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Chapter 1

Introduction

Many systems in nature have an underlying spatially discrete structure, which greatly
influences their dynamical behaviour. Often, this broken translational and rotational
symmetry gives rise to interesting and complex behaviour, which is not present for
spatially homogeneous systems. For several systems, this spatially discrete structure is
directly visible. For example, one can think of the movement of domain walls [53] or
dislocations [35] through crystals. However, the spatially discrete structure can also be
more hidden. In particular, let us consider the propagation of electrical signals through
nerve fibres. It is well-known that these signals can only move at appropriate speeds
if the nerve fibres are insulated by a meylin coating. This coating admits regularly
spaced gaps at the so-called nodes of Ranvier [143], see Figure 1.1. The signal moves
fast through these coated regions, but loses strength rapidly. In the nodes, the signal
moves much slower, while it recovers strength. In particular, the signal appears to hop
from one node to the next. This phenomenon is known as saltatory conduction [127].

In many of these processes in nature, the propagation of fixed structures through
space and time plays a crucial role. As is the case for spatially continuous systems,
travelling waves form the basic building blocks for the complex behaviour and patterns
spatially discrete systems can exhibit. Travelling wave solutions have a fixed shape,
called the wave profile, and travel through time and space with a fixed wavespeed. The
propagation of electrical signals through nerve fibers is a key example of the significance
of the study of travelling waves in spatially discrete systems.

In §1.1, we further highlight a few of these discrete systems and discuss the mathe-
matical models that are used to describe their behaviour. In §1.2, we focus entirely on
the FitzHugh-Nagumo system, which is used to model the signal propagation through
nerve fibres and is the main equation under consideration in this thesis. Finally, we
elaborate on the most important mathematical techniques that are used in the analysis
of our systems in §1.3.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Simplified representation of the meylin coating and nodes of Ranvier in a nerve
axon.

1.1 Scalar LDEs and MFDEs

For systems such as those discussed above, it is essential to incorporate the spatially
discrete structure into the models that aim to describe their behaviour. For this pur-
pose, lattice differential equations (LDEs) form a natural class of systems to model
systems of this type. Indeed, let us consider an infinite chain of particles, indexed by
the one-dimensional lattice j ∈ Z. For the jth particle, we are interested how a specific
quantity uj , for example displacement or electrical potential, evolves in time. Let us
assume, for now, that the rate of change of the quantity uj is only influenced directly by
itself and its nearest neighbours uj+1 and uj−1. That is, the evolution of the variables
uj for j ∈ Z is given by the system of equations

u̇j(t) = f
(
uj+1(t), uj−1(t), uj(t)

)
(1.1.1)

for some function f . We note that the system (1.1.1) is, in fact, a collection of infinitely
many, coupled ordinary differential equations (ODEs).

For systems such as (1.1.1), we are mainly interested in travelling wave solutions.
Typically, this means that we aim to find a solution {uj}j∈Z to the system (1.1.1) that
takes the form

uj(t) = u0(j + c0t), (1.1.2)

where u0 is the wave profile and c0 is the wavespeed. Usually, an assumed shape of the
solution, called an Ansatz, such as (1.1.2) is accompanied by boundary conditions of
the form

lim
ξ→−∞

u0(ξ) = u−, lim
ξ→∞

u0(ξ) = u+. (1.1.3)

If u− = u+ in (1.1.3), we often refer to the travelling wave as a travelling pulse, while
otherwise it is known as a travelling front. In order to establish whether the system
(1.1.1) admits a travelling wave solution, we need to substitute the Ansatz (1.1.2) into
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the LDE (1.1.1) and solve the resulting system. In particular, this procedure yields a
so-called functional differential equation of mixed type (MFDE), which is given by

c0u
′
0(ξ) = f

(
u0(ξ + 1), u0(ξ − 1), u0(ξ)

)
(1.1.4)

in which ξ = j + c0t. The ‘mixed type’ in MFDE refers to the fact that it contains
both advanced (forward) and retarded (backward) shifts. The MFDE (1.1.4) is called
the travelling wave equation for the LDE (1.1.1).

LDEs form a relatively young field of interest for mathematicians. In the applied
literature, however, LDEs have appeared significantly more frequently. For systems
with an inherent discrete structure, LDEs can be seen as the natural replacement for
partial differential equations (PDEs). LDEs can both arise as a discretisation of a PDE
or as a system that has no direct spatially continuous equivalent. LDEs have been
shown to display unexpected and complex dynamical behaviour. We will illustrate this
behaviour with a few prominent examples.

1.1.1 The FPUT lattice

The Fermi-Pasta-Ulam-Tsingou (FPUT) lattice is an infinite chain of particles, which
are coupled by identical springs to their neighbours. This system is a generalization of
a system with finitely many particles, which was studied numerically in [49, 72]. The
corresponding FPUT LDE aims to capture the dynamical behaviour of position of these
particles. When the particles are identical, the lattice is called a monoatomic lattice.
In this case, we can derive from Newton’s second law that the FPUT LDE is given by

üj = F (uj+1 − uj)− F (uj − uj−1), (1.1.5)

where the function F represents the spring force. The existence of solitary travelling
wave solutions for the system (1.1.5), i.e. travelling wave solutions of which the wave
profile decays exponentially, has been shown in [77–81].

When the particles are not identical, these solitary travelling wave solutions no
longer capture the behaviour of the particles. In particular, let us consider the diatomic
lattice, i.e. when the mass of the particles alternates between the two values 1 and
m 6= 1, see Figure 1.2. The diatomic FPUT LDE has been studied in various parameter
regimes, such as the small mass m� 1 regime [100], the equal mass m ≈ 1 regime [66]
and the long wave regime [67]. Travelling wave solutions for these systems are usually
constructed as perturbations of travelling wave solutions for a monoatomic lattice. That
it, the travelling wave solution is constructed as the sum of the monoatomic wave and
another part, which is small in terms of the relevant parameter regime. For the small
mass and long wave regimes, the solitary travelling waves are singularly perturbed into
a travelling wave profile which asymptotes into a periodic solution with a very small
amplitude. The amplitude of these “ripples” is small beyond all orders in the relevant
parameter. This category of travelling waves is often referred to as nanopterons, see [21]
for an interesting overview. For the near-equal mass regime, the travelling wave profile
also asymptotes to a periodic solution, but the amplitude of this periodic solution is
only algebraically small. Such a travelling wave profile is called a micropteron.
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Figure 1.2: Illustration of the diatomic FPUT lattice with alternating particles with masses 1
and m.

1.1.2 The Nagumo equation

The Nagumo or Allen-Cahn PDE is given by

∂u
∂t (x, t) = ∂2u

∂x2 (x, t) + g(u(x, t); r). (1.1.6)

Here the bistable nonlinearity g is, typically, given by the cubic polynomial g(u; r) =
u(1−u)(u−r) with 0 < r < 1. The Nagumo PDE has been commonly used as a model
where two biological species or material states compete in a spatial domain [3]. Due to
its relative simplicity, the PDE (1.1.6) has served as a prototype to understand basic
concepts in the theory of reaction-diffusion systems. This system is known to admit
travelling front solutions of the form

u(x, t) = Φ(x+ ct), lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→∞

Φ(ξ) = 1, (1.1.7)

which can be constructed explicitly. This travelling front solution satisfies the travelling
wave ODE

cΦ′(ξ) = Φ′′(ξ) + g(Φ(ξ); r). (1.1.8)

In addition, there is a one-to-one correspondence between the wavespeed c and the pa-
rameter r. Due to the symmetry of the system, travelling waves are pinned for r = 1

2 ,
i.e. the wavespeed c is 0, while the waves move for r 6= 1

2 . It is well-known that these
travelling wave solutions are stable under perturbations that do not need to be small
[73].

The natural way to discretize the Nagumo PDE (1.1.6) is to consider the LDE

u̇j(t) = d
[
uj+1(t) + uj−1(t)− 2uj(t)

]
+ g(uj(t); r), (1.1.9)

which we will refer to as the Nagumo LDE. There are many similarities and differences
between the PDE (1.1.6) and the LDE (1.1.9). Although the LDE (1.1.9) is no longer
explicitly solvable, it is well-known that it admits travelling wave solutions, which must,
hence, satisfy the travelling wave MFDE

cu′(ξ) = d
[
u(ξ + 1) + u(ξ − 1)− 2u(ξ)

]
+ g(u(ξ); r). (1.1.10)

In addition, for a given value of d > 0 the wavespeed c is uniquely determined by the
parameter r [39, 131]. Usually, the comparison principle is used to prove these types
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of results. The comparison principle states, informally, that a subsolution of an elliptic
or parabolic equation stays below a supersolution. The comparison principle can be
applied to both the PDE (1.1.6) and the LDE (1.1.9).

However, the relation between the wavespeed c and the parameter r is no longer
one-to-one. In particular, when d > 0 is sufficiently small there is a nontrivial interval
r ∈ [r−, r+] for which the LDE (1.1.9) admits travelling wave solutions with wavespeed
c = 0. This phenomenon is known as propagation failure and has been shown to be a
common feature of discrete systems [99]. However, we do emphasize that for c 6= 0 the
r(c) relation remains single-valued.

There are many possible extensions and generalizations to the Nagumo LDE (1.1.9).
Here, we will discuss a few results to showcase the rich behaviour of the Nagumo LDE.
A more comprehensive overview can be found in [105].

Bichromatic waves. In contrast to the PDE (1.1.6), the LDE (1.1.9) has infinitely
many equilibria. Let us consider equilibria of the form

uj =

ue if j is even,

uo if j is odd.
(1.1.11)

Such a 2-periodic equilibrium must satisfy the system of equations

0 = 2d(ue − uo) + g(uo; r),

0 = 2d(uo − ue) + g(ue; r).
(1.1.12)

For d = 0, the system (1.1.12) decouples and immediately yields the solutions ue, uo ∈
{0, r, 1}. In particular, the system (1.1.12) has 9 distinct solutions for d = 0. As such,
using the implicit function theorem, we can continue these 9 solutions for sufficiently
small d > 0 until these continuations start to intertwine. We say that a pair (ue, uo)
which satisfies (1.1.12) is of type w ∈ {0, r, 1}2 if it lies on the branch of the equilibrium
w of (1.1.12) for d = 0. We are mainly interested in equilibria of type w ∈ {0, 1}2, since
these equilibria are stable. In particular, let us write u01(r, d) for the solution of (1.1.12)
of type 01. Since the equilibrium u01(r, d) is stable, a so-called monotonic iteration
scheme [39] can be used to show that the LDE (1.1.9) admits so-called bichromotic
waves. That is, solutions of the form

uj(t) =

Φe(j + c01(r, d)t), if j is even,

Φo(j + c01(r, d)t), if j is odd
(1.1.13)

with boundary conditions

lim
ξ→−∞

(Φe,Φ0)(ξ) = (0, 0), lim
ξ→−∞

(Φe,Φ0)(ξ) = u01(r, d) (1.1.14)
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as long as d > 0 remains small enough. See also Figure 1.3. Let us write

d01(r) = sup{d > 0 : there exists an equilibrium of (1.1.12) of type 01},
(1.1.15)

so that bichromatic waves exist for 0 < d < d01(r). A more interesting, and delicate,
question is whether these bichromatic waves are pinned or if they are moving. In
particular, let us write

d01(r)∗ = sup{d > 0 : c01(r, d) = 0}. (1.1.16)

One of the main results of [106] is that, if r ∈ (0, 1) is sufficiently far away from 0, we
have the strict inequality

d01(r)∗ < d01(r). (1.1.17)

That is, the bichromatic wave is not pinned for values of d in the nontrivial interval(
d01(r)∗, d01(r)

)
. Related results can be found in [107, 159, 160, 162].

Figure 1.3: This bichromatic wave with waveprofiles Φe and Φo connects the homogeneous
state 0 to the heterogeneous state (ue, u0).

Infinite-range interactions. In [6], Bates, Chen and Chmaj considered a version
of the Nagumo LDE (1.1.9) which features infinite-range interactions. This system is
given by

u′j(t) = d
∞∑
k=1

αk
[
uj+k(t) + uj−k(t)− 2uj(t)

]
+ g(uj(t); r). (1.1.18)
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Writing d = 1
h2 , the system (1.1.18) can be seen as an infinite-range discretisation of

the Nagumo PDE (1.1.6) on a grid with spacing h > 0. By using the Ansatz

uj(t) = uh(hj + cht), (1.1.19)

the corresponding travelling wave equation is an MFDE which features infinite-range
interactions and is given by

chu
′
h(ξ) = 1

h2

∞∑
k=1

αk
[
uh(ξ + kh) + uh(ξ − kh)− 2uh(ξ)

]
+ g(uh(ξ); r). (1.1.20)

In order to make sure the discretised Laplacian still behaves like a Laplacian, the
authors impose the following limits on the grow of the coefficients {αk}k≥1

∞∑
k=1

|αk|k2 < ∞,
∞∑
k=1

αkk
2 = 1, (1.1.21)

together with the spectral bounds

∞∑
k=1

αk cos(kz) ≥ 0, for z ∈ [0, 2π]. (1.1.22)

In particular, upon defining the operator

(∆hφ)(ξ) = 1
h2

∞∑
k=1

αk
[
φ(ξ + kh) + φ(ξ − kh)− 2φ(ξ)

]
, (1.1.23)

we have the limit
lim
h↓0
‖∆hφ− φ′′‖L2(R;R) = 0 (1.1.24)

for sufficiently smooth and bounded functions φ as long as the conditions (1.1.21)-
(1.1.22) hold. Note that not all coefficients {αk}k≥1 need to be positive. In particular,
the comparison principle is not necessarily available for the system (1.1.18).

Due to the limit (1.1.24), Bates, Chen and Chmaj aimed to find travelling wave
solutions to the LDE (1.1.18) in the near-continuum regime h � 1. In particular,
the authors constructed travelling waves for (1.1.18) as perturbations of the travelling
waves for the PDE (1.1.6). However, the transition from the local second derivative
operator to the nonlocal infinite-range difference operator is highly singular. To resolve
this issue, the authors pioneered a method to lift certain properties of the continuous
system to the spatially discrete system. We will refer to this method as the spectral
convergence method. We will return to this method later in much more detail, as it
plays an essential role in this thesis.

The fully discrete Nagumo equation Even though the spatial coordinate is discre-
tised for LDEs, the temporal coordinate remains continuous. In [111], Hupkes and Van
Vleck considered temporal discretisations of the Nagumo LDE (1.1.9), or, equivalently,
spatial-temporal discretisations of the Nagumo PDE (1.1.6) in order to understand the



8 CHAPTER 1. INTRODUCTION

impact of discretisation schemes on the solutions that these schemes aim to approxi-
mate. For the backward-Euler discretisation scheme, the corresponding evolution takes
the form

1
∆t [Uj(n∆t)− Uj((n− 1)∆t)] = d[Uj+1 + Uj−1 − 2Uj ](n∆t) + g(Uj(n∆t); r),

(1.1.25)
where we have n ∈ Z and ∆t > 0 is called the time-step. Note that the system (1.1.25)
is no longer a differential equation. The backward-Euler discretisation scheme is used
because of several useful stability properties. This discretisation scheme is, in fact, the
first of six so-called backwards differentiation formula (BDF) discretisation methods.

A travelling wave Ansatz for the system (1.1.25) with wavespeed c takes the form

Uj(n∆t) = Φ(j + nc∆t). (1.1.26)

Therefore, the corresponding travelling wave equation is given by

1
∆t

[
Φ(ξ)− Φ(ξ − c∆t)

]
= d

[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g(Φ(ξ); r). (1.1.27)

Something interesting should be noted: if c∆t is a rational number, then the domain
of the equation (1.1.27) can be restricted to a rational subset of the real line. This
restriction turns out to be a key ingredient to construct travelling wave solutions to the
system (1.1.25). Indeed, Hupkes and Van Vleck showed that, if M := (c∆t)−1 is ratio-
nal and sufficiently large, the system (1.1.25) admits travelling wave solutions. They
employed the restriction on the domain of (1.1.27) to establish an interpolation scheme
to link the system (1.1.27) to finitely many copies of the Nagumo MFDE (1.1.10).
Then, the authors used the previously mentioned spectral convergence method to lift
the Fredholm properties of this spatially discrete system to the fully discrete system.

There is an interesting nonuniqueness in the system (1.1.25). Indeed, the travelling
wave profile is constructed as a perturbation of the restriction of the original, contin-
uous wave profile Φ to the discrete domain. In particular, this means that for any
irrational phase shift ϑ, the profile that is obtained by perturbing off Φ(· + ϑ) could
potentially yield a different travelling wave solution to the system (1.1.25) with the
same parameter values, see Figure 1.4. However, this phase shift might change the
wavespeed. This nonuniqueness is not present for the Nagumo PDE (1.1.6) or LDE
(1.1.9).

In addition, Hupkes and Van Vleck showed that for the backward-Euler discretisa-
tion scheme the previously mentioned r(c) relation is multivalued, even for c 6= 0. This
is in major contrast to the spatially discrete setting. In this part of the analysis, the
authors relied heavily of the inclusion of the system (1.1.27) into an MFDE which ad-
mits a comparison principle. This is not possible for the other five BDF discretisation
schemes. To alleviate this, Hupkes and Van Vleck also provided numerical evidence
that the r(c) relation is multivalued for at least the second BDF discretisation scheme.
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Figure 1.4: The travelling wave profiles Φ and Φ(·+ ϑ), defined on the domain D, potentially
yield two different travelling wave solutions to the system (1.1.25) for the same parameter
values, but possible different wavespeed.

1.2 The FitzHugh-Nagumo system

Let us return to the propagation of electrical signals through nerve fibres. Naturally,
it is a challenge to find effective equations describing this behaviour. Initially, models
describing this behaviour did not take the discrete structure into account directly.
Based on experiments on giant squids, the first model was formulated in the 1950s and
consists of a system of four nonlinear equations, called the Hodgkin-Huxley equations
[98]. However, due to the high complexity of this system, an analytical approach to
understand the dynamical behaviour of this system turned out to be a major challenge.
Instead, in 1961, FitzHugh formulated a spatially homogeneous system to describe the
potential felt by a single point on the nerve axon as the signal travels by [74]. A few
years later, FitzHugh [76] and Nagumo [137] added a diffusion term to this system to
describe the dynamics on the full line. Indeed, they formulated what is now known as
the FitzHugh-Nagumo partial differential equation (PDE). This PDE is given by

∂u
∂t (x, t) = ∂2u

∂x2 (x, t) + g(u(x, t); r)− w(x, t),

∂w
∂t (x, t) = ρ

[
u(x, t)− γw(x, t)

]
.

(1.2.1)

In this system, the variable u(x, t) describes the potential felt on the space point x at
the time t, while w(x, t) describes a recovery component. The Nagumo PDE (1.1.6)
can be seen as a simplified version of the FitzHugh-Nagumo PDE (1.2.1). The bistable
nonlinearity g is, as before, given by the cubic polynomial g(u; r) = u(1 − u)(u − r).
In addition, ρ > 0 and γ > 0 are positive constants. As early as 1968 [75], FitzHugh
released a computer simulation which clearly shows that the system (1.2.1) admits
travelling pulse solutions, which resemble the spike signals found experimentally in the
nerve axon of the giant squid by Hodgkin and Huxley. As such, the FitzHugh-Nagumo
PDE is commonly used as a simplification of the Hodgkin-Huxley equations.

Mathematically, the FitzHugh-Nagumo PDE turned out to be a very interesting
equation due to the combination of the relative simplicity of its structure with the rich
behaviour of its dynamics. Indeed, the mathematical construction and analysis of the
travelling pulse solutions as observed by FitzHugh turned out to be a major challenge
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that is still on-going. In particular, let us set out to find a solution (u,w) to the system
(1.2.1) that takes the form

(u,w)(x, t) = (u0, w0)(x+ c0t), (1.2.2)

where u0 and w0 are the wave profiles and c0 is the wavespeed. The wave profiles u0

and w0 must satisfy the limits

lim
ξ→±∞

(u0, w0)(ξ) = (0, 0) (1.2.3)

to turn it into a pulse instead of merely a wave. We substitute the Ansatz (1.2.2) into
the PDE (1.2.1) to obtain the ODE

c0u
′
0(ξ) = u′′0(ξ) + g(u0(ξ); r)− w0(ξ),

c0w
′
0(ξ) = ρ

[
u0(ξ)− γw0(ξ)

]
,

(1.2.4)

where ξ = x + c0t. Travelling pulse solutions to the PDE (1.2.1) are homoclinic solu-
tions to the ODE (1.2.4).

Typically, the system (1.2.4) has been studied in the ρ � 1 regime. Then ρ ↓ 0
limit is singular, as substituting ρ = 0 in (1.2.4), effectively, yields a scalar equation,
instead of a system of equations. Moreover, if we, instead, first rescale the variable ξ in
(1.2.4) by ρ and then take the limit ρ ↓ 0, we obtain a different limiting system. The
first limiting system is called the fast limiting system, while the second is called the
slow limiting system. As such, the system (1.2.4) is a so-called fast-slow system. The
analysis of the system (1.2.4) in both ρ ↓ 0 limits has led to the discovery of many new
techniques in the field of singular perturbation theory. We refer to [118] for an inter-
esting overview of these techniques. A recent overview of the existence and stability of
pulse solutions for the PDE (1.2.1) can be found in [34]. Finally, we want to mention
that, recently, several results have been developed [92–94] for the existence and nonlin-
ear stability for pulse solutions of FitzHugh-Nagumo systems with added random noise.

However, all previously mentioned results feature the FitzHugh-Nagumo PDE (1.2.1).
Since this equation is spatially homogeneous, it does not directly take the discrete prop-
erties of the nerve axon it is aiming to simulate, into account. As such, it has been
proposed [123] to, instead, model the signal propagation through nerve fibres using a
FitzHugh-Nagumo LDE, which is given by the system

u′j(t) = 1
h2

[
uj+1(t) + uj−1(t)− 2uj(t)

]
+ g(uj(t); r)− wj(t),

w′j(t) = ρ
[
uj(t)− γwj(t)

]
.

(1.2.5)

The variables uj and wj now represent the potential felt and the recovery component
at the jth node respectively. We note that the LDE (1.2.5) can be obtained directly
from the PDE (1.2.1) by using a nearest neighbour discretisation of the Laplacian on
a grid with spatial distance h > 0. A travelling pulse solution to the LDE (1.2.5) now
takes the form

(uj , wj)(t) = (uh, wh)(hj + cht) (1.2.6)
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for some wave profiles uh and wh and wavespeed ch. Substituting the Ansatz (1.2.6)
into the LDE (1.2.5) yields the MFDE

chu
′
h(ξ) = 1

h2

[
uh(ξ + h) + uh(ξ − h)− 2uh(ξ)

]
+ g(uh(ξ); r)− wh(ξ),

chw
′
h(ξ) = ρ

[
uh(ξ)− γwh(ξ)

]
,

(1.2.7)

in which ξ = hj + c0t. We emphasize that, in contrast to the Nagumo system, the
FitzHugh-Nagumo PDE (1.2.1) and LDE (1.2.5) do not admit a comparison principle.

In [108, 109], Hupkes and Sandstede constructed travelling pulse solutions to the
system (1.2.5) and showed that these pulses are nonlinearly stable. They assumed that
they were in the parameter regime where the travelling front solution u for the corre-
sponding Nagumo LDE (1.1.9) has nonzero wavespeed. The main idea in [108, 109] is
to use what is known as Lin’s method to combine the travelling front u and a reflection
of this front u to obtain so-called quasi-front and quasi-back solutions, see Figure 1.5.
These quasi-front and quasi-back solutions have gaps in predetermined finite dimen-
sional spaces, which can be closed by choosing the wavespeed. The existence of these
finite dimensional spaces hinges on the existence of exponential dichotomies for the
linearization of the MFDE (1.1.10). Exponential dichotomies play an essential role in
this thesis and will be discussed in more detail later, see §1.3.3.

(a) (b)

Figure 1.5: Quasi-front (a) and quasi-back (b) solutions of the FitzHugh-Nagumo LDE. In
both cases, the function u− is defined on the interval (−∞, 1], while the function u+ is defined
on the interval [−1,∞). The difference u+ − u−, which is defined on the overlapping interval
[−1, 1], should be an element of a predetermined finite dimensional space. The construction of
such a space is provided by the existence of exponential dichotomies for linear MFDEs.

Infinite-range interactions In this thesis, we consider several extensions and gen-
eralizations of the FitzHugh-Nagumo LDE (1.2.5). Our first model arises in the study
of neural field models. Neural field models aim to describe the interactions and dy-
namics in large networks of neurons. These neurons interact with each other over large
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distances through the nerve fibres that connect them [15, 23, 24, 142]. Due to the
high complexity of these systems, it is a major challenge to find effective equations to
describe this dynamical behaviour. In [23, Eq. (3.31)], a model has been proposed that
features a FitzHugh-Nagumo type system with infinite-range interactions, which takes
the form

u̇j(t) = 1
h2

∞∑
k=1

αk
[
uj+k(t) + uj−k(t)− 2uj(t)

]
+ g(uj(t); r)− wj(t),

ẇj(t) = ρ
[
uj(t)− γwj(t)

]
.

(1.2.8)

Here the coefficients {αk}k≥1 should, at the very least, satisfy the conditions (1.1.21)-
(1.1.22) to ensure Laplace-like behaviour. The system (1.2.8) was first studied by Faye
and Scheel in [69]. They constructed travelling pulse solutions to the system (1.2.8)
under the assumption that the coefficients {αk}k≥1 decay exponentially. Since, at the
time of writing, exponential dichotomies for systems such as (1.2.8) were not available,
Faye and Scheel were forced to use a different approach than the one employed by Hup-
kes and Sandstede for the finite-range version (1.2.5). Indeed, Faye and Scheel used
a functional analytic approach to circumvent the use of a state space. However, they
did not establish the stability of the pulse solutions they found. In Chapter 2, we ex-
pand the previously mentioned spectral convergence method to establish the existence
and nonlinear stability of travelling pulse solutions to the system (1.2.8) in the near-
continuum regime h � 1. The stability of pulse solutions outside the near-continuum
regime remains an open problem. However, we expect that our results on the existence
of exponential dichotomies for MFDEs with infinite-range interactions in Chapters 5-6
are a sufficient theoretical foundation to, eventually, solve this open problem.

Spatial periodicity Recent experiments in optical nanoscopy [50, 51, 165] clearly
show that certain proteins in the cytoskeleton of nerve fibres are organised periodically.
In particular, this periodicity manifests itself at the nodes of Ranvier. As such, it is
natural to consider a spatially periodic version of the FitzHugh-Nagumo LDE (1.2.5).
This spatially periodic LDE takes the form

u̇j(t) = dj
[
uj+1(t) + uj−1(t)− 2uj(t)

]
+ g(uj(t); rj)− wj(t),

ẇj(t) = ρj
[
uj(t)− γjwj(t)

]
,

(1.2.9)

where the 2-periodic coefficients (dj , rj , ρj , γj) satisfy

(0,∞)× (0, 1)× (0, 1)× (0,∞) 3 (dj , rj , ρj , γj) =

{
(ε−2, ro, ρo, γo) for odd j,

(1, re, ρe, γe) for even j,
(1.2.10)

where 0 < ε � 1. In particular, we have a scale separation between the diffusion
coefficients 1 and ε−2. The system (1.2.9) does not have a clear continuum limit.
Nonetheless, we obtain the existence and nonlinear stability of travelling pulse solu-
tions to the system (1.2.9) in the ε � 1 regime by further developing the spectral
convergence method in Chapter 3.
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Temporal discretisations Finally in Chapter 4, inspired by the work of Hupkes and
Van Vleck [111] which was discussed previously, we consider temporal discretisations
of the LDE (1.2.5), using the six BDF discretisation schemes. For the backward-Euler
discretisation scheme, the corresponding evolution is given by

1
∆t [Uj(n∆t)− Uj((n− 1)∆t)] = d

[
Uj+1 + Uj−1 − 2Uj

]
(n∆t) + g(Uj(n∆t); r)

−Wj(n∆t),

1
∆t [Wj(n∆t)−Wj((n− 1)∆t)] = ρ[Uj(n∆t)− γWj(n∆t)],

(1.2.11)
for n ∈ Z and time-step ∆t > 0. We establish the existence of travelling pulse solutions
to the system (1.2.11) by carefully combining the different extensions to the spectral
convergence method from [111] and Chapters 2-3. The nonuniqueness of this travel-
ling wave solution, which was previously discussed for the Nagumo system (1.1.25), is
present here as well due to the possibility of an irrational phase shift. In addition, we are
interested in the r(c) relation for the system (1.2.11). However, the analytical approach
employed by Hupkes and Van Vleck for the Nagumo system (1.1.25) relied heavily on
the comparison principle, which is not available for FitzHugh-Nagumo systems. In-
stead, we use numerical simulations to show that the r(c) relation is multivalued for
the system (1.2.11), even for c 6= 0. This is in major contrast to the FitzHugh-Nagumo
PDE (1.2.1) and LDE (1.2.5).

1.3 Techniques

The main techniques to analyze our main systems (1.2.8), (1.2.9) and (1.2.11) fall into
two main categories: those that feature the spectral convergence method and those that
feature exponential dichotomies. Both of these techniques rely heavily on the Fredholm
theory for linear MFDEs. In the remaining part of this chapter, we will discuss these
techniques in more detail and explain how they can be applied to our main systems.

1.3.1 Linear Fredholm theory

In the construction and analysis of travelling waves, it is usually essential to understand
the underlying linear system. Often, it is useful to consider the Fredholm properties of
the corresponding linear operators. If X and Y are normed vector spaces, then we say
that a linear operator T : X → Y is a Fredholm operator if the following properties are
satisfied.

(i) The kernel satisfies dim
(
ker(T )

)
<∞.

(ii) The range satisfies codim
(
Range(T )

)
<∞.

(iii) The range Range(T ) is closed.

When T is a Fredholm operator, the Fredholm index of T is given by

Ind(T ) = dim
(
ker(T )

)
− codim

(
Range(T )

)
. (1.3.1)
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Let us now consider the linear MFDE given by

cu′(ξ) = d
[
u(ξ + 1) + u(ξ − 1)− 2u(ξ)

]
+ gu(u(ξ); r)u(ξ), (1.3.2)

which arises as the linearization of the Nagumo travelling wave MFDE (1.1.10) around
a travelling wave solution u. For clarity, we set d = c = 1. We rewrite this MFDE in
the more suggestive form

u′(ξ) = u(ξ − 1) +
[
gu(u(ξ); r)− 2

]
u(ξ + 0) + u(ξ + 1). (1.3.3)

The scalar functions 1, gu(u(ξ); r)−2 and 1 are called the coefficients of the systems and
the real numbers −1, 0 and 1 are called the shifts. The linear operator corresponding
to the system (1.3.3) is given by

(Λu)(ξ) = u′(ξ)− u(ξ − 1)−
[
gu(u(ξ); r)− 2

]
u(ξ + 0)− u(ξ + 1). (1.3.4)

It is not immediately clear on which space the operator Λ from (1.3.4) is posed and
how to determine the Fredholm properties of this operator. It turns out to be a natural
choice to consider the Sobolev spaces

W 1,p(R;C) = {u ∈ Lp(R;C) : u′ ∈ Lp(R;C)} (1.3.5)

for 1 ≤ p ≤ ∞, equipped with the Sobolev norm

‖u‖pW 1,p(R;C) = ‖u‖pLp(R;C) + ‖u′‖pLp(R;C). (1.3.6)

In this definition, we use u′ to denote the weak derivative of a function u. For the
space W 1,2(R;C) we often use the shorthand H1(R;C). Using this definition, we view
Λ from (1.3.4) as an operator

Λ : W 1,p(R;C) → Lp(R;C). (1.3.7)

The works by Rustichini [144, 145] and Mallet-Paret [130] contain the main Fredholm
theory for this operator Λ. We recall that the travelling front u satisfies the limits

lim
ξ→−∞

u(ξ) = 0, lim
ξ→∞

u(ξ) = 1 (1.3.8)

and that gu(0; r) = −r and gu(1; r) = r − 1. Hence, it is natural—and it will also turn
out to be useful—to consider the systems

u′(ξ) = u(ξ − 1) + lim
ξ′→−∞

[
gu(u(ξ′); r)− 2

]
u(ξ + 0) + u(ξ + 1)

= u(ξ − 1) +
[
− r − 2

]
u(ξ + 0) + u(ξ + 1)

(1.3.9)

and

u′(ξ) = u(ξ − 1) + lim
ξ′→∞

[
gu(u(ξ′); r)− 2

]
u(ξ + 0) + u(ξ + 1)

= u(ξ − 1) +
[
r − 1− 2

]
u(ξ + 0) + u(ξ + 1).

(1.3.10)
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We refer to the systems (1.3.9) and (1.3.10) as the limiting systems of the MFDE
(1.3.3) at −∞ and ∞ respectively. We note that the systems (1.3.9) and (1.3.10) are
autonomous, since their coefficients do not depend on ξ. Finding a solution to (1.3.9)
or (1.3.10) of the form ezξw is equivalent to finding a root of the so-called characteristic
function

∆−(z) = z − e−z −
[
− r − 2

]
e0·z − ez,

∆+(z) = z − e−z −
[
(r − 1)− 2

]
e0·z − ez,

(1.3.11)

that is, finding z ∈ C for which ∆−(z) = 0 and ∆+(z) = 0 respectively. Such a
scalar z is referred to as a spatial eigenvalue. We say that the autonomous system
(1.3.9) or (1.3.10) is hyperbolic if it has no spatial eigenvalues on the imaginary axis,
i.e. ∆−(iy) 6= 0 respectively ∆+(iy) 6= 0 for all y ∈ R. A short computation shows that
this is, indeed, the case for the systems (1.3.9) and (1.3.10). Systems with this property
are called asymptotically hyperbolic. We write Λ− and Λ+ for the linear operators
corresponding to the systems (1.3.9) and (1.3.10) respectively, which are given by

(Λ−u)(ξ) = u′(ξ)− u(ξ − 1)−
[
− r − 2

]
u(ξ + 0)− u(ξ + 1),

(Λ+u)(ξ) = u′(ξ)− u(ξ − 1)−
[
(r − 1)− 2

]
u(ξ + 0)− u(ξ + 1).

(1.3.12)

It turns out that, since the systems (1.3.9) and (1.3.10) are autonomous and hyperbolic,
the operators Λ− and Λ+ are invertible as operators from W 1,p(R;C) to Lp(R;C),
independently of 1 ≤ p ≤ ∞. In fact, the inverse operators are given explicitly by the
Green’s function, in the sense that

(Λ−1
± u)(ξ) =

∫∞
−∞G±(ξ − η)u(η)dη, (1.3.13)

where the Green’s functions G± are given by

G±(ξ) = 1
2π

∫∞
−∞ eiηξ

(
∆±(iη)

)−1
dη. (1.3.14)

A non-autonomous system, however, is not necessarily invertible. For example, the
derivative u′ is a kernel element of the system (1.3.3), which can be seen by differenti-
ating the system (1.1.10). The results in [130] show that linear operators corresponding
to asymptotically hyperbolic systems are automatically Fredholm operators as opera-
tors from W 1,p(R;C) to Lp(R;C). In addition, the Fredholm index of such an operator
Λ is independent of 1 ≤ p ≤ ∞ and the range of Λ can be made explicit by writing

Range(Λ) =
{
u ∈ Lp(R;C) :

∫∞
−∞ u(ξ)v(ξ) = 0 for all v ∈ ker(Λ∗)

}
. (1.3.15)

Here we have introduced the adjoint operator Λ∗. The operator Λ∗ : W 1,p(R;C) →
Lp(R;C) is given by

(Λ∗u)(ξ) = −u′(ξ)− u(ξ − (−1))−
[
gu(u(ξ); r)− 2

]
u(ξ − 0)− u(ξ − 1)

(1.3.16)
and is called the adjoint operator because it satisfies the identity

〈Λu, v〉L2(R;C) = 〈u,Λ∗v〉L2(R;C) (1.3.17)
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for any pair u, v ∈ H1(R;C).

If there exists a homotopy between the systems at −∞ and ∞ and none of the
eigenvalues crosses the imaginary axis during this homotopy, then the spectral flow
theorem [130, Thm. C] allows us to conclude that the Fredholm index of the corre-
sponding linear operator is, in fact, 0. Such a homotopy is trivially available if the
systems at −∞ and∞ coincide, for example when linearizing around a travelling pulse
solution. However, even in such a setting it remains a nontrivial challenge to determine
the dimension of the kernel of the linear operator, which is necessary, for example, when
determining the spectrum of the linear operator. In that case, other techniques, such
as appropriate limits or comparison principles are needed to understand these linear
operators in full detail.

For the system (1.3.3), this homotopy can be made explicit. For 0 ≤ ρ ≤ 1, we can
consider the linear operator

Λρ = ρΛ(−∞) + (1− ρ)Λ(∞). (1.3.18)

The corresponding characteristic function is given by

∆ρ(z) = z − e−z − [ρ(−r) + (1− ρ)(r − 1)− 2]e0·z − ez, (1.3.19)

which can easily be seen to have no roots on the imaginary axis. In particular, the
system corresponding to the operator Λρ is hyperbolic for each 0 ≤ ρ ≤ 1, which means
that the map ρ 7→ Λρ is a homotopy between the systems at −∞ and ∞. In partic-
ular, the operator Λ from (1.3.4) is a Fredholm operator with Fredholm index 0. We
already observed that the derivative u′ is a kernel element of Λ. By the definition of
the Fredholm index, the codimension of Range(Λ) in Lp(R;C) must be at least one.
In addition, the identity (1.3.15) yields that the dimension of ker(Λ∗) must also be at
least one. In particular, we have established several strong results on the operator Λ
and its adjoint Λ∗ using relatively simple computations.

We remark that the results in [131] show that, in this case, the kernels ker(Λ) and
ker(Λ∗) are, in fact, precisely one-dimensional on account of the comparison principle.

The Fredholm theory as described above has been extended by Faye and Scheel [68]
to include MFDEs which feature infinite range interactions, such as the linearization
of the system (1.1.20). However, their restrictions on the coefficients were more severe
than those featured in (1.1.21)-(1.1.22). In particular, Faye and Scheel required the
coefficients to decay exponentially.

1.3.2 The spectral convergence method

As was stated previously, the spectral convergence method was pioneered by Bates,
Chen and Chmaj in [6] in order to construct travelling wave solutions to the Nagumo
LDE (1.1.18) with infinite-range interactions. One of the main advantages of this
method is that it circumvents the use of a comparison principle or exponential di-
chotomies. As a consequence, it can be applied to a broader class of coefficients than
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many other techniques.

To illustrate the spectral convergence method, we focus on its original application
to the Nagumo LDE (1.1.18) by following [6]. We fix, for now, a small constant h > 0.
The main goal of the spectral convergence method is to transfer the known Fredholm
properties of the linearization of the continuous system to an appropiate linearization
of the discrete system. We need to be a bit careful at this point. Since the end goal
is to construct a travelling wave solution to the LDE (1.1.18), we cannot consider a
system such as (1.3.2), since it is impossible to linearize around a solution that has not
been found yet. Instead, we let u0 be a travelling front solution of the PDE (1.1.6) with
wavespeed c0 and consider the linearizations of both the ODE (1.1.8) and the MFDE
(1.1.20) around the wave u0. These linearizations yield the linear operators

(L0u)(ξ) = c0u
′(ξ)− u′′(ξ)− gu(u0(ξ); r)u(ξ) (1.3.20)

for the ODE (1.1.8) and

(Lhu)(ξ) = c0u
′(ξ)−∆hu(ξ)− gu(u0(ξ); r)u(ξ) (1.3.21)

for the MFDE (1.1.20). Here we recall that the operator ∆h is given by (1.1.23).
First, we need to specify on which spaces the operators L0 and Lh are posed, which
immediately brings us to the first major complication (and, therefore, strength of the
spectral convergence method). The operator Lh can, and should, clearly be viewed as
an operator

Lh : H1(R;R) → L2(R;R). (1.3.22)

However, since the operator L0 features a second derivative, it cannot be a well-defined
operator on H1(R;R). Instead, we view it as an operator

L0 : H2(R;R) → L2(R;R), (1.3.23)

where we have introduced the space

H2(R;R) = {u ∈ H1(R;R) : u′′ ∈ L2(R;R)} (1.3.24)

with corresponding norm

‖u‖2H2(R;R) = ‖u‖2H1(R;R) + ‖u′′‖2L2(R;R). (1.3.25)

In particular, the operators L0 and Lh act on different spaces, which makes lifting the
Fredholm properties of L0 to Lh a delicate effort.

It is well-known that for each δ ≥ 0 the operator L0 +δ is a Fredholm operator with
Fredholm index 0. In addition, this operator is invertible for δ > 0, while it is has a one-
dimensional kernel, spanned by the derivative u′0, for δ = 0. The standard Fredholm
theory for ODEs implies that the adjoint operator L∗0 also has a one-dimensional kernel,
spanned by some function φ−0 , i.e. we have

ker(L0) = span{u′0}, ker(L∗0) = span{φ−0 }. (1.3.26)
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Using standard arguments [6, Lem. 3.1], one can show that there exists a constant
C > 0 in such a way that the bound

‖(L0 + δ)−1ψ‖H2(R;R) ≤ C
[
‖ψ‖L2(R;R) + 1

δ |〈ψ, φ
−
0 〉L2(R;R)|

]
(1.3.27)

holds for all δ > 0 and all ψ ∈ L2(R;R). The spectral convergence method aims to
show that for all δ > 0 there exists a positive constant h0(δ) > 0 such that for all
h ∈ (0, h0(δ)) the operator Lh + δ is invertible and that the bound

‖(Lh + δ)−1ψ‖H1(R;R) ≤ C̃
[
‖ψ‖L2(R;R) + 1

δ |〈ψ, φ
−
0 〉L2(R;R)|

]
(1.3.28)

holds for all ψ ∈ L2(R;R). Here, the constant C̃ should be taken independently of
δ > 0 and 0 < h < h0(δ). Employing the bound (1.3.28), a more or less standard
argument, that resembles the proof of the implicit function theorem, can be used to
construct the travelling wave solutions to the system (1.1.18).

In order to establish the bound (1.3.28), Bates, Chen and Chmaj consider the
quantities

Λ(h, δ) = inf
φ∈H1(R;R),‖φ‖H1(R;R)=1

[
‖(Lh + δ)φ‖L2(R;R) + 1

δ |〈(Lh + δ)φ, φ−0 〉L2(R;R)|
]

(1.3.29)
for h > 0 and δ > 0, together with

Λ(δ) = lim inf
h↓0

Λ(h, δ). (1.3.30)

The key ingredient is to construct a lower bound on the quantity Λ(δ), which is uniform
in δ > 0. If such a lower bound is found, the invertibility of the operator Lh + δ and
the bound (1.3.28) can be established relatively easily.

We now fix δ > 0 and consider sequences

{φj}j≥1 ⊂ H1(R;R), ‖φj‖H1(R;R) = 1, hj ↓ 0 (1.3.31)

which minimize the quantity Λ(δ). That is, we have the limit

lim
j→∞
‖(Lhj + δ)φj‖L2(R;R) + 1

δ |〈(Lhj + δ)φj , φ
−
0 〉L2(R;R)| = Λ(δ). (1.3.32)

The existence of these minimizing sequences follows directly from the definition of the
quantity Λ(δ). For convenience, we write

ψj = (Lhj + δ)φj (1.3.33)

for j ≥ 1. In order to properly take the h ↓ 0 limit, we consider the weak limits φ and
ψ of the sequences {φj}j≥1 and {ψj}j≥1. The first computational effort is to show that
the function φ is an element of the space H2(R;R) and that it is a weak solution of
the equation (L0 + δ)φ = ψ [6, Lem. 3.2]. This computation relies heavily on the limit
(1.1.24). As a result, we obtain the lower bound

‖φ‖H2(R:R) ≤ KΛ(δ) (1.3.34)
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for some constant K > 0.

It remains to find a positive lower bound for the norm ‖φ‖H2(R:R). Indeed, a common
danger when taking weak limits is that the sequence converges to 0 even though the
sequence itself is bounded away in norm from 0. Using the Laplace-like properties of
the operator ∆h, we obtain the estimates

〈∆hv, v
′〉L2(R;R) = 0, 〈∆hv, v〉L2(R;R) ≤ 0 (1.3.35)

for any function v ∈ H1(R;R). Employing the bounds (1.3.35) and remembering that
(Lhj + δ)φj = ψj , we can estimate the inner products 〈ψj , φ′j〉L2(R;R) using the Cauchy-
Schwarz inequality to obtain a uniform estimate of the form

A1‖φj‖2L2(R;R) ≥ A2‖φ′j‖2L2(R;R) −A3‖ψj‖2L2(R;R); (1.3.36)

see [6, Eq. (3.9)].

Figure 1.6: In the spectral convergence method, we pick a compact interval I in such a way
that the sign of −gu(u0(x); r) for x ∈ R \ I is fixed. This is allowed because of the bistable
nature of the nonlinearity g. Inside I, we employ the Ascoli-Arzela Theorem, while outside I
we can use the fixed sign to aid in our estimates.

At this point in the computation, we employ the bistable nature of the nonlinearity
g. Remembering that the front u0 connects 0 and 1, we can pick a sufficiently large, but
bounded, interval I to have −gu(u0(x); r) ≥ a for x outside I for some fixed constant
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a > 0; see Figure 1.6. This allows us to estimate the inner product

〈−gu(u0)φj , φj〉L2(R;R) = 〈−gu(u0)φj , φj〉L2(R\I;R) + 〈−gu(u0)φj , φj〉L2(I;R)

≥ a‖φj‖2L2(R\I;R) − ‖gu(u0)‖∞‖φj‖2L2(I;R)

= a‖φj‖2L2(R;R) −
(
a+ ‖gu(u0)‖∞

)
‖φj‖2L2(I;R).

(1.3.37)
Inside I, we can employ the Ascoli-Arzela Theorem to have the limit φj → φ in L2(I;R).
As such, on account of (1.3.37) we can estimate the inner products 〈ψj , φj〉L2(R;R) to
obtain a uniform estimate of the form

B1‖φj‖2L2(I;R) ≥ B2‖φj‖2L2(R;R) −B3‖ψj‖2L2(R;R); (1.3.38)

see [6, Eq. (3.10)]. By properly scaling the inequalities (1.3.36) and (1.3.38) and adding
them, we obtain a uniform estimate of the form

C1‖φj‖2L2(I;R) ≥ C2‖φj‖2L2(R;R) + C2‖φ′j‖2L2(R;R) − C3‖ψj‖2L2(R;R). (1.3.39)

Remebering that

‖φj‖2L2(R;R) + ‖φ′j‖2L2(R;R) = ‖φj‖2H1(R;R)

= 1
(1.3.40)

the inequality (1.3.39) reduces to

C1‖φj‖2L2(I;R) ≥ C2 − C3‖ψj‖2L2(R;R). (1.3.41)

Because of the strong convergence φj → φ in L2(I;R), the bound (1.3.34) and the limit
(1.3.32) we can take the limit j →∞ in (1.3.41) to obtain

C2 − C3Λ(δ)2 ≤ C1‖φ‖2L2(I;R)

≤ C1‖φ‖2H2(R;R)

≤ C1KΛ(δ)2.

(1.3.42)

In particular, Bates, Chen and Chmaj obtain

Λ(δ) ≥
√

C2

C1K+C3
, (1.3.43)

which is a positive constant, as desired.

FitzHugh-Nagumo LDE with infinite-range interactions Our first challenge
is to generalize the spectral convergence method to the system (1.2.8). We construct
travelling pulse solutions to this system as perturbations of the travelling pulse solutions
for the FitzHugh-Nagumo PDE (1.2.1) in the h � 1 regime. In particular, we only
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need to assume the conditions (1.1.21)-(1.1.22) instead of exponential decay on the
coefficients {αk}k≥1. The travelling wave equation for (1.2.8) is given by

chu
′
h(ξ) = 1

h2

∞∑
k=1

αk
[
uh(ξ + kh) + uh(ξ − kh)− 2uh(ξ)

]
+ g(uh(ξ); r)− wh(ξ)

chw
′
h(ξ) = ρ

[
uh(ξ)− γwh(ξ)

]
.

(1.3.44)
However, the generalization of the spectral convergence method from scalar to system
equations is far from trivial. In particular, when estimating the equivalents of the inner
products 〈ψj , φj〉L2(R;R) and 〈ψj , φ′j〉L2(R;R) as described above, there are various cross-
terms we need to keep under control. Luckily, we are aided by the relative simplicity
of the second component of (1.3.44). In particular, the off-diagonal elements of the
linearization of the MFDE (1.3.44) are constant multiples of each other, which allows
us to combine their contributions and absorb them in the diagonal terms. We also
generalize the spectral convergence method to yield uniform bounds for values of δ in
compact subsets of the complex plane C \ {0}.

We write (uh, wh) for the new-found travelling pulse solution to (1.2.8) with wavespeed
ch. The next step is to establish the spectral stability of this travelling pulse solution.
As such, we linearize the MFDE (1.3.44) around this travelling pulse solution. The
corresponding linear operator is given by

Lh

(
v
w

)
=

(
ch

d
dξ −∆h − gu(uh) 1

−ρ ch
d
dξ + γρ

)(
v
w

)
, (1.3.45)

where we recall the operator ∆h from (1.1.23).

We first note that the spectrum of the operator Lh from (1.3.45) is periodic with
period 2πi chh . This period grows to infinity as h ↓ 0, which makes sense since the
spectrum of the operator L0 from (1.3.23) is not periodic. That the spectrum is periodic,
can be seen as follows. For p ∈ C, we consider the multiplication operator

[epφ](ξ) = epξφ(ξ). (1.3.46)

We fix p = 2πi 1
h . For k ∈ Z, we observe that phk ∈ 2πiZ, so that we can compute[

e−p[epφ(·+ kh)]
]
(ξ) = e−pξ[epφ](ξ + hk)

= e−pξepξ+pkhφ(ξ + hk)

= φ(ξ + hk).

(1.3.47)

In particular, we see that
e−p∆hep = ∆h. (1.3.48)

Since we also have [
e−pch

d
dξ [epφ]

]
(ξ) = che

−pξ d
dξ (epξφ(ξ))

= chφ(ξ) + pchφ(ξ),
(1.3.49)
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we can conclude that
e−pLhep = Lh + pch. (1.3.50)

Since the operators e−p and ep are invertible, this means that Lh and Lh + pch have
the same spectrum, which yields the desired periodicity.

The spectral convergence method does not immediately resolve the spectral stability
question. Indeed, for each individual value of λ 6= 0 we can conclude the invertibility of
Lh + λ for h sufficiently small. However, what we mean by ‘sufficiently small’ depends
heavily on the choice of λ and can only be made uniform for λ in compact subsets
of C \ {0}. Since the period of the spectrum grows to infinity as h ↓ 0, we can only
apply the spectral convergence method if we exclude spectrum in a region close to 0,
spectrum with a large real part and spectrum with a large imaginary part. We will
discuss these issues in more detail in §2.5-2.6.

Spatially periodic FitzHugh-Nagumo LDE The next extension to the spectral
convergence method is to construct travelling pulse solutions to the system (1.2.9) in
the ε � 1 regime. The spatial periodicity of this system also returns in the travelling
wave Ansatz, which takes the form

(u,w)j(t) =

(uo, wo)(j + ct) when j is odd,

(ue, we)(j + ct) when j is even.
(1.3.51)

Using the Ansatz (1.3.51), we arrive at the travelling wave MFDE

cu′o(ξ) = 1
ε2

(
ue(ξ + 1) + ue(ξ − 1)− 2uo(ξ)

)
+ g(uo(ξ); ro)− wo(ξ),

cw′o(ξ) = ρo[uo(ξ)− γowo(ξ)],

cu′e(ξ) =
(
uo(ξ + 1) + uo(ξ − 1)− 2ue(ξ)

)
+ g(ue(ξ); re)− we(ξ),

cw′e(ξ) = ρe[ue(ξ)− γewe(ξ)].

(1.3.52)

Since we consider the ε � 1 regime, we first need to understand the system (1.3.52)
for ε = 0. Multiplying the first line of (1.3.52) with ε2 and taking the limit ε ↓ 0 yields

0 = ue(ξ + 1) + ue(ξ − 1)− 2uo(ξ). (1.3.53)

In particular, we can express uo in terms of ue. This means that the third and fourth
line of (1.3.52) become

cu′e(ξ) = 1
2

(
ue(ξ + 2) + ue(ξ − 2)− 2ue(ξ)

)
+ g(ue(ξ); re)− we(ξ),

cw′e(ξ) = ρe[ue(ξ)− γewe(ξ)],
(1.3.54)

which we recognise as a scaled version of the regular FitzHugh-Nagumo LDE (1.2.5).
We emphasize that the system (1.3.54) does not contain any odd wave functions, which
means that the system decouples at ε = 0. In particular, we know [108, 109] that the
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system (1.3.54) admits stable travelling pulse solutions (ue;0, we;0) with wavespeed c0.
Recalling (1.3.53), we set

uo;0(ξ) = 1
2

[
ue;0(ξ + 1) + ue;0(ξ − 1)

]
. (1.3.55)

Finally, we let wo;0 be the solution of the linear, inhomogeneous system

c0w
′
o(ξ) = ρo[uo;0(ξ)− γowo(ξ)]. (1.3.56)

As such, the multiplet U0 = (uo;0, wo;0, ue;0, we;0) can be seen as the solution of (1.3.52)
at ε = 0. Note that the identity (1.3.53) essentially turns the four-component system
(1.3.52) into a three-component system at ε = 0. We construct travelling pulse solutions
to the LDE (1.2.9) by perturbing them off the function U0 by applying the spectral
convergence method. However, there are a few major differences with the previous
applications of the spectral convergence method. Previously, this method was used to
lift Fredholm properties from a continuous to a spatially discrete system, while here we
use it to lift Fredholm properties from a three-component to a four-component spatially
discrete system. In addition, the different scalings of ε for the diffusion coefficients pre-
vent us from making a direct analogue of the inequalities (1.3.35). Instead, we have to
use different scalings in ε for each component to compensate for this imbalance. These
different scalings in ε complicate, in turn, the fixed point arguments used to control the
nonlinear terms in the construction of the travelling pulse solutions. This complication
forces us to take an extra spatial derivative of the system (1.3.52).

For the spectral stability of the travelling pulse solutions to the LDE (1.2.9), we
note that the spectrum is periodic with period 2πicε, similarly to the system (1.2.8).
Luckily, this period does not blow up in the ε ↓ 0 limit here. As such, we only need
to exclude spectrum near 0 and with a large real part before we can apply the spectral
convergence method.

In this analysis, we do not restrict ourselves to the LDE (1.2.9). Instead, we consider
general spatially 2-periodic reaction-diffusion systems with n + k components. Here
n ≥ 1 is the number of components with a nonzero diffusion coefficient, while k ≥ 0 is
the number of components without diffusion (so n = k = 1 for the FitzHugh-Nagumo
LDE (1.2.9)). In particular, our results also cover the spatially periodic version of
the Nagumo LDE (1.1.9) without the use of a comparison principle. However, we
need conditions on the end-states that are slightly stronger than the usual temporal
stability. Indeed, we need certain submatrices of the corresponding Jacobians to be
positive definite, instead of simply spectrally stable. All in all, we have a broad class
of systems to which the spectral convergence method can be applied.

Spatially-temporally discrete FitzHugh-Nagumo system Our final application
of the spectral convergence method is to the system (1.2.11). In fact, to make the anal-
ysis as general as possible, we allow for infinite-range spatial interactions and temporal
discretisations of the general n + k-component reaction-diffusion LDEs discussed pre-
viously.
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In this case, we use the spectral convergence method to lift the Fredholm proper-
ties of the spatially discrete to the fully discrete system. As discussed previously, we
need to assume that M := (c∆t)−1 is rational to establish an appropriate interpolation
scheme. However, Hupkes and Van Vleck relied heavily on the comparison principle
to understand this interpolated spatially discrete system. As such, we need to prove
several results related to this spatially discrete system from scratch, using the general
Fredholm theory for these systems. In addition, the complications we faced previously
for infinite-range spatial interactions and nonscalar equations in the spectral conver-
gence method needed to be dealt with here as well.

1.3.3 Exponential dichotomies

The second major technique we develop and employ is the splittings given by expo-
nential dichotomies. There are many ways to look at exponential dichotomies. We
take the following general point of view: we say that a linear differential equations is
exponentially dichotomous if the space of initial conditions, called the state space, can
be split into a stable and an unstable part. Continuations of stable initial states need
to decay exponentially in forward time, while those of unstable states need to decay
exponentially in backward time. Let us, for example, consider a linear, autonomous
ODE, given by

du
dσ (σ) = Au(σ) (1.3.57)

where u(σ) ∈ CM for σ ∈ R. If the M×M matrix A is hyperbolic, i.e. has no spectrum
on the imaginary axis, then the state space CM can be split as

CM = Es0 ⊕ Eu0 , (1.3.58)

where Es0 is the generalized stable eigenspace and Eu0 is the generalized unstable
eigenspace of A. The flow of the ODE (1.3.57) is given by Φ(σ, τ) = exp[A(σ − τ)].
We note that the spaces Es0 and Eu0 remain invariant under the flow Φ. Moreover, Φ
decays exponentially for σ > τ on Es0 and for σ < τ on Eu0 . In particular, hyperbolic,
autonomous, linear ODEs admit exponential dichotomies.

For non-autonomous, linear ODEs, we need the splitting (1.3.58) to depend on the
base time τ ∈ R. In particular, we say that the linear ODE

du
dσ (σ) = A(σ)u(σ) (1.3.59)

admits exponential dichotomies on an interval I ∈ {R,R−R+} if the following properties
are satisfied.

• There exist projection operators {P (τ)}τ∈I on CM which commute with the evo-
lution Φ(σ, τ).

• The restricted evolutions Φ(σ, τ)P (τ) and Φ(σ, τ)(I − P (τ)) decay exponentially
for σ > τ and for σ < τ respectively.
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In particular, we have the exponential splitting of the state space CM into the range
of P (τ) and the kernel of P (τ). From this definition, we see that if a system admits
exponential dichotomies on an interval I ∈ {R,R−R+} then each solution on I can
be decomposed in two parts that decay exponentially in forward and backward time
respectively.

Exponential dichotomies are closely related to the Fredholm properties of the cor-
responding linear operators. In particular, we consider the operator

Λ : H1(R;CM ) → L2(R;CM ),

(Λu)(σ) = du
dσ (σ)−A(σ)u(σ).

(1.3.60)

Then it is well-known that the operator Λ is a Fredholm operator if and only if the
system (1.3.59) admits exponential dichotomies on R− and R+. In addition, Λ is in-
vertible if and only if (1.3.59) admits exponential dichotomies on R. We refer to the
review by Sandstede [147] for more details.

A very powerful and useful result is the so-called roughness theorem, see [45, Chapter
4]. Informally, this result states that exponential dichotomies are preserved when a
small perturbation is added to the system. For example, let A be a hyperbolic M ×
M matrix and let B(σ) be a bounded collection of M × M matrices which depend
continuously on σ. Then the roughness theorem yields that the system

du
dσ (σ) = Au(σ) + δB(σ)u(σ) (1.3.61)

admits exponential dichotomies on R when δ > 0 is sufficiently small. Hence, we can
conclude that the corresponding linear operator Λ from (1.3.60) is invertible! This
means that the inhomogeneous ODE

du
dσ (σ) = Au(σ) + δB(σ)u(σ) + f(σ) (1.3.62)

has a unique solution u ∈ H1(R;C) for any function f ∈ L2(R;C). We emphasize that
these powerful results can be derived with hardly any assumptions on the matrices B(σ).

For linear MFDEs such as (1.3.3), a few major complications turn up. First, the
space C is no longer sufficient as a state space. Indeed, for determining u′(0) in (1.3.3)
we need to specify the behaviour of u on the entire interval [−1, 1]. As such, one usually
takes Cb([−1, 1];C) as a state space. The second major complication is that MFDEs
are typically ill-posed. That is, given an initial segment there may not be an extension
of that segment that solves the MFDE, or such an extension may not be unique. As
such, there is no equivalent of the evolution operator Φ that we defined for ODEs.

These complications were solved simultaneously and independently by Mallet-Paret
and Verduyn Lunel [133] and by Härterich, Scheel and Sandstede [96]. We will fo-
cus on the former approach. Mallet-Paret and Verduyn Lunel showed that for linear,
asymptotically hyperbolic MFDEs such as (1.3.3) we have the splitting

Cb([−1, 1];C) = P (τ) +Q(τ) + Γ(τ). (1.3.63)
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Figure 1.7: Visual representation of the splitting Cb([−1, 1];C) = P (0) ⊕ Q(0) for linear
MFDEs.

Here P (τ) are the initial segments, centered around τ ∈ R, which can be extended to
solutions of (1.3.3) on (−∞, τ ], while Q(τ) are the initial segments that can be extended
to solutions of (1.3.3) on [τ,∞); see Figure 1.7. One of the main results of [133] is that
the extensions of the initial segments in P (τ) and Q(τ) decay exponentially as ξ → −∞
and as ξ →∞ respectively. Moreover, writing B(τ) = P (τ) ∩Q(τ) for those segments
that can be extended to full solutions of (1.3.3), we can divide the space B(τ) out of
P (τ) to turn (1.3.63) into a direct sum. Finally, the space Γ(τ) is finite dimensional
and can be made explicit using the so-called Hale inner product [91]. For the linearized
Nagumo MFDE (1.3.3), this Hale inner product takes the form

〈ψ, φ〉τ = ψ(0)φ(0) +
0∫
−1

ψ(s+ 1)φ(s)ds−
1∫
0

ψ(s− 1)φ(s)ds (1.3.64)

for φ, ψ ∈ Cb([−1, 1];C). Indeed, the space Γ(τ) from (1.3.63) can be classified by the
identity

P (τ) +Q(τ) = {φ ∈ Cb([−1, 1];C) : 〈b(τ + ·), φ〉τ = 0 for all b ∈ ker(Λ∗)},
(1.3.65)

where we recall the operator Λ∗ from (1.3.16).

There are two potential concerns that can arise to impact the usefulness of the
identity (1.3.65). First, there may be nonzero kernel elements b ∈ ker(Λ∗) that vanish
on the relevant interval [τ − 1, τ + 1]. In that case, we have 〈b(τ + ·), φ〉τ = 0 for
any function φ. Second, the Hale inner product may be degenerate, in the sense that
there exists a nonzero function ψ for which 〈ψ, φ〉τ = 0 for any function φ. If both
situations do not occur, then the dimension of the space Γ(τ) can easily be determined
to be the dimension of the kernel ker(Λ∗). However, if either one of these situations
occurs, we can no longer compute this dimension. Luckily, Mallet-Paret and Verduyn
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Lunel showed that both situations cannot occur if the coefficients corresponding to the
largest and smallest shifts are atomic, i.e. invertible on appropriate time-intervals. This
is clearly the case for the system (1.3.3).

Exponential dichotomies for MFDEs with infinite-range interactions We
extended the results by Mallet-Paret and Verduyn Lunel to include linear MFDEs such
as the linearization of the system (1.1.20), which is given by

chu
′(ξ) =

∞∑
k=1

αk
[
u(ξ + kh) + u(ξ − kh)− 2u(ξ)

]
+ gu(uh(ξ); r)u(ξ). (1.3.66)

To ensure that the Fredholm theory developed by Faye and Scheel in [69] can be used,
we assume that the coefficients {αk}k≥1 decay exponentially. For the system (1.3.66)
the appropriate state space is the space Cb(R;C). Since the system (1.3.66) is asymp-
totically hyperbolic, we have the splitting

Cb(R;C) = P (τ) +Q(τ) + Γ(τ). (1.3.67)

As before, the space P (τ) contains those initial segments, centered around τ ∈ R, which
can be extended to solutions of (1.3.66) on (−∞, τ ], while Q(τ) are those segments that
can be extended to solutions of (1.3.66) on [τ,∞). However, extending is not really the
appropriate word, since the initial segments are already defined on the entire line. In
addition, the segments in P (τ) decay exponentially as ξ → −∞ and those in Q(τ) decay
exponentially as ξ →∞. Moreover, dividing out the solution space B(τ) = P (τ)∩Q(τ)
from P (τ) turns (1.3.67) into a direct sum. Finally, we regain the identity

P (τ) +Q(τ) = {φ ∈ Cb(R;C) : 〈b(τ + ·), φ〉τ = 0 for all b ∈ ker(Λ∗)}, (1.3.68)

where 〈·, ·〉τ is the Hale inner product.

However, the degeneracy issues that were discussed previously are much harder to
solve for systems such as (1.3.66). Indeed, the atomicity condition Mallet-Paret and
Verduyn Lunel used to exclude these degeneracies explicitly references the largest and
the smallest shift. We formulate several new conditions on the coefficients which can,
separately, be used to rule out degeneracies. In particular, for the system (1.3.66) one
of these conditions entails that the coefficients {αk}k≥1 should be cyclic with respect
to the backward shift operator on `2(N;R). That is, the set of sequences {αk}k≥N for
N ≥ 1 should span a dense subspace of `2(N;R). This condition is, for example, satis-
fied if the coefficients decay like a Gaussian. However, this condition is not satisfied if
αk = exp(−k) for each k ≥ 1, since in that case we have {αk}k≥N is a scalar multiple
of {αk}k≥1 for each N ≥ 1.

If the coefficients {αk}k≥1 of the the system (1.3.66) are positive, we can merely
show that the Hale inner product is nondegenerate for kernel elements of the adjoint
operator. That is, we can show that if 〈b(τ + ·), φ〉τ = 0 for all b ∈ ker(Λ∗), we must
have φ = 0. In particular, if αk = exp(−k) for k ≥ 1, we explicitly construct a nonzero
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function ψ which has 〈ψ, φ〉τ = 0 for all functions φ. Luckily, the nondegeneracy for
kernel elements is sufficient to compute the dimension of the space Γ(τ).


