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Chapter 5

Exponential dichotomies for
nonlocal differential operators
with infinite-range interactions

This chapter has been submitted as W.M. Schouten-Straatman and H.J. Hupkes “Ex-
ponential Dichotomies for Nonlocal Differential Operators with Infinite Range Interac-
tions” [149].

Abstract. We show that MFDEs with infinite range discrete and/or continuous
interactions admit exponential dichotomies, building on the Fredholm theory developed
by Faye and Scheel for such systems. For the half line, we refine the earlier approach
by Hupkes and Verduyn Lunel. For the full line, we construct these splittings by gener-
alizing the finite-range results obtained by Mallet-Paret and Verduyn Lunel. The finite
dimensional space that is ‘missed’ by these splittings can be characterized using the
Hale inner product, but the resulting degeneracy issues raise subtle questions that are
much harder to resolve than in the finite-range case. Indeed, there is no direct analogue
for the standard ’atomicity’ condition that is typically used to rule out degeneracies,
since it explicitly references the smallest and largest shifts.

We construct alternative criteria that exploit finer information on the structure
of the MFDE. Our results are optimal when the coefficients are cyclic with respect
to appropriate shift semigroups or when the standard positivity conditions typically
associated to comparison principles are satisfied. We illustrate these results with explicit
examples and counter-examples that involve the Nagumo equation.
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Key words: Exponential dichotomies, functional differential equations of mixed type,
nonlocal interactions, infinite-range interactions, Hale inner product, cyclic coefficients.

5.1 Introduction

Many physical, chemical and biological systems feature nonlocal interactions that can
have a fundamental impact on the underlying dynamical behaviour. A typical mech-
anism to generate such nonlocality is to include dependencies on spatial averages of
model components, often as part of a multi-scale approach. For example, plants take
up water from the surrounding soil through their spatially-extended root network, which
can be modelled by nonlocal logistic growth terms [84, 85]. The propagation of cancer
cells depends on the orientation of the surrounding extracellular matrix fibres, which
leads naturally to nonlocal flux terms [155]. Additional examples can be found in the
fields of population dynamics [25, 86, 153, 154, 157], material science [5, 8, 71, 164] and
many others.

A second fundamental route that leads to nonlocality is the consideration of spatial
domains that feature some type of discreteness. The broken translational and rotational
symmetries often lead to highly complex and surprising behaviour that disappears in
the continuum limit. For example, recent experiments have established that light waves
can be trapped in well-designed photonic lattices [136, 163]. Other settings where dis-
crete topological effects play an essential role include the movement of domain walls
[53], the propagation of dislocations through crystals [35] and the development of frac-
tures in elastic bodies [156]. In fact, even the simplest discretizations of standard scalar
reaction-diffusion systems are known to have far richer properties than their continuous
local counterparts [40, 42, 105].

Myelinated nerve fibres A commonly used modelling prototype to illustrate these
issues concerns the propagation of electrical signals through nerve fibres. These nerve
fibres are insulated by segments of myelin coating that are separated by periodic gaps
at the so-called nodes of Ranvier [143]. Signals travel quickly through the coated re-
gions, but lose strength rapidly. The movement through the gaps is much slower, but
the signal is chemically reinforced in preparation for the next segment [127].

One of the first mathematical models proposed to capture this propagation was the
FitzHugh-Nagumo partial differential equation (PDE) [76]. This model is able to re-
produce the travelling pulses observed in nature [75] and has been studied extensively
as a consequence. These studies have led to the development of many important math-
ematical techniques in areas such as singular perturbation theory [31–33, 97, 117, 119]
variational calculus [36], Maslov index theory [10, 37, 46, 47, 101] and stochastic dynam-
ics [92–94]. However, as a fully local equation it is unable to incorporate the discrete
structure in a direct fashion.



5.1. INTRODUCTION 241

In order to repair this, Keener and Sneyd [123] proposed to replace the FitzHugh-
Nagumo PDE by its discretized counterpart

u̇j = uj+1 + uj−1 − 2uj + g(uj ; a)− wj ,

ẇj = ρ[uj − wj ],
(5.1.1)

indexed on the spatial lattice j ∈ Z. Here the variable uj describes the potential on
the jth node of Ranvier, while wj describes a recovery component. The nonlinearity
can be taken as the bistable cubic g(u; a) = u(1 − u)(u − a) for some a ∈ (0, 1) and
0 < ρ � 1 is a small parameter. Such an infinite system of coupled ODEs is referred
to as a lattice differential equation (LDE)—a class of equations that arises naturally
when discretizing the spatial derivatives in PDEs.

Since we are mainly interested in the propagation of electrical pulses, we introduce
the travelling wave Ansatz

(uj , wj)(t) = (u,w)(j + ct), (u,w)(±∞) = 0. (5.1.2)

Here c is the speed of the wave and the smooth functions (u,w) : R→ R2 represent the
two waveprofiles. Plugging (5.1.2) into the LDE (5.1.1) yields the differential equation

cu′(σ) = u(σ + 1) + u(σ − 1)− 2u(σ) + g(u(σ); a)− w(σ),

cw′(σ) = ρ[u(σ)− w(σ)]
(5.1.3)

in which σ = j + ct. Since this system contains both advanced (positive) and retarded
(negative) shifts, such an equation is called a functional differential equation of mixed
type (MFDE).

In [108, 109] Hupkes and Sandstede established the existence and nonlinear stability
of such pulses, under a ‘nonpinning’ condition for the associated Nagumo LDE

u̇j = uj+1 + uj−1 − 2uj + g(uj ; a). (5.1.4)

This LDE arises when considering the first component of (5.1.1) with w = 0. It admits
travelling front solutions

uj(t) = u∗(j + c∗t), u∗(−∞) = 0, u∗(+∞) = 1 (5.1.5)

that necessarily satisfy the MFDE

c∗u
′
∗(σ) = u∗(σ + 1) + u∗(σ − 1)− 2u∗(σ) + g(u∗(σ); a). (5.1.6)

The ‘nonpinning’ condition mentioned above demands that the wavespeed c∗—which
depends uniquely on a [131]—does not vanish. In the PDE case this is automatic for
a 6= 1

2 , but in the discrete setting this is a nontrivial demand due to the energy barriers
caused by the lattice [16, 56, 62, 99, 122, 132].
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The main idea behind the approach developed in [108, 109] is to use Lin’s method
[104, 128] to combine the fronts (5.1.5) and their reflections to form so-called quasi-
front and quasi-back solutions to (5.1.3). Such solutions admit gaps in predetermined
finite-dimensional subspaces that can be closed by choosing the correct wavespeed.
The existence of these subspaces is directly related to the construction of exponential
dichotomies for the linear MFDE

cu′(σ) = u(σ + 1) + u(σ − 1)− 2u(σ) + gu(u∗(σ); a)u(σ), (5.1.7)

which arises as the linearization of (5.1.6) around the front solutions (5.1.5).

Exponential dichotomies for ODEs Roughly speaking, a linear differential equa-
tion is said to admit an exponential dichotomy if the space of initial conditions can be
written as a direct sum of a stable and an unstable subspace. Initial conditions in the
former can be continued as solutions that decay exponentially in forward time, while
initial conditions in the latter admit this property in backward time. In order to be
more specific, we first restrict our attention to the ODE

d
dσu = A(σ)u, (5.1.8)

referring to the review paper by Sandstede [147] for further details. Here u(σ) ∈ CM
and A(σ) is an M ×M matrix for any σ ∈ R. Let us write Φ(σ, τ) for the evolution
operator associated to (5.1.8), which maps u(τ) to u(σ).

Suppose first that the system (5.1.8) is autonomous and hyperbolic, i.e. A(σ) = A
for some matrix A that has no spectrum on the imaginary axis. Writing Es0 and Eu0 for
the generalized stable respectively unstable eigenspaces of A, we subsequently obtain
the decomposition

CM = Es0 ⊕ Eu0 . (5.1.9)

In addition, each of these subspaces is invariant under the action of Φ(σ, τ) = exp[A(σ−
τ)], which decays exponentially on Es0 for σ > τ and on Eu0 for σ < τ .

In order to generalize such decompositions to non-autonomous settings, the splitting
(5.1.9) will need to vary with the base time τ ∈ I. Here we pick I to be one of the three
intervals R−, R+ or R. In particular, (5.1.8) is said to be exponentially dichotomous
on I if the following properties hold.

• There exists a family of projection operators {P (τ)}τ∈I on CM that commute
with the evolution Φ(σ, τ).

• The restricted operators Φs(σ, τ) := Φ(σ, τ)P (τ) and Φu(σ, τ) := Φ(σ, τ)
(
id −

P (τ)
)

decay exponentially for σ ≥ τ respectively σ ≤ τ .

Many important features concerning these dichotomies were first described by Palmer
in [139, 140]. For example, the well-known roughness theorem states that exponential
dichotomies persist under small perturbations of the matrices A(σ). In addition, there



5.1. INTRODUCTION 243

is a close connection with the Fredholm properties of the associated linear operators.
Consider for example the family of linear operators

Λ(λ) : H1(R;CM ) → L2(R;CM ), u 7→ d
dσu−A(σ)u− λu, (5.1.10)

defined for λ ∈ C. Then Λ(λ) is a Fredholm operator if and only if the system

d
dσu = A(σ)u+ λu (5.1.11)

admits exponential dichotomies on both R+ and R−. In addition, Λ(λ) is invertible if
and only if (5.1.11) admits exponential dichotomies on R. Since systems of the form
(5.1.11) arise frequently when considering the spectral properties of wave solutions to
nonlinear PDEs, exponential dichotomies have a key role to play in this area. In fact,
the well-known Evans function [63, 139–141] detects precisely when the dichotomies on
R− and R+ can be patched together to form a dichotomy on R.

Exponential dichotomies for MFDEs Several important points need to be ad-
dressed before the concepts above can be extended to linear MFDEs such as (5.1.7).
The first issue is that MFDEs are typically ill-posed [144], preventing a natural ana-
logue of the evolution operator Φ to be defined. The second issue is that CM is no
longer an appropriate state space. For example, computing u′(0) in (5.1.7) requires
knowledge of u on the interval [−1, 1]. These issues were resolved independently and
simultaneously by Mallet-Paret and Verduyn Lunel in [133] and by Härterich, Scheel
and Sandstede in [96] by decomposing suitable function spaces into separate parts that
individually do admit (exponentially decaying) semiflows.

Applying the results in [133] to (5.1.7), we obtain the decomposition

C([−1, 1];R) = P (τ) +Q(τ) + Γ(τ) (5.1.12)

for each τ ∈ R. Here Γ(τ) is finite dimensional, while functions in P (τ) and Q(τ)
can be extended to exponentially decaying solutions of the MFDE (5.1.7) on the inter-
vals (−∞, τ ] respectively [τ,∞). In particular, the intersection P (τ) ∩ Q(τ) contains
segments of functions that belong to the kernel of the associated linear operator

[Lv](σ) = −cv′(σ) + v(σ + 1) + v(σ − 1)− 2v(σ) + gu(u∗(σ); a)v(σ). (5.1.13)

After dividing these segments out from either P or Q, the decomposition (5.1.12) be-
comes a direct sum. Similar results were obtained in [96], but here the authors use the
augmented statespace CM × L2([−1, 1];R).

In many applications, it is crucial to understand the dimension of Γ(τ). A key tool
to achieve this is the so-called Hale inner product [91], which in the present context is
given by

〈ψ, φ〉τ = 1
c

[
ψ(0)φ(0) +

0∫
−1

ψ(s+ 1)φ(s)ds−
1∫
0

ψ(s− 1)φ(s)ds
]

(5.1.14)
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for two functions φ, ψ ∈ C([−1, 1];R). Indeed, one of the main results achieved in [133]
is the identification

P (τ) +Q(τ) =
{
φ ∈ C([−1, 1];R) : 〈b(τ + ·), φ〉τ = 0 for every b ∈ kerL∗

}
.

(5.1.15)
Here L∗ stands for the formal adjoint of L, which arises by switching the sign of c in
(5.1.13).

There are two potential issues that can impact the usefulness of this result. The first
is that the Hale inner product could be degenerate, the second is that kernel elements
of L∗ could vanish on large intervals. For instance, [52, Ex. V.4.8] features an example
system that admits compactly supported kernel elements, which are often referred to as
small solutions. Fortunately, both types of degeneracies can be ruled out by imposing
an invertibility condition on the coefficients related to the smallest and largest shifts in
the MFDE. This is easy to check and obviously satisfied for (5.1.7).

These results from [96, 133] have been used in a variety of settings by now. These
include the construction of travelling waves [108, 115], the stability analysis of such
waves [11, 109], the study of homoclinic bifurcations [83, 104], the analysis of pseu-
dospectral approximations [22] and the detection of indeterminacy in economic models
[48]. Partial extensions of these results for MFDEs taking values in Banach spaces can
be found in [102], but only for autonomous systems at present.

Infinite-range interactions In recent years, an active interest has arisen in systems
that feature interactions that can take place over arbitrarily large distances. For exam-
ple, diffusion models based on Lévy processes lead naturally to fractional Laplacians in
the underlying PDE [2, 14]. These operators are inherently nonlocal and often feature
infinitely many terms in their discretization schemes [43]. Systems of this type have
been used for example to describe amorphous semiconductors [87], liquid crystals [44],
porous media [19] and game theory [18]; see [27] for an accessible introduction. Exam-
ples featuring other types of infinite-range interactions include Ising models to describe
the behaviour of magnetic spins on a grid [6] and SIR models to capture the spread of
infectious diseases [126].

Returning to the study of nerve axons, let us now consider large networks of neurons.
These neurons interact with each other over large distances through their connecting
fibres [15, 23, 24, 142]. Such systems generally have a very complex structure and finding
effective equations to describe their behaviour is highly challenging. One candidate that
has been proposed [24] involves FitzHugh-Nagumo type models such as

u̇j = h−2
∑

k∈Z>0

e−k
2

[uj+k + uj−k − 2uj ] + g(uj ; a)− wj ,

ẇj = ρ[uj − wj ].
(5.1.16)

Here the constant h > 0 represents the (scaled) discretization distance. Alternatively,
one can replace or supplement the sum in (5.1.16) by including a convolution with a
smooth kernel.
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The travelling wave Ansatz

(uj , wj)(t) = (uh, wh)(hj + cht), (uh, wh)(±∞) = 0 (5.1.17)

now yields the MFDE

chu
′
h(σ) = h−2

∑
k∈Z>0

e−k
2

[uh(σ + hk) + uh(σ − hk)− 2uh(σ)]

+g(uh(σ); a)− wh(σ)

chw
′
h(σ) = ρ[uh(σ)− wh(σ)],

(5.1.18)

which includes infinite-range interactions. In particular, it is no longer possible to apply
the exponential splitting results from [96, 133]. Nevertheless, Faye and Scheel obtained
an existence result for such waves in [69], pioneering a new approach to analyze spatial
dynamics that circumvents the use of a state space. Extending the spectral convergence
technique developed by Bates, Chen and Chmaj [6], we were able to show that such
waves are nonlinearly stable [150], but only for small h > 0. In any case, at present
there is no clear mechanism that allows finite-range results to be easily extended to
settings with infinite-range interactions.

Infinite-range MFDEs In this paper we take a step towards building such a bridge
by constructing exponential dichotomies for the non-autonomous, integro-differential
MFDE

ẋ(σ) =
∞∑

j=−∞
Aj(σ)x(σ + rj) +

∫
RK(ξ;σ)x(σ + ξ)dξ, (5.1.19)

which is allowed to have infinite-range interactions. Here, we have x(σ) ∈ CM for t ∈ R
and the scalars rj for j ∈ Z are called the shifts. Typically, we use Cb(R) as our state
space, but whenever this is possible we use smaller spaces to formulate sharper results.
This allows us to consider settings where the shifts are unbounded in one direction only.
This occurs for example when considering delay equations.

The Fredholm properties of the linear operator associated to (5.1.19) have been
described by Faye and Scheel in [68]. We make heavy use of these properties here,
continuing the program initiated in the bachelor thesis of Jin [116], who considered au-
tonomous versions of (5.1.19). In such settings, it is possible to extend the techniques
developed by Hupkes and Augeraud-Véron in [102] for MFDEs posed on Banach spaces.
However, it is unclear at present how to generalize these methods to non-autonomous
systems.

Splittings on the full line In §5.3-5.4 we construct exponential splittings for (5.1.19)
on the full line. Our main result essentially states that the decomposition (5.1.12) and
the characterization (5.1.15) remain valid for the state space Cb(R). In addition, we
explore the Fredholm and continuity properties of the projection operators associated
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to the splitting (5.1.12). Our arguments in these sections are heavily based on the
framework developed by Mallet-Paret and Verduyn Lunel in [133]. However, the un-
bounded shifts raise some major technical challenges.

The primary complication is that the iteration scheme used in [133] to establish the
exponential decay of functions in P (τ) and Q(τ) breaks down. Indeed, the authors
show that there exist L > 0 so that supremum of the former solutions on half-lines
(−∞, τ∗] is halved each time one makes the replacement τ∗ 7→ τ∗ − L. To achieve this,
they exploit the fact that the behaviour of solutions on the latter interval does not ‘see’
the behaviour at τ∗. This is no longer true for unbounded shifts and required us to
develop a novel iteration scheme that is able to separate short-range from long-range
effects.

A second major complication arises whenever continuous functions are approxi-
mated by C1-functions. Indeed, in [133] these approximations automatically have
bounded derivatives, but in our case we can no longer assume that these functions
live in W 1,∞(R). This prevents a direct application of the Fredholm theory in [68],
forcing us to take a more involved approach to carefully isolate the regions where the
unbounded derivatives occur.

The final obstacle is caused by the frequent use of the Ascoli-Arzela theorem in
[133]. Indeed, in our setting we only obtain convergence on compacta instead of full
uniform convergence. Fortunately, this can be circumvented relatively easily by using
the exponential decay to provide the missing compactness at infinity.

Splittings on the half line We proceed in §5.5 by constructing exponential di-
chotomies for (5.1.19) on the half-line R+. In particular, for any τ ≥ 0 we establish the
decomposition

Cb(R) = Q(τ)⊕R(τ). (5.1.20)

Here Q(τ) contains (shifted) exponentially decaying functions that satisfy (5.1.19) on
[τ,∞), while (shifts of) functions in R(τ) satisfy (5.1.19) on [0, τ ]. This generalizes the
finite-range results obtained by Hupkes and Verduyn Lunel in [104], which we achieve
by following a very similar strategy.

Besides the general complications discussed above, the main technical obstruction
here is that the construction of half-line solutions to inhomogeneous versions of (5.1.19)
becomes rather delicate. Indeed, the approach taken in [104] modifies the inhomoge-
neous terms outside the ‘influence region’ of the half-line of interest. However, in our
setting here this region encompasses the whole line, forcing us to revisit the problem
in a more elaborate—and technical—fashion.

Degeneracies In order to successfully exploit the characterization (5.1.15) in appli-
cations, it is essential to revisit the degeneracy issues related to the Hale inner product
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and the kernel elements of L∗. Unfortunately, the absence of a ‘smallest’ and ‘largest’
shift in the infinite-range setting prevents an easy generalization of the invertibility
criterion discussed above. We explore this crucial issue at length in §5.6.

In order to sketch some of the issues involved, we discuss the MFDE

cu′(σ) =
∞∑
k=1

γk[u(σ + k) + u(σ − k)− 2u(σ)] + gu(u∗(σ); a)u(σ), (5.1.21)

which can be interpreted as an infinite-range version of the MFDE (5.1.7) that arises
by linearizing the Nagumo LDE around a travelling wave u∗. In particular, we again
assume the limits (5.1.5). This MFDE fits into our framework provided that the coef-
ficients γk decay exponentially.

For the case γk = e−k, we construct an explicit nontrivial function ψ that satisfies
〈ψ, φ〉τ = 0 for each φ ∈ Cb(R), where 〈·, ·〉τ denotes the appropriate Hale inner product
for our setting. In particular, even for strictly positive coefficients there is no guaran-
tee that the Hale inner product is nondegenerate. We also provide such examples for
systems featuring convolution kernels.

One way to circumvent this problem is to focus specifically on the kernel elements
in (5.1.15). If these can be chosen to be nonnegative along with the coefficients γk, then
we are able to recover the relation between the dimension of Γ(τ) in (5.1.12) and the
dimension of the kernel of the operator L∗ associated to the adjoint of (5.1.19). Fortu-
nately, such positivity conditions follow naturally for systems that admit a comparison
principle.

We also explore a second avenue that can be used without sign restrictions on the
coefficients γk. This requires us to borrow some abstract functional analytic results.
In particular, whenever the collection of sequences {γk}k≥N obtained by taking N ∈ N
spans an infinite dimensional subset of `2(N;C), we show that the Hale inner product
is nondegenerate in a suitable sense. Fortunately, this rather abstract condition can
often be made concrete. For example, we show that it can be enforced by imposing the
Gaussian decay rate γk ∼ exp[−k2].

5.2 Main results

Our main results consider the integro-differential MFDE1

ẋ(t) =
∞∑

j=−∞
Aj(t)x(t+ rj) +

∫
R
K(ξ; t)x(t+ ξ)dξ, (5.2.1)

1In the interest of readability we use t as our main variable throughout the remainder of this paper,
departing from the notation σ that we used in §5.1. However, the reader should keep in mind that
this variable is related to a spatial quantity for most applications.
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where we take x ∈ CM for some integer M ≥ 1. The set of scalarsR := {rj : j ∈ Z} ⊂ R
and the support of K(·; t) need not be bounded. In fact, we pick two constants

−∞ ≤ rmin ≤ 0 ≤ rmax ≤ ∞, rmin < rmax (5.2.2)

in such a way that

rj ∈ (rmin, rmax), for all j ∈ Z,

supp
(
K(·; t)

)
⊂ (rmin, rmax), for all t ∈ R,

(5.2.3)

while |rmin| and |rmax| are as small as possible. One readily sees that potential solutions
to (5.2.1) must be defined on intervals that have a minimal length of rmax − rmin.

Naturally, one can always artificially increase the quantities |rmin| and |rmax| by
adding matrices Aj = 0 to (5.2.1) with large associated shifts |rj | � 1. However, we
will see that this only weakens the predictive power of our results by needlessly enlarg-
ing the relevant state spaces.

A more general version of (5.2.1) might take the form

ẋ(t) =
rmax∫
rmin

dθ(t, θ)x(t+ θ), (5.2.4)

where dθ(t, θ) is an M ×M matrix of finite Lebesgue-Stieltjes measures on (rmin, rmax)
for each t ∈ R. However, the adjoint of the system (5.2.4) is not always a system of
similar type, so to avoid technical complications we will restrict ourselves to the system
(5.2.1).

We now formulate our two main conditions on the coefficients in (5.2.1), which
match those used in [68]. As a preparation, we define the exponentially weighted space

L1
η(R;CM×M ) :=

{
V ∈ L1(R;CM×M )

∣∣∣‖eη|·|V(·)‖L1(R;CM×M ) <∞
}

(5.2.5)

for any η > 0, with its natural norm

‖V‖η := ‖eη|·|V(·)‖L1(R;CM×M ). (5.2.6)

We note that the conditions onR below are not actual restrictions as long as the closure
R is countable. Indeed, one can simply add the missing shifts to R and write Aj = 0
for the associated matrix.

Assumption (HA). For each j ∈ Z the map t 7→ Aj(t) is bounded and belongs to
C1(R;CM×M ). Moreover, there exists a constant η̃ > 0 for which the bound

∞∑
j=−∞

‖Aj(·)‖∞eη̃|rj | < ∞ (5.2.7)

holds. In addition, the set R is closed with 0 ∈ R.
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Assumption (HK). There exists a constant η̃ > 0 so that the following properties
hold.

• The map t 7→ K(·; t) belongs to C1
(
R;L1

η̃(R;CM×M )
)
.

• The kernel K is localized in the sense that

sup
t∈R
‖K(·; t)‖η̃ + sup

t∈R
‖ ddtK(·; t)‖η̃ < ∞,

sup
t∈R
‖K(·; t− ·)‖η̃ + sup

t∈R
‖ ddtK(·; t− ·)‖η̃ < ∞.

(5.2.8)

Our third structural condition involves the behaviour of the coefficients in (5.2.1)
as t → ±∞. Following [68, 130], we say that the system (5.2.1) is asymptotically
hyperbolic if the limits

Aj(±∞) := lim
t→±∞

Aj(t), K(ξ;±∞) := lim
t→±∞

K(ξ; t) (5.2.9)

exist for each j ∈ Z and ξ ∈ R, while the characteristic functions

∆±(z) = zI −
∫
RK(ξ;±∞)ezξdξ −

∞∑
j=−∞

Aj(±∞)ezrj (5.2.10)

associated to the limiting systems

ẋ(t) =
∞∑

j=−∞
Aj(±∞)x(t+ rj) +

∫
R
K(ξ;±∞)x(t+ ξ)dξ (5.2.11)

satisfy

det ∆±(iy) 6= 0 (5.2.12)

for all y ∈ R. In fact, we require that these limiting systems are approached in a
summable fashion.

Assumption (HH). The system (5.2.1) is asymptotically hyperbolic and satisfies the
limits

lim
t→±∞

∞∑
j=−∞

|Aj(t)−Aj(±∞)|eη̃|rj | = 0, (5.2.13)

together with

lim
t→±∞

‖K(·; t)−K(·;±∞)‖η̃ = 0, lim
t→±∞

‖K(·; t− ·)−K(·;±∞)‖η̃ = 0.

(5.2.14)

Bounded solutions to the system (5.2.1) can be interpreted as kernel elements of
the linear operator Λ : W 1,∞(R)→ L∞(R) that acts as

(Λx)(t) = ẋ(t)−
∞∑

j=−∞
Aj(t)x(t+ rj)−

∫
R
K(ξ; t)x(t+ ξ)dξ. (5.2.15)
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We will write Λ∗ : W 1,∞(R)→ L∞(R) for the formal adjoint of this operator, which is
given by

(Λ∗y)(t) = −ẏ(t)−
∞∑

j=−∞
Aj(t− rj)†y(t− rj)−

∫
R
K(ξ; t− ξ)†y(t− ξ)dξ,

(5.2.16)
using † to denote the conjugate transpose of a matrix. Indeed, one may readily verify
the identity

〈y,Λx〉L2(R) = 〈Λ∗y, x〉L2(R) (5.2.17)

whenever x, y ∈ H1(R).

For convenience, we borrow the notation from [104, 133] and write

B = ker(Λ), B∗ = ker(Λ∗). (5.2.18)

The following result obtained by Faye and Scheel describes several useful Fredholm
properties that link these kernels to the ranges of the operators Λ and Λ∗.

Proposition 5.2.1 ([68, Thm. 2]). Assume that (HA), (HK) and (HH) are satisfied.
Then both the operators Λ and Λ∗ are Fredholm operators. Moreover, the kernels and
ranges satisfy the identities

Range(Λ) = {h ∈ L∞(R) |
∞∫
−∞

y(t)†h(t)dt = 0 for every y ∈ B∗},

Range(Λ∗) = {h ∈ L∞(R) |
∞∫
−∞

x(t)†h(t)dt = 0 for every x ∈ B}
(5.2.19)

and the Fredholm indices can be computed by

ind(Λ) = −ind(Λ∗) = dimB − dimB∗. (5.2.20)

Finally, there exist constants C > 0 and 0 < α ≤ η̃ so that the estimate

|b(t)| ≤ Ce−α|t|‖b‖∞ (5.2.21)

holds for any b ∈ B ∪ B∗ and any t ∈ R.

5.2.1 State spaces

Let us introduce the intervals

DX = (rmin, rmax), DY = (−rmax,−rmin), (5.2.22)

together with the state spaces

X = Cb(DX), Y = Cb(DY ), (5.2.23)

which contain bounded continuous functions that we measure with the supremum norm.
Suppose now that x and y are two bounded continuous functions that are defined on
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(at least) the interval t + DX respectively t + DY . We then write xt ∈ X and yt ∈ Y
for the segments

xt(θ) = x(t+ θ), yt(θ) = y(t+ θ), (5.2.24)

in which θ ∈ DX respectively θ ∈ DY . This allows us to introduce the kernel segment
spaces

B(τ) = {φ ∈ X | φ = xτ for some x ∈ B},

B∗(τ) = {ψ ∈ Y | ψ = yτ for some y ∈ B∗}
(5.2.25)

for every τ ∈ R. Observe that B(τ) and B∗(τ) are just shifted versions of B and B∗ if
rmin = −∞ and rmax =∞ both hold.

The Hale inner product [91] provides a useful coupling between X and Y . The
natural definition in the current setting is given by

〈ψ, φ〉t = ψ(0)†φ(0)−
∞∑

j=−∞

rj∫
0

ψ(s− rj)†Aj(t+ s− rj)φ(s)ds

−
∫
R

r∫
0

ψ(s− r)†K(r; t+ s− r)φ(s)dsdr
(5.2.26)

for any pair (φ, ψ) ∈ X×Y . Note that, by decreasing η̃ if necessary, we can strengthen
(5.2.7) to obtain

∞∑
j=−∞

‖Aj(·)‖∞|rj |eη̃|rj | < ∞. (5.2.27)

Together with (5.2.8), this ensures that the Hale inner product is well-defined. In
Lemma 5.3.12 below we verify the identity

d
dt 〈y

t, xt〉t = y†(t)[Λx](t) + [Λ∗y](t)†x(t) (5.2.28)

for x, y ∈ W 1,∞(R), which indicates that the Hale inner product can be seen as the
duality pairing between Λ and Λ∗.

An important role in the sequel is reserved for the subspaces

X⊥(τ) = {φ ∈ X | 〈ψ, φ〉τ = 0 for every ψ ∈ B∗(τ)}, (5.2.29)

which have finite codimension

β(τ) := codimXX
⊥(τ) ≤ dimB∗(τ) ≤ dimB∗. (5.2.30)

In the ODE case rmin = rmax = 0, so one readily concludes that β(τ) = dimB∗. How-
ever, in the present setting it is possible for the Hale inner product to be degenerate
or for kernel elements to vanish on large intervals. In these cases, the first respectively
second inequality in (5.2.30) could become strict.

In the finite range setting of [133], the authors ruled out these degeneracies by
imposing an atomic condition on the matrices {Aj} corresponding to the shifts rmin

and rmax. However, there is no obvious way to generalize this condition when |rmin| or
rmax are infinite. As an alternative, some of our results require the following technical
assumption.
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Assumption (HKer). Consider any nonzero d ∈ B ∪B∗ and τ ∈ R. Then d does not
vanish on (−∞, τ ] and also does not vanish on [τ,∞).

A similar assumption was used in [11, Assumption H3(iii)], where the authors re-
move the |rmin| = rmax restriction from the exponential dichotomy constructions in [96].
However, this condition is naturally much harder to verify than the previous atomicity
condition. We explore this issue at length in §5.6, where we present several scenarios
under which (HKer) can be verified.

We highlight one of these scenarios in the result below, which requires sign con-
ditions on elements of B and B∗. Fortunately, for a large class of systems—including
the linearization (5.1.21) of the Nagumo LDE—these are known consequences of the
comparison principle.

Proposition 5.2.2 (see Prop. 5.6.10). Assume that (HA), (HK) and (HH) are sat-
isfied. Assume furthermore that there exists Kconst ∈ Z≥1 for which the following
structural conditions are satisfied.

(a) We have rj = j for j ∈ Z, which implies rmin = −∞ and rmax =∞.

(b) The function Aj(·) is constant and positive definite whenever |j| ≥ Kconst.

(c) For any |ξ| ≥ Kconst the function K(ξ; ·) is constant and positive definite.

(d) We either have B = {0} or B = span{b} for some nonnegative function b. The
same holds for B∗.

Then the nontriviality condition (HKer) is satisfied.

In §5.5-5.6 we explore some of the consequences of (HKer). In addition, we propose
weaker conditions under which equality holds for one or both of the inequalities in
(5.2.30). However, for now we simply state the following result.

Corollary 5.2.3 (cf. [133, Cor. 4.7], see §5.6). Assume that (HA), (HK), (HH) and
(HKer) are all satisfied. Then the identities

dimB(τ) = dimB, β(τ) = dimB∗(τ) = dimB∗ (5.2.31)

hold for every τ ∈ R.

5.2.2 Exponential dichotomies on R
We now set out to describe our exponential splittings for (5.2.1) on the full line R. To
this end, we introduce the intervals

D	τ = (−∞, τ + rmax), D⊕τ = (τ + rmin,∞) (5.2.32)

for each τ ∈ R. Following the notation in [104, 133], this allows us to define the solution
spaces

P(τ) = {x ∈ Cb(D	τ ) | x is a bounded solution of (5.2.1) on (−∞, τ ]},

Q(τ) = {x ∈ Cb(D⊕τ ) | x is a bounded solution of (5.2.1) on [τ,∞)},
(5.2.33)
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together with the associated initial segments

P (τ) = {φ ∈ X | φ = xτ for some x ∈ P(τ)},

Q(τ) = {φ ∈ X | φ = xτ for some x ∈ Q(τ)}. (5.2.34)

For τ ∈ R we call x ∈ P(τ) a left prolongation of an element φ = xτ ∈ P (τ), with
a similar definition for right prolongations. Note that, if rmin = −∞, each φ ∈ P (τ)
is simply a translation of a function in P(τ). The corresponding result holds for Q(τ)
and Q(τ) if rmax =∞.

Again following [133], we also work with the spaces

P̂(τ) = {x ∈ P(τ) |
τ+rmax∫
−∞

y(t)†x(t)dt = 0 for every y ∈ B},

Q̂(τ) = {x ∈ Q(τ) |
∞∫

τ+rmin

y(t)†x(t)dt = 0 for every y ∈ B},
(5.2.35)

together with

P̂ (τ) = {φ ∈ X | φ = xτ for some x ∈ P̂(τ)},

Q̂(τ) = {φ ∈ X | φ = xτ for some x ∈ Q̂(τ)}.
(5.2.36)

The integrals in (5.2.35) convergence since functions in B decay exponentially. Finally,
we write

S(τ) = P (τ) +Q(τ), Ŝ(τ) = P̂ (τ) + Q̂(τ). (5.2.37)

Our first two results here provide exponential decay estimates for functions in P̂(τ)

and Q̂(τ), together with a direct sum decomposition for S(τ). In addition, we show
that the latter space can be identified with X⊥(τ) from (5.2.29). We remark that the
structure of these results matches their counterparts from [91] almost verbatim.

Theorem 5.2.4 (cf. [133, Thm. 4.2], see §5.3). Assume that (HA), (HK) and (HH)
are satisfied and choose a sufficiently large τ∗ > 0. Then there exist constants Kdec > 0
and α > 0 so that for any τ ≤ −τ∗ and p ∈ P(τ) we have the bound

|p(t)|+ |ṗ(t)| ≤ Kdece
α(t−τ)‖pτ‖∞, t ≤ τ, (5.2.38)

while for any τ ≥ τ∗ and q ∈ Q(τ) we have the corresponding estimate

|q(t)|+ |q̇(t)| ≤ Kdece
−α(t−τ)‖qτ‖∞, t ≥ τ. (5.2.39)

In addition, the bounds (5.2.38)-(5.2.39) also hold for any p ∈ P̂(τ) and q ∈ Q̂(τ),
now without any restriction on the value of τ ∈ R, but with possibly different values of
Kdec and α.
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Theorem 5.2.5 (cf. [133, Thm. 4.3], see §5.3). Assume that (HA), (HK) and (HH)

are satisfied. For each τ ∈ R the spaces P (τ), Q(τ), S(τ) and their counterparts P̂ (τ),

Q̂(τ), Ŝ(τ) are all closed subspaces of X. Moreover, we have the identities

P (τ) = P̂ (τ)⊕B(τ), Q(τ) = Q̂(τ)⊕B(τ),

Ŝ(τ) = P̂ (τ)⊕ Q̂(τ), S(τ) = Ŝ(τ)⊕B(τ)

= P̂ (τ)⊕ Q̂(τ)⊕B(τ).

(5.2.40)

Finally, we have the identification

S(τ) = X⊥(τ), (5.2.41)

where X⊥(τ) is defined in (5.2.29).

However, these theorems provide no information on how the spaces P (τ) and Q(τ)
depend on τ . In order to address this issue, we need to study the projections from the
state space X onto the factors P̂ (τ) and Q̂(τ) using the decomposition in (5.2.40). To
be more precise, for a fixed τ0 ∈ R we write

X = P̂ (τ0)⊕ Q̂(τ0)⊕ Γ (5.2.42)

for a suitable finite dimensional subspace Γ ⊂ X. This allows us define projections ΠP̂

and ΠQ̂ onto the factors P̂ (τ0) respectively Q̂(τ0).

In addition, we are interested in the limiting behaviour as τ → ±∞. To this
end, we apply Theorem 5.2.5 to the two limiting systems (5.2.11), which leads to the
decompositions

X = P (−∞)⊕Q(−∞) = P (∞)⊕Q(∞). (5.2.43)

We write
←−
ΠP and

←−
ΠQ for the projections onto the factors P (−∞) and Q(−∞) respec-

tively, together with
−→
ΠP and

−→
ΠQ for the projections onto the factors P (∞) and Q(∞).

Theorem 5.2.6 (cf. [133, Thm. 4.6], see §5.4). Assume that (HA), (HK) and (HH)

are satisfied. Then the spaces P̂ (τ), Q̂(τ) and Ŝ(τ) vary upper semicontinuously with
τ , while the quantities dimB(τ) and β(τ) vary lower semicontinuously with τ .

In particular, fix τ0 ∈ R and consider any τ sufficiently close to τ0. Then the
restrictions

ΠP̂ : P̂ (τ) → ΠP̂

(
P̂ (τ)

)
⊂ P̂ (τ0),

ΠQ̂ : Q̂(τ) → ΠQ̂

(
Q̂(τ)

)
⊂ Q̂(τ0)

(5.2.44)

of the projections associated to the decomposition (5.2.42) are isomorphisms onto their
ranges, which are closed. Moreover, the norms satisfy

lim
τ→τ0

‖I −ΠP̂ |P̂ (τ)‖ = 0, lim
τ→τ0

‖I −ΠQ̂|Q̂(τ)‖ = 0, (5.2.45)
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in which I denotes the inclusion of P̂ (τ) or Q̂(τ) into X.
In addition, we have the identities

←−
ΠP

(
P (τ)

)
= P (−∞),

−→
ΠQ

(
Q(τ)

)
= Q(∞),

(5.2.46)

for sufficiently negative values of τ in the first line of (5.2.46) and for sufficiently
positive values of τ in the second line of (5.2.46). The associated norms satisfy the
limits

lim
τ→−∞

‖I −
←−
ΠP |P (τ)‖ = 0, lim

τ→∞
‖I −

−→
ΠQ|Q(τ)‖ = 0. (5.2.47)

These results can be strengthened if we also assume that (HKer) holds. Indeed,
Corollary 5.2.3 implies that the codimension of S(τ) remains constant. This can be
leveraged to obtain the following continuity properties.

Corollary 5.2.7 (cf. [133, Cor. 4.7], see §5.6). Assume that (HA), (HK), (HH) and

(HKer) are all satisfied. Then the spaces P̂ (τ) and Q̂(τ) vary continuously with τ ,

i.e. the projections ΠP̂ and ΠQ̂ from (5.2.44) are isomorphisms onto P̂ (τ0) and Q̂(τ0)

respectively. The same conclusion holds for their counterparts P (τ) and Q(τ).

5.2.3 Exponential dichotomies on half-lines

In many applications it is useful to consider exponential dichotomies on half-lines such
as [0,∞), instead of the full line. Our main goal here is to show to prove the natural
generalisation of Theorem 5.2.5 to this half-line setting, along the lines of the results
in [104].

In particular, we set out to obtain decompositions of the form

X = Q(τ)⊕R(τ), (5.2.48)

where Q(τ) is defined in (5.2.34) and segments in R(τ) should be ‘extendable’ to solve
(5.2.1) on [0, τ ]. Since this is a finite interval however there is no longer a ‘canonical’
definition for R(τ). In fact, we define these spaces in a indirect fashion, by constructing
appropriate subsets

R(τ) ⊂ {r ∈ Cb(D	τ ) | r is a bounded solution of (5.2.1) on [0, τ ]} (5.2.49)

and writing
R(τ) = {φ ∈ X | φ = xτ for some x ∈ R(τ)}. (5.2.50)

In order to achieve this, we exploit continuity properties for the projection operators
that are stronger than those obtained in Theorem 5.2.6. In particular, we again impose
the nontriviality condition (HKer). However, we explain in §5.5 how this condition
can be weakened slightly. For example, we need less information concerning the kernel
space B to apply our construction.
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Theorem 5.2.8 (cf. [104, Thm. 4.1], see §5.5). Assume that (HA), (HK), (HH) and
(HKer) are satisfied. Then for every τ ≥ 0 there exists a closed subspace R(τ) ⊂
Cb(D

	
τ ) that satisfies the inclusion (5.2.49) together with the following properties.

(i) Recalling the spaces (5.2.34) and (5.2.50), the splitting (5.2.48) holds for every
τ ≥ 0.

(ii) There exist constants Kdec > 0 and α > 0 so that the exponential estimate

|x(t)| ≤ Kdece
−α|t−τ |‖xτ‖∞ (5.2.51)

holds for every x ∈ R(τ) and every pair 0 ≤ t ≤ τ .

(iii) The spaces R(τ) are invariant, in the sense that xt ∈ R(t) holds whenever x ∈
R(τ) and 0 ≤ t ≤ τ . The corresponding statement holds for the spaces Q(τ).

(iv) The projections ΠQ(τ) and ΠR(τ) associated to the splitting (5.2.48) depend con-
tinuously on τ ≥ 0. In addition, there exists a constant C ≥ 0 so that the uniform
bounds ‖ΠQ(τ)‖ ≤ C and ‖ΠR(τ)‖ ≤ C hold for all τ ≥ 0.

5.3 The existence of exponential dichotomies

Our goal in this section is to establish Theorems 5.2.4-5.2.5. The strategy that we fol-
low is heavily based on [133], allowing us to simply refer to the results there from time
to time. However, the unbounded shifts force us to develop an alternative approach at
several key points in the analysis. We have therefore structured this section in such a
way that these modifications are highlighted.

The first main task is to show that functions in the spaces P(τ) and Q(τ), together
with their derivatives, decay exponentially in a uniform fashion. When the shifts are
unbounded, the methods developed in [133] can no longer be used to establish this
exponential decay. In particular, the bound (5.3.4) below was obtained in [133], but
one cannot simply make the replacement rmax →∞ and still recover the desired expo-
nential decay of solutions. Indeed, the iterative scheme in [133] breaks down, forcing
us to use a different approach.

The key ingredient is to show that the cumulative influence of the large shifts decays
exponentially. The following preliminary estimate will help us to quantify this.

Lemma 5.3.1. Assume that (HA), (HK) and (HH) are satisfied. Then there exist
three constants (p,Kexp, α) ∈ R3

>0 for which the bound

∑
rj≥|t|

|Aj(s)|eα|rj | +
∞∫
|t|
|K(ξ; s)|eα|ξ|dξ ≤ Kexpe

−2α|t|
(5.3.1)

holds for all t < −p and all s ∈ R. In addition, if rmax <∞, then we can pick p = rmax.
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Proof. Suppose first that rmax =∞. Setting α = η̃
3 , we can derive from (5.2.7) that∑

rj≥|t|
‖Aj(·)‖∞eα|rj | ≤ e−2αt

∑
rj≥|t|

‖Aj(·)‖∞eη̃|rj |

≤ e−2αt
∞∑

j=−∞
‖Aj(·)‖∞eη̃|rj |

(5.3.2)

for |t| sufficiently large. The second term in (5.3.1) can be bounded in the same fashion
using (5.2.8). If rmax <∞ then (5.3.1) follows trivially for p = rmax, since the left-hand
side is always zero for t < −p and s ∈ R.

Our first main result generalizes the bound (5.3.4) to the setting where rmax =∞.
This is achieved by splitting the relevant interval [τ,∞) into two parts [τ, τ + p] and
[τ + p,∞) that we analyze separately. We use the ideas from [133] to study the first
part, while careful estimates involving (5.3.1) allow us to control the contributions from
the unbounded second interval.

Proposition 5.3.2. Assume that (HA), (HK) and (HH) are satisfied, recall the con-
stants (p,Kexp, α) ∈ R3

>0 from Lemma 5.3.1 and pick a sufficiently negative τ− � −1.
Then there exists a constant σ > 0 so that for each τ ≤ τ− and each x ∈ P(τ) we have
the bound

|x(t)| ≤ max
{

1
2 sup
s∈(−∞,τ+p]

|x(s)|, Kexp sup
s∈[p+τ,∞)

e−α(s−t)|x(s)|
}
, t ≤ −σ + τ

(5.3.3)
when rmax =∞, or alternatively

|x(t)| ≤ 1
2 sup
s∈(−∞,τ+rmax]

|x(s)|, t ≤ −σ + τ (5.3.4)

when rmax <∞. The same2 bounds hold for x ∈ P̂(τ), but now any τ ∈ R is permitted.

The second main complication occurs when one tries to mimic the approach in [133]
to study the properties of S(τ). Although it is relatively straightforward to show that
this space is closed and has finite codimension in X, the explicit description (5.2.41)
for S(τ) is much harder to obtain. The arguments in [133] approximate elements of
X⊥(τ) by C1-smooth functions and apply the Fredholm operator Λ to (extensions of)
these approximants. However, when DX is unbounded this approach breaks down,
because C1-smooth functions in X need not have a bounded derivative. One can hence
no longer directly appeal to the useful Fredholm properties of Λ.

Our second main result provides an alternative approach that circumvents these
difficulties. The novel idea is that we split such problematic functions into two parts
that both confine the regions where the derivatives are unbounded to a half-line. This
turns out to be sufficient to allow the main spirit of the analysis in [133] to proceed.

Proposition 5.3.3. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and
let X⊥(τ) be given by (5.2.29). Then there exists a dense subset D ⊂ X⊥(τ) with
D ⊂ S(τ).

2Naturally, one may need to change the value of the constant σ > 0.
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Besides these two main obstacles, we encounter smaller technical issues at many
points during our analysis. For example, the lack of full uniform convergence on un-
bounded intervals from the Ascoli-Arzela theorem requires significant attention. In
addition, manipulations involving the Hale inner product on unbounded domains raise
subtle convergence issues that must be addressed.

5.3.1 Preliminaries

In this subsection, we collect several preliminary properties satisfied by the spaces
introduced in (5.2.25), (5.2.33) and (5.2.34). In particular, we discuss whether functions
in P (τ) or Q(τ) have unique extensions in P(τ) and Q(τ) and study the intersection
P (τ) ∩Q(τ).

Lemma 5.3.4. Assume that (HA), (HK) and (HH) are satisfied and fix τ ∈ R. Then
the spaces defined in §5.2 have the following properties.

(i) We have the inequalities dimB(τ) ≤ dimB < ∞ and dimB∗(τ) ≤ dimB∗ < ∞.
In addition, if |rmin| = rmax = ∞, then dimB(τ) = dimB and dimB∗(τ) =
dimB∗.

(ii) The inclusions P̂(τ) ⊂ P(τ), Q̂(τ) ⊂ Q(τ), P̂ (τ) ⊂ P (τ) and Q̂(τ) ⊂ Q(τ) have
finite codimension of at most dimB.

(iii) We have B(τ) = P (τ) ∩Q(τ).

Proof. Items (i) and (ii) are clear from their definition and Proposition 5.2.1. For
item (iii) we note that the inclusion B(τ) ⊂ P (τ) ∩ Q(τ) is trivial. Conversely, for
φ ∈ P (τ) ∩ Q(τ) we pick x ∈ P(τ) and y ∈ Q(τ) with φ = xτ = yτ , so that x = y on
DX + τ . This allows us to consider the function z that is defined on the real line by

z(t) =

x(t), t ≤ rmax + τ

y(t), t ≥ rmin + τ.
(5.3.5)

It is now easy to see that z ∈ B, which implies φ ∈ B(τ).

Lemma 5.3.5. Assume that (HA), (HK) and (HH) are satisfied. Then there exists
µ− ∈ (−∞,∞] such that every φ ∈ P (τ) with τ < µ− has a unique left prolongation
in P(τ). Similarly, there exists µ+ ∈ [−∞,∞) such that every φ ∈ Q(τ) with τ > µ+

has a unique right prolongation in Q(τ). On the other hand, any element of P̂ (τ) and

Q̂(τ) has a unique left respectively right prolongation, this time for any τ ∈ R.

Proof. We only consider the left prolongations. If rmin = −∞, then both results are
trivial with µ− =∞. If, on the other hand, rmin > −∞, then we can follow the proof
of [133, Props. 4.8 and 4.10] to arrive at the desired conclusion.
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5.3.2 Exponential decay

Our task here is to furnish a proof for Proposition 5.3.2 and to use this result to
establish Theorem 5.2.4. Our approach consists of three main steps: constructing a
uniform limit for a sequence that contradicts (5.3.3), showing that this limit satisfies
one of the asymptotic systems (5.2.11) and subsequently concluding that this violates
the hyperbolicity assumption (HH). The main technical novelties with respect to [133]
are contained in the first two steps, where we need to take special care to handle the
tail contributions arising from the unbounded shifts.

Lemma 5.3.6. Consider the setting of Proposition 5.3.2 and let {σn}n≥1, {xn}n≥1

and {τn}n≥1 be sequences with the following properties.

(a) We have σn > 0 for each n, together with σn ↑ ∞.

(b) We either have xn ∈ P(τn) and τn ≤ τ− for each n or xn ∈ P̂(τn) and τn ∈ R
for each n.

(c) For each n ≥ 1 we have the bound

|xn(−σn + τn)| ≥ 1
2 , (5.3.6)

together with the normalization

sup
s∈(−∞,τn+p]

|xn(s)| = 1. (5.3.7)

(d) If rmax =∞, then we have the additional bound

|xn(−σn + τn)| ≥ Kexpe
α(−σn+τn) sup

s∈[p+τn,∞)

e−αs|xn(s)|. (5.3.8)

Then upon defining zn(t) = xn(t − σn + τn) and passing to a subsequence, we have
zn → z uniformly on compact subsets of R. Moreover, we have z 6= 0 and |z| ≤ 1 on R.

Proof. We first consider the case rmax = ∞ and treat the two possibilities xn ∈
P(τn) and xn ∈ P̂(τn) simultaneously. In particular, we establish the desired uniform
convergence on the compact interval IL = [−L,L] for some arbitrary L ≥ 1, which is
contained in (−σN , σN ) for some sufficiently large N .

For n ≥ N and t ∈ IL we have |zn(t)| ≤ 1. In addition, upon writing

Aj,n(t) = Aj(t− σn + τn)xn(t− σn + τn + rj),

Kn(ξ; t) = K(ξ; t− σn + τn)xn(t− σn + τn + ξ),
(5.3.9)

we obtain

|żn(t)| = |ẋn(t− σn + τn)| ≤
∞∑

j=−∞

∣∣Aj,n(t)
∣∣+
∫
R

∣∣Kn(ξ; t)
∣∣dξ. (5.3.10)
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We now split the sum above over the two sets

J−n (t) = {j ∈ Z | rj ≤ p+ σn − t} ⊂ {j ∈ Z | rj ≤ p},

J+
n (t) = {j ∈ Z | rj > p+ σn − t} ⊂ {j ∈ Z | rj ≥ −L+ σn + p}.

(5.3.11)

For j ∈ J−n (t) we have t−σn + τn + rj ≤ τn + p, which in view of the normalization
(5.3.7) allows us to write ∣∣Aj,n(t)

∣∣ ≤ ‖Aj(·)‖∞. (5.3.12)

On the other hand, for j ∈ J+
n (t) we may use (5.3.7)-(5.3.8) to obtain∣∣Aj,n(t)

∣∣ ≤ ‖Aj(·)‖∞K−1
expe

α(σn−τn)eα(t−σn+τn+rj)|xn(−σn + τn)|

≤ ‖Aj(·)‖∞K−1
expe

αteαrj

≤ ‖Aj(·)‖∞K−1
expe

αLeαrj .

(5.3.13)

In particular, we may use (5.3.1) to estimate

∞∑
j=−∞

∣∣Aj,n(t)
∣∣ ≤ ∑

j∈J−n (t)

‖Aj(·)‖∞ +
∑

j∈J+
n (t)

‖Aj(·)‖∞K−1
expe

αLeαrj

≤
∑
rj≤p
‖Aj(·)‖∞ + e−2α|L−σn−p|+αL

=
∑
rj≤p
‖Aj(·)‖∞ + eα(3L−2p−2σn).

(5.3.14)

In a similar fashion, we obtain the corresponding bound

∫
R
∣∣Kn(ξ; t)

∣∣dξ ≤ sup
s∈R

p∫
−∞
|K(ξ; s)|dξ + eα(3L−2p−2σn). (5.3.15)

We hence see that both {zn}n≥N and {żn}n≥N are uniformly bounded on IL.

Using the Ascoli-Arzela theorem, we can now pass over to some subsequence to
obtain the convergence zn → z uniformly on compact subsets of R. Moreover, since
zn(0) ≥ 1

2 for each n, we obtain z(0) ≥ 1
2 and thus z 6= 0. The bound on zn(t) obtained

above implies that also |z| ≤ 1 on R.

If rmax < ∞ then this procedure can be repeated, but now one does not need the
second terms in (5.3.14) and (5.3.15). In particular, the argument reduces to the one
in [133].

Lemma 5.3.7. Consider the setting of Proposition 5.3.2 and Lemma 5.3.6. If the
sequence {−σn + τn}n≥1 is unbounded, then the limiting function z satisfies one of
the limiting equations (5.2.11). If, on the other hand, the sequence {−σn + τn}n≥1 is
bounded, then there exists β ∈ R in such a way that the function x(t) = z(t−β) satisfies
x ∈ B.
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Proof. Without loss of generality we assume that −σn + τn → ∞ if the sequence
{−σn + τn}n≥1 is unbounded or −σn + τn → β if the sequence {−σn + τn}n≥1 is
bounded. For convenience, we (re)-introduce the expressions

Aj,n(s) = Aj(s− σn + τn)zn(s+ rj),

Kn(ξ; s) = K(ξ; s− σn + τn)zn(s+ ξ)
(5.3.16)

and use the integrated form of (5.2.1) to write

z(t2)− z(t1) = lim
n→∞

zn(t2)− zn(t1)

= lim
n→∞

t2∫
t1

∞∑
j=−∞

Aj,n(s)ds+ lim
n→∞

t2∫
t1

∫
R
Kn(ξ; s)dξds

:= JA + JK

(5.3.17)

for an arbitrary pair t1 < t2 that we fix. Upon introducing the tail expression

EA;N = lim
n→∞

t2∫
t1

∞∑
|j|=N+1

Aj,n(s) ds (5.3.18)

for any N ≥ 0, we readily observe that

JA = lim
n→∞

t2∫
t1

N∑
j=−N

Aj,n(s)ds+ EA;N

=
t2∫
t1

N∑
j=−N

Aj(∞)z(s+ rj)ds+ EA;N

(5.3.19)

if the sequence {−σn + τn}n≥1 is unbounded, while

JA =
t2∫
t1

N∑
j=−N

Aj(s+ β)z(s+ rj)ds+ EA;N (5.3.20)

if the sequence {−σn + τn}n≥1 is bounded. Here we evaluated the limit using the
convergence −σn + τn →∞ or −σn + τn → β. Slightly adapting the estimate (5.3.14)
with L = max{|t1|, |t2|}, we find

|EA;N | ≤ (t2 − t1)
∑
|j|>N

‖Aj(·)‖∞ + limn→∞(t2 − t1)e−2ασneα(3L−2p)

= (t2 − t1)
∑
|j|>N

‖Aj(·)‖∞,
(5.3.21)

which yields EA;N → 0 as N →∞. Since |z| ≤ 1 on R, we can now use the dominated
convergence theorem to conclude that

JA =
t2∫
t1

∞∑
j=−∞

Aj(∞)z(s+ rj)ds (5.3.22)

if the sequence {−σn + τn}n≥1 is unbounded, while

JA =
t2∫
t1

∞∑
j=−∞

Aj(s+ β)z(s+ rj)ds (5.3.23)
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if the sequence {−σn + τn}n≥1 is bounded. A similar argument for JK hence shows
that z is a solution of the limiting system (5.2.11) at +∞.

Proof of Proposition 5.3.2. Arguing by contradiction, we assume that (5.3.3) or
(5.3.4) fails. We can then construct sequences {σn}n≥1, {xn}n≥1 and {τn}n≥1 that
satisfy properties (i)-(iv) of Lemma 5.3.6. If the sequence {−σn + τn}n≥1 is also un-
bounded, then Lemma 5.3.7 yields that z is a nontrivial, bounded solution of one of
the limiting equations (5.2.11), contradicting the hyperbolicity of these systems.

If on the other hand the sequence {−σn + τn}n≥1 is bounded, we can assume that
−σn + τn → β for some β ∈ R. Since necessarily τn → ∞, this can only happen if
xn ∈ P̂(τn) for each n. Lemma 5.3.7 yields that xn → x uniformly on compact subsets
of R and that 0 6= x ∈ B. On account of Proposition 5.2.1 we find that x decays
exponentially. By definition of P̂ we, therefore, obtain

0 =
∞∫
−∞

x(t)†xn(t)dt →
∞∫
−∞
|x(t)|2dt, (5.3.24)

which yields a contradiction since x 6= 0.

We now shift our attention to the proof of Theorem 5.2.4. In particular, we set
up an iteration scheme to leverage the bound (5.3.3) and show that solutions in P(τ)
decay exponentially. As a preparation, we provide a uniform bound on the supremum
of such solutions.

Lemma 5.3.8. Assume that (HA), (HK) and (HH) are satisfied. Recall the constant
µ− from Lemma 5.3.5 and fix τ− < µ−. Then there exists C > 0 in such a way for
each τ ≤ τ− and each x ∈ P(τ) we have the bound

‖x‖Cb(D	τ ) ≤ C‖xτ‖∞. (5.3.25)

The same bound holds for any x ∈ P̂(τ), with a possibly different value of C, where
now any τ ∈ R is permitted.

Proof. The bound (5.3.25) is in fact an equality with C = 1 if rmin = −∞, so we
assume that rmin > −∞. If rmax < ∞ the final part of the proof of [133, Thm. 4.2]
can be repeated, hence we also assume that rmax =∞.

Arguing by contradiction, we consider sequences {xn}n≥1, {τn}n≥1 and {Cn}n≥1

with Cn →∞ and

‖xn‖Cb(D	τn ) = Cn‖(xn)τn‖∞ = 1, (5.3.26)

with either xn ∈ P(τn) and τn ≤ τ− for each n or xn ∈ P̂(τn) and τn ∈ R.

We want to emphasize that due to the lack of a natural choice for the sequence
{σn}n≥1 which satisfies (a) of Lemma 5.3.6, we cannot immediately apply this result.
However, we will follow more or less the same procedure to arrive at a slightly weaker
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conclusion. Note that the function zn(t) = xn(t + τn) is a solution of (5.2.1) on the
interval (−∞, 0] for each value of n. In addition, we note that

sup
t∈[rmin,∞)

|zn(t)| ≤ ‖(xn)τn‖∞ = C−1
n . (5.3.27)

We can now follow the proof of Lemma 5.3.6, using (5.3.27) to control the behaviour
of zn on [0,∞), and pass to a subsequence to obtain zn → z uniformly on compact
subsets of (−∞, 0]. In addition, (5.3.27) allows us to extend this convergence to all
compact subsets of R, with z0 = 0. For each n ≥ 1 we pick sn in such a way that
|xn(−sn+τn)| = 1. On account of Proposition 5.3.2 the set {sn}n≥1 is bounded, which
means that z is not identically zero.

Suppose first that the sequence {τn}n≥1 is unbounded. Since each function zn is a
solution of (5.2.1) on (−∞, 0], we can follow the proof of Lemma 5.3.7 to conclude that
z is a bounded solution of one of the limiting equations (5.2.11) on (−∞, 0]. Moreover,
since z0 = 0 it follows that z is also a solution of the limiting equation (5.2.11) on
[0,∞). Hence z is a nontrivial, bounded solution on R of one of the limiting equations
(5.2.11), which yields a contradiction.

Suppose now that {τn}n≥1 is in fact a bounded sequence. Then after passing to a
subsequence we obtain τn → τ0. Following the proof of Lemma 5.3.7, we see that the
function x(t) = z(t− τ0) is a nontrivial, bounded solution of (5.2.1) on (−∞, τ0]. Since
z0 = 0, we get that xτ0 = 0 and therefore x is a nontrivial, bounded left prolongation
of the zero solution from the starting point τ0. If τ0 < µ−, this gives an immediate
contradiction to Lemma 5.3.5. If on the other hand τ0 ≥ µ− > τ−, then our assump-
tions allow us to conclude that xn ∈ P̂(τn) for all n. A computation similar to (5.3.24)

shows that x ∈ P̂(τ0), which contradicts Lemma 5.3.5. This establishes (5.3.25).

Lemma 5.3.9. Assume that (HA), (HK) and (HH) are satisfied. Recall the constant
µ− from Lemma 5.3.5 and fix τ− < µ−. Then there exist constants K̃ > 0 and α̃ > 0
so that the bound

|x(t)| ≤ K̃eα(t−τ)‖x‖Cb(D	τ ) (5.3.28)

holds for all τ ≤ τ−, all x ∈ P(τ) and all t ≤ τ + p.

Proof. The proof of [133, Thm. 4.2] can be used to handle the case rmax < ∞,
so we assume here that rmax = ∞. Pick any x ∈ P(τ), which we normalize to have
‖x‖Cb(D	τ ) = 1. Recalling the constants from Proposition 5.3.2, we assume without loss
of generality that

Kexp ≥ 1, Kexpe
−α(σ+p) ≤ 1

4 . (5.3.29)

For t ≤ −σ + τ , this allows us to estimate

|x(t)| ≤ max
{

1
2 sup
s∈(−∞,τ+p]

|x(s)|,Kexp sup
s∈[p+τ,∞)

e−α(s−t)|x(s)|
}

≤ max
{

1
2 ,Kexpe

−α(p+τ+σ−τ)
}

= 1
2 .

(5.3.30)
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We aim to show, by induction, that for each integer m ≥ 0 we have the bound

|x(t)| ≤ 2−(m+1), t ≤ tm, (5.3.31)

where we have introduced

tm := −m(σ + p)− σ + τ. (5.3.32)

Indeed, if (5.3.31) holds for each m ∈ Z≥0, then we obtain the desired estimate

|x(t)| ≤ K̃eα̃(t−τ) (5.3.33)

for any t ≤ τ with α̃ = ln(2)
σ+p and K̃ = eα̃(σ+p), which concludes the proof.

The case m = 0 follows from (5.3.30), so we pick M ≥ 1 and assume that (5.3.31)
holds for each value of 0 ≤ m ≤M − 1. Since x ∈ P(τ) and since σ > 0 and p > 0, we
must have x ∈ P(tM +σ) as well. Fix t ≤ tM . Then Proposition 5.3.2 yields the bound

|x(t)| ≤ max
{

1
2 sup
s∈(−∞,tM+σ+p]

|x(s)|,Kexp sup
s∈[tM+σ+p,∞)

e−α(s−t)|x(s)|
}
.

(5.3.34)
Since tM + σ + p = tM−1, we may apply (5.3.31) with m = M − 1 to obtain

1
2 sup
s∈(−∞,tM+σ+p]

|x(s)| ≤ 1
22−M = 2−(M+1). (5.3.35)

In addition, we may use (5.3.29) and (5.3.31) to estimate

Kexp sup
s∈[tm,tm−1]

e−α(s−t)|x(s)| ≤ Kexpe
−α
(
tm−tM

)
2−m

= Kexpe
−α(M−m)(p+σ)2−m

≤
(

1
4

)M−m
2−m

≤ 2−(M+1),

(5.3.36)

for 0 ≤ m ≤M − 1. Finally, we can estimate

Kexp sup
s∈[τ−σ,∞)

e−α(s−t)|x(s)| ≤ Kexpe
−α(τ−σ−tM )

= Kexpe
−αM(p+σ)

≤ 2−(M+1).

(5.3.37)

Combining (5.3.34) with (5.3.35)-(5.3.37) now yields the bound

|x(t)| ≤ 2−(M+1), (5.3.38)

as desired.

Proof of Theorem 5.2.4. We only show the result for the P-spaces; the result for
the Q-spaces follows analogously. If rmax < ∞, the proof of [133, Thm. 4.2] can be
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repeated, so we assume that rmax = ∞. Pick any x ∈ P(τ). From Lemma 5.3.9 we
obtain the bound

|x(t)| ≤ K̃eα(t−τ)‖x‖Cb(D	τ ) (5.3.39)

for all t ≤ τ + p. Since x ∈ P(τ), we can write

ẋ(t) =
∞∑

j=−∞
Aj(t)x(t+ rj) +

∫
RK(ξ; t)x(t+ ξ)dξ (5.3.40)

for t ≤ τ . Lemma 5.3.1 allows us to estimate

∣∣ ∞∑
j=−∞

Aj(t)x(t+ rj)dξ
∣∣ ≤ ∑

t+rj≤τ+p

‖Aj(·)‖∞K̃eα(t+rj−τ)‖x‖∞

+
∑

t+rj>τ+p
‖Aj(·)‖∞‖x‖∞

≤
∑

t+rj≤τ
‖Aj(·)‖∞eα|rj |K̃eα(t−τ)‖x‖∞ +Kexpe

2α(t−τ)‖x‖∞

≤
∞∑

j=−∞
‖Aj(·)‖∞eα|rj |K̃eα(t−τ)‖x‖∞ +Kexpe

2α(t−τ)‖x‖∞

(5.3.41)
for any t ≤ τ . Using a similar estimate for the convolution kernel, we obtain the bound

|ẋ(t)| ≤ K̃eα(t−τ)‖x‖∞
∞∑

j=−∞
‖Aj(·)‖∞eα|rj | +Kexpe

2α(t−τ)‖x‖∞

+K̃eα(t−τ)‖x‖∞ sup
s∈R
‖K(·; s)‖η̃ +Kexpe

2α(t−τ)‖x‖∞
(5.3.42)

for any t ≤ τ . Since rmax =∞, we can derive from Lemma 5.3.8 that

‖x‖∞ = ‖x‖Cb(D	τ ) ≤ C‖xτ‖∞. (5.3.43)

The bounds (5.3.42)-(5.3.43) together establish the desired result.

5.3.3 The restriction operators π+ and π−

It is often convenient to split the domain DX into the two parts

D−X = (rmin, 0), D+
X = (0, rmax) (5.3.44)

and study the restriction of functions in X to the spaces

X− = Cb(D
−
X), X+ = Cb(D

+
X). (5.3.45)

In particular, we introduce the operators π+ : X → X+ and π− : X → X− that act as

(π±f)(t) = f(t), t ∈ D±X . (5.3.46)

Moreover, for a subspace E ⊂ X we let π+
E and π−E denote the restrictions of π+ and π−

to E. We obtain some preliminary compactness results below, leaving a more detailed
analysis of these operators to §5.4.
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Proposition 5.3.10 (cf. [133, Thm. 4.4]). Assume that (HA), (HK) and (HH) are
satisfied. Then for every τ ∈ R, the operators π−P (τ), π

+
Q(τ), π

−
P̂ (τ)

and π+

Q̂(τ)
are all

compact.

Proof. Suppose first that rmin = −∞ and fix τ ∈ R. Let {φn}n≥1 be a bounded

sequence in P̂ (τ) and write {xn}n≥1 for the corresponding sequence in P̂(τ) that has
(xn)τ = φn for each n ≥ 1. After passing to a subsequence, the exponential bound
(5.2.38) allows us to obtain the convergence xn → x uniformly on compact subsets
of (−∞, 0]. For any ε > 0, we can use (5.2.38) to pick L � 1 in such a way that
|xn(t)| < ε

2 and hence |x(t)| ≤ ε
2 holds for all t ≤ −L. The uniform convergence on

[−L, 0] now allows us to pick N � 1 so that |xn(t)− x(t)| ≤ ε for all t ≤ 0 and n ≥ N .
In particular, {xn}n≥1 converges in X−, which shows that π−

P̂ (τ)
is compact.

The case where rmin > −∞ can be treated as in the proof of [133, Thm. 4.4] and
will be omitted. The compactness of π+

Q̂(τ)
follows by symmetry. Finally, the operators

π−P (τ) and π+
Q(τ) are compact since they are finite-dimensional extensions of π−

P̂ (τ)
and

π+

Q̂(τ)
respectively.

The second part of Corollary 5.3.11 below references the subpaces P (±∞) ⊂ X and
Q(±∞) ⊂ X, being the spaces corresponding the limiting equations (5.2.11) with the
decomposition given in (5.2.40). Since the systems (5.2.11) also satisfy the conditions
(HA), (HK) and (HH), we can apply the results from the previous sections to the
subspaces P (±∞) and Q(±∞).

Corollary 5.3.11 (cf. [133, Cor. 4.11]). Assume that (HA), (HK) and (HH) are

satisfied and let {φn}n≥1 and {ψn}n≥1 be bounded sequences, with φn ∈ P̂ (τn) and

ψn ∈ P̂ (τ0) for each n ≥ 1. Suppose furthermore that τn → τ0 and that the sequence
{π+(φn − ψn)}n≥1 converges in X+. Then after passing to a subsequence, the differ-

ences {φn−ψn}n≥1 converge to some φ ∈ P̂ (τ0), uniformly on compact subsets of DX .

The conclusion above remains valid after making the replacements

{P̂ (τn), P̂ (τ0), τ0} 7→ {P (τn), P (−∞),−∞}. (5.3.47)

In addition, the analogous results hold for the spaces Q̂ and Q after replacing π+ by
π− and −∞ by +∞.

Proof. For each n ≥ 1 we let yn ∈ P̂(τn) and zn ∈ P̂(τ0) denote the left prolonga-
tions of φn and ψn respectively. Moreover, we write xn(t) = yn(t+ τn − τ0)− zn(t) for
t ≤ τ0 + rmax. Then xn satisfies the inhomogeneous version of (5.2.1) given by

ẋn(t) =
∞∑

j=−∞
Aj(t)xn(t+ rj) +

∫
R
K(ξ; t)xn(t+ ξ)dξ + hn(t), (5.3.48)

in which hn is defined by

hn(t) =
∞∑

j=−∞

(
Aj(t+ τn − τ0)−Aj(t)

)
yn(t+ rj + τn − τ0)

+
∫
R

(
K(ξ; t+ τn − τ0)−K(ξ; t)

)
yn(t+ ξ + τn − τ0)dξ.

(5.3.49)
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Because xn satisfies the inhomogeneous equation (5.3.48), since
∞∑
|j|=N

‖Aj‖∞ → 0 as

N → ∞, since sup
t∈R
‖K(·; t)‖η̃ < ∞, and since both yn and zn enjoy the uniform ex-

ponential estimates in Theorem 5.2.4, we see that the sequence {xn}n≥1 is uniformly
bounded and equicontinuous. Hence we can apply the Ascoli-Arzela theorem to pass
over to a subsequence for which xn → x uniformly on compact subsets of (−∞, τ0].
Moreover, x is bounded and the convergence xn → x is uniform on D+

X + τ0 since
{π+(φn −ψn)}n≥1 converges in X+. However, in contrast to [133] we cannot conclude
that this convergence is uniform on DX , since this interval is not necessarily compact.

We see that hn → 0 in L1(I) for any bounded interval I ⊂ (−∞, τ0], again using

the limit
∞∑
|j|=N

‖Aj‖∞ → 0 as N →∞, the bound sup
t∈R
‖K(·; t)‖η̃ <∞ and the fact that

the sequence {yn}n≥1 is bounded uniformly on D	0 . Similarly to the proof of Lemma
5.3.7, we obtain that x : D	τ0 → CM is a bounded solution of (5.2.1) on (−∞, τ0], which
yields x ∈ P(τ0). Finally, for every w ∈ B we obtain

0 =
τn+rmax∫
−∞

w(t)†yn(t)dt−
τ0+rmax∫
−∞

w(t)†zn(t)dt

=
τ0+rmax∫
−∞

w(t)†xn(t)dt−
τn+rmax∫
−∞

(
w(t)− w(t− τn − τ0)

)†
yn(t)dt

→
τ0+rmax∫
−∞

w(t)†x(t)dt,

(5.3.50)

since w decays exponentially on account of Proposition 5.2.1. Therefore we must have
x ∈ P̂(τ0) and thus φ := xτ0 ∈ P̂ (τ0).

The result for P (τn) where τn → −∞ follows a similar proof. We now use the
estimate (5.2.38), which is valid for sufficiently small τ . Naturally, the integral compu-
tation (5.3.50) is not needed in this proof. The remaining results follow by symmetry.

5.3.4 Fundamental properties of the Hale inner product

We now shift our focus towards the Hale inner product, which plays an important role
throughout the remainder of the paper. In particular, we establish the identity (5.2.28),
which requires special care on account of the infinite sums. In addition, we study the
limiting behaviour of the Hale inner product and establish a uniform estimate that
holds for exponentially decaying functions.

Lemma 5.3.12. Assume that (HA), (HK) and (HH) are satisfied and fix two functions
x, y ∈ Cb(R). Suppose furthermore that x and y are both differentiable at some time
t ∈ R. Then we have the identity

d
dt 〈y

t, xt〉t = y†(t)[Λx](t) + [Λ∗y](t)†x(t). (5.3.51)

In particular, if y ∈ B∗ and either x ∈ P(τ) or x ∈ Q(τ) for some τ ∈ R, then
d
dt 〈y

t, xt〉t = 0 for all t ≤ τ or all t ≥ τ respectively.
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Proof. For any t ∈ R we can rewrite the Hale inner product in the form

〈yt, xt〉t = yt(0)†xt(0)−
∞∑

j=−∞

rj∫
0

yt(s− rj)†Aj(t+ s− rj)xt(s)ds

−
∫
R

r∫
0

yt(s− r)†K(r; t+ s− r)xt(s)dsdr

= y(t)†x(t)−
∞∑

j=−∞

t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds

−
∫
R

t+r∫
t

y(s− r)†K(r; s− r)x(s)dsdr.

(5.3.52)

We aim to compute the derivative d
dt 〈y

t, xt〉t, so the main difficulty compared to [133]
is that we need to interchange a derivative and an infinite sum as well as a derivative
and an integral instead of a derivative and a finite sum. Since we can estimate

∞∑
j=−∞

∣∣∣ ddt t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds
∣∣∣ =

∞∑
j=−∞

∣∣∣y(t)†Aj(t)x(t+ rj)

−y(t− rj)†Aj(t− rj)x(t)
∣∣∣

≤ 2‖x‖∞‖y‖∞
∞∑

j=−∞
‖Aj(·)‖∞,

(5.3.53)
we see that this series converges uniformly. In a similar fashion we can estimate∫

R

∣∣∣ ddt t+r∫
t

y(s− r)†K(r; s− r)x(s)ds
∣∣∣dr =

∫
R

∣∣y(t)†K(r; t)x(t+ r)

−y(t− r)†K(r; t− r)x(t)
∣∣dr

≤ ‖x‖∞‖y‖∞
[

sup
t∈R
‖K(·; t)‖η̃

+ sup
t∈R
‖K(·; t− ·)‖η̃

]
.

(5.3.54)
We can hence freely exchange a time derivative with the integral and sum in (5.3.53)
to obtain

d
dt 〈y

t, xt〉t = ẏ(t)†x(t) + y(t)†ẋ(t)

−
∞∑

j=−∞

[
y(t)†Aj(t)x(t+ rj)− y(t− rj)†Aj(t− rj)x(t)

]
−
[ ∫
R
y(t)†K(r; t)x(t+ r)dr −

∫
R
y(t− r)†K(r; t− r)x(t)dr

]
= y†(t)[Λx](t) + [Λ∗y](t)†x(t).

(5.3.55)
The final statement follows trivially from (5.3.51).

Lemma 5.3.13. Assume that (HA), (HK) and (HH) are satisfied and fix two functions
x, y ∈ Cb(R). Suppose furthermore that y(t) decays exponentially as t → ∞. Then we
have the limit

lim
t→∞
〈yt, xt〉t = 0. (5.3.56)
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The corresponding estimate holds for t→ −∞ if y(t) decays exponentially as t→ −∞.

Proof. Pick 0 < β < η̃ and K > 0 in such a way that |y(t)| ≤ Ke−βt for t ≥ 0.
Upon choosing a small ε > 0, we first pick N ∈ Z≥1 in such a way that the bound

∞∑
|j|=N+1

|rjAj(s− rj)|‖x‖∞‖y‖∞ +
∫

(−∞,−N ]∪[N,∞)

|rK(r; s− r)|‖x‖∞‖y‖∞dr ≤ ε
6

(5.3.57)
holds for all s ∈ R. We pick T > N in such a way that also T > max{|rj | : −N ≤ j ≤
N} and that we have the estimates

|y(t)|‖x‖∞ ≤ ε
3 ,

Ke−βt
N∑

j=−N
eβ|rj ||rjAj(s)|‖x‖∞ ≤ ε

6 ,

Ke−βt
∫ N
−N e

β|r||rK(r; s− r)|‖x‖∞dr ≤ ε
6

(5.3.58)

for all t ≥ T and all s ∈ R. In particular, we can estimate

I1 :=
∞∑

j=−∞

∣∣ t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds
∣∣

=
N∑

j=−N

∣∣ t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds
∣∣

+
∞∑

|j|=N+1

∣∣ t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds
∣∣

≤ sup
s∈R

N∑
j=−N

Kmax{e−βt, e−β(t−rj)}|rjAj(s− rj)|‖x‖∞

+ sup
s∈R

∞∑
|j|=N+1

|rjAj(s− rj)|‖x‖∞‖y‖∞

≤ Ke−βt sup
s∈R

N∑
j=−N

eβ|rj ||rjAj(s− rj)|‖x‖∞ + ε
4

≤ ε
3

(5.3.59)

for any t ≥ T . In a similar fashion, we obtain the estimate

I2 :=
∫
R

∣∣ t+r∫
t

y(s− r)†K(r; s− r)x(s)ds
∣∣dr

=
N∫
−N

∣∣ t+r∫
t

y(s− r)†K(r; s− r)x(s)ds
∣∣dr

+
∫

(−∞,−N ]∪[N,∞)

∣∣ t+r∫
t

y(s− r)†K(r; s− r)x(s)ds
∣∣dr

≤ ε
3

(5.3.60)
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for t ≥ T . The representation (5.3.52) now allows us to estimate

|〈yt, xt〉t| ≤ |y(t)||x(t)|+
∞∑

j=−∞

∣∣ t+rj∫
t

∣∣y(s− rj)†Aj(s− rj)x(s)
∣∣ds∣∣

+
∫
R

∣∣ t+r∫
t

∣∣y(s− r)†K(r; s− r)x(s)
∣∣ds∣∣dr

≤ |y(t)|‖x‖∞ + I1 + I2

≤ ε,

(5.3.61)

for any t ≥ T , as desired.

Lemma 5.3.14. Assume that (HA), (HK) and (HH) and (HKer) are satisfied. Suppose
furthermore that rmin = −∞ and consider a pair of constants (K0, α0) ∈ R2

>0. Then
there exists a positive constant B > 0 so that the estimate

|〈ψ, y0〉0| ≤ B‖ψ‖∞‖yτ‖∞e−ατ (5.3.62)

holds for any τ ≥ 0, any ψ ∈ Y and any y ∈ Cb(D
	
τ ) that satisfies the exponential

bound

|y(t)| ≤ K0e
−α0(τ−t)‖yτ‖∞, t ≤ τ. (5.3.63)

Proof. Recall the constants (Kexp, α, p) ∈ R3
>0 from Lemma 5.3.1. By lowering α

and increasing Kexp if necessary, we may assume that α ≤ α0 and Kexp ≥ K0. A first
crude estimate yields∣∣∣ ∞∑

j=−∞

rj∫
0

x(s− rj)Aj(t+ s− rj)y(s)ds
∣∣∣ ≤ ‖x‖∞

∞∑
j=−∞

‖Aj(·)‖∞
∣∣ rj∫

0

y(s)ds
∣∣.

(5.3.64)
Splitting this sum into two parts and using the decay (5.3.63), we obtain the bound

∞∑
j=−∞

‖Aj(·)‖∞
∣∣ rj∫

0

y(s)ds
∣∣ =

∑
rj≤τ
‖Aj(·)‖∞

∣∣ rj∫
0

y(s)ds
∣∣+

∑
rj>τ
‖Aj(·)‖∞

rj∫
0

|y(s)|ds

≤
∑
rj≤τ
‖Aj(·)‖∞Kexp‖yτ‖∞

∣∣ rj∫
0

e−α(τ−s)ds
∣∣

+
∑
rj>τ
‖Aj(·)‖∞rj‖y0‖∞

≤
∑
rj≤τ
‖Aj(·)‖∞Kexp‖yτ‖∞ 1

α

∣∣eα(rj−τ) − e−ατ
∣∣

+Kexpe
−2ατ‖y0‖∞

≤ Kexp‖yτ‖∞ 1
αe
−ατ

∞∑
j=−∞

‖Aj(·)‖∞ +Kexpe
−2ατ‖yτ‖∞,

(5.3.65)
where we used rmin = −∞ to conclude ‖y0‖∞ ≤ ‖yτ‖∞. A similar computation for the
convolution term yields the desired bound (5.3.62).



5.3. THE EXISTENCE OF EXPONENTIAL DICHOTOMIES 271

5.3.5 Exponential splitting of the state space X

In the remainder of this section, we set out to establish Proposition 5.3.3 and com-
plete the proof of Theorem 5.2.5. In particular, the main technical goal is to establish
the identity (5.2.41). We start by considering the inclusion X⊥(τ) ⊂ S(τ), which will
follow from Proposition 5.3.3 and the closedness of S(τ). In particular, we show that
C1(DX) ∩X⊥(τ) is contained in S(τ).

Again, the main complication is that the derivatives of functions x in this subset
need not be bounded, which hence also holds for Λx. However, we do know that ẋ−Λx
is bounded, which allows us to use a technical splitting of x to achieve the desired
result. In order to establish the consequences of this splitting, we will need to exploit
the fundamental properties of the Hale inner product from §5.3.4.

Lemma 5.3.15. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and pick
a differentiable function x ∈ Cb(R)∩C1(R) with φ := xτ ∈ X⊥(τ). Recall the operator
Λ from (5.2.15), write h = Λx and consider the functions h− and h+ given by

h−(t) =

{
h(t), t ≤ τ,
0, t > τ,

h+(t) =

{
0, t ≤ τ,
h(t), t > τ.

(5.3.66)

Then there exists a decomposition x = x−+x+ with x−, x+ ∈ Cb(R)∩C1(R) for which
we have the inclusions

h− − Λx− ∈ Range(Λ), h+ − Λx+ ∈ Range(Λ). (5.3.67)

Proof. We choose the decomposition x− + x+ = x with x± ∈ Cb(R) ∩ C1(R) in
such a way that x− = 0 on [τ + 1,∞), while x+ = 0 on (−∞, τ − 1]. Although the
derivative of x− need not be bounded on (−∞, τ ], while the derivative of x+ need not
be bounded on [τ,∞), we do claim that

h− − Λx− ∈ L∞(R), h+ − Λx+ ∈ L∞(R). (5.3.68)

To see this, we note that by construction Λx− is bounded on [τ,∞), while Λx+ is
bounded on (−∞, τ ]. In particular, h+ − Λx+ is automatically bounded on (−∞, τ ].
On the other hand, for t ≥ τ we may compute

h+(t)− [Λx+](t) = h(t)− [Λx](t) + [Λx−](t) = [Λx−](t), (5.3.69)

which shows that h+ − Λx+ is also bounded on [τ,∞). The claim for x− follows by
symmetry.

We now set out to show that h+−Λx+ ∈ Range(Λ) by exploiting the characteriza-
tion (5.2.19). In particular, pick any u ∈ B∗ and consider the integral

I :=
∞∫
−∞

u(t)†
[
h+(t)− (Λx+)(t)

]
dt

=
∞∫
τ

u(t)†
[
h+(t)− (Λx+)(t)

]
dt+

τ∫
−∞

u(t)†
[
h+(t)− (Λx+)(t)

]
dt

=: I+ + I−.

(5.3.70)
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Exploiting (5.3.69) we obtain

I+ =
∞∫
τ

u(t)†
[
ẋ−(t)−

∞∑
j=−∞

Aj(t)x−(t+ rj)−
∫
R
K(ξ; t)x−(t+ ξ)dξ

]
dt

=
∞∫
τ

u(t)†[Λx−](t)dt.
(5.3.71)

Since Λ∗u = 0 we can immediately exploit the fundamental property of the Hale inner
product from Lemma 5.3.12 to obtain

I+ =
∞∫
τ

u(t)†[Λx−](t)dt

=
∞∫
τ

(
u(t)†[Λx−](t) + [Λ∗u](t)x−(t)

)
dt

=
∞∫
τ

d
dt 〈u

t, (x−)t〉t dt

= lim
t→∞
〈ut, (x−)t〉t − 〈uτ , (x−)τ 〉τ

= −〈uτ , (x−)τ 〉τ .

(5.3.72)

The final equality follows in consideration of Lemma 5.3.13, since the function u ∈ B∗
decays exponentially on account of Proposition 5.2.1. In a similar fashion, we obtain

I− = −〈uτ , (x+)τ 〉τ . (5.3.73)

As such, we can use φ ∈ X⊥(τ) to compute

I = I+ + I− = −〈uτ , xτ 〉τ = −〈uτ , φ〉τ = 0. (5.3.74)

The identity (5.2.19) now yields the desired conclusion.

Proof of Proposition 5.3.3. Inspecting the definition of the Hale inner product
(5.2.26), we readily see that the map φ 7→ 〈ψ, φ〉τ is continuous for any τ ∈ R and any
ψ ∈ B∗(τ). In particular, the space X⊥(τ) is closed and has finite codimension in X.
We now write

E = C1(DX) ∩X⊥(τ) (5.3.75)

and note that E is indeed dense in X⊥(τ) by [133, Lem. 4.14]. Pick any φ ∈ E and
extend it arbitrarily to a bounded C1 function x : R→ CM that has xτ = φ. Recalling
the functions h± and x± from Lemma 5.3.15, we use this result to find a function
ỹ ∈W 1,∞ that has Λỹ = h+ − Λx+. Writing y = ỹ + x+ ∈ Cb(R), we see that

[Λy](t) = h+(t) (5.3.76)

which vanishes for t ≤ τ . In particular, we have y ∈ P(τ). In a similar fashion, we can
find a function z ∈ Q(τ) with Λz = h−.

Writing w = x− y − z ∈ Cb(R), we readily compute

Λw = h− h+ − h− = 0, (5.3.77)
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which implies w ∈ B and hence

φ = xτ = yτ + zτ + wτ ∈ P (τ) +Q(τ) +B(τ) = S(τ), (5.3.78)

as desired.

We now turn to the remaining inclusion S(τ) ⊂ X⊥(τ). As before, we exploit the
fundamental identity (5.2.28). Combined with the exponential decay of functions in
P (τ) and Q(τ), this will allow us to show that both spaces are contained in X⊥(τ).

Lemma 5.3.16. Assume that (HA), (HK) and (HH) are satisfied. Then for each τ ∈ R
we have the inclusion S(τ) ⊂ X⊥(τ).

Proof. By symmetry, it suffices to show that P (τ) ⊂ X⊥(τ). To this end, we pick
x ∈ P(τ) and y ∈ B∗ and note that

d
dt 〈y

t, xt〉t = 0 (5.3.79)

for all t ≤ τ by Lemma 5.3.12. Since x(t) is bounded as t→ −∞ while y(t)→ 0 at an
exponential rate, we may use Lemma 5.3.13 to obtain

〈yτ , xτ 〉τ = lim
t→−∞

〈yt, xt〉t = 0, (5.3.80)

as desired.

The remainder of the proof of Theorem 5.2.5 uses arguments that are very similar
to those in [133]. The main point is that the compactness properties obtained in §5.3.3

allow us to show that P̂ (τ) and Q̂(τ) are closed, which allows the computations above
to be leveraged.

Lemma 5.3.17. Assume that (HA), (HK) and (HH) are satisfied. Then for each

τ ∈ R, the spaces P (τ), Q(τ), P̂ (τ) and Q̂(τ) are all closed subspaces of X.

Proof. Let {φn}n≥1 be a sequence in P̂ (τ) that converges in X to some φ ∈ X.
Picking τn = τ and ψn = 0 in Corollary 5.3.11 then immediately implies that {φn}n≥1

converges uniformly on compact sets to some φ̂ ∈ P̂ (τ). By necessity we hence have

φ = φ̂, which means that P̂ (τ) and by symmetry Q̂(τ) are both closed. This subse-
quently must also hold for the finite dimensional extensions P (τ) and Q(τ).

Lemma 5.3.18. Assume that (HA), (HK) and (HH) are satisfied. Then for each τ ∈ R
the spaces S(τ) and Ŝ(τ) are closed subspaces of X. Moreover, the decompositions
(5.2.40) hold.

Proof. In view of Proposition 5.3.10 and Lemma 5.3.17, the result can be obtained
by following the proof of [133, Prop. 4.12 & Prop. 4.13], together with the first part of
the proof of [133, Thm. 4.3].
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Proof of Theorem 5.2.5. Every statement except the identity (5.2.41) follows from
Lemma 5.3.17 and Lemma 5.3.18. In addition, Lemma 5.3.16 yields the inclusion
S(τ) ⊂ X⊥(τ), while Proposition 5.3.3 yields the inclusion D ⊂ S(τ) for some dense
set D ⊂ X⊥(τ). Since S(τ) is closed, we immediately obtain (5.2.41).

5.4 Fredholm properties of the projections ΠP̂ and
ΠQ̂

The goal of this section is to understand the projection operators ΠP̂ and ΠQ̂ associ-

ated to the decomposition (5.2.42). In contrast to the previous section, we can follow
the approach from [133] relatively smoothly here. The main difficulty is that the argu-
ments in [133] often use Corollary 5.3.11 to conclude that certain subsequences converge
uniformly, while we can only conclude that this convergence takes place on compact
subsets. The primary way in which we circumvent this issue is by appealing to the
exponential estimates in Theorem 5.2.4.

As a bonus, we also obtain information on the Fredholm properties of the restriction
operators π± introduced in §5.3.3. In particular, besides proving Theorem 5.2.6, we
also establish the following two results.

Proposition 5.4.1 (cf. [133, Thm. 4.5]). Assume that (HA), (HK) and (HH) are
satisfied. Then the operators π+

P (τ), π
−
Q(τ), π

+

P̂ (τ)
and π−

Q̂(τ)
are all Fredholm for every

τ ∈ R. Recalling the function β(τ) defined in (5.2.30), the Fredholm indices satisfy the
identities

ind(π+
P (τ)) + ind(π−Q(τ)) = −M + dimB(τ)− β(τ),

ind(π+

P̂ (τ)
) + ind(π−

Q̂(τ)
) = −

(
M + dimB(τ) + β(τ)

)
.

(5.4.1)

Proposition 5.4.2 (cf. [133, Thm. 4.6]). Assume that (HA), (HK) and (HH) are
satisfied. Fix τ0 ∈ R and consider the projections ΠP̂ and ΠQ̂ associated to the decom-

position (5.2.42). Then we have the identities

ind(π+

P̂ (τ)
) = ind(π+

P̂ (τ0)
)− codimP̂ (τ0)ΠP̂

(
P̂ (τ)

)
,

ind(π−
Q̂(τ)

) = ind(π−
Q̂(τ0)

)− codimQ̂(τ0)ΠQ̂

(
Q̂(τ)

)
.

(5.4.2)

Moreover, the quantities ind(π+

P̂ (τ)
) and ind(π−

Q̂(τ)
) vary upper semicontinuously with

τ . In addition, we have the identities

ind(π+

P̂ (τ)
) + dimB(τ) = ind(π+

P (τ)) = ind(π+
P (−∞)),

ind(π−
Q̂(τ)

) + dimB(τ) = ind(π−Q(τ)) = ind(π−Q(∞)),
(5.4.3)

for sufficiently negative values of τ in the first line of (5.4.3) and for sufficiently positive
values of τ in the second line of (5.4.3).
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We first need to study the projection operators π+ and π− from (5.3.46) in more
detail. We proceed largely along the lines of [133], taking a small detour in order to
establish that the ranges are closed.

Lemma 5.4.3. Assume that (HA), (HK) and (HH) are satisfied. Then the operators
π+

P̂ (τ)
and π−

Q̂(τ)
have finite dimensional kernels for each τ ∈ R.

Proof. This can be established by repeating the first half of the proof of [133, Lem.
3.8].

Lemma 5.4.4 (cf. [133, Lem. 3.8]). Assume that (HA), (HK) and (HH) are satisfied.
Then the operators π+

P̂ (τ)
and π−

Q̂(τ)
have closed ranges for each τ ∈ R.

Proof. By symmetry, we pick τ ∈ R and restrict attention to the operator π+

P̂ (τ)
.

We fix a closed complement C ⊂ P̂ (τ) for the finite dimensional space ker(π+

P̂ (τ)
), so

that P̂ (τ) = ker(π+

P̂ (τ)
) ⊕ C. We now consider a sequence {φn}n≥1 ⊂ C and suppose

that the restrictions ψn = π+

P̂ (τ)
φn satisfy the uniform convergence ψn → ψ on D+

X . If

the sequence {φn}n≥1 is bounded, then an application of Corollary 5.3.11 immediately

yields that φn → φ ∈ P̂ (τ) uniformly on compacta, after passing to a subsequence.
This implies that ψ = π+

P̂ (τ)
φ and thus ψ ∈ Range(π+

P̂ (τ)
), as desired.

Let us assume therefore that ‖φn‖∞ ↑ ∞ and consider the rescaled sequence φ̃n =
‖φn‖−1

∞ φn, which satisfies

π+

P̂ (τ)
φ̃n = ‖φn‖−1

∞ ψn → 0 (5.4.4)

uniformly on D+
X . We may again apply Corollary 5.3.11 to obtain φ̃n → φ̃ ∈ P̂ (τ)

uniformly on compacta, with π+φ̃ = 0. In contrast to the setting of [133, Lem. 3.8],
this convergence is not immediately uniform on the (possibly unbounded) interval D−X .
On account of Proposition 5.3.10, the operator π−

P̂ (τ)
is compact, so we can pass to yet

another subsequence to obtain the limit φ̃n → φ̃ uniformly on D−X . As such, φ̃n → φ̃
uniformly both on D−X and on D+

X , so the convergence is uniform on DX . Moreover,

π+

P̂ (τ)
φ̃ = 0, so φ̃ ∈ ker(π+

P̂ (τ)
). Since the convergence φ̃n → φ̃ is uniform on DX we

get ‖φ̃‖∞ = 1, as ‖φ̃n‖∞ = 1 for each n. However, C is closed and φ̃n ∈ C for each
n, so φ̃ ∈ C. Therefore, φ̃ is a nontrivial element of ker(π+

P̂ (τ)
) ∩ C, which yields a

contradiction.

Proof of Proposition 5.4.1. The proof is identical to that of [133, Prop. 4.12] and, as
such, will be omitted. It uses Theorem 5.2.5, together with Lemmas 5.4.3 and 5.4.4.

Lemma 5.4.5. Assume that (HA), (HK) and (HH) are satisfied. Fix τ0 ∈ R and
consider the projections ΠP̂ and ΠQ̂ associated to the decomposition (5.2.42). Then for
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τ sufficiently close to τ0, the restrictions

ΠP̂ : P̂ (τ) → ΠP̂

(
P̂ (τ)

)
⊂ P̂ (τ0),

ΠQ̂ : Q̂(τ) → ΠQ̂

(
Q̂(τ)

)
⊂ Q̂(τ0)

(5.4.5)

to the subspaces P̂ (τ) and Q̂(τ) are isomorphisms onto their ranges, which are closed.
Moreover, we have the limits

lim
τ→τ0

‖I −ΠP̂ |P̂ (τ)‖ = 0, lim
τ→τ0

‖I −ΠQ̂|Q̂(τ)‖ = 0, (5.4.6)

in which I denotes the inclusion of P̂ (τ) or Q̂(τ) into X.

Proof. By symmetry, we only have to consider the projection ΠP̂ . In order to
establish the limit (5.4.6), we pick an arbitrary bounded sequence {φn}n≥1 that has

φn ∈ P̂ (τn) and τn → τ0. Using the decomposition (5.2.42), we write

φn = ρn + ψn + σn, (5.4.7)

with ρn ∈ P̂ (τ0), ψn ∈ Q̂(τ0) and σn ∈ Γ for each n. Then each of the sequences
{ρn}n≥1, {ψn}n≥1 and {σn}n≥1 is bounded. It is sufficient to show that φn − ρn → 0
for some subsequence. Note that this also establishes the claim that the restriction in
(5.4.5) is an isomorphism with closed range.

By Proposition 5.3.10 and the finite dimensionality of Γ, we can pass over to a
subsequence for which both {π+

Q̂(τ0)
ψn}n≥1 and {σn}n≥1 converge. As such, {π+(φn −

ρn)}n≥1 converges, so Corollary 5.3.11 implies that φn − ρn → φ ∈ P̂ (τ0) uniformly on
compact subsets of DX after passing to a further subsequence. In particular, we obtain
the convergence ψn + σn → φ, uniformly on D+

X and uniformly on compact subsets of
D−X .

If rmin 6= −∞ then the convergence ψn+σn → φ is in fact uniform on DX , allowing
us to follow the approach in [133]. In particular, we obtain φ ∈

(
Q̂τ0 ⊕ Γ

)
∩ P̂τ0 and

hence φ = 0 as desired. Assuming therefore that rmin = −∞, we use the convergence of
{σn}n≥1 to conclude that ψn → ψ uniformly on D+

X and uniformly on compact subsets

of (−∞, 0]. For any n ≥ 1 we write yn ∈ Q̂(τ0) for the right-extension of ψn, i.e.,
ψn = (yn)τ0 . Using the uniform estimates in Theorem 5.2.4 for large positive t, we can
use the Ascoli-Arzela theorem to pass to a subsequence that has yn → y, uniformly on
compact subsets of R. Necessarily we have

yτ0(t) = ψ(t), t ∈ (−1, rmax). (5.4.8)

Since ψn → ψ uniformly on D+
X , it follows that yn → y uniformly on τ0 + D+

X . We
can hence follow the proof of Lemma 5.3.7 to see that y is a solution of (5.2.1) on
[τ0,∞) and therefore ψ ∈ Q(τ0). Similarly to the proof of Corollary 5.3.11 we even get

ψ ∈ Q̂(τ0). This yields φ ∈
(
Q̂(τ0)⊕ Γ

)
∩ P̂ (τ0) and therefore φ = 0.
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Proof of Theorem 5.2.6. The first statement and (5.2.45) follow from Lemma 5.4.5,
while the lower semicontinuity of dimB(τ) and β(τ) and the limit in (5.2.47) can be
established in a fashion similar to the proof of [133, Thm. 4.6].

It remains to show that (5.2.46) holds. Following [133], it suffices to find a bounded
function y : R→ CM that satisfies the inhomogeneous system

ẏ(t) =
∞∑

j=−∞
A

(τ)
j (t)y(t+ rj) +

∫
R
K(τ)(ξ; t)y(t+ ξ)dξ + h(τ)(t), (5.4.9)

in which we have introduced the coefficients

A
(τ)
j (t) =

{
Aj(t+ τ),

Aj(−∞),

t < 0,
t ≥ 0,

K(τ)(ξ; t) =

{
K(ξ; t+ τ),

K(ξ;−∞),

t < 0,
t ≥ 0,

(5.4.10)
together with the inhomogeneity

h(τ)(t) =
∞∑

j=−∞

(
Aτj (t)−Aj(−∞)

)
x(t+ rj) +

∫
R

(
Kτ (ξ; t)−K(ξ;−∞)

)
x(t+ ξ)dξ.

(5.4.11)
This can be achieved by following the same steps as in [133], but now using the proof
of [68, Lem. 3.1 (step 3)]3 instead of the results in [130].

Proof of Proposition 5.4.2. The proof is identical to that of [133, Thm. 4.6] and, as
such, will be omitted. It uses Theorems 5.2.5 and 5.2.6.

5.5 Exponential dichotomies on half-lines

In this section, we adapt the approach of [104] to obtain exponential splittings for
(5.2.1) on the half-line [0,∞). The main idea is to explicitly construct suitable finite-
dimensional enlargements of P(τ) for τ ≥ 0. The extra functions {y(τ)}τ≥0 satisfy
(5.2.1) on [0, τ ], but not on (−∞, τ ]. In fact, we will exploit the fundamental identity
(5.2.28) to guarantee that the segments {(y(τ))τ} are not contained in S(τ).

In order to achieve this, we need to construct inverses for the Fredholm operator
Λ restricted to half-lines. In the ODE case one can write down explicit variation-of-
constants formula’s to achieve this, but such constructions are problematic at best in
the current setting. Instead, we follow [104] and solve Λx = h by appropriately modi-
fying h outside the half-line of interest in order to satisfy 〈y, h〉L2 = 0 for all y ∈ B∗.
In order to ensure that such a modification is not precluded by degeneracy issues, we
need to assume that (HKer) holds.

3The matrices Aτj and Kτ need not be continuous, while in [68] the coefficients are assumed to be
continuous. However, the continuity is not used in the parts of the proof that are relevant for us.
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The main complication in the setting rmin = −∞ is that this modification of h
is visible directly in the equation satisfied by x, rather than only indirectly via the
Fredholm properties of Λ as in [104]. This raises issues when using a standard boot-
strapping procedure to obtain estimates on ẋ. Naturally, the unbounded shifts also
cause technical problems similar to those encountered in §5.3-5.4, but fortunately the
same tricks also work here.

Remark 5.5.1. In fact, in this section it suffices to assume a weaker version of the
nontriviality condition (HKer). In particular, we do not need the condition that each
nonzero d ∈ B vanishes on the intervals (−∞, τ ] for τ < 0 or [τ,∞) for τ > 0. This
is because the formulation of Theorem 5.2.8 references the specific half-line R+, rather
than arbitrary half-lines.

5.5.1 Strategy

In order to ensure that the spaces we construct are invariant with respect to τ , we need
to slightly modify the τ -dependent normalization condition used in (5.2.35). Indeed,
upon writing

P̃(τ) = {x ∈ P(τ) |
∫min(τ+rmax,0)

−∞ y(t)†x(t)dt = 0 for every y ∈ B},

Q̃(τ) = {x ∈ Q(τ) |
∫max(τ+rmin,0)

∞ y(t)†x(t)dt = 0 for every y ∈ B},

P̃ (τ) = {φ ∈ X | φ = xτ for some x ∈ P̃(τ)},

Q̃(τ) = {φ ∈ X | φ = xτ for some x ∈ Q̃(τ)},

(5.5.1)

we see that the upper bounds for the defining integrals are now constant for τ ≥ 0 and
τ ≤ 0 respectively. In view of the nontriviality assumption (HKer), all the conclusions
from the previous sections remain valid for these new spaces. In particular, we have
the following result.

Corollary 5.5.2 (cf. [104, Prop. 4.2]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Recall the spaces S(τ) from Theorem 5.2.5. Then we have the direct sum
decomposition

S(τ) = P̃ (τ)⊕ Q̃(τ)⊕B(τ) (5.5.2)

for any τ ∈ R.

Our first goal is to find an explicit complement for the space S(τ) in X. In view
of the identification S(τ) = X⊥(τ), we actually build a duality basis for B∗(τ) with
respect to the Hale inner product; see (5.5.3).

Proposition 5.5.3 (cf. [104, Lem. 4.3]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Write nd = dim(B∗) and choose a basis {di : 1 ≤ i ≤ nd} for B∗. Then
there exists a constant r0 > 0, together with a family of functions yi(τ) ∈ Cb(D

	
τ ),

defined for every τ ≥ 0 and every integer 1 ≤ i ≤ nd, that satisfies the following
properties.

(i) For any τ ≥ 0 and any integer 1 ≤ i ≤ nd we have
[
Λyi(τ)

]
(t) = 0 for every

t ∈ (∞,−r0] ∪ [0, τ ].
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(ii) For any 0 ≤ t ≤ τ and any pair 1 ≤ i, j ≤ nd we have the identity

〈(di)t, (yj(τ))t〉t = δij . (5.5.3)

(iii) For any fixed constant t ≥ 0 and fixed integer 1 ≤ i ≤ nd, the map τ 7→ (yi(τ))t is

continuous from the interval [t,∞) into the state space X.

(iv) For any triplet 0 ≤ t ≤ τ1 ≤ τ2 and any integer 1 ≤ i ≤ nd, we have the inclusion[
yi(τ1) − y

i
(τ2)

]
t
∈ P̃ (t). (5.5.4)

(v) For any τ ≥ 0 and any integer 1 ≤ i ≤ nd, the integral condition∫ 0

−∞ b(t)†y(τ)(t)dt = 0 (5.5.5)

holds for all b ∈ B.

Upon using the functions in Proposition 5.5.3 to introduce the finite-dimensional
spans

Y(τ) = span
{
yi(τ)

}nd
i=1

, Y (τ) = span
{

(yi(τ))τ
}nd
i=1

, (5.5.6)

we can now define the spaces R(τ) and R(τ) that appear in Theorem 5.2.8 by writing

R(τ) = P̃(ξ)⊕ Y(τ), R(τ) = P̃ (ξ)⊕ Y (τ). (5.5.7)

The identities in (5.5.3) show that the dimension of the space Y (τ) is precisely nd.
Moreover, in combination with Theorem 5.2.5 they yield

S(τ) ∩ Y (τ) = {0}, (5.5.8)

which means that we have the direct sum decomposition

X = P̃ (τ)⊕ Y (τ)⊕Q(τ) (5.5.9)

for any τ ≥ 0.

Our final main result here generalizes the exponential decay estimates contained
in Theorem 5.2.4 to the half-line setting. The main obstacle here is that it is more
involved to control the derivative of functions in Y(τ), preventing a direct application
of the Ascoli-Arzela theorem. Indeed, these functions have a nonzero right-hand side
on the interval [−r0, 0] when substituted into (5.2.1).

Proposition 5.5.4 (cf. [104, Prop. 4.4]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Then for any τ ≥ 0, every function x ∈ R(τ) is C1-smooth on (−∞, τ ].
In addition, there exist constants Kdec > 0 and α > 0 in such a way that for all τ ≥ 0
and all t ≤ τ we have the pointwise estimate

|x(t)|+ |ẋ(t)| ≤ Kdece
−α(τ−t)‖xτ‖∞ (5.5.10)

for every x ∈ R(τ).
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5.5.2 Construction of Y(τ)

In order to construct the functions {yi(τ)} from Proposition 5.5.3, we will use the freedom
we still have to choose complements for the range and the kernel of the operator Λ.

Lemma 5.5.5 (cf. [104, Lem. 3.4]). Assume that (HA), (HK), (HH) and (HKer) are
satisfied and fix τ ∈ R. Write nd = dim(B∗) and choose a basis {di : 1 ≤ i ≤ nd} for

B∗. Then there exists a constant r
(τ)
0 > 0, together with functions

{φi(τ) : 1 ≤ i ≤ nd} ⊂ Cb[τ, τ + r
(τ)
0 ], {ψi(τ) : 1 ≤ i ≤ nd} ⊂ Cb[τ − r(τ)

0 , τ ]
(5.5.11)

that satisfy the identities

τ+r
(τ)
0∫

τ

di(t)†φj(τ)(t)dt = δi,j ,

τ∫
τ−r(τ)

0

di(t)†ψj(τ)(t)dt = δi,j

(5.5.12)

for any 1 ≤ i, j ≤ nd, together with

0 = φj(τ)(τ) = φj(τ)(τ + r
(τ)
0 ),

0 = ψj(τ)(τ − r
(τ)
0 ) = ψj(τ)(τ),

(5.5.13)

for any 1 ≤ j ≤ nd.

Proof. By symmetry, we only consider the construction of the functions {ψi(τ) : 1 ≤
i ≤ nd}. We first note that the restriction operator

B∗ → Cb[−r(τ)
0 + τ, τ ], d 7→ d|

[−r(τ)
0 +τ,τ ]

(5.5.14)

is injective for some r
(τ)
0 > 0. This follows trivially from (HKer) and the fact that B∗

is finite dimensional.

Let us denote [·, ·]τ for the integral product

[ψ, φ]τ =
τ∫

τ−r(τ)
0

ψ(t)†φ(t)dt. (5.5.15)

Consider any set of functions {ψ̃i : 1 ≤ i ≤ nd} ⊂ Cb[τ − r(τ)
0 , τ ] with

0 = ψ̃j(τ − r(τ)
0 ) = ψ̃j(τ), (5.5.16)

for which the nd×nd-matrix Z with entries Zij = [di|
[−r(τ)

0 +τ,τ ]
, ψ̃j ]τ is invertible. This

is possible on account of the linear independence of the sequence {di|
[−r(τ)

0 +τ,τ ]
: 1 ≤

i ≤ nd}. For any integer 1 ≤ j ≤ nd we can now choose

ψj(τ) =
nd∑
k=1

Z−1
kj ψ̃

k. (5.5.17)
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By construction, we have ψj(τ)(τ − r
(τ)
0 ) = ψj(τ)(τ) = 0 and we can compute

τ∫
τ−r(τ)

0

di(t)†ψj(τ)(t)dt =
[
di|

[−r(τ)
0 +τ,τ ]

, ψj
]
τ

=
nd∑
k=1

Z−1
kj

[
di|

[−r(τ)
0 +τ,τ ]

, ψ̃k
]
τ

=
nd∑
k=1

Z−1
kj Zik

= δi,j

(5.5.18)

for any 1 ≤ i, j ≤ nd, as desired.

Lemma 5.5.6 (cf. [104, Pg. 13]). Assume that (HA), (HK), (HH) and (HKer) are
satisfied and fix τ ∈ R. Then there exist bounded linear operators

Λ−1
+;τ : L∞

(
[τ,∞);CM

)
→ W 1,∞(D⊕τ ;CM ),

Λ−1
−;τ : L∞

(
(−∞, τ ];CM

)
→ W 1,∞(D	τ ;CM )

(5.5.19)

with the property that the identities

[ΛΛ−1
+;τf ](t) = f(t), t ≥ τ,

[ΛΛ−1
−;τg](s) = g(s) t ≤ τ

(5.5.20)

hold for f ∈ L∞
(
[τ,∞);CM

)
and g ∈ L∞

(
(−∞, τ ];CM

)
.

Proof. By symmetry, we will only construct the operator Λ−1
+;τ . We write R =

Range(Λ) and K = B. Let R⊥ and K⊥ be arbitrary complements of R and K respec-
tively, so that we have

W 1,∞(R;CM ) = K ⊕K⊥, L∞(R;CM ) = R⊕R⊥. (5.5.21)

Let πR and πR⊥ denote the projections corresponding to this splitting. Then Λ : K⊥ →
R is invertible, with a bounded inverse Λ−1 ∈ L(R,K⊥).

We let r
(τ)
0 > 0 and {ψi(τ) : 1 ≤ i ≤ nd} be the constant and the functions from

Lemma 5.5.5 for this value of τ . For 1 ≤ i ≤ nd we write gi(τ) ∈ L
∞(R;CM ) for the

function that has gi(τ) = ψi(τ) on [−r(τ)
0 +τ, τ ], while gi(τ) = 0 on (−∞,−r(τ)

0 +τ)∪(τ,∞).

Since we have gi(τ) /∈ R for 1 ≤ i ≤ nd by Proposition 5.2.1 and these functions are
linearly independent, we can explicitly choose the projection πR⊥ to be given by

πR⊥f =
nd∑
i=1

[ ∫∞
−∞ di(t)†f(t)dt

]
gi(τ). (5.5.22)

Upon writing 1[τ,∞) for the indicator function on [τ,∞), we can define the inverse
of Λ on the positive half-line [τ,∞) by

Λ−1
+;τf = Λ−1πR1[τ,∞)f. (5.5.23)
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By construction, we have gi(τ)(t) = 0 for all t ≥ τ and all 1 ≤ i ≤ nd. As such, we

have [πR⊥1[τ,∞)f ](t) = 0 for any t ≥ τ and any f ∈ L∞([τ,∞);CM ). Hence a short
computation shows that we have

[ΛΛ−1
+;τf ](t) = [1[τ,∞)f ](t)−

[
πR⊥1[τ,∞)f

]
(t) = f(t) (5.5.24)

for t ≥ τ and f ∈ L∞([τ,∞);CM ), as desired.

For notational convenience, we write

r0 := r
(0)
0 , ψi := ψi(0) (5.5.25)

for the constant and functions obtained in Lemma 5.5.5 for τ = 0. As in the proof of
Lemma 5.5.6, we also write gi ∈ L∞(R;CM ) for the function

gi(t) =

ψ
i(t), t ∈ [−r0, 0]

0, t ∈ (∞,−r0] ∪ [0,∞).
(5.5.26)

On account of the identity (5.5.13), we note that the function gi is continuous.

Proof of Proposition 5.5.3. For any k ∈ Z≥1 we write Λ−1
−;k for the inverse operator

constructed in Lemma 5.5.6 for the half-line (−∞, k], together with yi(k) = Λ−1
−;kg

i.

Assumption (HKer) implies that any basis of B remains linearly independent when
restricted to the interval (−∞, 0]. As such, we can add an appropriate element of B to
y(k) to ensure that the integral condition (5.5.5) is satisfied. For any integer 1 ≤ j ≤ nd,
Lemma 5.3.12 and the exponential decay of the function dj allow us to compute

〈(dj)t, (yi(k))t〉t =
∫ t
−∞ dj(s)†

[
Λyi(k)

]
(s)dt

=
∫ 0

−r0 d
j(s)†gi(s)ds

= δij

(5.5.27)

for any 0 ≤ t ≤ k. We now pick a continuous function χ : [0,∞) → [0, 1] that is zero
near even integers and one near odd integers. Upon defining

yi(τ) = χ(2τ)yi(dτe) +
[
1− χ(2τ)

]
yi

(dτ+ 1
2 e)
, (5.5.28)

in which dτe denotes the closest integer larger or equal to τ , it is easy to see that
properties (i) through (v) are all satisfied.

5.5.3 Exponential decay

We now focus on the exponential decay of functions in Y(τ), noting that Theorem 5.2.4
already captures the corresponding behaviour for functions in P̃(τ). The technical is-
sues that we encountered during the proof of Theorem 5.2.4 persist in this half-line
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setting. In particular, we need to control the behaviour of functions in Y(τ) on a left
half-line and a right half-line at the same time.

In addition, in the proof of the corresponding result in [104], the authors were ex-
plicitly able to avoid the region where Λyi(τ) is nonzero when considering the states

(yi(τ))τ . This is of course no longer possible in our setting when |rmin| is infinite. As

such, we need to control the value of Λyi(τ) in a more rigorous fashion.

Our first result can be see as the analogue of Lemma 5.3.6, but now the goal is to
obtain estimates on Λyn for bounded sequences {yn ∈ Y(τn)}. As a preparation, we
recall from the proof of Proposition 5.5.3 that the identity

Λy =
nd∑
i=1

gi〈(di)0, y0〉0 (5.5.29)

holds for y ∈ Y(τ). In addition, we recall the constants p > 0,Kexp > 0 and α > 0
introduced in Lemma 5.3.1.

Lemma 5.5.7. Assume that (HA), (HK), (HH) and (HKer) are satisfied and let
{σn}n≥1, {yn}n≥1 and {τn}n≥1 be sequences with the following properties.

(a) We have σn > 0 for each n, together with σn ↑ ∞.

(b) We have yn ∈ Y(τn) and τn ≥ 0 for each n.

(c) For each n ≥ 1 we have the bound

|yn(−σn + τn)| ≥ 1
2 , (5.5.30)

together with the normalization

sup
s∈(−∞,τn+p]

|yn(s)| = 1. (5.5.31)

(d) If rmax =∞, then we have the additional bound

|yn(−σn + τn)| ≥ Kexpe
α(−σn+τn) sup

s∈[p+τn,∞)

e−αs|yn(s)|. (5.5.32)

(e) The limit −σn + τn → β0 holds for some β0 ∈ R.

Then the set of scalars {〈(di)0, (yn)0〉0} is bounded uniformly for n ≥ 1 and 1 ≤ i ≤ nd.

Proof. Suppose first that rmax = ∞. Fixing n ∈ Z≥1 and 1 ≤ i ≤ nd, we can use
the bounds (5.5.30) and (5.5.32) to estimate

|〈(di)0, (yn)0〉0| ≤ |di(0)†yn(0)|+
∣∣∣ ∞∑
j=−∞

∫ rj
0
di(s− rj)†Aj(s− rj)yn(s)ds

∣∣∣
+
∣∣∣ ∫R ∫ r0 di(s− r)†K(r; s− r)y(s)dsdr

∣∣∣
≤ |di(0)|+ S1(i, n) + S2(i, n) + S3(i, n)

+I1(i, n) + I2(i, n) + I3(i, n),
(5.5.33)
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in which we have defined

S1(i, n) =
∑

rj≤p+τn

∣∣ ∫ rj
0
di(s− rj)†Aj(s− rj)ds

∣∣,
S2(i, n) =

∑
rj>p+τn

∣∣ ∫ p+τn
0

di(s− rj)†Aj(s− rj)ds
∣∣,

S3(i, n) =
∑

rj>p+τn

∣∣ ∫ rj
p+τn

di(s− rj)†Aj(s− rj)K−1
expe

α(σn−τn)eαsds
∣∣, (5.5.34)

together with the corresponding expressions I1(i, n), I2(i, n) and I3(i, n) related to the
integrals involving K.

We easily obtain the bounds

|S1(i, n)| ≤ max1≤k≤nd

∞∑
j=−∞

∣∣ ∫ rj
0
|dk(s− rj)†Aj(s− rj)|ds

∣∣,
|S2(i, n)| ≤ max1≤k≤nd

∑
rj>p

∫∞
0
|dk(s− rj)†Aj(s− rj)|ds,

|I1(i, n)| ≤ max1≤k≤nd
∫
R
∣∣ ∫ r

0
|dk(s− r)†K(r; s− r)|ds

∣∣dr,
|I2(i, n)| ≤ max1≤k≤nd

∫∞
p

∫∞
0
|dk(s− r)†K(r; s− r)|dsdr,

(5.5.35)

which are uniform in i and n. Turning to the remaining expressions, we pick a small
ε > 0 and assume that n is large enough to have |β0 + σn − τn| < ε. This allows us to
estimate

|S3(i, n)| ≤ K−1
expe

α(σn−τn)
∑

rj>p+τn

‖Aj‖∞|rj |eαrj‖di‖∞

≤ K−1
expe

α(σn−τn)Kexpe
−2α(p+τn)‖di‖∞

≤ e−2α(p+τn)eαβ0+αεmax1≤k≤nd‖dk‖∞,

(5.5.36)

with a corresponding bound for I3. In particular, both S3(i, n) and I3(i, n) converge to
0 as n→∞, so they can be bounded from above uniformly in i and n.

In the case where rmax < ∞, we can repeat this procedure with p = rmax. The
quantities S3(i, n) and I3(i, n) are identically zero in this case.

Lemma 5.5.8. Assume that (HA), (HK), (HH) and (HKer) are satisfied and suppose
that rmax =∞. Then for each τ ≥ 0 and each y ∈ Y(τ) we have the bound

|y(t)| ≤ max
{

1
2 sup
s∈(−∞,τ+p]

|y(s)|,Kexp sup
s∈[p+τ,∞)

e−α(s−t)|y(s)|
}
, t ≤ −σ + τ.

(5.5.37)
If rmax <∞, then the same statements hold with (5.5.37) replaced by

|y(t)| ≤ 1
2 sup
s∈(−∞,τ+rmax]

|y(s)|, t ≤ −σ + τ. (5.5.38)

Proof. Arguing by contradiction, let us consider sequences {σn}n≥1, {τn}n≥1 and
{yn}n≥1 that satisfy properties (a)-(d) in Lemma 5.5.7. If the sequence {−σn+ τn}n≥1
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is unbounded then we can follow the proof of Proposition 5.3.2 to arrive at a contra-
diction, since the interval [−r0, 0] on which Λyn might be nonzero gets ‘pushed out’
towards ±∞.

Suppose therefore that −σn+τn → β0 ∈ R, possibly after passing to a subsequence.
Combining Lemma 5.5.7 with (5.5.29) shows that {Λyn}n≥1 is uniformly bounded,
which allows us to apply the Ascoli-Arzela theorem to conclude that yn → y∗ uniformly
on compact subsets of R. A computation similar to the proof of Lemma 5.3.7 shows
that [Λy∗](t) = 0 for every t ≥ 0, since the functions gi vanish for these values of t.
In particular, we must have (y∗)0 ∈ Q(0). On account of Theorem 5.2.5, we obtain
(y∗)0 ∈ X⊥(0), which yields

〈(di)0, (y∗)0〉0 = 0 (5.5.39)

for each 1 ≤ i ≤ nd. In view of (5.5.29) this means that Λyn → 0 uniformly on every
compact subset of the real line. In particular, we must have Λy∗ = 0 on the entire
real line, which implies that y∗ ∈ B. However, this contradicts the integral condition
(5.5.5).

Lemma 5.5.9. Assume that (HA), (HK), (HH) and (HKer) are satisfied. Then there
exists C > 0 so that for all τ ≥ 0 and all y ∈ Y(τ) we have the bound

‖y‖Cb(D	τ ) ≤ C‖yτ‖∞. (5.5.40)

Proof. The bound (5.5.40) is in fact an equality with C = 1 if rmin = −∞.
Hence we assume that rmin > −∞. Arguing by contradiction, we can pick sequences
{yn}n≥1, {τn}n≥1 and {Cn}n≥1 with Cn → ∞ with τn ≥ 0 and yn ∈ Y(τn) for each n
in such a way that we have the identity

‖yn‖Cb(D	τn ) = Cn‖(yn)τn‖∞ = 1. (5.5.41)

If the sequence {τn}n≥1 is unbounded we can follow the first half of the proof of Lemma
5.3.8 to arrive at a contradiction.

Hence we suppose that, after passing to a subsequence, we have τn → τ∗ ≥ 0. Since
the bounds on the functions {yn}n≥1 are stronger than those in (5.5.30) or (5.5.32),
we can repeat the procedure from Lemma 5.5.7 to conclude that yn → y∗ uniform
on compact subsets of (−∞, τ∗]. For each n ≥ 1 we pick sn in such a way that
|yn(−sn + τn)| = 1. On account of Lemma 5.5.8, the set {sn}n≥1 is bounded. Hence,
we obtain that

y∗(t) 6= 0, for some t ∈ (rmin + τ∗, σ + τ∗). (5.5.42)

In addition, we have (yn)τn → 0 uniformly as n→∞, so we even obtain that yn → y∗
uniformly on D+

X + τ∗. If rmax < ∞, we set y∗ = 0 on (rmax + τ∗,∞). In particular,
we have (y∗)τ∗ = 0 and thus [Λy∗](t) = 0 for any t ∈ [τ∗,∞). Moreover, we have
[Λy∗](t) = 0 for any t ∈ [0, τ∗], since Λyn is zero for these values of t for each n ∈ Z≥1.
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This means that y∗ ∈ Q(0) and, as before, this yields a contradiction.

Proof of Proposition 5.5.4. Using Lemmas 5.5.8 and 5.5.9, we can extend the proof
of Theorem 5.2.4 to also include functions in Y(τ). As such, for all τ ≥ 0 and x ∈ R(τ)
we have the pointwise estimate

|x(t)| ≤ Kdece
−α(τ−t)‖xτ‖∞, t ≤ τ. (5.5.43)

The exponential decay of ẋ for x ∈ P̃ (τ) follows directly from Theorem 5.2.4. Let us
therefore consider an arbitrary y ∈ Y(τ), which satisfies the exponential bound (5.3.63).
Recalling the constant B > 0 from Lemma 5.3.14, we write

C =
∞∑

j=−∞
‖Aj(·)‖∞eα|rj | + sup

t∈R
‖K(·; t)‖α,

B̃ = Beαr0
nd∑
i=1

‖(di)0‖∞‖gi‖∞.
(5.5.44)

Recalling the bound (5.3.62) and the identity (5.5.29), we obtain that

|Λy|(t) =
∣∣ nd∑
i=1

gi〈(di)0, y0〉0
∣∣

≤
nd∑
i=1

‖gi‖∞
∣∣〈(di)0, y0〉0

∣∣
≤ B

nd∑
i=1

‖gi‖∞‖(di)0‖∞‖yτ‖∞e−ατ

≤ e−α(τ−t)B̃‖yτ‖∞

(5.5.45)

for any −r0 ≤ t ≤ 0. Since gi(t) = 0 for t ≥ 0 and t ≤ −r0 and since gi is continuous,
we see that (5.5.45) is, in fact, valid for any t ≤ τ . As such, we immediately obtain

|ẏ(t)| ≤ Kdece
−α(τ−t)

(
C + B̃

)
‖yτ‖∞, t ≤ τ (5.5.46)

for any τ ≥ 0 and any y ∈ Y(τ).

For the final statement we first recall the identity (5.5.29). Since the coefficients
Aj(t) and K(·; t) depend continuously on t and since the functions gi are continuous,
the identity (5.5.29) yields that ẋ is continuous on (−∞, τ ] for any x ∈ R(τ) and any
τ ≥ 0.

5.5.4 Projection operators

In order to complete the proof of Theorem 5.2.8, we need to consider the behaviour of
several projection operators. In particular, we recall the splitting

X = P (∞)⊕Q(∞) (5.5.47)
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corresponding to the hyperbolic limiting system (5.2.11) at +∞, together with the

notation
−→
ΠP and

−→
ΠQ for the projections onto the factors P (∞) and Q(∞). In addition,

we recall the decompositions

X = R(τ)⊕Q(τ) = P̃ (τ)⊕ Y (τ)⊕Q(τ), τ ≥ 0 (5.5.48)

obtained above in this section and write ΠP̃ (τ), ΠY (τ) and ΠQ(τ) for the corresponding
projections.

Our first result can be seen as a supplement for the bound (5.2.47) in Theorem
5.2.6. Indeed, together these bounds allow the full structure of the two decompositions
above to be compared with each other for τ � 1.

Lemma 5.5.10 (cf. [104, Lem. 4.5]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Then we have the limit

lim
τ→∞

‖I −
−→
ΠP |R(τ)‖ = 0. (5.5.49)

Proof. If rmin > −∞ then we can follow the proof of [104, Lem. 4.5] to obtain the
desired result, so we assume that rmin = −∞. Recalling the positive constants Kdec

and α from Proposition 5.5.4, we write

C =
∞∑

j=−∞
‖Aj(·)‖∞eα|rj | + sup

t∈R
‖K(·; t)‖α +

∞∑
j=−∞

|Aj(∞)|eα|rj | + ‖K(·;∞)‖α.

(5.5.50)
Fix an arbitrary ε > 0 and pick τ0 � 1 in such a way that the bounds

4Kdec

(
1 + C

)
e−ατ0 < ε

2 ,

∞∑
j=−∞

∣∣Aj(t)−A+
j (∞)

∣∣+ ‖K(·; t)−K(·;∞)‖α + ‖K(·; t− ·)−K(·;∞)‖α < ε
2

(5.5.51)
hold for all t ≥ τ0. Recall the constant r0 from (5.5.25) and fix any τ ≥ 2τ0 + p+ r0.

First we pick any y ∈ R(τ) and write φ = yτ ∈ R(τ). We now set out to show that

‖
−→
ΠQφ‖∞ ≤ εC ′‖φ‖∞, (5.5.52)

for some constant C ′ > 0. Indeed, this upper bound implies that

‖I −
−→
ΠP |Y (τ)‖ = ‖

−→
ΠQ|Y (τ)‖ ≤ C ′ε, (5.5.53)

which yields the desired result.

On account of Proposition 5.5.4 we note that y is continuously differentiable on
(−∞, τ ], which yields that φ is continuously differentiable on (−∞, 0]. In addition,
Proposition 5.5.4 implies that both φ and φ̇ decay exponentially for t → −∞. which
means that φ|(−∞,0] ∈ C1

b

(
(−∞, 0]

)
. We can hence approximate φ by functions {φk}k≥1
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in C1
b (DX) which have φk(t) = φ(t) for any t ∈ (−∞, 0]. These functions can be

extended to C1-smooth functions {yk}≥1, defined on R, which have (yk)τ = φk. As
such, they have yk(t) = y(t) for any t ≤ τ . Due to the uniform bound on both y and ẏ
from Proposition 5.5.4 we can pick the functions {yk}k≥1 in such a way that the bound

|ẏk(t)|+ |yk(t)| ≤ 4Kdece
−α(τ−t)

(
1 + C

)
‖yτ‖∞ (5.5.54)

holds for any t ≤ 0 and any k ∈ Z≥1.

We now introduce the Heaviside function Hτ that acts as Hτ (t) = I if t ≥ τ and
zero otherwise, together with the operator

[Λ∞x](t) = ẋ(t)−
∞∑

j=−∞
Aj(∞)x(t+ rj)−

∫
RK(s;∞)x(t+ s)ds. (5.5.55)

Recalling the splitting (5.5.47), we observe that for any function x ∈ C1
b (R) we have(

Λ−1
∞ HτΛ∞x

)
τ
∈ P (∞),

(
Λ−1
∞ [I −Hτ ]Λ∞x

)
τ
∈ Q(∞), (5.5.56)

together with
xτ =

(
Λ−1
∞ HτΛ∞x

)
τ

+
(
Λ−1
∞ [I −Hτ ]Λ∞x

)
τ
. (5.5.57)

As such, we have the representation

−→
ΠQxτ =

(
Λ−1
∞ [I −Hτ ]Λ∞x

)
τ

(5.5.58)

for any C1-smooth function x. For any t ∈ R and any k ∈ Z≥1, we observe that

[Λ∞yk](t) = [Λyk](t) +
∞∑

j=−∞

[
Aj(t)−Aj(∞)

]
yk(t+ rj)

+
∫
R
(
K(s; t)−K(s;∞)

)
yk(t+ s)ds.

(5.5.59)

Since [Λyk](t) = [Λy](t) = 0 for τ0 ≤ t ≤ τ and any k ∈ Z≥1, we may hence estimate

‖[I −Hτ ]Λ∞yk‖∞ ≤ sup
t≤τ0

[
|ẏk(t)|+ C‖yt‖∞

]
+ sup
τ0≤t≤τ

ε
2‖(yk)t‖∞

≤ 4Kdec

(
1 + C

)
e−α(τ−τ0)‖φk‖∞ + ε

2‖φk‖∞
≤ 4Kdec

(
1 + C

)
e−ατ0‖φk‖∞ + ε

2‖φk‖∞
≤ ε‖φk‖∞.

(5.5.60)

By the boundedness of the operator Λ−1
∞ , we find that there exists a constant C ′ > 0

that allows us to write

‖
−→
ΠQφk‖∞ = ‖

(
Λ−1
∞ [I −Hτ ]Λ∞yk

)
τ
‖∞ ≤ εC ′‖φk‖∞. (5.5.61)

The operator
−→
ΠQ is continuous, so we can take the limit k →∞ to obtain

‖
−→
ΠQφ‖∞ ≤ εC ′‖φ‖∞. (5.5.62)
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This yields the desired bound

‖I −
−→
ΠP |Y (τ)‖ = ‖

−→
ΠQ|Y (τ)‖ ≤ C ′ε. (5.5.63)

Lemma 5.5.11 (cf. [104, Lem. 4.6]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied and fix τ0 ≥ 0. Then we have the limits

‖[I −ΠP̃ (τ0)]|P̃ (τ)‖ → 0 as τ → τ0,

‖[I −ΠY (τ0)]|Y (τ)‖ → 0 as τ → τ0,

‖[I −ΠQ(τ0)]|Q(τ)‖ → 0 as τ → τ0.

(5.5.64)

Proof. The first and the third limit follow from Theorem 5.2.6. The second limit
follows from the finite dimensionality of the spaces Y and from item (iii) of Proposition
5.5.3.

Lemma 5.5.12 (cf. [104, Lem. 4.7]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Then the projections ΠQ(τ) from Lemma 5.5.11 can be uniformly bounded
for all τ ≥ 0.

Proof. The proof is identical to that of [104, Lem. 4.7] and, as such, will be omitted.
It uses Proposition 5.3.10, together with Lemmas 5.5.10 and 5.5.11.

Corollary 5.5.13 (cf. [104, Cor. 4.8]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Then the projections ΠR(τ) and ΠQ(τ) corresponding to the first splitting
in (5.5.48) depend continuously on τ ∈ R≥0. In addition, we have the limits

lim
τ→∞

‖ΠQ(τ) −
−→
ΠQ‖ = 0, lim

τ→∞
‖ΠR(τ) −

−→
ΠP ‖ = 0. (5.5.65)

Proof. The proof is identical to that of [104, Cor. 4.8] and, as such, will be omitted.
It uses Lemmas 5.5.10 and 5.5.12.

Proof of Theorem 5.2.8. Upon defining the space R(τ) by (5.5.7), the exponential
decay rates follow from Theorem 5.2.4 and Proposition 5.5.4. The continuity of the
projections follows from Corollary 5.5.13, while the uniform bounds on the projections
follow from Lemma 5.5.12.

5.6 Degeneracies and their avoidance

In this section, we set out to prove Corollaries 5.2.3 and 5.2.7. In fact, our main result
below formulates alternative conditions that can be used instead of (HKer) to obtain
the same conclusions. These alternatives involve the Hale inner product, which we
require to be (partially) nondegenerate in the following sense.
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Definition 5.6.1. Let F ⊂ Y be a subset with 0 ∈ F and fix τ ∈ R. We say that the
Hale inner product is left-nondegenerate at τ for functions in F if ψ = 0 is the only
function ψ ∈ F for which 〈ψ, φ〉τ = 0 holds for every φ ∈ X.

Definition 5.6.2. Let E ⊂ X be a subset with 0 ∈ E and fix τ ∈ R. We say that the
Hale inner product is right-nondegenerate at τ for functions in E if φ = 0 is the only
function φ ∈ E for which 〈ψ, φ〉τ = 0 holds for every ψ ∈ Y .

Proposition 5.6.3 (cf. [133, Cor. 4.7]). Assume that (HA), (HK) and (HH) are
satisfied. Suppose furthermore that at least one of the following three conditions is
satisfied.

(a) The nontriviality condition (HKer) holds.

(b) We have |rmin| = rmax =∞ and the Hale inner product is left-nondegenerate for
functions in B∗(τ) at each τ ∈ R.

(c) We have rmin < 0 < rmax and for each τ ∈ R the Hale inner product at τ is both
left-nondegenerate for functions in B∗(τ) and right-nondegenerate for functions
in B(τ).

Then the identities

dimB(τ) = dimB, β(τ) = dimB∗(τ) = dimB∗ (5.6.1)

hold for every τ ∈ R. Moreover, the four Fredholm indices appearing in (5.4.1) are
independent of τ and given by (5.6.1). In addition, the first equation in (5.4.1) becomes

ind(π+
P (τ)) + ind(π−Q(τ)) = −M + ind(Λ) (5.6.2)

with Λ as in (5.2.15). Finally, the spaces P (τ), Q(τ), P̂ (τ) and Q̂(τ) all vary contin-
uously with respect to τ .

In §5.6.1 we provide various structural conditions on the system (5.2.1) that allow
the conditions (a)-(c) above to be verified. They turn out to be closely related, as
illustrated by the examples that we provide in §5.6.2. We establish our main result
in §5.6.3, where we also describe how partial results can be obtained under weaker
conditions.

5.6.1 Structural conditions

In order to use Proposition 5.6.3 to compute the codimension of the space S(τ) in X,
we either need to establish the nondegeneracy of the Hale inner product or show that
the nontriviality condition (HKer) is satisfied. However, it is by no means clear how
this can be achieved in practice for concrete systems. Our goal here is to describe sev-
eral more-or-less explicit criteria that can be used to verify these nondegeneracy and
nontriviality conditions.
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Some of these criteria reference the adjoint of the system (5.2.1), which is closely
related to the operator Λ∗ defined in (5.2.16). This system is given by

ẏ(t) = −
∞∑

j=−∞
Aj(t− rj)†y(t− rj)−

∫
R
K(ξ; t− ξ)†y(t− ξ)dξ. (5.6.3)

Most of our conditions impose the following basic structural condition, which demands
that the coefficients corresponding to large shifts are autonomous. This is valid for
many common reaction-diffusion systems such as those studied in [6, 150]. Indeed,
the large shifts usually arise from discretizations of the diffusion, which is typically
autonomous. The nonautonomous reaction terms are typically localized in space.

Assumption (hB). There exists a constant Kconst ∈ Z≥1 together with families of
diagonal matrices{
Ãj : j ∈ Z with |j| ≥ Kconst

}
⊂ CM×M ,

{
K̃(ξ) : ξ ∈ R with |ξ| ≥ Kconst

}
⊂ CM×M ,

(5.6.4)
so that the following structural conditions are satisfied.

(a) We have rj = j for j ∈ Z, which implies rmin = −∞ and rmax =∞.

(b) We have Aj(t) = Ãj for all t ∈ R whenever |j| ≥ Kconst.

(c) We have K(ξ; t) = K̃(ξ) for all t ∈ R whenever |ξ| ≥ Kconst.

Remark 5.6.4. The assumption (hB) can be relaxed by assuming that there exists
a basis for CM on which the matrices Ãj for j ≤ −Kconst are diagonal, together with

a separate basis on which the matrices Ãj for j ≥ Kconst are diagonal. However, for
notational simplicity, we do not pursue such an approach.

Remark 5.6.5. The condition (hB) can be relaxed to include shifts rj with |rj | <
Kconst that are not equidistant. In addition, there does not need to be any limit on the
number of these small shifts. However, for notational simplicity we do not pursue such
a level of generality.

We divide our discussion into several scenarios for the unbounded coefficients that
we each discuss in turn. Our general results are formulated at the end of this subsection.

5.6.1.1 Bounded shifts and compact support

The methods from [133] can be applied almost directly when the nonlocal terms all
have finite range, except that we need to take care of accumulation points of the shifts.
In any case, it is straightforward to formulate the appropriate atomic condition at a
point τ ∈ R.

Assumption (hFin). We have |rmin| + rmax < ∞ and there is a small δ > 0 so that
the convolution kernel K(·; t) is supported in the interval [rmin + δ, rmax − δ] for each



292CHAPTER 5. EXPONENTIAL DICHOTOMIES FOR INFINITE-RANGEMFDES

t ∈ R. In addition, neither rmin nor rmax is an accumulation point of the set of shifts
R and there are unique integers jmin, jmax that satisfy

rmin = rjmin
, rmax = rjmax

. (5.6.5)

Finally, we have det
(
Ajmin

(t)
)
6= 0 for a dense set of t ∈ [τ + rmin, τ − rmin], together

with det
(
Ajmax

(t)
)
6= 0 for a dense set of t ∈ [τ − rmax, τ + rmax].

5.6.1.2 Unbounded shifts and compact support

We here consider the case where the discrete shifts are unbounded, but the convolution
kernels all have finite support. For convenience, we formulate this as an assumption.

Assumption (hSh1). Assumption (hB) is satisfied. In addition, K(·; t) is supported
in the interval [−Kconst,Kconst] for each t ∈ R.

Our approach here exploits the functional analytic framework of cyclic vectors for
the backward shift operator on `2, which was first described in [54]. This framework
allows us to find sufficient conditions under which the nontriviality condition (HKer)
holds and the Hale inner product is nondegenerate for exponentially decaying func-
tions. Reversely, we also provide a condition that guarantees the Hale inner product
to be degenerate, even for exponentially decaying functions; see Proposition 5.6.6 below.

Let us first collect the necessary terminology. We consider the backward shift op-
erator S on the sequence space `2(N0;C), defined by

S : `2(N0;C) → `2(N0;C), (an)n≥0 7→ (an)n≥1. (5.6.6)

We call a vector a = (an)n≥0 ∈ `2(N0;C) cyclic if the span of the set {SNa : N ≥ 0}
is dense in `2(N0;C). Our main condition here demands that the diagonal elements of
the matrices Ãj can be used to form such cyclic sequences. Our first result shows that
this is in fact essential for the nondegeneracy of the Hale inner product.

Assumption (hSh2). Upon writing jn = Kconst + n together with

α(k) =
(
Ã

(k,k)
−jn

)
n≥0
⊂ `2(N0;C) β(k) =

(
Ã

(k,k)
jn

)
n≥0
⊂ `2(N0;C),

(5.6.7)
the sequences α(k) and β(k) are cyclic for the backwards shift operator for any 1 ≤ k ≤
M .

Proposition 5.6.6 (see §5.6.5). Assume that (HA), (HK) and (HH) and (hSh1) are
all satisfied. If the cyclicity condition (hSh2) is not satisfied, then there exists a nonzero
function ψ ∈ Y that decays exponentially and satisfies 〈ψ, φ〉τ = 0 for every φ ∈ X and
each τ ∈ R.

For the backward shift operator on `2(N0;C), the criterion for an exponentially
decaying sequence to be cyclic can be made explicit; see §5.6.4. This allows us to for-
mulate two results that can be used to verify (hSh2).
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Lemma 5.6.7 (see §5.6.4). Assume that (HA), (HK) and (HH) and (hSh1) are all
satisfied. Consider the functions f (k) and g(k) that are defined on their natural domain
by

f (k)(z) =
∞∑

j=Kconst

Ã
(k,k)
−j zj , g(k)(z) =

∞∑
j=Kconst

Ã
(k,k)
j zj . (5.6.8)

Then the cyclicity condition (hSh2) is satisfied if and only if the functions f (k) and g(k)

are not rational functions for any 1 ≤ k ≤M .

Lemma 5.6.8 (see §5.6.4). Assume that (HA), (HK) and (HH) and (hSh1) are all
satisfied and consider the sequences α(k) and β(k) defined in (5.6.7). Then the sets
{SNα(k) : N ≥ 0} and {SNβ(k) : N ≥ 0} are both infinite dimensional for each
1 ≤ k ≤M if and only if the cyclicity condition (hSh2) is satisfied.

5.6.1.3 Bounded shifts, unbounded support

We now consider the reverse of the setting discussed in §5.6.1.2. In particular, we
assume that the discrete shifts are bounded.

Assumption (hCyc1). Assumption (hB) is satisfied, with Ãj = 0 whenever |j| ≥
Kconst.

In this case, one is interested in the translation semigroup {St}t≥0 on the space L1,
which acts as

(Stf)(s) = f(s+ t) (5.6.9)

for f ∈ L1
(
[0,∞);C

)
. A function f ∈ L1

(
[0,∞);C

)
is said to be cyclic for the transla-

tion semigroup if span{Stf : t ≥ 0} is dense in L1
(
[0,∞);C

)
. We impose the following

counterpart to (hSh2), which will allow us to establish (HKer) together with the non-
degeneracy of the Hale inner product for bounded functions.

Assumption (hCyc2). For any 1 ≤ k ≤M , the functions

f (k)(s) = K̃(Kconst + s)(k,k), g(k)(s) = K̃(−Kconst − s)(k,k) (5.6.10)

are cyclic for the translation semigroup on L1
(
[0,∞);C

)
.

It is well-known that there exist kernels that satisfy (hCyc2) and (HK), see Lemma
5.6.15 below. In addition, translates of such kernels remain cyclic. However, we are
unaware of any criterion to explicitely characterize them. This prevents us from for-
mulating a result analogous to Lemma 5.6.7.

5.6.1.4 Positive-definite coefficients

Our final scenario requires information on the sign of the coefficient functions (5.6.4)
and the kernel elements in B∗. Such information can typically be obtained by applying
Krein-Rutman type arguments, see for example [39, 110, 131]. In each of these examples
the kernels B and B∗ are at most one-dimensional. Notice that our main condition here
is weaker than the requirements formulated in Proposition 5.2.2. For convenience we
split the conditions on the coefficients and the kernels into separate assumptions.



294CHAPTER 5. EXPONENTIAL DICHOTOMIES FOR INFINITE-RANGEMFDES

Assumption (hPos1). Assumption (hB) is satisfied and the matrices (5.6.4) are all
positive semidefinite. Finally, at least one of the following two conditions holds.

(a) For each m ≥ Kconst there exist i ≥ m and j ≤ −m for which the matrices Ãi
and Ãj are positive definite.

(b) The map s 7→ K̃(s) is continuous on (−∞,−Kconst] ∪ [Kconst,∞). In addition,
for each m ≥ Kconst there exists s ≥ m and r ≤ −m for which the matrices K̃(s)
and K̃(r) are positive definite.

Assumption (hPos2). The adjoint kernel satisfies B∗ = {0} or B∗ = span{b} for
some nonnegative function b.

In Proposition 5.6.10 below, we show that the nontriviality condition (HKer) is
satisfied if (hPos1) holds, while (hPos2) holds both for the system (5.2.1) as well as its
adjoint (5.6.3). On the other hand, the left-nondegeneracy of the Hale inner product
follows from the positivity condition (hPos1) without any additional assumptions on B
or B∗.

5.6.1.5 Summary of results

Our main results for this subsection can now be formulated as follows.

Proposition 5.6.9 (see §5.6.5). Assume that (HA), (HK) and (HH) are satisfied.
Then we have the following implications.

(i) If the atomic condition (hFin) is satisfied at some point τ ∈ R, then the Hale
inner product 〈·, ·〉τ is left-nondegenerate at τ for functions in Y and right-
nondegenerate at τ for functions in X.

(ii) If the cyclicity conditions (hSh1) and (hSh2) are satisfied, then at each τ ∈ R
the Hale inner product 〈·, ·〉τ is left-nondegenerate and right-nondegenerate for
exponentially decaying functions.

(iii) If the cyclicity conditions (hCyc1) and (hCyc2) are satisfied, then at each τ ∈ R
the Hale inner product 〈·, ·〉τ is left-nondegenerate for functions in Y and right-
nondegenerate for functions in X.

(iv) If the positivity condition (hPos1) is satisfied, then at each τ ∈ R the Hale in-
ner product 〈·, ·〉τ is left-nondegenerate and right-nondegenerate for nonnegative
functions.

In each of the cases (i)-(iii), the quantity in (5.2.30) satisfies β(τ) = dimB∗(τ). This
also holds for case (iv) provided that the positivity condition (hPos2) is satisfied.

Proposition 5.6.10 (see §5.6.6). Assume that (HA), (HK) and (HH) are satisfied.
Then we have the following implications.

(i) If the atomic condition (hFin) is satisfied at each τ ∈ R, then the nontriviality
condition (HKer) is satisfied for the system (5.2.1).
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(ii) If the cyclicity conditions (hSh1) and (hSh2) are satisfied, then the nontriviality
condition (HKer) is satisfied for the system (5.2.1).

(iii) If the cyclicity conditions (hCyc1) and (hCyc2) are satisfied, then the nontriviality
condition (HKer) is satisfied for the system (5.2.1).

(iv) If the positivity condition (hPos1) is satisfied and (hPos2) holds both for (5.2.1)
and its adjoint (5.6.3), then the nontriviality condition (HKer) is satisfied for the
system (5.2.1).

Note that the nontriviality condition (HKer) does not directly imply that the the
Hale inner product is nondegenerate in some form. Instead, it enables us construct an
explicit complement to the space S(τ). In particular, the nondegeneracy of the Hale
inner product is useful, but not necessary to compute the codimension β(τ).

5.6.2 Examples

In order to illustrate the results above, we consider the infinite-range nonlinear MFDE

u̇(t) =
∞∑
k=1

γk[u(t+ k) + u(t− k)− 2u(t)] +
∞∫
0

θ(ξ)[u(t+ ξ) + u(t− ξ)− 2u(t)]dξ

+g
(
u(t); a

)
,

(5.6.11)
in which the nonlinearity g is given by the cubic nonlinearity

g(u; a) = u(1− u)(u− a), a ∈ (0, 1), (5.6.12)

while the sequence γ and the function θ decay exponentially. This MFDE can be
interpreted as the travelling wave equation for a nonlocal version of the Nagumo PDE.
One is typically interested in the front solutions, which satisfy the limits

lim
t→−∞

u(t) = 0, lim
t→∞

u(t) = 1. (5.6.13)

Results concerning the existence of such these solutions in a variety of settings can be
found in [6, 95, 122, 131]. For our purposes here, we will simply assume such a solution
exists and consider the associated linearization of (5.6.11), which is given by

u̇(t) =
∞∑
k=1

γk[u(t+ k) + u(t− k)− 2u(t)] +
∞∫
0

θ(ξ)
[
u(t+ ξ) + u(t− ξ)− 2u(t)

]
dξ

+gu(u(t); a)u(t).
(5.6.14)

We remark that a simple differentiation automatically yields d
dtu ∈ B.

In this setting, the Hale inner product is given by

〈ψ, φ〉τ = ψ(0)φ(0) +
∞∑
k=1

0∫
−k

ψ(s+ k)γkφ(s)ds−
∞∑
k=1

k∫
0

ψ(s− k)γ|k|φ(s)ds

−
∫
R

r∫
0

ψ(s− r)θ(|r|)φ(s)dsdr,

(5.6.15)
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which is independent of τ and the function u. With the exception of (hPos2), we can
hence investigate the validity of our assumptions and the nondegeneracy of the Hale
inner product without any knowledge regarding the wave u besides the limits (5.6.13).

For example, we note that (hB) is automatically satisfied with Kconst = 1 and

Ãj = γ|j| K̃(ξ) = θ(|ξ|) (5.6.16)

for |j| ≥ 1 and ξ 6= 0. In addition, we have

A0(t) = −2
∞∑
k=1

γk − 2
∫∞

0
θ(ξ)dξ + gu(u(t); a). (5.6.17)

In particular, it is clear that (HA) and (HK) hold. However, one needs additional in-
formation on the coefficients in order to verify the hyperbolicity assumption (HH).

We consider various choices for γ and θ in our discussion below. In each case we are
able to distinguish whether or not the Hale inner product is degenerate. For each of
the two degenerate cases, we construct an explicit nontrivial function ψ ∈ Y for which
〈ψ, φ〉τ = 0 for all φ ∈ X and all τ ∈ R. However, we emphasize again that this does
not prevent us from showing that (HKer) holds.

5.6.2.1 Positive coefficients

Consider the system (5.6.14) and suppose that the coefficients {γk}k≥1 and the convo-
lution kernels θ(ξ) are positive. The bistablity of the nonlinearity g then allows us to
conclude that the hyperbolicity condition (HH) is satisfied. In addition, (hPos1) holds
and hence the Hale inner product is nondegenerate for nonnegative functions.

These positivity conditions imply that a comparison principle holds for (5.6.14).
In such a setting, one can typically derive that the kernels B and B∗ are both one-
dimensional and spanned by a strictly positive function. For example, the wave u is
typically monotonically increasing and the associated derivative d

dtu spans B and is
strictly positive. Results of this type have been proven in various settings, see for
example [7, 8, 38]. In each case, the system (5.6.14) together with its adjoint (5.6.3)
satisfy (hPos2). In particular, the nontriviality condition (HKer) holds.

5.6.2.2 noncyclic shift coefficients

Consider the system (5.6.14) with θ(ξ) = 0 for each t ∈ R and γk = e−k for k ≥ 1. This
system satisfies (hSh1). Since the coefficients {γk}k≥1 are positive, the results from
§5.6.2.1 show that (HH) is satisfied and that the Hale inner product for the system
(5.6.14) is nondegenerate for nonnegative functions.

However, it is easy to see that∑
k≥1

γkz
k = z

e−z , (5.6.18)
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which is a rational function. Hence, this system does not satisfy (hSh2) on account of
Lemma 5.6.7. Alternatively, letting S denote the backwards shift operator on `2(N0;C),
the sequence α = (γk)k≥1 satisfies SNα = e−Nα for any N ≥ 0. In particular, the set
span{SNα : N ≥ 0} is one-dimensional, which in view of Lemma 5.6.8 again shows
that (hSh2) is not satisfied. In particular, Proposition 5.6.6 implies that the Hale inner
product is not nondegenerate for all exponentially decaying functions.

To make this more explicit, we consider the continuous, bounded function ψ : R→ R
that has

ψ(s) = 0 for s ≤ 1, ψ
(3

2

)
= 1, ψ

(5

2

)
= −e, ψ(s) = 0 for s ≥ 3 (5.6.19)

and is linear in the missing segments. This choice is motivated by the fact that

β = (1,−e, 0, 0, ...) ∈ `2(N0;C) (5.6.20)

is perpendicular to the set span{SNα : N ≥ 0} and ensures that

∞∑
k=m

ψ
(
s̃+ k + 1−m

)
γk = s̃

(
e−m − e · e−(m+1)

)
= 0, (5.6.21)

for any m ∈ Z≥1 and any s̃ ∈ [0, 1). For an arbitrary s ≤ 0 we make the decomposition

s = s̃+ 1−m (5.6.22)

for some integer m ≥ 1 and s̃ ∈ [0, 1). Applying (5.6.21), we now compute∑
k≥1−s

ψ(s+ k)γk =
∑

k≥m−s̃
ψ(s̃+ k + 1−m)γk = 0 (5.6.23)

since the final sum in fact ranges over k ≥ m.

Since ψ(s) = 0 for s ≤ 1, the Hale inner product reduces to

〈ψ, φ〉τ =
∞∑
k=1

0∫
−k

ψ(s+ k)γkφ(s)ds

=
∞∑
k=1

0∫
−k+1

ψ(s+ k)γkφ(s)ds,

(5.6.24)

for φ ∈ Cb(R) and τ ∈ R. The dominated convergence theorem allows us to interchange
the sum and the infinite integral, which yields

〈ψ, φ〉τ =
0∫
−∞

∑
k≥1−s

ψ(s+ k)γkφ(s)ds = 0, (5.6.25)

for any φ ∈ Cb(R) and τ ∈ R. Since γk > 0 for any k ∈ Z≥1, this example shows that
a naive generalization of the atomic condition (hFin) is not sufficient to establish the
nondegeneracy of the Hale inner product.
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5.6.2.3 noncyclic convolution kernel

Consider the system (5.6.14) with θ(ξ) = exp(−ξ) and γk = 0 for k ≥ 1. This system
satisfies (hCyc1). Since the kernel θ is positive, the results from §5.6.2.1 again show
that (HH) is satisfied and that the Hale inner product for the system (5.6.14) is non-
degenerate for nonnegative functions.

However, the identity

θ(t+ ξ) = exp(−t)θ(ξ), (ξ, t) ∈ R2
≥0 (5.6.26)

directly implies that span{θ(· + t) : t ≥ 0} is one dimensional in L1
(
[0,∞);C

)
. In

particular, the cyclicity condition (hCyc2) fails to be satisfied. While we cannot appeal
to a general result here, we can show by hand that the Hale inner product is degenerate
for an exponentially decaying function.

To this end, we consider the bounded, continuous function ψ : R→ R that has

ψ(s) = 0 for s ≤ 0, ψ(1) = −1, ψ(2) = 0, ψ(3) = e2, ψ(s) = 0 for s ≥ 4
(5.6.27)

and is linear in the missing segments. By construction, the identity

∞∫
0

ψ(r)θ(r − s)dr = exp(s)
∞∫
0

ψ(r)θ(r)dr = 0 (5.6.28)

holds for any s ≤ 0. For any φ ∈ Cb(R) we can again use the dominated convergence
theorem to compute

〈ψ, φ〉τ = ψ(0)φ(0)−
∫
R

r∫
0

ψ(s− r)†θ(|r|)φ(s)dsdr

= −
∞∫
0

0∫
−r
ψ(s+ r)†θ(r)φ(s)dsdr

= −
0∫
−∞

∞∫
0

1{s∈[−r,0]}ψ(s+ r)†θ(r)φ(s)drds

= −
0∫
−∞

∞∫
−s
ψ(s+ r)†θ(r)φ(s)drds

= −
0∫
−∞

∞∫
0

ψ(r)†θ(r − s)φ(s)drds

= 0

(5.6.29)

for any τ ∈ R.

5.6.2.4 Cyclic shifts with mixed coefficients

For our final example, we choose θ = 0 and consider a sequence γ that admits Gaussian
decay. In particular, we write

γk = 1
h2 ck exp(−k2), h > 0, (5.6.30)
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for some bounded sequence {ck}k≥1 that can have both positive and negative elements,
but must be uniformly bounded away from zero. In particular, (hSh1) is satisfied,
but this may not hold for the positivity condition (hPos1). In order to verify the
hyperbolicity condition (HH), it suffices to impose the restriction∑

k>0

ck exp(−k2)
(

1− cos(kz)
)

> 0, z ∈ (0, 2π); (5.6.31)

see [150, Lem. 5.6]. This can be interpreted as the statement that the sum in (5.6.14)
is spectrally similar to the Laplacian.

We now set out to establish the cyclicity condition (hSh2) by appealing to Lemma
5.6.8. Recalling the backward shift operator (5.6.6), we consider the vector e =
(en)n≥0 ∈ `2(N0;C) given by

ek−1 = ck exp(−k2), k ≥ 1 (5.6.32)

and set out to show that the set

A := span{SNe : N ≥ 0} (5.6.33)

is an infinite dimensional subspace of `2(N0;C).

Arguing by induction, we pick ` ≥ 1 and assume that the vectors e, Se, ..., S`−1e are
linearly independent. Suppose now that we have a nonzero multiplet (λ0, ..., λ`) ∈ C`+1

for which ∑̀
i=0

λiS
ie = 0. (5.6.34)

Let 0 ≤ i∗ < ` be the smallest integer with λi∗ 6= 0. Our assumption on c implies that
the sequence {| ckck+1

|}k≥1 is uniformly bounded away from zero, which implies that the

quotient
| ek−1

ek
| = | ckck+1

| exp(2k + 1) (5.6.35)

grows to infinity as k →∞. In particular, by picking a sufficiently large index K � 1
we obtain the bound

|
∑̀

i=i∗+1

λi(S
ie)K | ≤

∑̀
i=i∗+1

|λieK+i|

< |λi∗eK+i∗ |

= |λi∗(Si∗e)K |,

(5.6.36)

which contradicts the K-th component of the identity (5.6.34). In particular, Proposi-
tion 5.6.9 yields that there is no exponentially decaying ψ ∈ Y that has 〈ψ, φ〉τ = 0 for
each φ ∈ X.

If h > 0 is sufficiently small, then the existence of a travelling front solution for
(5.6.11) is guaranteed by [6, Thm. 1]. One can subsequently use Proposition 5.6.10 to
conclude that the nontriviality condition (HKer) is satisfied.
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5.6.3 (Co)-dimension counting

The main goal of this subsection is to establish the identities (5.6.1) concerning the
dimensions of B(τ) and B∗(τ) and the codimension of S(τ). The remainder of the
statements in Proposition 5.6.3 follow readily from these computations, using the main
results in §5.2. We aim to use as little information as possible, providing partial results
under weaker conditions.

Lemma 5.6.11. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and
suppose first that the Hale inner product is left-nondegenerate at τ for functions in
B∗(τ). Then the identity

β(τ) = dimB∗(τ) (5.6.37)

holds. Alternatively, if the nontriviality condition (HKer) is satisfied, then the identity
(5.6.37) is valid for all τ ∈ R.

Proof. In the first case, this follows directly from the characterisation of S(τ) given
by (5.2.41). In the second case, the statement for τ ≥ 0 follows from the direct sum
decomposition (5.5.9) and the identities in (5.5.3). Using symmetry arguments this can
be extended to τ < 0.

Lemma 5.6.12. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and
suppose first that any nonzero d ∈ B ∪ B∗ does not vanish on (−∞, τ ] and does not
vanish on [τ,∞). Then we have the identities

dimB(τ) = dimB, dimB∗(τ) = dimB∗. (5.6.38)

In particular, if the nontriviality condition (HKer) holds then (5.6.38) is valid for each
τ ∈ R.

Proof. Since the statements hold trivially if |rmin| = rmax = ∞ on account of
Lemma 5.3.4, we will use symmetry to assume without loss that rmax < ∞. Arguing
by contradiction to establish the first identity, let us consider a nontrivial kernel element
x ∈ B that has xτ = 0. If rmin = −∞, this means that x vanishes identically on D	τ
and hence (−∞, τ ], violating our assumption. On the other hand, if rmin > −∞ we
can assume without loss that x does not vanish on (rmax,∞). Upon introducing the
new function

x̃(t) =

x(t), t ≥ τ + rmin,

0, t < τ + rmin,
(5.6.39)

we see that x̃ is a nontrivial element of B that vanishes on D	τ , again violating our
assumption. The second identity in (5.6.38) can be obtained in a similar fashion.

Lemma 5.6.13. Assume that (HA), (HK) and (HH) are satisfied and that rmin < 0 <
rmax. Suppose that for each τ ∈ R the Hale inner product is left-nondegenerate for
functions in B∗(τ). Then we have the identity

dimB∗(τ) = dimB∗ (5.6.40)
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for any τ ∈ R. Similarly, if for each τ ∈ R the Hale inner product is right-nondegenerate
for functions in B(τ), then the identity

dimB(τ) = dimB (5.6.41)

holds for each τ ∈ R.

Proof. Both identities follow trivially from Lemma 5.3.4 if |rmin| = rmax = ∞. By
symmetry we only consider the identity (5.6.40). Suppose that (5.6.40) fails, allowing us
to pick a nonzero y ∈ B∗ that has yτ = 0 for some τ ∈ R. Possibly after increasing τ , we
may assume by symmetry that rmin > −∞ and that there exists a small 0 < ε < |rmin|
so that

y(τ − rmin + δ) 6= 0 (5.6.42)

holds for each δ ∈ (0, ε). In particular, 0 6= yτ+ε ∈ B∗(τ + ε), so by the left-
nondegeneracy of the Hale inner product at τ + ε, we can pick φ ∈ X with

〈yτ+ε, φ〉τ+ε 6= 0. (5.6.43)

Without loss, we can assume that φ is differentiable, allowing us to pick a differentiable
function x ∈ Cb(R) that has φ = xτ+ε. On account of Lemma 5.3.12 we can compute

d
dt 〈y

t, xt〉t = y∗(t)[Λx](t) + [Λ∗y](t)x(t) = 0 (5.6.44)

for any t ∈ (τ − rmax, τ − rmin), since yτ = 0 and since y ∈ B∗. As such, 〈yt, xt〉t is
constant on (τ − rmax, τ − rmin]. Since yτ = 0, it follows that 〈yτ , xτ 〉τ = 0. However,
this yields the identity

0 = 〈yτ+ε, xτ+ε〉τ+ε = 〈yτ+ε, φ〉τ+ε, (5.6.45)

which contradicts (5.6.43).

Proof of Proposition 5.6.3. We first aim to establish (5.6.1). If the nontriviality
condition (HKer) holds, this follows by combining Lemmas 5.6.11 and Lemma 5.6.12.
Alternatively, if (b) holds, then (5.6.1) follows by combining Proposition 5.6.9 with Lem-
mas 5.3.4 and 5.6.11. Finally, if (c) holds, then (5.6.1) follows by combining Proposition
5.6.9 with Lemmas 5.6.11 and 5.6.13.

Turning to the Fredholm indices, we remark that the right-hand side of (5.4.1) is
now constant in τ . Since both ind(π+

P (τ)) and ind(π−Q(τ)) are upper semi-continuous by

Proposition 5.4.2, both these factors must be constant as well. By Theorem 5.2.5 the in-
clusions P̂ (τ) ⊂ P (τ) and Q̂(τ) ⊂ Q(τ) have constant codimension dimB(τ) = dimB.
Hence the indices ind(π+

P̂ (τ)
) and ind(π−

Q̂(τ)
) are also constant. Moreover, these four

subspaces vary continuously in τ . Finally, the identity (5.6.2) follows from (5.4.1) and
(5.6.1), using the value of ind(Λ) given in Proposition 5.2.1.

Proof of Corollaries 5.2.3 and 5.2.7. These results follow directly from Proposition
5.6.3.
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5.6.4 Cyclic coefficients

In this subsection, we collect several results from the literature concerning the cyclicity
of the backwards shift operator and the translation semigroup. In addition, we translate
these results into our setting and explore their consequences.

Proposition 5.6.14 ([54, Thm. 2.2.4, Rem. 2.2.6]). Consider a sequence α =
(αn)n≥0 ∈ `2(N0;C) that decays exponentially and write f for the associated function

f(z) =
∞∑
n=0

αnz
n, (5.6.46)

defined on its natural domain in C. Then the sequence α is cyclic for the backwards
shift operator (5.6.6) if and only if f is not a rational function. In fact, if α is not
cyclic, then span{SNα : N ≥ 0} is finite dimensional in `2(N0;C).

Lemma 5.6.15. For any T > 0 and any function f ∈ L1
(
[0,∞);C

)
that is cyclic for

the translation group (St)t≥0 defined in (5.6.9), the shifted function s 7→ f(s+T ) is also
cyclic for (St)t≥0. In addition, for any η̃ > 0, there exists a function f ∈ L1

η̃

(
[0,∞);C

)
that is cyclic for the translation group (St)t≥0. In particular, there exists a convolution
kernel that satisfies both (HK) and (hCyc2).

Proof. The first statement follows directly from [134, Lem. 1]. Turning to the exis-
tence claim, we fix η̃ > 0 and let (Tt)t≥0 be the translation semigroup on L1

η̃

(
[0,∞);C

)
.

It follows from [135, Thm. 1(i)] that there exists f ∈ L1
η̃

(
[0,∞);C

)
that is supercyclic

for (Tt)t≥0, which means that {λS(t)f : t ≥ 0, λ ∈ R} is dense in L1
η̃

(
[0,∞);C

)
. Such

a function is clearly also cyclic for (Tt)t≥0 (with respect to the norm ‖·‖η̃). We write

D = span{T (t)f : t ≥ 0} = span{S(t)f : t ≥ 0}. (5.6.47)

Since L1
η̃

(
[0,∞);C

)
contains all compactly supported functions, we see that L1

η̃

(
[0,∞);C

)
is dense in L1

(
[0,∞);C

)
with respect to the usual norm ‖·‖L1 . Hence it is sufficient to

show that D is dense in L1
η̃

(
[0,∞);C

)
with respect to ‖·‖L1 . Fix any g ∈ L1

η̃

(
[0,∞);C

)
and let {gn}n≥1 be a sequence in D with

lim
n→∞

‖gn − g‖η̃ = 0. (5.6.48)

For n ∈ N we can compute

‖gn − g‖η̃ =
∫
R e

η̃|ξ||gn(ξ)− g(ξ)|dξ

≥
∫
R |gn(ξ)− g(ξ)|dξ

= ‖gn − g‖L1 ,

(5.6.49)

which immediately implies that also gn → g in L1
(
[0,∞);C

)
, as desired. Hence f is

cyclic for the translation group (St)t≥0. In particular, the convolution kernel

K(ξ; t) = f(|ξ|) (5.6.50)

satisfies both (HK) and (hCyc2).
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Lemma 5.6.16. Let {Dn}n≥0 be an exponentially decaying sequence of M×M diagonal
matrices. Then the following statements are equivalent.

(i) There exists a nonzero sequence y ∈ `2(N0;CM ) that satisfies

∞∑
n=0

y†nDn+N = 0 (5.6.51)

for each N ∈ Z≥0.

(ii) There exists at least one 1 ≤ k ≤ M for which the sequence (D
(k,k)
n )n≥0 is not

cyclic for the backwards shift operator on `2(N0;C).

In addition, if these statements hold, then the sequence y in (i) can be chosen to decay
exponentially. Finally, if these conditions do not hold, then they also do not hold for
the shifted sequence {Dn}n≥N , for any N ∈ Z≥0.

Proof. As a preparation, we introduce the sequences

α(k);N = (α
(k);N
n )n≥0 =

(
D

(k,k)
n+N

)
n≥0
∈ `2(N0;C) (5.6.52)

for any N ≥ 0 and any 1 ≤ k ≤M . In addition, we define the associated subspaces

D(k) = span{α(k);N | N ≥ 0} (5.6.53)

for 1 ≤ k ≤M .

Let us first assume that (i) holds, but that (ii) fails. Then the subspaces D(k) are
all dense in `2(N0;C). In addition, our diagonality assumption together with (5.6.51)
implies that 〈

y(k), α(k);N
〉
`2(N0;C)

= 0 (5.6.54)

for any N ∈ Z≥0 and 1 ≤ k ≤M and thus〈
y(k), d

〉
`2(N0;C)

= 0 (5.6.55)

for any d ∈ D(k) and 1 ≤ k ≤M . Together these two properties yield the contradiction
y = 0.

Let us now assume that (ii) holds. Then Proposition 5.6.14 implies there exists
1 ≤ k0 ≤M for which the subspace D(k0) defined in (5.6.53) is finite dimensional, with
a basis that consists of exponentially decaying sequences. In particular, we can pick an
exponentially decaying sequence ψ ∈ `2(N0;C) that satisfies 〈ψ, d〉`2(N0;C) = 0 for any

d ∈ D(k0). Upon writing y = (0, ..., 0, ψ, 0, ..., 0) ∈ `2(N0;CM ), where ψ takes the kth
0

position, we hence see that (5.6.51) is satisfied by construction.

The final statement follows from the characterization in Proposition 5.6.14, which
implies that (non)-cyclicity is preserved under translation. Indeed, if the function f
defined in (5.6.46) is not a rational function, then the function

fN (z) = z−N
[
f(z)−

N−1∑
n=0

αnz
n
]

(5.6.56)
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associated to the shifted sequence SNα is also not rational.

Proof of Lemmas 5.6.7 and 5.6.8. Both results follow directly from Proposition
5.6.14 and Lemma 5.6.16.

5.6.5 Nondegeneracy of the Hale inner product

In this subsection we show how the nondegeneracy of the Hale inner product can be
derived from the conditions formulated in §5.6.1. In particular, we establish Proposi-
tions 5.6.6 and 5.6.9.

As a convenience, we first connect the right-nondegeneracy properties for the system
(5.2.1) to the left-nondegeneracy properties for the adjoint system (5.6.3). This will
allows us to focus solely on the left-nondegeneracy of the Hale inner product with
respect to functions in B∗(τ).

Lemma 5.6.17. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and
E ⊂ X with 0 ∈ E. Then the Hale inner product for the system (5.2.1) at τ is right-
nondegenerate for functions in E if and only if the Hale inner product for the adjoint
system (5.6.3) at τ is left-nondegenerate for functions in E.

Proof. For any φ ∈ X, ψ ∈ Y and τ ∈ R, the Hale inner product for the adjoint
system (5.6.3) is given by

〈φ, ψ〉adj
τ = φ(0)†ψ(0) +

∞∑
j=−∞

−rj∫
0

φ(s+ rj)
†Aj(τ + s− rj)†ψ(s)ds

+
∫
R

r∫
0

φ(s− r)†K(s− r; τ + s− r)†ψ(s)dsdr.

(5.6.57)

A short computation shows that

〈φ, ψ〉adj
τ = ψ(0)†φ(0)−

∞∑
j=−∞

rj∫
0

ψ(s− rj)†Aj(τ + s− rj)φ(s)ds

−
∫
R

r∫
0

ψ(s− r)†K(r; τ + s− r)φ(s)dsdr

= 〈ψ, φ〉τ ,

(5.6.58)

which directly implies the desired result.

We proceed by discussing the cyclicity criteria in introduced in §5.6.1.2 and §5.6.1.3.
The following preparatory result will help us to link the discussion in §5.6.4 to the
degeneracy properties of the Hale inner product.

Lemma 5.6.18. Assume that (HA), (HK), (HH) and (hB) are satisfied and fix τ ∈ R.
Pick any ψ ∈ Y that does not vanish on D+

Y and satisfies 〈ψ, φ〉τ = 0 for every φ ∈ X.
Writing

σ = inf{s ∈ D+
Y | ψ(s) 6= 0}, (5.6.59)
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there exist ε > 0 and N0 ∈ Z≥Kconst
so that the identity

∞∑
j=0

ψ(s+ j)†Ã−j−N +
∞∫

σ−s
ψ(s+ r)†K̃(−r −N)dr = 0 (5.6.60)

holds for almost every s ∈ (σ, σ + ε) and every integer N ≥ N0. In addition, if Ãj = 0
for each j ≤ −N0, then we in fact have

∞∫
0

ψ(σ + r)†K̃(−r − θ)dr = 0 (5.6.61)

for all (reals) θ ≥ N0 + ε.

Proof. We first pick an arbitrary s < 0 with s /∈ Z. Using a sequence of functions
supported on small intervals that shrink to the singleton {s}, we can use (5.2.26) to
conclude that∑

j<s

ψ(s− j)†Aj(τ + s− j) +
s∫
−∞

ψ(s− r)†K(r; τ + s− r)dr = 0. (5.6.62)

Imposing the further restriction s ≤ −Kconst, this can be rephrased as∑
j<s

ψ(s− j)†Ãj +
s∫
−∞

ψ(s− r)†K̃(r)dr = 0. (5.6.63)

We now choose ε > 0 to be so small that (σ, σ + ε) contains no integers. Then
for any sufficiently large integer N � 1, we can combine (5.6.63) together with the
definition of σ to conclude that∑

j<s−σ
ψ(s− j)†Ãj +

s−σ∫
−∞

ψ(s− r)†K̃(r)dr = 0 (5.6.64)

for all s ∈ (σ −N, σ + ε−N). This yields (5.6.60) upon introducing new variables

(s′, j′, r′) = (s+N,−j −N,−r −N) (5.6.65)

and dropping the primes, noting that dσ − s′e = 0. The final statement follows from
the fact that we no longer need to rule out integer values of s′ above, together with the
replacement r 7→ r + σ − s.

Lemma 5.6.19. Assume that (HA), (HK) and (HH) are satisfied and fix τ ∈ R.
Assume moreover that the cyclicity conditions (hSh1)-(hSh2) are satisfied. Then the
Hale inner product at τ is left-nondegenerate for exponentially decaying functions.

Proof. Assume that ψ ∈ Y decays exponentially and has 〈ψ, φ〉τ = 0 for every
φ ∈ X. Exploiting symmetry, we assume further that ψ does not vanish on D+

Y and set
out to find a contradiction. Recalling the setting of Lemma 5.6.18 and remembering
that K̃ = 0 on (−∞,−Kconst], we obtain from (5.6.60) that the identity

∞∑
j=0

ψ(s+ j)†Ã−j−N = 0 (5.6.66)



306CHAPTER 5. EXPONENTIAL DICHOTOMIES FOR INFINITE-RANGEMFDES

holds for almost every s ∈ (σ, σ + ε) and every N ≥ N0 ≥ Kconst.

By (hSh2) and the invariance of cyclicity under translations, the sequences (Ã
(k,k)
−j )j≥N

are cyclic for each 1 ≤ k ≤ M . In particular, Lemma 5.6.16 implies that that the se-
quence ψ(s + N0) ∈ `2(N0;CM ) and hence also the first coordinate ψ(s) must vanish
for all s ∈ (σ, σ + ε). This contradicts the definition of σ.

Proof of Proposition 5.6.6. Assume without loss of generality that the sequence

(Ã
(k,k)
−j )j≥Kconst

is not cyclic for the backwards shift operator. Lemma 5.6.16 then
allows us to pick an exponentially decaying nonzero sequence

y = (yn)n≥0 ∈ `2(N0;CM ) (5.6.67)

for which the identity
∞∑
j=0

y†j Ã−j−N = 0 (5.6.68)

holds for all integers N ≥ Kconst.

We now define a continuous, bounded function ψ : DY → CM by writing

ψ(s) = 0, s ∈ (−∞,Kconst), (5.6.69)

together with

ψ(j) = 0, ψ(j + 1
2 ) = yj−Kconst , j ∈ Z≥Kconst (5.6.70)

and performing a linear interpolation between these prescribed values. This construc-
tion implies that

∞∑
j=N

ψ
(
s̃+ j +Kconst −N

)†
Ã−j = s̃

∞∑
j=0

y†j Ã−N−j = 0, (5.6.71)

for any integer N ≥ Kconst and any s̃ ∈ [0, 1).

Let us now consider an arbitrary s ≤ 0 and make the decomposition

s = s̃+Kconst −N (5.6.72)

for some integer N ≥ Kconst and s̃ ∈ [0, 1). Applying (5.6.71), we now compute∑
j≥Kconst−s

ψ(s+ j)Ã−j =
∑

j≥N−s̃
ψ(s̃+ j +Kconst −N)Ã−j = 0 (5.6.73)

since the final sum in fact ranges over j ≥ N .

For any φ ∈ X, we note that (5.2.26) reduces to

〈ψ, φ〉τ = −
∞∑

j=−∞

j∫
0

ψ(s− j)†Aj(τ + s− j)φ(s)ds

−
∫
R

r∫
0

ψ(s− r)†K(r; t+ s− r)φ(s)dsdr

(5.6.74)
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since ψ(0) = 0. Exploiting (hB), this can be further simplified and recast as

〈ψ, φ〉τ = −
−Kconst∑
j=−∞

j∫
0

ψ(s− j)†Ãjφ(s)ds

= −
∞∑

j=Kconst

Kconst−j∫
0

ψ(s+ j)†Ã−jφ(s)ds.

(5.6.75)

The dominated convergence theorem allows us to interchange the infinite sum and the
integral, which yields

〈ψ, φ〉τ = −
−∞∫
0

∑
j≥Kconst−s

ψ(s+ j)†Ã−jφ(s)ds = 0 (5.6.76)

on account of (5.6.73).

Lemma 5.6.20. Assume that (HA), (HK) and (HH) are satisfied and fix τ ∈ R.
Assume moreover that the cyclicity conditions (hCyc1)-(hCyc2) are satisfied. Then the
Hale inner product at τ is left-nondegenerate for functions in Y .

Proof. Assume that ψ ∈ Y has 〈ψ, φ〉τ = 0 for every φ ∈ X. Exploiting symme-
try, we assume further that ψ does not vanish on D+

Y and set out to find a contradiction.

We pick 1 ≤ k ≤ M for which ψ(k) does not vanish on D+
Y . Recalling the setting

of Lemma 5.6.18 and remembering that Ãj = 0 for each |j| ≥ Kconst, we obtain from
(5.6.61) that the identity

∞∫
0

ψ(σ + r)†K̃(−r − θ)dr = 0 (5.6.77)

holds for every θ ≥ N + ε. We introduce the subspace

D = span
{
t 7→ K̃(k,k)(−t− r) | r ≥ N + ε

}
, (5.6.78)

which is dense in L1
(
[0,∞);C

)
by (hCyc2) and Lemma 5.6.15. We therefore have

∞∫
0

ψ(k)(σ + r)∗f(r)dr = 0 (5.6.79)

for every f ∈ D.

We fix any f ∈ L1
(
[0,∞);C

)
and let {fn}n≥1 be a sequence in D(k) with fn → f .

Using (5.6.79) we can estimate∣∣∣ ∞∫
0

ψ(k)(σ + r)∗f(r)dr
∣∣∣ =

∣∣∣ ∞∫
0

ψ(k)(σ + r)∗
(
f(r)− fn(r)

)
dr
∣∣∣

≤ ‖ψ‖∞
∞∫
0

|f(r)− fn(r)|dr,
(5.6.80)
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which converges to 0 as n → ∞. Hence (5.6.79) holds for any f ∈ L1
(
[0,∞);C

)
. In

particular, we pick s ∈ (σ, σ+ ε) for which ψ(k)(s) 6= 0 and we let f ∈ L1
(
[0,∞);C

)
be

a sufficiently small peak function, centered around s− σ. This immediately yields

∞∫
0

ψ(k)(σ + r)∗f(r)dr 6= 0, (5.6.81)

which contradicts (5.6.79).

Lemma 5.6.21. Assume that (HA), (HK) and (HH) are satisfied and fix τ ∈ R.
Assume moreover that the positivity condition (hPos1) is satisfied. Then the Hale inner
product at τ is left-nondegenerate for nonnegative functions.

Proof. Assume that ψ ∈ Y is nonnegative and has 〈ψ, φ〉τ = 0 for every φ ∈ X.
Exploiting symmetry, we assume further that ψ does not vanish on D+

Y and set out to
find a contradiction. Recalling the setting of Lemma 5.6.18, we obtain from (5.6.60)
that the identity

∞∑
j=0

ψ(s+ j)†Ã−j−N +
∞∫

σ−s
ψ(s+ r)†K̃(−r −N)dr = 0 (5.6.82)

holds for almost every s ∈ (σ, σ + ε) and every N ≥ N0 ≥ Kconst. In addition, the
definition of σ allows us to conclude ψ(s) > 0 for s ∈ (σ, σ + ε).

Since the matrices (5.6.4) are all positive semidefinite, we have(
ψ(s+ j)†Ã−j−N

)(k) ≥ 0, s ∈ (σ, σ + ε) (5.6.83)

for all j ≥ 0, 1 ≤ k ≤M and N ≥ N0, together with(
ψ(s+ r)†K̃(−r −N)

)(k) ≥ 0, s ∈ (σ, σ + ε) (5.6.84)

for all r ≥ σ − s, 1 ≤ k ≤ M and all N ≥ N0. On the other hand, fixing j = 0
and r = 0, item (a) and (b) in (hPos1) allow us to find N ≥ N0 for which one or both
of the inequalities (5.6.83)-(5.6.84) are strict. This immediately contradicts (5.6.82).

Lemma 5.6.22. Assume that (HA), (HK) and (HH) are satisfied. Assume moreover
that the atomic condition (hFin) is satisfied at some point τ ∈ R. Then the Hale inner
product at τ is left-nondegenerate for functions in Y .

Proof. The proof is identical to that of [133, Prop. 4.16] and, as such, will be
omitted.

Proof of Proposition 5.6.9. The statements (i)-(iv) follow from Lemmas 5.6.17,
5.6.19, 5.6.20, 5.6.21 and 5.6.22. The final statement follows from the representation
(5.2.30), applying Proposition 5.2.1 for (ii)-(iii) or using the nonnegative B∗(τ)-basis
for (iv).
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Remark 5.6.23. The conclusion in Lemma 5.6.19 that the Hale inner product is non-
degenerate for exponentially decaying functions cannot easily be generalized to bounded
functions. Indeed, the key argument is that the sequence ψ(s+N0)(k) is perpendicular
to a dense subspace of `2(N0;C). This sequence is in `2 itself on account of the expo-
nential decay of ψ and must therefore vanish. However, it is possible for nontrivial `∞

sequences to be perpendicular to a dense subspace of `2(N0;C); see the discussion at
[1]. In a similar fashion, we do not expect Lemma 5.6.21 to be easily generalizable.

5.6.6 The nontriviality condition (HKer)

In this final subsection we show how the nontriviality condition (HKer) can be verified.

Lemma 5.6.24. Assume that (HA), (HK) and (HH) are satisfied. Suppose that the
atomic condition (hFin) holds for the system (5.2.1) at each τ ∈ R. Then the nontriv-
iality condition (HKer) is also satisfied.

Proof. By symmetry and the fact the adjoint system (5.6.3) also satisfies (hFin), it
suffices to show that any nonzero d ∈ B cannot vanish on (−∞, 0]. Arguing by contra-
diction, we assume that d = 0 identically on (−∞, 0]. Defining σ = inf{s ∈ R : d(s) 6=
0}, we have 0 ≤ σ <∞ by construction.

Recalling the constant δ > 0 from (hFin), we pick 0 < ε < δ sufficiently small to
have d(σ + ε) 6= 0 and rj + ε < rmax for any j ∈ Z with rj 6= rmax. Evaluating (5.2.1)
at t = σ + ε− rmax now yields

0 = −ḋ(t) +
∞∑
j=1

Aj(t)d(t+ rj) +
∫
R
K(ξ; t)d(t+ ξ)dξ

= Ajmax(σ + ε− rmax)d(σ + ε).
(5.6.85)

Since the matrix Ajmax(σ+ε−rmax) is nonsingular, we obtain the desired contradiction
d(σ + ε) = 0.

Lemma 5.6.25. Assume that (HA), (HK) and (HH) are satisfied, together with the
cyclicity conditions (hSh1)-(hSh2). Then the nontriviality condition (HKer) also holds.

Proof. By symmetry and the fact the adjoint system (5.6.3) also satisfies (hSh1)-
(hSh2), it suffices to show that any nonzero d ∈ B cannot vanish on (−∞, 0]. Writing
σ = inf{s ∈ R : d(s) 6= 0}, we have 0 ≤ σ <∞ by construction. Recalling the constant
Kconst ∈ Z≥0 from (hB), we use (5.2.1) to conclude that

0 = −ḋ(s) +
∑
j∈Z

Aj(s)d(s+ j) +
∫
R
K(ξ; s)d(s+ ξ)dξ

=
∑

j≥σ−s
Ãjd(s+ j)

(5.6.86)

for any s ∈ (−∞,−Kconst].
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We now pick an integer N0 and a constant ε > 0 in such a way that N0 > σ+Kconst

and d(σ + ε) 6= 0 both hold. Then for any integer N ≥ N0 and any s ∈ (σ, σ + ε), we
can use (5.6.86) to conclude

∞∑
j=0

d(s+ j)†Ãj+N = 0, (5.6.87)

which closely resembles (5.6.66). We can hence follow the proof of Lemma 5.6.19 to
obtain the contradiction d = 0.

Lemma 5.6.26. Assume that (HA), (HK) and (HH) are satisfied. Suppose that the
cyclicity conditions (hCyc1)-(hCyc2) are satisfied for the system (5.2.1). Then the
nontriviality condition (HKer) is satisfied for the system (5.2.1).

Proof. By symmetry and the fact the adjoint system (5.6.3) also satisfies (hCyc1)-
(hCyc2), it suffices to show that any nonzero d ∈ B cannot vanish on (−∞, 0]. We can
follow the proof of Lemmas 5.6.20 and 5.6.25 to arrive at a contradiction.

Lemma 5.6.27. Assume that (HA), (HK) and (HH) and (hPos1) are satisfied. Sup-
pose furthermore that the positivity condition (hPos2) holds for both the system (5.2.1)
and the adjoint system (5.6.3). Then the nontriviality condition (HKer) is also satis-
fied.

Proof. By symmetry, it suffices to show that any nonzero, nonnegative d ∈ B
cannot vanish on (−∞, 0]. Write σ = inf{s ∈ R : d(s) 6= 0} and recall the constant
Kconst ∈ Z≥0 from (hB). Using (5.2.1) we see that

0 = −ḋ(s) +
∑
j∈Z

Aj(s)d(s+ j) +
∫
R
K(ξ; s)d(s+ ξ)dξ

=
∑

j≥σ−s
Ãjd(s+ j) +

∞∫
σ−s
K̃(ξ)d(s+ ξ)dξ

(5.6.88)

for any s ∈ (−∞,−Kconst].

We now pick an integer N0 and a constant ε > 0 in such a way that d(σ+ δ) 6= 0 for
each 0 < δ < ε and N0 > σ+Kconst +ε both hold. If (a) holds in (hPos1), we pick N ≥
N0 in such a way that ÃN is positive definite. Picking s = σ+ ε−N ∈ (−∞,−Kconst],
we arrive at the contradiction

0 ≥
(
ÃNd(σ + ε)

)(k)
> 0 (5.6.89)

for some 1 ≤ k ≤ M . On the other hand, if (b) holds in (hPos1), we pick θ ≥ N0 in
such a way that K̃θ+δ is positive definite whenever |δ| ≤ ε

4 . Picking s = σ + ε
2 − θ ∈

(−∞,−Kconst], we obtain

0 ≥ C inf
t∈[ ε4 ,

3ε
4 ]
{d(σ + t)(k)} > 0 (5.6.90)

for some constant C > 0 and some 1 ≤ k ≤M , a contradiction.

Proof of Proposition 5.6.10. This follows directly from Lemmas 5.6.24-5.6.27.


