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Chapter 6

Parameter-dependent
exponential dichotomies for
nonlocal differential operators

6.1 Introduction and main result

In this short, final chapter, we extend parts of the theory from Chapter 5 to include
MFDEs such as (5.2.1) that depend smoothly on a parameter µ. For each individual
µ one can construct the corresponding exponential splitting using our previous results,
but this construction contains some noncanonical choices that do not necessarily pre-
serve the smoothness in µ. Often in applications, this smoothness is necessary in order
to obtain uniform estimates and close bifurcation arguments.

For example, exponential dichotomies play a major role in the construction and
stability analysis [108, 109] of travelling pulse solutions to the FitzHugh-Nagumo LDE
(5.1.1). In particular, Hupkes and Sandstede consider a family of linearisations of the
Nagumo MFDE of the form

cu′(σ) = u(σ + 1) + u(σ − 1)− 2u(σ) + gu
(
Θ(ϑ, c, ρ)(σ), a

)
u(σ). (6.1.1)

Here, the relevant parameters are the wavespeed c, which should be close to the
wavespeed of the travelling front solution (5.1.5), the parameter ρ from the correspond-
ing FitzHugh-Nagumo system, which should be close to 0, and a phase shift ϑ. Using
exponential dichotomies for (6.1.1), the authors construct quasi-front and quasi-back
solutions to (5.1.1).
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312 CHAPTER 6. PARAMETER-DEPENDENT EXPONENTIAL DICHOTOMIES

Since we work in more or less the same setting as in Chapter 5 and use several key
results from that chapter, we will reuse the notation and assumptions introduced there.
In particular, we consider the parameter-dependent system

ẋ(t) =
∞∑

j=−∞
Aj(t;µ)x(t+ rj) +

∫
R
K(ξ; t;µ)x(t+ ξ)dξ

:= L(t, µ)xt.
(6.1.2)

Here the parameter µ takes values in an open set U ⊂ Rp, for some integer p ≥ 1
and the notation xt was introduced in (5.2.24). The corresponding linear operators
Λ(µ) : W 1,∞(R;CM )→ L∞(R;CM ) are given by

(Λ(µ)x)(t) = ẋ(t)−
∞∑

j=−∞
Aj(t;µ)x(t+ rj)−

∫
R
K(ξ; t;µ)x(t+ ξ)dξ. (6.1.3)

We assume that the system (6.1.2) depends Ck-smoothly on µ in the following sense.

Assumption (HC). The linear operators Λ(µ) corresponding to the system (6.1.2)
depends Ck-smoothly on the parameter µ ∈ U for some integer k ≥ 0. In addition,
Assumption (HKer) holds for some µ0 ∈ U , while Assumptions (HA), (HK) and (HH)
hold uniformly for µ ∈ U . That is, the constant η̃ and the upper bounds for the
quantities in (5.2.7) and (5.2.8) can be chosen independently of µ ∈ U . Finally, the
limiting operators Λ±∞(µ) depend Ck-smoothly on µ ∈ U .

Our main result below shows that the exponential splittings which were obtained
in §5.5 can be constructed in such a way that the smoothness in the parameter µ is
preserved. The concession we have to make is that the space R(τ ;µ) will be no longer
invariant in the sense of Theorem 5.2.8. We view the results in this chapter as another
step in the ongoing effort to close the gap between MFDEs with finite-range and with
infinite-range interactions. In particular, we expect our results to play an important
part in the stability analysis of the FitzHugh-Nagumo LDE with infinite-range inter-
actions (5.1.16), which, at present, is an open problem if h > 0 is sufficiently far away
from 0.

Theorem 6.1.1 (cf. [104, Thm. 5.1]). Assume that (HC) is satisfied. Then there
exists an open neighbourhood µ0 ∈ U ′ ⊂ U in such a way that for any µ ∈ U ′ and any
τ ≥ 0 there exist subspaces Q(τ, µ), R(τ, µ) ⊂ X that satisfy the following properties.

(i) We have the direct sum decomposition

X = Q(τ ;µ)⊕R(τ ;µ) (6.1.4)

(ii) Each φ ∈ Q(τ ;µ) can be extended to a solution Eτ,µφ of (6.1.2) on the interval
[τ,∞), while each ψ ∈ R(τ ;µ) can be extended to a solution Eτ,µψ of (6.1.2) on
the interval (−∞,−r0] ∪ [0, τ ]. 1

1Here the constant r0 > 0 is defined Proposition 5.5.3.
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(iii) The maps µ 7→ ΠQ(τ ;µ) and µ 7→ ΠR(τ ;µ) are Ck-smooth and all derivatives can
be bounded uniformly for τ ≥ 0.

(iv) There exist constants K > 0 and α > 0 in such a way that we have the pointwise
exponential estimates for each φ ∈ X and each integer 0 ≤ ` ≤ k

|D`
µEτ,µΠQ(τ ;µ)φ|(t) ≤ Ke−α|t−τ |‖φ‖∞, for every t ≥ τ,

|D`
µEτ,µΠR(τ ;µ)φ|(t) ≤ Ke−α|t−τ |‖φ‖∞, for every t ≤ τ,

|Λ(µ)Eτ,µΠR(τ ;µ)φ|(t) ≤ Ke−α|t−τ |‖φ‖∞, for every t ≤ τ.

(6.1.5)

Our results are primarily based on the approach from [104, §3,5], where Hupkes and
Verduyn Lunel construct exponential splittings for parameter-dependent MFDEs with
finite-range interactions. The main difficulty here is that in [104] these splittings are
obtained by solving a linear equation on a space of functions, defined on the interval
D⊕τ , with an exponential weight. However, several operators that are involved in this
linear equation, such as the inclusion of the space Q(τ) into such an exponentially
weighted space, lose their boundedness if rmin = −∞. As a workaround, we reconsider
the problem on a space with a one-sided exponential weight. However, this change
complicates several of the key technical computations.

6.2 One-sided exponential weights

We start by expanding the Fredholm theory from [68] for the system (5.2.1) to spaces
with a one-sided exponential weight. For any η ∈ R and f ∈ L1

loc(R;CM ) we introduce
the function

[e+
η f ](x) = eη(x+)f(x), (6.2.1)

where

x+ =

x, x ≥ 0,

0, x < 0.
(6.2.2)

This allows us to define the spaces

L∞η,+(R;CM ) = {f ∈ L1
loc(R;CM ) | e+

−ηf ∈ L∞(R;CM )},

W 1,∞
η,+ (R;CM ) = {f ∈ L1

loc(R;CM ) | e+
−ηf ∈W 1,∞(R;CM )},

(6.2.3)

with the corresponding norms

‖f‖L∞η,+(R;CM ) := ‖e+
−ηf‖L∞(R;CM ),

‖f‖W 1,∞
η,+ (R;CM ) := ‖e+

−ηf‖W 1,∞(R;CM ).
(6.2.4)

For sufficiently small |η| we can consider the shifted operator Λ̃η,+ : W 1,∞(R;CM ) →
L∞(R;CM ) that acts as

Λ̃η,+x = e+
η Λe+

−ηx. (6.2.5)
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Lemma 6.2.1. Assume that (HA), (HK) and (HH) are satisfied. Pick any η ∈ R
with |η| < η̃

4 . Writing ∆̃±η,+ for the characteristic equations defined in (5.2.10) for the
operator (6.2.5), we have the identities

∆̃+
η,+(z) = ∆+(z − η), ∆̃−η,+(z) = ∆−(z). (6.2.6)

In addition, the adjoint operator (Λ̃η,+)∗ is given by

(Λ̃η,+)∗ = Λ̃∗−η,+. (6.2.7)

Proof. For j ∈ Z we see that

eη(t+)e−η(t+rj)
+

= e−ηrj (6.2.8)

for t sufficiently positive, while

eη(t+)e−η(t+rj)
+

= 1 (6.2.9)

for t sufficiently negative. Similarly for x ∈W 1,∞(R;CM ) we can compute(
e−η(t+)x(t)

)′
= −ηe−η(t+)x(t) + e−η(t+)x′(t) (6.2.10)

for t sufficiently positive, while(
e−η(t+)x(t)

)′
= x′(t) (6.2.11)

for t sufficiently negative. Finally for x ∈W 1,∞(R;CM ) we see that

eη(t+)
∫
RK(ξ; t)e−η(ξ+t)+

x(ξ + t)dξ = eηt
∫ −t
−∞K(ξ; t)x(ξ + t)dξ

+
∫∞
−t K(ξ; t)e−ηξx(ξ + t)dξ

(6.2.12)

for t positive, while

eη(t+)
∫
RK(ξ; t)e−η(ξ+t)+

x(ξ + t)dξ =
∫ −t
−∞K(ξ; t)x(ξ + t)dξ

+e−ηt
∫∞
−t K(ξ; t)e−ηξx(ξ + t)dξ

(6.2.13)
for t negative. These computations directly imply the identities (6.2.6).

In addition, a short computation shows that

〈y, Λ̃η,+x〉L2(R;CM ) =
∫
y(t)†eη(t+)(Λe+

−ηx)(t)dt

=
∫

(e+
η y)(t)†(Λe+

−ηx)(t)dt

=
∫

(Λ∗e+
η y)(t)†e−η(t+)x(t)dt

=
∫

(e+
−ηΛ∗e+

η y)(t)†x(t)dt

= 〈Λ̃∗−η,+y, x〉L2(R;CM ),

(6.2.14)
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which implies (6.2.7), as desired.

Lemma 6.2.1 allows us to define the Fredholm operators Λ(η) : W 1,∞
η,+ (R;CM ) →

L∞η,+(R;CM ) that act as

Λ(η),+ = e+
η ◦ Λ̃−η,+ ◦ e+

−η. (6.2.15)

Our main result here shows that the natural adjoint Λ∗(−η),+ : W 1,∞
−η,+(R;CM ) →

L∞−η,+(R;CM ) is given by

Λ∗(−η),+ = e+
−η ◦ Λ̃∗η,+ ◦ e+

η . (6.2.16)

Note that for x ∈W 1,∞
η,+ (R;CM )∩W 1,∞(R;CM ) and y ∈W 1,∞

−η,+(R;CM )∩W 1,∞(R;CM )
we simply have

Λx = Λ(η),+x, Λ∗y = Λ∗(−η),+y. (6.2.17)

The main reasons we constructed the operators Λ(η),+ in this fashion are that it is

not a-priori clear that Λ maps W 1,∞
η,+ (R;CM ) into L∞η,+(R;CM ) and whether these oper-

ators remain Fredholm operators. We note that Λ(0),+ = Λ, since we have the identities

W 1,∞
0,+ (R;CM ) = W 1,∞(R;CM ) and L∞0,+(R;CM ) = L∞(R;CM ). The following result

is the equivalent of Proposition 5.2.1 for the operator Λ(η),+.

Proposition 6.2.2 (cf. [104, Prop. 3.2]). Assume that (HA), (HK) and (HH) are
satisfied. Pick any η ∈ R with |η| < η̃

4 for which the characteristic equation det ∆+(z) =

0 has no roots with Re z = η. Then both the operators Λ(η),+ : W 1,∞
η,+ (R;CM ) →

L∞η,+(R;CM ) and Λ∗(−η),+ : W 1,∞
−η,+(R;CM ) → L∞−η,+(R;CM ) are Fredholm operators.

Moreover, the ranges admit the characterisation

R
(
Λ(η),+

)
=

{
h ∈ L∞(R)|

∞∫
−∞

y(t)∗h(t)dt = 0 for every y ∈ ker(Λ∗(−η),+)
}
,

R
(
Λ∗(−η),+

)
=

{
h ∈ L∞(R)|

∞∫
−∞

x(t)∗h(t)dt = 0 for every x ∈ ker(Λ(η),+)
}
.

(6.2.18)
The Fredholm indices can be computed by

ind(Λ(η),+) = −ind(Λ∗(−η),+) = dim ker(Λ(η),+)− dim ker(Λ(−η),+). (6.2.19)

Finally, there exist constants K > 0 and 0 < α ≤ η̃ so that

|e+
−ηx(t)| ≤ Ke−α|t|‖e+

−ηx‖∞ (6.2.20)

holds for any x ∈ ker(Λ(η),+) and any t ∈ R, while the bound

|e+
η x(t)| ≤ Ke−α|t|‖e+

η x‖∞ (6.2.21)

holds for any x ∈ ker(Λ∗(−η),+) and any t ∈ R.
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Proof. These results follow from Proposition 5.2.1 and Lemma 6.2.1, together with
the identities

ker
(
Λ(η),+

)
= e+

η ker
(
Λ̃−η,+

)
,

ker
(
Λ∗(−η),+

)
= e+

−ηker
(
Λ̃∗η,+

)
= e+

−ηker
(
(Λ̃−η,+)∗

)
,

Range
(
Λ(η),+

)
= e+

η Range
(
Λ̃−η,+

)
,

Range
(
Λ∗(−η),+

)
= e+

−ηRange
(
Λ̃∗η,+

)
= e+

−ηRange
(
(Λ̃−η,+)∗

)
.

(6.2.22)

We now shift our attention to the parameter-dependent system (6.1.2). The follow-
ing result shows that we can find a quasi-inverse for this system that depends smoothly
on µ.

Proposition 6.2.3 (cf. [104, Prop. 3.3]). Assume that (HC) is satisfied. Pick any
η ∈ R with |η| < η̃

4 for which the characteristic equation det ∆+(z) = 0 for µ = µ0 has
no roots with Re z = η. Write R = Range

(
Λ(η),+(µ0)

)
and pick a complement R⊥ for

R in L∞η,+(R;CM ). Then there exists an open neighbourhood µ0 ∈ U ′ ⊂ U , together

with a Ck-smooth function

C(η),+ : U ′ → L
(
L∞η,+(R;CM ),R⊥

)
(6.2.23)

and a Ck-smooth quasi-inverse

Λqinv
(η),+ : U ′ → L

(
L∞η,+(R;CM ),W 1,∞

η,+ (R;CM )
)

(6.2.24)

that satisfy the following properties.

(i) For any µ ∈ U ′ we have the upper bound

dim
(

ker
(
Λ(η),+(µ)

))
≤ dim

(
ker
(
Λ(η),+(µ0)

))
. (6.2.25)

(ii) For any µ ∈ U ′ and any f ∈ L∞(R;CM ) we have the identity

Λ(η),+(µ)Λqinv
(η),+(µ)f = f + C(η),+(µ)f. (6.2.26)

Moreover, the restriction of the map C(η),+(µ0) to R vanishes identically.

Proof. Upon choosing

Λqinv
(η),+(µ)f =

[
πRΛ(η),+(µ)

]−1
πRf,

C(η),+(µ)f = −πR⊥f + πR⊥Λ(η),+(µ)Λqinv
(η),+(µ)f,

(6.2.27)

we can directly follow the proof of [104, Prop. 3.3] to arrive at the desired result.
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In a similar fashion, we introduce the function

[e−η f ](x) = eη(x−)f(x), (6.2.28)

where

x− =

|x|, x ≤ 0,

0, x > 0,
(6.2.29)

together with the spaces

L∞η,−(R;CM ) = {f ∈ L1
loc(R;CM ) | e−−ηf ∈ L∞(R;CM )},

W 1,∞
η,− (R;CM ) = {f ∈ L1

loc(R;CM ) | e−−ηf ∈W 1,∞(R;CM )},
(6.2.30)

with the corresponding norms

‖f‖L∞η,+(R;CM ) := ‖e+
−ηf‖L∞(R;CM ),

‖f‖W 1,∞
η,+ (R;CM ) := ‖e+

−ηf‖W 1,∞(R;CM ).
(6.2.31)

For sufficiently small |η| we can consider the shifted operator Λ̃η,− : W 1,∞(R;CM ) →
L∞(R;CM ) which acts as

Λ̃η,−x = e−η Λe−−ηx (6.2.32)

and we can define the Fredholm operators Λ(η),− : W 1,∞
η,− (R;CM )→ L∞η,−(R;CM ) by

Λ(η),− = e−η ◦ Λ̃−η,− ◦ e−−η. (6.2.33)

Remark 6.2.4. The equivalent statements in Propositions 6.2.2-6.2.3 can be proven for
the operator Λ(η),− under the assumption that the characteristic equation det ∆−(z) =
0 has no roots with Re z = −η, instead of the condition on ∆+.

For notational simplicity, we use the shorthand

Λqinv(µ) := Λqinv
(0),+(µ) = Λqinv

(0),−(µ). (6.2.34)

The half-line inverses from Lemma 5.5.6 can also be chosen to depend smoothly on the
parameter µ. We recall that the intervals D⊕τ and D	τ were defined in (5.2.32), while
the interval DX was defined in (5.2.22).

Lemma 6.2.5 (cf. [104, Pg. 13]). Assume that (HC) is satisfied. Recall the open
neighbourhood U ′ of µ0 from Proposition 6.2.3 and fix τ ∈ R. Then there exist bounded
linear operators

Λ−1
+;τ (µ) : L∞

(
[τ,∞);CM

)
→ W 1,∞(D⊕τ ;CM ),

Λ−1
−;τ (µ) : L∞

(
(−∞, τ ];CM

)
→ W 1,∞(D	τ ;CM ),

(6.2.35)

defined for µ ∈ U ′, in such a way that the identities

[Λ(µ)Λ−1
+;τ (µ)f ](t) = f(t), t ≥ τ,

[Λ(µ)Λ−1
−;τ (µ)g](s) = g(s), s ≤ τ

(6.2.36)
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hold for f ∈ L∞
(
[τ,∞);CM

)
and g ∈ L∞

(
(−∞, τ ];CM

)
. The operators Λ±;τ depend

Ck-smoothly on the parameter µ.

In addition, if τ > 0 is sufficiently large, there exists bounded linear operators

Λ−1
�;τ (µ) : L∞

(
[0, τ ];CM

)
→ W 1,∞(DX + τ ;CM

)
, (6.2.37)

defined for µ ∈ U ′, in such a way that the identity

[Λ(µ)Λ−1
�;τ (µ)f ](t) = f(t), t ∈ [0, τ ] (6.2.38)

holds for f ∈ L∞
(
[0, τ ];CM

)
. The operators Λ�;τ depend Ck-smoothly on the parameter

µ.

Proof. Using the quasi-inverse Λqinv(µ) instead of the inverse Λ−1, the proof of
Lemma 5.5.6 carries over to the current setting.

6.3 Construction of exponential splittings

In this section, we set out to prove Theorem 6.1.1. For τ ≥ 0 and µ ∈ U we write
Q(τ, µ) for the space Q(τ) from Theorem 5.2.8 at this value of µ. In addition, we
write Q(τ) := Q(τ, µ0). Moreover, we introduce, for notational clarity, the evaluation
operator evt given by

evtφ = φt. (6.3.1)

We will be mainly working in the spaces

BC⊕τ,η =
{
f ∈ Cb

(
D⊕τ ,CM

)
| e+
−ηf ∈ Cb

(
D⊕τ ,CM

)}
,

BC	τ,η =
{
f ∈ Cb

(
D	τ ,CM

)
| e−−ηf ∈ Cb

(
D	τ ,CM

)} (6.3.2)

for τ ≥ 0 and η ∈ R, with the corresponding norms

‖f‖BC⊕τ,η = ‖e+
−ηf‖∞, ‖f‖BC	τ,η = ‖e−−ηf‖∞. (6.3.3)

This choice of spaces is in essential in our analysis and in major contrast to the finite-
range setting in [104]. Indeed, there the authors consider weighted spaces, defined on
the interval D⊕τ , where the weight decays exponentially in positive direction, while it
grows exponentially in the direction of rmin + τ . An essential step in the analysis is
that the inclusion of the space Q(τ) into the exponentially weighted space is a bounded
linear operator. However, this is the case if and only if rmin > −∞. By contrast, the
inclusion of Q(τ) into the space BC⊕τ,η is bounded for η < 0 sufficiently close to 0.

The key ingredients to establish Theorem 6.1.1 are the following two results that we
establish in the sequel. Basically, they state that Q(τ, µ) and R(τ, µ) can be constructed
as a graph over Q(τ, µ0) and R(τ, µ0). For ψ ∈ Q(τ, µ), we write Eτ,µψ for the extension
of the function ψ. That is, Eτ,µψ is a solution of (6.1.2) on the interval [τ,∞).
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Proposition 6.3.1 (cf. [104, Lem. 5.2]). Assume that (HC) is satisfied. Consider
the splitting X = Q(τ) ⊕ R(τ) for τ ≥ 0 for the system (6.1.2) at µ = µ0. Then
there exists an open neighbourhood µ0 ∈ U ′ ⊂ U , together with Ck-smooth functions
u∗Q(τ) : U ′ → L(Q(τ), X), defined for τ ≥ 0, that satisfy the following properties.

(i) For each µ ∈ U ′ we have the identity

ΠQ(τ)u
∗
Q(τ)(µ) = I (6.3.4)

and the limit
lim
µ→µ0

[I −ΠQ(τ)]u
∗
Q(τ)(µ) = 0, (6.3.5)

holds uniformly for τ ≥ 0.

(ii) For µ ∈ U ′ the operator norms of the maps u∗Q(τ)(µ) are bounded uniformly for
τ ≥ 0.

(iii) For µ ∈ U ′ we have Q(τ ;µ) = Range
(
u∗Q(τ)(µ)

)
.

(iv) There exist constants K > 0 and α > 0 in so that the bound∣∣D`
µEτ,µu

∗
Q(τ)(µ)φ

∣∣(t) ≤ Ke−α|t−τ |‖φ‖∞ (6.3.6)

holds for each µ ∈ U ′, each 0 ≤ τ ≤ t, each φ ∈ Q(τ) and each integer 0 ≤ ` ≤ k.

Recall that the space R(τ, µ0) is constructed as a finite-dimensional enlargement of
the space P̃ (τ, µ0). However, it is unclear whether this finite-dimensional space can be
constructed in such a way that it depends smoothly on the parameter µ. As such, we
simply construct the space R(τ, µ) in a fashion similar to Proposition 6.3.1 and treat
this as its definition. The price we have to pay is that this space is no longer invariant.

Proposition 6.3.2 (cf. [104, Lem. 5.3]). Assume that (HC) is satisfied. Consider
the splitting X = Q(τ) ⊕ R(τ) for τ ≥ 0 for the system (6.1.2) at µ = µ0. Then
there exists an open neighbourhood µ0 ∈ U ′ ⊂ U , together with Ck-smooth functions
u∗R(τ) : U ′ → L(R(τ), X), defined for τ ≥ 0, that satisfy the following properties.

(i) For each µ ∈ U ′ we have the identity

ΠR(τ)u
∗
R(τ)(µ) = I (6.3.7)

and the limit
lim
µ→µ0

[I −ΠR(τ)]u
∗
R(τ)(µ) = 0, (6.3.8)

holds uniformly for τ ≥ 0.

(ii) For µ ∈ U ′ we have that the operator norms of the maps u∗R(τ)(µ) are bounded
uniformly for τ ≥ 0.

(iii) Writing R(τ ;µ) = Range
(
u∗R(τ)(µ)

)
, each ψ ∈ R(τ ;µ) extends to a solution Eτ,µψ

of (6.1.2) on the interval (−∞,−r0] ∪ [0, τ ]. In addition, the space R(τ ;µ) ⊂ X
is closed.
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(iv) There exist constants K > 0 and α > 0 in such a way that we have the bound

|D`
µEτ,µu

∗
R(τ)(µ)φ|(t) ≤ Ke−α|t−τ |‖φ‖∞ (6.3.9)

for each µ ∈ U ′, each t ≤ τ , each φ ∈ R(τ) and each integer 0 ≤ ` ≤ k.

(v) We have the uniform bound∣∣Λ(µ)Eτ,µu
∗
R(τ)(µ)φ

∣∣(t) ≤ Ke−α|t−τ |‖φ‖∞ (6.3.10)

for each µ ∈ U ′, each t ∈ [−r0, 0] and each φ ∈ R(τ).

Proof of Theorem 6.1.1. On account of Propositions 6.3.1 and 6.3.2 we can repeat
the arguments used in the proof of [104, Thm. 5.1] to arrive at the desired result.

For any τ ≥ 0 and η > 0, we introduce the map Gτ ;η : U → L
(
BC⊕τ,−η

)
, defined by

Gτ ;η(µ)u = Λqinv
(−η),+(µ0)

[
L(µ)− L(µ0)

]
u− ιτ ;ηΠQ(τ)ev0Λqinv

(−η),+(µ0)
[
L(µ)− L(µ0)

]
u.

(6.3.11)
Here we introduced the notation

[L(µ)u](t) = L(t, µ)ut, (6.3.12)

together with the map ιτ ;η which is the inclusion from Q(τ) into BC⊕τ,−η for τ ≥ 0.

The proof of Proposition 6.3.1 consists of a number of steps. We start by showing
that the map Gτ,α from (6.3.11) is well-defined and bounded for some specified α > 0.
Then we use this map Gτ,α to construct the functions u∗Q(τ). Most of our focus will go

to the identity Q(τ ;µ) = Range
(
u∗Q(τ)(µ)

)
, since the other bounds and identities follow

relatively quickly from the definition.

Lemma 6.3.3. Consider the setting of Proposition 6.3.1 and suppose that rmin = −∞.
Then there exists a constant α > 0 so that the map

Gτ := Gτ ;α (6.3.13)

is a well-defined map Gτ : U → L
(
BC⊕τ,−α

)
. In addition, there exists an open neigh-

bourhood µ0 ∈ U ′ ⊂ U , together with a constant C > 0, so that for all µ ∈ U ′ we have
the uniform bounds

‖Gτ (µ)‖ ≤ 1
2 , ‖D`

µGτ (µ)‖ ≤ C (6.3.14)

for all τ ≥ 0 and all integers 1 ≤ ` ≤ k.

Proof. We let K ≥ 1 and 0 < α < η̃ be the constants from Theorem 5.2.8 applied
to the system (6.1.2) at µ = µ0. Without loss of generality we can assume that α
is so small that the characteristic equation det ∆+(z) for µ = µ0 has no roots with

Re z = −α, which allows us to consider the quasi-inverse Λqinv
(−α),+ from Proposition

6.2.3. We also can assume without loss of generality that e±2αb ∈W 1,∞(R;CM ) for any
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b ∈ B ∪ B∗.

We start by showing that the map Gτ := Gτ ;α is well-defined by showing that the
inclusion map ιτ ;α and the evaluation operator ev0 map Q(τ) into BC⊕τ,−α and BC⊕τ,−α
into X respectively.

On account of Theorem 5.2.4, the map

ιτ := ιτ ;α (6.3.15)

is a well-defined and bounded map ιτ : Q(τ)→ BC⊕τ,−α, since we assumed that rmin =
−∞. In addition, we have the bound

‖ιτφ‖BC⊕τ,−α ≤ Kdec‖φ‖∞ (6.3.16)

for φ ∈ Q(τ).

Let φ ∈ BC⊕τ,−α be given. Then we obtain the pointwise estimate

|(ev0φ)(t)| = e−α(t+)|eα(t+)φ(t)| ≤ e−αt‖φ‖BC⊕τ,−α (6.3.17)

for any t ∈ D+
X , while

|(ev0φ)(t)| = |eα(t+)φ(t)| ≤ ‖φ‖BC⊕τ,−α (6.3.18)

for t ∈ D−X .

Hence, the norms of the operators ev0 and ιτ are bounded by 1 and Kdec respec-
tively. In addition, the projections ΠQ(τ) are uniformly bounded in norm on account of

Theorem 5.2.8. Since the map µ 7→ L(µ) is Ck-smooth, we see that Gτ is smooth as a
map from U into L

(
BC⊕τ,−α

)
. The uniform bounds on the operators ιτ , ΠQ(τ) and ev0

now yield the uniform bound (6.3.14) for τ ≥ 0, integers 1 ≤ ` ≤ k and µ sufficiently
close to µ0.

In particular, we can define the bounded linear maps

v∗Q(τ)(µ) : Q(τ) → BC⊕τ,−α,

φ 7→
[
I − Gτ (µ)

]−1
ιτφ,

(6.3.19)

together with
u∗Q(τ)(µ) = ev0v

∗
Q(τ)(µ). (6.3.20)

Lemma 6.3.4. Consider the setting of Lemma 6.3.3. Then the functions u∗Q(τ)(µ)

defined in (6.3.20) satisfy items (ii) and (iv) of Proposition 6.1.4.

Proof. The uniform bound on the operator norm of u∗Q(τ)(µ) and the exponential

estimate (6.3.6) follow directly from the definition (6.3.20), together with the uniform
bounds (6.3.14) and (6.3.16).
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Lemma 6.3.5. Consider the setting of Lemma 6.3.3. Then we have the identity (6.3.4)
and the limit (6.3.5) holds uniformly for τ ≥ 0.

Proof. Pick any τ ≥ 0 and u ∈ BC⊕τ,−α. Then we can compute

ιτΠQ(τ)ev0ιτΠQ(τ)ev0u = ιτΠQ(τ)ΠQ(τ)ev0u

= ιτΠQ(τ)ev0u.
(6.3.21)

In particular, we see from the definition (6.3.11) that

ιτΠQ(τ)ev0Gτ (µ) = 0. (6.3.22)

This implies
ΠQ(τ)ev0Gτ (µ) = 0, (6.3.23)

which yields

πQ(τ)u
∗
Q(τ)(µ) = ΠQ(τ)ev0

[
I − Gτ (µ)

]−1
ιτ = I, (6.3.24)

as desired. The remainder term (6.3.5) can be bounded by considering the identity[
I −ΠQ(τ)

]
u∗Q(τ)(µ) = ev0

[[
I − Gτ (µ)

]−1 − I
]
ιτ , (6.3.25)

which approaches 0 as µ→ µ0, uniformly for τ ≥ 0.

We now set out to show that Range
(
u∗Q(τ)(µ)

)
= Q(τ, µ). The “⊂”-embedding can

be established by a relatively direct calculation. The “⊃”-embedding follows from the
property (6.3.14) for Gτ .

Lemma 6.3.6. Consider the setting of Lemma 6.3.3. Then we have the inclusion
Range

(
u∗Q(τ)(µ)

)
⊂ Q(τ, µ).

Proof. Similarly to (5.5.26), we pick a basis for Range
(
Λ(−α),+(µ0)

)⊥
that consists

of continuous functions for which the support is contained in the interval [−r0, 0]. We
recall the Ck-smooth operator

C(−α),+ : U ′ → L
(
L∞(−α),+(R;CM ),Range

(
Λ(−α),+(µ0)

)⊥)
(6.3.26)

from Proposition 6.2.3. Recall that α was chosen small enough to have e±2αb ∈W 1,∞(R;CM )
for any b ∈ B ∪ B∗. Since α > 0, we have L∞(−α),+(R;CM ) ⊂ L∞(R;CM ). As such, we

have Λ(µ)x = Λ(−α),+(µ)x for any x ∈ W 1,∞
(−α),+(R;CM ) and any µ ∈ U ′ on account of

(6.2.17). Pick φ ∈ Q(τ) and write

u(t) = [v∗Q(τ)(µ)φ](t− τ), (6.3.27)

so that
evτu = u∗Q(τ)(µ)φ. (6.3.28)
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Writing

uτ (t) = u(t+ τ), (6.3.29)

we can compute

u(t) = [ιτφ](t− τ) + [Gτ (µ)uτ ](t− τ) (6.3.30)

for t ∈ R, so that

[Λ(µ)u](t) =
[
Λ(µ)ιτφ(· − τ)

]
(t) +

[
Λ(µ)Gτ (µ)uτ (· − τ)

]
(t). (6.3.31)

For t ∈ R we can now compute

[Λ(µ)ιτφ(· − τ)](t) =
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t) +

[
Λ(µ0)ιτφ(· − τ)

]
(t),

(6.3.32)
together with

L :=
[
Λ(µ)Gτ (µ)uτ (· − τ)

]
(t)

=
[[
L(µ0)− L(µ)

]
Gτ (µ)uτ (· − τ)

]
(t) +

[
Λ(µ0)[Gτ (µ)uτ ](· − τ)

]
(t)

=
[[
L(µ0)− L(µ)

][
Gτ (µ)[I − Gτ (µ)]−1ιτφ(· − τ)

]]
(t)

+
[
Λ(µ0)Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

−
[
Λ(µ0)ιτΠQ(τ)ev0Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

:= L1 + L2 + L3.

(6.3.33)

We can compute

L1 =
[[
L(µ0)− L(µ)

][
Gτ (µ)[I − Gτ (µ)]−1ιτφ(· − τ)

]]
(t)

= −
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t)

+
[[
L(µ0)− L(µ)

][
[I − Gτ (µ)]−1ιτφ(· − τ)

]]
(t)

= −
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t) +

[[
L(µ0)− L(µ)

]
uτ (· − τ)

]
(t).

(6.3.34)

Moreover, an application of Proposition 6.2.3 yields

L2 =
[
Λ(µ0)Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

=
[[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t) +

[
C(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t).

(6.3.35)
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Combining (6.3.31), (6.3.32), (6.3.34) and (6.3.35), we obtain

[Λ(µ)u](t) =
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t) +

[
Λ(µ0)ιτφ(· − τ)

]
(t)

−
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t) +

[[
L(µ0)− L(µ)

]
uτ (· − τ)

]
(t)

+
[[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

+
[
C(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

−
[
Λ(µ0)ιτΠQ(τ)ev0Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

=
[
Λ(µ0)ιτφ(· − τ)

]
(t) +

[
C(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

−
[
Λ(µ0)ιτΠQ(τ)ev0Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t),

(6.3.36)
for any t ∈ R. For t ≥ τ we obtain[

Λ(µ0)ιτφ(· − τ)
]
(t) = 0, (6.3.37)

since φ ∈ Q(τ). In addition, we recall that we chose C(−α),+(µ0)v(s) to be identically
zero for s ≥ 0. Finally, for t ≥ τ we obtain[

Λ(µ0)ιτΠQ(τ)ev0Λqinv
(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t) = 0 (6.3.38)

by definition of Q(τ). Hence we must have

[Λ(µ)u](t) =
[
Λ(µ0)ιτφ(· − τ)

]
(t) +

[
C(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

−
[
Λ(µ0)ιτΠQ(τ)ev0Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

= 0
(6.3.39)

for any t ≥ τ . In particular, we get u ∈ Q(τ, µ) and thus u∗Q(τ)(µ)φ ∈ Q(τ, µ), as
desired.

Lemma 6.3.7. Consider the setting of Lemma 6.3.3. Then we have the inclusion
Range

(
u∗Q(τ)(µ)

)
⊃ Q(τ, µ).

Proof. We pick q1
µ ∈ Q(τ, µ) and write

φ = ΠQ(τ)ev0q
1
µ,

q2
µ(t) = [v∗Q(τ)(µ)φ](t− τ).

(6.3.40)

By Lemma 6.3.6, we see that q2
µ ∈ Q(τ, µ) and therefore also qµ := q1

µ − q2
µ ∈ Q(τ, µ).

Moreover, we can compute

ΠQ(τ)ev0qµ = ΠQ(τ)ev0q
1
µ −ΠQ(τ)u

∗
Q(τ)(µ)φ

= φ− φ

= 0

(6.3.41)
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using (6.3.4). Upon setting

qµ0
= Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
qµ − qµ, (6.3.42)

we note that

Λ(µ0)qµ0
=

[
L(µ)− L(µ0)

]
qµ + C(−α),+(µ0)

[
L(µ)− L(µ0)

]
qµ − Λ(µ0)qµ

= −Λ(µ)qµ + C(−α),+(µ0)
[
L(µ)− L(µ0)

]
qµ,

(6.3.43)
since L(µ)− L(µ0)− Λ(µ0) = −Λ(µ). In particular, we see that the right-hand side of
(6.3.43) is zero on the halfline [τ,∞), so we must have qµ0

∈ Q(τ) and hence

Gτ (µ)qµ = qµ + qµ0
− ιτΠQ(τ)ev0[qµ + qµ0

]

= qµ + qµ0
− qµ0

= qµ0 .

(6.3.44)

This yields qµ ∈ ker(I−Gτ (µ)) = {0}, which implies evτq
1
µ = evτq

2
µ ∈ Range

(
u∗Q(τ)(µ)

)
and completes the proof.

Proof of Proposition 6.3.1. In the case where rmin > −∞ we can follow the proof of
[104, Lem. 5.2], so we assume that rmin = −∞. In that case, the desired result follows
directly from Lemmas 6.3.3-6.3.7.

For the proof of Proposition 6.3.2, we can proceed in the same fashion as in the proof
of Proposition 6.3.1, where instead of the spaces BC⊕τ,−α, we use the space BC	τ,−α. It

only remains to show that Range
(
u∗R(τ)(µ)

)
⊂ X is closed and to establish (6.3.10).

Lemma 6.3.8. Consider the setting of Proposition 6.3.2. Then Range
(
u∗R(τ)(µ)

)
⊂ X

is closed.

Proof. Consider a sequence {φj}j≥1 in R(τ) and, writing ψj = u∗R(τ)(µ)φj , assume

that ψj → ψ∗. By (6.3.7) we see that ΠR(τ)ψj = φj and by the continuity of ΠR(τ)

this yields φj → ΠR(τ)ψ∗ := φ∗. Since the operator u∗R(τ)(µ) is bounded, we must have

u∗R(τ)(µ)
[
φj − φ∗

]
→ 0 and therefore ψ∗ = u∗R(τ)(µ)φ∗, as desired.

Lemma 6.3.9. Consider the setting of Proposition 6.3.2. Then the uniform bound
(6.3.10) holds for each µ ∈ U ′, each t ∈ [−r0, 0] and each φ ∈ R(τ).

Proof. We fix µ ∈ U ′, −r0 ≤ t ≤ 0 and φ ∈ R(τ) and write

u = Eτ,µu
∗
R(τ)(µ)φ. (6.3.45)

From (6.3.36) we can derive that

[Λ(µ)u](t) =
[
Λ(µ0)ιτφ(· − τ)

]
(t) +

[
C(−α),−(µ0)

[
L(µ)− L(µ0)

]
u
]
(t)

−
[
Λ(µ0)ιτΠR(τ)ev0Λqinv

(−α),−(µ0)
[
L(µ)− L(µ0)

]
u
]
(t)

:= L1 + L2 + L3.

(6.3.46)
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On account of Proposition 5.5.4, we immediately obtain the bound

|L1| =
∣∣[Λ(µ0)ιτφ(· − τ)](t)

∣∣ ≤ K1e
−α|t−τ |‖φ‖∞ (6.3.47)

for some K1 > 0. Recall that α was chosen small enough to have e±2αb ∈W 1,∞(R;CM )
for any b ∈ B ∪ B∗. Let {di}ndi=1 denote a basis for ker(Λ(µ0)∗). In particular, we can
pick a constant K2 > 0 in such a way that the exponential bound

|di(ξ)| ≤ K2e
−2α|ξ| (6.3.48)

holds for any ξ ∈ R and any integer 1 ≤ i ≤ nd. Using the representations from
Proposition 6.2.3 and from (5.5.22) we can compute

L2 =
[
C(−α),−(µ0)

[
L(µ)− L(µ0)

]
u
]
(t)

= −πR⊥
[[
L(µ)− L(µ0)

]
u
]
(t)

+πR⊥
[
Λ(−α),−(µ0)

[
ΠRΛ(−α),−(µ0)

]−1
πR
[
L(µ)− L(µ0)

]
u
]
(t)

= −πR⊥
[[
L(µ)− L(µ0)

]
u
]
(t)

=
nd∑
i=1

[ ∞∫
−∞

di(ξ)∗
[
L(µ0)− L(µ)

]
u(ξ)dξ

]
gi(t).

(6.3.49)
On account of the exponential decay (6.3.9), we can pick a constant K3 > 0, indepen-
dent of µ and u, for which the bound∣∣[L(µ)− L(µ0)

]
u
∣∣(ξ) ≤ K3e

−α(τ−ξ)‖φ‖∞ (6.3.50)

holds for any ξ ≤ τ , while the bound∣∣[L(µ)− L(µ0)
]
u
∣∣(ξ) ≤ K3‖φ‖∞ (6.3.51)

holds for any ξ > τ . In particular, we can estimate

|L2| ≤
nd∑
i=1

[ τ∫
−∞

K2e
−2α|ξ|K3e

−α(τ−ξ)‖φ‖∞dξ +
∞∫
τ

K2e
−2α|ξ|K3‖φ‖∞dξ

]
|gi|(t)

≤ e−ατK2K3‖φ‖∞
[ 0∫
−∞

e3αξdξ +
τ∫
0

e−αξdξ + (2α)−1
]
‖gi‖∞

≤ e−α(τ−t)K2K3‖φ‖∞
[ 0∫
−∞

e3αξdξ +
∞∫
0

e−αξdξ + (2α)−1
]
‖gi‖∞eαr0 .

(6.3.52)
Finally, we obtain the bound

|L3| =
∣∣∣[Λ(µ0)ιτΠR(τ)ev0Λqinv

(−α),−(µ0)
[
L(µ)− L(µ0)

]
u
]
(t)
∣∣∣

≤ Ke−α|t−τ |‖ΠR(τ)ev0Λqinv
(−α),−(µ0)

[
L(µ)− L(µ0)

]
u‖∞

≤ K3e
−α|t−τ |‖φ‖∞

(6.3.53)
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for some constant K3 > 0, using the uniform bounds and the exponential decay in
Theorem 5.2.8 and the bound (6.3.9).

Proof of Proposition 6.3.2. The desired result follows from Lemmas 6.3.8 and
6.3.9.
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