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Chapter 4

Travelling wave solutions for
fully discrete
FitzHugh-Nagumo type
equations with infinite-range
interactions

Sections 4.1-4.5 and 4.A have been submitted as W.M. Schouten-Straatman and H.J.
Hupkes “Travelling wave solutions for fully discrete FitzHugh-Nagumo type equations
with infinite-range interactions” [152].

Abstract. We investigate the impact of spatial-temporal discretisation schemes
on the dynamics of a class of reaction-diffusion equations that includes the FitzHugh-
Nagumo system. For the temporal discretisation we consider the family of six backward
differential formula (BDF) methods, which includes the well-known backward-Euler
scheme. The spatial discretisations can feature infinite-range interactions, allowing us
to consider neural field models. We construct travelling wave solutions to these fully dis-
crete systems in the small time-step regime by viewing them as singular perturbations
of the corresponding spatially discrete system. In particular, we refine the previous
approach by Hupkes and Van Vleck for scalar fully discretised systems, which is based
on a spectral convergence technique that was developed by Bates, Chen and Chmaj.
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Key words: Travelling waves, FitzHugh-Nagumo system, singular perturbation, spatial-
temporal discretisation.

4.1 Introduction

In this paper, we consider spatial-temporal discretisations of a class of reaction-diffusion
systems that contains the FitzHugh-Nagumo partial differential equation (PDE). This
PDE is given by

ut = uxx + g(u; r)− w

wt = ρ(u− γw).
(4.1.1)

Here g is the bistable, cubic nonlinearity g(u; r) = u(1−u)(u− r) with r ∈ (0, 1), while
ρ > 0 and γ > 0 are positive constants. In particular, our goal is to show that travelling
waves for the system (4.1.1) persist under these spatial-temporal discretisations. As
such, we contribute to the broad study of numerical schemes and their impact on the
solutions under consideration, which has produced an immense quantity of literature.
The main distinguishing feature is that we are interested in structures that persist for
all time, while almost all of the studies in this area focus on finite time estimates.

Pulse propagation The system (4.1.1) was introduced in the 1960s [74, 76] as a
simplification of the Hodgkin-Huxley equations, which were used to describe the prop-
agation of spike signals through the nerve fibers of giant squids [98]. After observing
similar pulse solutions for the system (4.1.1) numerically [75], a more rigorous, analyt-
ical approach to understanding these pulse solutions turned out to be rather delicate.
Indeed, many new tools have been developed, some even very recently, to construct
these pulses and analyse their stability in various settings. These techniques include
geometric singular perturbation theory [31, 97, 117, 119], the variational principle [36],
Lin’s method [32, 33, 124], and the Maslov index [46, 47]. Pulse solutions for the system
(4.1.1) take the form

(u,w)(x, t) = (u0, w0)(x+ c0t) (4.1.2)

for some wavespeed c0 and smooth wave profiles u0, w0 that satisfy the limits

lim
|ξ|→∞

(u0, w0)(ξ) = 0. (4.1.3)

Spatially discrete systems It is well-known that electrical pulses can only move
through nerve fibres at appropriate speeds if the nerves are insulated with a myelin
coating. This coating admits regularly spaced gaps at the so-called nodes of Ranvier
[143]. In fact, through a process called saltatory conduction, excitations of these nerves
appear to jump from one node to the next [127]. Since the FitzHugh-Nagumo PDE
(4.1.1) does not take this discrete structure into account directly, it has been proposed
[123] to, instead, model these phenenomena using a so-called lattice differential equation
(LDE). For example, by applying a nearest-neighbour spatial discretisation to (4.1.1),
we arrive at

u̇j = τ(uj+1 + uj−1 − 2uj) + g(uj ; r)− wj
ẇj = ρ[uj − γwj ],

(4.1.4)
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where the variable j ranges over the lattice Z. In the system (4.1.4), the variable uj
represents the potential at the jth node of the nerve fibre, while the variable wj de-
scribes a recovery component. Finally, we have τ ∼ h−2, where h > 0 is the distance
between subsequent nodes. We emphasize that the time variable remains continuous.

Spatialy discrete travelling pulses for the system (4.1.4) take the form

(u,w)j(t) = (u0, w0)(j + c0t), (4.1.5)

for some wavespeed c0, again with the limits (4.1.3). Plugging the Ansatz (4.1.5) into
the LDE (4.1.4) yields the functional differential equation of mixed type (MFDE)

c0u
′
0(ξ) = τ [u0(ξ + 1) + u0(ξ − 1)− 2u0(ξ)] + g(u0(ξ); r)− w0(ξ)

c0w
′
0(ξ) = ρ[u0(ξ)− γw0(ξ)]

(4.1.6)

in which ξ = j+ c0t. In [108, 109], Hupkes and Sandstede developed an infinite dimen-
sional version of the exchange lemma to show that the system (4.1.4) admits nonlinearly
stable travelling pulse solutions. They relied heavily on the existence of exponential di-
chotomies for MFDEs, which were established in [96, 133]. In addition, we established
the existence and nonlinear stability of pulse solutions for a spatially periodic version
of (4.1.4) [151] by building on a spectral convergence method developed by Bates, Chen
and Chmaj [6]. The spectral convergence method plays an important role in this paper
as well and will be treated in more detail later on.

Infinite-range interactions Neural field models aim to describe the dynamic be-
haviour of large networks of neurons. In neural networks, neurons interact with each
other over large distances through their interconnecting nerve axons [15, 23, 24, 142].
It has been proposed [23, Eq. (3.31)] to capture these long distance interactions using
an infinite-range version of the system (4.1.4). To be concrete, we focus our discussion
on the prototype system

u̇j = τ
∑

m∈Z>0

e−m
2

[uj+m + uj−m − 2uj ] + g(uj ; r)− wj

ẇj = ρ[uj − γwj ].
(4.1.7)

This system can also be obtained directly from the PDE (4.1.1) by using an infinite-
range spatial discretisation.

We emphasize that infinite-range interactions also arise naturally when considering
discretisations of fractional Laplacians [43]. Indeed, such operators are intrinsically
nonlocal and are used in many physical systems that feature nonstandard diffusion
processes, such as amorphous semiconductors [87] and liquid crystals [44].

Substituting the travelling pulse Ansatz (4.1.5) into (4.1.7) now yields the MFDE

c0u
′
0(ξ) = τ

∑
m∈Z>0

e−m
2

[u0(ξ +m) + u0(ξ −m)− 2u0(ξ)] + g(u0(ξ); r)− w0(ξ)

c0w
′
0(ξ) = ρ[u0(ξ)− γw0(ξ)],

(4.1.8)



182 CHAPTER 4. THE FULLY DISCRETE FITZHUGH-NAGUMO SYSTEM

which features infinitely many shifts. Since exponential dichotomies for MFDEs with
infinitely many shifts have only been established very recently [149], the techniques
used by Hupkes and Sandstede for the LDE (4.1.4) have not yet been fully developed
for the system (4.1.8). Instead, Faye and Scheel [69] used a functional analytic approach
to construct pulse solutions for the system (4.1.7). In addition, by applying the previ-
ously mentioned spectral convergence method, we were able to show that these pulses
are nonlinearly stable [150] for τ � 1, which corresponds to fine discretisations of the
PDE (4.1.1). As of now, no comprehensive result has been found for the system (4.1.7).

Spatial-temporal discretisations Our main goal here is to understand the impact
of temporal discretisation schemes on the behaviour of travelling wave solutions of the
system (4.1.7). This is a relatively novel area of study, although a handful of results
have been established for scalar problems. For example, Bambusi, Faou, Greébert and
Jézéquel constructed solutions to fully discrete Schrödinger equations with Dirichlet or
periodic spatial boundary conditions in [4, 64]. Most other studies have focused on
spatial-temporal discretisations of the Nagumo PDE

ut = uxx + g(u; r), (4.1.9)

or, equivalently, temporal discretisations of the Nagumo LDE

u̇j = τ(uj+1 + uj−1 − 2uj) + g(uj ; r). (4.1.10)

The PDE (4.1.9) and the LDE (4.1.10) can be seen as scalar versions of the FitzHugh-
Nagumo PDE (4.1.1) and LDE (4.1.4) respectively.

The early works by Elmer and Van Vleck [58–60] provided ad-hoc techniques to un-
derstand the impact of spatial-, temporal- and spatial-temporal discretisations of the
PDE (4.1.9) on the dynamics of travelling waves. In addition, Chow, Mallet-Paret and
Shen [42] established the existence of travelling wave solutions to temporal discretisa-
tions of the LDE (4.1.10) by considering Poincare return maps for the dynamics of this
LDE. These results were later expanded by Hupkes and Van Vleck [111], whose meth-
ods allowed them to address issues of uniqueness and parameter-dependence. Let us
also mention the recent series of papers [112–114] by Hupkes and Van Vleck, who study
spatial discretisation schemes with an adaptive grid. That is, the authors consider a
time dependent moving mesh method which aims to equidistribute the arclength of the
solution under consideration.

In order to introduce the temporal discretisation schemes that we study in this
paper, we briefly discuss the test problem

v̇ = λv (4.1.11)

with λ < 0. Applying the forward-Euler discretisation scheme with time-step ∆t > 0
yields

vn+1 = vn + λ∆tvn = (1 + λ∆t)vn, (4.1.12)
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where n ∈ Z. Since a nontrivial solution of the test problem (4.1.11) converges to zero
as t → ∞, the convergence vn → 0 should also be enforced. However, this yields the
restriction 0 < ∆t < 2|λ|−1, which cannot be satisfied for all λ < 0 for a fixed time-step
∆t > 0. In contrast, these issues do not occur for the backward-Euler discretisation
scheme. For the test problem (4.1.11), this scheme yields

vn+1 = vn + λ∆tvn+1, (4.1.13)

or equivalently
vn+1 = (1− λ∆t)−1vn. (4.1.14)

In particular, we see that vn → 0 for any value of λ < 0 and time-step ∆t > 0. A
numerical scheme is called A(α) stable if this property holds for all λ in the wedge
{z ∈ C \ {0} : Arg(−z) < α}. We note that the backward-Euler discretisation is A(π2 )
stable.

In fact, the backward-Euler discretisation scheme is one of six so-called backwards
differentiation formula (BDF) methods. These BDF methods are all A(α) stable for
various coefficients 0 < α ≤ π

2 and have several convenient analytical properties. For
this reason, we have to chosen to focus on these temporal discretisation schemes in this
paper. We do, however, emphasize that there are other stable discretisation schemes
which we could have used, see for example [90].

Applied to the Nagumo system, the backward-Euler discretisation scheme yields the
evolution

1
∆t

[
Uj(n∆t)− Uj

(
(n− 1)∆t

)]
= τ

[
Uj+1 + Uj−1 − 2Uj

]
(n∆t) + g

(
Uj(n∆t); r

)
.

(4.1.15)
A travelling wave solution for the system (4.1.15) with wavespeed c takes the form

Uj(n∆t) = Φ(j + nc∆t), (4.1.16)

with the limits
lim

ξ→−∞
Φ(ξ) = 0, lim

ξ→∞
Φ(ξ) = 1. (4.1.17)

As such, the travelling waves need to satisfy the system

1
∆t

[
Φ(ξ)− Φ(ξ − c∆t)

]
= τ

[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g(Φ(ξ); r). (4.1.18)

Hupkes and Van Vleck showed [111] that, for sufficiently large, rational values of
M = (c∆t)−1, the system (4.1.15) admits travelling wave solutions with wavespeed
c. These travelling waves are constructed as perturbations of travelling wave solutions
of the LDE (4.1.10). The corresponding transition from the semi-discrete setting to the
fully discrete setting is highly singular, since a derivative is replaced by a difference.
The rationality of M plays a key role here, as it ensures that the domain of the variable
ξ in the system (4.1.18) is a discrete subset of the real line. This restriction arises
naturally in the analysis, since it ensures we can use finitely many interpolations to go
from a fully discrete to a spatially discrete setting.
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Spectral convergence In order to analyse this singular perturbation, Hupkes and
Van Vleck relied heavily on the previously mentioned spectral convergence method,
which also plays an important role in [9, 112–114, 150, 151]. This method was in-
troduced in [6] to construct travelling wave solutions to an infinite-range version of
the Nagumo LDE (4.1.10) in the near-continuum regime, i.e. when the discretisation

distance h ∼ τ−
1
2 is sufficiently small. A key role in [6] is reserved for the family of

operators

Lhv(ξ) = c0v
′(ξ)− 1

h2

[
v(ξ + h) + v(ξ − h)− 2v(ξ)

]
− gU (u0(ξ); r)v(ξ), (4.1.19)

which arise as the linearization of the travelling wave MFDE corresponding to the LDE
(4.1.10) around the travelling wave solution (c0, u0) to the PDE (4.1.9). The main
question is what properties these operators inherit from their continuous counterpart

L0v(ξ) = c0v
′(ξ)− v′′(ξ)− gU (u0(ξ); r)v(ξ). (4.1.20)

In particular, the authors in [6] fixed a constant δ > 0 and used the invertibility of
the operator L0 + δ to establish the invertibility of the operator Lh + δ for h > 0
sufficiently small. Indeed, they considered weakly converging sequences {vn} and {wn}
with Lhvn+δvn = wn and tried to find a uniform (in h and δ) lower bound on the norm
of v′n in terms of the norm of wn. Such a lower bound prevents the limitless transfer of
energy into oscillatory modes, a common concern when dealing with weakly converging
sequences. The bistable nature of the nonlinearity g was used to control the behaviour
at ±∞, while the local L2-norm can be bounded on the remaining compact set. We
emphasize that this method requires a detailed understanding of the limiting operator
L0.

In [111], this method was lifted to the fully discrete Nagumo equation (4.1.18).
Writing M = p

q with gcd(p, q) = 1, the corresponding limiting operator resembles a q

times coupled version of the operator Lh given by (4.1.19). For q = 2, this limiting
operator takes the form

Kqv(ζ, ξ) = cv′(ζ, ξ)− τ
[
v(ζ + 1

2 , ξ + 1) + v(ζ − 1
2 , ξ − 1)− 2v(ζ, ξ)

]
−gU (u(ξ); r)v(ζ, ξ),

(4.1.21)

where u is the travelling wave solution of the LDE (4.1.10) with wavespeed c. Here
the domain of the variables ζ and ξ is given by ζ ∈ {0, 1

2} and ξ ∈ R, with the
convention that v(ζ+1, ξ) = v(ζ, ξ). Since the MFDE corresponding to (4.1.21) admits
a comparison principle, the Fredholm properties of the operator Kq follow directly from
the general results in [110]. Hupkes and Van Vleck generalized the spectral convergence
method to lift the Fredholm properties of the operator Kq to the operator

KMv(ζ, ξ) = cM
[
v(ζ, ξ)− v(ζ, ξ −M−1)

]
−τ
[
v(ζ + 1

2 , ξ + 1− 1
2M

−1) + v(ζ − 1
2 , ξ − 1 + 1

2M
−1)− 2v(ζ, ξ)

]
−gU

(
u(ξ); r

)
v(ζ, ξ),

(4.1.22)
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in the regime M � 1, again with ζ ∈ {0, 1
2} and ξ ∈ 1

2M
−1Z. The operator KM arises

as the linearisation of the fully discrete system (4.1.18) around the travelling wave u,
using the additional ζ variable to ensure that all ξ-shifted arguments are multiples of
M−1 .

Results In this paper, we consider reaction-diffusion LDEs such as (4.1.7) and replace
the temporal derivative by one of the six BDF discretisation schems. For example,
applying the backward-Euler method to (4.1.7), we arrive at the prototype system

1
∆t [Uj(n∆t)− Uj((n− 1)∆t)] = τ

∞∑
m=1

e−m
2[
Uj+m + Uj−m − 2Uj

]
(n∆t)

+g(Uj(n∆t); r)−Wj(n∆t)

1
∆t [Wj(n∆t)−Wj((n− 1)∆t)] = ρ[Uj(n∆t)− γWj(n∆t)].

(4.1.23)
Our main result states that systems such as (4.1.23) admit travelling wave solutions.
To achieve this, we extend the spectral convergence method that was developed in [111]
for scalar LDEs with finite-range spatial interactions to the current setting, which fea-
tures multi-component systems with infinite-range interactions. This generalisation is
far from trivial and requires several technical obstructions to be resolved.

The first main obstacle is that the spectral convergence method hinges on the un-
derstanding of the corresponding limiting operator. Indeed, the analog of the operator
Kq from (4.1.21) for our system (4.1.23) does not admit a comparison principle, since
this is not available for FitzHugh-Nagumo type systems. As such, very limited a-priori
knowledge is available for this limiting operator, which forces us to prove many of its
properties from scratch. For this, we mainly employ techniques from harmonic analysis.

The second main obstacle is that the system setting introduces several cross-terms
that need to be controlled. Several key techniques from our earlier works [150, 151]
concerning spatially discrete systems can be adjusted to handle these cross-terms in
the present fully-discrete setting. However, several crucial points in the analysis still
require these terms to be handled with special care.

The remaining obstacles are directly related to the infinite-range interactions, which
introduce several convergence issues that need to be overcome. It also requires us to
establish more refined estimates on the decay rates of solutions to our limiting MFDE.
We achieve this by employing an explicit representation of the corresponding inverse
linear operator that was first introduced in [150].

Loss of uniqueness In [111], Hupkes and Van Vleck extensively studied the unique-
ness and parameter-dependence of the travelling wave solutions of (4.1.15). The key
observation is that the rationality of the variable M = (c∆t)−1 breaks the translational
symmetry in the travelling wave problem, potentially allowing a family of solutions to
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exist. For example, one can apply an irrational phase shift to the continuous wave-
profiles for (4.1.10) that underlies the perturbation argument discussed above. In this
fashion, one could construct a different fully discrete wave for the same detuning pa-
rameter value r in the nonlinearity g(·; r). However, this is a very delicate issue. In
particular, M = (c∆t)−1 is fixed in the analysis, so additional work is required to ob-
tain results for fixed time-steps ∆t > 0.

For the backward-Euler discretisation scheme, this nonuniqueness can be made fully
rigorous. In particular, Hupkes and Van Vleck showed that, for a fixed time step ∆t > 0
both the r(c) relation and the c(r) relation can be multi-valued. In particular, for a
fixed value of c there can be multiple values of r for which a solution to the system
(4.1.15) exists and vice-versa. This can be achieved by embedding the system (4.1.18)
into an MFDE that admits a comparison principle, allowing it to be analysed using the
techniques developed by Keener [122] and Mallet-Paret [131].

By contrast, the c(r) relation for travelling wave solutions to the PDE (4.1.9) and
the LDE (4.1.10) are both single-valued. The same holds for the r(c) relation, with
the single exception that it can be multi-valued for (4.1.10) in the special case c = 0
[57, 99]. This reflects the well-known wave-pinning phenomenon caused by the broken
translational symmetry of the lattice [16, 56, 62, 99, 122, 132].

In this paper we study the r(c) and the c(r) relation for a fully-discrete version of
the FitzHugh-Nagumo system. For the corresponding PDE (4.1.1) and LDE (4.1.4),
numerical evidence [34, 125] suggests that both these relations are at most 2-valued.
In addition, theoretical results [32] for this PDE usually yield a locally unique r(c)
relation. For the system (4.1.23) a comparison principle is not available, rendering a
direct analysis similar to the one in [111] infeasible. Instead, we run several numerical
simulations to investigate these issues. These computations indicate that both the r(c)
and the c(r) relation are typically multi-valued. Indeed, the points (r, c) points at which
we were able to find solutions appear to map onto a surface instead of a curve. That is,
there exists an entire spectrum of travelling wave solutions with different wavespeeds
to the same fully discrete system.

4.2 Main result

Our main goal is to study the impact of several important temporal discretisation
schemes on travelling wave solutions of reaction-diffusion LDEs of the form

U̇j = τ
∑
m>0

αm[Uj+m + Uj−m − 2Uj ] + G(Uj ; r). (4.2.1)

This LDE is posed on the one-dimensional lattice j ∈ Z, but may have multiple com-
ponents in the sense that Uj ∈ Rd for some integer d ≥ 1. We start by discussing
the structural conditions that we impose on the LDE (4.2.1) and its travelling wave
solutions in §4.2.1 respectively §4.2.2. In §4.2.3 we introduce the appropriate temporal



4.2. MAIN RESULT 187

discretisation schemes and formulate our main result. Finally, we discuss some nu-
merical results concerning the nonuniqueness of the fully discrete travelling waves in
§4.2.4.

4.2.1 The spatially discrete system

Besides a handful of exceptions [6, 68, 69, 88, 149, 150], almost all results concerning
LDEs of the form (4.2.1) assume that only finitely many of the coefficients αm in
(4.2.1) are nonzero. However, following [6, 150], we will impose the following much
weaker conditions.

Assumption (HS1). The coefficients {αm}m∈Z>0
are diagonal d × d matrices and

τ > 0 is a positive constant. There exists 1 ≤ ddiff ≤ d so that for each 1 ≤ i ≤ ddiff we

have α
(i,i)
m 6= 0 for some m ∈ Z>0, while α

(j,j)
n = 0 for all n ∈ Z>0 and all ddiff < j ≤ d.

The coefficients {αm}m∈Z>0
satisfy the bound∑

m>0
|αm|emν < ∞ (4.2.2)

for some constant ν > 0, as well as the identity∑
m>0

α
(i,i)
m m2 = 1 (4.2.3)

for each 1 ≤ i ≤ ddiff . Finally, the inequality

Ai(z) :=
∑
m>0

α
(i,i)
m

(
1− cos(mz)

)
> 0 (4.2.4)

holds for all z ∈ (0, 2π) and all 1 ≤ i ≤ ddiff .

In particular, the diffusion matrices {αm}m∈Z>0 only act directly on the first ddiff

components of Uj . For example, for the FitzHugh-Nagumo LDE

u̇j = τ
∑
m>0

αm[uj+m + uj−m − 2uj ] + uj(1− uj)(uj − r)− wj

ẇj = ρ
[
uj − γwj

]
,

(4.2.5)

we have d = 2 and ddiff = 1, while for the Nagumo LDE

u̇j = τ
∑
m>0

αm[uj+m + uj−m − 2uj ] + uj(1− uj)(uj − r) (4.2.6)

we have d = ddiff = 1.

We note that (4.2.4) is automatically satisfied if α
(i,i)
m ≥ 0 for all m ∈ Z>0 and

α
(i,i)
1 6= 0. The conditions in (HS1) ensure that for φ ∈ L∞(R;R) with φ′′ ∈ L2(R;R)

and 1 ≤ i ≤ ddiff , we have the limit

lim
h↓0
‖ 1
h2

∑
m>0

α
(i,i)
m

[
φ(·+ hm) + φ(· − hm)− 2φ(·)

]
− φ′′‖L2(R;R) = 0; (4.2.7)
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see [6, Lem. 2.1]. In particular, (HS1) ensures that (4.2.5) can be interpreted as the
spatial discretisation of the FitzHugh-Nagumo PDE (4.1.1) on a grid with distance h,
where τ = 1

h2 . Additional remarks concerning this assumption in the scalar case d = 1
can be found in [6, §1].

We now turn to the spatially homogeneous equilibrium solutions to (4.2.1), which
are roots of the nonlinearity G. We will assume that there are two r-independent
equilibria P±, but emphasize that they are allowed to be identical.

Assumption (HS2). The parameter dependent nonlinearity G : Rd × (0, 1) → Rd is
C2-smooth. There exist P± ∈ Rd so that G(P±; r) = 0 holds for all r ∈ (0, 1).

The temporal stability of these two equilibria P± plays an essential and delicate
role in our analysis. Indeed, it does not suffice to simply require that the eigenvalues of
DG(P±) have strictly negative real parts, see the proof of [151, Lem. 4.6] for details.
Following [151], we consider two auxiliary assumptions on the triplet (G, P−, P+) to
address this issue. Recalling the constant 1 ≤ ddiff ≤ d from (HS1), we first write
DG(U ; r) in the block form

DG(U ; r) =

(
G[1,1](U ; r) G[1,2](U ; r)
G[2,1](U ; r) G[2,2](U ; r)

)
(4.2.8)

for any U ∈ Rd and r ∈ (0, 1), taking DG[1,1](U ; r) ∈ Rddiff×ddiff .

Assumption (HS3r). The triplet (G, P−, P+) satisfies at least one of the following
conditions.

(a) The matrices −DG(P−; r) and −DG(P+; r) are positive definite.

(b) The matrices −G[1,1](P−; r),−G[1,1](P+; r),−G[2,2](P−; r) and −G[2,2](P+; r) are
positive definite. In addition, there exists a constant Γ > 0 so that G[1,2](U ; r) =
−ΓG[2,1](U ; r)T holds for all U ∈ Rd.

To illustrate these assumptions, we consider the nonlinearity

Gfhn(u,w; r) =

(
u(1− u)(u− r)− w

ρ
[
u− γw

] )
(4.2.9)

corresponding to the FitzHugh-Nagumo LDE (4.2.5). The triplet (Gfhn, 0, 0) can easily
be seen to satisfy (HS3r(b)) with Γ = 1

ρ . However, when r > 0 is sufficiently small the

Jacobian DGfhn(0; r) has a pair of complex eigenvalues with negative real part. In this
case, the condition (HS3r(a)) may fail to hold.

4.2.2 Spatially discrete travelling waves

Our final two assumptions for (4.2.1) concern the existence and stability of travelling
wave solutions that connect the equilibria P− and P+. These solutions take the form

Uj(t) = U0(j + c0t) (4.2.10)
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for some smooth profile U0 and nonzero wavespeed c0. Substituting the Ansatz (4.2.10)
into (4.2.1) and writing ξ = j + c0t, we see that the pair (c0, U0) must satisfy the
travelling wave MFDE

c0U
′
0(ξ) = τ

∑
m>0

αm

[
U0(ξ +m) + U0(ξ −m)− 2U0(ξ)

]
+ G

(
U0(ξ); r

)
, (4.2.11)

together with the boundary conditions

lim
ξ→±∞

U0(ξ) = P±. (4.2.12)

Assumption (HW1r). There exists a waveprofile U0 and a wavespeed c0 6= 0 that
solve the travelling wave MFDE (4.2.11) for r = r, together with the boundary condi-
tions (4.2.12).

We now turn to the spectral stability of these travelling wave solutions. To this end,
we introduce the operator L0 : H1(R;Rd)→ L2(R;Rd) for the linearisation of (4.2.11)
around the travelling wave U0, which acts as

L0 = c0∂ξ −∆0 −DUG
(
U0; r

)
. (4.2.13)

Here the operator ∆0 : L2(R;Rd)→ L2(R;Rd) is given by

∆0 = τ
∑
m>0

αm

[
Tm0 + T−m0 − 2

]
, (4.2.14)

where

(T0Φ)(ξ) = Φ(ξ + 1). (4.2.15)

In addition, we introduce the formal adjoint L∗0 : H1(R;Rd) → L2(R;Rd) of L0 that
acts as

L∗0 = −c0∂ξ −∆0 −DUG
(
u0; r

)T
. (4.2.16)

We remark that the spectrum of L0 is 2πic0-periodic on account of the identity(
L0 + λ

)
e2πi· = e2πi·(L0 + λ+ 2πic0

)
, (4.2.17)

see [150, Lem. 5.1]. We impose the following condition on the spectral properties of
this operator L0.

Assumption (HW2r). There exist functions Φ±0 ∈ H1(R;Rd), together with a con-
stant λ̃ > 0 so that the following properties hold for the LDE (4.2.1) with r = r.

(i) We have the identity

Φ+
0 = U

′
0, (4.2.18)

together with the normalisation

〈Φ+
0 ,Φ

−
0 〉L2(R;Rd) = 1. (4.2.19)
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(ii) The spectrum of the operator −L0 in the half-plane {z ∈ C : Re z ≥ −λ̃} consists
precisely of the points 2πimc0 with m ∈ Z, which are all eigenvalues of L0.
Moreover, we have the identities

ker(L0) = span{Φ+
0 }

= {g ∈ L2(R;Rd) : 〈g,Ψ〉L2(R;Rd) = 0 for all Ψ ∈ Range(L∗0)}
(4.2.20)

and

ker(L∗0) = span{Φ−0 }

= {g ∈ L2(R;Rd) : 〈g,Ψ〉L2(R;Rd) = 0 for all Ψ ∈ Range(L0)}.
(4.2.21)

Recall that an eigenvalue λ of a Fredholm operator L is said to be simple if the
kernel of L−λ is spanned by one vector v and the equation (L−λ)w = v does not have
a solution w. Note that if L has a formal adjoint L∗, this is equivalent to the condition
that 〈v, w〉 6= 0 for all nontrivial w ∈ ker(L∗ − λ). In particular, the normalisation
(4.2.19) implies that the eigenvalues 2πic0Z are all simple eigenvalues of −L0.

For the FitzHugh-Nagumo system (4.2.5), the assumptions (HW1r) and (HW2r)
are both satisfied for all sufficiently small discretisation distances h > 0 and sufficiently
small ρ > 0, see [150, Thm. 2.1, Thm. 2.2, Prop. 4.2]. If the shifts have finite-range,
i.e. αm = 0 for all sufficiently large m, then these assumptions are satisfied [108, Thm.
1]-[109, Prop. 5.1] for sufficiently small ρ > 0 without any restriction on the discretisa-
tion distance h. There are, however, conditions on r and γ in both cases.

4.2.3 The fully discrete system

We aim to approximate solutions to (4.2.1) at discrete time intervals t = n∆t by

Uj(n∆t) ∼Wj(n∆t). (4.2.22)

We need to apply an appropriate discretisation scheme to the temporal derivative in
(4.2.1). Although there are many different approximation schemes available, we mainly
focus on the six so-called BDF methods. These methods are based on interpolation
polynomials of different degrees. In particular, the BDF method of order k ∈ {1, 2, ..., 6}
approximates U ′ in (4.2.1) at t = n∆t by first constructing an interpolating polynomial
of degree k through the k + 1 points {W ((n − n′)∆t)}kn′=0 and then computing the
derivative of this polynomial at W (n∆t). As such, the temporal discretisations of the
LDE (4.2.1) under consideration are of the form

β−1
k

1
∆t

k∑
n′=0

µn′;kWj

(
n∆t− (k − n′)∆t

)
= τ

∑
m>0

αm[Wj+m(n∆t) +Wj−m(n∆t)

−2Wj(n∆t)]

+G
(
Wj(n∆t); r

)
.

(4.2.23)
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µn;k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 0 −1 1
3 − 2

11
3
25 − 12

137
10
147

n = 1 1 − 4
3

9
11 − 16

25
75
137 − 72

147

n = 2 1 − 18
11

36
25 − 200

137
225
147

n = 3 1 − 48
25

300
137 − 400

147

n = 4 1 − 300
137

450
147

n = 5 1 − 360
147

n = 6 1

βk 1 2
3

6
11

12
25

60
137

60
147

Table 4.1: The coefficients µn;k and βk associated to the BDF discretisation schemes as given
by (4.2.24).

The coefficients βk and {µn;k} in (4.2.23) are given implicitly by the identities

k∑
n=0

µn;kv
(
(n− k)∆t

)
=

k∑
n′=1

[∂n
′
v](0),

βk =
k∑

n=0
µn;k(n− k),

(4.2.24)

which must hold for any scalar function v. Here we have introduced the notation

[∂v](n∆t) = v
(
n∆t

)
− v
(
(n− 1)∆t

)
. (4.2.25)

This definition yields that
k∑

n=0
µn;k = 0, which allows us to identify

βk =
k∑

n=0
µn;k(n−m) =

k∑
n=1

µn;kn. (4.2.26)

For convenience, the values of the coefficients βk and µn;k can be found in Table 4.1.
We note that the BDF method of order 1 is the well-known backward-Euler method.

Our main goal is to study travelling wave solutions to the fully discrete system
(4.2.23), utilizing our assumptions for the spatially discrete system (4.2.1). Such solu-
tions are given by the Ansatz

Wj(n∆t) = Φ(j + nc∆t), (4.2.27)

for some wave speed c and profile Φ with the boundary conditions

Φ(±∞) = P±, (4.2.28)
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in a sense that we make precise below.

For notational convenience, we introduce the quantity M = (c∆t)−1. Substituting
the Ansatz (4.2.27) into (4.2.23) yields the system

c[Dk,MΦ](ξ) = τ
∑
m>0

αm[Φ(ξ +m) + Φ(ξ −m)− 2Φ(ξ)] + G
(
Φ(ξ); r

)
, (4.2.29)

for all ξ that can be written as ξ = n+ jM−1 for (j, n) ∈ Z2. Here we have introduced
the discrete derivatives

[Dk,MΦ](ξ) = β−1
k M

k∑
n′=0

µn′;kΦ
(
ξ − (k − n′)M−1

)
, (4.2.30)

for k ∈ {1, 2, ..., 6}. From [111, eq. (2.13)] we obtain the useful estimate

|[Dk,MΦ](ξ)− Φ′(ξ)| ≤ ClM
−l sup−kM−1≤θ≤0 |Φ(l+1)(ξ + θ)|, (4.2.31)

for all integers 1 ≤ l ≤ k and all Φ ∈ Cl+1(R;Rd), in which the constant Cl ≥ 1 is
independent of k, Φ and M . Indeed, this estimate shows that the regular derivative can
be approximated by the discrete derivatives as the time step ∆t shrinks to zero. We
emphasize that BDF discretisation schemes of order k ≥ 2 do not allow for a compari-
son principle, even when the original LDE does allow for one. This is a consequence of
the existence of coefficients µn;k > 0 that have n < k.

Most of our results, including our main theorem, require a restriction on the values
of M that are allowed. In particular, upon fixing an integer q ≥ 1, we introduce the set

Mq = {pq : p ∈ N has gcd(p, q) = 1 and p ≥ q}. (4.2.32)

Often, we introduce M = p
q ∈Mq, which implicitly defines the integer p = p(M) = qM .

Moreover, we see that the natural domain for the values of ξ in the system (4.2.29), as
well as in the boundary conditions (4.2.28), is precisely the set p−1Z.

Theorem 4.2.1. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers 1 ≤ k ≤ 6 and
q ≥ 1. Then there exist constants M∗ � 1 and δr > 0 so that for any M = p

q ∈ Mq

with M ≥M∗, there exist continuous functions

cM : R× [r − δr, r + δr] → R,

UM : R× [r − δr, r + δr] → `∞(p−1Z;Rd)
(4.2.33)

that satisfy the following properties.

(i) For any (θ, r) ∈ R × [r − δr, r + δr], the pair c = cM (θ, r) and U = UM (θ, r)
satisfies the system

c[Dk,MU ](ξ) = τ
∑
m>0

αm[U(ξ +m) + U(ξ −m)− 2U(ξ)] + G
(
U(ξ); r

)
(4.2.34)

for ξ ∈ p−1Z, together with the boundary conditions

lim
ξ→±∞,ξ∈p−1Z

U(ξ) = P±. (4.2.35)
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(ii) For any (θ, r) ∈ R × [r − δr, r + δr], the solution U = UM (θ, r) admits the
normalisation∑

ξ∈p−1Z

[〈
Φ−0 (ξ + θ), U(ξ)− U0(ξ + θ)

〉
Rd

]
= 0. (4.2.36)

(iii) For any (θ, r) ∈ R× [r − δr, r + δr], we have the shift-periodicity

cM (θ + p−1, r) = cM (θ, r),

UM (θ + p−1, r)(ξ) = UM (θ, r)(ξ + p−1).
(4.2.37)

In addition, there exists δ > 0 such that the following holds true. Any triplet (c, U, θ) ∈
R× `∞(p−1Z;Rd)× R that satisfies (4.2.34) for some pair (r,M) ∈ (0, 1)×Mq with

|r − r| < δ, M = p
q > δ−1 ≥ M∗ (4.2.38)

and also enjoys the estimate

p−1
∑

ξ∈p−1Z

[
|U(ξ)− U0(ξ + θ)|2 + |Dk,MU(ξ)−Dk,MU0(ξ + θ)|2

]
< δ2,

(4.2.39)
must actually satisfy c = cM (θ̃, r) and U = UM (θ̃, r) for some θ̃ ∈ R.

The factor p−1 in (4.2.39) is used to compensate the growing number of terms as
p→∞. In particular, we can view this as a uniqueness result with respect to a scaled
L2-norm that will be specified later.

4.2.4 Nonuniqueness and numerical examples

Fixing r ∈ [r−δr, r+δr], M = p
q ≥M∗ and θ ∈ R, the travelling wave (cM (θ, r), UM (θ, r))

is constructed as a perturbation of the travelling wave (c0, U0(· + θ)) on the domain
p−1Z. Since the wave profiles U0(·+θ) and U0(·+θ+p−1) are simply translates of each
other on this domain, the shift-periodicity (4.2.37) follows easily. However, it is not
clear how, specifically, the travelling wave depends on θ. Indeed, in [111, §5], Hupkes
and Van Vleck show that it is reasonable to expect that the derivative ∂θcM (θ, r) is
exponentially small in M . As such, it is unclear how to further analyse this dependence.

We emphasize that in general the travelling wave solution will not necessarily be
unique, even up to translation. In particular, fixing θ ∈ (0, p−1), we note that the waves
U0 and U0(·+ θ) are different on the domain p−1Z. One might be tempted to conclude
that if M is sufficiently large, the wave profiles UM (0, r) and UM (θ, r) are different
as well. However, a larger value of M means that the grid p−1Z becomes finer. In
particular, since the travelling waves UM (0, r) and UM (θ, r) are perturbations of the
waves U0 and U0(·+ θ), it could be that these perturbations cancel out the difference
between U0 and U0(·+ θ).
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In addition, since the constant M = (c∆t)−1 is fixed in the statement of Theorem
4.2.1, fluctuations in c automatically lead to changes in ∆t. This complicates our un-
derstanding of the fully discrete system for a fixed timestep ∆t > 0. Our main goal
here is to show that the wavespeed c and the detuning parameter r do not depend on
each other in a locally unique fashion, which is in major contrast to the corresponding
continuous and semi-discrete systems.

However, the lack of a comparison principle for FitzHugh-Nagumo systems heavily
complicates a direct analysis. As such, we have chosen to, instead, use numerical
simulations to illustrate these phenomena. In particular, we focus on the backward-
Euler discretisation of the FitzHugh-Nagumo MFDE, which takes the form

(h∆t)−1[u(ξ)− u(ξ − c∆t)] = h−2[u(ξ + 1) + u(ξ − 1)− 2u(ξ)] + g(u(ξ); r)− w(ξ)

(h∆t)−1[u(ξ)− u(ξ − c∆t)] = ρ
[
u(ξ)− γw(ξ)

]
.

(4.2.40)
Here we fix ρ = 0.01, γ = 5, h = 5

8 and we let g be the bistable nonlinearity

g(u; r) = u(1− u)(u− r). (4.2.41)

Upon fixing the timestep ∆t = 2, we repeatedly solved the system (4.2.40) with Neu-
mann boundary conditions on the interval [−80, 80] for different values of the parame-
ters (c, r) ∈ Q× (0, 1).

These simulations turned out to be rather delicate, since the quality of the initial
condition heavily influenced whether a solution could be found. In many cases, the
simulation returned the zero solution. Simply augmenting an extra nontriviality con-
dition often produced no solution at all. In addition, the value of c greatly determines
the number of points ξ ∈ R for which the values (u, v)(ξ) need to be determined. In
particular, upon writing

c = q∆t
p , (4.2.42)

we needed to consider the points in the set p−1Z ∩ [−80, 80], which rapidly grows in
number as p increases. We considered values of c of the form (4.2.42) for values of
p ∈ {1, 2, ..., 8} and q ∈ {1, 2, ..., 2p} with gcd(p, q) = 1, while the values of r were taken
in 1

100Z ∩ (0, 1
5 ).

Figure 4.1(a) depicts the pairs (c, r) for which such a numerical solution could be
found. It is highly likely that a solution still exists at some of the other parameter values
that we investigated. In any case, our simulations clearly show that the parameters c
and r depend on each other in an intricate fashion. In particular, our results suggest
that travelling wave solutions to the system (4.2.40) are not unique, since we were able
to find solutions with a range of different wavespeeds at the same value for r. We refer
to [34] and [125] for the corresponding dependence for the FitzHugh-Nagumo PDE and
LDE respectively. In both cases, this dependence is given by a curve in the (c, r)-plane
that resembles the symbol ∩.
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Figure 4.1: (a) Numerical computations of the pairs (c, r) for which travelling wave solutions
to the system (4.2.40) exist. We emphasize that there may be parameter values where we could
not find a solution, but where a solution exists nonetheless. These simulations clearly show
that the relationship r(c) is multi-valued. (b) A plot of one of the travelling waves found in
this numerical procedure with r = 0.11 and c = 0.3125.

4.3 Setup

The fully discrete travelling wave equation (4.2.29) is a highly singular perturbation of
the semi-discrete travelling wave MFDE (4.2.11), which is the key complication for our
analysis. In order to tackle this issue, we start by studying the linear operators that
arise when linearizing the fully discrete travelling wave equation (4.2.29) around the
semi-discrete travelling wave (c0, U0). In particular, we define the linear expressions

Lk,MΦ(ξ) = c0[Dk,MΦ](ξ)−∆0Φ(ξ)−DUG
(
U0(ξ)

)
Φ(ξ). (4.3.1)

Our aim is to establish that the operators Lk,M inherit several useful properties from
the operator L0 defined in (4.2.13) in the small timestep regime ∆t� 1.

In this section we summarize and adept the setup from [111], sticking to the same
notation as much as possible. In order to formulate our results, we need to define
several function spaces. For any η ∈ R, we write

BCη(R;Rd) = {F ∈ C(R;Rd) | supξ∈R e
−η|ξ||F (ξ)| <∞},

BC1
η(R;Rd) = {F ∈ C1(R;Rd) | supξ∈R e

−η|ξ|[|F (ξ)|+ |F ′(ξ)|] <∞}.
(4.3.2)

In addition, given a Hilbert space H and any µ > 0, we define the corresponding
sequence space

`2µ(H) = {v : µ−1Z→ H | ‖v‖`2µ(H) := 〈v, v〉
1
2

`2µ(H) <∞}, (4.3.3)

which is a Hilbert space equipped with the inner product

〈v, v〉`2µ(H) = µ−1
∑

ξ∈µ−1Z
〈v(ξ), w(ξ)〉H . (4.3.4)



196 CHAPTER 4. THE FULLY DISCRETE FITZHUGH-NAGUMO SYSTEM

For now, we fix two integers q ≥ 1 and 1 ≤ k ≤ 6, together with a constant
M = p

q ∈ Mq. To streamline our notation, we write YM to refer to the space `2p(Rd),
i.e.,

YM = `2p(Rd), 〈Φ,Ψ〉YM = 〈Φ,Ψ〉`2p(Rd). (4.3.5)

Moreover, we introduce the space Y1
k,M , which differs from YM only by its inner product.

To be more precise, we write

Y1
k,M = `2p(Rd),

〈Φ,Ψ〉Y1
k,M

= 〈Φ,Ψ〉`2p(Rd) + 〈Dk,MΦ,Dk,MΨ〉`2p(Rd).
(4.3.6)

In addition, for f ∈ BC−η(R;Rd) with η > 0, we write πYM for the sequence[
πYM f

]
(ξ) = f(ξ), ξ ∈ p−1Z. (4.3.7)

If moreover f ∈ BC1
−η(R;Rd) and we wish to be explicit, we often write πY1

k,M
f to

refer to the restriction (4.3.7). The restriction operators πYM and πY1
k,M

are bounded,

see Lemma 4.A.1.

We can now consider the operators Lk,M appearing in (4.3.1) as bounded linear
maps

Lk,M : Y1
k,M → YM . (4.3.8)

Our goal is to define new sequence spaces, which allow us to pass to the limit M →∞
in a controlled fashion. The basic idea is to use L2-interpolants for functions in YM
and H1-interpolants for functions in Y1

k,M , so that the sequences in these spaces can
be compared regardless of the different values of M . The main difficulty is to control
terms of the form v(ξ + p−1)− v(ξ) for v ∈ Y1

k,M with M = p
q , which is impossible to

extract solely from the behaviour of Dk,Mv.

To tackle this issue, we need to perform q separate interpolations. Each of these
interpolations must bridge a gap of size M−1 = q

p . In particular, upon fixing an integer
q ≥ 1 and writing

Zq = {0, 1, 2, ..., q},

Z◦q = {1, 2, ..., q − 1},
(4.3.9)

we introduce the space

`2q,⊥ = {Φ : q−1Zq → Rd}, (4.3.10)

equipped with the inner product

〈Φ,Ψ〉`2q,⊥ = q−1
[

1
2Φ(0)Ψ(0) + 1

2Φ(1)Ψ(1) +
∑

ζ∈q−1Z◦q
Φ(ζ)Ψ(ζ)

]
. (4.3.11)

Upon introducing the notation Φ(ζ, ξ) = [Φ(ξ)](ζ) for Φ ∈ `2M (`2q,⊥) with ζ ∈ q−1Zq
and ξ ∈M−1Z, we define the space

HM = {φ ∈ `2M (`2q,⊥) : Φ(1, ξ) = Φ(0, ξ +M−1) for all ξ ∈M−1Z}, (4.3.12)
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equipped with the inner product

〈Φ,Ψ〉HM = M−1
∑

ξ∈M−1Z
〈Φ(·, ξ),Ψ(·, ξ)〉`2q,⊥ . (4.3.13)

For any η > 0 and any f ∈ BC−η(R;Rd), we now write πHM f ∈ HM for the
function

[πHM f ](ζ, ξ) = f(ξ + ζM−1), ζ ∈ q−1Zq, ξ ∈M−1Z. (4.3.14)

We extend the operators Dk,M to HM by writing

[Dk,MΦ](ζ, ξ) = [Dk,MΦ(ζ, ·)](ξ). (4.3.15)

Note that these operators act only on the second component of Φ. This allows us to
define our final space

H1
k,M = HM , (4.3.16)

equipped with the inner product

〈Φ,Ψ〉H1
k,M

= 〈Φ,Ψ〉HM + 〈Dk,MΦ,Dk,MΨ〉HM . (4.3.17)

In fact, we can relate the spaces HM and H1
k,M to the spaces defined earlier. To see

this, we define the isometries

JM : YM → HM , J 1
k,M : Y1

k,M → H1
k,M , (4.3.18)

for M = p
q ∈Mq, which both act as

[JMΦ](ζ, ξ) = [J 1
k,MΦ](ζ, ξ) = Φ(ξ +M−1ζ), (4.3.19)

for ζ ∈ q−1Zq and ξ ∈M−1Z, see Lemma 4.A.3. Note that πHM = JMπYM .

Our goal is to interpret Lk,M as a map from H1
k,M into HM . To this end, we pick

n ∈ Z and 0 < ϑ ≤ 1 in such a way that

1 = (n+ ϑ)M−1. (4.3.20)

Since M = p
q ∈Mq, we see that ϑ = p−nq

q , which yields

nM−1 = 1− ϑM−1, ϑ ∈ q−1Zq \ {0}. (4.3.21)

In fact, because gcd(p, q) = 1, it follows that gcd(p, ϑq) = 1.

With these preparations in hand, we now write Kk,M : H1
k,M → HM for the linear

operator that acts as

[Kk,MΦ] (ζ, ξ) = c0[Dk,MΦ](ζ, ξ)−
[
∆MΦ

]
(ζ, ξ)−DUG

(
U0(ξ + ζM−1); r

)
Φ(ζ, ξ),
(4.3.22)
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for ζ ∈ q−1Zq and ξ ∈M−1Z. Here the operator ∆M is given by

∆M = τ
∑
m>0

αm

[
TmM + T−mM − 2

]
, (4.3.23)

where we have introduced the twist operator TM : HM → HM that acts as

[TMΦ](ζ, ξ) = Φ(ζ + ϑ, ξ + nM−1), (4.3.24)

taking into account the convention

Φ(ζ ± 1, ξ) = Φ(ζ, ξ ±M−1). (4.3.25)

In particular, we see that the shift ϑ acts as a rotation number, connecting the different
components of Φ in the ζ-direction. The inequality

〈∆MΦ,Φ〉HM ≤ 0 (4.3.26)

for Φ ∈ HM is almost trivial to verify in the finite-range setting, but turns out to
be much harder to establish when dealing with infinite-range interactions; see Lemma
4.A.5.

Finally, we introduce the notation

DG
(
πHMU0; r

)
: HM → HM (4.3.27)

to refer to the multiplication operator

[DG
(
πHMU0; r

)
Φ](ζ, ξ) = DUG

(
U0(ξ + ζM−1); r

)
Φ(ζ, ξ). (4.3.28)

In fact, it is easy to see that

Kk,MJ 1
k,M = JMLk,M , (4.3.29)

which shows that Kk,M and Lk,M are equivalent.

Since the operator Kk,M is not self-adjoint, we need to introduce the formal adjoint
K∗k,M : H1

k,M → HM of Kk,M by writing

K∗k,MΦ = c0[D∗k,MΦ]−∆MΦ−DG
(
πHMU0; r

)T
Φ, (4.3.30)

in which we have defined

[D∗k,MΦ](ζ, ξ) = β−1
k M

k∑
n′=0

µn′;kΦ(ξ + (k − n′)M−1). (4.3.31)

Moreover, we introduce the space

`2q,⊥;∞ = {φ ∈ `2q,⊥ : φ(1) = φ(0)}, (4.3.32)



4.4. THE LIMITING SYSTEM 199

together with the map

[π⊥f ](ζ, ξ) = f(ξ), ζ ∈ q−1Zq, ξ ∈ R, (4.3.33)

which constructs a function π⊥f ∈ L2(R, `2q,⊥;∞) from a function f ∈ L2(R;Rd).

Taking the limit M → ∞, while keeping ϑ and q fixed as in (4.3.20), we see that
Kk,M and K∗k,M formally approach the limiting operators

Kq,ϑ : H1(R, `2q,⊥;∞) → L2(R, `2q,⊥;∞),

K∗q,ϑ : H1(R, `2q,⊥;∞) → L2(R, `2q,⊥;∞),
(4.3.34)

that act as
Kq,ϑΘ = c0∂ξΘ−∆q,ϑΘ−DG

(
πHMU0; r

)
Θ,

K∗q,ϑΘ = −c0∂ξΘ−∆q,ϑΘ−DG
(
πHMU0; r

)T
Θ.

(4.3.35)

Here the operator ∆q,ϑ is given by

∆q,ϑ = τ
∑
m>0

αm

[
Tmq,ϑ + T−mq,ϑ − 2

]
, (4.3.36)

in which we have introduced the twist operator[
Tq,ϑΘ

]
(ζ, ξ) = Θ(ζ + ϑ, ξ + 1), (4.3.37)

for ζ ∈ q−1Zq and ξ ∈ R. In the same spirit as (4.3.25), we here make the convention
Φ(ζ + 1, ξ) = Φ(ζ, ξ). Notice that the limiting operator Kq,ϑ reduces to the operator
L0 defined in (4.2.13) for ζ-independent functions.

4.4 The limiting system

Our goal here is to exploit our understanding of the operator L0 in order to determine
the Fredholm properties of the limiting operator Kq,ϑ. Due to the lack of a comparison
principle we cannot immediately appeal to a general Frobenius-Peron-type result as
was possible in [111]. The theory in this section aims to fill these gaps and can be
considered the key technical contribution of this paper. We collect the main results in
the following Proposition, which plays an essential role in Lemma 4.5.3 below.

Proposition 4.4.1 (cf. [111, Lem. 3.6]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix an integer
q ≥ 1, together with a constant ϑ ∈ q−1Zq that has gcd(ϑq, q) = 1. Then the operators

Kq,ϑ and K∗q,ϑ are both Fredholm operators with index 0 and we have the identities

ker(Kq,ϑ) = span{π⊥Φ+
0 }, ker(K∗q,ϑ) = span{π⊥Φ−0 }. (4.4.1)

Moreover, recalling the constant λ̃ appearing in (HW2r), the operator Kq,ϑ + λ is in-

vertible for each λ ∈ C that has Reλ ≥ −λ̃ and λ /∈ 2πic0q
−1Z. Finally, there exists
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constants C > 0 and δ0 > 0 so that for each 0 < δ < δ0 and each Θ ∈ L2(R, `2q,⊥;∞) we
have the bound

‖[Kq,ϑ + δ]−1Θ‖H1(R,`2q,⊥;∞) ≤ C
[
‖Θ‖L2(R,`2q,⊥;∞) + 1

δ |〈Θ, π⊥Φ−0 〉L2(R,`2q,⊥;∞)|
]
.

(4.4.2)

The first step towards proving Proposition 4.4.1 is to find the eigenvalues of the
operator Kq,ϑ. After that, we will focus on the essential spectrum of this operator. The
idea behind the proof of Lemma 4.4.2 below can best be illustrated by considering the
case q = 2. In this case, we have ϑ = 1

2 , together with[
T2, 12

Θ
]
(ζ, ξ) = Θ

(
ζ + 1

2 , ξ + 1
)
. (4.4.3)

Upon writing

[Π0Θ](ξ) := Θ(0, ξ) + Θ( 1
2 , ξ), [Π1Θ](ξ) := Θ(0, ξ)−Θ( 1

2 , ξ), (4.4.4)

one may verify the commutation relations[
T0Π0Θ

]
(ξ) =

[
Π0T2, 12

Θ
]
(ξ),

[
T0Π1Θ

]
(ξ) = −

[
Π1T2, 12

Θ
]
(ξ). (4.4.5)

In particular, if Θ is in the kernel of K2, 12
+ λ, the functions

X0(ξ) = [Π0Θ](ξ), X1(ξ) = e−πiξ[Π1Θ](ξ) (4.4.6)

are eigenfunctions of the operator L0 with eigenvalues −λ and −λ− c0πi respectively.
Since −λ and −λ− c0πi cannot both be eigenvalues of L0 at the same time in view of
(HW2r), this means that at least one of the functions X0 or X1 is identically 0.

Without loss, we assume that X0 = 0. In this case, the function Θ can explicitly
be identified as

Θ(0, ξ) = 1
2e
πiξX1(ξ), Θ( 1

2 , ξ) = − 1
2e
πiξX1(ξ). (4.4.7)

As such, the eigenfunctions of Kq,ϑ can be expressed in terms of those of L0, thus
providing an upper bound on the dimension of the corresponding eigenspace.

Lemma 4.4.2. Consider the setting of Proposition 4.4.1. Then for any λ ∈ C with
Reλ ≥ −λ̃ and λ /∈ c02πiq−1Z, we have the identity

ker(Kq,ϑ + λ) = {0}. (4.4.8)

In addition, we have the identity

ker(Kq,ϑ) = span{π⊥Φ+
0 }. (4.4.9)

Proof. Fix λ ∈ C with Reλ ≥ −λ̃. Suppose that Θ is in the kernel of the operator
Kq,ϑ + λ. For n ∈ {0, ..., q − 1} we set

[ΠnΘ](ξ) =
q−1∑
n′=0

ζn·n
′

q Θ
(
n′ϑ, ξ

)
, (4.4.10)
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together with

Xn(ξ) = e−
2πin
q ξ[ΠnΘ](ξ) = ζ−nξq [ΠnΘ](ξ), (4.4.11)

with ζq = exp[2πi/q] the q-th root of unity. Recalling that gcd(ϑq, q) = 1, it follows
that this sum contains each of the functions Θ

(
0, ξ
)
, ...,Θ

(
(q − 1)q−1, ξ

)
exactly once.

Recalling the definitions of the operators T0 and Tq,ϑ from (4.2.15) and (4.3.37), we
can compute

[T0ΠnΘ](ξ) = [ΠnΘ](ξ + 1)

=
q−1∑
n′=0

ζnn
′

q Θ
(
n′ϑ, ξ + 1

)
=

q−1∑
n′=0

ζnn
′

q (Tq,ϑΘ)
(
(n′ − 1)ϑ, ξ

)
= ζnq

q−1∑
n′=0

ζ
n(n′−1)
q (Tq,ϑΘ)

(
(n′ − 1)ϑ, ξ

)
= ζnq [ΠnTq,ϑΘ](ξ),

(4.4.12)

which implies

T0Xn(ξ) = ζ
−n(ξ+1)
q [T0ΠnΘ](ξ + 1)

= ζ
−n(ξ+1)
q ζnq [ΠnTq,ϑΘ](ξ)

= ζ−nξq [ΠnTq,ϑΘ](ξ).

(4.4.13)

This allows us to obtain the identity

(L0 + λ)Xn(ξ) = c0X
′
n(ξ)−∆0Xn(ξ)−DUG

(
U0(ξ); r

)
Xn(ξ) + λXn(ξ)

= c0ζ
−nξ
q [ΠnΘ]′(ξ)− c0 2πin

q Xn(ξ)− ζ−nξq [Πn∆q,ϑΘ](ξ)

−ζ−nξq DUG
(
U0(ξ); r

)
[ΠnΘ](ξ) + ζ−nξq λ[ΠnΘ](ξ)

= ζ−nξq

[
Πn

(
Kq,ϑ + λ

)
Θ
]
(ξ)− c0 2πin

q Xn(ξ)

= −c0 2πin
q Xn(ξ).

(4.4.14)
Suppose first that λ /∈ 2c0πiq

−1Z. Then it follows from (HW2r) that−2c0πinq
−1−λ

is no eigenvalue of L0 for all 0 ≤ n ≤ q − 1. In particular, we must have Xn = 0 for all
0 ≤ n ≤ q−1. This means that the functions ΠnΘ for 0 ≤ n ≤ q−1 are also identically
0. Since the q×q Vandermonde matrix Z given by Zn,n′ = ζn·n

′

q is invertible, we obtain
Θ(nϑ, ·) = 0 for all 0 ≤ n ≤ q − 1 from which (4.4.8) follows.

Turning to the case λ = 0, we see that −2c0πinq
−1 − λ = −2c0πinq

−1 can only
be an eigenvalue of L0 when nq−1 ∈ Z on account of (HW2r). Since nq−1 /∈ Z for
1 ≤ n ≤ q − 1, we have Xn = 0 for those values of n. In addition, we have X0 = µΦ+

0

for some µ ∈ C. Recalling the invertible matrix Z given by Zn,n′ = ζn·n
′

q , we obtain
the identity(

Θ
(
0, ·
)
,Θ
(
ϑ, ·
)
, ....,Θ

(
(q − 1)ϑ, ·

))T
= Z−1

(
µΦ+

0 , 0, ..., 0
)T
. (4.4.15)
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In particular, the kernel ker(Kq,ϑ) is one-dimensional. Since L0Φ+
0 = 0 by (HW2r), it

follows immediately that Kq,ϑπ⊥Φ+
0 = 0, which implies (4.4.9).

We now shift our attention to the Fredholm properties of Kq,ϑ, which we aim to
extract from those of L0 in a similar fashion. The results in [68, 130] show that it
suffices to consider the limiting operators

Kq,ϑ,±∞Θ = c0∂ξΘ−∆q,ϑΘ−DG
(
P±; r

)
Θ,

L±∞Θ = c0∂ξΘ−∆0Θ−DG
(
P±; r

)
Θ,

(4.4.16)

which have constant coefficients. For λ ∈ C and 0 ≤ ρ ≤ 1 we introduce the notation

Kq,ϑ,ρ;λ = ρKq,ϑ,−∞ + (1− ρ)Kq,ϑ,∞ + λ,

Lρ;λ = ρL−∞ + (1− ρ)L∞ + λ.
(4.4.17)

We set out to show that for λ in a suitable right half-plane and 0 ≤ ρ ≤ 1, the operators
Kq,ϑ,ρ;λ and Lρ;λ are hyperbolic in the sense of [68, 130]. In particular, we write

∆q,ϑ,ρ;λ(z) =
[
Kq,ϑ,ρ;λezξ

]
(0), ∆ρ;λ(z) =

[
Lρ;λe

zξ
]
(0) (4.4.18)

and establish that det
(
∆q,ϑ,ρ;λ(iy)

)
6= 0 for all y ∈ R by first showing that det

(
∆ρ;λ(iy)

)
6=

0. We can subsequently use the spectral flow principle to compute the Fredholm index
of Kq,ϑ + λ.

We start by considering the characteristic function ∆ρ;λ from (4.4.18). For nota-
tional convenience we set

DGρ = ρDG
(
P−; r

)
+ (1− ρ)DG

(
P+; r

)
(4.4.19)

for 0 ≤ ρ ≤ 1 and use the definition (4.2.4) to write

∆ρ;λ(iy) = c0iy − τ
∑
m>0

αm

[
emiy + e−miy − 2

]
−DGρ + λ

= c0iy + τ
∑
m>0

αm

[
2− 2 cos(my)

]
−DGρ + λ

= c0iy + 2τA(y)−DGρ + λ.

(4.4.20)

For any V = (v1, ..., vd) ∈ Cd we may exploit the inequality (4.2.4) to obtain

τV †A(y)V = 2τ
d∑
j=1

|vj |2Aj(y) ≥ 0. (4.4.21)

Here we introduced † for the conjugate transpose.

In order to prove that L±∞+λ is hyperbolic, we need to distinguish between the set-
ting where the triplet (G, P−, P+) satisfies (HS3r(a)) and where it satisfies (HS3r(b)).
A similar computation was performed in [151, Lem. 4.6].
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Lemma 4.4.3. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HW1r) and (HW2r) are satisfied. Assume that the triplet (G, P−, P+) satisfies
(HS3r(a)). Pick λ ∈ C with Reλ > −λ̃ and 0 ≤ ρ ≤ 1. Then we have det

(
∆ρ;λ(iy)

)
6=

0 for all y ∈ R.

Proof. For fixed y ∈ R we introduce the matrix

X = 1
2

[
∆ρ;λ(iy) + ∆ρ;λ(iy)†

]
= τA(y)−DGρ −DGTρ + Reλ.

(4.4.22)

By decreasing λ̃ if necessary, we can assume that −DGρ −DGTρ + Reλ is positive def-
inite. It follows that X is the sum of a positive semi-definite matrix and a positive
definite matrix and as such, it is positive definite itself. As a consequence, ∆ρ;λ is
positive definite as well and hence we obtain det

(
∆ρ;λ(iy)

)
6= 0.

Lemma 4.4.4. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HW1r) and (HW2r) are satisfied. Assume that the triplet (G, P−, P+) satisfies
(HS3r(b)). Pick λ ∈ C with Reλ > −λ̃ and 0 ≤ ρ ≤ 1. Then we have det

(
∆ρ;λ(iy)

)
6=

0 for all y ∈ R.

Proof. We recall the proportionality constant Γ > 0 from (HS3r(b)). In particular,
upon writing

DGρ =

(
DG[1,1]

ρ DG[1,2]
ρ

DG[2,1]
ρ DG[2,2]

ρ

)
, (4.4.23)

we have DG[1,2]
ρ = −Γ(DG[2,1]

ρ )T . Suppose that ∆ρ;λ(iy)V = 0 for some V ∈ Cd. Write
V = (u,w) where u contains the first ddiff components of V . Then we can compute

0 = ReV †∆ρ;λ(iy)V

= Re
[
− τV †A(y)V − V †DGρV + λ|V |2

]
= Re

[
− τV †A(y)V − u†DG[1,1]

ρ u− u†DG[1,2]
ρ w

−w†DG[2,1]
ρ u− w†DG[2,2]

ρ w + λ|u|2 + λ|w|2
]
.

(4.4.24)

The second component of the equation ∆ρ;λ(iy)V = 0 is equivalent to

DG[2,1]
ρ u = −DG[2,2]

ρ w + λw. (4.4.25)

As such, we can rewrite the cross-terms in (4.4.24) to obtain

Re
[
− u†DG[1,2]

ρ w − w†DG[2,1]
ρ u

]
= Re (1− Γ)

[
− w†DG[2,1]

ρ u
]

= Re (Γ− 1)
[
− w†DG[2,2]

ρ w + λ|w|2
]
.

(4.4.26)
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As a consequence, (4.4.24) reduces to

0 = Re
[
− τV †A(y)V − u†DG[1,1]

ρ u+ λ|u|2 − Γw†DG[2,2]
ρ w + Γλ|w|2

]
. (4.4.27)

By decreasing λ̃ if necessary, we can assume that −DG[1,1]
ρ +Reλ and −ΓDG[2,2]

ρ +ΓReλ
are positive definite. Therefore, we must have V = 0, from which it follows that
det
(
∆ρ;λ(iy)

)
6= 0.

Lemma 4.4.5. Consider the setting of Proposition 4.4.1. Pick λ ∈ C with Reλ > −λ̃
and 0 ≤ ρ ≤ 1. Then we have det

(
∆q,ϑ,ρ;λ(iy)

)
6= 0 for all y ∈ R.

Proof. Suppose there exists V ∈ `2q,⊥;∞ and y ∈ R for which

∆q,ϑ,ρ;λ(iy)V = 0. (4.4.28)

We then write
W
(
n
q , ξ
)

= eiyξV
(
n
q

)
(4.4.29)

for 0 ≤ n ≤ q − 1. The definition of the characteristic function yields

Kq,ϑ,ρ;λW = eiyξ
[
Kq,ϑ,ρ;λeiyξV

]
(0)

= eiyξ∆q,ϑ,ρ;λ(iy)V

= 0.

(4.4.30)

Recalling the projections (4.4.10), we write

Xn(ξ) = e−
2πin
q ξ[ΠnW ](ξ) (4.4.31)

and use a computation similar to (4.4.14) to find

Lρ;λXn(ξ) = e−
2πin
q ξ
[
ΠnKq,ϑ,ρ;λW

]
(ξ)− c0 2πin

q Xn(ξ)

= −c0 2πin
q Xn(ξ).

(4.4.32)

On account of Lemmas 4.4.3-4.4.4, it follows from the spectral flow theorem [68, Thm.
1.6] and [68, Thm. 1.7] that Lρ;λ−c02πinq−1 is hyperbolic. Applying [150, Lem. 6.3],
which is a generalization of [130, Thm. 4.1], yields that Lρ;λ−c02πinϑ is invertible as
a map from W 1,∞(R;Rd) to L∞(R;Rd). Therefore, we must have Xn = 0 for all
0 ≤ n ≤ q − 1. This implies that W (nq , ξ) = 0 for all 0 ≤ n ≤ q − 1 and thus that
V = 0, which yields the desired result.

Proof of Proposition 4.4.1. These results, except the bound (4.4.2), follow from
combining Lemma 4.4.2, Lemma 4.4.5 and the spectral flow theorem [68, Thm. 1.6-
1.7]. The bound (4.4.2) can be obtained by following the proof of [6, Lem. 3.1].
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4.5 Linear theory for ∆t→ 0

In this section, we apply the spectral convergence method to lift the Fredholm properties
of the semi-discrete system to the fully discrete system in the small timestep regime
∆t� 1. In particular, we establish the main result below, which gives a quasi-inverse
for the operators Lk,M . This turns out to be the key ingredient in the construction
of the discrete waves, which can subsequently be proved by means of a standard fixed
point argument.

Proposition 4.5.1 (cf. [111, Prop. 3.2]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
integers 1 ≤ k ≤ 6 and q ≥ 1, together with a sufficiently small η > 0 and sufficiently
large constants M∗ ∈ Mq and C > 0. Then for each M ∈ Mq with M ≥ M∗ there
exist linear maps

γ∗k,M : YM → R, V∗k,M : YM → Y1
k,M , (4.5.1)

so that for all Ψ ∈ YM the pair

(γ, V ) = (γ∗k,MΨ,V∗k,MΨ) (4.5.2)

is the unique solution to the problem

Lk,MV = Ψ + γπYMDk,MU0 (4.5.3)

that satisfies the normalisation condition

〈πYMΦ−0 , V 〉YM = 0. (4.5.4)

In addition, for all Ψ ∈ YM we have the bound

|γ∗k,MΨ|+ ‖V∗k,MΨ‖Y1
k,M

≤ C‖Ψ‖YM . (4.5.5)

In order to facilitate the reading, we first outline our strategy and formulate two
intermediate results in §4.5.1. This strategy heavily follows the program in [111], al-
lowing us to simply refer to these results in many cases. However, due to the lack of
a comparison principle and the many cross-terms we need to control, there are several
key points in the analysis that need a fully new approach, which we develop in §4.5.2.
In addition, the infinite-range setting forces us to obtain an extra order of regularity
on the operator (L0 + δ)−1, which we achieve in §4.5.3.

4.5.1 Strategy

Recalling the spaces HM and H1
k,M from (4.3.12) and (4.3.15), we introduce the quan-

tities

Ek,M (δ) = inf‖Φ‖H1
k,M

=1

[
‖Kk,MΦ + δΦ‖HM + δ−1

∣∣∣〈πHMΦ−0 ,Kk,MΦ + δΦ〉HM
∣∣∣],

E∗k,M (δ) = inf‖Φ‖H1
k,M

=1

[
‖K∗k,MΦ + δΦ‖HM + δ−1

∣∣∣〈πHMΦ+
0 ,K∗k,MΦ + δΦ〉HM

∣∣∣],
(4.5.6)
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together with
κ(δ) = lim infM→∞,M∈Mq

Ek,M (δ),

κ∗(δ) = lim infM→∞,M∈Mq E∗k,M (δ)
(4.5.7)

for δ ∈ (0, δ0).

The key step towards proving Proposition 4.5.1 is the establishment of lower bounds
for these quantities. This procedure is based on [6, Lem. 3.2]. Our strategy to prove
it is essentially the same, but some major modifications are needed to incorporate the
difficulties arising from the discrete derivatives.

Proposition 4.5.2 (cf. [111, Prop. 3.7]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
integers 1 ≤ k ≤ 6 and q ≥ 1. Then there exists κ > 0 such that for all 0 < δ < δ0 we
have

κ(δ) ≥ κ, κ∗(δ) ≥ κ. (4.5.8)

We are now ready to start our interpolation procedure. For any ξ ∈ R, we pick two
quantities ξ±M (ξ) ∈M−1Z in such a way that

ξ−M (ξ) ≤ ξ < ξ+
M (ξ), ξ+

M (ξ)− ξ−M (ξ) = M−1. (4.5.9)

Using these quantities, we can define two interpolation operators

I0
M : HM → L2(R, `2q,⊥;∞),

I1
k,M : H1

k,M → H1(R, `2q,⊥;∞),
(4.5.10)

that act as

[I0
Mφ](ζ, ξ) = φ

(
ζ, ξ−M (ξ)

)
,

[I1
k,Mφ](ζ, ξ) = M

[(
ξ − ξ−M (ξ)

)
φ
(
ζ, ξ+

M (ξ)
)

+ (ξ+
M (ξ)− ξ)φ

(
ζ, ξ−M (ξ)

)]
,

(4.5.11)
for all ζ ∈ q−1Zq and all ξ ∈ R. These operators can be seen as interpolations of order
zero and one respectively, both acting only on the second coordinate of φ. We refer to
[111, Lem. 3.10-3.12] for some useful estimates involving these interpolations.

With these preparations in hand, we start the proof of Proposition 4.5.2 using the
methods described in the proof of [6, Lem. 3.2]. We focus on the quantity κ(δ) defined
in (4.5.7), noting that κ∗(δ) can be treated in a similar fashion. In particular, we find
a lower bound for κ(δ) by constructing sequences that minimize this quantity. At this
point it becomes clear why we work on the spaces H1(R, `2q,⊥) and L2(R, `2q,⊥), as we
exploit the fact that bounded closed subsets of these spaces are weakly compact.

Lemma 4.5.3 (cf. [111, Lem. 3.16-3.17]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
integers 1 ≤ k ≤ 6 and q ≥ 1, as well as 0 < δ < δ0. Then there exist two functions

Φ∗ ∈ H1(R, `2q,⊥;∞), Ψ∗ ∈ L2(R, `2q,⊥;∞), (4.5.12)
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together with three sequences

{Mj}j∈N ⊂ Mq, {Φj}j∈N ⊂ H1
k,Mj

, {Ψj}j∈N ⊂ HMj (4.5.13)

and two constants ϑ ∈ q−1Zq \ {0} and K1 > 0 that satisfy the following properties.

(i) We have limj→∞Mj =∞ and ‖Φj‖H1
k,Mj

= 1 for all j ∈ N.

(ii) The identity

Ψj = Kk,Mj
Φj + δΦj (4.5.14)

holds for all j ∈ N.

(iii) Recalling the constant κ(δ) defined in (4.5.7), we have the limit

κ(δ) = limj→∞

[
‖Kk,MΦj + δΦj‖HMj + δ−1

∣∣∣〈πHMjΦ−0 ,Kk,MjΦj + δΦj〉HMj
∣∣∣].

(4.5.15)

(iv) As j →∞, we have the weak convergences

I1
k,Mj

Φj ⇀ Φ∗ ∈ H1(R, `2q,⊥),

I0
Mj

Ψj ⇀ Ψ∗ ∈ L2(R, `2q,⊥).
(4.5.16)

(v) For any compact interval I ⊂ R, we have the strong convergences

(I1
k,Mj

, I1
k,Mj

)Φj → Φ∗ ∈ L2(I, `2q,⊥),

(I0
Mj
, I0
Mj

)Ψj → Ψ∗ ∈ L2(I, `2q,⊥)
(4.5.17)

as j →∞.

(vi) The function Φ∗ is a weak solution to (Kq,ϑ + δ)Φ∗ = Ψ∗ and we have the bound

‖Φ∗‖H1(R,`2q,⊥;∞) ≤ K1κ(δ). (4.5.18)

Proof. In view of Proposition 4.4.1 and Lemma 4.A.6, we can follow the proof of
[111, Lem. 3.16-3.17] almost verbatim.

In order to prove Proposition 4.5.2, we need to establish a lower bound on the norm
‖Φ∗‖H1(R,`2q,⊥;∞) on account of (4.5.18). In Proposition 4.5.4 we follow the approach of

[111, Lem. 3.18] in order to obtain this lower bound. Here we have to deal with both
the cross-terms arising from the system setting as well as the infinite-range interactions.

Proposition 4.5.4 (see §4.5.2). Consider the setting of Lemma 4.5.3. Then there exist
constants K2 > 1 and K3 > 1 so that for any 0 < δ < δ0, the function Φ∗ satisfies the
bound

‖Φ∗‖2H1(R,`2q,⊥;∞)
≥ K2 −K3κ(δ)2. (4.5.19)
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Proof of Proposition 4.5.2. Combining the bounds (4.5.18) and (4.5.19) immediately
yields

K2 −K3κ(δ)2 ≤ K2
1κ(δ)2. (4.5.20)

Solving this quadratic inequality, we obtain

κ(δ) ≥
√

K2

K2
1+K3

:= κ. (4.5.21)

The lower bound on κ∗(δ) follows in a similar fashion.

In order to establish Proposition 4.5.1, we need more control on the operator L0 than
in [150]. In particular, due to the infinite-range interactions it is not immediately clear
that this operator preserves the exponential decay properties of the function spaces
(4.3.2).

Proposition 4.5.5. Assume that (HS1) and (HS2) are satisfied and pick r in such a
way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a sufficiently small constant
η > 0. Then there exist constants δ∗ > 0 and K > 0, so that for each 0 < δ < δ∗ and
each G ∈ BC1

−η(R;Rd) we have the bounds

‖(L0 + δ)−1G‖BC−η(R;Rd) ≤ Kδ−1‖G‖BC−η(R;Rd)

‖[(L0 + δ)−1G]′‖BC−η(R;Rd) ≤ Kδ−1‖G‖BC−η(R;Rd)

‖[(L0 + δ)−1G]′′‖BC−η(R;Rd) ≤ Kδ−1‖G‖BC1
−η(R;Rd).

(4.5.22)

Proof of Proposition 4.5.1. On account of Proposition 4.5.5, we can follow the pro-
cedure developed in [111, §3.3] to arrive at the desired result.

4.5.2 Spectral convergence

In this section we set out to prove Proposition 4.5.4 using the spectral convergence
method. The main idea is to derive an upper bound for the discrete derivative Dk,MjΦj ,
together with a lower bound for Φj restricted to a large—but finite—interval. This pre-
vents the H1

k,Mj
-norm of Φj from leaking away into oscillations or tail effects, providing

the desired control on the limit (4.5.17). All constants introduced in Lemmas 4.5.6-4.5.8
and Proposition 4.5.4 are independent of 0 < δ < δ0.

Lemma 4.5.6. Consider the setting of Lemma 4.5.3. Then there exists a constant
C1 > 0 so that the bound

2‖Ψj‖2HMj + 2C1‖Φj‖2HMj ≥ c20‖Dk,Mj
Φj‖2HMj (4.5.23)

holds for all j ∈ N.

Proof. We will assume c0 > 0, noting that the case where c0 < 0 can be treated in
a similar fashion. In view of the identity

Kk,Mj
Φj + δΦj = Ψj , (4.5.24)
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we can compute

〈Ψj ,Dk,Mj
Φj〉HMj = c0‖Dk,Mj

Φj‖2HMj − 〈∆Mj
Φj ,Dk,Mj

Φj〉HMj
−〈DG

(
πHMjU0; r

)
Φj ,Dk,Mj

Φj〉HMj + δ〈Φj ,Dk,Mj
Φj〉HMj .

(4.5.25)
Writing

K = ‖DG
(
U0; r

)
‖∞ + 4τ

∑
m>0
|αm| (4.5.26)

and remembering that 0 < δ < δ0 < 1, we may use the Cauchy-Schwarz inequality to
obtain

K‖Φj‖HMj ‖Dk,MjΦj‖HMj ≥ 〈∆MjΦj ,Dk,MjΦj〉HMj
+〈DG

(
πHMjU0; r

)
Φj ,Dk,MjΦj〉HMj

−δ〈Φj ,Dk,Mj
Φj〉HMj

= c0‖Dk,MjΦj‖2HMj − 〈Ψj ,Dk,MjΦj〉HMj
≥ c0‖Dk,Mj

Φj‖2HMj − ‖Ψj‖HMj ‖Dk,Mj
Φj‖HMj .

(4.5.27)
This yields the bound

‖Ψj‖HMj +K‖Φj‖HMj ≥ c0‖Dk,MjΦj‖HMj . (4.5.28)

Squaring this inequality gives the desired estimate (4.5.23).

Lemma 4.5.7. Consider the setting of Lemma 4.5.3 and assume that the triplet (G, P−, P+)
satisfies (HS3r(a)). There exist positive constants µ, C3, C4 and C5 so that the bound

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ ≥ C3‖Φj‖2HMj − C4‖Ψj‖2HMj − C5M

−1
j ‖Dk,Mj

Φj‖2HMj

(4.5.29)
holds for all j ∈ N.

Proof. Invoking Lemma 4.A.4 and Lemma 4.A.5, we can estimate

〈Ψj ,Φj〉HMj = 〈[Kk,Mj + δ]Φj ,Φj〉HMj
= c0〈Dk,Mj

Φj ,Φj〉HMj − 〈∆Mj
Φj ,Φj〉HMj

−〈DG
(
πHMjU0; r

)
Φj ,Φj〉HMj + δ‖Φj‖2HMj

≥ c0〈Dk,Mj
Φj ,Φj〉HMj − 〈DG

(
πHMjU0; r

)
Φj ,Φj〉HMj

≥ −C2M
−1
j ‖Dk,Mj

Φj‖2HMj − 〈DG
(
πHMjU0; r

)
Φj ,Φj〉HMj

(4.5.30)

for some C2 > 1. Since −DG
(
P±; r

)
is positive definite and −DG is continuous, we

can choose µ > 0 and a > 0 in such a way that the matrix

B(ξ) = −DG
(
U0(ξ); r

)
− a (4.5.31)
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is positive definite for all |ξ| ≥ µ. Using the definition of this matrix and writing

I = (‖DG
(
U0; r

)
‖∞ + a)M−1

j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ , (4.5.32)

we can estimate

−〈DG
(
πHMjU0; r

)
Φj ,Φj〉HMj = a‖Φj‖2HMj − 〈BΦj ,Φj〉HMj

≥ a‖Φj‖2HMj −M
−1
j

∑
ξ∈M−1

j Z
|B(ξ)Φj(·, ξ)|2`2q,⊥

≥ a‖Φj‖2HMj − I.
(4.5.33)

In particular, we can combine (4.5.30) and (4.5.33) to obtain

〈Ψj ,Φj〉HMj ≥ a‖Φj‖2HMj − I − C2M
−1
j ‖Dk,MjΦj‖2HMj . (4.5.34)

We can hence rearrange (4.5.34) and estimate

I ≥ a‖Φj‖2HMj − C2M
−1
j ‖Dk,Mj

Φj‖2HMj − 〈Ψj ,Φj〉HMj
≥ a

2‖Φj‖
2
HMj

− 2
a‖Ψj‖2HMj − C2M

−1
j ‖Dk,MjΦj‖2HMj ,

(4.5.35)

which yields the desired bound.

Lemma 4.5.8. Consider the setting of Lemma 4.5.3 and assume that the triplet (G, P−, P+)
satisfies (HS3r(b)). Then there exist positive constants µ, C3, C4 and C5 so that the
bound

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ ≥ C3‖Φj‖2HMj − C4‖Ψj‖2HMj

−C5M
−1
j ‖Dk,Mj

Φj‖2HMj
(4.5.36)

holds for all j ∈ N.

Proof. Recall the proportionality constant Γ > 0 from (HS3r(b)). In particular,
upon writing

DG =

(
DG[1,1] DG[1,2]

DG[2,1] DG[2,2]

)
, (4.5.37)

we have DG[1,2] = −Γ(DG[2,1])T . For each M ∈Mq, we introduce the decomposition

HM = H[1]
M ×H

[2]
M , (4.5.38)

which splits every Φ = (φ, θ) ∈ HM in such a way that φ ∈ H[1]
M contains the first ddiff

components of Φ, while θ ∈ H[2]
M contains the other d − ddiff components. For each

j ≥ 0 we write Φj = (φj , θj) and Ψj = (ψj , χj) with φj , ψj ∈ H[1]
Mj

and θj , χj ∈ H[2]
Mj

.
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Using this decomposition, we can expand the inner product as

−〈DG
(
πHMjU0; r

)
Φj ,Φj〉HMj = −〈DG[1,1](πHMjU0)φj , φj〉H[1]

Mj

+ C

−〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

,
(4.5.39)

where we have introduced the cross-terms

C := −〈DG[1,2](πHMjU0)θj , φj〉H[1]
Mj

− 〈DG[2,1](πHMjU0)φj , θj〉H[2]
Mj

. (4.5.40)

Recalling DG[1,2] = −Γ(DG[2,1])T and exploiting the identity

χj = c0Dk,Mjθj −DG[2,1](πHMjU0)φj −DG[2,2](πHMjU0)θj + δθj , (4.5.41)

we can rewrite the cross-terms to obtain

C = −〈DG[1,2](πHMjU0)θj , φj〉H[1]
Mj

− 〈DG[2,1](πHMjU0)φj , θj〉H[2]
Mj

= −(1− Γ)〈DG[2,1](πHMjU0)φj , θj〉H[2]
Mj

= (Γ− 1)〈c0Dk,Mj
θj −DG[2,2](πHMjU0)θj + δθj − χj , θj〉H[2]

Mj

.

(4.5.42)

The identities (4.5.39) and (4.5.42) allow us to expand the inner product

〈Ψj ,Φj〉HMj = 〈[Kk,Mj
+ δ]Φj ,Φj〉HMj

= c0〈Dk,MjΦj ,Φj〉HMj − 〈∆MjΦj ,Φj〉HMj
−〈DG

(
πHMjU0; r

)
Φj ,Φj〉HMj + δ‖Φj‖2HMj

= c0〈Dk,Mj
φj , φj〉H[1]

Mj

+ Γc0〈Dk,Mj
θj , θj〉H[2]

Mj

− 〈∆Mj
Φj ,Φj〉HMj

−〈DG[1,1](πHMjU0)φj , φj〉H[1]
Mj

− Γ〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

−(Γ− 1)〈χj , θj〉H[2]
Mj

+ δ‖φj‖2H[1]
Mj

+ δΓ‖θj‖H[2]
Mj

.

(4.5.43)
As such, we can use Lemma 4.A.4 and Lemma 4.A.5 to estimate

〈Ψj ,Φj〉HMj ≥ c0〈Dk,Mj
φj , φj〉H[1]

Mj

+ Γc0〈Dk,Mj
θj , θj〉H[2]

Mj

−〈DG[1,1](πHMjU0)φj , φj〉H[1]
Mj

− Γ〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

−(Γ + 1)‖χj‖H[2]
Mj

‖θj‖H[2]
Mj

≥ −(1 + Γ)C2M
−1
j ‖Dk,Mj

Φj‖2HMj
−〈DG[1,1](πHMjU0)φj , φj〉H[1]

Mj

− Γ〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

−(Γ + 1)‖χj‖H[2]
Mj

‖θj‖H[2]
Mj

(4.5.44)
for some C2 > 1.
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Since −DG[1,1](P±) and −DG[2,2](P±) are positive definite and −DG is continuous,
we can choose µ > 0 and a > 0 to be positive constants such that the matrices

B1(ξ) = −DG[1,1]
(
U0(ξ)

)
− a, B2(ξ) = −ΓDG[2,2]

(
U0(ξ)

)
− a (4.5.45)

are positive definite for all |ξ| ≥ µ. Defining I as in (4.5.32), this allows us to estimate

−〈DG[1,1](πHMjU0)φj , φj〉H[1]
Mj

= a‖φj‖2H[1]
Mj

+ 〈B1φj , φj〉H[1]
Mj

≥ a‖Φj‖2HMj −M
−1
j

∑
ξ∈M−1

j Z
|B1(ξ)φj(·, ξ)|2`2q,⊥

≥ a‖Φj‖2HMj − I,
(4.5.46)

together with

−Γ〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

≥ a‖θj‖2H[2]
Mj

− ΓI. (4.5.47)

Combining the estimates (4.5.44), (4.5.46) and (4.5.47) yields the bound

〈Ψj ,Φj〉HMj ≥ a‖Φj‖2HMj − (1 + Γ)I − (1 + Γ)C2M
−1
j ‖Dk,Mj

Φj‖2HMj
−(Γ + 1)‖χj‖H[2]

Mj

‖θj‖H[2]
Mj

.
(4.5.48)

Hence we obtain

(1 + Γ)I ≥ a‖Φj‖2HMj − (1 + Γ)C2M
−1
j ‖Dk,MjΦj‖2HMj

−〈Ψj ,Φj〉HMj − (Γ + 1)‖χj‖H[2]
Mj

‖θj‖H[2]
Mj

≥ a
2‖Φj‖

2
HMj

−
(

1
a + Γ+1

a

)
‖Ψj‖2HMj − (1 + Γ)C2M

−1
j ‖Dk,Mj

Φj‖2HMj ,
(4.5.49)

which yields the desired bound.

Proof of Proposition 4.5.4. Rescaling (4.5.23) yields

0 ≥ C3

c20+2C1

[
c20‖Dk,MjΦj‖2HMj − 2C1‖Φj‖2HMj − 2‖Ψj‖2HMj

]
, (4.5.50)

which can be added to (4.5.29) or (4.5.36) to obtain

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ ≥ C3‖Φj‖2HMj − C4‖Ψj‖2HMj − C5M

−1
j ‖Dk,Mj

Φj‖2HMj

+ C3

c20+2C1

[
c20‖Dk,Mj

Φj‖2HMj − 2C1‖Φj‖2HMj
−2‖Ψj‖2HMj

]
=

c20C3

c20+2C1

[
‖Dk,Mj

Φj‖2HMj + ‖Φj‖2HMj
]

−
[
C4 + C3

c20+2C1

]
‖Ψj‖2HMj

−C5M
−1
j ‖Dk,MjΦj‖2HMj .

(4.5.51)
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Remembering that ‖Φj‖H1
k,Mj

= 1, we can pick constants C6 > 0, C7 > 0 and C8 > 0,

which all are independent of 0 < δ < δ0, in such a way that

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ ≥ C6 − C7‖Ψj‖2HMj − C8M

−1
j .

(4.5.52)

The strong convergence I0
Mj

Φj → Φ∗ ∈ L2([−µ−1, µ+ 1]; `2q,⊥) now yields the limiting
behaviour

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ =

∫ µ+M−1
j

−µ

∣∣∣[I0
Mj

Φj ](·, ξ)
∣∣∣2
`2q,⊥

dξ

≤
∫ µ+1

−µ

∣∣∣[I0
Mj

Φj ](·, ξ)
∣∣∣2
`2q,⊥

dξ

→
∫ µ+1

−µ

∣∣∣Φ∗(·, ξ)∣∣∣2
`2q,⊥

dξ,

(4.5.53)

as j → ∞. In view of the bound lim supj→∞‖Ψj‖2HMj ≤ κ(δ)2, this gives the desired

inequality

‖Φ∗‖2H1(R,`2q,⊥)
≥

∫ µ+1

−µ

∣∣∣Φ∗(·, ξ)∣∣∣2
`2q,⊥

dξ ≥ C6 − C7κ(δ)2. (4.5.54)

4.5.3 Exponential decay

In this section we set out to prove Proposition 4.5.5. The main ingredient to establish
this result is to show that for 0 < δ < δ0 the map (L0 + δ)−1 maps BC1

−η(R;Rd) into
the space

BC2
−η(R;Rd) = {F ∈ BC−η(R;Rd) : supξ∈R e

−η|ξ|[|F (ξ)|+ |F ′(ξ)|+ |F ′′(ξ)|] <∞}.
(4.5.55)

This is not immediately clear, since if we have

F = (L0 + δ)−1G (4.5.56)

with G ∈ BC1
−η(R;Rd), it is impossible to express F as a local function of G due to the

infinite-range interactions. We first establish this result for the subspaces H1(R;Rd)
and H2(R;Rd).

Lemma 4.5.9. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Then for each 0 < δ < δ0 and each
G ∈ H1(R;Rd) we have

(L0 + δ)−1G ∈ H2(R;Rd). (4.5.57)
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Proof. Fix 0 < δ < δ0 and G ∈ H1(R;Rd). Write F = (L0 + δ)−1G ∈ H1(R;Rd).
Then we can rewrite the equation (L0 + δ)F = G in the form

c0F
′ = G+ ∆0F +DUG

(
U0; r

)
F − δF. (4.5.58)

From this representation it immediately follows that F ′ ∈ L∞(R;Rd). Differentiating
both sides yields

c0F
′′ = G′ + (∆0F )′ +DUG

(
U0; r

)
F ′ +D2G

(
U0; r)[U

′
0, F ]− δF ′. (4.5.59)

Writing

Fn(x) = τ
n∑

m=1
αm

[
F (x+m) + F (x−m)− 2F (x)

]
(4.5.60)

for n ∈ Z>0, we can compute

F ′n(x) = τ
n∑

m=1
αm

[
F ′(x+m) + F ′(x−m)− 2F ′(x)

]
. (4.5.61)

This allows us to estimate

|F ′n(x)− (∆0F
′)(x)| ≤ 4τ

∞∑
m=n+1

|αm|‖F ′‖∞. (4.5.62)

In particular, the sequence {F ′n} converges uniformly to ∆0F
′, from which it follows

that

(∆0F )′(x) = τ
∞∑
m=1

αm

[
F ′(x+m) + F ′(x−m)− 2F ′(x)

]
= (∆0F

′)(x).

(4.5.63)
Since F,G ∈ H1(R;Rd), these considerations yield that F ′′ ∈ L2(R;Rd), from which
the desired result follows.

We now turn to the desired exponential decay. The assumptions (HW1r) and
(HW2r) yield the following useful properties of the operator L0.

Lemma 4.5.10. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Then the following properties hold for
the LDE (4.2.1) with r = r.

(i) The functions Φ+
0 and Φ−0 together with their derivatives decay exponentially.

(ii) Upon introducing the spaces

X0 = {F ∈ H1(R;Rd) : 〈Φ−0 , F 〉L2(R;Rd) = 0} (4.5.64)

and
Y0 = {G ∈ L2(R;Rd) : 〈Φ−0 , G〉L2(R;Rd) = 0}, (4.5.65)

the operator L0 : X0 → Y0 is invertible.
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In addition, there exists a constant η̃ > 0 in such a way that for each 0 < η < η̃ the
map L0 maps BC1

−η(R;Rd) into BC−η(R;Rd).

Proof. The proof of the statements (i)-(ii) follows the procedure described [150,
Lem. 4.15, 6.8, 6.9] and will hence be omitted. It hence suffices to prove that ∆0 maps
BC−η(R;Rddiff ) into itself for η small enough. Upon picking F ∈ BC−η(R;Rddiff ) and
K ∈ R>0 in such a way that the bound

|F (ξ)| ≤ Ke−η|ξ| (4.5.66)

holds, we estimate

|∆0F (ξ)| ≤ τ
∑
m>0
|αm|K

(
e−η|ξ+m| + e−η|ξ−m| + 2e−η|ξ|

)
≤ τ

∑
m>0
|αm|Ke−η|ξ|

(
2eηm + 2

)
.

(4.5.67)

We can hence set η̃ = ν, where ν is defined in (HS1). A computation similar to the proof
of [150, Lem. 6.5] yields the continuity of ∆0f , from which the desired result follows.

We now recall the notation Lqinv
0 G that was introduced in [150, Cor. 4.4] for the

unique solution F of the equation

L0F = G−
〈Φ−0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0 (4.5.68)

in the space X0, which is given explicitly by

Lqinv
0 G = L−1

0

[
G−

〈Φ−0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0

]
. (4.5.69)

The proof of [150, Prop. 5.2] provides the representation

(L0 + δ)−1G = δ−1 〈Φ
−
0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0 + [I + δL−1

0 ]−1Lqinv
0 G (4.5.70)

for each 0 < δ < δ0 and each G ∈ L2(R;Rd). In addition, we can use Lemma 4.5.10 to
pick constants K̃ > 0 and α̃ > 0 in such a way that

|Φ+
0 (x)| ≤ K̃e−α̃|x| (4.5.71)

holds for all x ∈ R. Let η̃ > 0 be the constant from Lemma 4.5.10. Using [150, Lem.
6.6], which is a generalization of [130, Prop. 5.3], we can pick constants K1 > 0 and
0 < α ≤ min{η̃, α̃} in such a way that

|Lqinv
0 G(x)| ≤ K1e

−α|x|‖Lqinv
0 G‖∞

+K1

∫∞
−∞ e−α|x−y|

∣∣∣G(y)−
〈Φ−0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0 (y)

∣∣∣dy (4.5.72)

holds for each G ∈ L2(R;Rd). The following three results use (4.5.70) and (4.5.72) to
establish the desired pointwise bound for (L0 + δ)−1.
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Lemma 4.5.11. Assume that (HS1) and (HS2) are satisfied and pick r in such a
way that (HS3r), (HW1r) and (HW2r) are satisfied. Recall the constant α > 0 from
(4.5.72) and fix 0 < η ≤ α. Then there exists a constant K > 0 so that for each
G ∈ BC1

−η(R;Rd) we have the bound

|Lqinv
0 G(x)| ≤ K‖G‖BC−η(R;Rd)e

−η|x|. (4.5.73)

Proof. Pick 0 < η ≤ α and G ∈ BC1
−η(R;Rd). Recalling (4.5.72), we can estimate

‖Lqinv
0 G‖∞ ≤ ‖Lqinv

0 G‖H1(R;Rd)

≤ ‖L−1
0 ‖L(Y0,X0)‖G−

〈Φ−0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0 ‖L2(R;Rd)

≤ ‖L−1
0 ‖L(Y0,X0)

(
1 + 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

)
‖G‖L2(R;Rd).

(4.5.74)

Combining these estimates yields the bound

|Lqinv
0 G(x)| ≤ K1e

−α|x|‖L−1
0 ‖L(Y0,X0)

(
1 + 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

)
‖G‖L2(R;Rd)

+K1

(
‖G‖BC−η(R,Rd) + K̃ 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|‖G‖L2(R;Rd)

)
×
∫∞
−∞ e−α|x−y|e−η|x|dy

≤ K1e
−α|x|‖L−1

0 ‖L(Y0,X0)

(
1 + 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

)
‖G‖L2(R;Rd)

+K1

(
‖G‖BC−η(R,Rd) + K̃ 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|‖G‖L2(R;Rd)

)
e−η|x|

≤ K2

(
‖G‖BC−η(R;Rd) + ‖G‖L2(R;Rd)

)
e−η|x|.

(4.5.75)
Finally, we note that ‖G‖L2(R;Rd) ≤ K3‖G‖BC−η(R;Rd) for some constant K3 > 0, which
implies the desired result.

Lemma 4.5.12. Consider the setting of Lemma 4.5.11. Then there exist constants
0 < δ∗ ≤ δ0 and K > 0 so that for each 0 < δ < δ∗ and each G ∈ BC1

−η(R;Rd) we
have the bound

|[I + δL−1
0 ]−1Lqinv

0 G(x)| ≤ K‖G‖BC−η(R;Rd)e
−η|x|. (4.5.76)

Proof. Pick G ∈ BC1
−η(R;Rd). For n ∈ Z>0 a calculation similar to (4.5.74) yields

‖(L−1
0 )nLqinv

0 G‖∞ ≤ ‖L−1
0 ‖

n+1
L(Y0,X0)

(
1 + 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

)
‖G‖L2(R;Rd). (4.5.77)

Using [150, Lem. 6.6] and Lemma 4.5.11, we obtain

|L−1
0 Lqinv

0 G(x)| ≤ K1e
−α|x|‖L−1

0 Lqinv
0 G‖∞ +K1

∫∞
−∞ e−α|x−y|

∣∣∣Lqinv
0 G

∣∣∣dy
≤ K1

(
1 + ‖L−1

0 ‖L(Y0,X0)

)
K‖G‖BC−η(R;Rd)e

−η|x|.

(4.5.78)
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Continuing in this fashion we see that the estimate

|(L−1
0 )nLqinv

0 G(x)| ≤ Kn
2K‖G‖BC−η(R;Rd)e

−η|x| (4.5.79)

holds for all n ∈ Z>0 and for some constant K2 > 0. If we set

δ∗ = min
{
δ0,

1

‖L−1
0 ‖L(Y0,X0)

(
1+ 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

) , 1
K2

}
,

(4.5.80)

then for each n ∈ Z>0 and each 0 < δ < δ∗ we have

‖(−δ)n(L−1
0 )nLqinv

0 G‖∞ ≤ 1
2‖G‖BC−η(R;Rd). (4.5.81)

In particular, it follows that

∞∑
n=0

(−δ)n(L−1
0 )nLqinv

0 G → [I + δL−1
0 ]−1Lqinv

0 G (4.5.82)

in H1(R;Rd). Since H1(R;Rd)-convergence implies pointwise convergence we see that

|[I + δL−1
0 ]−1Lqinv

0 G(x)| = |
∞∑
n=0

(−δ)n(L−1
0 )nLqinv

0 G(x)|

≤
∞∑
n=0

δn∗KK
n
2 ‖G‖BC−η(R;Rd)e

−η|x|

≤ K3‖G‖BC−η(R;Rd)e
−η|x|.

(4.5.83)

Corollary 4.5.13. Consider the setting of Lemma 4.5.12. There exists a constant
K > 0 so that for each 0 < δ < δ∗ and each G ∈ BC1

−η(R;Rd) we have the bound

|(L0 + δ)−1G(x)| ≤ Kδ−1‖G‖BC−η(R;Rd)e
−η|x|,

|[(L0 + δ)−1G]′(x)| ≤ Kδ−1‖G‖BC−η(R;Rd)e
−η|x|,

|[(L0 + δ)−1G]′′(x)| ≤ Kδ−1‖G‖BC1
−η(R;Rd)e

−η|x|.

(4.5.84)

Proof. Fix 0 < δ < δ∗ and G ∈ BC1
−η(R;Rd). Write F = (L0 + δ)−1G. The

representation (4.5.70) together with Lemma 4.5.12 immediately yields the bound

|F (x)| ≤ δ−1 1
|〈Φ−0 ,Φ

+
0 〉L2(R;Rd)

|‖G‖L2(R;Rd)K̃e
−α̃|x| +K‖G‖BC−η(R;Rd)e

−η|x|

≤ δ−1K2‖G‖BC−η(R;Rd)e
−η|x|.

(4.5.85)
In addition, the representation (4.5.58) together with the bounds (4.5.67) and (4.5.85)
yields that

|F ′(x)| ≤ Kδ−1‖G‖BC−η(R;Rd)e
−η|x| (4.5.86)

for some constant K > 0. Similarly, the representation (4.5.59) yields the bound

|F ′′(x)| ≤ Kδ−1‖G‖BC1
−η(R;Rd)e

−η|x|. (4.5.87)

Proof of Proposition 4.5.5. Corollary 4.5.13 implies the desired result.
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4.6 Proof of main result

In this section we mainly follow the approach of [111, §4.1]. We lift the computations
from [111] in a more detailed fashion, in order to ensure that the multi-component
nature of the nonlinearity G does not cause any issues. Luckily, we only need to take
care of some minor, technical difficulties. For example, due to the higher generality of
the nonlinearity G, we can no longer refer to [52, Lem. App.IV.1.1] to conclude that
G depends continuously on the perturbation. Instead, we need to prove this continuity
in a direct fashion, carefully employing the exponential decay of the travelling wave U
and the perturbations involved.

Let us fix an integer q ≥ 1, together with a constant M = p
q ∈ Mq. Our goal is to

construct a solution U to the nonlinear problem

c[Dk,MU ](ξ) = τ
∑
m>0

αm[U(ξ +m) + U(ξ −m)− 2U(ξ)] + G
(
U(ξ); r

)
, (4.6.1)

where ξ ∈ p−1Z, that has the form

U(ξ) = U0(ξ + θ) + Φ(ξ), ξ ∈ p−1Z, (4.6.2)

for some θ ∈ R and some Φ ∈ YM . Note that this form automatically ensures that U
satisfies the boundary conditions

lim
ξ→±∞,ξ∈p−1Z

U(ξ) = P±. (4.6.3)

For notational compactness, we introduce the functions

Uθ(ξ) = U0(ξ + θ), Φ+
θ (ξ) = Φ+

0 (ξ + θ), Φ−θ (ξ) = Φ−0 (ξ + θ),
(4.6.4)

together with the linear operators

Lk,M ;θ : Y1
k,M → YM , (4.6.5)

that act as

Lk,M ;θΦ(ξ) = c0[Dk,MΦ](ξ)−∆0V (ξ)−DUG
(
U0(ξ + θ); r

)
Φ(ξ), (4.6.6)

where ξ ∈ p−1Z. Naturally, these operators satisfy the properties described in Propo-
sition 4.5.1 provided all occurrences of Φ+

0 and Φ−0 are replaced by Φ+
θ and Φ−θ respec-

tively. In particular, we write

γ∗k,M ;θ : YM → R,

V∗k,M ;θ : YM → Y1
k,M

(4.6.7)

for the maps appearing in that result, as well as M∗;θ and Cθ for the corresponding
constants. Since the nonlinearity G(·; r) and the travelling wave U0 are continuous, it
is clear that the map

θ 7→ Lk,M ;θ ∈ L(Y1
k,M ,YM ) (4.6.8)
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is continuous. The representations [111, Eq. (3.149)] and [111, Eq. (3.150)], therefore,
imply that the maps

θ 7→ γ∗k,M ;θ ∈ L(YM ,R)

θ 7→ V∗k,M ;θ ∈ L(YM ,Y1
k,M )

(4.6.9)

are continuous as well. As such, the constants M∗;θ and Cθ can be chosen to depend
continuously on θ. Our goal is to find a lower bound for these constants. For θ ∈ R
we write Sθ for the shift operator f 7→ f(· + θ). For any M ∈ Mq we observe that
S1 and S−1 map Y1

k,M and YM into themselves and that these maps are isometric
isomorphisms. Moreover, we observe that for each θ ∈ R we have the identity

Lk,M ;θ = S1Lk,M ;θ−1S−1. (4.6.10)

As such, we can restrict ourselves to the values of M∗;θ and Cθ for θ ∈ [0, 1]. Since
[0, 1] is compact and M∗;θ and Cθ depend continuously on θ, we can pick an uniform
quantities Cunif > 0 and Munif in such a way that the bounds

|γ∗k,M ;θf |+ ‖V∗k,M ;θf‖Y1
k,M

≤ Cunif‖f‖YM (4.6.11)

and ∣∣γ∗k,M ;θf − 〈πYMΦ−0 , πYM f〉YM
∣∣ ≤ CunifM

−1‖f‖L2(R;Rd) (4.6.12)

hold for all sufficiently small η > 0, all M ∈Mq with M ≥Munif , all f ∈ BC1
−η(R;Rd)

and all θ ∈ R.

4.6.1 Existence of solutions

Substituting the Ansatz (4.6.2) into (4.6.1), we obtain

c[Dk,MΦ](ξ) + c[Dk,MUθ](ξ) = ∆0Uθ(ξ) + ∆0Φ(ξ) + G
(
Uθ(ξ) + Φ(ξ); r

)
.

(4.6.13)
The proof of Theorem 4.2.1 proceeds in two main steps. In particular, we first show the
existence of wave solutions to (4.6.1) before we turn to the uniqueness. The existence
results are summarized in the following proposition.

Proposition 4.6.1. Assume that (HS1) and (HS2) are satisfied and pick r in such a
way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers 1 ≤ k ≤ 6
and q ≥ 1. Then there exist constants M∗ � 1 and δr > 0 so that for any M = p

q ∈Mq

with M ≥M∗, there exist continuous functions

cM : R× [r − δr, r + δr] → R

UM : R× [r − δr, r + δr] → `∞(p−1Z,Rd),
(4.6.14)

that satisfy properties (i)-(iii) of Theorem 4.2.1.

For any V ∈ Rd and (ξ, θ, r) ∈ R× R× (0, 1) we consider the nonlinear expression

N0(V ; ξ, θ, r) = G
(
Uθ(ξ) + V ; r

)
− G

(
Uθ(ξ); r

)
−DUG

(
Uθ(ξ); r

)
V. (4.6.15)



220 CHAPTER 4. THE FULLY DISCRETE FITZHUGH-NAGUMO SYSTEM

Plugging this expression into (4.6.13) we arrive at

c[Dk,MΦ](ξ) + c[Dk,MUθ](ξ) = ∆0Uθ(ξ) + ∆0Φ(ξ) +DUG
(
Uθ(ξ); r

)
Φ(ξ)

+G
(
Uθ(ξ); r

)
+N0(Φ(ξ); ξ, θ, r)

+DUG
(
Uθ(ξ); r

)
Φ(ξ)−DUG

(
Uθ(ξ); r

)
Φ(ξ).

(4.6.16)
Exploiting that Uθ is a wave solution of the semi-discrete equation, i.e. that

c0U
′
θ(ξ) = ∆0Uθ(ξ) + G

(
Uθ(ξ); r

)
, (4.6.17)

we find that the pair (c,Φ) must satisfy the equation

Lk,M ;θΦ = (c0 − c)[Dk,MUθ](ξ) + [RA(c,Φ)](ξ)

+[RB(Φ; θ, r)](ξ) + [RC(θ,M)](ξ).
(4.6.18)

Here we have introduced the quantities

[RA(c,Φ)](ξ) = (c0 − c)[Dk,MΦ](ξ)

[RB(v; θ, r)](ξ) = DUG
(
Uθ(ξ); r

)
Φ(ξ)−DUG

(
Uθ(ξ); r

)
Φ(ξ)

+G
(
Uθ(ξ); r

)
− G

(
Uθ(ξ); r

)
+N0(Φ(ξ); ξ, θ, r)

= G
(
Uθ(ξ) + Φ(ξ); r

)
− G

(
Uθ(ξ) + Φ(ξ); r

)
+N0(Φ(ξ); ξ, θ, r),

(4.6.19)
together with

[RC(θ,M)](ξ) = −c0[Dk,MUθ](ξ) + ∆0Uθ(ξ) + G
(
Uθ(ξ); r

)
= c0

[
U
′
θ −Dk,MUθ

]
(ξ).

(4.6.20)

Note that the term RB incorporates the effects caused by varying the parameters in our
equation, while the term RC describes the effect of moving from the regular derivative
to the discrete derivative.

Note that in our current notation the normalization condition (4.2.36) reduces to

〈πYMΦ−0 (·+ θ), U − πYMU0(·+ θ)〉YM = 0. (4.6.21)

Proposition 4.5.1 and our considerations above show that solutions (c,Φ) to (4.6.18)
must satisfy the fixed point problem

c0 − c = γ∗k,M ;θ

[
RA(c,Φ) +RB(Φ; θ, r) +RC(θ,M)

]
Φ = V∗k,M ;θ

[
RA(c,Φ) +RB(v; θ, r) +RC(θ,M)

]
.

(4.6.22)
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Lemma 4.6.2 ([111, Lem. 4.1]). Assume that (HS1) and (HS2) are satisfied and pick
r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers
1 ≤ k ≤ 6 and q ≥ 1. There exists a constant C > 1 so that for all M = p

q ∈ Mq and

Φ ∈ Y1
k,M we have the bound

‖Φ‖∞ := sup
ξ∈p−1Z

|Φ(ξ)| ≤ C‖Φ‖Y1
k,M

. (4.6.23)

Lemma 4.6.3 (cf. [111, Lem. 4.2]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair
of integers 1 ≤ k ≤ 6 and q ≥ 1. There exists a constant C > 1 so that for all
M = p

q ∈ Mq, all (θ, r) ∈ R × (0, 1) and Φ ∈ Y1
k,M with ‖Φ‖Y1

k,M
≤ 1 we have the

bound
‖RB(Φ; θ, r)‖Y1

k,M
≤ C|r − r|+ C‖Φ‖YM ‖Φ‖Y1

k,M
. (4.6.24)

Proof. The restriction on Φ, together with Lemma 4.6.2 yields the bound

‖Φ‖∞ ≤ C1 (4.6.25)

for some C1 > 0. For each ξ ∈ p−1Z we get using a Taylor expansion the uniform
estimate

|N0(Φ(ξ); ξ, θ, r)| = |R1

(
U0(ξ),Φ(ξ)

)
|

≤ C2|Φ(ξ)|2,
(4.6.26)

for some remainder termR1

(
U0(ξ),Φ(ξ)

)
. Note that C2 > 0 can be chosen independent

of ξ,Φ, θ,M and r, see for example [55, Thm. 2.8.3]. This allows us to estimate

‖N0(Φ(·); ·, θ, r)‖2YM = p−1
∑

ξ∈p−1Z
|N0(Φ(ξ); ξ, θ, r)|2

≤ [C2]2p−1
∑

ξ∈p−1Z
|Φ(ξ)|4

≤ [C2]2p−1‖v‖2∞
∑

ξ∈p−1Z
|Φ(ξ)|2

≤ C3‖Φ‖2Y1
k,M
‖Φ‖2YM

(4.6.27)

for some C3 > 0.

Using a Taylor expansion we can write

G
(
Uθ(ξ) + Φ(ξ); r

)
− G

(
Uθ(ξ) + Φ(ξ); r

)
= D2G

(
Uθ(ξ) + Φ(ξ), ζ(ξ)

)
(r − r)

(4.6.28)
where ζ(ξ) is in between r and r.

With Lemma 4.5.10 we pick C4 > 0 and α > 0 in such a way that

|U ′0(ξ)| ≤ C4e
−α|ξ| (4.6.29)

holds for all ξ ∈ R. The limiting value lim
ξ→−∞

U0(ξ) = P− implies that for ξ < 0 we can

write

U0(ξ)− P− =
∫ ξ
−∞ U

′
0(ξ′)dξ′. (4.6.30)
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This allows us to compute

|U0(ξ)− P−| ≤
∫ ξ
−∞ C4e

αξ′dξ′

= 1
αC4e

αξ

= 1
αC4e

−α|ξ|

(4.6.31)

for ξ < 0. The limiting value lim
ξ→∞

U0(ξ) = P+ implies that for ξ ≥ 0 we can write

U0(ξ)− P+ =
∫∞
ξ
U
′
0(ξ′)dξ′, (4.6.32)

which allows us to do the analogous computation to obtain

|U0(ξ)− P+| ≤ 1
αC4e

−α|ξ| (4.6.33)

for ξ ≥ 0.

Note that D2G(P±, ρ) = 0 for all 0 < ρ < 1 and that D1D2G(V, ρ) is bounded for
|V | ≤ ‖U0‖∞ + C1 and 0 < ρ < 1. Therefore, we can pick a constant C5 > 0 in such a
way that

|D2G(V, ρ)| ≤ C5min{|V − P−|, |V − P+|}, (4.6.34)

for |V | ≤ ‖U0‖∞ + C1 and 0 < ρ < 1. As such, we can estimate

d := ‖D2G
(
Uθ(ξ) + Φ(ξ), ζ(ξ)

)
‖2YM

≤ p−1
∑

ξ∈p−1Z
C5min

{
|Uθ(ξ) + Φ(ξ)− P−|2, |Uθ(ξ) + Φ(ξ)− P+|2

}
≤ 2C5p

−1
∑

ξ∈p−1Z

[
min

{
|Uθ(ξ)− P−|2, |Uθ(ξ)− P+|2

}
+ |Φ(ξ)|2

]
≤ 2C5

[
‖Φ‖YM + p−1

∑
ξ∈p−1Z

1
αC4e

−α|ξ|
]

≤ C6

(4.6.35)

for some constant C6 > 0. The desired bound on RB now follows from combining
(4.6.27) with the representation (4.6.28) and the bound (4.6.35).

Lemma 4.6.4 ([111, Lem. 4.2]). Assume that (HS1) and (HS2) are satisfied and pick
r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers
1 ≤ k ≤ 6 and q ≥ 1. There exists a constant C > 1 so that for all M = p

q ∈ Mq, all

(c, θ) ∈ R× R and Φ ∈ Y1
k,M with ‖Φ‖Y1

k,M
≤ 1 we have the bounds

‖RA(c,Φ)‖Y1
k,M

≤ |c− c0|‖Dk,MΦ‖YM ,

‖RC(θ,M)‖Y1
k,M

≤ CM−1.
(4.6.36)

Lemma 4.6.5 (cf. [111, Lem. 4.3]). Assume that (HS1) and (HS2) are satisfied and
pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
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integers 1 ≤ k ≤ 6 and q ≥ 1. Then there exists a constant C > 1 such that for any
pair of constants 0 < δc < 1 and 0 < δφ < 1 and any multiplet

(Φ1,Φ2, c1, c2, r, θ) ∈ Y1
k,M × Y1

k,M × R× R× (0, 1)× R (4.6.37)

with
‖Φ1‖Y1

k,M
+ ‖Φ2‖Y1

k,M
≤ δφ

|c1 − c0|+ |c0 − c2| ≤ δc,
(4.6.38)

we have the bounds

‖RA(c1,Φ1)−RA(c2,Φ2)‖Y1
k,M

≤ δφ|c1 − c2|+ δc‖Dk,M [Φ1 − Φ2]‖YM ,

‖RB(Φ1; θ, r)−RB(Φ2; θ, r)‖Y1
k,M

≤ C|r − r|‖Φ1 − Φ2‖YM + Cδφ‖Φ1 − Φ2‖YM .
(4.6.39)

Proof. The estimate for RA is immediate. Lemma 4.6.2 implies that ‖Φ1‖∞ +
‖Φ2‖∞ ≤ C1δφ for some C1 > 0. Using two Taylor approximations, we write

dN := |N0(Φ1(ξ); ξ, θ, r)−N0(Φ2(ξ); ξ, θ, r)|

=
∣∣∣G(Uθ(ξ) + Φ2(ξ) +

(
Φ1(ξ)− Φ2(ξ)

)
; r
)
− G

(
Uθ(ξ) + Φ2(ξ); r

)
−DUG

(
Uθ(ξ) + Φ2(ξ); r

)(
Φ1(ξ)− Φ2(ξ)

)
+
[
DUG

(
Uθ(ξ) + Φ2(ξ); r

)
−DUG

(
Uθ(ξ); r

)](
Φ1(ξ)− Φ2(ξ)

)∣∣∣
=

∣∣∣R1

(
Uθ(ξ) + Φ2(ξ),Φ1(ξ)− Φ2(ξ)

)(
Φ1(ξ)− Φ2(ξ)

)
+R2

(
Uθ(ξ),Φ2(ξ)

)(
Φ1(ξ)− Φ2(ξ)

)∣∣∣,
(4.6.40)

for some remainder terms R1

(
Uθ(ξ) + Φ2(ξ),Φ1(ξ) − Φ2(ξ)

)
and R2

(
Uθ(ξ),Φ2(ξ)

)
.

Using [55, Thm. 2.8.3] we can pick a constant C1 > 0 in such a way that∣∣∣R1

(
Uθ(ξ) + Φ2(ξ),Φ1(ξ)− Φ2(ξ)

)∣∣∣ ≤ C1

∣∣Φ1(ξ)− Φ2(ξ)
∣∣ ≤ 2C1δφ,∣∣∣R2

(
Uθ(ξ),Φ2(ξ)

)∣∣∣ ≤ C1|Φ2(ξ)| ≤ C1δφ.
(4.6.41)

We, therefore, obtain the pointwise inequality

dN ≤ 3C1δφ
∣∣Φ1(ξ)− Φ2(ξ)

∣∣, (4.6.42)

which allows us to compute

‖N0(Φ1(ξ); ξ, θ, r)−N0(Φ2(ξ); ξ, θ, r)‖2YM ≤ p−1
∑

ξ∈p−1Z
[C2]2δ2

φ|Φ1(ξ)− Φ2(ξ)|2

= [3C1]2δ2
φ‖Φ1 − Φ2‖2YM .

(4.6.43)
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Similarly to (4.6.28), we can now write

dg := G
(
Uθ(ξ) + Φ1(ξ); r

)
− G

(
Uθ(ξ) + Φ1(ξ); r

)
−G
(
Uθ(ξ) + Φ2(ξ); r

)
+ G

(
Uθ(ξ) + Φ2(ξ); r

)
= D2G

(
Uθ(ξ) + Φ2(ξ), ζ1(ξ)

)
−D2G

(
Uθ(ξ) + Φ1(ξ), ζ2(ξ)

)
,

(4.6.44)

where ζ1(ξ) and ζ2(ξ) are both in between r and r. Similarly to (4.6.34) we can pick a
constant C2 > 0 in such a way that

|D2G(U1, ρ)−D2G(U2, ρ)| ≤ C2|U1 − U2|, (4.6.45)

for |U1|, |U2| ≤ ‖U0‖∞ + C1δφ and 0 < ρ < 1. Thus we can immediately estimate

‖dg‖YM ≤ C2‖Φ1 − Φ2‖YM , (4.6.46)

which yields the desired bound for RB .

Lemma 4.6.6 (cf. [111, Lem. 4.4]). Assume that (HS1) and (HS2) are satisfied and
pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
integers 1 ≤ k ≤ 6 and q ≥ 1. For all M = p

q ∈Mq, the function

Ñ0 : Y1
k,M × R× (0, 1) → YM (4.6.47)

given by
[Ñ0(Φ; θ, r)](ξ) = N0(Φ(ξ); ξ, θ, r), ξ ∈ p−1Z (4.6.48)

is continuous.

Proof. Fix (Φ, θ, r) ∈ Y1
k,M × R × (0, 1) and let ε > 0 be a small constant. Pick

any triplet (Ψ, θ̃, r̃) ∈ Y1
k,M × R × (0, 1) with ‖Φ − Ψ‖Y1

k,M
< 1. Lemma 4.6.2 yields

that ‖Φ − Ψ‖∞ ≤ C1 for some C1 > 0. Since G is C2-smooth, we can pick a constant
C2 > 0 in such a way that for any V,W ∈ Rd with |V |, |W | ≤ ‖U0‖∞ + 2C1 and any
0 < r1, r2 < 1 we have the bound∣∣∣G(V ; r1)− G(W ; r1)

∣∣∣ ≤ C2

∣∣∣V −W ∣∣∣,∣∣∣DG(V ; r1)−DG(W, r2)
∣∣∣ ≤ C2

∣∣∣(V, r1)− (W, r2)
∣∣∣. (4.6.49)

Moreover, using two Taylor approximations we write

dG1 := G
(
Uθ(ξ) + Φ(ξ); r

)
− G

(
U θ̃(ξ) + Ψ(ξ); r̃

)
= G

(
Uθ(ξ) + Φ(ξ); r

)
− G

(
U θ̃(ξ) + Ψ(ξ); r

)
−D2G

(
U θ̃(ξ) + Ψ(ξ); ζ2(Ψ(ξ), ξ)

)
(r − r̃),

dG2 := G
(
Uθ(ξ); r

)
− G

(
U θ̃(ξ); r̃

)
= G

(
Uθ(ξ); r

)
− G

(
U θ̃(ξ); r

)
−D2G

(
U θ̃(ξ)(r − r̃); ζ1(ξ)

)
(r − r̃),

(4.6.50)
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where ζ1(ξ) and ζ2(Ψ(ξ), ξ) are both in between r and r̃. Similarly to (4.6.34) we can
pick a constant C3 > 0 in such a way that

|D2G(V, ρ)| ≤ C3min{|V − P−|, |V − P+|} (4.6.51)

for any 0 < ρ < 1 and |V | ≤ ‖U0‖∞ + 2C1. This allows us to obtain the pointise
estimate

dÑ :=
∣∣∣[Ñ0(Φ; θ, r)](ξ)− [Ñ0(Ψ; θ̃, r̃)](ξ)

∣∣∣
≤ dG1 + dG2 + |Φ(ξ)|

∣∣∣DG(Uθ(ξ); r)−DG(U θ̃(ξ); r̃)∣∣∣
+
∣∣Φ(ξ)−Ψ(ξ)

∣∣∣∣∣DG(U θ̃(ξ); r̃)∣∣∣
≤ C2

∣∣∣Uθ(ξ) + Φ(ξ)− U θ̃(ξ)−Ψ(ξ)
∣∣∣

+C3(r − r̃)min
{
|U θ̃(ξ) + Ψ(ξ)− P−|, |U θ̃ + Ψ(ξ)− P+|

}
+C2

∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣+ C3(r − r̃)min
{
|U θ̃(ξ)− P−|, |U θ̃ − P+|

}
+|Φ(ξ)|

∣∣∣(Uθ(ξ), r)− (U θ̃(ξ), r̃)
∣∣∣+
∣∣Φ(ξ)−Ψ(ξ)

∣∣
≤ 2C2

∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣+ (1 + C2)
∣∣Φ(ξ)−Ψ(ξ)

∣∣
+
(
1 + |Ψ(ξ)|

)
C3(r − r̃)min

{
|U θ̃(ξ)− P−|, |U θ̃ − P+|

}
+|Φ(ξ)|

[∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣+
∣∣r − r̃∣∣].

(4.6.52)
Since Uθ decays exponentially to its limits, we can pick 0 < δ < 1 in such a way that
for each θ̃ ∈ R with |θ − θ̃| < δ and each ξ −1Z we have the bound

|Uθ(ξ)− U θ̃(ξ)| ≤ min{ pε
30C22|n|

, pε
30(‖Φ‖YM+1)2|n|

}. (4.6.53)

This yields the estimates

2C2p
−1
∑
ξ∈p−1Z

∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣ ≤ ε
5 ,

p−1
∑
ξ∈p−1Z |Φ(ξ)|

∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣ ≤ ε
5 .

(4.6.54)

Moreover, similarly to (4.6.33) we pick C4 > 0 in such a way that the pointwise estimate

min
{
|U θ̃(ξ)− P−|, |U θ̃(ξ)− P+|

}
≤ 1

αC4e
−α|ξ| (4.6.55)

holds for any ξ ∈ R and any θ̃ ∈ R with |θ̃ − θ| < δ. As such we can pick C5 > 0 in
such a way that the bound

‖min
{
|U θ̃ − P−|, |U θ̃ − P+|

}
‖YM ≤ C5 (4.6.56)

holds for any θ̃ ∈ R with |θ̃ − θ| < δ.
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Then we obtain for each triplet (Ψ, θ̃, r̃) ∈ Y1
k,M × R × (0, 1) with ‖Φ − Ψ‖Y1

k,M
<

min{1, ε
5(1+C2)}, |θ − θ̃| < δ and |r − r̃| < min

{
ε

5(1+C1)C3C5
, ε

5(‖Φ‖YM+1)

}
that

‖dÑ ‖YM = ‖[Ñ0(Φ; θ, r)]− [Ñ0(Ψ; θ̃, r̃)]‖YM
≤ ε

5 + (1 + C2) ε
5(1+C2) + (1 + C1)C3

ε
5(1+C1)C3C5

C5

+ ε
5 + ‖Φ‖YM ε

5(‖Φ‖YM+1)

< ε.

(4.6.57)

Therefore, the function Ñ0 is continuous in the point (Φ, θ, r), which yields the desired
result.

Proof of Proposition 4.6.1. Recall the constants Cunif > 1 and Munif ∈Mq, together
with the bounds (4.6.11) and (4.6.12). We let C > 1 be the constant from Lemmas
4.6.3-4.6.5. For any 0 < δφ < 1 and 0 < δc < 1 we introduce the space

Zδc,δφ = {(c,Φ) ∈ R× Y1
k,M : |c− c0| ≤ 1

2δc and ‖Φ‖Y1
k,M
≤ 1

2δφ}, (4.6.58)

together with the map

Tδc,δφ : Zδc,δφ → R× Y1
k,M ,

(c,Φ) 7→

 γ∗k,M ;θ

[
RA(c0 − c,Φ) +RB(Φ; θ, r) +RC(θ,M)

]
V∗k,M ;θ

[
RA(c,Φ) +RB(Φ; θ, r) +RC(θ,M)

]
 .

(4.6.59)
Upon setting

δφ = δc = min{ 1
64Cunif

, 1
32CunifC

}, (4.6.60)

fixing M∗ ∈Mq with M∗ ≥Munif in such a way that the bound

M−1 ≤ 1
16CunifC

(4.6.61)

holds for all M ∈Mq with M ≥M∗, together with the constant

δr = 1
32CunifC

δφ, (4.6.62)

we use Lemmas 4.6.3-4.6.4 to compute

‖Tδc,δφ(c,Φ)‖R×Y1
k,M

≤ Cunif

[
|c− c0|‖Dk,MΦ‖YM

+C|r − r|+ C‖Φ‖YM ‖Φ‖Y1
k,M

+ CM−1
]

≤ Cunif

[
|c− c0|‖Φ‖Y1

k,M
+ C|r − r|+ C‖Φ‖2Y1

k,M
+ CM−1

]
≤ Cunif

[
1

16Cunif
δφ + C 1

16CunifC
δφ + C 1

16CunifC
δφ + C 1

16CunifC

]
= 1

4δφ
(4.6.63)



4.6. PROOF OF MAIN RESULT 227

for any (c,Φ) ∈ Zδc,δφ , any θ ∈ R, any r ∈ [r − δr, r + δr] and any M ∈ Mq with
M ≥ M∗. As such, we have Tδc,δφ(c,Φ) ∈ Zδc,δφ . Moreover, using Lemma 4.6.5 we
obtain the estimate

dT := ‖Tδc,δφ(c1,Φ1)− Tδc,δφ(c2,Φ2)‖R×Y1
k,M

≤ 2Cunif

[
δφ|c1 − c2|+ 2δc‖Φ1 − Φ2‖Y1

k,M

+C|r − r|‖Φ1 − Φ2‖Y1
k,M

+ Cδφ‖Φ1 − Φ2‖YM
]

≤ 2Cunif

[
1

32Cunif
|c1 − c2|+ 2 1

64Cunif
‖Φ1 − Φ2‖Y1

k,M

+C 1
32CunifC

‖Φ1 − Φ2‖Y1
k,M

+ C 1
32CunifC

‖Φ1 − Φ2‖Y1
k,M

]
= 1

16 |c1 − c2|+
3
16‖Φ1 − Φ2‖Y1

k,M

≤ 1
2‖(c1,Φ1)− (c2,Φ2)‖R×Y1

k,M
,

(4.6.64)

for any (c1,Φ1), (c2,Φ2) ∈ Zδc,δφ , any θ ∈ R, any r ∈ [r − δr, r + δr] and any M ∈ Mq

with M ≥M∗, which shows that Tδc,δφ is a contraction. The fixed point theorem now
implies that the map Tδc,δφ , and therefore the fixed point problem (4.6.22), has a unique

fixed point
(
c∗M (θ, r),Φ∗M (θ, r)

)
. By construction the pair

(
cM (θ, r), UM (θ, r)

)
=(

c∗M (θ, r), Uθ + Φ∗M (θ, r)
)

satisfies (4.2.34) with the boundary conditions (4.2.35).

The solution to this fixed point problem depends continuously on the parameters
(θ, r) on account of Lemma 4.6.6 and our observations concerning the continuity of the
functions θ 7→ γ∗k,M ;θ and θ 7→ V∗k,M ;θ. In addition, the normalisation (4.2.36) follows
from the normalisation of the function V∗k,M ;θ in Proposition 4.5.1. Finally, it is clear

that the pair
(
c∗M (θ + p−1, r),Φ∗M (θ + p−1, r)(· − p−1)

)
is also a solution to the fixed

point problem (4.6.22), which by the uniqueness of solutions yields the shift-periodicity
(4.2.37).

4.6.2 Local uniqueness of solutions

We now turn to the uniqueness claim in the statement of the main theorem. The main
issue is to obtain the decomposition (4.6.66) below. Indeed, this implies that (4.2.39)
ensures that (c, U, θ) is captured by the fixed point argument associated to the phase
ϑ.

Proposition 4.6.7. Assume that (HS1) and (HS2) are satisfied and pick r in such a
way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers q ≥ 1 and
1 ≤ k ≤ 6. Then there exists a small constant δ > 0 so that for each M = p

q ∈ Mq

with M ≥M∗ and any (c, U, θ) ∈ R× `∞(p−1Z;R)× R that satisfies

‖U − Uθ‖Y1
k,M

< δ, (4.6.65)

the function U can be decomposed as

U = πYMU θ̃ + Φ (4.6.66)
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for some Φ ∈ Y1
k,M with 〈πYMΦ−

θ̃
,Φ〉YM = 0 and some θ̃ close to θ.

Using a Taylor approximation we can pick for each θ̃ ∈ R a sequence {ζθ̃(p−1n)}n∈Z,

with ζθ̃(p
−1n) in between p−1n+ θ and p−1n+ θ̃ for each n ∈ Z in such a way that

U θ̃(ξ)− Uθ = (θ̃ − θ)U ′θ(ξ) + (θ̃ − θ)2U
′′
θ

(
ζθ̃(ξ)

)
(4.6.67)

holds for all ξ ∈ p−1Z. For θ̃ ∈ R we denote θ̃0 for the unique element of [0, 1) which
has θ̃ − θ̃0 ∈ Z and pick n ∈ Z in such a way that θ0 = θ − n. For any θ̃ ∈ R with
|θ̃ − θ| < 1 we can compute

〈πYMU
′
θ, πYMΦ−

θ̃
〉YM = 〈πYMU

′
θ0 , πYMΦ−

θ̃−nh〉YM . (4.6.68)

Lemma 4.6.8. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers q ≥ 1 and
1 ≤ k ≤ 6. Then there exists a constant κ > 0 in so that for any M ∈ Mq with

M ≥M∗ and any pair (θ, θ̃) ∈ R× R with |θ̃ − θ| < 1 we have the lower bound

〈πYMU
′
θ, πYMΦ−

θ̃
〉YM > 1

κ . (4.6.69)

Proof. On account of Lemma 4.5.10 we can pick constants C1 > 0 and α > 0 in
such a way that the bounds

|U ′0| ≤ C1e
−α|ξ|,

|U ′′0 | ≤ C1e
−α|ξ|,

|Φ−0 (ξ)| ≤ C1e
−α|ξ|,

|(Φ−0 )′(ξ)| ≤ C1e
−α|ξ|

(4.6.70)

hold for all ξ ∈ R. For any θ̃ ∈ R with |θ̃ − θ| < 1 we hence obtain

|Φ−
θ̃−n(ξ)| ≤ C1e

−α|ξ+θ̃−n| ≤ C1e
α|θ̃−n|e−α|ξ| ≤ C1e

2αe−α|ξ|, (4.6.71)

which yields
‖Φ−

θ̃−n‖BC−α(R;R) ≤ C1e
2α. (4.6.72)

A similar computation provides the bounds

‖U ′θ0‖BC−α(R;R) ≤ C1e
2α,

‖U ′′θ0‖BC−α(R;R) ≤ C1e
2α,

‖(Φ−
θ̃−n)′‖BC−α(R;R) ≤ C1e

2α.

(4.6.73)

On account of Lemma 4.A.2 and the fact that 〈U ′0,Φ−0 〉L2(R;Rd) > 0, we can assume
without loss of generality that M∗ is large enough for the bound

〈πYMU
′
θ, πYMΦ−

θ̃
〉YM > 1

κ
(4.6.74)
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to hold for all M ∈ Mq with M ≥ M∗, all θ ∈ R, all θ̃ ∈ R with |θ − θ̃| < 1 and for
some constant κ > 0, as desired.

Fix a small constant 0 < δθ < 1. In order to find a θ̃ close to θ in such a way that

〈Φ− πYMU θ̃, πYMΦ−
θ̃
〉YM = 0, (4.6.75)

we aim to solve the fixed point problem

θ̃ − θ = Fθ,δθ (θ̃)

:= −〈πYMU
′
θ, πYMΦ−

θ̃
〉−1
YM

[
〈Φ− πYMUθ, πYMΦ−

θ̃
〉YM

+(θ − θ̃)2〈πYMU
′′
θ

(
ζθ̃(·)

)
, πYMΦ−

θ̃
〉YM

] (4.6.76)

on the space [θ − δθ, θ + δθ].

Lemma 4.6.9. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Consider the setting of Proposition
4.6.7. Then there exist constants C2 > 0 and C3 > 0 so that the bound

|Fθ,δθ (θ̃)| ≤ κ
[
δC3 + δ2

θC2

]
(4.6.77)

holds for all θ̃ ∈ [θ − δθ, θ + δθ].

Proof. For θ̃ ∈ R and M ∈Mq with M ≥M∗ we can estimate

|〈πYMU
′′
θ

(
ζθ̃(·)

)
, πYMΦ−

θ̃
〉YM | ≤ p−1

∑
ξ∈p−1Z

|U ′′θ
(
ζθ̃(ξ)

)
||Φ−

θ̃
(ξ)|

≤ ‖U ′′θ‖L∞(R;R)p
−1

∑
ξ∈p−1Z

|Φ−
θ̃

(ξ)|

= ‖U ′′0‖L∞(R;R)p
−1

∑
ξ∈p−1Z

|Φ−
θ̃0

(ξ)|

≤ ‖U ′′0‖L∞(R;R)p
−1

∑
ξ∈p−1Z

C1e
−α|ξ+θ̃0|

≤ ‖U ′′0‖L∞(R;R)p
−1

∑
ξ∈p−1Z

C1e
αθ̃0e−α|ξ|

≤ C1e
αh‖U ′′0‖L∞(R;R)p

−1
∑

ξ∈p−1Z
e−α|ξ|

≤ C2

(4.6.78)

for some constant C2 > 0, since p−1
∑

ξ∈p−1Z
e−α|ξ| is bounded as p → ∞. A similar

calculation yields the existence of a constant C3 > 0 for which the bounds

‖πYMΦ−
θ̃
‖YM ≤ C3,

‖πYMU
′
θ̃‖YM ≤ C3

(4.6.79)
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hold for all θ̃ ∈ R and M ∈ Mq with M ≥ M∗. The Cauchy-Schwarz inequality now
yields the bound

|Fθ,δθ (θ̃)| ≤ κ
[
δC3 + (θ − θ̃)2C2

]
≤ κ

[
δC3 + δ2

θC2

]
(4.6.80)

for all θ̃ ∈ [θ − δθ, θ + δθ].

Lemma 4.6.10. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Consider the setting of Proposition
4.6.7. Then there exist constants C4 > 0 and C7 > 0 so that the bound

|Fθ,δθ (θ̃1)− Fθ,δθ (θ̃1)| ≤ κ|θ̃1 − θ̃2|
[
δC4 + δθC7

]
+ κ2C3C4|θ̃1 − θ̃2|

[
δC3 + δ2

θC2

]
(4.6.81)

holds for all θ̃1, θ̃2 ∈ [θ − δθ, θ + δθ].

Proof. Fix θ̃1, θ̃2 ∈ [θ − δθ, θ + δθ] and write

θ̃1 = (θ̃1)0 + n (4.6.82)

with (θ̃1)0 ∈ [0, 1) and n ∈ Z. Using a Taylor approximation we pick a sequence
{ζ̃(ξ) : ξ ∈ p−1Z} in such a way that ζ̃(ξ) is in between ξ + (θ̃1)0 and ξ + θ̃2 − n and
we have the identity

(Φ−
(θ̃1)0

− Φ−
θ̃2−n

)(ξ) =
(
(θ̃1)0 − (θ̃2 − n)

)
(Φ−

θ̃2−n
)′
(
ζ̃(ξ)

)
= (θ̃1 − θ̃2)(Φ−

θ̃2−n
)′
(
ζ̃(ξ)

)
.

(4.6.83)

The Cauchy-Schwarz inequality now yields the estimate

d2
1 := |〈Φ− πYMUθ, πYM (Φ−

θ̃1
− Φ−

θ̃2
)〉YM |2

≤ δ2
[
p−1

∑
ξ∈p−1Z

|(Φ−
θ̃1
− Φ−

θ̃2
)(ξ)|2

]
= δ2

[
p−1

∑
ξ∈p−1Z

|(Φ−
(θ̃1)0

− Φ−
θ̃2−n

)(ξ)|2
]

= δ2
[
p−1

∑
ξ∈p−1Z

|(θ̃1 − θ̃2)(Φ−
θ̃2−n

)′
(
ζ̃(ξ)

)
|2
]

≤ δ2|θ̃1 − θ̃2|2
[
p−1

∑
ξ∈p−1Z

C1e
−2α|ζ̃(ξ)|

]
≤ C1δ

2|θ̃1 − θ̃2|2
[
p−1

∑
ξ∈p−1Z

e−2α|ξ|e2α(1+δθ)
]

≤ (C4)2δ2|θ̃1 − θ̃2|2

(4.6.84)

for some constant C4 > 0, since δθ < 1 and p−1
∑

ξ∈p−1Z
e−2α|ξ| is bounded as p → ∞.
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Moreover, we obtain the estimate

d2 :=
∣∣∣(θ − θ̃1)2〈πYMU

′′
θ̃1

(
ζθ̃1(·)

)
, πYMΦ−

θ̃1
〉YM

−(θ − θ̃2)2〈πYMU
′′
θ

(
ζθ̃2(·)

)
, πYMΦ−

θ̃2
〉YM

∣∣∣
≤ (θ − θ̃1)2

[∣∣∣〈πYMU ′′θ̃1(ζθ̃1(·)
)
− πYMU

′′
θ̃2

(
ζθ̃2(·)

)
, πYMΦ−

θ̃1
〉YM

∣∣∣
+
∣∣∣〈πYMU ′′θ̃1(ζθ̃1(·)

)
, πYMΦ−

θ̃1
− πYMΦ−

θ̃2
〉YM

∣∣∣]
+
[
|θ̃1 − θ|+ |θ̃2 − θ|

]
|θ̃1 − θ̃2|

∣∣∣〈πYMU ′′θ(ζθ̃2(·)
)
, πYMΦ−

θ̃2
〉YM

∣∣∣
≤ δ2

θ

[
d3 + d4

]
+ 2δθ|θ̃1 − θ̃2|C2,

(4.6.85)

where we introduced

d3 =
∣∣∣〈πYMU ′′θ(ζθ̃1(·)

)
− πYMU

′′
θ

(
ζθ̃2(·)

)
, πYMΦ−

θ̃1
〉YM

∣∣∣,
d4 =

∣∣∣〈πYMU ′′θ(ζθ̃1(·)
)
, πYMΦ−

θ̃1
− πYMΦ−

θ̃2
〉YM

∣∣∣. (4.6.86)

Again using a Taylor approximation we pick a sequence {ζ(ξ) : ξ ∈ p−1Z} in such
a way that ζ(ξ) is in between ξ + (θ̃1)0 and ξ + θ̃2 − n and we have the identity

(U (θ̃1)0
− U θ̃2−n)(ξ) = (θ̃1 − θ̃2)(U

−
θ̃2−n)′

(
ζ(ξ)

)
. (4.6.87)

The definition (4.6.67) of ζθ̃1 and ζθ̃2 and the Cauchy-Schwarz inequality allow us to
estimate

d2
3 =

∣∣∣〈πYM (U θ̃1 − U θ̃2 + (θ̃1 − θ̃2)U
′
θ), πYMΦ−

θ̃1
〉YM

∣∣∣2
≤ |θ̃1 − θ̃2|2(C3)4 + (C3)2

[
p−1

∑
ξ∈p−1Z

|θ̃1 − θ̃2|2|U
′
θ̃2−n

(
ζ(ξ)

)
|2
]

≤ (C5)2|θ̃1 − θ̃2|2

(4.6.88)

for some constant C5 > 0 using a calculation similar to (4.6.84). Moreover, upon
combining the ideas behind (4.6.78) and (4.6.84) we arrive at

d4 ≤ C6|θ̃1 − θ̃2| (4.6.89)

for some constant C6 > 0. This yields the bound

d2 ≤ δ2
θ

[
d3 + d4

]
+ 2δθ|θ̃1 − θ̃2|C2

≤ δ2
θ |θ̃1 − θ̃2|

[
C5 + C6

]
+ 2δθ|θ̃1 − θ̃2|C2

≤ C7δθ|θ̃1 − θ̃2|

(4.6.90)

for some constant C7 > 0. The Cauchy-Schwarz inequality combined with the estimate
(4.6.84) yields

d5 := |〈πYMU
′
θ, πYMΦ−

θ̃1
− πYMΦ−

θ̃2
〉YM |

≤ C3C4|θ̃1 − θ̃2|.
(4.6.91)
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We therefore can estimate

d6 := |〈πYMU
′
θ, πYMΦ−

θ̃1
〉−1
YM − 〈πYMU

′
θ, πYMΦ−

θ̃2
〉−1
YM |

=
∣∣∣ d5

〈πYMU
′
θ,πYMΦ−

θ̃1
〉YM 〈πYMU

′
θ,πYMΦ−

θ̃2
〉YM

∣∣∣
≤ κ2C3C4|θ̃1 − θ̃2|.

(4.6.92)

Combining all these estimates yields

|Fθ,δθ (θ̃1)− Fθ,δθ (θ̃1)| ≤ κ
[
d1 + d2

]
+ d6

[
δC3 + δ2

θC2

]
≤ κ|θ̃1 − θ̃2|

[
δC4 + δθC7

]
+ κ2C3C4|θ̃1 − θ̃2|

[
δC3 + δ2

θC2

]
.

(4.6.93)

Proof of Proposition 4.6.7. Upon fixing

δθ = min{1, 1
2κC2

, 1
8κC7

, 1
8κ2C2C3C4

},

δ = min{ δθ
2κC3

, 1
8κC4

, 1
8κ2(C3)2C4

},
(4.6.94)

we obtain, using Lemma 4.6.9 and Lemma 4.6.10, for any θ̃, θ̃1, θ̃2 ∈ [θ− δθ, θ+ δθ] the
estimate

|Fθ,δθ (θ̃)| ≤ κ
[
δC3 + δ2

θC2

]
≤ δθ, (4.6.95)

together with

|Fθ,δθ (θ̃1)− Fθ,δθ (θ̃2)| ≤ κ|θ̃1 − θ̃2|
[
δC4 + δθC7

]
+ κ2C3C4|θ̃1 − θ̃2|

[
δC3 + δ2

θC2

]
≤ 1

2 |θ̃1 − θ̃2|.
(4.6.96)

Therefore, the map Fθ,δθ maps [θ−δθ, θ+δθ] into itself and is a contraction, so that the

fixed point problem (4.6.76) has a unique solution θ̃. By construction this θ̃ satisfies
the property that upon defining

Φ = U − U θ̃ ∈ Y1
k,M , (4.6.97)

we have the identity
〈πYMΦ−

θ̃
,Φ〉YM = 0. (4.6.98)

Proof of Theorem 4.2.1. The items (i)-(iii) follow from proposition 4.6.1. Let δ > 0
be the constant from Proposition 4.6.7, fix M = p

q ∈Mq with M ≥M∗ and fix a triplet

(c, U, θ) ∈ R × `∞(p−1Z,R) × R that satisfies (4.2.34) and (4.2.39). With Proposition
4.6.7 we fix a θ̃ ∈ R close to θ in such a way that U can be decomposed as

U = πYMU θ̃ + Φ (4.6.99)
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for some Φ ∈ Y1
k,M with 〈πYMΦ−

θ̃
,Φ〉YM = 0.

Using a Taylor approximation as before, we note that

‖Uθ − U θ̃‖BC1
−α(R;R) ≤ 2|θ − θ̃|C1e

2α. (4.6.100)

On account of Lemma 4.A.1 we pick a constant C1 > 0 in such a way that

‖Φ‖Y1
k,M

≤ ‖U − Uθ‖Y1
k,M

+ ‖Uθ − U θ̃‖Y1
k,M

≤ δ + C1‖Uθ − U θ̃‖BC1
−α(R;R)

≤ δ + C12|θ − θ̃|C1e
2α

≤ δ + C12C1e
2αδθ

:= δ + C2δθ.

(4.6.101)

Recall the constant Cunif from (4.6.11) and we let C > 1 be the constant from Lemmas
4.6.3-4.6.4. Now we decrease δθ > 0, while letting δ > 0 be given by (4.6.94), in such a
way that

δ = δθ
2κC3

,

Cunif

[
δ + C2δθ

]
≤ 1

2 ,

2CunifC
[
δ + C2δθ

]
≤ 1

4δc.

(4.6.102)

In particular, we see that

‖Φ‖Y1
k,M

≤ δ + C2δθ

= δ
[
1 + C22κC3

]
:= C3δ.

(4.6.103)

Inspecting the first line of the fixed point problem (4.6.22), yields that we can write

c0 − c = (c0 − c)γ∗k,M ;θ̃

(
Dk,MΦ

)
+ γ∗

k,M ;θ̃

(
RB(Φ; θ̃, r) +RC(θ̃,M)

)
. (4.6.104)

Since we assumed Cunif‖Φ‖Y1
k,M
≤ 1

2 we can solve this equation for c = c(Φ) as

c0 − c(Φ) =
[
1− γ∗

k,M ;θ̃

(
Dk,MΦ

)]−1

γ∗
k,M ;θ̃

(
RB(Φ; θ̃, r) +RC(θ̃,M)

)
.

(4.6.105)
Finally, our earlier estimates yield

|c0 − c(Φ)| ≤ 2CunifC
[
δr + C3δ +M−1

]
≤ 1

16δc + 1
4δc + 1

8δc

≤ 1
2δc.

(4.6.106)
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Therefore, we see that (c(Φ),Φ) ∈ Zδc,δφ and that Tδc,δφ(c(Φ),Φ) = (c(Φ),Φ). By the

uniqueness of the fixed point of Tδc,δφ , we obtain c(Φ) = c∗M (θ̃, r),Φ = Φ∗M (θ̃, r), which
implies

c = cM (θ̃, r), U = UM (θ̃, r) (4.6.107)

as desired.

4.A Auxiliary results

In this section we collect several useful results that we use throughout this paper. The
first three results concern the sequence spaces YM and Y1

k,M and their associated inner
products (4.3.5)-(4.3.6).

Lemma 4.A.1 ([111, Lem. 3.1]). Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together
with a constant η > 0. Then there exists a constant C ≥ 1 for which the bounds

‖πYM f‖YM ≤ C‖f‖BC−η ,

‖πY1
k,M

g‖Y1
k,M

≤ C‖g‖BC1
−η

(4.A.1)

hold for all M ∈Mq and all functions f ∈ BC−η(R;R) and g ∈ BC1
−η(R;R).

Lemma 4.A.2 ([111, Lem. 3.4]). Fix an integer q ≥ 1. Then there exists C > 1 so
that the bound∣∣〈f, g〉L2(R;Rd) − 〈πYM f, πYM g〉YM

∣∣ ≤ CM−1‖f‖BC1
−η(R;Rd)‖g‖BC1

−η(R;Rd)

(4.A.2)
holds for all M ∈Mq and all functions f, g ∈ BC1

−η(R;Rd).

Lemma 4.A.3 ([111, Lem. 3.5]). Fix an integer q ≥ 1. For any M = p
q ∈ Mq, the

operators JM and J 1
k,M defined in (4.3.19) are isometries between YM and HM and

between Y1
k,M and H1

k,M respectively.

The following results can be seen as the fully discrete generalizations of the well-
known facts

〈u, u′〉 = 0, 〈u′′, u〉 ≤ 0 (4.A.3)

that hold for smooth, localized functions u. When dealing solely with nearest-neighbour
interactions as in [111] the inequality 〈∆MΦ,Φ〉HM ≤ 0 follows immediately from the
Cauchy-Schwarz inequality. However, in our setting, some of the coefficients αk may
not be positive definite, preventing us from taking them out of the inner product. This
motivates the indirect approach that is taken in the proof of Lemma 4.A.5.

Lemma 4.A.4 ([111, Cor. 3.15]). Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. There
exists a constant K > 1 so that for all M ∈Mq and all Φ ∈ H1

k,M we have the bound∣∣∣〈Φ,Dk,MΦ〉HM
∣∣∣ ≤ KM−1‖Dk,MΦ‖2HM . (4.A.4)
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Lemma 4.A.5 (cf. [111, Lem. 3.13]). Assume that (HS1) is satisfied. Fix an integer
q ≥ 1 and pick M ∈Mq. Then the bound

〈∆MΦ,Φ〉HM ≤ 0 (4.A.5)

holds for each Φ ∈ HM .

Proof. Pick Φ ∈ HM and define the stepwise interpolation function Φ̃ ∈ L2(R;Rd)
by setting

Φ̃
(
ξ + ζM−1 + ε

)
= Φ

(
ζ, ξ
)

(4.A.6)

for ξ ∈M−1Z, ζ ∈ q−1Z◦q ∪ {0} and 0 ≤ ε < M−1q−1. Upon recalling that

ϑ = p−nq
q , nM−1 = 1− ϑM−1 (4.A.7)

and observing that

1 = p qpq
−1 =

(
(p− nq) + nq

)
M−1q−1, (4.A.8)

we may compute

Tm0 Φ̃
(
ξ + ζM−1

)
= Φ̃

(
ξ + ζM−1 +m

)
= Φ̃

(
ξ +mnM−1 + (ζ +m(p− nq)q−1)M−1

)
= Φ

(
ζ +m(p− nq)q−1, ξ +mnM−1

)
= Φ

(
ζ +mϑ, ξ +m−mϑM−1

)
= TmMΦ(ζ, ξ)

(4.A.9)

for arbitrary ξ ∈ M−1Z, ζ ∈ q−1Z◦q ∪ {0} and m ∈ Z. In particular, for m ∈ Z we
obtain the identity

〈Tm0 Φ̃, Φ̃〉L2(R;Rd) = q−1M−1
∑

ξ∈M−1Z

∑
ζ∈q−1Z◦q∪{0}

〈
Tm0 Φ̃

(
ξ + ζM−1

)
, Φ̃
(
ξ + ζM−1

)〉
Rd

= q−1M−1
∑

ξ∈M−1Z

∑
ζ∈q−1Z◦q∪{0}

〈
TmMΦ(ζ, ξ),Φ

(
ζ, ξ
)〉

Rd

= 〈TmMΦ,Φ〉HM .
(4.A.10)

We hence obtain

〈∆0Φ̃, Φ̃〉L2(R;Rd) = τ
∑
m>0

αm
[
〈Tm0 Φ̃, Φ̃〉L2(R;Rd) + 〈T−m0 Φ̃, Φ̃〉L2(R;Rd)

−2〈Φ̃, Φ̃〉L2(R;Rd)

]
= τ

∑
m>0

αm
[
〈TmMΦ,Φ〉HM + 〈T−mM Φ,Φ〉HM − 2〈Φ,Φ〉HM

]
= 〈∆MΦ,Φ〉HM .

(4.A.11)
The desired result now follows from [6, Lem. 2.1].

We now show that Kk,M approaches Kq,ϑ in a more rigorous fashion. The infinite-
range interactions cause complications here, because we need to interchange a limit and
an infinite sum. For M̃ ∈ Mq we introduce the notation ϑ(M̃) to refer to the value of

ϑ in (4.3.20) with M = M̃ .
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Lemma 4.A.6. Assume that (HS1) is satisfied. Fix an integer q ≥ 1 and consider any
sequence {Mj}j∈N in Mq with the property that limj→∞Mj = ∞ and ϑ(Mj) = ϑ for
all j ∈ N and some ϑ ∈ q−1Zq \ {0}. Then for any Z ∈ C∞c (R; `2q,⊥;∞) ⊂ C∞c (R; `2q,⊥)
we have the limit

limj→∞‖∆Mj
Z −∆q,ϑZ‖L2(R,`2q,⊥) = 0. (4.A.12)

Proof. Fix any test function Z ∈ C∞c (R; `2q,⊥;∞) ⊂ C∞c (R; `2q,⊥) and pick a suffi-
ciently large µ ∈ N for which supp(Z) ⊂ [−µ, µ]. Without loss of generality we assume
that ‖Z‖L2(R,`2q,⊥) = 1. Pick ε > 0, together with K ∈ Z>µ in such a way that

τ
∑

m≥K−µ
4|αm| < ε

8 . (4.A.13)

Moreover, by the strong continuity of the shift-semigroup [61, Example I.5.4], we can
pick J ∈ N in such a way that for each j ≥ J and each |m| ≤ 4K + 4l we have the
bound

τ |αm|‖TmMj
Z − Tmq,ϑZ‖L2(R,`2q,⊥) = τ |αm|‖Z(·+mnjM

−1
j )− Z(·+m)‖L2(R,`2q,⊥)

< ε
16(µ+K) ,

(4.A.14)
together with

|njM−1
j − 1| ≤ 1

2 . (4.A.15)

Here we introduced nj for the value of n in (4.3.20) with M = Mj . Fix j ≥ J . Since
supp(Z) ⊂ [−µ, µ], we obtain

∆Mj
Z(ξ)−∆q,ϑZ(ξ) = τ

∑
m≥K−µ

αm

[
Z(ξ −mnjM−1

j )− Z(ξ −m)
]

(4.A.16)

for any ξ > K, which allows us to estimate

‖∆Mj
Z −∆q,ϑZ‖

L2
(

(K,∞),`2q,⊥

) ≤ τ
∑

m≥K−µ
2|αm|‖Z‖L2(R,`2q,⊥) < ε

4 .

(4.A.17)
A similar computation yields

‖∆Mj
Z −∆q,ϑZ‖

L2
(

(−∞,−K),`2q,⊥

) < ε
4 . (4.A.18)

Finally, for ξ ∈ [−K,K] we see that

∆Mj
Z(ξ)−∆q,ϑZ(ξ) = τ

4l+4K∑
m=1

αm

[
Z(ξ +mnjM

−1
j )− Z(ξ +m)

+Z(ξ −mnjM−1
j )− Z(ξ −m)

]
= τ

4l+4K∑
m=1

αm

[
TmMj

Z(ξ)− Tmq,ϑZ(ξ) + T−mMj
Z(ξ)− T−mq,ϑ Z(ξ)

]
.

(4.A.19)
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On account of (4.A.14), we can, hence, estimate

‖∆MjZ −∆q,ϑZ‖
L2
(

[−K,K],`2q,⊥

) ≤ τ
4l+4K∑
m=1

|αm|
[
‖TmMj

Z − Tmq,ϑZ‖L2(R,`2q,⊥)

+‖T−mMj
Z − T−mq,ϑ Z‖L2(R,`2q,⊥)

]
< 2(4l + 4K) ε

16(µ+K)

= ε
2 .

(4.A.20)
Combining these estimates yields the bound

‖∆MjZ −∆q,ϑZ‖L2(R,`2q,⊥) < ε, (4.A.21)

from which the desired limit follows.
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