) =
5

6
.

It is also remarkable that formula 1.1 helps us to establish some properties of ap. For
instance looking at the definition of ap, p ∈ P it is by no means obvious that ap ∈ {−1, 0, 1, 2}
and the equality ap = 1 implies p = 23.

In order to convince the reader that the above identity is not an accident, but rather a
part of extremely impressive pattern we state one more example with f(x) = x3 − 2. This
polynomial has discriminant equal to −108 and hence is not abelian. In this case we also have
a relation which is quite similar to 1.1. Namely bp + 1 = Np(x

3 − 2), where the coefficients bn
are given by the following expression:

q
∞∏
n=1

(1− q6n)(1− q18n) =
∞∑
n=1

bnq
n = q − q7 − q13 − q19 + q25 + 2q31 + . . .

Except for cases which in some sense resemble those discussed above there are not so many
instances where the set Af(x) could be given more or less explicitly, but it does not mean that
we cannot prove anything about them. In contrast, the problem gives rise to a lot of astonishing
discoveries and there is a lot of interesting theory behind it. For instance, mentioned above:
algebraic and analytic number theory, class field theory, modular forms etc. All these topics
have something to do with the title of the present thesis: ”Global fields and their L-functions”.
Our goal in the next section is to introduce relations between the above question and the title
more accurately. A reader interested in more explicit examples of reciprocity laws can consult
a well written expository article [60], as well as [46] or [53]. Identity 1.1 and the next one are
well-known and were taken from these materials.
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CHAPTER 1. INTRODUCTION

Slightly generalising the main question stated above one could also ask: given a monic
irreducible polynomial f(x) ∈ Z[x], how does this polynomial factor into irreducible polyno-
mials considered modulo a prime number p for different prime numbers? More concretely, for
each such f(x) and a prime number p, let f(x) = ga11 (x) . . . gamm (x) mod p where gi ∈ Fp[x],
1 ≤ i ≤ m are distinct monic irreducible polynomials of degree deg(gi) = fi ordered by
ascending: f1 ≤ f2 ≤ · · · ≤ fm. Note that ai ≥ 2 for some 1 ≤ i ≤ m if and only if f(x)
mod p has a double root in the algebraic closure Fp which happens if and only if p divides
the discriminant of f(x). In particular, there are only finitely many prime numbers such that
ai ≥ 2 for some i. In this terminology our problem can be stated as follows: for a given f and
p determine the set of pairs {(f1, a1), (f2, a2), . . . , (fn, an)}. How does this set behave where f
is fixed and p runs over the set of prime numbers P? It turned out that it is convenient to
rephrase this question in the language of algebraic number theory.

1.1.1 Side remark: Checking examples by using Magma

According to one popular opinion, there is only one way to do and understand mathematics:
experimenting with objects and their properties as much as possible. This approach helps
mathematicians not only to discover new material, but also to grasp the existing one and
sometimes even to detect mistakes in it. In order to do these experiments one often needs to
have special computational software. The computational algebra system Magma is especially
handy for doing number theory, though there are still some analogues, among them are systems
called Sage and PARI/GP. The author used Magma quite a lot while working on the content of
the present thesis. He has created many interesting scripts which he would like to share with
the reader. The example given below is of course quite elementary and by no means interesting,
but assists us to illustrate how we can use Magma to check statements and claims occurring in
the text.

// Testing Artin reciprocity and Chebotarev density for f(x) = x^3 - 3*x + 1

U, g := ResidueClassRing(81);

x := (g(2))^3;

H := { x^i : i in [1..18]};

U, "H = ", H;

numberOfFactorsByPrediction := 0;

counter := 0;

bound := 250;

for i in [1..bound] do

p := NthPrime(i);

k := GF(p);

R<x> := PolynomialRing(k);

f<x> := x^3 - 3*x + 1;

if g(p) in H then

numberOfFactorsByPrediction := 3;

counter := counter+1;

else

numberOfFactorsByPrediction := 1;
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1.2. SPLITTING OF IDEALS IN NUMBER FIELDS

end if;

p, numberOfFactorsByPrediction, #Factorization(f);

end for;

"The density of A_f is approximately", (counter/bound);

The reader can run the script in a freely-available online calculator located at the address:
http://magma.maths.usyd.edu.au/calc/ or use it on any other machine with preinstalled
Magma. The output should look like this:

Residue class ring of integers modulo 81

H = { 17, 35, 1, 53, 19, 37, 71, 55, 73, 8, 26, 44, 10, 28, 62, 46, 80, 64 }

2 1 1

3 1 1

...

...

1579 1 1

1583 3 3

The density of A_f is approximately 8/25

The given output allows us to convince ourselves that at least for the first 250 primes the
predicted reciprocity law holds. At the same time we can see that the proportion of those
primes lying in Af is 8

25
which is quite close to the predicted limit value given by the Chebotarev

density Theorem. For any issues related to the syntax of Magma and its current functionality
we definitely recommend to consult the Magma manual disposed at the same link. Another
good reference is [4].

1.2 Splitting of Ideals in Number Fields

Let K be a number field, i.e., a finite field extension of the field of rational numbers Q. This
extension is given by adjoining to Q an element α satisfying a polynomial relation f(α) = 0,
where f(x) is as before a monic irreducible polynomial with integer coefficients. Let OK denote
the ring of integers of K, i.e., the integral closure of Z in K. Note that Z[α] ⊂ OK , but usually
Z[α] 6= OK . On the other hand Z[α] is not that far from OK , in the sense that it has finite
index inside OK , i.e., |OK/Z[α]| <∞. In contrast to Z, the ring OK is not in general a unique
factorization domain, but is a Dedekind domain and therefore admits a unique factorization
of ideals into a product of prime ideals. Each prime ideal of Z is principal and generated by
a prime number (p) = pZ, but the ideal pOK may not be prime in OK . Let pOK = pe11 . . . p

em
m

be the factorization of the ideal pOK in OK . In this situation we will say that a prime ideal
pi lies over pZ, or that pi divides pZ. The number ei is called the ramification index of pi. A
prime ideal pZ is unramified if ei = 1 for 1 ≤ i ≤ m and ramified otherwise. Note that in
each number field K there are only finitely many ramified primes. The quotient OK/pi is an
Fp-vector space and its dimension is called the inertia index of pi and usually denoted by fi. If
for all 1 ≤ i ≤ m we have ei = fi = 1 then we say that pZ splits completely in OK . We denote
by Spl(K) the set of all prime numbers p in P such that pZ splits completely in OK . If m = 1

19
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CHAPTER 1. INTRODUCTION

and e1 = 1 then pZ is inert in OK . In what follows, for every commutative ring R we denote
by (p) the principal ideal generated by an element p ∈ R. In particular (p) = pOK as an ideal
of OK .

The following classical result provides a connection between factorization of the ideal (p) in
OK and the question about factorization of f(x) modulo p :

Theorem 1.2 (Kummer-Dedekind). In the above setting suppose that a prime number p does
not divide the index |OK/Z[α]|. Let f(x) = ga11 (x) . . . gamn (x) mod p be a factorization of
f(x) into distinct monic irreducible polynomials in Fp[x]. Let g̃i(x) be any lift of gi(x) to
characteristic zero, i.e., g̃i(x) ∈ Z[x], g̃i(x) is monic and g̃i(x) = gi(x) mod p. For 1 ≤ i ≤ m
define an ideal pi = (gi(α), p). Then pi is a prime ideal of OK, moreover (p) = pe11 . . . p

em
m and

for all 1 ≤ i ≤ m we have ei = ai, fi = deg(gi).

Proof. See [33], chapter IV.

Now the main problem we are interested in can be stated as follows: given a number field
K, find the factorizations of the ideal (p) ⊂ OK into prime ideals, for all prime numbers p.

To any ideal a ∈ OK one associates its norm N (a) which is defined as the number of
elements in the quotient OK/a: N (a) = |OK/a|. The norm is multiplicative: if a and b are
two ideals in OK then N (ab) = N (a)N (b).

Remark 1.3. Given a prime ideal p one has N (p) = pf. In particular, one could recover from
N (p) the prime number p such that (p) = p∩Q and its inertia index f. This circumstance plays
a crucial role in the whole story we will discuss later. Note that the analogue of this statement
in the function field case is completely wrong and that is the reason why the present thesis has
been written.

Obviously, for almost all except finitely many ramified primes our question is equivalent
to know how many prime ideals of a given norm there are. We give two examples related to
polynomials discussed above:

Example 1.4. Let K = Q(i), then OK = Z[i] and therefore the splitting behaviour (p) is
equivalent to the consideration f(x) = x2 + 1 modulo p. The discriminant of f(x) is (−4)
therefore (2) is the only ramified prime in OK. We have x2 + 1 = (x + 1)2 mod 2 and hence
(2) = p2, where p = (2, 1 + i). If p = 1 mod 4 then (p) splits in two primes (p) = p1p2

each of norm N (p1) = N (p2) = p. Finally if p = 3 mod 4 then (p) is a prime ideal of norm
N (p) = p2.

Example 1.5. Let K = Q(α), where α is the real root of f(x) = x3 − x+ 1. Then OK = Z[α]
and the only ramified prime is 23. We have (23) = p1p

2
2, where p1 = (23, 3+α), p2 = (23, 13+α).

For each prime number p different from 23 there are the following possibilities: if f(x) has no
roots modulo p then above (p) there is only one prime ideal p with norm p3, if f(x) has only
one root then over (p) there are two prime ideals one with norm p and another one with norm
p2, finally if f(x) has three roots modulo p then there are three prime ideals lying above (p) each
of norm p.
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1.3. DEDEKIND ZETA-FUNCTION

All notions of this paragraph are easy to generalise to the case of arbitrary extensions of
number fields L/K. Let p be a prime ideal of OK , similarly to the case of extensions of the
rational numbers Q, the ideal pOL may not be necessarily prime in OL. Suppose we have
a factorization of the ideal pOL in OL as qe11 . . . q

em
m . We translate all notions word by word

replacing the prime ideal (p) in Z by a prime ideal p in OK . Only the notation of the inertia
index needs some comment. It the general setting we have that OL/qi is a vector space over
OL/pOL. The dimension of this vector space is called the inertia index of qi over p and is
denoted by fi. As before we have the relation N (qi) = N (p)fi .

1.3 Dedekind zeta-function

In order to work with norms of prime ideals it is convenient to assemble all of them in one
object which is called the Dedekind zeta-function of K. This object is not only a crucial tool in
the study of distribution properties of prime ideals, but also has a lot of remarkable properties
interesting by themselves. We will briefly recall these properties but first, let us start from
the Riemann zeta-function ζ(s) which is the Dedekind zeta-function of the field Q of rational
numbers. A good reference is chapter VII from [36] and [30], [31].

1.3.1 Riemann zeta-function

Let K = Q. In order to study distribution properties of prime numbers p among all integer
numbers Z one considers the famous Riemann zeta-function:

ζ(s) =
∞∏
i=1

1

1− p−s
=
∞∑
n=1

1

ns
.

A priori this function is defined only for complex numbers s with <(s) > 1, where <(s)
denotes the real part of s. But one can show that it has an analytic continuation as a mero-
morphic function on the whole complex plane C with only one pole at s = 1. Moreover this
pole is simple and the residue of ζ(s) at s = 1 is one:

lim
s→1

(s− 1)ζ(s) = 1.

A standard way to get the meromorphic continuation to C is to consider the function ζ̂(s) =∑∞
n=1

(−1)n

ns
which is defined for all s with <(s) > 0 and show the identity ζ(s) = ζ̂(s) 1

1−21−s

which allows to define ζ(s) for s with <(s) > 0, s 6= 1. Then using the functional equation
discussed below one extends ζ(s) as analytic function to the whole complex plane without one
point s = 1.

Many issues about distribution of primes become more accessible after rephrasing in terms
of analytic properties of ζ(s). For example, consider the famous prime number Theorem con-
jectured by Gauss in 1793 which states that:

lim
x→∞

π(x)
x

log(x)

= 1,
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where π(x) = #{p ∈ P|p ≤ x} is the prime-counting function. Riemann showed in 1859 that
this statement is equivalent to the statement that ζ(s) has no zeros on the line s = 1+ it, t ∈ R.
Finally the last claim was proved independently by Jacques Hadamard and Charles Jean de la
Vallee-Poussin in 1896, see [30].

This function has also some other remarkable properties. For instance, it satisfies the
following functional equation mentioned above:

ζ(s) = ζ(1− s)2sπs−1 sin
(πs

2

)
Γ(1− s),

where Γ(s) =
∫∞

0
xs−1e−xdx is the gamma function.

Another remarkable point is the phenomena of the so-called special values of ζ(s):

ζ(2) =
∞∑
n=1

1

n2
=
π2

6
, ζ(4) =

∞∑
n=1

1

n4
=
π4

90
, ζ(6) =

∞∑
n=1

1

n6
=

π6

945
,

and more generally:

ζ(2n) =
(−1)n+1(2π)2nB2n

2(2n)!
,

where B2n denotes the famous Bernoulli number defined as coefficients of the Todd Series:

exx

ex − 1
=
∑ Bnx

n

n!
.

1.3.2 Dedekind zeta-Function

For a general number field K one defines ζK(s) as

ζK(s) =
∏
p

1

1−N (p)−s
=
∑
a⊂OK

1

N (a)s
,

where the product is taken over all non-zero prime ideals and sum is taken over all ideals of OK .
This function has a lot of similarities with ζ(s). It also has a meromorphic continuation to C
with a simple pole at s = 1. But now the residue at s = 1 is given by the class number formula:

lim
s→1

(s− 1)ζK(s) =
hK RegK 2r1(2π)r2

wK
√
|DK |

. (1.2)

Here r1 and r2 stand for the number of real and complex places of K respectively, hK denotes
the class number of K, i.e., the order of the class group Cl(K) of K, RegK is the regulator
of K, i.e., the co-volume of the lattice obtained from the image of O×K in Rr1+r2−1 after the
logarithmic embedding, wK is the number of roots of unity in K and DK is the discriminant of
K.

Similarly to ζ(s), this function is also a very useful tool in the study of the number of ideals
with given norm. The Landau prime ideal Theorem proved in 1903 states:

lim
x→∞

πK(x)
x

log(x)

= 1,
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1.4. ARITHMETICAL EQUIVALENCE

where πK(x) = #{p|N (p) ≤ x} is the prime ideal counting function.
The Dedekind zeta-function also satisfies the functional equation, see [36] :

ΛK(s) = ΛK(1− s),

where ΛK(s) = |DK |
s
2 Γr1R (s)Γr2C (s)ζK(s). Here ΓR(s) = π−

s
2 Γ( s

2
) and ΓC(s) = 2(2π)−sΓ(s).

By using the functional equation we can state the class number formula as follows:

lim
s→0

s−rζK(0) = −hK RegK
wK

, (1.3)

where r = r1 + r2− 1 is the rank of the unit group O×K . Moreover, there are a lot of interesting
theorems and conjectures concerning special values of ζK(s) at integer numbers, but even a
correct formulation of these is far from the scope of the present thesis.

Example 1.6. If K = Q(i), then we know from example 1.4 that there exists exactly one prime
ideal over (2) and it has norm 2, if p = 1 mod 4 then there are exactly two prime ideals over
(p) each has norm p, and if p = 3 mod 4 then there exists only one ideal over (p) with norm
p2. Therefore:

ζK(s) =
1

1− 2−s

∏
p=1 mod 4

1

(1− p−s)2

∏
p=3 mod 4

1

(1− p−2s)
= ζQ(s)

∏
p 6=2

1

1− (−1)
p−1
2 p−s

.

We have hk = 1, RegK = 1, DK = 4, r1 = 0, r2 = 1, wK = 4. The class number formula reads
as:

π

4
= lim

s→1
(s− 1)ζK(s) =

∏
p 6=2

1

1− (−1)
p−1
2 p−1

= 1− 1

3
+

1

5
− 1

7
+

1

9
+ . . .

Example 1.7. Let K = Q(α), where α is a root of f(x) = x3−x+ 1. We have r1 = 1, r2 = 1,
Reg = log(|α|), DK = −23, wK = 2, hk = 1. The class number formula reads as:

lim
s→1

(s−1)ζK(s) = lim
s→1

(
1− 2−s

1− 2−3s
· 1− 3−s

1− 3−3s
· 1

1− 5−2s
· 1

1− 7−2s
· · ·
)

=
2π log(|α|)√

23
' 0.3684 . . .

1.4 Arithmetical Equivalence

Now given a number a field K one could ask what kind of information about K can be recovered
from ζK(s). For example, using the analytic class number formula it follows immediately that
the right-hand side hK RegK

wK
of the formula 1.3 is invariant. Surprisingly much more is true.

For example if K over Q is normal then actually ζK(s) determines the field K. In the general
case it is a theorem of Gassmann (Theorem 1.23 from the section 1.4.3) which provides an
interesting connection between number fields sharing the same zeta-function and the theory of
finite groups. This connection gives rise to many surprising theorems. Good references for the
topic are the expository book [27], [44], and well-written lecture notes [52]. In the next two
sections we extensively use the ideas from these materials.
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CHAPTER 1. INTRODUCTION

1.4.1 The Galois Case

We start from the case of Galois extensions. Suppose K is a normal, i.e., |Aut(K : Q)| = n,
where n is the degree of K. The Galois group of K then fixes each rational prime p and therefore
acts on the set of prime ideals p1, . . . , pm lying above (p) ∈ OK . This action is transitive and
therefore one has e1 = e2 = · · · = em, f1 = f2 = · · · = fm and eifi = n

m
for all 1 ≤ i ≤ m. In

particular this means that if there exists one pi over (p) such that fi = ei = 1 then n = m and
each pj has norm p.

Remark 1.8. The converse of the above statement is also true. Given a number field K,
suppose that every unramified ideal (p) splits completely in OK if it has at least one prime ideal
p1 above it with f1 = 1. Then K is normal.

This observation and some analytic estimates of the residue of ζK(s) at s = 1 lead to the
following:

Theorem 1.9. Let K be a normal extension of Q of degree n. Then the density of primes
which split completely in OK exists and is equal to 1

n
, i.e., δ(Spl(K)) = 1

n
.

Proof. See [36], section 13 chapter VII.

Theorem 1.9 is a crucial point in the investigation of the present thesis and has a big impact
on what we are going to discuss. We illustrate the power of this theorem with a few corollaries:

Corollary 1.10. If K is normal then the set Spl(K) coincides up to finitely many primes with
Af(x) introduced in the first section, and hence in the case of normal extensions δ(Af(x)) always
exists and is equal to 1

deg(f)
.

Corollary 1.11. Let K and L be two normal number fields such that for all except possibly
finitely many primes we have p ∈ Spl(K) if and only p ∈ Spl(L). Then K = L.

Proof. Let N be a common normal closure of K and L. A prime p splits completely in ON if
and only if (p) splits completely in both OK and OL and therefore Spl(N) = Spl(K) ∩ Spl(L).
We have:

1

deg(N : Q)
= δ(SplN) = δ(SplK) =

1

deg(K : Q)

which implies that K = N , and hence L is contained in K. Interchanging the role of K and L
one also has that K is contained in L.

Corollary 1.12. Let K and L be two normal fields such that ζK(s) = ζL(s). Then K = L.

Proof. The key idea is to determine the set Spl(K) from ζK(s) and then use the above corollary.
For each natural number m consider the number rm of ideals in OK with norm m: rm =
#{a|N (a) = m}. Combining all primes with given norm in one term in the definition of the
Dedekind zeta-function we get:

ζK(s) =
∑
a⊂OK

1

N (a)s
=
∞∑
n=1

rn
ns
.
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We know that rp is positive if and only if over p there is an ideal with norm p. This ideal is
necessarily prime since the only ideal with norm one is OK . But then omitting finitely many
ramified primes we have that p splits completely in OK since K is normal. Therefore up to
finitely many primes the set Spl(K) coincides with #{p ∈ P |rp > 0} and hence if ζK(s) = ζL(s)
then Spl(K) matches with Spl(L) up to finitely many primes and therefore K = L.

Corollary 1.13. Let K be a finite not necessarily normal extension of Q. The Galois closure
N of K is determined by the set Spl(K), i.e., if K ′ is another field such that Spl(K) = Spl(K ′)
then K and K ′ have the same Galois closure N . In particular, given K there are at most
finitely many fields K ′ such that Spl(K) = Spl(K ′).

Proof. A prime ideal (p) splits completely in OK if and only if it splits completely in ON .
Therefore the condition Spl(K) = Spl(K ′) implies Spl(N) = Spl(N ′), where N(respectively N ′)
denotes the normal closure of K (of K ′). But the previous corollary shows that N = N ′. The
last statement follows from the fact that each number field has only finitely many subfields.

Corollary 1.14. For every integer n > 1 and every monic irreducible polynomial f(x) ∈ Z[x]
there exist infinitely many prime numbers p such that: p = 1 mod n and f(x) splits completely
modulo p.

Proof. Given n as above, consider n-th cyclotomic field Kn which is generated by the n-th
primitive roots of unity. Let us denote by L the field obtained by adjoining to Q a root of
f(x). Consider a common normal closure N of L and Kn. As before, because of Theorem 1.9
we know that there are infinitely many primes p which split completely in ON . But p splits
completely in ON if and only if it splits completely in both OL and OKn . Finally we note that
p splits completely in OKn if and only if p = 1 mod n and therefore there are infinitely many
primes p = 1 mod n such that f(x) splits completely modulo p.

The last corollary is somewhat surprising: it implies for example that we cannot construct
a quadratic extension K of Q such that almost all primes p with p = 3 mod 4 split completely
in OK and almost all primes with p = 1 mod 4 stay inert, because then it would contradict to
the splitting behaviour of principal ideals generated by rational primes in Z[i]. Somehow the
fact of existence of one polynomial implies non-existence of other polynomials!

Before we state the main theorem about number fields sharing the same zeta-function in
the general case it is convenient to introduce some group-theoretical notions.

1.4.2 Gassmann Triples

We start from a purely group theoretical definition of the so-called Gassman triples and then we
briefly cover the main properties of such triples. Given a finite group G and two subgroups H,
H ′ we will call a triple (G,H,H ′) a Gassmann triple if for every conjugacy class [c] in G we have
|[c] ∩H| = |[c] ∩H ′|. In other words if there is a bijection between elements of H to elements
of H ′ which preserves G-conjugacy. This can also be phrased in terms of representations of a
finite group G: (G,H,H ′) is a Gassmann triple if and only we have an isomorphism of induced
representations:

IndGH(1H) ' IndGH′(1H′),
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where 1H (and 1H′) denotes the trivial representation of H (of H ′ respectively). The equivalence
between these two definitions is easy to establish after recalling that the character χρ of the
representation ρ = IndGH(1H) evaluated on an element g ∈ G is:

χρ(g) =
|[c] ∩H||CG(g)|

|H|
,

where CG(g) is the centraliser of the element g and [c] denotes the conjugacy class of g. Since
two complex representations of a finite group are isomorphic if and only if their characters are
equal we have: IndGH(1H) ' IndGH′(1H′) if and only if |[c]∩H||H| = |[c]∩H′|

|H′| for all [c]. Finally one

shows that both definitions imply |H| = |H ′| and therefore they are equivalent.
We will call a Gassmann triple (G,H,H ′) non-trivial if H and H ′ are not conjugate inside G.

We will also say that a Gassmann triple (G,H,H ′) has index n, where n = |G|
|H| = |G|

|H′| . Here
one classical example is:

Example 1.15. Fix a prime number p > 2. Let G be Gl2(Fp) and let H =

{[
1 ∗
0 ∗

]
∈ G

}
and

H ′ =

{[
∗ ∗
0 1

]
∈ G

}
. Then the triple (G,H,H ′) is a non-trivial Gassmann triple.

Indeed, the map φ from G to G defined by φ

([
a b
c d

])
=

[
d b
c a

]
satisfies φ(AB) =

φ(B)φ(A) and hence provides us with a bijection from H to H ′ which preserves G-conjugacy.
At the same time it is not difficult to see by the direct computations that H and H ′ are not
conjugate inside G.

One natural question to ask is: what kind of properties do the groups H and H ′ share? Are
they necessarily have to be isomorphic as abstract groups? The answer to this problem is given
by Theorem 1.3 from [52]:

Lemma 1.16. If (G,H,H ′) form a Gassmann triple, then there exists an order-preserving
bijection between the elements of H and elements of H ′. Moreover, given isomorphism classes
of abstract groups H1, H2 and an order-preserving bijection between their elements, there exist
a group G and a Gassmann-triple (G,H,H ′) with H ' H1 and H ′ ' H2.

Proof. The first claim is entirely obvious, because all elements in the same conjugacy class
share the same order. In order to prove the second part one needs to consider groups H, H ′ as
subgroups of the permutation group Sn with n = #H, where the embedding H to Sn is given
by the action of H on itself by multiplication. For every element h ∈ H the cycle type of the
corresponding permutation is a union of disjoint cycles of the same length which is equal to
the order of h. But two elements of Sn are conjugate if and only if they share the same cycle
type and hence order preserving bijection between H and H ′ provides us with a bijection which
preserves G-conjugacy.

Remark 1.17. It was also mentioned in [52] that the above Lemma shows that for a given
prime number p it is possible to construct a non-trivial Gassmann triple with H isomorphic to
the abelian group (Cp)

3 and H ′ isomorphic to the Heisenberg group Hp over Fp, since both these
groups have p3 elements and are of exponent p. Because they are not isomorphic they cannot
be conjugate and therefore the triple (Sp3 , Hp, (Cp)

3) is a non-trivial Gassmann triple.
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Gassmann triples have a lot of remarkable properties which are interesting not only by
themselves, but also because they can be applied to number theoretical statements. Here is an
example of one of such properties proved in [44]:

Theorem 1.18. Let G be a finite group and H ⊂ G a subgroup of index n. Suppose one of the
following conditions holds:

1. n ≤ 6;

2. H is cyclic;

3. G = Sn the full symmetric group of order n;

4. n = p is prime and G = Ap is the alternating group of order p.

then any Gassmann triple (G,H,H ′) is trivial.

We also state another interesting fact from [14] which we later apply to our problem:

Theorem 1.19. If a finite group G admits a non-trivial Gassmman triple (G,H,H ′) then the
order of G is divisible by the product of at least five not necessarily distinct primes.

One could address another purely group theoretical matter: for which natural number n
does there exist a finite group G with two subgroups H, H ′ of index n such that (G,H,H ′) is
a non-trivial Gassmann triple? For n ≤ 15 these groups were classified by Wieb Bosma and
Bart de Smit in [5]. An important series of examples consists of groups of Gl-type, for instance:
PSL2(F7), Gl2(F3), PGL3(F2). These groups are especially interesting because torsion points
on elliptic curves defined over Q allow us to construct explicitly Galois-extensions with such
Galois groups. As we will see later, this construction together with Theorem 1.23 from the
next section supply us with a natural way to produce non-isomorphic number fields sharing the
same zeta-function, see article [9] and section 2.2.1 for the details.

Some instances of Gassmann triples can be obtained by geometric methods. Let us illustrate
this in the case of G = PSL2(F7) ' PGL3(F2). The famous Fano plane is the projective plane
over the field F2 of two elements. The group G acts on the Fano plane via linear transformations
and this action can be described in terms of the automorphisms of the following graph:
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One picks two subgroups: H which stabilises some fixed vertex and H ′ which stabilises
some fixed edge. Note that they are both of index seven. One can show that (G,H,H ′) form
a non-trivial Gassmann triple and moreover the following is true:

Remark 1.20. The triple (G,H,H ′) is the unique non-trivial Gassmann triple of index seven.

Intently considering above examples one can suspect that Gassmann triples arise from some
kind of duality and hence it should be difficult to produce a group G with three (or more)
pairwise non-conjugate subgroups Hi, 1 ≤ i ≤ 3 such that IndGHi(1Hi) ' IndGHj(1Hj) for i, j ∈
{1, 2, 3}. Actually that is not the case as shown by the following proposition:

Lemma 1.21. If (G,H1, H2), (G′, H ′1, H
′
2) are two non-trivial Gassmann triples then inside the

group G = G × G′ the four subgroups Ai,j = Hi ×H ′j, i, j ∈ {1, 2} are pairwise non-conjugate

and share the same isomorphism class of the permutation representations IndGAi,j(1Ai,j).

Proof. The groups Ai,j are pairwise non-conjugate because conjugation in G provides (via pro-
jection) a conjugation in G and G′ and hence we obtain a contradiction with the fact that the
above triples are non-trivial. The second part of the statement follows from the observation
that IndGAi,j(1Ai,j) ' IndGHi(1Hi) ⊗ IndG

′

H′j
(1H′j) and the fact that IndGH1

(1H1) ' IndGH2
(1H2) and

IndG
′

H′1
(1H′1) ' IndG

′

H′2
(1H′2) because (G,H1, H2), (G′, H ′1, H

′
2) are Gassmann triples.

Finally, using Lemma 1.21 and the construction from example 1.15 one obtains the following:

Lemma 1.22. For a given natural number n there exists a group G with a sequence of at least
2n pairwise non-conjugate subgroups sharing the same isomorphism class of the permutation
representations.

Proof. Fix a natural number n. Let p1, . . . , pn be n pairwise distinct odd prime numbers. Then
the following group satisfies conditions of the Lemma:

G =
n∏
i=1

Gl2(Fpi).

1.4.3 On Perlis Theorem

Now let K and L be two number fields, not necessarily normal. We will say that they split
equivalently if for all except possibly finitely many prime numbers p ∈ P there exists a bijection
φp from the set of primes in OK lying above (p) to the set of those primes in OL. We will say
that they are arithmetically equivalent if for all except possibly finitely many p the bijection
φp can be chosen to be degree preserving, i.e., fi = fφp(pi). Let N denote the common Galois
closure of K and L over Q and let G = Gal(N/Q), H = Gal(N/K), H ′ = Gal(N/L). See the
diagram below.
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N

K L

Q

H H′

G

In the above setting we have the following famous result, see [44] and [51]:

Theorem 1.23. The following statements are equivalent:

1. ζK(s) = ζL(s);

2. K and L are arithmetically equivalent;

3. K and L split equivalently;

4. (G,H,H ′) is a Gassmann triple.

Moreover, if one of the above conditions holds then K and L have the same degree, the same
discriminant, the same normal closure, the same number of real and complex embeddings and
the groups of units of their rings of integers are isomorphic.

Remark 1.24. If K and L are arithmetically equivalent then a priori ζK(s) = ζL(s) up to
finitely many factors. The above Theorem then says that actually their zeta-functions are
equal, i.e., that one could omit the condition ”except finitely many primes” in the definition
of arithmetical equivalence, but then it becomes slightly more tricky to show that two fields are
arithmetically equivalent: sometimes it is convenient to omit finitely many primes.

It follows directly from the definition that the triple (G,H,H ′) is non-trivial if and only if
K is not isomorphic to L, as an abstract field or equivalently as extension of Q. Theorem 1.23
allows us to use group theory to study arithmetical properties of number fields. For instance:

Corollary 1.25. Suppose K is a number field and N is its normal closure. Let G = Gal(N/Q),
H = Gal(N/K) and suppose one of the conditions from Theorem 1.18 holds. Then ζK(s)
determines the field K up to isomorphism, i.e. if for any other number field L one has ζK(s) =
ζL(s), then K ' L.

Here is another application which now follows directly from Theorem 1.19:

Corollary 1.26. Let K be a number field with the degree of the normal closure N of K strictly
less than 32. Then ζK(s) determines K up to isomorphism.

Now let us consider some classical constructions of arithmetically equivalent number fields.
Observe fist that since the degree of K over Q is the index of H in G we get that if the degree of
K does not exceed 6, then equality ζK(s) = ζL(s) implies K ' L. On the other hand there are
infinitely many non-isomorphic pairs (Kα, Lα) of (isomorphism classes of) fields of degree seven
such that ζKα(s) = ζLα(s). Moreover because of remark 1.20 each pair (K,L) of non-isomorphic
number fields of degree seven with ζK(s) = ζL(s) occurs as subfields of some normal field N
with Gal(N : Q) = PSL2(F7), Gal(N : K) = H and Gal(N : L) = H ′.
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Example 1.27. Let K = Q(α), where α is a root of f(x) = x7 − 7x + 3 and let K ′ = Q(β),
where β is a root of g(x) = x7 + 14x4 − 42x2 − 21x + 9. Then K and K ′ are arithmetically
equivalent fields occurring in the triple with G = PSL2(F7) discussed above.

It is more convenient to provide another example of such a family for degree eight.

Example 1.28. Let a be any integer such that both |a| and |2a| are not squares. Then the two
fields Q( 8

√
a) and Q( 8

√
16a) are arithmetically equivalent.

Proof. Consider two polynomials f(x) = x8 − a and g(x) = x8 − 16a. The conditions above
insure that these polynomials are irreducible. We claim that for almost all except finitely many
primes p these polynomials split in the same way modulo p. Indeed if either

√
2 ∈ Fp or√

−2 ∈ Fp then 16 is an eighth power. If both
√

2 and
√
−2 are not in Fp then i =

√
−1 ∈ Fp

and hence (1 + i)8 = 16. It means in both cases that f(x) and g(x) considered modulo p are
related by the linear change of the variable and therefore the degree of irreducible factors of
the decomposition f(x) and g(x) modulo a prime p coincide for almost all p ∈ P . Therefore
the fields Q( 8

√
a) and Q( 8

√
16a) are arithmetically equivalent and hence share the same zeta-

function.

Remark 1.29. The simplicity of the above example is in some sense exceptional: Theorem 1,
chapter 9 from [2] states that if for some fixed odd number m there exists a ∈ Z such that for
all except possibly finitely many primes the equation xm = a mod p has a solution then the
equation xm = a has a solution in Z.

The Galois group G of the normal closure of the field Q( 8
√
a) mentioned above is isomorphic

to a semi-direct product C8 o V4 where C8 is a cyclic group of order eight, V4 is the Klein
group and the action of V4 on C8 given via the isomorphism V4 ' Aut(C8). As pointed out by
the authors the group G could be obtained as a subgroup of the automorphism group of the
following graph:

It has two subgroups: H which stabilises a given vertex and H ′ which stabilises a given
edge. The triple (G,H,H ′) is exactly the Gassmann triple corresponding to the fields from
example 1.28 stated above. Both examples 1.28 and 1.27 already occurred in [44].
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Magma Scripts

One can use the following Magma script to verify Theorem 1.23 using fields mentioned in the
example 1.28:

R<x> := PolynomialRing(Integers());

f := x^8 - 15;

g := x^8 - 240;

K<y> := NumberField(f);

L<z> := NumberField(g);

"K is: ", K;

"L is: ", L;

"Are fields K, L isomorphic? Answer:", IsIsomorphic(K, L);

G, r, N := GaloisGroup(K);

"Degree of the normal closure N of K is", #G;

"The Galois Group of K is: ", G;

// Setting subgroups corresponding to x^8-15 and x^8-240

h := Subgroups(G: IndexEqual := 8);

H_1 := h[8]‘subgroup;

H_2 := h[9]‘subgroup;

"The group H_1 corresponds to the field extensions: ", GaloisSubgroup(N, H_1);

"The group H_2 corresponds to the field extensions: ", GaloisSubgroup(N, H_2);

//Checking that (G, H_1, H_2) is a non-trivial Gassmann triple

"Are H_1, H_2 conjugate inside G? Answer: ", IsConjugate(G, H_1, H_2);

"Permutation Character for G/H_1: ", PermutationCharacter(G, H_1);

"Permutation Character for G/H_2: ", PermutationCharacter(G, H_2);

"Testing that K and L are arithmetically equivalent: ";

for i in [1..10] do

p := NthPrime(i);

k := GF(p);

R<x>:=PolynomialRing(k);

f1 := x^8 - 15;

f2 := x^8 - 240;

"Factorization of x^8-15 mod", p, Factorization(f1);

"Factorization of x^8-240 mod ", p, Factorization(f2);

end for;

"Verifying that values of zeta_K and zeta_L evaluated at 2 coincide: ";

zeta_K := LSeries(K);

zeta_L := LSeries(L);
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"zeta_K(2) = ", Evaluate(zeta_K, 2);

"zeta_L(2) = ", Evaluate(zeta_L, 2);

The truncated output of the script shows:

K is: Number Field with defining polynomial x^8 - 15 over the Rational Field

L is: Number Field with defining polynomial x^8 - 240 over the Rational Field

Are fields K, L isomorphic? Answer: false

Degree of the normal closure N of K is 32

The Galois Group of K is: Permutation group G acting on a set of cardinality 8

Order = 32 = 2^5

(1, 6, 8, 3)(2, 5, 7, 4)

(1, 2, 5, 3, 8, 7, 4, 6)

(1, 8)(4, 5)

(1, 4, 8, 5)(2, 6, 7, 3)

(1, 8)(2, 7)(3, 6)(4, 5)

The group H_1 corresponds to the field extensions: x^8 - 15

x2

The group H_2 corresponds to the field extensions: x^8 - 240

(x1 + x4)

Are H_1, H_2 conjugate inside G? Answer: false

Permutation Character for G/H_1: ( 8, 0, 4, 2, 0, 2, 0, 0, 0, 0, 0 )

Permutation Character for G/H_2: ( 8, 0, 4, 2, 0, 2, 0, 0, 0, 0, 0 )

Testing that K and L are arithmetically equivalent:

...

Factorization of x^8-15 mod 23 [

<x^2 + 2*x + 17, 1>,

<x^2 + 8*x + 17, 1>,

<x^2 + 15*x + 17, 1>,

<x^2 + 21*x + 17, 1>

]

Factorization of x^8-240 mod 23 [

<x^2 + 6*x + 11, 1>,

<x^2 + 10*x + 11, 1>,

<x^2 + 13*x + 11, 1>,

<x^2 + 17*x + 11, 1>

]

Factorization of x^8-15 mod 29 [

<x^8 + 14, 1>

]

Factorization of x^8-240 mod 29 [

<x^8 + 21, 1>

]

Verifying that values of zeta_K and zeta_L evaluated at 2 coincide:
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zeta_K(2) = 1.66953605098303869962432127686

zeta_L(2) = 1.66953605098303869962432127686

Remark 1.30. Sometimes even highly sophisticated computer software produces mistakes.
This also happened a few years ago when the author executed the above script: the last part
of the script which evaluates values of ζ-functions wrongly suggested that ζ-functions should
be different! It turned out that there was a problem with computing the values ζK(2) and
ζL(2), but it took some time to actually realise it. The problem had been fixed quickly after
the author informed the Magma development team.

1.4.4 Common Properties of Arithmetically Fields

Let us briefly discuss properties of arithmetically equivalent number fields. Despite the fact
that the Dedekind zeta-function ζK(s) of K provides us with evidence about some numerical
invariants of K it actually almost determines many other ”non-numerical” invariants, for ex-
ample the ideal class group. The reason for that is the existence of the so-called arithmetical
homomorphism between multiplicative groups of arithmetically equivalent fields. An interested
reader could consult the corresponding chapter in [27].

Class Groups

Because of the class number formula 1.3 and the fact that arithmetically equivalent number
fields share the same number of roots of unity wK one has the following implication:

ζK(s) = ζL(s)⇒ hK RegK = hL RegL .

Surprisingly the class numbers of arithmetically equivalent number fields hK and hL may
be different, see [10]. Nevertheless, there is a good bound on that difference. Namely, to each
Gassmann triple (G,H,H ′) Perlis in [39] attached a natural number v, which divides the order
of H. Suppose that K and K ′ are two number fields corresponding to the triple (G,H,H ′).
Then if a prime number l does not divide v, then the l-part of the class group of K and K ′ are
isomorphic: Cll(K) ' Cll(K

′).
His argument works in the following way: first for any Gassmann triple (G,H,H ′) let us

fix an isomorphism α between two induced representations: IndGH(1H) ' IndGH′(1H′). Note that
IndGH(1H) is a permutation representation and therefore this isomorphism can be considered as
an isomorphism between Q[G]-modules:

α : Q[G/H] 'Q[G] Q[G/H ′].

A triple (G,H,H ′) is non-trivial if these modules are not isomorphic as G-modules Q[G/H] 6'G
Q[G/H ′]. Once an isomorphism α is fixed one can also pick a standard basis of the vector
spaces Q[G/H], Q[G/H ′] and then α can be written as matrix Mα. Let vα = det(Mα). Now
given a Gassmann triple (G,H,H ′) he defined a natural number v = gcdα(|vα|), where α runs
over all isomorphisms such that Mα has integral coefficients.
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On the other hand, from this isomorphism α he constructed a homomorphism φα of mul-
tiplicative groups φα : K∗ → (K ′)∗. This map factors through fractional ideals and therefore
induces morphism between ideal class groups. The map between class groups has a kernel and
co-kernel and R. Perlis proved that primes dividing the order of these groups divide the natural
number vα associated to α. From this one easily deduces the argument about isomorphism of
l-parts of class groups for l not dividing v. It was mentioned in [39] that for the Gassmann
triple (G,H,H ′) with G ' PSL2(F7) and H of index seven one has v = 8 and therefore for
each pair (K,K ′) of arithmetically equivalent number fields coming from this triple and each
odd prime number l one has:

Cll(K) ' Cll(K
′).

Remark 1.31. There exists an example of a non-trivial Gassmann triple (G,H,H ′) such that
the invariant v is one, see [40]. The group G in this example is isomorphic to PSL2(F29), has
order 12180 and contains two subgroups H, H ′ each isomorphic to the alternating group A5

and of index 203. This triple has the property that not only Q[G/H] 'Q[G] Q[G/H ′] but also
Z[G/H] 'Z[G] Z[G/H ′], while groups H and H ′ are still not conjugate inside G.

Absolute Abelianized Galois Group

The main theorem of the class field theory produces an isomorphism between the Galois
group of the maximal unramified abelian extension MK of K and the class group of K, i.e.,
Gal(MK : K) ' Cl(K). Taking into account the previous discussion we have that arithmetically
equivalent fields K, K ′ have similar groups Gal(MK : K) and Gal(MK′ : K ′) in the following
sense. For a given triple (G,H,H ′), for all prime numbers l except finitely many which divide
the invariant v defined above, any pair of number fields (K,K ′) arising from the triple has the
property that:

Gall(MK : K) ' Gall(MK′ : K ′).

It turns out that this statement can be generalised to the Galois group of the maximal abelian
extension Kab of K. Let GabK denote the abelianized absolute Galois group of a number field
K: GabK = Gal(Kab : K). It is an abelian pro-finite group and denoting by GabK,l its l-part for a
prime number l co-prime to v, l 6= 2, one has, as before:

GabK,l ' GabK′,l

—see [27].
Note that the group GabK is a pro-finite group and hence has a so-called Krull topology under

which it becomes a topological group. The above isomorphism then can be considered not only
as and isomorphism of abstract groups, but also as an isomorphism of pro-finite groups. We
will discuss this in details later, see section 1.6.2.

1.5 Artin L-functions

In this section we define and state basic properties of the so-called Artin L-functions. This is a
generalisation of the notion of the Dedekind zeta-function which plays a central role in number
theory. The setting is the following: to a Galois extension of number fields L : K with Galois
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group G = Gal(L : K) and a complex representation ρ of G one attaches the Artin L-function
LK(ρ, s) which is a meromorphic function of complex variable s. In order to define it we first
need to introduce the notion of the Frobenius Substitution. For reference see [36], chapter 10.

1.5.1 The Frobenius Substitution

Let L : K be a normal extension of number fields of degree n with the Galois group G = Gal(L :
K). Let p be a prime ideal of OK and let q be a prime ideal of OL lying above it. Consider the
decomposition group Dq of the ideal q:

Dq = {σ ∈ G|σ(q) = q}.

Denoting the residue fields OK/p by kp and OL/q by kq, there exists a homomorphism from Dq

to the Galois group of Gal(kq : kp). The kernel Iq of this homomorphism is called the inertia
group of q. We have the following exact sequence:

1→ Iq → Dq → Gal(kq : kp)→ 1.

Since kq : kp is an extension of finite fields, the Galois group Gal(kq : kp) is cyclic and
generated by the Frobenius automorphism φp : x → xN (p). Obviously Dq/Iq ' Gal(kq : kp)
and since Iq is trivial if and only the prime ideal p is unramified we have Dq ' Gal(kq : kp)
for all unramified p. For any ideal q we define a Frobenius element at q as any element of the
pre-image of φp in Dq/Iq and we will denote any such element by Frobq/p. In the case where p
is unramified Frobq/p is an actual element of G = Gal(L : K), but in general case this element
is defined only up to inertia Iq. If one picks another prime ideal q′ lying over p then Frobq/p is
a conjugate of Frobq′/p:

∀g ∈ G : Frobg(q)/p = g Frobq/p g
−1.

Finally, we define Frobp as the conjugacy class of Frobq/p for some q. If G is abelian and p
is unramified then Frobp is an element of G and is called the Artin symbol at p.

1.5.2 Definition of Artin L-functions

In the setting of the previous paragraph let ρ : G→ Glm(C) be a complex representation of G
of dimension m. To this data we attach a function of a complex variable s which we denote by
LK(ρ, s). This function will be defined as a product over all places p of K of local L-functions.

Suppose first that p is unramified. Then we pick any representative g of Frobp. Then ρ(g)
is an automorphism of the vector space V = Cn and we denote its characteristic polynomial by
Pp(t):

Pp(t) = det(E − tρ(g)),

where E denotes the identity matrix. Of course ρ(g) depends on the choice of g, but Pp(t) does
not. We define the Euler factor LK,p(ρ, s) at p as Pp(N (p)−s)−1.

Remark 1.32. By rewriting det(E − tρ(g)) = (1 − λ1t) . . . (1 − λnt), where λi ∈ C× we see
LK,p(ρ, s) as a finite product of geometric series 1

det(E−tρ(g))
=
∏n

i=1
1

1−λit which converges for

t ∈ C with |t| small enough. By plugging t = N (p)−s we see that LK,p(ρ, s) converges for <(s)
big enough.
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If p is a ramified prime ideal then we consider the subspace W which is the inertia invariant
W = (V )Iq part of V . This is not a sub-representation of G but it is a sub-representation ψ
of Dq, moreover the inertia subgroup Iq acts trivially and therefore ψ defines a well-defined
homomorphism from Dq/Iq to Aut(W ) and by picking any representative g of Frobp we could
consider the characteristic polynomial Pp(t) = det(E − tψ(g)). As before the characteristic
polynomial does not depend on the choice of the representative g and therefore we also define
LK,p(ρ, s) for ramified primes as Pp(N (p)−s)−1.

Finally, we define:

LK(ρ, s) =
∏

p⊂OK

LK,p(ρ, s).

The above argument about the convergence of the local L-factors can be extended to a proof
of the fact that the whole Artin L-series LK(ρ, s) absolutely converges for <(s) big enough1. It
is possible to prove that LK(ρ, s) satisfies a functional equation which allows us to define it as
meromorphic function over C.

Example 1.33. Consider the example of K = Q(i). This is a normal extension of Q with
a cyclic Galois group C2 of order two generated by the complex conjugation τ . Consider the
non-trivial character χ of C2. If for an odd prime number p the ideal (p) splits as p1p2 then the
decomposition group of each pi, i ∈ {1, 2} is trivial and τ switches the ideals p1 and p2. This
means that the Euler factor LK,p(χ, s) at p is 1

1−p−s . The ideal (p) for p = 3 mod 4 stays inert

in Z[i], the residue field kp is a quadratic extension of Fp and τ(x) = xp for x ∈ kp, i.e., τ is
the Frobenius at p and since the character χ is non-trivial we have χ(τ) = −1 and therefore
LK,p(χ, s) = 1

1+p−s
. For the ramified prime (2) we have I2 = C2 and V I2 = {0}, therefore the

corresponding Euler factor is trivial. Summing up we have:

LK(χ, s) =
∏

p=1 mod 4

1

1− p−s
∏

p=3 mod 4

1

1 + p−s
=
∏
p 6=2

1

1− (−1)
p−1
2 p−s

=
ζK(s)

ζQ(s)
.

1.5.3 Properties of Artin L-functions

Now we state the basic properties of L-functions needed for further investigation. Let N be
a finite Galois extension of a number field K. As usual we denote by G the Galois group
Gal(N : K).

1. Additivity. This property states that the L-function of a direct sum of two representations
is equal to the product of L-functions of these representations. More concretely, let ρ1,
ρ2 denote two complex representations of a finite group G. Then

LK(ρ1 ⊕ ρ2, s) = LK(ρ1, s)LK(ρ2, s).

2. Induction. Let H be a not necessarily normal subgroup of G and let M = NH be the
corresponding intermediate field.

1the region of the convergence depends on K and ρ of course.
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N

M = NH

K

H

G

Given a complex representation ρ of H one considers the induced representation IndGH(ρ)
of G. The induction property then says:

LM(ρ, s) = LK(IndGH(ρ), s).

3. Inflation. Suppose in the previous setting that the group H is normal and denote the
quotient G/H = Gal(M : K) by Q. Let ψ be a complex representation of Q. Then it
induces a representation Ψ of G via the quotient homomorphism G → Q. The inflation
property states:

LK(Ψ, s) = LK(ψ, s).

4. Multiplicative independence over Q. Suppose K = Q. Let ρ1, ρ2 be two complex repre-
sentations of Gal(N : Q). Then:

LQ(ρ1, s) = LQ(ρ2, s)⇔ ρ1 ' ρ2.

Note that this claim is not valid if one replaces Q by another number field, see discussion
in the section 2.2.

1.5.4 Examples

Quadratic Extensions

Let K be a quadratic extension of Q. This is a Galois extension with a Galois group G of order
two. By the induction property:

ζK(s) = LK(1, s) = LQ(IndG{1} 1, s).

By representation theory one has IndG{1} = 1 ⊕ χ, where 1, χ denote trivial and non-trivial
representations of G respectively. Therefore by the additivity property:

ζK(s) = LQ(1, s)LQ(χ, s) = ζQ(s)LQ(χ, s),

which explains the decomposition in example 1.33.
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Biquadratic Extension

Let d > 0 be a square-free integer. Consider the field K = Q(
√
d,
√
−d). We have the following

Galois correspondence diagram:

Q(
√
d,
√
−d)

Q(
√
d) Q(i) Q(

√
−d)

Q

H'C2 H′'C2

H×H′

We have G = Gal(K : Q) = H × H ′ ' C2 × C2. This group has four different irreducible
characters 1, χ, χ′, χχ′. It is easy to see that:

IndG{1} 1 ' 1⊕ χ⊕ χ′ ⊕ χχ′.

By adding two trivial characters to both sides and taking L-functions we get:

ζK(s)ζ2
Q(s) = ζ3

Q(s)LQ(χ, s)LQ(χ′, s)LQ(χχ′, s) = ζQ(
√
d)(s)ζQ(

√
−d)(s)ζQ(i)(s).

Finally by applying the class number formula and using the fact that Reg(Q(i)) = Reg(Q(
√
−d)) =

hQ(i) = 1 one obtains the following formula due to Dirichlet:

hK Reg(K)

wK
=
hQ(
√
d)hQ(

√
−d) Reg(Q(

√
d))

4wQ(
√
d)wQ(

√
−d)

.

After simplifying the above formula one can show that:

hK
hQ(
√
d)hQ(

√
−d)

∈ {1

2
, 1}.

Such kind of relations were generalized by Brauer and now called Brauer relations, see [23].

Extensions with Galois Group S3

In general one has IndG{1}(1) ' ⊕ρdim(ρi)
i , where ρi runs over all irreducible complex representa-

tions of the finite group G. In particular, for every Galois extension N over K we have:

ζN(s) =
∏
ρi

LK(ρi, s)
dim ρi .

Let us consider the example of the normal closure N of the field K given by adjoining a
root of the polynomial x3 − x − 1 from section 1.1. Since the discriminant of f is (−23) the
Galois group Gal(N : Q) = S3 is the symmetric group of order six. Let us draw the Galois
correspondence diagram:
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N

K

Q(
√
−23)

Q

H′'C3

H'C2

S3

Q'C2

The group S3 has three irreducible complex representations: the trivial representation 1,
the one-dimensional sign representation χ and the two-dimensional representation ρ. First of
all this means:

ζN(s) = ζQ(s)LQ(χ, s)LQ(ρ, s)2.

Now we have the restriction homomorphism S3 → Gal(Q(
√
−23) : Q) ' C2. By the

inflation property therefore we have:

ζQ(
√
−23)(s) = ζQ(s)LQ(χ, s)

and
ζN(s) = ζQ(

√
−23)LQ(ρ, s)2.

On the other hand if we denote the two non-trivial characters of H ′ = Gal(N : Q(
√
−23)) ' C3

by ψ and ψ we get the decomposition:

ζN(s) = ζQ(
√
−23)(s)LQ(

√
−23)(ψ, s)LQ(

√
−23)(ψ, s),

and therefore:
LQ(

√
−23)(ψ, s)LQ(

√
−23)(ψ, s) = LQ(ρ, s)2 (1.4)

Now let us consider the zeta-function ζK(s). By the induction property we have:

ζK(s) = LQ(IndGH 1, s),

where we keep the notation from the above diagram H = Gal(N : K). Note that IndGH 1 is a
three dimensional representation which contains the trivial representation. By comparing the
traces of these representations one has IndGH 1 ' 1⊕ ρ. This gives us another relation:

ζK(s) = ζQ(s)LQ(ρ, s).

Relation 1.4 allows us to find an explicit formula for coefficients of LQ(ρ, s) via the class field
theory. After devoting a bit more efforts one shows that LQ(ρ, s) is actually the Mellin transform
of a modular form of weight one and level 23 with respect to the Legendre character

( ·
23

)
. By

the explicit computations this modular form is η(τ)η(23τ) where η(τ) = q
1
24

∏
n(1 − qn), see

[46].
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1.6 On Absolute Galois Groups

1.6.1 Around the Neukirch-Uchida Theorem

The above subject concerning arithmetically equivalent number fields has also influenced the
study of other invariants attached to a number field K. One remarkable example is the absolute
Galois group GK of K. Recall that to each field one associates its absolute Galois group
GK = Gal(Ksep : K), where Ksep is the separable closure of K. The absolute Galois group GK
is not only a group, but also a pro-finite group, i.e., GK is isomorphic to the inverse limit of an
inverse system of discrete finite groups. In particular, GK has the so-called Krull topology and is
a topological group. Under this topology GK is a compact, Hausdorff and totally disconnected
topological group. The last three properties actually could be taken as a definition of a pro-finite
group.

Lemma 1.34. A topological group G is pro-finite if one of the following equivalent conditions
holds:

1. G is a compact, Hausdorff and totally disconnected topological group;

2. G is isomorphic to a closed subgroup of a product of finite discrete groups

3. G is isomorphic to the inverse limit of an inverse system of discrete finite groups.

Proof. A good reference for the proof and also for general theory of pro-finite groups is [41].

For some fields K the group GK is easy to describe:

1. If K = R is a field of real numbers, then GK ' Z/2Z;

2. If K = Fq, q = pn is a finite field, then GK ' Ẑ.

Here Ẑ denotes the additive group of pro-finite integers:

Ẑ = {(an) ∈
∞∏
n=1

(Z/nZ)|∀n,m : n|m⇒ am = an mod n}.

The last example illustrates that there are infinitely many non-isomorphic fields sharing
isomorphic groups GK . On the other hand, if we add some additional restrictions on GK then it
is possible to recover many properties of K. The most classical example is the following result:

Theorem 1.35 (Artin-Schreier). Suppose GK is finite. Then

1. GK ' Z/2Z;

2. K has characteristic zero;

3. K is a real closed field, i.e., Ksep = K(i), where i2 = −1.
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This Theorem served as motivation for Jurgen Neukirch (24 July 1937 – 5 February 1997)
who asked himself the following question: given a number field K what kind of information
about K one can recover from GK considered as topological group? The following Theorem
bearing his name gives a remarkable answer to the Neukirch’s problem.

Theorem 1.36 (Neukirch-Uchida). Suppose K, K ′ are two number fields such that GK ' GK′
as topological groups. Then K ' K ′.

Neukirch gave a proof for the case of normal extensions of Q in 1969, see [35]. An essential
step in his proof is to recover from GK the degree of almost all places of K and as suggested
by Theorem 1.23 the Dedekind zeta-function ζK(s) of K. Then Uchida extended his results in
1976 to arbitrary number fields, see [56]. The above Theorem is the starting point for the field
of Anabelian Geometry, a branch of number theory whose main goal is to recover properties
of an object X from its fundamental group π(X). As we will see soon it turns out that this
group must be sufficiently non-abelian in order to recover the isomorphism type; that is why
this theory is called anabelian.

1.6.2 On Abelianized Absolute Galois Group

The absolute Galois group GK for a number field K is a quite difficult object to study. For in-
stance the Neukirch-Uchida Theorem does not tell us much about the structure of GK . Another
interesting object related to the group GK is the so-called abelianized absolute Galois group
GabK = Gal(Kab : K) = GK /[GK ,GK ], where Kab denotes the maximal abelian extension of K
and [GK ,GK ] is the topological closure of the commutator subgroup of GK . The abelianized
absolute Galois group is more suitable for study since global class field theory provides us with
a description of GabK in terms of other invariants of the field K, for instance the idele class group.
For example, if K is the field of rational numbers Q then the famous Kronecker-Weber Theorem
tells us that any finite abelian extension of Q is contained in some cyclotomic extension Q(ζn),

where ζn denotes the primitive n-th root of unity, and hence GabQ ' Ẑ× and by rewriting the
last group in slightly different terms one has an isomorphism of pro-finite groups:

GabQ ' Ẑ×
∏
n∈N

Z/nZ.

For number fields different from Q the description of GabK given via class field theory is not that
explicit, but still allows us to study this group. This matter concerning the description of the
abelianization GabK of GK has attracted much attention since the work [38] where in particular
it was shown that there exists an example of imaginary quadratic fields with different class
groups and with isomorphic GabK . A dramatic improvement was achieved in [1], where the
authors produced a lot of new examples of non-isomorphic imaginary quadratic fields which
share the same isomorphism type of GabK . Moreover, based on their computations they made a
conjecture that there are infinitely many imaginary quadratic fields with:

GabK ' Ẑ2 ×
∏
n∈N

Z/nZ.

They also conjectured that there are infinitely many isomorphism types of pro-finite groups
which occur as GabK for some imaginary quadratic field K. We will prove this conjecture in the
last chapter of the thesis.
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1.7 Results of the Thesis

Now we are able to formulate the main results of the present thesis. But first we will start
from one general remark. In the 20th century number theory enlarged its field of interests from
number fields to the so-called global function fields. A global function field K is the field of
functions of a curve X defined over a finite field Fq. In what follows by a curve we always mean
smooth, projective, geometrically connected variety of dimension one. It turns out that global
function fields behave in a very similar way to number fields: for every statement in the number
field case it is often possible to discover and prove its analogue on the function field side and
vice versa. Often this analogue is not unique, but this makes the theory even more attractive.
This interaction also provides us with a bridge from number theory to algebraic geometry since
the list of main objects of study of algebraic geometry of course includes algebraic curves.
For a more algebraic point of view on function fields one could consult [42] and [50]. For a
more geometric point of view we recommend [54]. This thesis is devoted to the understanding
of possible function field analogues of the topics discussed in the introductory chapter and
improvements of the corresponding results in the number field case. The dissertation has five
more chapters: three of them are devoted to results on the function field side and two chapters
are concerned with results about number fields. Now we briefly explain the motivation and the
main results of each chapter.

1.7.1 Chapter Two

In chapter two we keep studying the interaction between group theory and number theory with
focus on applications of the subject to the theory of arithmetically equivalent number fields.
In particular, we provide a few more explicit instances of pairs of arithmetically equivalent
number fields, discuss the notion of arithmetical equivalence for arbitrary extensions of number
fields and also formulate and prove Theorem 2.4 of Professor Bart de Smit. In short, the last
Theorem states that two isomorphism classes of number fields can be distinguished by the set
of Artin L-functions of abelian Galois representations attached to absolute Galois groups of
these fields. Finally, we extend Theorem 2.4 and produce an alternative proof of the Uchida’s
part of the Neukirch-Uchida Theorem. The main results are Theorem 2.8 and Corollary 2.9.
This chapter is related to the pre-print [49].

1.7.2 Chapter Three

We started our investigation from the following informal question: what is an analogue of the
arithmetical equivalence in the function field side. For a given curve X defined over a finite
field Fq, a natural idea is to consider an Fq-rational generically étale morphism from X to P1.
In other words, we are considering finite separable geometric extensions of the field Fq(t). This
allows us to speak about notions of splitting, arithmetical and Gassmann equivalences when
the field Q is replaced by the rational function field Fq(t). Surprisingly these notions are still
equivalent, but one needs to be more careful with equality of zeta-functions. In the function
field case there are at least two possible definitions of zeta-function attached to a global function
field K. The first approach is more classical Dedekind zeta-function of a complex variable s.
Another aproach is more modern and uses the theory of so-called Goss zeta-functions whose
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definition is slightly far from the scope of this thesis, but an interested reader could consult
[20]. The last approach was extensively studied in [8]. In our research we prefer to stand on the
approach which uses more classical Dedekind-zeta functions: we extend results from Nagata
[32] on arithmetically equivalent function fields which allow us to prove an analogue of Theorem
2.5 discussed in section 2.3 of the current chapter for extensions of Fq(t). Also we provide:

1. Examples of arithmetically equivalent, but not isomorphic function fields;

2. An algorithm to construct many new pairs of arithmetically equivalent function fields by
using torsion points of elliptic curves defined over Fq(t);

3. A discussion on some properties of arithmetically equivalent function fields.

This chapter is based on the pre-print [48].

1.7.3 Chapter Four

In the third chapter of the thesis we develop a different approach to the generalisations of
Theorem 2.4 to the function field side. Given a curve X over a finite field Fq we consider the
set of zeta-functions of abelian coverings of X of degree prime to the characteristic p of the
constant field. The motivation for this is the following. First, the map from the curve X to P1

in the previous chapter plays a crucial role in the whole story, but is absolutely non-canonical.
In order to make it more canonical, one could ask what kind of information about X it is
possible to obtain from zeta-functions of coverings of X. In general this set is quite difficult to
study, but if one restricts attention to abelian Galois coverings then it is possible to construct
and study such sets by using class field theory for function fields. Note that from the Dedekind
zeta-function of a curve C one could recover its genus g(C). Therefore it is convenient to
consider the list λX(g) of zeta-functions of abelian coverings of X of a given genus g. Since
there are only finitely many curves of a given genus defined over a given finite field this list
is finite. In our research we obtain a complete description for such a list when X = E is an
elliptic curve and the genus of the cover is two2. The main result of this chapter states that
if j(E) 6= 0, 1728 then this list depends only on the number of Fq-rational 2-torsion points of
E. We also provide an explicit description of such a list and discuss the cases with j(E) = 0,
1728. This chapter relies on pre-print [47].

1.7.4 Chapter Five

In this chapter we change our focus towards the problem about the structure of the abelianiza-
tion of absolute Galois groups of global function fields. In 1977 Uchida [57] also published an
article concerning a function field analogue of the Neukirch-Uchida Theorem discussed above.
This Theorem states that the geometric isomorphism class of the curve X is determined by
the isomorphism class of the absolute Galois group GK = Gal(Ksep : K) considered also as
topological group. As in the number field case the following problems are natural to ask: what
kind of information one could recover from the isomorphism class of the abelianization GabK of

2 under the assumption that the characteristic of the constant field is different from two and three.
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GK? More concretely, does the maximal abelian quotient of the absolute Galois group deter-
mine the global function field K up to isomorphism? If not, which function fields share the
same isomorphism class of GabK for some fixed isomorphism class of GabK ? In this chapter we
provide a complete answer. Given a global function field K we associate to it three invariants:
characteristic p of the constant field Fq of K, the non-p part dK of logp(q) and the non-p part
of the class group of K, see the introduction of the chapter four for exact definitions. Then our
main result in this section is the following:

Theorem 1.37. Given two global function fields K and K ′, the pro-finite groups GabK and GabK′
are isomorphic if and only if the three invariants introduced above coincide for K and K ′.

This chapter also includes the following results and corollaries:

1. Given the isomorphism type of GabK we explain how to recover these three invariants in a
group-theoretical way;

2. Given these three invariants of a global function field K we reconstruct the isomorphism
type of GabK ;

3. There are infinitely many pairwise non isomorphic global function fields with isomorphic
GabK ;

4. There are infinitely many isomorphism types of pro-finite groups which occur as GabK for
some function field K.

This chapter comes from the pre-print [11].

1.7.5 Chapter Six

In the final chapter we use our result from previous chapter to improve results of [1] on isomor-
phism types of abelianized absolute Galois groups of imaginary quadratic fields. In particular
we prove that there are infinitely many isomorphism types of pro-finite groups which occur as
GabK and also we construct many new examples of imaginary quadratic fields sharing the same
isomorphism type of GabK . This chapter is related to the pre-print [12].
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