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Dr. Grégory Faye Université Toulouse III – Paul Sabatier
Prof. dr. Erik Van Vleck University of Kansas
Prof. dr. Frank van der Duijn Schouten
Prof. dr. Roeland Merks

c© Willem Schouten-Straatman, 2021
Print: Haveka — www.haveka.nl

Front Cover:
Whitehoune / stock.adobe.com

This work was supported by the Netherlands Organisation for Scientific Research
(NWO), grant 639.032.612.



Contents

1 Introduction 1
1.1 Scalar LDEs and MFDEs . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The FPUT lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 The Nagumo equation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The FitzHugh-Nagumo system . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Linear Fredholm theory . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 The spectral convergence method . . . . . . . . . . . . . . . . . . 16
1.3.3 Exponential dichotomies . . . . . . . . . . . . . . . . . . . . . . . 24

2 Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo
equation with infinite-range interactions 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 The singular perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 Proof of Proposition 2.3.4 . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Existence of pulse solutions . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5 The point and essential spectrum . . . . . . . . . . . . . . . . . . . . . . 65
2.6 The resolvent set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.7 Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.7.1 Construction of the Green’s function . . . . . . . . . . . . . . . . 87
2.7.2 Meromorphic expansion of Gλ . . . . . . . . . . . . . . . . . . . 96
2.7.3 Decomposition into stable and center modes . . . . . . . . . . . . 105

2.8 Nonlinear stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3 Travelling waves for spatially discrete systems of FitzHugh-Nagumo
type with periodic coefficients 133
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.3 The limiting system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.3.1 Properties of Lo . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.4 Transfer of Fredholm properties . . . . . . . . . . . . . . . . . . . . . . . 149

3



4 CONTENTS

3.4.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.4.2 Proof of Proposition 3.4.7 . . . . . . . . . . . . . . . . . . . . . . 156

3.5 Existence of travelling waves . . . . . . . . . . . . . . . . . . . . . . . . 164
3.6 Stability of travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . 171

3.6.1 The operator Lε . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.6.2 Spectral stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4 Travelling wave solutions for fully discrete FitzHugh-Nagumo type
equations with infinite-range interactions 179
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.2.1 The spatially discrete system . . . . . . . . . . . . . . . . . . . . 187
4.2.2 Spatially discrete travelling waves . . . . . . . . . . . . . . . . . 188
4.2.3 The fully discrete system . . . . . . . . . . . . . . . . . . . . . . 190
4.2.4 Nonuniqueness and numerical examples . . . . . . . . . . . . . . 193

4.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.4 The limiting system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.5 Linear theory for ∆t→ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.5.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.5.2 Spectral convergence . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.5.3 Exponential decay . . . . . . . . . . . . . . . . . . . . . . . . . . 213

4.6 Proof of main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.6.1 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . 219
4.6.2 Local uniqueness of solutions . . . . . . . . . . . . . . . . . . . . 227

4.A Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

5 Exponential dichotomies for nonlocal differential operators with infinite-
range interactions 239
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
5.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

5.2.1 State spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
5.2.2 Exponential dichotomies on R . . . . . . . . . . . . . . . . . . . . 252
5.2.3 Exponential dichotomies on half-lines . . . . . . . . . . . . . . . 255

5.3 The existence of exponential dichotomies . . . . . . . . . . . . . . . . . . 256
5.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5.3.2 Exponential decay . . . . . . . . . . . . . . . . . . . . . . . . . . 259
5.3.3 The restriction operators π+ and π− . . . . . . . . . . . . . . . . 265
5.3.4 Fundamental properties of the Hale inner product . . . . . . . . 267
5.3.5 Exponential splitting of the state space X . . . . . . . . . . . . . 271

5.4 Fredholm properties of the projections ΠP̂ and ΠQ̂ . . . . . . . . . . . . 274
5.5 Exponential dichotomies on half-lines . . . . . . . . . . . . . . . . . . . . 277

5.5.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
5.5.2 Construction of Y(τ) . . . . . . . . . . . . . . . . . . . . . . . . . 280
5.5.3 Exponential decay . . . . . . . . . . . . . . . . . . . . . . . . . . 282
5.5.4 Projection operators . . . . . . . . . . . . . . . . . . . . . . . . . 286

5.6 Degeneracies and their avoidance . . . . . . . . . . . . . . . . . . . . . . 289



5.6.1 Structural conditions . . . . . . . . . . . . . . . . . . . . . . . . . 290
5.6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
5.6.3 (Co)-dimension counting . . . . . . . . . . . . . . . . . . . . . . . 300
5.6.4 Cyclic coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
5.6.5 Nondegeneracy of the Hale inner product . . . . . . . . . . . . . 304
5.6.6 The nontriviality condition (HKer) . . . . . . . . . . . . . . . . . 309

6 Parameter-dependent exponential dichotomies for nonlocal differen-
tial operators 311
6.1 Introduction and main result . . . . . . . . . . . . . . . . . . . . . . . . 311
6.2 One-sided exponential weights . . . . . . . . . . . . . . . . . . . . . . . . 313
6.3 Construction of exponential splittings . . . . . . . . . . . . . . . . . . . 318

Bibliography 329

Samenvatting 343

Dankwoord 349

Curriculum Vitae 351



6 CONTENTS



Chapter 1

Introduction

Many systems in nature have an underlying spatially discrete structure, which greatly
influences their dynamical behaviour. Often, this broken translational and rotational
symmetry gives rise to interesting and complex behaviour, which is not present for
spatially homogeneous systems. For several systems, this spatially discrete structure is
directly visible. For example, one can think of the movement of domain walls [53] or
dislocations [35] through crystals. However, the spatially discrete structure can also be
more hidden. In particular, let us consider the propagation of electrical signals through
nerve fibres. It is well-known that these signals can only move at appropriate speeds
if the nerve fibres are insulated by a meylin coating. This coating admits regularly
spaced gaps at the so-called nodes of Ranvier [143], see Figure 1.1. The signal moves
fast through these coated regions, but loses strength rapidly. In the nodes, the signal
moves much slower, while it recovers strength. In particular, the signal appears to hop
from one node to the next. This phenomenon is known as saltatory conduction [127].

In many of these processes in nature, the propagation of fixed structures through
space and time plays a crucial role. As is the case for spatially continuous systems,
travelling waves form the basic building blocks for the complex behaviour and patterns
spatially discrete systems can exhibit. Travelling wave solutions have a fixed shape,
called the wave profile, and travel through time and space with a fixed wavespeed. The
propagation of electrical signals through nerve fibers is a key example of the significance
of the study of travelling waves in spatially discrete systems.

In §1.1, we further highlight a few of these discrete systems and discuss the mathe-
matical models that are used to describe their behaviour. In §1.2, we focus entirely on
the FitzHugh-Nagumo system, which is used to model the signal propagation through
nerve fibres and is the main equation under consideration in this thesis. Finally, we
elaborate on the most important mathematical techniques that are used in the analysis
of our systems in §1.3.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Simplified representation of the meylin coating and nodes of Ranvier in a nerve
axon.

1.1 Scalar LDEs and MFDEs

For systems such as those discussed above, it is essential to incorporate the spatially
discrete structure into the models that aim to describe their behaviour. For this pur-
pose, lattice differential equations (LDEs) form a natural class of systems to model
systems of this type. Indeed, let us consider an infinite chain of particles, indexed by
the one-dimensional lattice j ∈ Z. For the jth particle, we are interested how a specific
quantity uj , for example displacement or electrical potential, evolves in time. Let us
assume, for now, that the rate of change of the quantity uj is only influenced directly by
itself and its nearest neighbours uj+1 and uj−1. That is, the evolution of the variables
uj for j ∈ Z is given by the system of equations

u̇j(t) = f
(
uj+1(t), uj−1(t), uj(t)

)
(1.1.1)

for some function f . We note that the system (1.1.1) is, in fact, a collection of infinitely
many, coupled ordinary differential equations (ODEs).

For systems such as (1.1.1), we are mainly interested in travelling wave solutions.
Typically, this means that we aim to find a solution {uj}j∈Z to the system (1.1.1) that
takes the form

uj(t) = u0(j + c0t), (1.1.2)

where u0 is the wave profile and c0 is the wavespeed. Usually, an assumed shape of the
solution, called an Ansatz, such as (1.1.2) is accompanied by boundary conditions of
the form

lim
ξ→−∞

u0(ξ) = u−, lim
ξ→∞

u0(ξ) = u+. (1.1.3)

If u− = u+ in (1.1.3), we often refer to the travelling wave as a travelling pulse, while
otherwise it is known as a travelling front. In order to establish whether the system
(1.1.1) admits a travelling wave solution, we need to substitute the Ansatz (1.1.2) into
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the LDE (1.1.1) and solve the resulting system. In particular, this procedure yields a
so-called functional differential equation of mixed type (MFDE), which is given by

c0u
′
0(ξ) = f

(
u0(ξ + 1), u0(ξ − 1), u0(ξ)

)
(1.1.4)

in which ξ = j + c0t. The ‘mixed type’ in MFDE refers to the fact that it contains
both advanced (forward) and retarded (backward) shifts. The MFDE (1.1.4) is called
the travelling wave equation for the LDE (1.1.1).

LDEs form a relatively young field of interest for mathematicians. In the applied
literature, however, LDEs have appeared significantly more frequently. For systems
with an inherent discrete structure, LDEs can be seen as the natural replacement for
partial differential equations (PDEs). LDEs can both arise as a discretisation of a PDE
or as a system that has no direct spatially continuous equivalent. LDEs have been
shown to display unexpected and complex dynamical behaviour. We will illustrate this
behaviour with a few prominent examples.

1.1.1 The FPUT lattice

The Fermi-Pasta-Ulam-Tsingou (FPUT) lattice is an infinite chain of particles, which
are coupled by identical springs to their neighbours. This system is a generalization of
a system with finitely many particles, which was studied numerically in [49, 72]. The
corresponding FPUT LDE aims to capture the dynamical behaviour of position of these
particles. When the particles are identical, the lattice is called a monoatomic lattice.
In this case, we can derive from Newton’s second law that the FPUT LDE is given by

üj = F (uj+1 − uj)− F (uj − uj−1), (1.1.5)

where the function F represents the spring force. The existence of solitary travelling
wave solutions for the system (1.1.5), i.e. travelling wave solutions of which the wave
profile decays exponentially, has been shown in [77–81].

When the particles are not identical, these solitary travelling wave solutions no
longer capture the behaviour of the particles. In particular, let us consider the diatomic
lattice, i.e. when the mass of the particles alternates between the two values 1 and
m 6= 1, see Figure 1.2. The diatomic FPUT LDE has been studied in various parameter
regimes, such as the small mass m� 1 regime [100], the equal mass m ≈ 1 regime [66]
and the long wave regime [67]. Travelling wave solutions for these systems are usually
constructed as perturbations of travelling wave solutions for a monoatomic lattice. That
it, the travelling wave solution is constructed as the sum of the monoatomic wave and
another part, which is small in terms of the relevant parameter regime. For the small
mass and long wave regimes, the solitary travelling waves are singularly perturbed into
a travelling wave profile which asymptotes into a periodic solution with a very small
amplitude. The amplitude of these “ripples” is small beyond all orders in the relevant
parameter. This category of travelling waves is often referred to as nanopterons, see [21]
for an interesting overview. For the near-equal mass regime, the travelling wave profile
also asymptotes to a periodic solution, but the amplitude of this periodic solution is
only algebraically small. Such a travelling wave profile is called a micropteron.
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Figure 1.2: Illustration of the diatomic FPUT lattice with alternating particles with masses 1
and m.

1.1.2 The Nagumo equation

The Nagumo or Allen-Cahn PDE is given by

∂u
∂t (x, t) = ∂2u

∂x2 (x, t) + g(u(x, t); r). (1.1.6)

Here the bistable nonlinearity g is, typically, given by the cubic polynomial g(u; r) =
u(1−u)(u−r) with 0 < r < 1. The Nagumo PDE has been commonly used as a model
where two biological species or material states compete in a spatial domain [3]. Due to
its relative simplicity, the PDE (1.1.6) has served as a prototype to understand basic
concepts in the theory of reaction-diffusion systems. This system is known to admit
travelling front solutions of the form

u(x, t) = Φ(x+ ct), lim
ξ→−∞

Φ(ξ) = 0, lim
ξ→∞

Φ(ξ) = 1, (1.1.7)

which can be constructed explicitly. This travelling front solution satisfies the travelling
wave ODE

cΦ′(ξ) = Φ′′(ξ) + g(Φ(ξ); r). (1.1.8)

In addition, there is a one-to-one correspondence between the wavespeed c and the pa-
rameter r. Due to the symmetry of the system, travelling waves are pinned for r = 1

2 ,
i.e. the wavespeed c is 0, while the waves move for r 6= 1

2 . It is well-known that these
travelling wave solutions are stable under perturbations that do not need to be small
[73].

The natural way to discretize the Nagumo PDE (1.1.6) is to consider the LDE

u̇j(t) = d
[
uj+1(t) + uj−1(t)− 2uj(t)

]
+ g(uj(t); r), (1.1.9)

which we will refer to as the Nagumo LDE. There are many similarities and differences
between the PDE (1.1.6) and the LDE (1.1.9). Although the LDE (1.1.9) is no longer
explicitly solvable, it is well-known that it admits travelling wave solutions, which must,
hence, satisfy the travelling wave MFDE

cu′(ξ) = d
[
u(ξ + 1) + u(ξ − 1)− 2u(ξ)

]
+ g(u(ξ); r). (1.1.10)

In addition, for a given value of d > 0 the wavespeed c is uniquely determined by the
parameter r [39, 131]. Usually, the comparison principle is used to prove these types
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of results. The comparison principle states, informally, that a subsolution of an elliptic
or parabolic equation stays below a supersolution. The comparison principle can be
applied to both the PDE (1.1.6) and the LDE (1.1.9).

However, the relation between the wavespeed c and the parameter r is no longer
one-to-one. In particular, when d > 0 is sufficiently small there is a nontrivial interval
r ∈ [r−, r+] for which the LDE (1.1.9) admits travelling wave solutions with wavespeed
c = 0. This phenomenon is known as propagation failure and has been shown to be a
common feature of discrete systems [99]. However, we do emphasize that for c 6= 0 the
r(c) relation remains single-valued.

There are many possible extensions and generalizations to the Nagumo LDE (1.1.9).
Here, we will discuss a few results to showcase the rich behaviour of the Nagumo LDE.
A more comprehensive overview can be found in [105].

Bichromatic waves. In contrast to the PDE (1.1.6), the LDE (1.1.9) has infinitely
many equilibria. Let us consider equilibria of the form

uj =

ue if j is even,

uo if j is odd.
(1.1.11)

Such a 2-periodic equilibrium must satisfy the system of equations

0 = 2d(ue − uo) + g(uo; r),

0 = 2d(uo − ue) + g(ue; r).
(1.1.12)

For d = 0, the system (1.1.12) decouples and immediately yields the solutions ue, uo ∈
{0, r, 1}. In particular, the system (1.1.12) has 9 distinct solutions for d = 0. As such,
using the implicit function theorem, we can continue these 9 solutions for sufficiently
small d > 0 until these continuations start to intertwine. We say that a pair (ue, uo)
which satisfies (1.1.12) is of type w ∈ {0, r, 1}2 if it lies on the branch of the equilibrium
w of (1.1.12) for d = 0. We are mainly interested in equilibria of type w ∈ {0, 1}2, since
these equilibria are stable. In particular, let us write u01(r, d) for the solution of (1.1.12)
of type 01. Since the equilibrium u01(r, d) is stable, a so-called monotonic iteration
scheme [39] can be used to show that the LDE (1.1.9) admits so-called bichromotic
waves. That is, solutions of the form

uj(t) =

Φe(j + c01(r, d)t), if j is even,

Φo(j + c01(r, d)t), if j is odd
(1.1.13)

with boundary conditions

lim
ξ→−∞

(Φe,Φ0)(ξ) = (0, 0), lim
ξ→−∞

(Φe,Φ0)(ξ) = u01(r, d) (1.1.14)
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as long as d > 0 remains small enough. See also Figure 1.3. Let us write

d01(r) = sup{d > 0 : there exists an equilibrium of (1.1.12) of type 01},
(1.1.15)

so that bichromatic waves exist for 0 < d < d01(r). A more interesting, and delicate,
question is whether these bichromatic waves are pinned or if they are moving. In
particular, let us write

d01(r)∗ = sup{d > 0 : c01(r, d) = 0}. (1.1.16)

One of the main results of [106] is that, if r ∈ (0, 1) is sufficiently far away from 0, we
have the strict inequality

d01(r)∗ < d01(r). (1.1.17)

That is, the bichromatic wave is not pinned for values of d in the nontrivial interval(
d01(r)∗, d01(r)

)
. Related results can be found in [107, 159, 160, 162].

Figure 1.3: This bichromatic wave with waveprofiles Φe and Φo connects the homogeneous
state 0 to the heterogeneous state (ue, u0).

Infinite-range interactions. In [6], Bates, Chen and Chmaj considered a version
of the Nagumo LDE (1.1.9) which features infinite-range interactions. This system is
given by

u′j(t) = d
∞∑
k=1

αk
[
uj+k(t) + uj−k(t)− 2uj(t)

]
+ g(uj(t); r). (1.1.18)
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Writing d = 1
h2 , the system (1.1.18) can be seen as an infinite-range discretisation of

the Nagumo PDE (1.1.6) on a grid with spacing h > 0. By using the Ansatz

uj(t) = uh(hj + cht), (1.1.19)

the corresponding travelling wave equation is an MFDE which features infinite-range
interactions and is given by

chu
′
h(ξ) = 1

h2

∞∑
k=1

αk
[
uh(ξ + kh) + uh(ξ − kh)− 2uh(ξ)

]
+ g(uh(ξ); r). (1.1.20)

In order to make sure the discretised Laplacian still behaves like a Laplacian, the
authors impose the following limits on the grow of the coefficients {αk}k≥1

∞∑
k=1

|αk|k2 < ∞,
∞∑
k=1

αkk
2 = 1, (1.1.21)

together with the spectral bounds

∞∑
k=1

αk cos(kz) ≥ 0, for z ∈ [0, 2π]. (1.1.22)

In particular, upon defining the operator

(∆hφ)(ξ) = 1
h2

∞∑
k=1

αk
[
φ(ξ + kh) + φ(ξ − kh)− 2φ(ξ)

]
, (1.1.23)

we have the limit
lim
h↓0
‖∆hφ− φ′′‖L2(R;R) = 0 (1.1.24)

for sufficiently smooth and bounded functions φ as long as the conditions (1.1.21)-
(1.1.22) hold. Note that not all coefficients {αk}k≥1 need to be positive. In particular,
the comparison principle is not necessarily available for the system (1.1.18).

Due to the limit (1.1.24), Bates, Chen and Chmaj aimed to find travelling wave
solutions to the LDE (1.1.18) in the near-continuum regime h � 1. In particular,
the authors constructed travelling waves for (1.1.18) as perturbations of the travelling
waves for the PDE (1.1.6). However, the transition from the local second derivative
operator to the nonlocal infinite-range difference operator is highly singular. To resolve
this issue, the authors pioneered a method to lift certain properties of the continuous
system to the spatially discrete system. We will refer to this method as the spectral
convergence method. We will return to this method later in much more detail, as it
plays an essential role in this thesis.

The fully discrete Nagumo equation Even though the spatial coordinate is discre-
tised for LDEs, the temporal coordinate remains continuous. In [111], Hupkes and Van
Vleck considered temporal discretisations of the Nagumo LDE (1.1.9), or, equivalently,
spatial-temporal discretisations of the Nagumo PDE (1.1.6) in order to understand the
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impact of discretisation schemes on the solutions that these schemes aim to approxi-
mate. For the backward-Euler discretisation scheme, the corresponding evolution takes
the form

1
∆t [Uj(n∆t)− Uj((n− 1)∆t)] = d[Uj+1 + Uj−1 − 2Uj ](n∆t) + g(Uj(n∆t); r),

(1.1.25)
where we have n ∈ Z and ∆t > 0 is called the time-step. Note that the system (1.1.25)
is no longer a differential equation. The backward-Euler discretisation scheme is used
because of several useful stability properties. This discretisation scheme is, in fact, the
first of six so-called backwards differentiation formula (BDF) discretisation methods.

A travelling wave Ansatz for the system (1.1.25) with wavespeed c takes the form

Uj(n∆t) = Φ(j + nc∆t). (1.1.26)

Therefore, the corresponding travelling wave equation is given by

1
∆t

[
Φ(ξ)− Φ(ξ − c∆t)

]
= d

[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g(Φ(ξ); r). (1.1.27)

Something interesting should be noted: if c∆t is a rational number, then the domain
of the equation (1.1.27) can be restricted to a rational subset of the real line. This
restriction turns out to be a key ingredient to construct travelling wave solutions to the
system (1.1.25). Indeed, Hupkes and Van Vleck showed that, if M := (c∆t)−1 is ratio-
nal and sufficiently large, the system (1.1.25) admits travelling wave solutions. They
employed the restriction on the domain of (1.1.27) to establish an interpolation scheme
to link the system (1.1.27) to finitely many copies of the Nagumo MFDE (1.1.10).
Then, the authors used the previously mentioned spectral convergence method to lift
the Fredholm properties of this spatially discrete system to the fully discrete system.

There is an interesting nonuniqueness in the system (1.1.25). Indeed, the travelling
wave profile is constructed as a perturbation of the restriction of the original, contin-
uous wave profile Φ to the discrete domain. In particular, this means that for any
irrational phase shift ϑ, the profile that is obtained by perturbing off Φ(· + ϑ) could
potentially yield a different travelling wave solution to the system (1.1.25) with the
same parameter values, see Figure 1.4. However, this phase shift might change the
wavespeed. This nonuniqueness is not present for the Nagumo PDE (1.1.6) or LDE
(1.1.9).

In addition, Hupkes and Van Vleck showed that for the backward-Euler discretisa-
tion scheme the previously mentioned r(c) relation is multivalued, even for c 6= 0. This
is in major contrast to the spatially discrete setting. In this part of the analysis, the
authors relied heavily of the inclusion of the system (1.1.27) into an MFDE which ad-
mits a comparison principle. This is not possible for the other five BDF discretisation
schemes. To alleviate this, Hupkes and Van Vleck also provided numerical evidence
that the r(c) relation is multivalued for at least the second BDF discretisation scheme.
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Figure 1.4: The travelling wave profiles Φ and Φ(·+ ϑ), defined on the domain D, potentially
yield two different travelling wave solutions to the system (1.1.25) for the same parameter
values, but possible different wavespeed.

1.2 The FitzHugh-Nagumo system

Let us return to the propagation of electrical signals through nerve fibres. Naturally,
it is a challenge to find effective equations describing this behaviour. Initially, models
describing this behaviour did not take the discrete structure into account directly.
Based on experiments on giant squids, the first model was formulated in the 1950s and
consists of a system of four nonlinear equations, called the Hodgkin-Huxley equations
[98]. However, due to the high complexity of this system, an analytical approach to
understand the dynamical behaviour of this system turned out to be a major challenge.
Instead, in 1961, FitzHugh formulated a spatially homogeneous system to describe the
potential felt by a single point on the nerve axon as the signal travels by [74]. A few
years later, FitzHugh [76] and Nagumo [137] added a diffusion term to this system to
describe the dynamics on the full line. Indeed, they formulated what is now known as
the FitzHugh-Nagumo partial differential equation (PDE). This PDE is given by

∂u
∂t (x, t) = ∂2u

∂x2 (x, t) + g(u(x, t); r)− w(x, t),

∂w
∂t (x, t) = ρ

[
u(x, t)− γw(x, t)

]
.

(1.2.1)

In this system, the variable u(x, t) describes the potential felt on the space point x at
the time t, while w(x, t) describes a recovery component. The Nagumo PDE (1.1.6)
can be seen as a simplified version of the FitzHugh-Nagumo PDE (1.2.1). The bistable
nonlinearity g is, as before, given by the cubic polynomial g(u; r) = u(1 − u)(u − r).
In addition, ρ > 0 and γ > 0 are positive constants. As early as 1968 [75], FitzHugh
released a computer simulation which clearly shows that the system (1.2.1) admits
travelling pulse solutions, which resemble the spike signals found experimentally in the
nerve axon of the giant squid by Hodgkin and Huxley. As such, the FitzHugh-Nagumo
PDE is commonly used as a simplification of the Hodgkin-Huxley equations.

Mathematically, the FitzHugh-Nagumo PDE turned out to be a very interesting
equation due to the combination of the relative simplicity of its structure with the rich
behaviour of its dynamics. Indeed, the mathematical construction and analysis of the
travelling pulse solutions as observed by FitzHugh turned out to be a major challenge
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that is still on-going. In particular, let us set out to find a solution (u,w) to the system
(1.2.1) that takes the form

(u,w)(x, t) = (u0, w0)(x+ c0t), (1.2.2)

where u0 and w0 are the wave profiles and c0 is the wavespeed. The wave profiles u0

and w0 must satisfy the limits

lim
ξ→±∞

(u0, w0)(ξ) = (0, 0) (1.2.3)

to turn it into a pulse instead of merely a wave. We substitute the Ansatz (1.2.2) into
the PDE (1.2.1) to obtain the ODE

c0u
′
0(ξ) = u′′0(ξ) + g(u0(ξ); r)− w0(ξ),

c0w
′
0(ξ) = ρ

[
u0(ξ)− γw0(ξ)

]
,

(1.2.4)

where ξ = x + c0t. Travelling pulse solutions to the PDE (1.2.1) are homoclinic solu-
tions to the ODE (1.2.4).

Typically, the system (1.2.4) has been studied in the ρ � 1 regime. Then ρ ↓ 0
limit is singular, as substituting ρ = 0 in (1.2.4), effectively, yields a scalar equation,
instead of a system of equations. Moreover, if we, instead, first rescale the variable ξ in
(1.2.4) by ρ and then take the limit ρ ↓ 0, we obtain a different limiting system. The
first limiting system is called the fast limiting system, while the second is called the
slow limiting system. As such, the system (1.2.4) is a so-called fast-slow system. The
analysis of the system (1.2.4) in both ρ ↓ 0 limits has led to the discovery of many new
techniques in the field of singular perturbation theory. We refer to [118] for an inter-
esting overview of these techniques. A recent overview of the existence and stability of
pulse solutions for the PDE (1.2.1) can be found in [34]. Finally, we want to mention
that, recently, several results have been developed [92–94] for the existence and nonlin-
ear stability for pulse solutions of FitzHugh-Nagumo systems with added random noise.

However, all previously mentioned results feature the FitzHugh-Nagumo PDE (1.2.1).
Since this equation is spatially homogeneous, it does not directly take the discrete prop-
erties of the nerve axon it is aiming to simulate, into account. As such, it has been
proposed [123] to, instead, model the signal propagation through nerve fibres using a
FitzHugh-Nagumo LDE, which is given by the system

u′j(t) = 1
h2

[
uj+1(t) + uj−1(t)− 2uj(t)

]
+ g(uj(t); r)− wj(t),

w′j(t) = ρ
[
uj(t)− γwj(t)

]
.

(1.2.5)

The variables uj and wj now represent the potential felt and the recovery component
at the jth node respectively. We note that the LDE (1.2.5) can be obtained directly
from the PDE (1.2.1) by using a nearest neighbour discretisation of the Laplacian on
a grid with spatial distance h > 0. A travelling pulse solution to the LDE (1.2.5) now
takes the form

(uj , wj)(t) = (uh, wh)(hj + cht) (1.2.6)
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for some wave profiles uh and wh and wavespeed ch. Substituting the Ansatz (1.2.6)
into the LDE (1.2.5) yields the MFDE

chu
′
h(ξ) = 1

h2

[
uh(ξ + h) + uh(ξ − h)− 2uh(ξ)

]
+ g(uh(ξ); r)− wh(ξ),

chw
′
h(ξ) = ρ

[
uh(ξ)− γwh(ξ)

]
,

(1.2.7)

in which ξ = hj + c0t. We emphasize that, in contrast to the Nagumo system, the
FitzHugh-Nagumo PDE (1.2.1) and LDE (1.2.5) do not admit a comparison principle.

In [108, 109], Hupkes and Sandstede constructed travelling pulse solutions to the
system (1.2.5) and showed that these pulses are nonlinearly stable. They assumed that
they were in the parameter regime where the travelling front solution u for the corre-
sponding Nagumo LDE (1.1.9) has nonzero wavespeed. The main idea in [108, 109] is
to use what is known as Lin’s method to combine the travelling front u and a reflection
of this front u to obtain so-called quasi-front and quasi-back solutions, see Figure 1.5.
These quasi-front and quasi-back solutions have gaps in predetermined finite dimen-
sional spaces, which can be closed by choosing the wavespeed. The existence of these
finite dimensional spaces hinges on the existence of exponential dichotomies for the
linearization of the MFDE (1.1.10). Exponential dichotomies play an essential role in
this thesis and will be discussed in more detail later, see §1.3.3.

(a) (b)

Figure 1.5: Quasi-front (a) and quasi-back (b) solutions of the FitzHugh-Nagumo LDE. In
both cases, the function u− is defined on the interval (−∞, 1], while the function u+ is defined
on the interval [−1,∞). The difference u+ − u−, which is defined on the overlapping interval
[−1, 1], should be an element of a predetermined finite dimensional space. The construction of
such a space is provided by the existence of exponential dichotomies for linear MFDEs.

Infinite-range interactions In this thesis, we consider several extensions and gen-
eralizations of the FitzHugh-Nagumo LDE (1.2.5). Our first model arises in the study
of neural field models. Neural field models aim to describe the interactions and dy-
namics in large networks of neurons. These neurons interact with each other over large
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distances through the nerve fibres that connect them [15, 23, 24, 142]. Due to the
high complexity of these systems, it is a major challenge to find effective equations to
describe this dynamical behaviour. In [23, Eq. (3.31)], a model has been proposed that
features a FitzHugh-Nagumo type system with infinite-range interactions, which takes
the form

u̇j(t) = 1
h2

∞∑
k=1

αk
[
uj+k(t) + uj−k(t)− 2uj(t)

]
+ g(uj(t); r)− wj(t),

ẇj(t) = ρ
[
uj(t)− γwj(t)

]
.

(1.2.8)

Here the coefficients {αk}k≥1 should, at the very least, satisfy the conditions (1.1.21)-
(1.1.22) to ensure Laplace-like behaviour. The system (1.2.8) was first studied by Faye
and Scheel in [69]. They constructed travelling pulse solutions to the system (1.2.8)
under the assumption that the coefficients {αk}k≥1 decay exponentially. Since, at the
time of writing, exponential dichotomies for systems such as (1.2.8) were not available,
Faye and Scheel were forced to use a different approach than the one employed by Hup-
kes and Sandstede for the finite-range version (1.2.5). Indeed, Faye and Scheel used
a functional analytic approach to circumvent the use of a state space. However, they
did not establish the stability of the pulse solutions they found. In Chapter 2, we ex-
pand the previously mentioned spectral convergence method to establish the existence
and nonlinear stability of travelling pulse solutions to the system (1.2.8) in the near-
continuum regime h � 1. The stability of pulse solutions outside the near-continuum
regime remains an open problem. However, we expect that our results on the existence
of exponential dichotomies for MFDEs with infinite-range interactions in Chapters 5-6
are a sufficient theoretical foundation to, eventually, solve this open problem.

Spatial periodicity Recent experiments in optical nanoscopy [50, 51, 165] clearly
show that certain proteins in the cytoskeleton of nerve fibres are organised periodically.
In particular, this periodicity manifests itself at the nodes of Ranvier. As such, it is
natural to consider a spatially periodic version of the FitzHugh-Nagumo LDE (1.2.5).
This spatially periodic LDE takes the form

u̇j(t) = dj
[
uj+1(t) + uj−1(t)− 2uj(t)

]
+ g(uj(t); rj)− wj(t),

ẇj(t) = ρj
[
uj(t)− γjwj(t)

]
,

(1.2.9)

where the 2-periodic coefficients (dj , rj , ρj , γj) satisfy

(0,∞)× (0, 1)× (0, 1)× (0,∞) 3 (dj , rj , ρj , γj) =

{
(ε−2, ro, ρo, γo) for odd j,

(1, re, ρe, γe) for even j,
(1.2.10)

where 0 < ε � 1. In particular, we have a scale separation between the diffusion
coefficients 1 and ε−2. The system (1.2.9) does not have a clear continuum limit.
Nonetheless, we obtain the existence and nonlinear stability of travelling pulse solu-
tions to the system (1.2.9) in the ε � 1 regime by further developing the spectral
convergence method in Chapter 3.
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Temporal discretisations Finally in Chapter 4, inspired by the work of Hupkes and
Van Vleck [111] which was discussed previously, we consider temporal discretisations
of the LDE (1.2.5), using the six BDF discretisation schemes. For the backward-Euler
discretisation scheme, the corresponding evolution is given by

1
∆t [Uj(n∆t)− Uj((n− 1)∆t)] = d

[
Uj+1 + Uj−1 − 2Uj

]
(n∆t) + g(Uj(n∆t); r)

−Wj(n∆t),

1
∆t [Wj(n∆t)−Wj((n− 1)∆t)] = ρ[Uj(n∆t)− γWj(n∆t)],

(1.2.11)
for n ∈ Z and time-step ∆t > 0. We establish the existence of travelling pulse solutions
to the system (1.2.11) by carefully combining the different extensions to the spectral
convergence method from [111] and Chapters 2-3. The nonuniqueness of this travel-
ling wave solution, which was previously discussed for the Nagumo system (1.1.25), is
present here as well due to the possibility of an irrational phase shift. In addition, we are
interested in the r(c) relation for the system (1.2.11). However, the analytical approach
employed by Hupkes and Van Vleck for the Nagumo system (1.1.25) relied heavily on
the comparison principle, which is not available for FitzHugh-Nagumo systems. In-
stead, we use numerical simulations to show that the r(c) relation is multivalued for
the system (1.2.11), even for c 6= 0. This is in major contrast to the FitzHugh-Nagumo
PDE (1.2.1) and LDE (1.2.5).

1.3 Techniques

The main techniques to analyze our main systems (1.2.8), (1.2.9) and (1.2.11) fall into
two main categories: those that feature the spectral convergence method and those that
feature exponential dichotomies. Both of these techniques rely heavily on the Fredholm
theory for linear MFDEs. In the remaining part of this chapter, we will discuss these
techniques in more detail and explain how they can be applied to our main systems.

1.3.1 Linear Fredholm theory

In the construction and analysis of travelling waves, it is usually essential to understand
the underlying linear system. Often, it is useful to consider the Fredholm properties of
the corresponding linear operators. If X and Y are normed vector spaces, then we say
that a linear operator T : X → Y is a Fredholm operator if the following properties are
satisfied.

(i) The kernel satisfies dim
(
ker(T )

)
<∞.

(ii) The range satisfies codim
(
Range(T )

)
<∞.

(iii) The range Range(T ) is closed.

When T is a Fredholm operator, the Fredholm index of T is given by

Ind(T ) = dim
(
ker(T )

)
− codim

(
Range(T )

)
. (1.3.1)
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Let us now consider the linear MFDE given by

cu′(ξ) = d
[
u(ξ + 1) + u(ξ − 1)− 2u(ξ)

]
+ gu(u(ξ); r)u(ξ), (1.3.2)

which arises as the linearization of the Nagumo travelling wave MFDE (1.1.10) around
a travelling wave solution u. For clarity, we set d = c = 1. We rewrite this MFDE in
the more suggestive form

u′(ξ) = u(ξ − 1) +
[
gu(u(ξ); r)− 2

]
u(ξ + 0) + u(ξ + 1). (1.3.3)

The scalar functions 1, gu(u(ξ); r)−2 and 1 are called the coefficients of the systems and
the real numbers −1, 0 and 1 are called the shifts. The linear operator corresponding
to the system (1.3.3) is given by

(Λu)(ξ) = u′(ξ)− u(ξ − 1)−
[
gu(u(ξ); r)− 2

]
u(ξ + 0)− u(ξ + 1). (1.3.4)

It is not immediately clear on which space the operator Λ from (1.3.4) is posed and
how to determine the Fredholm properties of this operator. It turns out to be a natural
choice to consider the Sobolev spaces

W 1,p(R;C) = {u ∈ Lp(R;C) : u′ ∈ Lp(R;C)} (1.3.5)

for 1 ≤ p ≤ ∞, equipped with the Sobolev norm

‖u‖pW 1,p(R;C) = ‖u‖pLp(R;C) + ‖u′‖pLp(R;C). (1.3.6)

In this definition, we use u′ to denote the weak derivative of a function u. For the
space W 1,2(R;C) we often use the shorthand H1(R;C). Using this definition, we view
Λ from (1.3.4) as an operator

Λ : W 1,p(R;C) → Lp(R;C). (1.3.7)

The works by Rustichini [144, 145] and Mallet-Paret [130] contain the main Fredholm
theory for this operator Λ. We recall that the travelling front u satisfies the limits

lim
ξ→−∞

u(ξ) = 0, lim
ξ→∞

u(ξ) = 1 (1.3.8)

and that gu(0; r) = −r and gu(1; r) = r − 1. Hence, it is natural—and it will also turn
out to be useful—to consider the systems

u′(ξ) = u(ξ − 1) + lim
ξ′→−∞

[
gu(u(ξ′); r)− 2

]
u(ξ + 0) + u(ξ + 1)

= u(ξ − 1) +
[
− r − 2

]
u(ξ + 0) + u(ξ + 1)

(1.3.9)

and

u′(ξ) = u(ξ − 1) + lim
ξ′→∞

[
gu(u(ξ′); r)− 2

]
u(ξ + 0) + u(ξ + 1)

= u(ξ − 1) +
[
r − 1− 2

]
u(ξ + 0) + u(ξ + 1).

(1.3.10)
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We refer to the systems (1.3.9) and (1.3.10) as the limiting systems of the MFDE
(1.3.3) at −∞ and ∞ respectively. We note that the systems (1.3.9) and (1.3.10) are
autonomous, since their coefficients do not depend on ξ. Finding a solution to (1.3.9)
or (1.3.10) of the form ezξw is equivalent to finding a root of the so-called characteristic
function

∆−(z) = z − e−z −
[
− r − 2

]
e0·z − ez,

∆+(z) = z − e−z −
[
(r − 1)− 2

]
e0·z − ez,

(1.3.11)

that is, finding z ∈ C for which ∆−(z) = 0 and ∆+(z) = 0 respectively. Such a
scalar z is referred to as a spatial eigenvalue. We say that the autonomous system
(1.3.9) or (1.3.10) is hyperbolic if it has no spatial eigenvalues on the imaginary axis,
i.e. ∆−(iy) 6= 0 respectively ∆+(iy) 6= 0 for all y ∈ R. A short computation shows that
this is, indeed, the case for the systems (1.3.9) and (1.3.10). Systems with this property
are called asymptotically hyperbolic. We write Λ− and Λ+ for the linear operators
corresponding to the systems (1.3.9) and (1.3.10) respectively, which are given by

(Λ−u)(ξ) = u′(ξ)− u(ξ − 1)−
[
− r − 2

]
u(ξ + 0)− u(ξ + 1),

(Λ+u)(ξ) = u′(ξ)− u(ξ − 1)−
[
(r − 1)− 2

]
u(ξ + 0)− u(ξ + 1).

(1.3.12)

It turns out that, since the systems (1.3.9) and (1.3.10) are autonomous and hyperbolic,
the operators Λ− and Λ+ are invertible as operators from W 1,p(R;C) to Lp(R;C),
independently of 1 ≤ p ≤ ∞. In fact, the inverse operators are given explicitly by the
Green’s function, in the sense that

(Λ−1
± u)(ξ) =

∫∞
−∞G±(ξ − η)u(η)dη, (1.3.13)

where the Green’s functions G± are given by

G±(ξ) = 1
2π

∫∞
−∞ eiηξ

(
∆±(iη)

)−1
dη. (1.3.14)

A non-autonomous system, however, is not necessarily invertible. For example, the
derivative u′ is a kernel element of the system (1.3.3), which can be seen by differenti-
ating the system (1.1.10). The results in [130] show that linear operators corresponding
to asymptotically hyperbolic systems are automatically Fredholm operators as opera-
tors from W 1,p(R;C) to Lp(R;C). In addition, the Fredholm index of such an operator
Λ is independent of 1 ≤ p ≤ ∞ and the range of Λ can be made explicit by writing

Range(Λ) =
{
u ∈ Lp(R;C) :

∫∞
−∞ u(ξ)v(ξ) = 0 for all v ∈ ker(Λ∗)

}
. (1.3.15)

Here we have introduced the adjoint operator Λ∗. The operator Λ∗ : W 1,p(R;C) →
Lp(R;C) is given by

(Λ∗u)(ξ) = −u′(ξ)− u(ξ − (−1))−
[
gu(u(ξ); r)− 2

]
u(ξ − 0)− u(ξ − 1)

(1.3.16)
and is called the adjoint operator because it satisfies the identity

〈Λu, v〉L2(R;C) = 〈u,Λ∗v〉L2(R;C) (1.3.17)
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for any pair u, v ∈ H1(R;C).

If there exists a homotopy between the systems at −∞ and ∞ and none of the
eigenvalues crosses the imaginary axis during this homotopy, then the spectral flow
theorem [130, Thm. C] allows us to conclude that the Fredholm index of the corre-
sponding linear operator is, in fact, 0. Such a homotopy is trivially available if the
systems at −∞ and∞ coincide, for example when linearizing around a travelling pulse
solution. However, even in such a setting it remains a nontrivial challenge to determine
the dimension of the kernel of the linear operator, which is necessary, for example, when
determining the spectrum of the linear operator. In that case, other techniques, such
as appropriate limits or comparison principles are needed to understand these linear
operators in full detail.

For the system (1.3.3), this homotopy can be made explicit. For 0 ≤ ρ ≤ 1, we can
consider the linear operator

Λρ = ρΛ(−∞) + (1− ρ)Λ(∞). (1.3.18)

The corresponding characteristic function is given by

∆ρ(z) = z − e−z − [ρ(−r) + (1− ρ)(r − 1)− 2]e0·z − ez, (1.3.19)

which can easily be seen to have no roots on the imaginary axis. In particular, the
system corresponding to the operator Λρ is hyperbolic for each 0 ≤ ρ ≤ 1, which means
that the map ρ 7→ Λρ is a homotopy between the systems at −∞ and ∞. In partic-
ular, the operator Λ from (1.3.4) is a Fredholm operator with Fredholm index 0. We
already observed that the derivative u′ is a kernel element of Λ. By the definition of
the Fredholm index, the codimension of Range(Λ) in Lp(R;C) must be at least one.
In addition, the identity (1.3.15) yields that the dimension of ker(Λ∗) must also be at
least one. In particular, we have established several strong results on the operator Λ
and its adjoint Λ∗ using relatively simple computations.

We remark that the results in [131] show that, in this case, the kernels ker(Λ) and
ker(Λ∗) are, in fact, precisely one-dimensional on account of the comparison principle.

The Fredholm theory as described above has been extended by Faye and Scheel [68]
to include MFDEs which feature infinite range interactions, such as the linearization
of the system (1.1.20). However, their restrictions on the coefficients were more severe
than those featured in (1.1.21)-(1.1.22). In particular, Faye and Scheel required the
coefficients to decay exponentially.

1.3.2 The spectral convergence method

As was stated previously, the spectral convergence method was pioneered by Bates,
Chen and Chmaj in [6] in order to construct travelling wave solutions to the Nagumo
LDE (1.1.18) with infinite-range interactions. One of the main advantages of this
method is that it circumvents the use of a comparison principle or exponential di-
chotomies. As a consequence, it can be applied to a broader class of coefficients than
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many other techniques.

To illustrate the spectral convergence method, we focus on its original application
to the Nagumo LDE (1.1.18) by following [6]. We fix, for now, a small constant h > 0.
The main goal of the spectral convergence method is to transfer the known Fredholm
properties of the linearization of the continuous system to an appropiate linearization
of the discrete system. We need to be a bit careful at this point. Since the end goal
is to construct a travelling wave solution to the LDE (1.1.18), we cannot consider a
system such as (1.3.2), since it is impossible to linearize around a solution that has not
been found yet. Instead, we let u0 be a travelling front solution of the PDE (1.1.6) with
wavespeed c0 and consider the linearizations of both the ODE (1.1.8) and the MFDE
(1.1.20) around the wave u0. These linearizations yield the linear operators

(L0u)(ξ) = c0u
′(ξ)− u′′(ξ)− gu(u0(ξ); r)u(ξ) (1.3.20)

for the ODE (1.1.8) and

(Lhu)(ξ) = c0u
′(ξ)−∆hu(ξ)− gu(u0(ξ); r)u(ξ) (1.3.21)

for the MFDE (1.1.20). Here we recall that the operator ∆h is given by (1.1.23).
First, we need to specify on which spaces the operators L0 and Lh are posed, which
immediately brings us to the first major complication (and, therefore, strength of the
spectral convergence method). The operator Lh can, and should, clearly be viewed as
an operator

Lh : H1(R;R) → L2(R;R). (1.3.22)

However, since the operator L0 features a second derivative, it cannot be a well-defined
operator on H1(R;R). Instead, we view it as an operator

L0 : H2(R;R) → L2(R;R), (1.3.23)

where we have introduced the space

H2(R;R) = {u ∈ H1(R;R) : u′′ ∈ L2(R;R)} (1.3.24)

with corresponding norm

‖u‖2H2(R;R) = ‖u‖2H1(R;R) + ‖u′′‖2L2(R;R). (1.3.25)

In particular, the operators L0 and Lh act on different spaces, which makes lifting the
Fredholm properties of L0 to Lh a delicate effort.

It is well-known that for each δ ≥ 0 the operator L0 +δ is a Fredholm operator with
Fredholm index 0. In addition, this operator is invertible for δ > 0, while it is has a one-
dimensional kernel, spanned by the derivative u′0, for δ = 0. The standard Fredholm
theory for ODEs implies that the adjoint operator L∗0 also has a one-dimensional kernel,
spanned by some function φ−0 , i.e. we have

ker(L0) = span{u′0}, ker(L∗0) = span{φ−0 }. (1.3.26)
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Using standard arguments [6, Lem. 3.1], one can show that there exists a constant
C > 0 in such a way that the bound

‖(L0 + δ)−1ψ‖H2(R;R) ≤ C
[
‖ψ‖L2(R;R) + 1

δ |〈ψ, φ
−
0 〉L2(R;R)|

]
(1.3.27)

holds for all δ > 0 and all ψ ∈ L2(R;R). The spectral convergence method aims to
show that for all δ > 0 there exists a positive constant h0(δ) > 0 such that for all
h ∈ (0, h0(δ)) the operator Lh + δ is invertible and that the bound

‖(Lh + δ)−1ψ‖H1(R;R) ≤ C̃
[
‖ψ‖L2(R;R) + 1

δ |〈ψ, φ
−
0 〉L2(R;R)|

]
(1.3.28)

holds for all ψ ∈ L2(R;R). Here, the constant C̃ should be taken independently of
δ > 0 and 0 < h < h0(δ). Employing the bound (1.3.28), a more or less standard
argument, that resembles the proof of the implicit function theorem, can be used to
construct the travelling wave solutions to the system (1.1.18).

In order to establish the bound (1.3.28), Bates, Chen and Chmaj consider the
quantities

Λ(h, δ) = inf
φ∈H1(R;R),‖φ‖H1(R;R)=1

[
‖(Lh + δ)φ‖L2(R;R) + 1

δ |〈(Lh + δ)φ, φ−0 〉L2(R;R)|
]

(1.3.29)
for h > 0 and δ > 0, together with

Λ(δ) = lim inf
h↓0

Λ(h, δ). (1.3.30)

The key ingredient is to construct a lower bound on the quantity Λ(δ), which is uniform
in δ > 0. If such a lower bound is found, the invertibility of the operator Lh + δ and
the bound (1.3.28) can be established relatively easily.

We now fix δ > 0 and consider sequences

{φj}j≥1 ⊂ H1(R;R), ‖φj‖H1(R;R) = 1, hj ↓ 0 (1.3.31)

which minimize the quantity Λ(δ). That is, we have the limit

lim
j→∞
‖(Lhj + δ)φj‖L2(R;R) + 1

δ |〈(Lhj + δ)φj , φ
−
0 〉L2(R;R)| = Λ(δ). (1.3.32)

The existence of these minimizing sequences follows directly from the definition of the
quantity Λ(δ). For convenience, we write

ψj = (Lhj + δ)φj (1.3.33)

for j ≥ 1. In order to properly take the h ↓ 0 limit, we consider the weak limits φ and
ψ of the sequences {φj}j≥1 and {ψj}j≥1. The first computational effort is to show that
the function φ is an element of the space H2(R;R) and that it is a weak solution of
the equation (L0 + δ)φ = ψ [6, Lem. 3.2]. This computation relies heavily on the limit
(1.1.24). As a result, we obtain the lower bound

‖φ‖H2(R:R) ≤ KΛ(δ) (1.3.34)
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for some constant K > 0.

It remains to find a positive lower bound for the norm ‖φ‖H2(R:R). Indeed, a common
danger when taking weak limits is that the sequence converges to 0 even though the
sequence itself is bounded away in norm from 0. Using the Laplace-like properties of
the operator ∆h, we obtain the estimates

〈∆hv, v
′〉L2(R;R) = 0, 〈∆hv, v〉L2(R;R) ≤ 0 (1.3.35)

for any function v ∈ H1(R;R). Employing the bounds (1.3.35) and remembering that
(Lhj + δ)φj = ψj , we can estimate the inner products 〈ψj , φ′j〉L2(R;R) using the Cauchy-
Schwarz inequality to obtain a uniform estimate of the form

A1‖φj‖2L2(R;R) ≥ A2‖φ′j‖2L2(R;R) −A3‖ψj‖2L2(R;R); (1.3.36)

see [6, Eq. (3.9)].

Figure 1.6: In the spectral convergence method, we pick a compact interval I in such a way
that the sign of −gu(u0(x); r) for x ∈ R \ I is fixed. This is allowed because of the bistable
nature of the nonlinearity g. Inside I, we employ the Ascoli-Arzela Theorem, while outside I
we can use the fixed sign to aid in our estimates.

At this point in the computation, we employ the bistable nature of the nonlinearity
g. Remembering that the front u0 connects 0 and 1, we can pick a sufficiently large, but
bounded, interval I to have −gu(u0(x); r) ≥ a for x outside I for some fixed constant
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a > 0; see Figure 1.6. This allows us to estimate the inner product

〈−gu(u0)φj , φj〉L2(R;R) = 〈−gu(u0)φj , φj〉L2(R\I;R) + 〈−gu(u0)φj , φj〉L2(I;R)

≥ a‖φj‖2L2(R\I;R) − ‖gu(u0)‖∞‖φj‖2L2(I;R)

= a‖φj‖2L2(R;R) −
(
a+ ‖gu(u0)‖∞

)
‖φj‖2L2(I;R).

(1.3.37)
Inside I, we can employ the Ascoli-Arzela Theorem to have the limit φj → φ in L2(I;R).
As such, on account of (1.3.37) we can estimate the inner products 〈ψj , φj〉L2(R;R) to
obtain a uniform estimate of the form

B1‖φj‖2L2(I;R) ≥ B2‖φj‖2L2(R;R) −B3‖ψj‖2L2(R;R); (1.3.38)

see [6, Eq. (3.10)]. By properly scaling the inequalities (1.3.36) and (1.3.38) and adding
them, we obtain a uniform estimate of the form

C1‖φj‖2L2(I;R) ≥ C2‖φj‖2L2(R;R) + C2‖φ′j‖2L2(R;R) − C3‖ψj‖2L2(R;R). (1.3.39)

Remebering that

‖φj‖2L2(R;R) + ‖φ′j‖2L2(R;R) = ‖φj‖2H1(R;R)

= 1
(1.3.40)

the inequality (1.3.39) reduces to

C1‖φj‖2L2(I;R) ≥ C2 − C3‖ψj‖2L2(R;R). (1.3.41)

Because of the strong convergence φj → φ in L2(I;R), the bound (1.3.34) and the limit
(1.3.32) we can take the limit j →∞ in (1.3.41) to obtain

C2 − C3Λ(δ)2 ≤ C1‖φ‖2L2(I;R)

≤ C1‖φ‖2H2(R;R)

≤ C1KΛ(δ)2.

(1.3.42)

In particular, Bates, Chen and Chmaj obtain

Λ(δ) ≥
√

C2

C1K+C3
, (1.3.43)

which is a positive constant, as desired.

FitzHugh-Nagumo LDE with infinite-range interactions Our first challenge
is to generalize the spectral convergence method to the system (1.2.8). We construct
travelling pulse solutions to this system as perturbations of the travelling pulse solutions
for the FitzHugh-Nagumo PDE (1.2.1) in the h � 1 regime. In particular, we only
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need to assume the conditions (1.1.21)-(1.1.22) instead of exponential decay on the
coefficients {αk}k≥1. The travelling wave equation for (1.2.8) is given by

chu
′
h(ξ) = 1

h2

∞∑
k=1

αk
[
uh(ξ + kh) + uh(ξ − kh)− 2uh(ξ)

]
+ g(uh(ξ); r)− wh(ξ)

chw
′
h(ξ) = ρ

[
uh(ξ)− γwh(ξ)

]
.

(1.3.44)
However, the generalization of the spectral convergence method from scalar to system
equations is far from trivial. In particular, when estimating the equivalents of the inner
products 〈ψj , φj〉L2(R;R) and 〈ψj , φ′j〉L2(R;R) as described above, there are various cross-
terms we need to keep under control. Luckily, we are aided by the relative simplicity
of the second component of (1.3.44). In particular, the off-diagonal elements of the
linearization of the MFDE (1.3.44) are constant multiples of each other, which allows
us to combine their contributions and absorb them in the diagonal terms. We also
generalize the spectral convergence method to yield uniform bounds for values of δ in
compact subsets of the complex plane C \ {0}.

We write (uh, wh) for the new-found travelling pulse solution to (1.2.8) with wavespeed
ch. The next step is to establish the spectral stability of this travelling pulse solution.
As such, we linearize the MFDE (1.3.44) around this travelling pulse solution. The
corresponding linear operator is given by

Lh

(
v
w

)
=

(
ch

d
dξ −∆h − gu(uh) 1

−ρ ch
d
dξ + γρ

)(
v
w

)
, (1.3.45)

where we recall the operator ∆h from (1.1.23).

We first note that the spectrum of the operator Lh from (1.3.45) is periodic with
period 2πi chh . This period grows to infinity as h ↓ 0, which makes sense since the
spectrum of the operator L0 from (1.3.23) is not periodic. That the spectrum is periodic,
can be seen as follows. For p ∈ C, we consider the multiplication operator

[epφ](ξ) = epξφ(ξ). (1.3.46)

We fix p = 2πi 1
h . For k ∈ Z, we observe that phk ∈ 2πiZ, so that we can compute[

e−p[epφ(·+ kh)]
]
(ξ) = e−pξ[epφ](ξ + hk)

= e−pξepξ+pkhφ(ξ + hk)

= φ(ξ + hk).

(1.3.47)

In particular, we see that
e−p∆hep = ∆h. (1.3.48)

Since we also have [
e−pch

d
dξ [epφ]

]
(ξ) = che

−pξ d
dξ (epξφ(ξ))

= chφ(ξ) + pchφ(ξ),
(1.3.49)
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we can conclude that
e−pLhep = Lh + pch. (1.3.50)

Since the operators e−p and ep are invertible, this means that Lh and Lh + pch have
the same spectrum, which yields the desired periodicity.

The spectral convergence method does not immediately resolve the spectral stability
question. Indeed, for each individual value of λ 6= 0 we can conclude the invertibility of
Lh + λ for h sufficiently small. However, what we mean by ‘sufficiently small’ depends
heavily on the choice of λ and can only be made uniform for λ in compact subsets
of C \ {0}. Since the period of the spectrum grows to infinity as h ↓ 0, we can only
apply the spectral convergence method if we exclude spectrum in a region close to 0,
spectrum with a large real part and spectrum with a large imaginary part. We will
discuss these issues in more detail in §2.5-2.6.

Spatially periodic FitzHugh-Nagumo LDE The next extension to the spectral
convergence method is to construct travelling pulse solutions to the system (1.2.9) in
the ε � 1 regime. The spatial periodicity of this system also returns in the travelling
wave Ansatz, which takes the form

(u,w)j(t) =

(uo, wo)(j + ct) when j is odd,

(ue, we)(j + ct) when j is even.
(1.3.51)

Using the Ansatz (1.3.51), we arrive at the travelling wave MFDE

cu′o(ξ) = 1
ε2

(
ue(ξ + 1) + ue(ξ − 1)− 2uo(ξ)

)
+ g(uo(ξ); ro)− wo(ξ),

cw′o(ξ) = ρo[uo(ξ)− γowo(ξ)],

cu′e(ξ) =
(
uo(ξ + 1) + uo(ξ − 1)− 2ue(ξ)

)
+ g(ue(ξ); re)− we(ξ),

cw′e(ξ) = ρe[ue(ξ)− γewe(ξ)].

(1.3.52)

Since we consider the ε � 1 regime, we first need to understand the system (1.3.52)
for ε = 0. Multiplying the first line of (1.3.52) with ε2 and taking the limit ε ↓ 0 yields

0 = ue(ξ + 1) + ue(ξ − 1)− 2uo(ξ). (1.3.53)

In particular, we can express uo in terms of ue. This means that the third and fourth
line of (1.3.52) become

cu′e(ξ) = 1
2

(
ue(ξ + 2) + ue(ξ − 2)− 2ue(ξ)

)
+ g(ue(ξ); re)− we(ξ),

cw′e(ξ) = ρe[ue(ξ)− γewe(ξ)],
(1.3.54)

which we recognise as a scaled version of the regular FitzHugh-Nagumo LDE (1.2.5).
We emphasize that the system (1.3.54) does not contain any odd wave functions, which
means that the system decouples at ε = 0. In particular, we know [108, 109] that the
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system (1.3.54) admits stable travelling pulse solutions (ue;0, we;0) with wavespeed c0.
Recalling (1.3.53), we set

uo;0(ξ) = 1
2

[
ue;0(ξ + 1) + ue;0(ξ − 1)

]
. (1.3.55)

Finally, we let wo;0 be the solution of the linear, inhomogeneous system

c0w
′
o(ξ) = ρo[uo;0(ξ)− γowo(ξ)]. (1.3.56)

As such, the multiplet U0 = (uo;0, wo;0, ue;0, we;0) can be seen as the solution of (1.3.52)
at ε = 0. Note that the identity (1.3.53) essentially turns the four-component system
(1.3.52) into a three-component system at ε = 0. We construct travelling pulse solutions
to the LDE (1.2.9) by perturbing them off the function U0 by applying the spectral
convergence method. However, there are a few major differences with the previous
applications of the spectral convergence method. Previously, this method was used to
lift Fredholm properties from a continuous to a spatially discrete system, while here we
use it to lift Fredholm properties from a three-component to a four-component spatially
discrete system. In addition, the different scalings of ε for the diffusion coefficients pre-
vent us from making a direct analogue of the inequalities (1.3.35). Instead, we have to
use different scalings in ε for each component to compensate for this imbalance. These
different scalings in ε complicate, in turn, the fixed point arguments used to control the
nonlinear terms in the construction of the travelling pulse solutions. This complication
forces us to take an extra spatial derivative of the system (1.3.52).

For the spectral stability of the travelling pulse solutions to the LDE (1.2.9), we
note that the spectrum is periodic with period 2πicε, similarly to the system (1.2.8).
Luckily, this period does not blow up in the ε ↓ 0 limit here. As such, we only need
to exclude spectrum near 0 and with a large real part before we can apply the spectral
convergence method.

In this analysis, we do not restrict ourselves to the LDE (1.2.9). Instead, we consider
general spatially 2-periodic reaction-diffusion systems with n + k components. Here
n ≥ 1 is the number of components with a nonzero diffusion coefficient, while k ≥ 0 is
the number of components without diffusion (so n = k = 1 for the FitzHugh-Nagumo
LDE (1.2.9)). In particular, our results also cover the spatially periodic version of
the Nagumo LDE (1.1.9) without the use of a comparison principle. However, we
need conditions on the end-states that are slightly stronger than the usual temporal
stability. Indeed, we need certain submatrices of the corresponding Jacobians to be
positive definite, instead of simply spectrally stable. All in all, we have a broad class
of systems to which the spectral convergence method can be applied.

Spatially-temporally discrete FitzHugh-Nagumo system Our final application
of the spectral convergence method is to the system (1.2.11). In fact, to make the anal-
ysis as general as possible, we allow for infinite-range spatial interactions and temporal
discretisations of the general n + k-component reaction-diffusion LDEs discussed pre-
viously.
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In this case, we use the spectral convergence method to lift the Fredholm proper-
ties of the spatially discrete to the fully discrete system. As discussed previously, we
need to assume that M := (c∆t)−1 is rational to establish an appropriate interpolation
scheme. However, Hupkes and Van Vleck relied heavily on the comparison principle
to understand this interpolated spatially discrete system. As such, we need to prove
several results related to this spatially discrete system from scratch, using the general
Fredholm theory for these systems. In addition, the complications we faced previously
for infinite-range spatial interactions and nonscalar equations in the spectral conver-
gence method needed to be dealt with here as well.

1.3.3 Exponential dichotomies

The second major technique we develop and employ is the splittings given by expo-
nential dichotomies. There are many ways to look at exponential dichotomies. We
take the following general point of view: we say that a linear differential equations is
exponentially dichotomous if the space of initial conditions, called the state space, can
be split into a stable and an unstable part. Continuations of stable initial states need
to decay exponentially in forward time, while those of unstable states need to decay
exponentially in backward time. Let us, for example, consider a linear, autonomous
ODE, given by

du
dσ (σ) = Au(σ) (1.3.57)

where u(σ) ∈ CM for σ ∈ R. If the M×M matrix A is hyperbolic, i.e. has no spectrum
on the imaginary axis, then the state space CM can be split as

CM = Es0 ⊕ Eu0 , (1.3.58)

where Es0 is the generalized stable eigenspace and Eu0 is the generalized unstable
eigenspace of A. The flow of the ODE (1.3.57) is given by Φ(σ, τ) = exp[A(σ − τ)].
We note that the spaces Es0 and Eu0 remain invariant under the flow Φ. Moreover, Φ
decays exponentially for σ > τ on Es0 and for σ < τ on Eu0 . In particular, hyperbolic,
autonomous, linear ODEs admit exponential dichotomies.

For non-autonomous, linear ODEs, we need the splitting (1.3.58) to depend on the
base time τ ∈ R. In particular, we say that the linear ODE

du
dσ (σ) = A(σ)u(σ) (1.3.59)

admits exponential dichotomies on an interval I ∈ {R,R−R+} if the following properties
are satisfied.

• There exist projection operators {P (τ)}τ∈I on CM which commute with the evo-
lution Φ(σ, τ).

• The restricted evolutions Φ(σ, τ)P (τ) and Φ(σ, τ)(I − P (τ)) decay exponentially
for σ > τ and for σ < τ respectively.
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In particular, we have the exponential splitting of the state space CM into the range
of P (τ) and the kernel of P (τ). From this definition, we see that if a system admits
exponential dichotomies on an interval I ∈ {R,R−R+} then each solution on I can
be decomposed in two parts that decay exponentially in forward and backward time
respectively.

Exponential dichotomies are closely related to the Fredholm properties of the cor-
responding linear operators. In particular, we consider the operator

Λ : H1(R;CM ) → L2(R;CM ),

(Λu)(σ) = du
dσ (σ)−A(σ)u(σ).

(1.3.60)

Then it is well-known that the operator Λ is a Fredholm operator if and only if the
system (1.3.59) admits exponential dichotomies on R− and R+. In addition, Λ is in-
vertible if and only if (1.3.59) admits exponential dichotomies on R. We refer to the
review by Sandstede [147] for more details.

A very powerful and useful result is the so-called roughness theorem, see [45, Chapter
4]. Informally, this result states that exponential dichotomies are preserved when a
small perturbation is added to the system. For example, let A be a hyperbolic M ×
M matrix and let B(σ) be a bounded collection of M × M matrices which depend
continuously on σ. Then the roughness theorem yields that the system

du
dσ (σ) = Au(σ) + δB(σ)u(σ) (1.3.61)

admits exponential dichotomies on R when δ > 0 is sufficiently small. Hence, we can
conclude that the corresponding linear operator Λ from (1.3.60) is invertible! This
means that the inhomogeneous ODE

du
dσ (σ) = Au(σ) + δB(σ)u(σ) + f(σ) (1.3.62)

has a unique solution u ∈ H1(R;C) for any function f ∈ L2(R;C). We emphasize that
these powerful results can be derived with hardly any assumptions on the matrices B(σ).

For linear MFDEs such as (1.3.3), a few major complications turn up. First, the
space C is no longer sufficient as a state space. Indeed, for determining u′(0) in (1.3.3)
we need to specify the behaviour of u on the entire interval [−1, 1]. As such, one usually
takes Cb([−1, 1];C) as a state space. The second major complication is that MFDEs
are typically ill-posed. That is, given an initial segment there may not be an extension
of that segment that solves the MFDE, or such an extension may not be unique. As
such, there is no equivalent of the evolution operator Φ that we defined for ODEs.

These complications were solved simultaneously and independently by Mallet-Paret
and Verduyn Lunel [133] and by Härterich, Scheel and Sandstede [96]. We will fo-
cus on the former approach. Mallet-Paret and Verduyn Lunel showed that for linear,
asymptotically hyperbolic MFDEs such as (1.3.3) we have the splitting

Cb([−1, 1];C) = P (τ) +Q(τ) + Γ(τ). (1.3.63)
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Figure 1.7: Visual representation of the splitting Cb([−1, 1];C) = P (0) ⊕ Q(0) for linear
MFDEs.

Here P (τ) are the initial segments, centered around τ ∈ R, which can be extended to
solutions of (1.3.3) on (−∞, τ ], while Q(τ) are the initial segments that can be extended
to solutions of (1.3.3) on [τ,∞); see Figure 1.7. One of the main results of [133] is that
the extensions of the initial segments in P (τ) and Q(τ) decay exponentially as ξ → −∞
and as ξ →∞ respectively. Moreover, writing B(τ) = P (τ) ∩Q(τ) for those segments
that can be extended to full solutions of (1.3.3), we can divide the space B(τ) out of
P (τ) to turn (1.3.63) into a direct sum. Finally, the space Γ(τ) is finite dimensional
and can be made explicit using the so-called Hale inner product [91]. For the linearized
Nagumo MFDE (1.3.3), this Hale inner product takes the form

〈ψ, φ〉τ = ψ(0)φ(0) +
0∫
−1

ψ(s+ 1)φ(s)ds−
1∫
0

ψ(s− 1)φ(s)ds (1.3.64)

for φ, ψ ∈ Cb([−1, 1];C). Indeed, the space Γ(τ) from (1.3.63) can be classified by the
identity

P (τ) +Q(τ) = {φ ∈ Cb([−1, 1];C) : 〈b(τ + ·), φ〉τ = 0 for all b ∈ ker(Λ∗)},
(1.3.65)

where we recall the operator Λ∗ from (1.3.16).

There are two potential concerns that can arise to impact the usefulness of the
identity (1.3.65). First, there may be nonzero kernel elements b ∈ ker(Λ∗) that vanish
on the relevant interval [τ − 1, τ + 1]. In that case, we have 〈b(τ + ·), φ〉τ = 0 for
any function φ. Second, the Hale inner product may be degenerate, in the sense that
there exists a nonzero function ψ for which 〈ψ, φ〉τ = 0 for any function φ. If both
situations do not occur, then the dimension of the space Γ(τ) can easily be determined
to be the dimension of the kernel ker(Λ∗). However, if either one of these situations
occurs, we can no longer compute this dimension. Luckily, Mallet-Paret and Verduyn
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Lunel showed that both situations cannot occur if the coefficients corresponding to the
largest and smallest shifts are atomic, i.e. invertible on appropriate time-intervals. This
is clearly the case for the system (1.3.3).

Exponential dichotomies for MFDEs with infinite-range interactions We
extended the results by Mallet-Paret and Verduyn Lunel to include linear MFDEs such
as the linearization of the system (1.1.20), which is given by

chu
′(ξ) =

∞∑
k=1

αk
[
u(ξ + kh) + u(ξ − kh)− 2u(ξ)

]
+ gu(uh(ξ); r)u(ξ). (1.3.66)

To ensure that the Fredholm theory developed by Faye and Scheel in [69] can be used,
we assume that the coefficients {αk}k≥1 decay exponentially. For the system (1.3.66)
the appropriate state space is the space Cb(R;C). Since the system (1.3.66) is asymp-
totically hyperbolic, we have the splitting

Cb(R;C) = P (τ) +Q(τ) + Γ(τ). (1.3.67)

As before, the space P (τ) contains those initial segments, centered around τ ∈ R, which
can be extended to solutions of (1.3.66) on (−∞, τ ], while Q(τ) are those segments that
can be extended to solutions of (1.3.66) on [τ,∞). However, extending is not really the
appropriate word, since the initial segments are already defined on the entire line. In
addition, the segments in P (τ) decay exponentially as ξ → −∞ and those in Q(τ) decay
exponentially as ξ →∞. Moreover, dividing out the solution space B(τ) = P (τ)∩Q(τ)
from P (τ) turns (1.3.67) into a direct sum. Finally, we regain the identity

P (τ) +Q(τ) = {φ ∈ Cb(R;C) : 〈b(τ + ·), φ〉τ = 0 for all b ∈ ker(Λ∗)}, (1.3.68)

where 〈·, ·〉τ is the Hale inner product.

However, the degeneracy issues that were discussed previously are much harder to
solve for systems such as (1.3.66). Indeed, the atomicity condition Mallet-Paret and
Verduyn Lunel used to exclude these degeneracies explicitly references the largest and
the smallest shift. We formulate several new conditions on the coefficients which can,
separately, be used to rule out degeneracies. In particular, for the system (1.3.66) one
of these conditions entails that the coefficients {αk}k≥1 should be cyclic with respect
to the backward shift operator on `2(N;R). That is, the set of sequences {αk}k≥N for
N ≥ 1 should span a dense subspace of `2(N;R). This condition is, for example, satis-
fied if the coefficients decay like a Gaussian. However, this condition is not satisfied if
αk = exp(−k) for each k ≥ 1, since in that case we have {αk}k≥N is a scalar multiple
of {αk}k≥1 for each N ≥ 1.

If the coefficients {αk}k≥1 of the the system (1.3.66) are positive, we can merely
show that the Hale inner product is nondegenerate for kernel elements of the adjoint
operator. That is, we can show that if 〈b(τ + ·), φ〉τ = 0 for all b ∈ ker(Λ∗), we must
have φ = 0. In particular, if αk = exp(−k) for k ≥ 1, we explicitly construct a nonzero
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function ψ which has 〈ψ, φ〉τ = 0 for all functions φ. Luckily, the nondegeneracy for
kernel elements is sufficient to compute the dimension of the space Γ(τ).



Chapter 2

Nonlinear stability of pulse
solutions for the discrete
FitzHugh-Nagumo equation
with infinite-range interactions

Sections 2.1-2.3 and 2.5-2.7 have been published in Discrete & Continuous Dynami-
cal Systems-A 39(9) (2019) 5017–5083 as W.M. Schouten-Straatman and H.J. Hupkes
“Nonlinear Stability of Pulse Solutions for the Discrete FitzHugh-Nagumo equation
with Infinite-Range Interactions” [150].

Abstract. We establish the existence and nonlinear stability of travelling pulse
solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions
close to the near-continuum regime. For the verification of the spectral properties, we
need to study a functional differential equation of mixed type (MFDE) with unbounded
shifts. We avoid the use of exponential dichotomies and phase spaces, by building on
a technique developed by Bates, Chen and Chmaj for the discrete Nagumo equation.
This allows us to transfer several crucial Fredholm properties from the PDE setting to
our discrete setting.

Key words: Lattice differential equations, FitzHugh-Nagumo system, infinite-range
interactions, nonlinear stability, nonstandard implicit function theorem.
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2.1 Introduction

The FitzHugh-Nagumo partial differential equation (PDE) is given by

ut = uxx + g(u; r0)− w

wt = ρ(u− γw),
(2.1.1)

where g(·; r0) is the cubic bistable nonlinearity given by

g(u; r0) = u(1− u)(u− r0) (2.1.2)

and ρ, γ are positive constants. This PDE is commonly used as a simplification of the
Hodgkin-Huxley equations, which describe the propagation of signals through nerve fi-
bres. The spatially homogeneous version of this equation was first stated by FitzHugh
in 1961 [74] in order to describe the potential felt at a single point along a nerve axon
as a signal travels by. A few years later [76], the diffusion term in (2.1.1) was added
to describe the dynamics of the full nerve axon instead of just a single point. As early
as 1968 [75], FitzHugh released a computer animation based on numerical simulations
of (2.1.1). This video clip clearly shows that (2.1.1) admits isolated pulse solutions
resembling the spike signals that were measured by Hodgkin and Huxley in the nerve
fibres of giant squids [98].

As a consequence of this rich behaviour and the relative simplicity of its structure,
(2.1.1) has served as a prototype for several similar systems. For example, memory
devices have been designed using a planar version of (2.1.1), which supports stable sta-
tionary, radially symmetric spot patterns [120]. In addition, gas discharges have been
described using a three-component FitzHugh-Nagumo system [138, 148], for which it
is possible to find stable travelling spots [161].

Mathematically, it turned out to be a major challenge to control the interplay
between the excitation and recovery dynamics and rigorously construct the travelling
pulses visualized by FitzHugh in [75]. Such pulse solutions have the form

(u,w)(x, t) = (u0, w0)(x+ c0t), (2.1.3)

in which c0 is the wavespeed and the wave profile (u0, w0) satisfies the limits

lim
|ξ|→∞

(u0, w0)(ξ) = 0. (2.1.4)

Plugging this Ansatz into (2.1.1) and writing ξ = x + c0t, we see that the profiles are
homoclinic solutions to the travelling wave ordinary differential equation (ODE)

c0u
′
0(ξ) = u′′0(ξ) + g(u0(ξ); r0)− w0(ξ)

c0w
′
0(ξ) = ρ

[
u0(ξ)− γw0(ξ)

]
.

(2.1.5)

The analysis of this equation in the singular limit ρ ↓ 0 led to the birth of many
techniques in geometric singular perturbation theory, see for example [118] for an inter-
esting overview. Indeed, the early works [31, 97, 117, 119] used geometric techniques
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such as the Conley index, exchange lemmas and differential forms to construct pulses
and analyze their stability. A more analytic approach was later developed in [124],
where Lin’s method was used in the r0 ≈ 1

2 regime to connect a branch of so-called
slow-pulse solutions to (2.1.5) to a branch of fast-pulse solutions. This equation is still
under active investigation, see for example [32, 33], where the birth of oscillating tails
for the pulse solutions is described as the unstable root r0 of the nonlinearity g moves
towards the stable root at zero.

Many physical, chemical and biological systems have an inherent discrete structure
that strongly influences their dynamical behaviour. In such settings lattice differential
equations (LDEs), i.e. differential equations where the spatial variable can only take
values on a lattice such as Zn, are the natural replacements for PDEs, see for exam-
ple [6, 109, 130]. Although, mathematically, it is a relatively young field of interest,
LDEs have already appeared frequently in the more applied literature. For example,
they have been used to describe phase transitions in Ising models [6], crystal growth in
materials [28] and phase mixing in martensitic structures [159].

To illustrate these points, let us return to the nerve axon described above and
reconsider the propagation of electrical signals through nerve fibres. It is well known
that electrical signals can only travel at adequate speeds if the nerve fibre is insulated
by a myelin coating. This coating admits regularly spaced gaps at the so-called nodes
of Ranvier [143]. Through a process called saltatory conduction, it turns out that
excitations of nerves effectively jump from one node to the next [127]. Exploiting this
fact, it is possible [123] to model this jumping process with the discrete FitzHugh-
Nagumo LDE

u̇j = 1
h2 (uj+1 + uj−1 − 2uj) + g(uj ; r0)− wj

ẇj = ρ[uj − γwj ].
(2.1.6)

The variable uj now represents the potential at the jth node, while the variable wj de-
notes a recovery component. The nonlinearity g describes the ionic interactions. Note
that this equation arises directly from the FitzHugh-Nagumo PDE upon taking the
nearest-neighbour discretisation of the Laplacian on a grid with spacing h > 0.

Inspired by the procedure for partial differential equations, one can substitute a
travelling pulse Ansatz

(uj , wj)(t) = (uh, wh)(hj + cht) (2.1.7)

into (2.1.6). Instead of an ODE, we obtain the system

chu
′
h(ξ) = 1

h2 [uh(ξ + h) + uh(ξ − h)− 2uh(ξ)] + g(uh(ξ); r0)− wh(ξ)

chw
′
h(ξ) = ρ[uh(ξ)− γwh(ξ)]

(2.1.8)

in which ξ = hj + cht. Such equations are called functional differential equations of
mixed type (MFDEs), since they contain both advanced (positive) and retarded (neg-
ative) shifts.
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In [108, 109], Hupkes and Sandstede studied (2.1.6) and showed that, for small values
of ρ and r0 sufficiently far from 1

2 , there exists a locally unique travelling pulse solution
of this system and that it is asymptotically stable with an asymptotic phase shift. No
restrictions were required on the discretisation distance h, but the results relied heavily
on the existence of exponential dichotomies for MFDEs. As a consequence, the tech-
niques developed in [108, 109] can only be used if the discretisation involves finitely
many neighbours. Such discretisation schemes are said to have finite range.

Recently, an active interest has arisen in nonlocal equations that feature infinite-
range interactions. For example, Ising models have been used to describe the infinite-
range interactions between magnetic spins arranged on a grid [6]. In addition, many
physical systems, such as amorphous semiconductors [87] and liquid crystals [44], fea-
ture nonstandard diffusion processes, which are generated by fractional Laplacians.
Such operators are intrinsically nonlocal and, hence, often require infinite-range dis-
cretisation schemes [43].

Our primary interest here, however, comes from so-called neural field models, which
aim to describe the dynamics of large networks of neurons. These neurons interact with
each other by exchanging signals across long distances through their interconnecting
nerve axons [15, 23, 24, 142]. It is of course a major challenge to find effective equa-
tions to describe such complex interactions. One model that has been proposed [23,
Eq. (3.31)] features a FitzHugh-Nagumo type system with infinite-range interactions.

Motivated by the above, we consider a class of infinite-range FitzHugh-Nagumo
LDEs that includes the prototype

u̇j = κ
h2

∑
k∈Z>0

e−k
2

[uj+k + uj−k − 2uj ] + g(uj ; r0)− wj

ẇj = ρ[uj − γwj ],
(2.1.9)

in which κ > 0 is a normalisation constant. In [69], Faye and Scheel studied equations
such as (2.1.9) for discretisations with infinite-range interactions featuring exponential
decay in the coupling strength. They circumvented the need to use a state space as
in [108], which enabled them to construct pulses to (2.1.9) for arbitrary discretisation
distance h. Very recently [70], they developed a center manifold approach that allows
bifurcation results to be obtained for neural field equations.

In this paper, we also construct pulse solutions to equations such as (2.1.9), but un-
der weaker assumptions on the decay rate of the couplings. Moreover, we will establish
the nonlinear stability of these pulse solutions, provided the coupling strength decays
exponentially. However, both results do require the discretisation distance h to be very
small.

In particular, we will be working in the near-continuum regime. The pulses we
construct can be seen as perturbations of the travelling pulse solution of the FitzHugh-
Nagumo PDE. However, we will see that the travelling wave equations are highly sin-
gular perturbations of (2.1.5), which poses a significant mathematical challenge. On
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the other hand, we do not need to use exponential dichotomies directly in our nonlocal
setting as in [109]. Instead, we are able to exploit the detailed knowledge that has been
obtained using these techniques for the pulses in the PDE setting.

Our approach to tackle the difficulties arising from this singular perturbation is
strongly inspired by the work of Bates, Chen and Chmaj. Indeed, in their excellent
paper [6], they study a class of systems that includes the infinite-range discrete Nagumo
equation

u̇j = κ
h2

∑
k∈Z>0

e−k
2

[uj+k + uj−k − 2uj ] + g(uj ; r0), (2.1.10)

in which κ > 0 is a normalisation constant. This equation can be seen as a discretisation
of the Nagumo PDE

ut = uxx + g(u; r0). (2.1.11)

The authors show that, under some natural assumptions, these systems admit travel-
ling front solutions for h small enough.

In the remainder of this introduction we outline their approach and discuss our
modifications, which significantly broaden the application range of these methods. We
discuss these modifications for the prototype (2.1.9), but naturally they can be applied
to a broad class of systems.

Transfer of Fredholm properties: Scalar case.

An important role in [6] is reserved for the operator Lh;u0:sc;c0:sc
given by

Lh;u0:sc;c0:scv(ξ) = c0:scv
′(ξ)− κ

h2

∑
k∈Z>0

e−k
2
[
v(ξ + hk) + v(ξ − hk)− 2v(ξ)

]
−gu(u0:sc(ξ); r0)v(ξ),

(2.1.12)
where u0:sc is the wave solution of the scalar Nagumo PDE (2.1.11) with wavespeed
c0:sc. This operator arises as the linearisation of the scalar Nagumo MFDE

c0:scu
′(ξ) = κ

h2

∑
k∈Z>0

e−k
2
[
v(ξ + hk) + v(ξ − hk)− 2v(ξ)

]
+ gu(u0:sc(ξ); r0)v(ξ),

(2.1.13)
around the wave solution u0:sc of the scalar Nagumo PDE (2.1.11). This operator
should be compared to

L0;u0:sc;c0:sc
v(ξ) = c0:scv

′(ξ)− v′′(ξ)− gu(u0:sc(ξ); r0)v(ξ), (2.1.14)

the linearisation of the scalar Nagumo PDE around its wave solution.

The key contribution in [6] is that the authors fix a constant δ > 0 and use the invert-
ibility of L0;u0:sc;c0:sc

+δ to show that also Lh;u0:sc;c0:sc
+δ is invertible. In particular, they

consider weakly-converging sequences {vn} and {wn} with (Lh;u0:sc;c0:sc
+ δ)vn = wn

and try to find a uniform (in δ and h) upper bound for the L2-norm of v′n in terms
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of the L2-norm of wn. Such a bound is required to rule out the limitless transfer of
energy into oscillatory modes, a key complication when taking weak limits. To obtain
this bound, the authors exploit the bistable structure of the nonlinearity g to control
the behaviour at ±∞. This allows the local L2-norm of vn on a compact set to be uni-
formly bounded away from zero. Since the operator Lh;u0:sc;c0:sc

+ δ is not self-adjoint,
this procedure must be repeated for the adjoint operator.

Transfer of Fredholm properties: System case.

Plugging the travelling pulse Ansatz

(u,w)j(t) = (uh, wh)(hj + cht) (2.1.15)

into (2.1.9) and writing ξ = hj + cht, we see that the profiles are homoclinic solutions
to the equation

chu
′
h(ξ) = κ

h2

∑
k>0

e−k
2
[
uh(ξ + kh) + uh(ξ − kh)− 2uh(ξ)

]
+ g(uh(ξ); r0)− wh(ξ)

chw
′
h(ξ) = ρ

(
uh(ξ)− γwh(ξ)

)
.

(2.1.16)
We start by considering the linearised operator Kh;u0;c0 of the system (2.1.16) around
the pulse solution (u0, w0) of the FitzHugh-Nagumo PDE with wavespeed c0. This
operator is given by

Kh;u0;c0

(
v
w

)
(ξ) =

(
Lh;u0;c0v(ξ) + w(ξ)
c0w

′(ξ)− ρv(ξ) + ργw(ξ)

)
, (2.1.17)

where Lh;u0;c0 is given by equation (2.1.12), but with u0:sc replaced by u0 and c0:sc by c0.

In §2.3 we use a Fredholm alternative as described above to establish the invertibility
of Kh;u0;c0 +δ for fixed δ > 0. However, the transition from a scalar equation to a system
is far from trivial. Indeed, when transferring the Fredholm properties there are multiple
cross terms that need to be controlled. We are aided here by the relative simplicity
of the terms in the equation that involve w. In particular, three of the four matrix-
elements of the linearisation (2.1.17) have constant coefficients. We emphasize that it
is not sufficient to merely assume that the limiting state (0, 0) is a stable equilibrium
of (2.1.9). In [151], we explore a number of structural conditions that allow these types
of arguments to be extended to general multi-component systems.

Construction of pulses.

Using these results for Kh;u0;c0 , we develop a fixed point argument to show that,
for h small enough, the system (2.1.9) has a locally unique travelling pulse solution
(Uh(t))j = (uh, wh)(hj + cht) which converges to a travelling pulse solution of the
FitzHugh-Nagumo PDE as h ↓ 0. This procedure is more or less straightforward and
is very similar to the arguments used in [6, §4] which, in turn, closely follow the lines
of a standard proof of the implicit function theorem.
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Spectral stability.

The natural next step is to study the linear operator Kh;uh;ch that arises after linearising
the system (2.1.9) around its new-found pulse solution. This operator is given by

Kh;uh;ch

(
v
w

)
(ξ) =

(
Lh;uh;chv(ξ) + w(ξ)
c0w

′(ξ)− ρv(ξ) + ργw(ξ)

)
, (2.1.18)

where Lh;uh is given by equation (2.1.12), but with u0:sc replaced by uh and c0:sc by
ch. The procedure above can be repeated to show that for fixed δ > 0, it also holds
that Kh;uh;ch + δ is invertible for h small enough. However, to understand the spectral
stability of the pulse, we need to consider the eigenvalue problem

Kh;uh;chv + λv = 0 (2.1.19)

for fixed values of h and λ ranging throughout a half-plane. Switching between these
two points of view turns out to be a delicate task.

We start in §2.5 by showing that Kh;uh;ch and its adjoint K∗h;uh;ch
are Fredholm

operators with one-dimensional kernels. This is achieved by explicitly constructing a
kernel element for K∗h;uh;ch

that converges to a kernel element of the adjoint of the op-
erator corresponding to the linearised PDE. An abstract perturbation argument then
yields the result.

In particular, we see that λ = 0 is a simple eigenvalue of Kh;uh;ch . In §2.6 we estab-
lish that in a suitable half-plane, the spectrum of this operator consists precisely of the
points {k2πich

1
h : k ∈ Z}, which are all simple eigenvalues. We do this by first showing

that the spectrum is invariant under the operation λ 7→ λ + 2πich
h , which allows us to

restrict ourselves to values of λ with imaginary part in between −π|ch|h and π|ch|
h . Note

that the period of the spectrum is dependent on h and grows to infinity as h ↓ 0. This
is not too surprising, since the spectrum of the linearisation of the PDE around its
pulse solution is not periodic. However, this means that we cannot restrict ourselves
to a fixed compact subset of the complex plane for all values of h at the same time. In
fact, it takes quite some effort to keep the part of the spectrum with large imaginary
part under control.

It turns out to be convenient to partition our ‘half-strip’ into four parts and to
calculate the spectrum in each part using different methods. Values close to 0 are an-
alyzed using the Fredholm properties of Kh;uh;ch exploiting many of the results from
§2.5; values with a large real part are considered using standard norm estimates, but
values with a large imaginary part are treated using a Fourier transform. The final
set to consider is a compact set that is independent of h and bounded away from the
origin. This allows us to apply a modified version of the procedure described above
that exploits the absence of spectrum in this region for the FitzHugh-Nagumo PDE.

Let us emphasize that our arguments here for bounded values of the spectral pa-
rameter λ strongly use the fact that the PDE pulse is spectrally stable. The main
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complication to establish the latter fact is the presence of a secondary eigenvalue that
is O(ρ)-close to the origin. Intuitively, this eigenvalue arises as a consequence of the
interaction between the front and back solution to the Nagumo equation that are both
part of the singular pulse that arises in the ρ ↓ 0 limit. In the PDE case, Jones [117] and
Yanagida [166] essentially used shooting arguments to construct and analyze an Evans
function E(λ) that vanishes precisely at eigenvalues. In particular, they computed the
sign of E ′(0) and used counting arguments to show that the secondary eigenvalue dis-
cussed above lies to the left of the origin. Currently, a program is underway to build
a general framework in this spirit based on the Maslov index [10, 37, 101], which also
works in multi-dimensional spatial settings. In [46, 47], this framework was applied to
an equal-diffusion version of the FitzHugh-Nagumo PDE.

An alternative approach involving Lin’s method and exponential dichotomies was
pioneered in [124]. Based upon these ideas, stability results have been obtained for
the LDE (2.1.6) [109] and the PDE (2.1.1) [32] in the nonhyperbolic regime r0 ∼ 0.
The first major advantage of this approach is that explicit bifurcation equations can
be formulated that allow asymptotic expansions to be developed for the location of the
interaction eigenvalue discussed above. The second major advantage is that it allows
us to avoid the use of the Evans function, which cannot easily be defined in discrete
settings, because MFDEs are ill-posed as initial value problems [144]. We believe that
a direct approach along these lines should also be possible for the infinite range system
(2.1.9) as soon as exponential dichotomies are available in this setting.

Nonlinear stability.

The final step in our program is to leverage the spectral stability results to obtain a
nonlinear stability result. To do so, we follow [109] and derive a formula that links the
pointwise Green’s function of our general problem (2.1.9) to resolvents of the opera-
tor Kh;uh;ch in §2.7. Since we have already analyzed the latter operator in detail, we
readily obtain a spectral decomposition of this Green’s function into an explicit neutral
part and a residual that decays exponentially in time and space. Therefore, we obtain
detailed estimates on the decay rate of the Green’s function for the general problem.
These Green’s functions allow in §2.8 to use multiple fixed point arguments to, eventu-
ally, show the nonlinear stability of the family of travelling pulse solutions Uh. To be
more precise, for each initial condition close to Uh(0), we show that the solution with
that initial condition converges at an exponential rate to the solution Uh(· + θ̃) for a
small (and unique) phase shift θ̃.

We emphasize that by now there are several techniques available to obtain nonlinear
stability results in the relatively simple spectral setting encountered in this paper. If
a comparison principle is available, which is not the case for the FitzHugh-Nagumo
system, one can follow the classic approach developed by Fife and McLeod [73] to show
that travelling waves have a large basin of attraction. Indeed, one can construct explicit
sub- and super-solutions that trade-off additive perturbations at t = 0 to phase-shifts
at t =∞. In fact, one can actually use this type of argument to establish the existence
of travelling waves by letting an appropriate initial condition evolve and tracking its
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asymptotic behaviour [38, 110]. For systems that can be written as gradient flows,
which is also not the case here, the existence and stability of travelling waves can be
obtained by using an elegant variational technique that was developed by Gallay and
Risler [82].

In the spatially continuous setting, it is possible to freeze a travelling wave by pass-
ing to a co-moving frame. In our setting, one can achieve this by simply adding a
convective term −c0∂x(u,w) to the right hand side of (2.1.1). The main advantage
is that one can immediately use the semigroup exp[tL0] to describe the evolution of
the linearised system in this co-moving frame, which is temporally autonomous. Here
L0 is the standard linear operator associated to the linearisation of (2.1.1) around
(u0, w0); see (2.2.10). For each ϑ ∈ R one can subsequently construct the stable mani-
fold of

(
u0(·+ϑ), w0(·+ϑ)

)
by applying a fixed point argument to Duhamel’s formula.

Upon varying ϑ, these stable manifolds span a tubular neighbourhood of the family
(u0, w0)(·+ R). This readily leads to the desired stability result; see e.g. [121, §4]. We
remark here that these stable manifolds are all related to each other via spatial shifts.

In the spatially discrete setting, the wave can no longer be frozen. In particular,
the linearisation of (2.1.6) around the pulse (2.1.7) leads to an equation that is tempo-
rally shift-periodic. In [41], the authors attack this problem head-on by developing a
shift-periodic version of Floquet theory that leads to a nonlinear stability result in `∞.
However, they delicately exploit the geometric structure of `∞ and it is not clear how
more degenerate spectral pictures can be fitted into the framework. These issues are
explained in detail in [109, §2].

In [13], the authors found a way to express the Green’s function of the temporally
shift-periodic linear discrete equation in terms of resolvents of the linear operator Lh
associated to the pulse (2.1.7). Based on this procedure, it is possible to follow the
spirit of the powerful pointwise Green’s function techniques pioneered by Zumbrun and
Howard [168]. Indeed, in [11], a stability result is obtained in the setting of discrete
conservation laws, where one encounters curves of essential spectrum that touch the
imaginary axis. Using exponential dichotomies in a setting with extended state-spaces
L2([−h, h];R2) × R2, pointwise λ-meromorphic expansions were obtained for the op-
erators [Lh − λ]−1. This allowed the techniques from [12] to be transferred from the
continuous to the discrete setting. A slightly more streamlined approach was developed
in [109], which does not need the extended state-space and avoids the use of a variation-
of-constants formula. However, exponential dichotomies are still used at certain key
points.

In our paper, we follow the spirit of the latter approach and extend it to the present
setting with infinite-range interactions. In particular, we show how the use of exponen-
tial dichotomies can be eliminated all together, which is a delicate task. In addition,
we need to be very careful in many computations since integrals and sums over shifts as
in (2.1.16) can no longer be freely exchanged. We emphasize, here, that our techniques
do not depend on the specific LDE that we are analyzing. All that is required is the
spectral setting described above and the fact that the shifts appearing in the problem
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are all rationally related.

Let us mention that it is also possible to bypass the construction of the stable
manifolds altogether and employ a direct phase-tracking approach along the lines of
[167]. In particular, one can couple the system with an extra equation for the phase.
To close the system, one chooses this extra equation in such a way that the resulting
nonlinear terms never encounter the nondecaying part of the relevant semigroup. Such
an approach has been used in the current spectral setting to show that travelling waves
remain stable under the influence of a small stochastic noise term [92].

2.2 Main results

We consider the following system of equations

u̇j = 1
h2

∑
k>0

αk[uj+k + uj−k − 2uj ] + g(uj)− wj

ẇj = ρ[uj − γwj ],
(2.2.1)

which we refer to as the (spatially) discrete FitzHugh-Nagumo equation with infinite-
range interactions. Often, for example in [108, 109], it is assumed that only finitely
many of these coefficients αk are non-zero. However, we will impose the following much
weaker conditions here.

Assumption (Hα1). The coefficients {αk}k∈Z>0
satisfy the bound∑

k>0

|αk|k2 < ∞, (2.2.2)

as well as the identity ∑
k>0

αkk
2 = 1. (2.2.3)

Finally, the inequality

A(z) :=
∑
k>0

αk

(
1− cos(kz)

)
> 0 (2.2.4)

holds for all z ∈ (0, 2π).

We note that (2.2.4) is automatically satisfied if α1 > 0 and αk ≥ 0 for all k ∈ Z>1.
The conditions in (Hα1) ensure that for φ ∈ L∞(R) with φ′′ ∈ L2(R), we have the limit

lim
h↓0
‖ 1
h2

∑
k>0

αk

[
φ(·+ hk) + φ(· − hk)− 2φ(·)

]
− φ′′‖L2(R) = 0, (2.2.5)

see Lemma 2.3.5. In particular, we can see (2.2.1) as the discretisation of the FitzHugh-
Nagumo PDE (2.1.1) on a grid with distance h. Additional remarks concerning the
assumption (Hα1) can be found in [6, §1].

Throughout this paper, we impose the following standard assumptions on the re-
maining parameters in (2.2.1). The last condition on γ in (HS) ensures that the origin
is the only j-independent equilibrium of (2.2.1).



2.2. MAIN RESULTS 39

Assumption (HS). The nonlinearity g is given by g(u) = u(1 − u)(u − r0), where
0 < r0 < 1. In addition, we have 0 < ρ < 1 and 0 < γ < 4(1− r0)−2.

Without explicitly mentioning it, we will allow all constants in this work to depend
on r0, ρ and γ. Dependence on h will always be mentioned explicitly. We will mainly
work on the Sobolev spaces

H1(R) = {f : R→ R|f, f ′ ∈ L2(R)},

H2(R) = {f : R→ R|f, f ′, f ′′ ∈ L2(R)}, (2.2.6)

with their standard norms

‖f‖H1(R) =
(
‖f‖2L2(R) + ‖f ′‖2L2(R)

) 1
2

,

‖f‖H2(R) =
(
‖f‖2L2(R) + ‖f ′‖2L2(R) + ‖f ′′‖2L2(R)

) 1
2

.
(2.2.7)

Our goal is to construct pulse solutions of (2.2.1) as small perturbations to the
travelling pulse solutions of the FitzHugh-Nagumo PDE. These latter pulses satisfy the
system

c0u
′
0 = u′′0 + g(u0)− w0

c0w
′
0 = ρ(u0 − γw0)

(2.2.8)

with the boundary conditions

lim
|ξ|→∞

(u0, w0)(ξ) = (0, 0). (2.2.9)

If (u0, w0) is a solution of (2.2.8) with wavespeed c0, then the linearisation of (2.2.8)
around this solution is characterized by the operator L0 : H2(R)×H1(R) → L2(R)×
L2(R) that acts as

L0

(
v
w

)
=

(
c0

d
dξ −

d2

dξ2 − gu(u0) 1

−ρ c0
d
dξ + γρ

)(
v
w

)
. (2.2.10)

The existence of such pulse solutions for the case when ρ is close to 0 is established
in [118, §5.3]. Here, we do not require ρ > 0 to be small, but we simply impose the
following condition.

Assumption (HP1). There exists a solution (u0, w0) of (2.2.8) that satisfies the con-
ditions (2.2.9) and has wavespeed c0 6= 0. Furthermore, the operator L0 is Fredholm
with index zero and it has a simple eigenvalue in zero.

Recall that an eigenvalue λ of a Fredholm operator L is said to be simple if the
kernel of L−λ is spanned by one vector v and the equation (L−λ)w = v does not have
a solution w. Note that if L has a formal adjoint L∗, this is equivalent to the condition
that 〈v, w〉 6= 0 for all nontrivial w ∈ ker(L∗ − λ).

We note that the conditions on L0 formulated in (HP1) were established in [117] for
small ρ > 0. In addition, these conditions imply that u′0 and w′0 decay exponentially.
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We emphasize, however, that there exists a choice of parameters for which the condition
(HP1) is not satisfied [34].

In order to find travelling pulse solutions of (2.2.1), we substitute the Ansatz

(u,w)j(t) = (uh, wh)(hj + cht), (2.2.11)

into (2.2.1) to obtain the system

chu
′
h(ξ) = 1

h2

∑
k>0

αk

[
uh(ξ + hk) + uh(ξ − hk)− 2uh(ξ)

]
+ g
(
uh(ξ)

)
− wh(ξ)

chw
′
h(ξ) = ρ[uh(ξ)− γwh(ξ)],

(2.2.12)
in which ξ = hj + cht. The boundary conditions are given by

lim
|ξ|→∞

(uh, wh)(ξ) = (0, 0). (2.2.13)

The existence of such solutions is established in our first main theorem.

Theorem 2.2.1 (see §2.4). Assume that (HP1), (HS) and (Hα1) are satisfied. There
exists a positive constant h∗ such that for all h ∈ (0, h∗), the problem (2.2.12) with
boundary conditions (2.2.13) admits at least one solution (ch, uh, wh), which is locally
unique in R×H1(R)×H1(R) up to translation and which has the property that

lim
h↓0

(ch − c0, uh − u0, wh − w0) = (0, 0, 0) in R×H1(R)×H1(R). (2.2.14)

Note that this result is very similar to [69, Cor. 2.1]. However, Faye and Scheel
impose an extra assumption, similar to (Hα2) below, which we do not need in our proof.
This is a direct consequence of the strength of the method from [6] that we described
in §2.1.

Building on the existence of the travelling pulse solution, the natural next step is
to show that our new-found pulse is asymptotically stable. However, we now do need
to impose an extra condition on the coefficients {αk}k>0.

Assumption (Hα2). The coefficients {αk}k>0 satisfy the bound∑
k>0

|αk|ekν < ∞ (2.2.15)

for some ν > 0.

Note that the prototype equation (2.1.9) indeed satisfies both assumptions (Hα1)
and (Hα2). An example of a system which satisfies (Hα1), but not (Hα2) is given by

u̇j = κ
h2

∑
k>0

1
k4 [uj+k + uj−k − 2uj ] + g(uj)− wj

ẇj = ρ[uj − γwj ],
(2.2.16)

in which κ = 6
π2 is the normalisation constant.
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Moreover, we need to impose an extra condition on the operator L0 given by (2.2.10).
This spectral stability condition is established in [63, Thm. 2] together with [166, Thm.
3.1] for the case where ρ is close to 0.

Assumption (HP2). There exists a constant λ∗ > 0 such that for each λ ∈ C with
Reλ ≥ −λ∗ and λ 6= 0, the operator

L0 + λ : H2(R)×H1(R)→ L2(R)× L2(R) (2.2.17)

is invertible.

To determine if the pulse solution described in Theorem 2.2.1 is nonlinearly stable,
we must first linearise (2.2.12) around this pulse and determine the spectral stability.
The linearised operator now takes the form

Lh

(
v
w

)
=

(
ch

d
dξ −∆h − gu(uh) 1

−ρ ch
d
dξ + γρ

)(
v
w

)
. (2.2.18)

Here the operator ∆h is given by

∆hφ(ξ) = 1
h2

∑
k>0

αk

(
φ(ξ + hk) + φ(ξ − hk)− 2φ(ξ)

)
. (2.2.19)

As usual, we define the spectrum, σ(L), of a bounded linear operator L : H1(R) ×
H1(R)→ L2(R)× L2(R), as

σ(L) = {λ ∈ C : L− λ is not invertible}. (2.2.20)

Our second main theorem describes the spectrum of this operator Lh, or rather of −Lh,
in a suitable half-plane.

Theorem 2.2.2 (see §2.6). Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are
satisfied. There exist constants λ3 > 0 and h∗∗ > 0 such that for all h ∈ (0, h∗∗), the
spectrum of the operator −Lh in the half-plane {z ∈ C : Re z ≥ −λ3} consists precisely
of the points k2πich

1
h for k ∈ Z, which are all simple eigenvalues of Lh.

We emphasize that λ3 does not depend on h. The translational invariance of (2.2.12)
guarantees that λ = 0 is an eigenvalue of −Lh. In Lemma 2.6.1 we show that the
spectrum of the operator Lh is periodic with period 2πich

1
h , which means that the

eigenvalues k2πich
1
h for k ∈ Z all have the same properties as the zero eigenvalue.

Our final result concerns the nonlinear stability of our pulse solution, which we
represent with the shorthand[

Uh(t)
]
j

= (uh, wh)(hj + cht). (2.2.21)

The perturbations are measured in the spaces `p, which are defined by

`p = {V ∈ (R2)Z : ‖V ‖`p :=
[ ∑
j∈Z
|Vj |p

] 1
p

<∞} (2.2.22)

for 1 ≤ p <∞ and

`∞ = {V ∈ (R2)Z : ||V ||`∞ := sup
j∈Z
|Vj | <∞}. (2.2.23)



42 CHAPTER 2. THE INFINITE-RANGE FITZHUGH-NAGUMO SYSTEM

Theorem 2.2.3 (see §2.8). Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are
satisfied. Fix 0 < h ≤ h∗∗ and 1 ≤ p ≤ ∞. Then there exist constants δ > 0, C > 0
and β > 0, which may depend on h but not on p, such that for all initial conditions
U0 ∈ `p with ‖U0 − Uh(0)‖`p < δ, there exists an asymptotic phase shift θ̃ ∈ R such
that the solution U = (u,w) of (2.2.1) with U(0) = U0 satisfies the bound

‖U(t)− Uh(t+ θ̃)‖`p ≤ Ce−βt‖U0 − Uh(0)‖`p (2.2.24)

for all t > 0.

2.3 The singular perturbation

The main difficulty in analysing the travelling wave MFDE (2.2.12) is that it is a
singular perturbation of the ODE (2.2.8). Indeed, the second derivative in (2.2.8) is
replaced by the linear operator ∆h : H1(R)→ L2(R) that acts as

∆hφ(ξ) = 1
h2

∑
k>0

αk

(
φ(ξ + hk) + φ(ξ − hk)− 2φ(ξ)

)
. (2.3.1)

We will see in Lemma 2.3.5 that for all φ ∈ L∞(R) with φ′′ ∈ L2(R), we have that
lim
h↓0
‖∆hφ − φ′′‖L2 = 0. Hence, the bounded operator ∆h converges pointwise on a

dense subset of H1(R) to an unbounded operator on that same dense subset. In par-
ticular, the norm of the operator ∆h grows to infinity as h ↓ 0.

Since there are no second derivatives involved in (2.2.12), we have to view it as an
equation posed on the space H1(R) × H1(R), while the ODE (2.2.8) is posed on the
space H2(R)×H1(R). From now on we write

H1 := H1(R)×H1(R),

L2 := L2(R)× L2(R).
(2.3.2)

The main results in this section will be used in several different settings. In order
to accommodate this, we introduce the following conditions.

Assumption (hFam). For each h > 0 there is a pair (ũh, w̃h) ∈ H1 and a constant
c̃h such that (ũh, w̃h)− (u0, w0)→ 0 in H1 and c̃h → c0 as h ↓ 0.

In the proof of Theorem 2.2.1 we choose (ũh, w̃h) and c̃0 to be (u0, w0) and c0 for
all values of h. However, in §2.5 we let (ũh, w̃h) be the travelling pulse (uh, wh) from
Theorem 2.2.1 and we let c̃h be its wave speed ch.

If (hFam) is satisfied, then for δ > 0 and h > 0 we define the operators

L+

h,δ =

(
c̃h

d
dξ −∆h − gu(ũh) + δ 1

−ρ c̃h
d
dξ + γρ+ δ

)
(2.3.3)
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and

L−h,δ =

(
−c̃h d

dξ −∆h − gu(ũh) + δ −ρ
1 −c̃h d

dξ + γρ+ δ

)
. (2.3.4)

These operators are bounded linear functions from H1 to L2. We see that L−h,δ is the

adjoint operator of L+

h,δ, in the sense that

〈(φ, ψ),L+

h,δ(θ, χ)〉 = 〈L−h,δ(φ, ψ), (θ, χ)〉 (2.3.5)

holds for all (φ, ψ), (θ, χ) ∈ H1. Here we have introduced the notation

〈(φ, ψ), (θ, χ)〉 = 〈φ, θ〉+ 〈ψ, χ〉

=
∞∫
−∞

(
φ(x)θ(x) + ψ(x)χ(x)

)
dx

(2.3.6)

for (φ, ψ), (θ, χ) ∈ L2.

Since, at some point, we want to consider complex-valued functions, we also work
in the spaces H2

C(R), H1
C(R) and L2

C(R), which are given by

H2
C(R) = {f + gi|f, g ∈ H2(R)},

H1
C(R) = {f + gi|f, g ∈ H1(R)},

L2
C(R) = {f + gi|f, g ∈ L2(R)}.

(2.3.7)

These spaces are equipped with the inner product

〈φ, ψ〉 =
∫ (

f1(x) + ig1(x)
)(
f2(x)− ig2(x)

)
dx (2.3.8)

for φ = f1 + ig1, ψ = f2 + ig2. As before, we write

H1
C = H1

C(R)×H1
C(R)

L2
C = L2

C(R)× L2
C(R).

(2.3.9)

Each operator L from H1 to L2 can be extended to an operator from H1
C to L2

C by
writing

L(f + ig) = Lf + iLg. (2.3.10)

It is well-known that this complexification preserves adjoints, invertibility, inverses,
injectivity, surjectivity and boundedness, see for example [146]. If λ ∈ C then the op-

erators L±h,λ are defined analogously to their real counterparts, but now we view them
as operators from H1

C(R)×H1
C(R) to L2

C(R)×L2
C(R). Whenever it is clear that we are

working in the complex setting we drop the subscript C from the spaces H1
C and L2

C
and simply write H1 and L2.
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We also introduce the operators L±0 : H2(R) ×H1(R) → L2(R) × L2(R), that act
as

L+
0 =

(
c0

d
dξ −

d2

dξ2 − gu(u0) 1

−ρ c0
d
dξ + γρ

)
(2.3.11)

and

L−0 =

(
−c0 d

dξ −
d2

dξ2 − gu(u0) −ρ
1 −c0 d

dξ + γρ

)
. (2.3.12)

These operators can be viewed as the formal h ↓ 0 limits of the operators L±h,0. Upon
introducing the notation

(φ+
0 , ψ

+
0 ) =

(u′0,w
′
0)

‖(u′0,w′0)‖L2
, (2.3.13)

we see that L+
0 (φ+

0 , ψ
+
0 ) = 0 by differentiating (2.2.8).

To set the stage, we summarize several basic properties of L±0 . The proof of this
result follows the standard procedure described in [6, Lem. 3.1] and, as such, will
be omitted. The last property references a spectral set M , on which we impose the
following condition.

Assumption (hM). The set M ⊂ C is compact with 0 /∈ M . In addition, recalling
the constant λ∗ appearing in (HP2), we have Re z ≥ −λ∗ for all z ∈M .

In §2.6 the set M will be fixed as the final region of our spectral analysis, which we
will refer to as R4.

Lemma 2.3.1. Assume that (HP1), (HS) and (Hα1) are satisfied. Then the following
results hold.

1. We have that (φ+
0 , ψ

+
0 ) ∈ H2(R)×H1(R) and ker(L+

0 ) = span{(φ+
0 , ψ

+
0 )}.

2. There exist (φ−0 , ψ
−
0 ) ∈ H2(R)×H1(R) with ‖(φ−0 , ψ

−
0 )‖L2 = 1, with

〈(u′0, w′0), (φ−0 , ψ
−
0 )〉 > 0 and ker(L−0 ) = span{(φ−0 , ψ

−
0 )}.

3. For every (θ, χ) ∈ L2 the problem L±0 (φ, ψ) = (θ, χ) with (φ, ψ) ∈ H2(R) ×
H1(R) and 〈(φ, ψ), (φ±0 , ψ

±
0 )〉 = 0 has a unique solution (φ, ψ) if and only if

〈(θ, χ), (φ∓0 , ψ
∓
0 )〉 = 0.

4. There exists a positive constant C1 such that

‖(φ, ψ)‖H2(R)×H1(R) ≤ C1‖L±0 (φ, ψ)‖L2 (2.3.14)

for all (φ, ψ) ∈ H2(R)×H1(R) with 〈(φ, ψ), (φ±0 , ψ
±
0 )〉 = 0.

5. There exists a positive constant C2 and a small constant δ0 > 0 such that for all
0 < δ < δ0 we have

‖(L±0 + δ)−1(θ, χ)‖H2(R)×H1(R) ≤ C2

[
‖(θ, χ)‖L2 + 1

δ |〈(θ, χ), (φ∓0 , ψ
∓
0 )〉|

]
(2.3.15)

for all (θ, χ) ∈ L2.
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6. If (HP2) is also satisfied, then for each M ⊂ C that satisfies (hM), there exists a
constant C3 > 0 such that the uniform bound

‖(L±0 + λ)−1(θ, χ)‖H2
C(R)×H1

C(R) ≤ C3‖(θ, χ)‖L2
C

(2.3.16)

holds for all (θ, χ) ∈ L2
C and all λ ∈M .

The main goal of this section is to prove the following two propositions, which
transfer parts (5) and (6) of Lemma 2.3.1 to the discrete setting.

Proposition 2.3.2. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. There
exists a positive constant C ′0 and a positive function h′0(·) : R+ → R+, depending only
on the choice of (ũh, w̃h) and c̃h, such that for every 0 < δ < δ0 and every h ∈ (0, h′0(δ)),

the operators L±h,δ are homeomorphisms from H1 to L2 that satisfy the bounds

‖(L±h,δ)−1(θ, χ)‖H1 ≤ C ′0

[
‖(θ, χ)‖L2 + 1

δ |〈(θ, χ), (φ∓0 , ψ
∓
0 )〉|

]
(2.3.17)

for all (θ, χ) ∈ L2.

Proposition 2.3.3. Assume that (hFam), (HP1),(HP2), (HS) and (Hα1) are satisfied.
Let M ⊂ C satisfy (hM). Then there exists a constant hM > 0, depending only on M
and the choice of (ũh, w̃h) and c̃h, such that for all 0 < h ≤ hM and all λ ∈ M the

operator L±h,λ is a homeomorphism from H1 to L2.

2.3.1 Strategy

Our techniques here are inspired strongly by the approach developed in [6, §2-4]. In-
deed, Proposition 2.3.2 and Proposition 2.3.4 are the equivalents of [6, Thm. 3] and
[6, Lem. 3.2] respectively. The difference between our results and those in [6] is that
Bates, Chen and Chmaj study the discrete Nagumo equation, which can be seen as the
one-dimensional fast component of the FitzHugh-Nagumo equation by setting ρ = 0 in
(2.2.1). In addition, the results in [6] are restricted to λ ∈ R, while we allow λ ∈ C in
Proposition 2.3.3. These differences play a crucial role in the proof of Lemma 2.3.10
below.

Recall the constant δ0 > 0 appearing in Lemma 2.3.1. For 0 < δ < δ0 and h > 0 we
define the quantities

Λ
±

(h, δ) = inf
‖(φ,ψ)‖H1=1

[
‖L±h,δ(φ, ψ)‖L2 + 1

δ

∣∣∣〈L±h,δ(φ, ψ), (φ∓0 , ψ
∓
0 )〉
∣∣∣] , (2.3.18)

together with

Λ
±

(δ) = lim inf
h↓0

Λ
±

(h, δ). (2.3.19)

Similarly for M ⊂ C that satisfies (hM) and h > 0 we define

Λ
±

(h,M) = inf
‖(φ,ψ)‖H1=1, λ∈M

[
‖L±h,λ(φ, ψ)‖L2

]
, (2.3.20)
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together with

Λ
±

(M) = lim inf
h↓0

Λ
±

(h,M). (2.3.21)

The key ingredients that we need to establish Propositions 2.3.2 and 2.3.3 are lower

bounds on the quantities Λ
±

(δ) and Λ
±

(M). These are provided in the result below,
which we consider to be the technical heart of this section.

Proposition 2.3.4. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. There
exists a positive constant C0, depending only on our choice of (ũh, w̃h) and c̃h, such

that Λ
±

(δ) > C0 for all 0 < δ < δ0. Similarly if M ⊂ C satisfies (hM), then there
exists a positive constant CM , depending only on M and our choice of (ũh, w̃h) and c̃h,

such that Λ
±

(M) > CM .

Proof of Proposition 2.3.2. Let δ > 0 be fixed and set C ′0 = 2
C0

. Since Λ
±

(δ) ≥ 2
C′0

,

the definition (2.3.19) implies that there exists h′0(δ) such that Λ(h, δ) ≥ 1
C′0

for all

h ∈ (0, h′0(δ)]. Now pick h ∈ (0, h′0(δ)].

First of all, L±h,δ is a bounded operator from H1 to L2. Since Λ
±

(h, δ) is strictly

positive, this implies that L±h,δ is a homeomorphism from H1 to its image L±h,δ(H
1).

Furthermore, the norm of the inverse (L±h,δ)−1 from L±h,δ(H
1) ⊂ L2 is bounded by

1

Λ
±

(h,δ)
≤ C ′0. Since L±h,δ is bounded, it follows that L±h,δ(H

1) is closed in L2.

For the remainder of this proof, we only consider the operators L+

h,δ, noting that

their counterparts L−h,δ can be treated in an identical fashion.

Seeking a contradiction, let us assume that L+

h,δ(H
1) 6= L2, which implies that there

exists a nonzero (θ, χ) ∈ L2 orthogonal to L+

h,δ(H
1). For any φ ∈ C∞c (R), we hence

obtain
0 = 〈L+

h,δ(φ, 0), (θ, χ)〉

= 〈c̃hφ′ −∆hφ− gu(ũh)φ+ δφ, θ〉+ 〈−ρφ, χ〉

= c̃h〈φ′, θ〉+ 〈φ,−∆hθ − gu(ũh)θ + δθ − ρχ〉.

(2.3.22)

By definition this implies that θ has a weak derivative and that c̃hθ
′ = −∆hθ−gu(ũh)θ+

δθ − ρχ ∈ L2(R). In particular, we see that θ ∈ H1(R).

For any ψ ∈ C∞c (R) a similar computation yields

0 = 〈L+

h,δ(0, ψ), (θ, χ)〉

= 〈ψ, θ〉+ 〈c̃hψ′ + (γρ+ δ)ψ, χ〉

= c̃h〈ψ′, χ〉+ 〈ψ, θ + (γρ+ δ)χ〉.

(2.3.23)

Again, this means that χ has a weak derivative and in fact c̃hχ
′ = θ + (γρ + δ)χ. In

particular, it follows that χ ∈ H1(R).
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We, therefore, conclude that

0 = 〈L+

h,δ(φ, ψ), (θ, χ)〉

= 〈(φ, ψ), (L−h,δ(θ, χ)〉
(2.3.24)

holds for all (φ, ψ) ∈ H1. Since H1 is dense in L2 this implies that L−h,δ(θ, χ) = 0.

Since we already know that L−h,δ is injective, this means that (θ, χ) = 0, which gives a

contradiction. Hence, we must have L+

h,δ(H
1) = L2, as desired.

Proof of Proposition 2.3.3. The result follows in the same fashion as outlined in the
proof of Proposition 2.3.2 above.

2.3.2 Preliminaries

Our goal here is to establish some basic facts concerning the operator ∆h. In particular,
we extend the real-valued results from [6] to complex-valued functions. We emphasize
that the inequalities in Lemma 2.3.6 in general do not hold for the imaginary parts of
these inner products.

Lemma 2.3.5 ([6, Lem. 2.1]). Assume that (Hα1) is satisfied. The following three
properties hold.

1. For all φ ∈ L∞(R) with φ′′ ∈ L2(R) we have lim
h↓0
‖∆hφ− φ′′‖L2 = 0.

2. For all φ ∈ H1(R) and h > 0 we have 〈∆hφ, φ
′〉 = 0.

3. For all φ, ψ ∈ L2(R) and h > 0 we have 〈∆hφ, ψ〉 = 〈φ,∆hψ〉 and 〈∆hφ, φ〉 ≤ 0.

Lemma 2.3.6. Assume that (Hα1) is satisfied and pick f ∈ H1
C(R). Then the following

properties hold.

1. For all h > 0 we have Re 〈−∆hf, f〉 ≥ 0.

2. For all h > 0 we have Re 〈∆hf, f
′〉 = 0.

3. We have Re 〈f, f ′〉 = 0.

4. For all λ ∈ C we have Re 〈λf, f ′〉 = 2 (Imλ)〈Re f, Im f ′〉.

Proof. Write f = φ+ iψ with φ, ψ ∈ H1(R). Lemma 2.3.5 implies that

Re 〈−∆hf, f〉 = Re
∫ (
−∆hφ− i∆hψ

)
(x)
(
φ− iψ

)
(x)dx

=
∫

(−∆hφ)(x)φ(x) + (−∆hψ)(x)ψ(x)dx

= 〈−∆hφ, φ〉+ 〈−∆hψ,ψ〉

≥ 0.

(2.3.25)
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Similarly we have

Re 〈∆hf, f
′〉 = 〈−∆hφ, φ

′〉+ 〈−∆hψ,ψ
′〉

= 0.
(2.3.26)

For λ ∈ C we may compute

Re 〈λf, f ′〉 = Re
∫ (

λφ(x) + λiψ(x)
)(
φ′(x)− iψ′(x)

)
dx

= (Reλ)〈φ, φ′〉+ (Imλ)〈φ, ψ′〉 − (Imλ)〈ψ, φ′〉+ (Reλ)〈ψ,ψ′〉

= 0 + 2 (Imλ)〈φ, ψ′〉+ 0

= 2 (Imλ)〈φ, ψ′〉.
(2.3.27)

Taking λ = 1 gives the third property.

2.3.3 Proof of Proposition 2.3.4

We now set out to prove Proposition 2.3.4. In Lemmas 2.3.7 and 2.3.8, we construct
weakly converging sequences that realize the infima in (2.3.18)-(2.3.21). In Lemmas
2.3.9-2.3.11, we exploit the structure of our operators (2.3.3) and (2.3.4) to recover
bounds on the derivatives of these sequences that are typically lost when taking weak
limits. Recall the constant C2 > 0 defined in Lemma 2.3.1, which does not depend on
δ > 0.

Lemma 2.3.7. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider
the setting of Proposition 2.3.4 and fix 0 < δ < δ0. Then there exists a sequence
{(hj , φj , ψj)}j≥0 in (0, 1)×H1 with the following properties.

1. We have limj→∞ hj = 0 and ‖(φj , ψj)‖H1 = 1 for all j ≥ 0.

2. The sequence (θj , χj) = L+

hj ,δ(φj , ψj) satisfies

limj→∞

[
‖(θj , χj)‖L2 + 1

δ |〈(θj , χj), (φ
−
0 , ψ

−
0 )〉|

]
= Λ

+
(δ). (2.3.28)

3. There exist (φ, ψ) ∈ H1 and (θ, χ) ∈ L2 such that (φj , ψj) ⇀ (φ, ψ) weakly in H1

and such that (θj , χj) ⇀ (θ, χ) weakly in L2 as j →∞.

4. We have (φj , ψj)→ (φ, ψ) in L2
loc(R)× L2

loc(R) as j →∞.

5. The pair (φ, ψ) is a weak solution to (L+

0 + δ)(φ, ψ) = (θ, χ).

6. We have the bound

‖(φ, ψ)‖H2(R)×H1(R) ≤ C2Λ
+

(δ). (2.3.29)

The same statements hold upon replacing L+

h,δ, Λ
+

and L+

0 by L−h,δ, Λ
−

and L−0 .
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Proof. Let 0 < δ < δ0 be fixed. By definition of Λ
+

(δ) there exists a sequence
{(hj , φj , ψj)} in (0, 1) × H1 such that (1) and (2) hold. Taking a subsequence if
necessary, we may assume that there exist (φ, ψ) ∈ H1 and (θ, χ) ∈ L2 such that
(φj , ψj) → (φ, ψ) in L2

loc(R) × L2
loc(R) and weakly in H1 as j → ∞ and such that

(θj , χj) ⇀ (θ, χ) weakly in L2. By the weak lower-semicontinuity of the L2-norm, we
obtain

‖(θ, χ)‖L2 + 1
δ |〈(θ, χ), (φ−0 , ψ

−
0 )〉| ≤ Λ

+
(δ). (2.3.30)

For any pair of test functions (ζ1, ζ2) ∈ C∞c (R)× C∞c (R) we have

〈(θj , χj), (ζ1, ζ2)〉 = 〈L+

hj ,δ(φj , ψj), (ζ1, ζ2)〉

= 〈(φj , ψj),L
−
hj ,δ(ζ1, ζ2)〉.

(2.3.31)

Since u0 is a bounded function, the limit ũh − u0 → 0 in H1 implies that also ũh → u0

in L∞. In particular, we can choose h′ > 0 and N > 0 in such a way that |ũh| ≤ N
and |u0| ≤ N for all 0 < h ≤ h′. Since gu is Lipschitz continuous on [−N,N ], there is a
constant K > 0 such that |gu(x)− gu(y)| ≤ K|x− y| for all x, y ∈ [−N,N ]. We obtain

lim
h↓0
‖gu(ũh)− gu(u0)‖2L2 = lim

h↓0

∫
(gu(ũh)− gu(u0))2dx

≤ lim
h↓0

∫
K2(ũh − u0)2dx

≤ lim
h↓0

K2‖ũh − u0‖2L2

= 0,

(2.3.32)

together with

lim
h↓0
‖gu(ũh)ζ1 − gu(u0)ζ1‖L2 ≤ lim

h↓0
‖ζ1‖∞‖gu(ũh)− gu(u0)‖L2

= 0.
(2.3.33)

Furthermore, we know that c̃h → c0 as h ↓ 0, which gives

lim
h↓0
‖c̃hζ ′1 − c0ζ ′1‖L2 = lim

h↓0
‖c̃hζ ′2 − c0ζ ′2‖L2

= 0.
(2.3.34)

Finally, Lemma 2.3.5 implies

lim
h↓0
‖∆hζ1 − ζ ′′1 ‖L2 = 0, (2.3.35)

which means that

‖L−hj ,δ(ζ1, ζ2)− (L−0 + δ)(ζ1, ζ2)‖L2 → 0 (2.3.36)

as j →∞. Sending j →∞ in (2.3.31), this yields

〈(θ, χ), (ζ1, ζ2)〉 = 〈(φ, ψ), (L−0 + δ)(ζ1, ζ2)〉. (2.3.37)
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In particular, we see that (φ, ψ) is a weak solution to (L+

0 + δ)(φ, ψ) = (θ, χ). Since
φ ∈ H1, ψ ∈ L2, θ ∈ L2 and

φ′′ = c0φ
′ − gu(u0)φ+ δφ+ ψ − θ, (2.3.38)

we get φ′′ ∈ L2 and, hence, φ ∈ H2. Since we already know that ψ ∈ H1, we may
apply Lemma 2.3.1 and (2.3.30) to obtain

‖(φ, ψ)‖H2(R)×H1(R) ≤ C2[‖(θ, χ)‖L2 + 1
δ |〈(θ, χ), (φ−0 , ψ

−
0 )〉|]

≤ C2Λ
+

(δ).
(2.3.39)

The next result is the analogue of Lemma 2.3.7 for the setting where we are con-
sidering a spectral set M ⊂ C that satisfies (hM). The proof is omitted as it is almost
identical to that of Lemma 2.3.7. We recall the constant C3 > 0 from Lemma 2.3.1,
which only depends on the choice of the set M ⊂ C.

Lemma 2.3.8. Assume that (HP1),(HP2), (HS) and (Hα1) are satisfied. Let M ⊂ C
satisfy (hM). There exists a sequence {(λj , hj , φj , ψj)} in M × (0, 1) × H1 with the
following properties.

1. We have lim
j→∞

hj = 0, lim
j→∞

λj = λ for some λ ∈ M and ‖(φj , ψj)‖H1 = 1 for all

j.

2. The pair (θj , χj) = L+

hj ,λj (φj , ψj) satisfies

lim
j→∞
‖(θj , χj)‖L2 = Λ

+
(M). (2.3.40)

3. There exist (φ, ψ) ∈ H1 and (θ, χ) ∈ L2 such that as j →∞ (φj , ψj)→ (φ, ψ) in
L2

loc(R)×L2
loc(R) and weakly in H1 and such that (θj , χj) ⇀ (θ, χ) weakly in L2.

4. The pair (φ, ψ) is a weak solution to (L+

0 + λ)(φ, ψ) = (θ, χ).

5. We have the bound

‖(φ, ψ)‖H2(R)×H1(R) ≤ C3Λ
+

(M). (2.3.41)

The same statements hold upon replacing L+

h,λj , Λ
+

(M) and L+

0 by L−h,λj , Λ
−

and L−0 .

In our arguments below, we often consider the sequences {(hj , φj , ψj)} and
{(λj , hj , φj , ψj)} defined in Lemmas 2.3.7 and 2.3.8 in a similar fashion. To streamline
our notation, we simply write {(λj , hj , φj , ψj)} for all these sequences, with the under-
standing that λj = δ when referring to Lemma 2.3.7. As argued in the proof of Lemma
2.3.7, it is possible to choose h > 0 in such a way that

c∗ := inf0<h≤h |c̃h| > 0,

g∗ := sup0<h≤h‖gu(ũh)‖∞ < ∞.
(2.3.42)
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By taking a subsequence if necessary, we assume from now on that hj < h for all j.

It remains to find a positive lower bound for ‖(φ, ψ)‖L2 . An essential step to ac-
complish this is to keep the derivatives (φ′j , ψ

′
j) under control. This can be achieved by

exploiting the results for ∆h derived in §2.3.2.

Lemma 2.3.9. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider
the setting of Proposition 2.3.4 and Lemma 2.3.7 or Lemma 2.3.8. Then there exists a
constant B > 0, depending only on M and our choice of (ũh, w̃h) and c̃h, such that for
all j we have the bound

B‖(φj , ψj)‖2L2 ≥ c2∗‖(φ′j , ψ′j)‖2L2 − 4‖(θj , χj)‖2L2 . (2.3.43)

Proof. We first consider the sequence for Λ
+

. Using L+

hj ,λj (φj , ψj) = (θj , χj) and
Re 〈∆hjφj , φ

′
j〉 = 0 = Re 〈φj , φ′j〉 = Re 〈ψj , ψ′j〉, which follow from Lemma 2.3.6, we

obtain

Re 〈(θj , χj), (φ′j , ψ′j)〉 = Re 〈L+

hj ,λj (φj , ψj), (φ
′
j , ψ
′
j)〉

= Re 〈c̃hjφ′j −∆hjφj − gu(ũhj )φj + λjφj + ψj , φ
′
j〉

+Re 〈−ρφj + c̃hjψ
′
j + γρψj + λjψj , ψ

′
j〉

= c̃hj‖φ′j‖2L2 − Re 〈gu(ũhj )φj , φ
′
j〉+ Re 〈ψj , φ′j〉

+Re 〈λjφj , φ′j〉 − ρRe 〈φj , ψ′j〉

+c̃hj‖ψ′j‖2L2 + Re 〈λjψj , ψ′j〉

= c̃hj‖(φ′j , ψ′j)‖2L2 − Re 〈gu(ũhj )φj , φ
′
j〉+ (1 + ρ)〈ψj , φ′j〉

+Re 〈λj(φj , ψj), (φ′j , ψ′j)〉.
(2.3.44)

We write λmax = δ0 in the setting of Lemma 2.3.7 or λmax = max{|z| : z ∈ M} in
the setting of Lemma 2.3.8. We write

G = λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + g∗‖φj‖L2‖(φ′j , ψ′j)‖L2 . (2.3.45)

Using the Cauchy-Schwarz inequality, we now obtain

G ≥ λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + ‖gu(ũhj )‖L∞‖φj‖L2‖φ′j‖L2

≥ sign(c̃hj )
(
− Re 〈λj(φj , ψj), (φ′j , ψ′j)〉+ Re 〈gu(ũhj )φj , φ

′
j〉
)

= sign(c̃hj )
(
c̃hj‖(φ′j , ψ′j)‖2L2 + (1 + ρ)Re 〈ψj , φ′j〉 − Re 〈(θj , χj), (φ′j , ψ′j)〉

)
≥ |c̃hj |‖(φ′j , ψ′j)‖2L2 − (1 + ρ)‖ψj‖L2‖φ′j‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2

≥ c∗‖(φ′j , ψ′j)‖2L2 − (1 + ρ)‖ψj‖L2‖(φ′j , ψ′j)‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2 .
(2.3.46)

This implies

c∗‖(φ′j , ψ′j)‖L2 ≤ g∗‖φj‖L2 + (1 + ρ)‖ψj‖L2 + ‖(θj , χj)‖L2 + λmax‖(φj , ψj)‖L2 .
(2.3.47)
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Squaring this equation and using the standard inequality 2µω ≤ µ2 + ω2, this implies
that

c2∗‖(φ′j , ψ′j)‖2L2 ≤ 4g2
∗‖φj‖2L2 + 4(1 + ρ)2‖ψj‖2L2

+4‖(θj , χj)‖2L2 + 4λ2
max‖(φj , ψj)‖2L2 .

(2.3.48)

In particular, we see

4
(

max{g2
∗, (1 + ρ)2}+ λ2

max

)
‖(φj , ψj)‖2L2 ≥ c2∗‖(φ′j , ψ′j)‖2L2 − 4‖(θj , χj)‖2L2 .

(2.3.49)

We now look at the sequence for Λ
−

. Using L−hj ,λj (φj , ψj) = (θj , χj) and Re 〈∆hjφj , φ
′
j〉 =

0 = Re 〈φj , φ′j〉 = Re 〈ψj , ψ′j〉, which follow from Lemma 2.3.6, we obtain

Re 〈(θj , χj), (φ′j , ψ′j)〉 = Re 〈L−hj ,λj (φj , ψj), (φ
′
j , ψ
′
j)〉

= Re 〈−c̃hjφ′j −∆hjφj − gu(ũh)φj + λjφj − ρψj , φ′j〉

+Re 〈φj − c̃hψ′j + γρψj + λjψj , ψ
′
j〉

= −c̃hj‖φ′j‖2L2 − Re 〈gu(ũh)φj , φ
′
j〉 − ρRe 〈ψj , φ′j〉

+Re 〈λjφj , φ′j〉+ Re 〈φj , ψ′j〉

−c̃hj‖ψ′j‖2L2 + Re 〈λjψj , ψ′j〉

= −c̃hj‖(φ′j , ψ′j)‖2L2 − Re 〈gu(ũh)φj , φ
′
j〉+ (1 + ρ)〈ψj , φ′j〉

+Re 〈λj(φj , ψj), (φ′j , ψ′j)〉.
(2.3.50)

We write

G = λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + g∗‖φj‖L2‖(φ′j , ψ′j)‖L2 . (2.3.51)

Using the Cauchy-Schwarz inequality we now obtain

G ≥ λmax‖(φj , ψj)‖L2‖(φ′j , ψ′j)‖L2 + ‖gu(ũhj )‖L∞‖φj‖L2‖φ′j‖L2

≥ −sign(c̃hj )
(
− Re 〈λj(φj , ψj), (φ′j , ψ′j)〉+ Re 〈gu(ũhj )φj , φ

′
j〉
)

= −sign(c̃hj )
(
− c̃hj‖(φ′j , ψ′j)‖2L2 − (1 + ρ)Re 〈ψj , φ′j〉 − Re 〈(θj , χj), (φ′j , ψ′j)〉

)
≥ |c̃hj |‖(φ′j , ψ′j)‖2L2 − (1 + ρ)‖ψj‖L2‖φ′j‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2

≥ c∗‖(φ′j , ψ′j)‖2L2 − (1 + ρ)‖ψj‖L2‖(φ′j , ψ′j)‖L2 − ‖(θj , χj)‖L2‖(φ′j , ψ′j)‖L2 .
(2.3.52)

This is the same equation that we derived for Λ
+

. Hence, we again obtain

B‖(φj , ψj)‖2L2 ≥ c2∗‖(φ′j , ψ′j)‖2L2 − 4‖(θj , χj)‖2L2 , (2.3.53)

where

B = 4
(

max{g2
∗, (1 + ρ)2}+ λ2

max

)
. (2.3.54)
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The next step is to show that the L2-mass of φj can be concentrated in a compact
interval. We heavily exploit the bistable structure of the nonlinearity g to accomplish
this. Moreover, we are aided by the fact that the off-diagonal elements are constant,
which allows us to keep the cross-terms under control. In fact, one might be tempted

to think that it is sufficient to note that the eigenvalues of the matrix

(
−gu(0) 1
−ρ γρ

)
all have positive real part, as then one would be able to find a basis in which this matrix
is positive definite. However, passing over to another basis destroys the structure of
the diffusion terms and, therefore, does not give any insight.

Lemma 2.3.10. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider
the setting of Proposition 2.3.4 and Lemma 2.3.7 or Lemma 2.3.8. There exist positive
constants a and m, depending only on our choice of (ũh, w̃h), such that we have the
following inequality for all j

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥
(

1
2min{a, 1

2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1
2min{a, 12ργ}

‖(θj , χj)‖2L2 − β‖(θj , χj)‖2L2 .

(2.3.55)
Here we write λmin = 0 in the setting of Lemma 2.3.7 or λmin = min{Reλ : λ ∈ M}
in the setting of Lemma 2.3.8, together with

β = 1−ρ
ρ

1
4( ρ

1−ρ
1
2γρ+γρ+λmin)

. (2.3.56)

Proof. Again we first look at the sequence for Λ
+

. We know that ũh−u0 → 0 in H1 as
h ↓ 0. Hence, it follows that ũh−u0 → 0 in L∞ and, therefore, also gu(ũh)−gu(u0)→ 0
in L∞ as h ↓ 0. By the bistable nature of our nonlinearity g, we can choose m to be a
positive constant such that for all h ∈ [0, h] (by making h smaller if necessary)

min|x|≥m[−gu(ũh(x))] ≥ a :=
1

2
r0 > 0. (2.3.57)

Here r0 is the constant appearing in the choice of our function g in (HS). Then we
obtain, using Re 〈φ′j , φj〉 = Re 〈ψ′j , ψj〉 = 0 and Re 〈−∆hjφj , φj〉 ≥ 0, which we know
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from Lemma 2.3.6, that

Re 〈(θj , χj), (φj , ψj)〉 = Re 〈L+

hj ,λj (φj , ψj), (φj , ψj)〉

≥ Re 〈−gu(ũhj )φj , φj〉+ Re 〈ψj , φj〉

−ρRe 〈ψj , φj〉+ γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ min|x|≥m{−gu(ũhj (x))}
∫
|x|≥m |φj(x)|2dx

−‖gu(ũhj )‖L∞
∫

|x|≤m
|φj(x)|2dx+ (1− ρ)Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ a‖φj‖2L2 − (a+ g∗)
∫

|x|≤m
|φj(x)|2dx+ (1− ρ)Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2.
(2.3.58)

We assumed that 0 < ρ < 1 so we see that 1−ρ
−ρ < 0. We set

β+
j = 1

4( ρ
1−ρ

1
2γρ+γρ+Reλj)

. (2.3.59)

Now we obtain

Re 〈χj , ψj〉 ≤ ‖χj‖L2‖ψj‖L2

= 1√
2( ρ

1−ρ
1
2γρ+γρ+Reλj)

‖χj‖L2

√
2( ρ

1−ρ
1
2γρ+ γρ+ Reλj)‖ψj‖L2

≤ 1
4( ρ

1−ρ
1
2γρ+γρ+Reλj)

‖χj‖2L2 + ( ρ
1−ρ

1
2γρ+ γρ+ Reλj)‖ψj‖2L2

= β+
j ‖χj‖2L2 + ( ρ

1−ρ
1
2γρ+ γρ+ Reλj)‖ψj‖2L2 .

(2.3.60)
Note that the denominator 4( ρ

1−ρ
1
2γρ+ γρ+ Reλj) is never zero since we can assume

that λ∗ is small enough to have Reλj ≥ −λ∗ > −γρ. Using the identity

χj = −ρφj + c̃hjψ
′
j + γρψj + λjψj (2.3.61)

and the fact that Re 〈ψ′j , ψj〉 = 0, we also have

Re 〈χj , ψj〉 = −ρRe 〈φj , ψj〉+ (γρ+ Reλj)‖ψj‖2L2 . (2.3.62)

Hence, we must have that

(1− ρ)Re 〈φj , ψj〉 = 1−ρ
ρ

(
− Re 〈χj , ψj〉+ (γρ+ Reλj)‖ψj‖2L2

)
≥ 1−ρ

ρ

(
− β+

j ‖χj‖2L2 − ( ρ
1−ρ

1
2γρ+ γρ+ Reλj)‖ψj‖2L2

+(γρ+ Reλj)‖ψj‖2L2

)
= − 1−ρ

ρ β+
j ‖χj‖2L2 − 1

2γρ‖ψj‖
2
L2 .

(2.3.63)
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Combining this bound with (2.3.58) yields the estimate

Re 〈(θj , χj), (φj , ψj)〉 ≥ a‖φj‖2L2 − (a+ g∗)
∫

|x|≤m
|φj(x)|2dx+ (1− ρ)Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2

≥ a‖φj‖2L2 − (a+ g∗)
∫

|x|≤m
|φj(x)|2dx

+ 1
2γρ‖ψj‖

2
L2 + λmin‖(φj , ψj)‖2 − 1−ρ

ρ β+
j ‖χj‖2L2 .

(2.3.64)

We now look at the sequence for Λ
−

. Let m and a be as before. Then we obtain,

using L−hj ,λj (φj , ψj) = (θj , χj), Re 〈φ′j , φj〉 = Re 〈ψ′j , ψj〉 = 0 and Re 〈−∆hjφj , φj〉 ≥ 0
that

Re 〈(θj , χj), (φj , ψj)〉 = Re 〈L−hj ,δ(φj , ψj), (φj , ψj)〉

≥ Re 〈−gu(ũh)φj , φj〉+ (1− ρ)Re 〈ψj , φj〉

+γρ‖ψj‖2L2 + λmin‖(φj , ψj)‖2L2 .

(2.3.65)

We set
β−j = 1

4( 1
1−ρ

1
2γρ+γρ+Reλj)

. (2.3.66)

Arguing as in (2.3.60) with different constants, we obtain

Re 〈θj , φj〉 ≥ −‖θj‖L2‖φj‖L2

≥ − 1
4(a+Reλj)

‖θj‖2L2 − (a+ Reλj)‖φj‖2L2

= −β−j ‖θj‖2L2 − (a+ Reλj)‖φj‖2L2 .

(2.3.67)

Note that the denominator 4(a + Reλj) is never zero since we can assume that λ∗ is
small enough to have Reλj ≥ −λ∗ > −a. Using the identity

θj = −c̃hjφ′j −∆hφj − gu(ũh)φj + λjψj − ρφj (2.3.68)

and the fact that Re 〈φ′j , φj〉 = 0, we also have

Re 〈θj , φj〉 = Re 〈−∆hφj , φj〉+ Re 〈−gu(ũh)φj , φj〉

+Reλj‖ψj‖2L2 − ρRe 〈φj , ψj〉.
(2.3.69)

Hence, we must have that

(1− ρ)Re 〈φj , ψj〉 = 1−ρ
ρ

(
− Re 〈θj , φj〉+ Re 〈−∆hφj , φj〉

+Re 〈−gu(ũh)φj , φj〉+ Reλj‖ψj‖2L2

)
≥ 1−ρ

ρ

(
− β−j ‖θj‖2L2 −

(
a+ Reλj

)
‖φj‖2L2

+Re 〈−gu(ũh)φj , φj〉+ Reλj‖ψj‖2L2

)
= 1−ρ

ρ

(
− β−j ‖θj‖2L2 − a‖φj‖2L2 + Re 〈−gu(ũh)φj , φj〉

)
.

(2.3.70)
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Combining this with the estimate (2.3.65) and noting that 1−ρ
ρ + 1 = 1

ρ yields

Re 〈(θj , χj), (φj , ψj)〉 ≥ 1
ρRe 〈−gu(ũh)φj , φj〉+ λmin‖(φj , ψj)‖2L2

+γρ‖ψj‖2L2 − a 1−ρ
ρ ‖φj‖

2
L2 − 1−ρ

ρ β−j ‖θj‖2L2

≥ 1
ρ

(
min|x|≥m{−gu(ũh(x))}

∫
|x|≥m |φj |

2dx

−‖gu(ũh)‖L∞
∫

|x|≤m
|φj |2dx

)
+ λmin‖(φj , ψj)‖2L2

+γρ‖ψj‖2L2 − a 1−ρ
ρ ‖φj‖

2
L2 − 1−ρ

ρ β−j ‖θj‖2L2

≥ a‖φj‖2L2 − 1
ρ (a+ g∗)

∫
|x|≤m

|φj |2dx+ γρ‖ψj‖2L2

+λmin‖(φj , ψj)‖2L2 − 1−ρ
ρ β−j ‖θj‖2L2 .

(2.3.71)
Upon setting

β = 1−ρ
ρ min

{
1

4( ρ
1−ρ

1
2γρ+γρ+λmin)

, 1
4(a+λmin)

}
, (2.3.72)

we note that 1−ρ
ρ β+

j ≤ β and 1−ρ
ρ β−j ≤ β for all j since ρ < 1 and since β+

j and β−j are
maximal for Reλ = λmin. Therefore, in both cases, we obtain

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥ a‖φj‖2L2 + 1
2ργ‖ψj‖

2
L2 − Re 〈(θj , χj), (φj , ψj)〉

−β‖(θj , χj)‖2L2 + λmin‖(φj , ψj)‖2L2

≥
(

min{a, 1
2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− ‖(θj ,χj)‖L2√
min{a, 12ργ}

√
min{a, 1

2ργ}‖(φj , ψj)‖L2

−β‖(θj , χj)‖L2

(2.3.73)
and thus, again using the inequality 2µω ≤ µ2 + ω2 for µ, ω ∈ R,

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥
(

min{a, 1
2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1
2

1
min{a, 12ργ}

‖(θj , χj)‖2L2

− 1
2min{a, 1

2ργ}‖(φj , ψj)‖
2
L2 − β‖(θj , χj)‖2L2

=
(

1
2min{a, 1

2ργ}+ λmin

)
‖(φj , ψj)‖2L2

− 1
2min{a, 12ργ}

‖(θj , χj)‖2L2 − β‖(θj , χj)‖2L2 ,

(2.3.74)
as desired.

Lemma 2.3.11. Assume that (hFam), (HP1), (HS) and (Hα1) are satisfied. Consider
the setting of Proposition 2.3.4 and Lemma 2.3.7 or Lemma 2.3.8. There exist positive
constants C4 and C5, depending only on M and our choice of (ũh, w̃h) and c̃h, such
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that for all j we have

1
ρ (a+ g∗)

∫
|x|≤m

|φ2
j (x)|dx ≥ C4 − C5‖(θj , χj)‖2L2 . (2.3.75)

Proof. Without loss of generality we assume that 1
2min{a, 1

2ργ}+ λmin > 0. Write

µ =
1
2 min{a, 12ργ}+λmin

c2∗+B
. (2.3.76)

Adding µ times equation (2.3.43) to equation (2.3.55) gives

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥ µc2∗‖(φ′j , ψ′j)‖2L2 − 4µ‖(θj , χj)‖2L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψj)‖2L2

− 1
2(min{a, 12ργ}+λmin)

‖(θj , χj)‖2L2

−β‖(θj , χj)‖2L2 −Bµ‖(φj , ψj)‖2L2 .

(2.3.77)

We hence obtain
1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥ −C5‖(θj , χj)‖2L2 + µc2∗‖(φ′j , ψ′j)‖2L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψj)‖2L2

−Bµ‖(φj , ψj)‖2L2 ,

(2.3.78)

where
C5 = 4µ+ 1

2(min{a, 12ργ}+λmin)
+ β

> 0.
(2.3.79)

This allows us to compute

1
ρ (a+ g∗)

∫
|x|≤m

|φj(x)|2dx ≥ −C5‖(θj , χj)‖2L2 + µc2∗‖(φ′j , ψ′j)‖2L2

+ 1
2 (min{a, 1

2ργ}+ λmin)‖(φj , ψj)‖2L2

−Bµ‖(φj , ψj)‖2L2

= −C5‖(θj , χj)‖2L2 + µc2∗‖(φ′j , ψ′j)‖L2

+(µ(c2∗ +B)−Bµ)‖(φj , ψj)‖2L2

= µc2∗‖(φj , ψj)‖2H1 − C5‖(θj , χj)‖2L2

= C4 − C5‖(θj , χj)‖2L2 ,

(2.3.80)

where C4 = µc2∗ > 0.

Proof of Proposition 2.3.4. We first choose 0 < δ < δ0 and consider the setting of
Lemma 2.3.7. Sending j →∞ in (2.3.75), Lemma 2.3.7 implies

C4 − C5Λ
±

(δ)2 ≤ C4 − C5 lim
j→∞
‖(θj , χj)‖2L2

≤ 1
ρ (a+ g∗)

∫
|x|≤m

|φ|2dx

≤ 1
ρ (a+ g∗)‖(φ, ψ)‖2H2(R)×H1(R)

≤ 1
ρ (a+ g∗)C

2
2Λ

+
(δ)2.

(2.3.81)
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Solving this quadratic inequality, we obtain

Λ
±

(δ) ≥
√

C4
1
ρ (a+g∗)C2

2+C5

:= C0.
(2.3.82)

The analogous computation in the setting of Lemma 2.3.8 yields

Λ
+

(M) ≥
√

C4
1
ρ (a+g∗)C2

3+C5

:= CM .
(2.3.83)

2.4 Existence of pulse solutions

In this section, we prove our first main result, Theorem 2.2.1. In particular, we construct
solutions to (2.2.12) by writing

(uh, wh) = (u0, w0) + (φh, ψh) (2.4.1)

and exploiting the linear results of §2.3. Here (u0, w0) is the pulse solution of the PDE
(2.1.1).

The arguments presented in this section are strongly reminiscent of a standard proof
of the implicit function theorem. However, the singular nature of the h ↓ 0 limit requires
some minor adjustments pertaining to the linearisation that is used. In particular, we
fix a small δ > 0 that will be determined later and consider the linear operator

L+
h,δ : H1 → L2, (2.4.2)

defined by

L+
h,δ =

(
c0

d
dξ −∆h − gu(u0) + δ 1

−ρ c0
d
dξ + γρ+ δ

)
. (2.4.3)

This operator arises as the linearisation of (2.2.1) around the pulse solution (u0, w0)
of (2.1.1). A short computation shows that our travelling wave triplet (ch, φh, ψh) ∈
R×H1 must satisfy

L+
h,δ(φh, ψ) = R(ch, φh, ψh), (2.4.4)

where

R(c, φ, ψ) =
(

(c0 − c)(u′0 + φ′) + (∆h − d2

dξ2 )u0 + δφ+N (u0, φ), (c0 − c)(w′0 + ψ′)
)
.

(2.4.5)
Here we have introduced the nonlinearity

N (u0, φ) = g(u0 + φ)− g(u0)− gu(u0)φ. (2.4.6)
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Corollary 2.4.1. Assume that (HP1), (HS) and (Hα1) are satisfied. There exists a
positive constant C0 and a positive function h0(·) : R+ → R+ such that for all δ > 0
and all h ∈ (0, h0(δ)), the operator L+

h,δ is a homeomorphism for which we have the
bound

‖(L+
h,δ)
−1(θ, χ)‖H1 ≤ C0‖(θ, χ)‖L2 (2.4.7)

for all (θ, χ) ∈ L2 that satisfy 〈(θ, χ), (φ−0 , ψ
−
0 )〉 = 0.

Proof. This is immediate by choosing (ũh, w̃h) = (u0, w0) and c̃h = c0 for all h in
(hFam) and applying Proposition 2.3.2.

Let η be a small positive constant to be determined later. We define

Xη = {(φ, ψ) ∈ H1 : ‖(φ, ψ)‖H1 ≤ η}. (2.4.8)

For every (φ, ψ) ∈ Xη, we define ch = ch(φ, ψ) to be the constant

ch(φ, ψ) = c0 +
〈∆hu0−u′′0 ,φ

−
0 〉+δ〈φ,φ

−
0 〉+〈N (u0,φ),φ−0 〉

〈u′0,φ
−
0 〉+〈φ′,φ

−
0 〉+〈w′0,ψ

−
0 〉+〈ψ′,ψ

−
0 〉

. (2.4.9)

When this expression is well-defined, this choice ensures that

〈R
(
ch(φ, ψ), φ, ψ

)
, (φ−0 , ψ

−
0 )〉 = 0. (2.4.10)

We define T : Xη ⊂ H1 → H1 by

T (φ, ψ) = (L+
h,δ)
−1R(ch(φ, ψ), φ, ψ). (2.4.11)

Our goal is to show T maps Xη into itself and is a contraction, since then the fixed
point (φh, ψh) leads to a travelling pulse solution of (2.2.12) via (2.4.1) and (2.4.9).

Exploiting (2.4.10), Corollary 2.4.1 implies that there exists a constant C0 > 0 such
that for all Ψ = (φ, ψ) ∈ Xη we have the bound

‖T (Ψ)‖H1 ≤ C0‖R(ch(Ψ),Ψ)‖L2 , (2.4.12)

while for all Ψ1 = (φ1, ψ1),Ψ2 = (φ2, ψ2) ∈ Xη we have the bound

‖T (Ψ1)− T (Ψ2)‖H1 ≤ C0‖R(ch(Ψ1),Ψ1)−R(ch(Ψ2),Ψ2)‖L2 . (2.4.13)

In the remainder of this section we, therefore, set out to estimate the right-hand
sides of (2.4.12) and (2.4.13). We start by estimating the nonlinear term N (u0, ·).

Lemma 2.4.2. Assume that (HP1), (HS) and (Hα1) are satisfied. Then there exists
a constant K > 0 such that for all 0 < η ≤ 1, (φ, ψ) ∈ Xη, (φ1, ψ1) ∈ Xη and
(φ2, ψ2) ∈ Xη we have the pointwise inequalities

|N (u0, φ)| ≤ Kη|φ|,

|N (u0, φ1)−N (u0, φ2)| ≤ ηK|φ1 − φ2|.
(2.4.14)
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Proof. To estimate the nonlinear term N (u0, φ), we first recall the embedding ‖φ‖L∞ ≤
‖φ‖H1 ≤ η ≤ 1 for every (φ, ψ) ∈ Xη. Setting K = max{6, sup|s|≤‖u0‖∞ |guu(s)|}, a
Taylor expansion around u0 allows us to obtain the pointwise inequalities

|N (u0, φ)| = | − g(u0 + φ) + g(u0) + gu(u0)|

= | − g(u0)− φgu(u0)− 1
2φ

2guu(ξ) + g(u0) + gu(u0)|

= | − 1
2φ

2guu(ξ)|

≤ 1
2Kη|φ|

≤ Kη|φ|,

(2.4.15)

where ξ is between u0 and u0 + φ. Note that guuu = 6 is constant. Furthermore, for
(φ1, ψ1) ∈ Xη and (φ2, ψ2) ∈ Xη, a Taylor expansion around u0 yields the pointwise
inequalities

|N (u0, φ1)−N (u0, φ2)| =
∣∣∣− g(u0 + φ1) + g(u0) + gu(u0)φ1

+g(u0 + φ2)− g(u0)− gu(u0)φ2

∣∣∣
=

∣∣∣− 1
2guu(u0)φ2

1 + 1
2guu(u0)φ2

2 − 1
6guuu(ξ1)φ3

1 + 1
6guuu(ξ2)φ3

2

∣∣∣
≤ 1

2 |guu(u0)||φ2
1 − φ2

2|+ 1
66|φ3

1 − φ3
2|

≤ 1
2 |guu(u0)|

[
|φ1||φ1 − φ2|+ |φ2||φ1 − φ2|

]
+|φ1||φ2

1 − φ2
2|+ |φ1 − φ2||φ2

2|

≤ 1
2

1
2K
[
2η|φ1 − φ2|

]
+ η
[
2η|φ1 − φ2|

]
+ η2|φ1 − φ2|

≤ ηK|φ1 − φ2|,
(2.4.16)

where ξ1 is between u0 and u0 + φ1 and ξ2 is between u0 and u0 + φ2.

Pick (φ, ψ) ∈ Xη. Recall that we chose (φ−0 , ψ
−
0 ) so that 〈(φ−0 , ψ

−
0 ), (u′0, w

′
0)〉 > 0.

Let s > 0 be defined as
s = 2 1

〈(φ−0 ,ψ
−
0 )〉,(u′0,w′0)

. (2.4.17)

For notational compactness, we write

σ(φ, ψ) = 〈u′0, φ−0 〉+ 〈φ′, φ−0 〉+ 〈w′0, ψ−0 〉+ 〈ψ′, ψ−0 〉 (2.4.18)

for (φ, ψ) ∈ Xη. We also write

η0 = min{1, s−1}. (2.4.19)

Lemma 2.4.3. Assume that (HP1), (HS) and (Hα1) are satisfied. Fix 0 < η ≤ η0.
Then for all Ψ = (φ, ψ) ∈ Xη,Ψ1 = (φ1, ψ1) ∈ Xη and Ψ2 = (φ2, ψ2) ∈ Xη we have the
bounds

0 < [σ(Ψ)]−1 ≤ s, (2.4.20)
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together with

|σ(Ψ1)− σ(Ψ2)| ≤ ‖Ψ′1 −Ψ′2‖L2 . (2.4.21)

Proof. Using Cauchy-Schwartz, we obtain that

σ(φ, ψ) = 〈u′0, φ−0 〉+ 〈φ′, φ−0 〉+ 〈w′0, ψ−0 〉+ 〈ψ′, ψ−0 〉

≥ 2s−1 + 〈(φ′, ψ′), (φ−0 , ψ
−
0 )〉

≥ 2s−1 − η

≥ s−1,

(2.4.22)

which yields (2.4.20). In particular we see that

1
σ(Ψ) ≤ s. (2.4.23)

The remaining inequality (2.4.21) follows immediately from Cauchy-Schwarz.

Lemma 2.4.4. Assume that (HP1), (HS) and (Hα1) are satisfied. Recall the constant
K from Lemma 2.4.2 and the constant s from (2.4.17). Then for all 0 < η ≤ η0,
Ψ ∈ Xη,Ψ1 ∈ Xη and Ψ2 ∈ Xη we have the inequality

|ch(Ψ)− c0| ≤ s
(
‖∆hu0 − u′′0‖L2 + δη +Kη2

)
, (2.4.24)

together with

|ch(Ψ1)− ch(Ψ2)| ≤ s‖Ψ1 −Ψ2‖H1

(
s‖∆hu0 − u′′0‖L2 + 2(δ +Kη)

)
. (2.4.25)

Proof. By (2.4.20) we have that [σ(Ψ)]−1 ≤ s for all Ψ ∈ Xη. By definition of ch(Ψ)
and Lemma 2.4.2, we obtain for all Ψ = (φ, ψ) ∈ Xη that

|ch(Ψ)− c0| =
∣∣∣ 〈∆hu0−u′′0 ,φ

−
0 〉+δ〈φ,φ

−
0 〉+〈N (u0,φ),φ−0 〉

σ(Ψ)

∣∣∣
≤ s|〈∆hu0 − u′′0 , φ−0 〉+ δ〈φ, φ−0 〉+ 〈N (u0, φ), φ−0 〉|

≤ s
(
‖∆hu0 − u′′0‖L2‖φ−0 ‖L2 + δ‖φ‖L2‖φ−0 ‖L2

)
+ sKη‖|φ|‖L2

≤ s
(
‖∆hu0 − u′′0‖L2‖(φ−0 , ψ

−
0 )‖L2 + δ‖φ‖L2‖(φ−0 , ψ

−
0 )‖L2

)
+ sKη‖φ‖L2

= s
(
‖∆hu0 − u′′0‖L2 + δ‖φ‖L2 +Kη‖φ‖L2

)
≤ s

(
‖∆hu0 − u′′0‖L2 + (δ +Kη)η

)
.

(2.4.26)
For notational compactness we write

d(Ψ) = 〈∆hu0 − u′′0 , φ−0 〉+ δ〈φ, φ−0 〉+ 〈N (u0, φ), φ−0 〉. (2.4.27)
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Then we obtain with (2.4.20) that for all Ψ1 = (φ1, ψ1) ∈ Xη and Ψ2 = (φ2, ψ2) ∈ Xη

|ch(Ψ1)− ch(Ψ2)| =
∣∣∣ d(Ψ1)
σ(Ψ1) −

d(Ψ2)
σ(Ψ2)

∣∣∣
=

∣∣∣d(Ψ1)σ(Ψ2)−d(Ψ2)σ(Ψ1)
σ(Ψ1)σ(Ψ2)

∣∣∣
≤ |d(Ψ2)||σ(Ψ2)−σ(Ψ1)|+|d(Ψ1)−d(Ψ2)||σ(Ψ2)|

|σ(Ψ1)||σ(Ψ2)|

≤ s2|d(Ψ2)||σ(Ψ2)− σ(Ψ1)|+ s|d(Ψ1)− d(Ψ2)|.

(2.4.28)

Observe, using Lemma 2.4.2, that

|d(Ψ2)| ≤ ‖∆hu0 − u′′0‖L2 + δ‖φ2‖L2 + ‖N (u0, φ2)‖L2

≤ ‖∆hu0 − u′′0‖L2 + δη +Kη‖φ2‖L2

≤ ‖∆hu0 − u′′0‖L2 + δη +Kη2

(2.4.29)

and

|d(Ψ1)− d(Ψ2)| ≤ δ‖φ1 − φ2‖L2 + ‖N (u0, φ1)−N (u0, φ2)‖L2

≤ δ‖φ1 − φ2‖L2 + ηK‖φ1 − φ2‖L2

≤ (δ +Kη)‖φ1 − φ2‖L2 .

(2.4.30)

Using Lemma 2.4.3, we hence see that

|ch(Ψ1)− ch(Ψ2)| ≤ s2|d(Ψ2)||σ(Ψ2)− σ(Ψ1)|+ s|d(Ψ1)− d(Ψ2)|

≤ s2
(
‖∆hu0 − u′′0‖L2 + δη +Kη2

)
|σ(Ψ2)− σ(Ψ1)|

+s(δ +Kη)‖φ1 − φ2‖L2

≤ s2
(
‖∆hu0 − u′′0‖L2 + δη +Kη2

)
‖Ψ1 −Ψ2‖H1

+s(δ +Kη)‖φ1 − φ2‖L2

≤ s‖Ψ1 −Ψ2‖H1

(
s‖∆hu0 − u′′0‖L2 + (δ +Kη)(1 + sη)

)
≤ s‖Ψ1 −Ψ2‖H1

(
s‖∆hu0 − u′′0‖L2 + 2(δ +Kη)

)
.

(2.4.31)

Lemma 2.4.5. Assume that (HP1), (HS) and (Hα1) are satisfied. Recall the constant
K from Lemma 2.4.2 and the constant s from (2.4.17). Then for all 0 < η ≤ η0,Ψ ∈
Xη,Ψ1 ∈ Xη and Ψ2 ∈ Xη we have the inequality

‖R(ch(Ψ),Ψ)‖L2 ≤
[
1 + s

(
‖u′0‖L2 + ‖w′0‖L2 + η

)][
‖∆hu0 − u′′0‖L2 + δη +Kη2

]
,

(2.4.32)
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together with

‖R(ch(Ψ1),Ψ1)−R(ch(Ψ2),Ψ2)‖L2 ≤ ‖Ψ1 −Ψ2‖H1

(
2 + 2sη + s‖u′0‖L2 + s‖w′0‖L2

)
×
(
s‖∆hu0 − u′′0‖L2 + 2(δ +Kη)

)
.

(2.4.33)

Proof. For any Ψ = (φ, ψ) ∈ Xη, Lemma 2.4.4, together with the definition of
R(ch(Ψ),Ψ), allows us to estimate

‖R(ch(Ψ),Ψ)‖L2 ≤ |c0 − ch(Ψ)|
(
‖u′0‖L2 + ‖φ′‖L2

)
+ ‖∆hu0 − u′′0‖L2 + δη +Kη2

+|c0 − ch(Ψ)|
(
‖w′0‖L2 + ‖ψ′‖L2

)
≤ s

(
‖∆hu0 − u′′0‖L2 + δη +Kη

)(
‖u′0‖L2 + ‖w′0‖L2 + η

)
+‖∆hu0 − u′′0‖L2 + δη +Kη2

=
[
1 + s

(
‖u′0‖L2 + ‖w′0‖L2 + η

)][
‖∆hu0 − u′′0‖L2 + δη +Kη2

]
.

(2.4.34)
For Ψ1 = (φ1, ψ1) ∈ Xη and Ψ2 = (φ2, ψ2) ∈ Xη we write

d(Ψ1,Ψ2) := ‖R(ch(Ψ1),Ψ1)−R(ch(Ψ2),Ψ2)‖L2 . (2.4.35)

Substituting (2.4.5), we compute

d(Ψ1,Ψ2) ≤
∣∣∣∣∣∣((c0 − ch(Ψ1))(φ′1 − φ′2) + (ch(Ψ1)− ch(Ψ2))(u′0 − φ′2)

+δ(φ1 − φ2) + (N (u0, φ2)−N (u0, φ1))
∣∣∣∣∣∣
L2

+
∣∣∣∣∣∣(c0 − ch(Ψ1))(ψ′1 − ψ′2) + (ch(Ψ1)− ch(Ψ2))(w′0 − ψ′2)

)∣∣∣∣∣∣
L2

≤
(
|ch(Ψ1)− c0|+ δ +Kη

)
‖φ1 − φ2‖H1

+
(
‖u′0‖L2 + η

)∣∣∣ch(Ψ1)− ch(Ψ2)
∣∣∣+
∣∣∣ch(Ψ1)− c0

∣∣∣‖ψ1 − ψ2‖H1

+
(
‖w′0‖L2 + η

)∣∣∣ch(Ψ1)− ch(Ψ2)
∣∣∣.

(2.4.36)
Another application of Lemma 2.4.4 yields the desired bound

d(Ψ1,Ψ2) ≤
(
s
(
‖∆hu0 − u′′0‖L2 + (δ +K)η

)
+ δ +Kη

)
‖φ1 − φ2‖H1

+(‖u′0‖L2 + η)s||Ψ1 −Ψ2||H1

(
s‖∆hu0 − u′′0‖L2 + 2(δ +Kη)

)
+s
(
‖∆hu0 − u′′0‖L2 + (δ +Kη)η

)
‖ψ1 − ψ2‖H1

+(‖w′0‖L2 + η)s2‖Ψ1 −Ψ2‖H1

(
‖∆hu0 − u′′0‖L2 + 2σ̂(δ +Kη)

)
≤ ‖Ψ1 −Ψ2‖H1

(
2 + 2sη + s‖u′0‖L2 + s‖w′0‖L2

)
×
(
s‖∆hu0 − u′′0‖L2 + 2(δ +Kη)

)
.

(2.4.37)
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With these estimates in hand, we can choose our parameters δ and η to ensure that
the map T maps Xη into itself and is a contraction. This allows us to prove our first
main theorem.

Proof of Theorem 2.2.1. We let

C6 = max
{
C0

(
1 + s‖u′0‖L2 + s‖w′0‖L2 + s

)
, C0

(
4 + s‖u′0‖L2 + s‖w′0‖L2

)}
,

(2.4.38)
which is independent of δ, h and η ∈ (0, s−1]. Using Lemma 2.4.5 together with (2.4.12)
and (2.4.13), we see that for all 0 < η ≤ η0,Ψ = (φ, ψ) ∈ Xη,Ψ1 = (φ1, ψ1) ∈ Xη and
Ψ2 = (φ2, ψ2) ∈ Xη we have

‖T (Ψ)‖H1 ≤ C6

(
‖∆hu0 − u′′0‖L2 + δη +Kη2

)
(2.4.39)

and

‖T (Ψ1)− T (Ψ2)‖H1 ≤ C6

(
s‖∆hu0 − u′′0‖+ 2(δ +Kη)

)
‖Ψ1 −Ψ2‖H1 . (2.4.40)

We fix
δ = 1

8C6

η = min{η0,
1

8MC6
},

(2.4.41)

so that indeed η ≤ η0. Using the notation from Corollary 2.4.1, we pick 0 < h∗ ≤ h0(δ)
in such a way that

suph∈(0,h∗)‖∆hu0 − u′′0‖L2 ≤ η
8C6

. (2.4.42)

Then we see for h ∈ (0, h∗) that

‖T (Ψ)‖H1 ≤ C6

(
‖∆hu0 − u′′0‖L2 + δη +Kη2

)
≤ C6

(
η

8C6
+ 1

8C6
η +K 1

8MC6
η
)

≤ η

(2.4.43)

and

‖T (Ψ1)− T (Ψ2)‖H1 ≤ C6

(
s‖∆hu0 − u′′0‖+ 2(δ +Kη)

)
‖Ψ1 −Ψ2‖H1

≤ C6

(
s η

8C6
+ 2( 1

8C6
+K 1

8MC6
)
)
‖Ψ1 −Ψ2‖H1

≤ 3
4‖Ψ1 −Ψ2‖H1 .

(2.4.44)

In particular, T maps Xη into itself and is a contraction. The local uniqueness of the
family (ch, uh, wh) follows directly from the uniqueness of fixed points of contraction
mappings. This completes the proof.
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2.5 The point and essential spectrum

In this section, we discuss several properties of the operator that arises after linearising
the travelling pulse MFDE (2.2.12) around our wave solution (uh, wh). The main goals
are to determine the Fredholm properties of this operator. In particular, we show that
both the linearised operator and its adjoint have Fredholm index 0 and that they both
have a one-dimensional kernel. Moreover, we construct a family of kernel elements of
the adjoint operator that converges to (φ−0 , ψ

−
0 ), the kernel element of the operator L−0 .

Pick 0 < h < min{h∗, h}, where h∗ is given in Theorem 2.2.1 and h is characterized
by (2.3.42). We recall the operator Lh : H1 → L2, introduced in §2.2, which acts as

Lh =

(
ch

d
dξ −∆h − gu(uh) 1

−ρ ch
d
dξ + γρ

)
. (2.5.1)

In addition, we write L∗h : H1 → L2 for the formal adjoint of Lh, which is given by

L∗h =

(
−ch d

dξ −∆h − gu(uh) −ρ
1 −ch d

dξ + γρ

)
. (2.5.2)

We emphasize that Lh and L∗h correspond to the operators L+

h,0 and L−h,0 defined in
§2.3 respectively upon writing

(ũh, w̃h) = (uh, wh),

c̃h = ch
(2.5.3)

for the family featuring in (hFam). Finally, we introduce the notation

Φ+
h = (φ+

h , ψ
+
h ) = 1

‖(u′h,w
′
h)‖L2

(u′h, w
′
h),

Φ+
0 = (φ+

0 , ψ
+
0 ),

Φ−0 = (φ−0 , ψ
−
0 ).

(2.5.4)

The results of this section should be seen as a bridge between the singular pertur-
bation theory developed in §2.3 and the spectral analysis preformed in §2.6. Indeed,
one might be tempted to think that most of the work required for the spectral analysis
of the operator Lh can already be found in Proposition 2.3.2 and Proposition 2.3.3.
However, the problem is that we have no control over the δ-dependence of the interval

(0, h′0(δ)), which contains all values of h for which Lh + δ = L+

h,δ is invertible. In par-

ticular, for fixed h > 0 we cannot directly conclude that L+

h,δ is invertible for all δ in a
subset of the positive real axis.

Our main task in this section is, therefore, to remove the δ-dependence and study
Lh and L∗h directly. The main conclusions are summarized in the results below.

Proposition 2.5.1. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Then
there exists a constant λ̃ > 0 such that for all λ ∈ C with Reλ > −λ̃ and all 0 < h <
min{h∗, h} the operator Lh + λ is Fredholm with index 0.
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Proposition 2.5.2. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Then
there exists a constant h∗∗ > 0, together with a family Φ−h = (φ−h , ψ

−) ∈ H1, defined
for 0 < h < h∗∗, such that the following properties hold.

1. For each 0 < h < h∗∗ we have the identities

ker(Lh) = span{Φ+
h }

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(L∗h)}
(2.5.5)

and

ker(L∗h) = span{Φ−h }

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(Lh)}.
(2.5.6)

2. The family Φ−h converges to Φ−0 in H1 as h ↓ 0.

3. Upon introducing the spaces

Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0} (2.5.7)

and
Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0}, (2.5.8)

the operator Lh : Xh → Yh is invertible and there exists a constant Cunif > 0 such
that for each 0 < h < h∗∗ we have the uniform bound

‖L−1
h ‖B(Yh,Xh) ≤ Cunif . (2.5.9)

A direct consequence of these results is that the zero eigenvalue of Lh is simple. In
addition, these results allow us to construct a quasi-inverse for Lh that we use heavily
in §2.6 and §2.7.

Corollary 2.5.3. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Then for
any 0 < h < h∗∗ the zero eigenvalue of Lh is simple.

Proof. We can assume that 〈Φ−h ,Φ
+
h 〉 6= 0 for all 0 < h < h∗∗, since by Proposition

2.5.2 〈Φ−h ,Φ
+
h 〉 → 〈Φ

−
0 ,Φ

+
0 〉 6= 0. Equation (2.5.6) now implies that Φ+

h /∈ Range(Lh),
which together with (2.5.5) completes the proof.

Corollary 2.5.4. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. There
exist linear maps

γh : L2 → R

Lqinv
h : L2 → H1,

(2.5.10)

such that for all Θ ∈ L2 and each 0 < h < h∗∗ the pair

(γ,Ψ) = (γhΘ, Lqinv
h Θ) (2.5.11)



2.5. THE POINT AND ESSENTIAL SPECTRUM 67

is the unique solution to the problem

LhΨ = Θ + γΦ+
h (2.5.12)

that satisfies the normalisation condition

〈Φ−h ,Ψ〉 = 0. (2.5.13)

Proof. Fix 0 < h < h∗∗ and Θ ∈ L2. Upon defining

γh[Θ] = − 〈Φ
−
h ,Θ〉

〈Φ−h ,Φ
+
h 〉
, (2.5.14)

we see that Θ+γh[Θ]Φ+
h ∈ Yh. In particular, Proposition 2.5.2 implies that the problem

LhΨ = Θ + γh[Θ]Φ+
h (2.5.15)

has a unique solution Ψ ∈ Xh, which we refer to as Lqinv
h Θ.

The results in [68, 130] allow us to read off the Fredholm properties of Lh from the
behaviour of this operator in the limits ξ → ±∞. In particular, we let Lh,∞ be the
operator defined by

Lh,∞ =

(
ch

d
dξ −∆h − lim

ξ→∞
gu(uh(ξ)) 1

−ρ ch
d
dξ + γρ

)

=

(
ch

d
dξ −∆h − gu(0) 1

−ρ ch
d
dξ + γρ

)
.

(2.5.16)

This system has constant coefficients. For λ ∈ C we introduce the notation

Lh,∞;λ = Lh,∞ + λ. (2.5.17)

We show that for λ in a suitable right half-plane the operator Lh,∞;λ is hyperbolic in
the sense of [68, 130], i.e. we write

∆Lh,∞;λ
(z) =

[
Lh,∞;λe

zξ
]
(0)

=

 chz − 1
h2

[ ∑
k>0

αk

(
ekhz + e−khz − 2

)]
− gu(0) + λ 1

−ρ chz + γρ+ λ


(2.5.18)

and show that det(∆Lh,∞;λ
(iy)) 6= 0 for all y ∈ R. In the terminology of [68, 130],

this means that Lh + λ is asymptotically hyperbolic. This allows us to compute the
Fredholm index of Lh + λ.

Remark 2.5.5. From this section onward we assume that (Hα2) is satisfied. This is
done for technical reasons, allowing us to apply the results from [68]. In particular, this
condition implies that the function ∆Lh,∞;λ

(z) defined in (2.5.18) is well-defined in a
vertical strip |Re (z)| < ν .
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Lemma 2.5.6. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. There exists
a constant λ̃ > 0 such that for all 0 < h < min{h∗, h} and all λ ∈ C with Reλ > −λ̃ the
operator Lh,∞;λ is hyperbolic and thus the operator Lh +λ is asymptotically hyperbolic.

Proof. Remembering that −gu(0) = r0 > 0 and picking y ∈ R, we compute

∆Lh,∞;λ
(iy) =

 chiy + 1
h2

[ ∑
k>0

αk

(
2− 2 cos(khy)

)]
+ r0 + λ 1

−ρ chiy + γρ


=

(
chiy + 1

h2A(hy) + r0 + λ 1
−ρ chiy + γρ+ λ

)
,

(2.5.19)
where A(hy) ≥ 0 is defined in (Hα1). We hence see

det(∆Lh,∞;λ
(iy)) =

(
chiy + 1

h2A(hy) + r0 + λ
)(
chiy + γρ+ λ

)
+ ρ. (2.5.20)

Let λ̃ = 1
4min{γρ, r0} and assume that Reλ > −λ̃. If y 6= − Imλ

ch
then we obtain

Im
(

det(∆Lh,∞;λ
(iy))

)
= (chy + Imλ)(γρ+ Reλ)

+( 1
h2A(hy) + r0 + Reλ)(chy + Imλ)

= (chy + Imλ)(γρ+ 1
h2A(hy) + r0 + 2Reλ)

6= 0,

(2.5.21)

since γρ+ 1
h2A(hy) + r0 + Reλ > 0. For y = − Imλ

ch
we obtain

Re
(

det(∆Lh,∞;λ
(iy))

)
=

(
1
h2A(hy) + r0 + Reλ

)(
γρ+ Reλ

)
+ ρ

> ρ

> 0.

(2.5.22)

In particular, we see that det(∆Lh,∞;λ
(iy)) 6= 0 for all y ∈ R, as desired.

Before we consider the Fredholm properties of Lh + λ, we establish a technical
estimate for the function ∆Lh,∞;λ

, which we need in §2.7 later on.

Lemma 2.5.7. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 <
h < min{h∗, h} and S ⊂ C compact in such a way that Reλ > −λ̃ for all λ ∈ S. Then
there exist constants κ > 0 and Γ > 0, possibly depending on h and S, such that for all
z = x+ iy ∈ C with |x| ≤ κ and all λ ∈ S we have the bound

|det(∆Lh,∞;λ
(z))| ≥ 1

Γ . (2.5.23)

Proof. Using assumption (Hα2), we can pick κ1 > 0 and Γ1 > 0 in such a way that the
bound

| 1
h2A(hz)| :=

∣∣∣ 1
h2

[ ∑
k>0

αk

(
2− ekhz − e−khz

)]∣∣∣
≤ 1

h2

∑
k>0

|αk|
(
ehk|x| + 3

)
≤ Γ1

(2.5.24)



2.5. THE POINT AND ESSENTIAL SPECTRUM 69

holds for all z = x+ iy ∈ C with |x| ≤ κ1.

Observe that for z = x+ iy ∈ C and λ ∈ S we have

Re
(

det(∆Lh,∞;λ
(z))

)
=

(
chx+ 1

h2 ReA(hz) + r0 + Reλ
)(
chx+ γρ+ Reλ

)
−(chy + Imλ)2 − (chy + Imλ) 1

h2 (ImA(hz)) + ρ.
(2.5.25)

Since S is compact we can find Y > 0 such that for all z = x + iy ∈ C with |y| ≥ Y
and |x| ≤ k1 and all λ ∈ S we have∣∣∣Re

(
det(∆Lh,∞;λ

(z))
)∣∣∣ ≥ 1

2c
2
hy

2

≥ 1
2c

2
hY

2.
(2.5.26)

Seeking a contradiction, let us assume that for each 0 < κ ≤ κ1 and each Γ > 0
there exist λ ∈ S and z = x+ iy ∈ C with |x| ≤ κ and |y| ≤ Y for which

|det(∆Lh,∞;λ
(z))| < 1

Γ . (2.5.27)

Then we can construct a sequence {κn, zn, λn} with 0 < κn ≤ κ1 for each n, κn → 0,
λn ∈ S for each n and zn = xn + iyn ∈ C with |xn| ≤ κn and |yn| ≤ Y in such a
way that |det(∆Lh,∞;λn

(zn))| < 1
n for each n. By taking a subsequence if necessary we

see that λn → λ for some λ ∈ S and zn → iy for some y ∈ R with |y| ≤ Y . Since
det(∆Lh,∞;λ

(z)) is continuous as a function of λ and z, it follows that

det(∆Lh,∞;λ
(iy)) = lim

n→∞
det(∆Lh,∞;λn

(zn))

= 0,
(2.5.28)

which contradicts Lemma 2.5.6. Hence, we can find κ > 0 and Γ > 0 as desired.

Proof of Proposition 2.5.1. We have already seen in Lemma 2.5.6 that Lh + λ is
asymptotically hyperbolic in the sense of [68, 130]. Now according to [68, Thm. 1.6],
we obtain that Lh + λ is a Fredholm operator and that the following identities hold

dim
(

ker(Lh + λ)
)

= codim
(

Range(L∗h + λ)
)
,

codim
(

Range(Lh + λ)
)

= dim
(

ker(L∗h + λ)
)
,

ind(Lh + λ) = −ind(L∗h + λ),

(2.5.29)

where

ind(Lh + λ) = dim
(

ker(Lh + λ)
)
− codim

(
Range(Lh + λ)

)
(2.5.30)

is the Fredholm index of Lh + λ.

We follow the proof of [130, Thm. B]. For 0 ≤ ϑ ≤ 1, we let the operator Lϑ(h) be
defined by

Lϑ(h) = (1− ϑ)(Lh + λ) + ϑ(Lh,∞ + λ). (2.5.31)
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Note that the operator Lϑ(h) is asymptotically hyperbolic for each ϑ and thus [68,
Thm. 1.6] implies that these operators Lϑ(h) are Fredholm. Moreover, the family
Lϑ(h) varies continuously with ϑ in B(H1,L2), which means the Fredholm index is
constant. In particular, we see that

ind(Lh + λ) = ind(Lh,∞ + λ)

= 0,
(2.5.32)

where the last equality follows from [68, Thm. 1.7].

We can now concentrate on the kernel of Lh. The goal is to exclude kernel elements
other than Φ+

h . In order to accomplish this, we construct a quasi-inverse for Lh by
mimicking the approach of [111, Prop. 3.2]. As a preparation, we obtain the following
technical result.

Lemma 2.5.8. Assume that (HP1), (HS) and (Hα1) are satisfied. Recall the constant
δ0 from Lemma 2.3.1. Let 0 < λ < min{ 1

2 , δ0} be given. Then there exist constants

0 < h∗1 ≤ min{h∗, h} and κ > 0 such that for all 0 < h ≤ h∗1 we have

〈Φ−0 , (Lh + λ)−1Φ+
0 〉 > 1

2λ
−1〈Φ−0 ,Φ

+
h 〉

> 1
2λ
−1κ

> 0.

(2.5.33)

Proof. We know from Lemma 2.3.1 that 〈Φ−0 ,Φ
+
0 〉 > 0. Since Φ+

h converges to Φ+
0 in

L2, it follows that 〈Φ−0 ,Φ
+
h 〉 converges to 〈Φ−0 ,Φ

+
0 〉 > 0. Fix h∗1 ≤ min{h∗, h, h′0(λ)} in

such a way that

‖Φ+
0 − Φ+

h ‖L2 < 1
2

〈Φ−0 ,Φ
+
h 〉

2Cunif
(2.5.34)

holds for all 0 ≤ h ≤ h∗1, where

Cunif = 4C ′0 (2.5.35)

and C ′0 is defined in Proposition 2.3.2. The factor 4 in the definition is for technical
reasons in a later proof. We assume from now on that 0 < h ≤ h∗1. Using LhΦ+

h = 0
we readily see

(Lh + λ)−1Φ+
h = λ−1Φ+

h . (2.5.36)

Recall that ‖Φ−0 ‖L2 = 1. Since 1 < λ−1, we may use Proposition 2.3.2 to obtain

‖(Lh + λ)−1Φ+
0 − λ−1Φ+

h ‖L2 = ‖(Lh + λ)−1[Φ+
0 − Φ+

h ]‖L2

≤ Cunif

[
‖Φ+

h − Φ+
0 ‖L2 + λ−1|〈Φ+

h − Φ+
0 ,Φ

−
0 〉|
]

< Cunifλ
−1‖Φ+

0 − Φ+
h ‖L2

(
1 + ‖Φ−0 ‖L2

)
= 2Cunifλ

−1‖Φ+
0 − Φ+

h ‖L2 .
(2.5.37)
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Remembering 〈Φ−0 ,Φ
+
h 〉 > 0 and using Cauchy-Schwarz, we see that

|〈 Φ−0
〈Φ−0 ,Φ

+
h 〉
, (Lh + λ)−1Φ+

0 〉 − λ−1| = |〈 Φ−0
〈Φ−0 ,Φ

+
h 〉
, (Lh + λ)−1Φ+

0 − λ−1Φ+
h 〉|

<
‖Φ−0 ‖L2

〈Φ−0 ,Φ
+
h 〉

2Cunifλ
−1‖Φ+

0 − Φ+
h ‖L2

≤ 1
〈Φ−0 ,Φ

+
h 〉

2Cunifλ
−1 1

2

〈Φ−0 ,Φ
+
h 〉

2Cunif

= 1
2λ
−1.

(2.5.38)
Hence, we must have

〈Φ−0 , (Lh + λ)−1Φ+
0 〉 > 1

2λ
−1〈Φ−0 ,Φ

+
h 〉 > 0. (2.5.39)

Lemma 2.5.9. Assume that (HP1), (HS) and (Hα1) are satisfied. There exists 0 <
h∗∗ ≤ min{h∗, h} together with linear maps

γ̃+
h : L2 → R

L̃qinv
h : L2 → H1,

(2.5.40)

defined for all 0 < h < h∗∗, such that for all Θ ∈ L2 the pair

(γ,Ψ) = (γ̃+
h Θ, L̃qinv

h Θ) (2.5.41)

is the unique solution to the problem

LhΨ = Θ + γΦ+
0 (2.5.42)

that satisfies the normalisation condition

〈Φ−0 ,Ψ〉 = 0. (2.5.43)

In addition, there exists C > 0 such that for all 0 < h < h∗∗ and all Θ ∈ L2 we have
the bound

|γ̃+
h Θ|+ ‖L̃qinv

h Θ‖H1 ≤ C‖Θ‖L2 . (2.5.44)

Proof. Fix 0 < λ < min{ 1
2 , δ0} and let 0 < h ≤ min{h∗, h, h′0(λ)} be given, where h′0(λ)

is defined in Proposition 2.3.2. For now, all constants will not depend on our choice of
λ. We define the set

Z1 = {Ψ ∈ H1 : 〈Φ−0 ,Ψ〉 = 0}. (2.5.45)

Pick Θ ∈ L2. We look for a solution (γ,Ψ) ∈ R× Z1 of the problem

Ψ = (Lh + λ)−1[Θ + γΦ+
0 + λΨ]. (2.5.46)

By Lemma 2.5.8 we have 〈Φ−0 , (Lh + λ)−1Φ+
0 〉 6= 0. Hence, for given Θ ∈ L2,Ψ ∈

Z1, h, λ, we may write

γ(Ψ,Θ, h, λ) = − 〈Φ
−
0 ,(Lh+λ)−1(Θ+λΨ)〉
〈Φ−0 ,(Lh+λ)−1Φ+

0 〉
, (2.5.47)
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which is the unique value for γ for which

(Lh + λ)−1[Θ + γΦ+
0 + λΨ] ∈ Z1. (2.5.48)

Recall the constant Cunif from (2.5.35). With Proposition 2.3.2 we obtain

|〈Φ−0 , (Lh + λ)−1(Θ + λΨ)〉| ≤ ‖Φ−0 ‖L2Cunif

[
‖Θ + λΨ‖L2 + 1

λ |〈Θ + λΨ,Φ−0 〉|
]

≤ ‖Φ−0 ‖L2Cunif

[
(1 + 1

λ )‖Θ‖L2 + λ‖Ψ‖L2

]
≤ C1

[
λ−1‖Θ‖L2 + λ‖Ψ‖L2

]
(2.5.49)

for some C1 that is independent of h, λ. Here we used that λ < 1 and thus 1 + 1
λ <

2
λ .

Exploiting λ < 1
2 and applying Lemma 2.5.8, we see that

|γ(Ψ,Θ, h, λ)| = |〈Φ−0 , (Lh + λ)−1(Θ + λΨ)〉| 1
|〈Φ−0 ,(Lh+λ)−1Φ+

0 〉|

≤ C1

[
λ−1‖Θ‖L2 + λ‖Ψ‖L2

]
1

1
2λ
−1〈Φ−0 ,Φ

+
h 〉

≤ C1

[
κ‖Θ‖L2 + κλ2‖Ψ‖L2

]
≤ C2

[
‖Θ‖L2 + λ2‖Ψ‖L2

]
.

(2.5.50)

Here we used that 〈Φ−0 ,Φ
+
h 〉 converges to 〈Φ−0 ,Φ

+
0 〉 > 0, which means that 〈Φ−0 ,Φ

+
h 〉

can be bounded away from zero. For Ψ ∈ Z1 we write

t(Ψ) = Θ + γ(Ψ,Θ, h, λ)Φ+
0 + λΨ (2.5.51)

and
T (Ψ) = (Lh + λ)−1t(Ψ). (2.5.52)

For Ψ ∈ Z1 Proposition 2.3.2 implies

‖T (Ψ)‖H1 ≤ Cunif

[
‖Θ + γ(Ψ,Θ, h, λ)Φ+

0 + λΨ‖L2

+ 1
λ |〈Θ + γ(Ψ,Θ, h, λ)Φ+

0 + λΨ,Φ−0 〉|
]

≤ C3

[
1
λ‖Θ‖L2 + λ‖Ψ‖L2

]
≤ C3

[
1
λ‖Θ‖L2 + λ‖Ψ‖H1

]
.

(2.5.53)

For Ψ1,Ψ2 ∈ Z1, a second application of Proposition 2.3.2 yields

|γ(Ψ1,Θ, h, λ)− γ(Ψ2,Θ, h, λ)| =
∣∣∣ 〈Φ−0 ,(Lh+λ)−1(λΨ1−λΨ2)〉

〈Φ−0 ,(Lh+λ)−1Φ+
0 〉

∣∣∣
≤ 1

〈Φ−0 ,(Lh+λ)−1Φ+
0 〉
Cunif

[
λ‖Ψ1 −Ψ2‖L2

+ 1
λ |〈λΨ1 − λΨ2,Φ

−
0 〉|
]

≤ C4λ
[
λ‖Ψ1 −Ψ2‖L2 + 0

]
≤ C4λ

2‖Ψ1 −Ψ2‖H1 .

(2.5.54)
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Applying Proposition 2.3.2 for the final time, we see

‖T (Ψ1)− T (Ψ2)‖H1 ≤ Cunif

[
‖t(Ψ1)− t(Ψ2)‖L2 + 1

λ |〈t(Ψ1)− t(Ψ2),Φ−0 〉|
]

≤ Cunif

[
‖t(Ψ1)− t(Ψ2)‖L2

+ 1
λ 〈
(
γ(Ψ1,Θ, h, λ)− γ(Ψ2,Θ, h, λ)

)
Φ+

0 ,Φ
−
0 〉

+ 1
λ 〈λ(Ψ1 −Ψ2),Φ−0 〉

]
≤ Cunif

[
‖t(Ψ1)− t(Ψ2)‖L2 + 1

λ

(
C4λ

2‖Ψ1 −Ψ2‖H1 + 0
)]

≤ CunifC4λ
2‖Ψ1 −Ψ2‖H1 + Cunifλ‖Ψ1 −Ψ2‖H1

+CunifC4λ‖Ψ1 −Ψ2‖H1

≤ C5λ‖Ψ1 −Ψ2‖H1 .
(2.5.55)

In view of these bounds, we pick λ to be small enough to have C3λ <
1
2 and C5λ <

1
2 .

Since this λ is now fixed, we can allow the constants in the final part of the proof to
depend on λ. In addition, we write h∗∗ = min{h∗1, h′0(λ)} and pick 0 < h < h∗∗. Then
T : Z1 → Z1 is a contraction, so the fixed point theorem implies that there is a unique
L̃qinv
h (Θ) ∈ Z1 for which

L̃qinv
h (Θ) = (Lh + λ)−1

[
Θ + γ(L̃qinv

h (Θ),Θ, h, λ)Φ+
0 + λL̃qinv

h (Θ)
]
. (2.5.56)

Furthermore, we have

1
2‖L̃

qinv
h (Θ)‖H1 ≤ (1− λC3)‖L̃qinv

h (Θ)‖H1

≤ C3λ
−1‖Θ‖L2

≤ C6‖Θ‖L2 .

(2.5.57)

Writing γ̃+
h (Θ) = γ(L̃qinv

h (Θ),Θ, h, λ), we compute

|γ̃+
h (Θ)| ≤ C2[‖Θ‖L2 + λ2‖Θ‖L2 ]

≤ C7‖Θ‖L2 .
(2.5.58)

Finally we see that (2.5.46) is in fact equivalent to (2.5.42)-(2.5.43), so in fact L̃qinv
h (Θ)

and γ̃+
h (Θ) do not depend on λ. In addition, the constants h∗∗, C6 and C7 above only

depend on the one fixed λ and, as such, do not depend on h or Θ.

Lemma 2.5.10. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Let 0 <
h < h∗∗ be given. Then we have the inclusion

span{Φ+
h } ⊂ ker(Lh)

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(L∗h)},
(2.5.59)

where L∗h is the formal adjoint of Lh.
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Proof. By differentiating the differential equation (2.2.12) we see that LhΦ+
h = 0. We

know that (uh, wh) − (u0, w0) → 0 ∈ H1. Since (u′0, w
′
0) decays exponentially, we get

(u′0, w
′
0) ∈ L2. Hence, we can assume that h∗∗ is small enough such that Φ+

h ∈ L2 for
all 0 < h < h∗∗. Since LhΦ+

h = 0 we obtain from the differential equation that also
(Φ+

h )′ ∈ L2. In particular, we see that Φ+
h ∈ H1 and, hence, Φ+

h ∈ ker(Lh).

Lemma 2.5.11. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Let 0 <
h < h∗∗ be given. Then we have

ker(Lh) = span{Φ+
h }

= {Ψ ∈ L2 : 〈Ψ,Θ〉 = 0 for all Θ ∈ Range(L∗h)},
(2.5.60)

where L∗h is the formal adjoint of Lh.

Proof. We show that dim(ker(Lh)) = 1. Since Φ+
h ∈ ker(Lh), we assume that there

exists Ψ ∈ ker(Lh) in such a way that Ψ is not a scalar multiple of Φ+
h .

Suppose first that 〈Ψ,Φ−0 〉 = 0. Then Lemma 2.5.9 yieds by linearity of L̃qinv
h that

Ψ = L̃qinv
h [0]

= 0,
(2.5.61)

which gives a contradiction. Hence, we suppose that 〈Ψ,Φ−0 〉 6= 0. In the proof of
Lemma 2.5.8 we saw that 〈Φ+

h ,Φ
−
0 〉 6= 0. As such, we can pick a, b ∈ R \ {0} in such a

way that

〈aΦ+
h + bΨ,Φ−0 〉 = 0. (2.5.62)

Again it follows from Lemma 2.5.9 that aΦ+
h + bΨ = 0 which gives a contradic-

tion. Therefore, such a kernel element Ψ does not exist. Since we already know that
Φ+
h ∈ ker(Lh), we must have dim

(
ker(Lh)

)
= 1, which completes the proof.

The remaining major goal of this section is to find a family of elements Φ−h ∈ ker(L∗h)
which satisfies Φ−h → Φ−0 as h ↓ 0. To establish this, we repeat part of the process
above for the adjoint operator L∗h. The key difference is that we must construct the
family Φ−h by hand. This requires a significant refinement of the argument used above
to characterize ker(L∗h).

First we need a technical result, similar to Lemma 2.5.8.

Lemma 2.5.12. Assume that (HP1), (HS) and (Hα1) are satisfied. Fix 0 < λ < 1
2

and 0 < h ≤ min{h∗∗, h′0(λ)}, where h′0(λ) is defined in Proposition 2.3.2. Then we
have

〈Φ+
0 , (L

∗
h + λ)−1Φ−0 〉 >

〈Φ+
0 ,Φ

−
0 〉

2 λ−1. (2.5.63)
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Proof. Lemma 2.3.1 implies that 〈Φ+
0 ,Φ

−
0 〉 > 0. Remembering that

L∗h − L∗0 =

(
(c0 − ch) ddξ − (∆h − d2

dξ2 ) + (gu(u0)− gu(uh)) 0

0 (c0 − ch) ddξ

)
(2.5.64)

and that L∗0Φ−0 = 0, we obtain

(L∗h + λ)
[
(L∗h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0

]
= Φ−0 − Φ−0 + (L∗h − L∗0)(L∗0 + λ)−1Φ−0

= (L∗h − L∗0)λ−1Φ−0 .
(2.5.65)

Recall the constant Cunif from (2.5.35). Proposition 2.3.2 yields

‖(L∗h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0 ‖L2 ≤ Cunif

[
‖(L∗h − L∗0)λ−1Φ−0 ‖L2

+|〈(L∗h − L∗0)λ−1Φ−0 ,Φ
+
0 〉|
]

≤ Cunif(1 + λ−1)‖(L∗h − L∗0)λ−1Φ−0 ‖L2 .
(2.5.66)

Using Lemma 2.3.5 and the fact that ch converges to c0 and gu(uh) to gu(u0), it follows
that

Cunif(1 + λ−1)‖(L∗h − L∗0)λ−1Φ−0 ‖L2 → 0 (2.5.67)

as h ↓ 0. Possibly after decreasing h′0(λ) > 0, we hence see that

〈Φ+
0 , (L

∗
h + λ)−1Φ−0 〉 = 〈Φ+

0 , (L
∗
0 + λ)−1Φ−0 〉+ 〈Φ+

0 , (L
∗
h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0 〉

= λ−1〈Φ+
0 ,Φ

−
0 〉+ 〈Φ+

0 , (L
∗
h + λ)−1Φ−0 − (L∗0 + λ)−1Φ−0 〉

>
〈Φ+

0 ,Φ
−
0 〉

2 λ−1

(2.5.68)
holds for all 0 < h < min{h∗∗, h′0(λ)}.

Lemma 2.5.13. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 <
h < h∗∗. There exist linear maps

γ̃−h : L2 → R,

L̃∗,qinv
h : L2 → H1

(2.5.69)

such that for all Θ ∈ L2 the pair

(γ,Ψ) = (γ̃−h Θ, L̃∗,qinv
h Θ) (2.5.70)

is the unique solution to the problem

L∗hΨ = Θ + γΦ−0 (2.5.71)
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that satisfies the normalisation condition

〈Φ+
0 ,Ψ〉 = 0. (2.5.72)

Furthermore, there exists C∗ > 0, such that for all 0 < h < h∗∗ and all Θ ∈ L2 we
have the bound

|γ̃−h Θ|+ ‖L̃∗,qinv
h Θ‖H1 ≤ C∗‖Θ‖L2 . (2.5.73)

Proof. We define the set

Z1 = {Ψ ∈ H1 : 〈Φ+
0 ,Ψ〉 = 0}. (2.5.74)

Pick Θ ∈ L2. We look for a solution (γ,Ψ) ∈ R× Z1 of the problem

Ψ = (L∗h + λ)−1[Θ + γΦ−0 + λΨ]. (2.5.75)

Lemma 2.5.12 implies that 〈Φ+
0 , (L

∗
h + λ)−1Φ−0 〉 6= 0. Hence, for given Θ ∈ L2,Ψ ∈

Z1, h, λ, we may write

γ(Ψ,Θ, h, λ) = − 〈Φ
+
0 ,(L

∗
h+λ)−1(Θ+λΨ)〉

〈Φ+
0 ,(L

∗
h+λ)−1Φ−0 〉

, (2.5.76)

which is the unique value for γ for which

(L∗h + λ)−1[Θ + γΦ−0 + λΨ] ∈ Z1. (2.5.77)

From now on the proof is identical to that of Lemma 2.5.9, so we omit it.

Lemma 2.5.14. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. For each
0 < h < h∗∗ there exists an element Φ−h ∈ ker(L∗h) such that the family Φ−h converges
to Φ−0 in H1 as h ↓ 0.

Proof. We repeat some of the steps of the proof of Lemma 2.5.11, but now for L∗h.

Fix 0 < h < h∗∗. Since dim(ker(L∗h)) = 1 by Proposition 2.5.1 and Lemma 2.5.11,
we can pick Φ ∈ ker(L∗h) with Φ 6= 0. If we would have 〈Φ,Φ+

0 〉 = 0, then we would
obtain

0 = L∗,qinv
h [0]

= Φ,
(2.5.78)

which leads to a contradiction. Hence, we can define the kernel element Φ−h of L∗h as
follows: Φ−h is the unique kernel element of L∗h with 〈Φ−h ,Φ

+
0 〉 = 〈Φ−0 ,Φ

+
0 〉. Since we

see that
〈Φ−0 − Φ−h ,Φ

+
0 〉 = 0, (2.5.79)

we obtain, upon defining
Θh := L∗hΦ−0 , (2.5.80)

that
Φ−0 − Φ−h = L∗,qinv

h [Θh]. (2.5.81)
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Using Lemma 2.5.13, we can estimate

‖Φ−0 − Φ−h ‖H1 = ‖L∗,qinv
h [Θh]‖H1

≤ C−‖Θh‖L2 .
(2.5.82)

From the proof of Lemma 2.5.12 we know that Θh → 0 as h ↓ 0 in L2. Therefore, we
see that Φ−h → Φ−0 as h ↓ 0 in H1.

In the final part of this section we establish item (3) of Proposition 2.5.2. To this
end, we recall the spaces

Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0} (2.5.83)

and
Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0}, (2.5.84)

together with the constant Cunif from (2.5.35).

Lemma 2.5.15. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. For each
0 < h < h∗∗ we have that Lh : Xh → Yh is invertible and we have the uniform bound

‖L−1
h ‖ ≤ Cunif . (2.5.85)

Proof. Fix 0 < h < h∗∗. Clearly Lh : Xh → Yh is a bounded bijective linear map, so
the Banach isomorphism theorem implies that L−1

h : Yh → Xh is bounded. Now let
δ > 0 be a small constant such that δCunif < 1. Without loss of generality we assume
that 0 < h∗∗ ≤ h′0(δ) and that ‖Φ−h − Φ−0 ‖H1 ≤ δ for all 0 < h < h∗∗. This is possible
by Lemma 2.5.14.

Pick any Ψ ∈ Xh. Remembering that 〈Ψ,Φ−h 〉 = 0 and 〈LhΨ,Φ−h 〉 = 0, we obtain
the estimate

1
δ |〈(Lh + δ)Ψ,Φ−0 〉| = 1

δ |〈(Lh + δ)Ψ,Φ−0 − Φ−h 〉|

≤ 1
δ ‖(Lh + δ)Ψ‖L2δ

≤ ‖LhΨ‖L2 + δ‖Ψ‖H1 .

(2.5.86)

Applying Proposition 2.3.2, we hence see

‖Ψ‖H1 ≤ 1
4Cunif [‖(Lh + δ)Ψ‖L2 + 1

δ |〈(Lh + δ)Ψ,Φ−0 〉|]

≤ 1
4Cunif [2‖LhΨ‖L2 + 2δ‖Ψ‖H1 ]

≤ 1
2Cunif‖LhΨ‖L2 + 1

2‖Ψ‖H1 .

(2.5.87)

We, therefore, get the bound

‖Ψ‖H1 ≤ Cunif‖LhΨ‖L2 , (2.5.88)

which yields the desired estimate ‖L−1
h ‖ ≤ Cunif .

Proof of Proposition 2.5.2. This result follows directly from Lemmas 2.5.11, 2.5.14 and
2.5.15. .
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2.6 The resolvent set

In this section, we prove Theorem 2.2.2 by explicitly determining the spectrum of the
operator −Lh defined in (2.2.18) in a suitable half-plane. Our approach hinges on the
periodicity of this spectrum, which we describe in our first result.

Lemma 2.6.1. Assume that (HP1), (HS), (Hα1) and (Hα2) are satisfied. Fix 0 <
h < h∗∗. Then the spectrum of Lh is invariant under the operation λ 7→ λ+ 2πich

1
h .

In particular, we can restrict our attention to values with imaginary part in be-
tween −πchh and πch

h . We divide our ‘half-strip’ into four regions and in each region
we calculate the spectrum. Values close to 0 (region R1) will be treated in Proposition
2.6.2; values with a large real part (region R2) in Proposition 2.6.3 and values with a
large imaginary part (region R3) in Proposition 2.6.6. In Corollary 2.6.7 we discuss
the remaining intermediate subset (region R4), which is compact and independent of
h. The regions are illustrated in Figure 2.1 below.

Figure 2.1: Illustration of the regions R1, R2, R3 and R4. Note that the regions R2 and R3

grow when h decreases, while the regions R1 and R4 are independent of h.

From this section onward we need to assume that (HP2) is satisfied. Indeed, this
allows us to lift the invertibility of L0+λ to Lh+λ simultaneously for all λ in appropriate
compact sets.

Proof of Lemma 2.6.1. Fix k ∈ Z and write p = 2πik 1
h . We define the exponential shift

operator eω by
[eωV ](x) = eωxV (x). (2.6.1)
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For any λ ∈ C, Ψ = (φ, ψ) ∈ H1 and x ∈ R we obtain

(e−p∆hep)φ(x) = e−px∆h(epφ)(x)

= 1
h2

∑
l>0

αl(e
plhφ(x+ lh) + e−plhφ(x− lh)− 2φ(x))

= 1
h2

∑
l>0

αl(φ(x+ lh) + φ(x− lh)− 2φ(x))

= ∆hφ(x),

(2.6.2)

since plh ∈ 2πiZ for all l > 0. In particular, we can compute

[e−p(Lh − λ)epΨ](x) = e−px[(Lh − λ)epΨ](x)

= e−px
( ch

d
dξ (epxφ(x))−∆h(epφ)(x)

−ρepx + ch
d
dξ (epxψ(x))

)
+e−px

( −gu(uh)epxφ(x) + epxψ(x)− λepxφ(x)
+γρepxψ(x)− λepxψ(x)

)
=

(
pchφ(x) + chφ

′(x)− gu(uh)φ(x) + ψ(x)
−ρφ(x) + pchψ(x) + chψ

′(x) + γρψ(x)− λψ(x)

)
+

(
−∆hφ(x)− λφ(x)
0

)
= (Lh − λ+ pch)Ψ(x).

(2.6.3)
Since ep and e−p are invertible operators on H1 and L2 respectively, we know that the
spectrum of Lh equals that of e−pLhep and thus that of Lh + pch.

Region R1.
Since Lh has a simple eigenvalue at zero, it is relatively straightforward to construct

a small neighbourhood around the origin that contains no other part of the spectrum.
Exploiting the results from §2.5, it is possible to control the size of this neighbourhood
as h ↓ 0.

Proposition 2.6.2. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exists a constant λ0 > 0 such that for all 0 < h < h∗∗ the operator Lh + λ :
H1 → L2 is invertible for all λ ∈ C with 0 < |λ| < λ0.

Proof. Fix 0 < h < h∗∗ and Θ ∈ L2. We recall the notation (γh[Θ], Lqinv
h Θ) from

Corollary 2.5.4 for the unique solution (γ,Ψ) of the equation

LhΨ = Θ + γΦ+
h (2.6.4)

in the space

Xh = {Θ ∈ H1 : 〈Φ−h ,Θ〉 = 0}. (2.6.5)

Also recall the space

Yh = {Θ ∈ L2 : 〈Φ−h ,Θ〉 = 0}. (2.6.6)
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Now, for λ ∈ C with |λ| small enough, but λ 6= 0, we want to solve the equation
LhΨ = λΨ + Θ. Upon writing

Ψ = Lqinv
h Θ + λ−1γh[Θ]Φ+

h + Ψ̃, (2.6.7)

with Ψ̃ ∈ Xh, we see that

(Lh − λ)Ψ = (Lh − λ)Lqinv
h Θ + λ−1(Lh − λ)γh[Θ]Φ+

h + (Lh − λ)Ψ̃

= Θ + γh[Θ]Φ+
h − λL

qinv
h Θ− γh[Θ]Φ+

h + (Lh − λ)Ψ̃.
(2.6.8)

In particular, we must find a solution Ψ̃ ∈ Xh for the equation

LhΨ̃ = λΨ̃ + λLqinv
h Θ, (2.6.9)

which we can rewrite as

[I − λL−1
h ]Ψ̃ = λL−1

h Lqinv
h Θ. (2.6.10)

Note that L−1
h : Xh → Xh is also a bounded operator since Xh ⊂ Yh. Since

‖L−1
h Ψ‖H1 ≤ Cunif‖Ψ‖L2

≤ Cunif‖Ψ‖H1 ,
(2.6.11)

we obtain

‖L−1
h ‖B(Xh,Xh) ≤ Cunif . (2.6.12)

We choose λ0 in such a way that 0 < λ0Cunif < 1. Then it is well-known that I−λL−1
h

is invertible as an operator on Xh for 0 < |λ| < λ0. Since λL−1
h Lqinv

h Θ ∈ Xh, we see

that (2.6.10) indeed has a unique solution Ψ̃ ∈ Xh. Hence, the equation (Lh−λ)Ψ = Θ
always has a unique solution. Proposition 2.5.1 states that Lh − λ is Fredholm with
index 0, which now implies that Lh − λ is indeed invertible.

Region R2.
We now show that in an appropriate right half-plane, which can be chosen indepen-

dently of h, the spectrum of −Lh is empty. The proof proceeds via a relatively direct
estimate that is strongly inspired by [6, Lem. 3.1].

Proposition 2.6.3. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exists a constant λ1 > 0 such that for all λ ∈ C with Reλ ≥ λ1 and all 0 < h <
h∗∗ the operator Lh + λ is invertible.

Proof. Write

λ1 = 1 + g∗ + 1
2 (1− ρ), (2.6.13)
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where g∗ is defined in (2.3.42). Pick any λ ∈ C with Reλ ≥ λ1 and any 0 < h < h∗∗.
Let Ψ = (φ, ψ) ∈ H1 be arbitrary and set Θ = LhΨ + λΨ. Then we see that

‖Ψ‖L2‖Θ‖L2 ≥ Re 〈LhΨ + λΨ,Ψ〉

≥ Re 〈−∆hφ, φ〉 − ‖gu(uh)‖L∞‖φ‖2L2

−(1− ρ)|Re 〈φ, ψ〉|+ γρ‖ψ‖2L2 + Reλ‖Ψ‖2
L2

≥ −g∗‖φ‖2L2 − (1− ρ)|Re 〈φ, ψ〉|+ γρ‖ψ‖2L2 + Reλ‖Ψ‖2
L2

≥ −g∗‖φ‖2L2 − (1− ρ)‖φ‖L2‖ψ‖L2 + γρ‖ψ‖2L2 + Reλ‖Ψ‖2
L2

≥ −(g∗ + 1
2 (1− ρ))‖Ψ‖2

L2 + Reλ‖Ψ‖2
L2 .

(2.6.14)
Hence, we obtain (

Reλ− (g∗ + 1
2 (1− ρ))

)
‖Ψ‖L2 ≤ ‖Θ‖L2 . (2.6.15)

Since Reλ ≥ 1 + g∗ + 1
2 (1− ρ), we obtain the bound ‖Ψ‖L2 ≤ ‖Θ‖L2 .

In particular, if Θ = 0 then we necessarily have Ψ = 0, which implies that Lh + λ
is injective. Since also ind(Lh + λ) = 0 by Proposition 2.5.1, this means that Lh + λ is
invertible.

Region R3.
This region is the most delicate to handle on account of the periodicity of the spec-

trum. Indeed, one cannot simply take Imλ → ±∞ in a fashion that is uniform in h.
We pursue a direct approach here, using the Fourier transform to isolate the problem-
atic part of Lh + λ, which has constant coefficients. The corresponding portion of the
resolvent can be estimated in a controlled way by rescaling the imaginary part of λ. We
remark that an alternative approach could be to factor out the periodicity in a more
operator-theoretic setting, but we do not pursue such an argument here.

Pick λ ∈ C with λ0 < |Imλ| ≤ |ch|h π and write

λ = λr + iλim (2.6.16)

with λr, λim ∈ R. Introducing the new variable τ = Imλξ, we can write the eigenvalue
problem (Lh + λ)(v, w) = 0 in the form

chvτ (τ) = 1
λimh2

∑
k>0

αk

[
v(τ + khλim) + v(τ − khλim)− 2v(τ)

]
+ 1
λim

gu

(
uh(τ)

)
v(τ)− iv(τ)− 1

λim
λrv(τ)− 1

λim
w(τ),

chwτ (τ) = 1
λim

(
ρv(τ)− ργw(τ) + λw(τ)

)
.

(2.6.17)

Our computations below show that the leading order terms in the appropriate |λim| →
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∞ limit are encoded by the ‘homogeneous operator’ Hh,λ that acts as

Hh,λv(τ) = chvτ (τ) + iv(τ)− 1
λimh2

∑
k>0

αk

[
v(τ + khλ) + v(τ − khλ)− 2v(τ)

]
.

(2.6.18)
Writing Hh,λ for the Fourier symbol associated to Hh,λ, we see that

Hh,λ(iω) = chiω + i− 1
λimh2

∑
k>0

αk

[
exp(ihkλimω) + exp(−ihkλimω)− 2

]
= chiω + i− 2

λimh2

∑
k>0

αk

[
cos(hkλimω)− 1

]
.

(2.6.19)

Lemma 2.6.4. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exist small constants ε > 0, h∗ > 0 and ω0 > 0 so that for all λ ∈ C \ R,
all 0 < h < h∗ and all ω ∈ R, the inequality

|ImHh,λ(iω)| < ε (2.6.20)

can only be satisfied if the inequalities

|chω| ≤ 3
2

|ω| ≥ ω0

(2.6.21)

both hold.

Proof. Note that

|ImHh,λ(iω)| = |chω + 1|. (2.6.22)

In particular, upon choosing ε = 1
4 , we see that

|ImHh,λ(iω)| < ε (2.6.23)

implies ∣∣|chω| − 1
∣∣ ≤ |chω + 1| < ε (2.6.24)

and hence
1
2 < 1− ε ≤ |chω| ≤ 1 + ε < 3

2 . (2.6.25)

Since ch → c0 6= 0 as h ↓ 0, the desired inequalities (2.6.21) follow.

Lemma 2.6.5. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then
there exists a constant C > 0 such that for all ω ∈ R and 0 < h < h∗∗ and all λ ∈ C
with |λ| > λ0 and |Imλ| ≤ |ch|h π, we have the inequality

|Hh,λ(iω)| ≥ 1
C . (2.6.26)

Proof. We show that Hh,λ(iω) is bounded away from 0, uniformly in h, λ and ω. To do
so, we show that the real part of Hh,λ(iω) can be bounded away from zero, whenever
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the imaginary part is small, i.e. when (2.6.21) holds.

Recall the function A(y) =
∑
k>0

αk[1− cos(ky)] defined in Assumption (Hα1), which

satisfies A(y) > 0 for y ∈ (0, 2π). A direct calculation shows that A′(0) = 0 and

A′′(0) =
∑
k>0

αkk
2

= 1.
(2.6.27)

Hence, we can pick d0 > 0 in such a way that

1
y2A(y) > d0 (2.6.28)

holds for all 0 < |y| ≤ 3
2π.

Writing µ = hλimω, we see

ReHh,λ(iω) = 2ω2λim

µ2

∑
k>0

αk

[
1− cos(kµ)

]
= 2ω2λim

µ2 A(µ).
(2.6.29)

Now fix ω, h, λ for which |ImHh,λ(iω)| < ε. The conditions (2.6.21) now imply that

|ω| ≥ ω0 and |µ| ≤ h |ch|h π|ω| ≤ 3
2π. Using (2.6.28), we hence see that

|ReHh,λ(iω)| = | 2ω
2λim

µ2 A(µ)|

≥ 2|λim|ω2d0

≥ 2λ0ω
2
0d0,

(2.6.30)

which shows that Hh,λ(iω) can indeed be uniformly bounded away from zero.

Proposition 2.6.6. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exist constants λ2 > 0 and λ3 > 0 such that for all λ ∈ C with λ2 ≤ |Imλ| ≤
|ch|
2h 2π and −λ3 ≤ |Reλ| ≤ λ1 and all 0 < h < h∗∗ the operator Lh + λ is invertible.

Proof. Since Proposition 2.5.1 implies that Lh + λ is Fredholm with index zero, it

suffices to prove that Lh + λ is injective.

Let λ3 = min{ 1
2ργ, λ∗, λ̃}, where λ∗ is defined in (HP2) and λ̃ is defined in Propo-

sition 2.5.1. Pick λ ∈ C with λ0 ≤ |Imλ| ≤ |ch|
2h 2π and −λ3 ≤ |Reλ| ≤ λ1. Write

λ = λr + iλim as before. Suppose Ψ = (v, w) satisfies (Lh + λ)Ψ = 0.

Write v̂ and ŵ for the Fourier transforms of v and w respectively. For f ∈ L2 with
Fourier transform f̂ , the identity

Hh,λv = f (2.6.31)
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implies that
Hh,λ(iω)v̂(iω) = f̂(iω). (2.6.32)

In particular, we obtain
v̂(iω) = 1

Hh,λ(iω) f̂(iω), (2.6.33)

which using Lemma 2.6.5 implies that

‖v‖L2 ≤ C‖f‖L2 (2.6.34)

for some constant C > 0 that is independent of h, λ and ω.

Since Ψ is an eigenfunction, (2.6.17) hence yields

‖v‖L2 ≤ C 1
|λim| (g∗ + |λr|)‖v‖L2 + C 1

|λim|‖w‖L2 . (2.6.35)

Furthermore, applying a Fourier Transform to the second line of (2.6.17), we find

λimchiωŵ(iω) = ρv̂(iω)− ργŵ(iω) + λŵ(iω). (2.6.36)

Our choice λ3 ≤ 1
2ργ implies that −ργ + λr is bounded away from 0. We may hence

write
ŵ(iω) = 1

ργ−λr+i(ωλimch−λim)ρv̂(iω), (2.6.37)

which yields the bound
‖w‖L2 ≤ C ′‖v‖L2 (2.6.38)

for some constant C ′ > 0. Therefore, we obtain that

‖v‖L2 ≤ C ′′ 1
|λim|‖v‖L2 (2.6.39)

for some constant C ′′, which is independent of λ, h and v. Clearly this is impossible
for v 6= 0 if

|λim| ≥ λ2 := 2C ′′. (2.6.40)

Furthermore, if v = 0, then clearly also w = 0. Therefore, we have Ψ = 0, allowing us
to conclude that Lh + λ is invertible.

Region R4.
We conclude our spectral analysis by considering the remaining region R4. This

region is compact and bounded away from the origin, allowing us to directly apply the
theory developed in §2.3.

Corollary 2.6.7. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
For all λ ∈ C with |λ| ≥ λ0, −λ3 ≤ |Reλ| ≤ λ1 and |Imλ| ≤ λ2 and all 0 < h < h∗∗
the operator Lh + λ is invertible.

Proof. The statement follows by applying Proposition 2.3.3 with the choices (ũh, w̃h)

= (uh, wh), c̃h = ch and M = R4.

Proof of Theorem 2.2.2. The result follows directly from Lemma 2.6.1, Proposition
2.6.2, Proposition 2.6.3, Proposition 2.6.6 and Corollary 2.6.7.



2.7. GREEN’S FUNCTIONS 85

2.7 Green’s functions

In order to establish the nonlinear stability of the pulse solution (uh, wh), we need to
consider two types of Green’s functions. In particular, we first study Gλ(ξ, ξ0), which
can roughly be seen as a solution of the equation[

(Lh + λ)Gλ(·, ξ0)
]
(ξ) = δ(ξ − ξ0), (2.7.1)

where δ is the Dirac delta-distribution. We then use these functions to build a Green’s
function G for the linearisation of the LDE (2.2.1) around the travelling pulse solution.

An important difficulty in comparison to the PDE setting is caused by the discrete-
ness of the spatial variable j. In particular, we cannot use a frame of reference in which
the solution (uh, wh) is constant without changing the structure of the equation (2.2.1).
The Green’s function G will hence be the solution to a non-autonomous problem that
satisfies a shift-periodicity condition. Nevertheless, one can follow the techniques in
[13] to express G in terms of a contour integral involving the functions Gλ.

A significant part of our effort here is concerned with the construction of these latter
functions. Indeed, previous approaches in [11, 109] all used exponential dichotomies or
variation-of-constants formula’s for MFDEs with finite-range interactions. These tools
are no longer available for use in the present infinite-range setting. In particular, we
construct the functions Gλ in a direct fashion using only Fredholm properties of the
operators Lh + λ. This makes it somewhat involved to recover the desired exponential
decay rates and to properly isolate the meromorphic terms of order O(λ−1).

From now on, we will no longer explicitly use the h-dependence of our system. To
simplify our notation, we fix 0 < h < h∗∗ and write

L := Lh,
L∞ := Lh;∞,
U = (u,w) := (uh, wh),
Φ± = (φ±, ψ±) := (φ±h , ψ

±
h ),

c := ch.

(2.7.2)

We emphasize that from now on all our constants may (and will) depend on h.

We will loosely follow §2 of [109], borrowing a number of results from [13, 102] at
appropriate times. In particular, we start by considering the linearisation of the original
LDE (2.2.1) around the travelling pulse solution U(t) given by (2.2.21). To this end,
we introduce the Hilbert space

L2 := {V ∈ (Mat2(R))Z :
∑
j∈Z
|V (j)|2 <∞}, (2.7.3)

in which Mat2(R) is the space of 2 × 2-matrices with real coefficients which we equip

with the maximum-norm | · |. For any V ∈ L2, we often write V =

(
V(1,1) V(1,2)

V(2,1) V(2,2)

)
,
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when we need to refer to the component sequences V(i,j) ∈ `2(Z;R). For any t ∈ R we
now introduce the linear operator A(t) : L2 → L2 that acts as

A(t) · V = 1
c

(
A(1,1)(t) A(1,2)(t)
A(2,1)(t) A(2,2)(t)

)(
V(1,1) V(1,2)

V(2,1) V(2,2)

)
, (2.7.4)

where

(A(1,1)(t)v)j = 1
h2

∑
k>0

αk[vj+k + vj−k − 2vj ] + gu

(
u(hj + ct)

)
vj

(A(1,2)(t)w)j = −wj
(A(2,1)(t)v)j = ρvj

(A(2,2)(t)v)j = −ργwj

(2.7.5)

for v ∈ `2(Z;R) and w ∈ `2(Z;R). With all this notation in hand, we can write the
desired linearisation as the ODE

d
dtV(t) = A(t) · V(t) (2.7.6)

posed on L2.

Fix t0 ∈ R and j0 ∈ Z. Consider the function

R 3 t 7→ Gj0(t, t0) = {Gj0j (t, t0)}j∈Z ∈ L2 (2.7.7)

that is uniquely determined by the initial value problem{
d
dtG

j0(t, t0) = A(t) · Gj0(t, t0)

Gj0j (t0, t0) = δj0j I.
(2.7.8)

Here we have introduced

δj0j =

{
1 if j = j0

0 else,
(2.7.9)

where I ∈ Mat2(R) is the identity matrix. We remark that Gj0j (t, t0) is an element of
Mat2(R) for each j ∈ Z.

This function G is called the Green’s function for the linearisation around our trav-
elling pulse. Indeed, the general solution of the inhomogeneous equation{

dV
dt = A(t) · V (t) + F (t)

V (0) = V 0,
(2.7.10)

where now V (t) ∈ `2(Z;R2) ∼= `2(Z;R2×1) and F (t) ∈ `2(Z;R2) ∼= `2(Z;R2×1), is given
by

Vj(t) =
∑
j0∈Z
Gj0j (t, 0)V 0

j0
+
∫ t

0

∑
j0∈Z
Gj0j (t, t0)Fj0(t0) dt0. (2.7.11)
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Introducing the standard convolution operator ∗, this can be written in the abbreviated
form

V = G(t, 0) ∗ V 0 +
∫ t

0
G(t, t0) ∗ F (t0) dt0. (2.7.12)

The main result of this section is the following proposition, which shows that we can
decompose the Green’s function G into a part that decays exponentially and a neutral
part associated with translation along the family of travelling pulses.

Proposition 2.7.1. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
For any pair t ≥ t0 and any j, j0 ∈ Z, we have the representation

Gj0j (t, t0) = Ej0j (t, t0) + G̃j0j (t, t0), (2.7.13)

in which

Ej0j (t, t0) = h
Ω

(
φ−(hj0 + ct0)φ+(hj + ct) ψ−(hj0 + ct0)φ+(hj + ct)
φ−(hj0 + ct0)ψ+(hj + ct) ψ−(hj0 + ct0)ψ+(hj + ct)

)
,

(2.7.14)
while G̃ satisfies the found

|G̃j0j (t, t0)| ≤ Ke−δ̃(t−t0)e−δ̃|hj+ct−hj0−ct0| (2.7.15)

for some K > 0 and δ̃ > 0. The constant Ω > 0 is given by

Ω = 〈Φ−,Φ+〉. (2.7.16)

Furthermore, for any t ≥ t0 we have the representation

Gj0j (t, t0) =
∑
i∈Z

[
E ij(t, t0)Ej0i (t0, t0) + G̃ij(t, t0)(δj0i I − E

j0
i (t0, t0))

]
, (2.7.17)

which can be abbreviated as

G(t, t0) = E(t, t0) ∗ E(t0, t0) + G̃(t, t0) ∗
(
I − E(t0, t0)

)
. (2.7.18)

2.7.1 Construction of the Green’s function

In this subsection, we set out to define the functions Gλ in a more rigorous fashion. In
addition, we use these Green’s functions to formulate a powerful representation formula
for G, see Proposition 2.7.4 below, following the approach developed in [13].

A key role in our analysis is reserved for the operator L∞;λ and the function ∆L∞;λ

from Lemma 2.5.6. We will show that L∞;λ has a Green’s function G∞;λ which takes
values in the space Mat2(R) and has some useful properties. To this end, we recall the

constant λ̃ from Lemma 2.5.6. For each λ ∈ C with Reλ ≥ − λ̃2 , we may now define
G∞;λ : R→ Mat2(R) by writing

G∞;λ(ξ) = 1
2π

∫∞
−∞ eiηξ(∆L∞;λ

(iη))−1 dη. (2.7.19)

We also introduce the notation

G∞ = G∞;0. (2.7.20)

Here (Hα2) is essential to ensure that these Green’s functions decay exponentially.
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Lemma 2.7.2. Assume that (HP1), (HP2), (HS), (Hα1) and (Hα2) are satisfied. Fix

λ ∈ C with Reλ ≥ − λ̃2 . The function G∞;λ is bounded and continuous on R \ {0} and
C1-smooth on R \ hZ. Furthermore, (L∞ + λ)G∞;λ(· − ξ0) is constantly zero except at
ξ = ξ0 + hZ and satisfies the identity∫∞

−∞

[
(L∞ + λ)G∞;λ(· − ξ0)

]
(ξ)f(ξ) dξ = f(ξ0) (2.7.21)

for all ξ ∈ R and all f ∈ H1.

Finally for each χ > 0 there exist constants K∗ > 0 and β∗ > 0, which may depend

on χ, such that for each λ ∈ C with − λ̃2 ≤ Reλ ≤ χ and |Imλ| ≤ π|c|
h we have the

bound
|G∞;λ(ξ − ξ0)| ≤ K∗e−β∗|ξ−ξ0| (2.7.22)

for all ξ, ξ0 ∈ R.

Pick λ ∈ C \ σ(−L) with Reλ ≥ − λ̃2 . Observe that

L− L∞ =

(
−gu(u) + r0 0
0 0

)
. (2.7.23)

We know that G∞;λ(·−ξ0) ∈ L2(R,Mat2(R)) since it decays exponentially. This means
that we also have the inclusion

[L− L∞]G∞;λ(· − ξ0) ∈ L2(R,Mat2(C)). (2.7.24)

Hence, it is possible to define the function Gλ by writing

Gλ(ξ, ξ0) = G∞;λ(ξ − ξ0)−
[
(λ+ L)−1[L− L∞]G∞;λ(· − ξ0)

]
(ξ). (2.7.25)

The next result shows that Gλ can be interpreted as the Green’s function of L+ λ. It
is based on [109, Lem. 2.6].

Lemma 2.7.3. Assume that (HP1), (HP2), (HS), (Hα1) and (Hα2) are satisfied. For

λ ∈ C \ σ(−L) with Reλ ≥ − λ̃2 we have that Gλ(·, y) is continuous on R \ {y} and
C1-smooth on R \ {y + kh : k ∈ Z}. Furthermore, it satisfies∫∞

−∞

[
(λ+ L)Gλ(·, ξ0)

]
(ξ)f(ξ) dξ = f(ξ0) (2.7.26)

for all ξ ∈ R and all f ∈ H1.

The link between our two types of Green’s functions is provided by the following
key result. It is based on [13, Thm. 4.2], where it was used to study one-sided spatial
discretisation schemes for systems with conservation laws.

Proposition 2.7.4. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
Let χ > λunif be given, where λunif is as in Lemma 2.7.7. For all t ≥ t0 the Green’s
function Gj0j (t, t0) of (2.7.8) is given by

Gj0j (t, t0) = − h
2πi

χ+ iπc
h∫

χ− iπch

eλ(t−t0)Gλ(hj + ct, hj0 + ct0)dλ (2.7.27)

where Gλ is the Green’s function of λ+ L as defined in (2.7.25).
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Our first task is to collect several basic facts concerning the operators Lh and L∞
that will allow us to establish Lemma’s 2.7.2 and 2.7.3. In particular, we need to isolate
and explicitly compute the part of the Fourier integral (2.7.19) that behave as |η|−1

and |η|−2 as η → ±∞, as these lead to the discontinuities in G∞;λ and its derivative.

Lemma 2.7.5. Assume that (Hα1) and (Hα2) are satisfied. Consider any bounded
function f : R→ R which is continuous everywhere except at some ξ0 ∈ R. Then ∆hf is
continuous everywhere except at {ξ0+hk : k ∈ Z}. Moreover, if f is differentiable except
at ξ0 and f ′ is bounded, then ∆hf is differentiable everywhere except at {ξ0+hk : k ∈ Z}
and [∆hf ]′(ξ) = [∆hf

′](ξ).

Proof. For convenience we set ξ0 = 0. Pick ξ ∈ R with ξ /∈ {kh : k ∈ Z}. Then f
is continuous in each point ξ + kh for k ∈ Z. Choose ε > 0. Since f is bounded and
∞∑
j=1

|αj | <∞, we can pick K > 0 in such a way that

2‖f‖∞ 1
h2

∞∑
j=K

|αj | < ε
2 . (2.7.28)

For j ∈ {1, ...,K − 1} we can pick δj > 0 in such a way that

1
h2 |αj |

∣∣∣f(ξ + y + hj)− f(ξ + hj)
∣∣∣ < ε

2K+1 (2.7.29)

for all y ∈ R with |y| < δj . Let δ = min{δj : 1 ≤ j < K} > 0. Then for y ∈ R with
|y| < δ we obtain

|∆hf(ξ + y)−∆hf(ξ)| ≤ 1
h2

∞∑
j=K

|αj |
(
|f(ξ + y + jh)|+ |f(ξ + jh)|

)
+ 1
h2

K−1∑
j=1

|αj |
∣∣∣f(ξ + y + jh)− f(ξ + jh)

∣∣∣
≤ 2

h2

∞∑
j=K

|αj |‖f‖∞ +
K−1∑
j=1

ε
2K+1

< ε
2 + ε

2

= ε.

(2.7.30)

So ∆hf is continuous outside of {kh : k ∈ Z}.

Writing

fn(ξ) = 1
h2

n∑
j=1

αj

[
f(ξ + hj) + f(ξ − hj)− 2f(ξ)

]
(2.7.31)

for n ∈ Z>0, we can compute

f ′n(ξ) = 1
h2

n∑
j=1

αj

[
f ′(ξ + hj) + f ′(ξ − hj)− 2f ′(ξ)

]
. (2.7.32)

This allows us to estimate

|f ′n(ξ)− (∆hf
′)(ξ)| ≤ 1

h2

∞∑
j=n+1

|αj |4‖f ′‖∞. (2.7.33)
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In particular, the sequence {f ′n} converges uniformly to ∆hf
′ from which it follows that

(∆hf)′(ξ) = 1
h2

∞∑
j=1

αj

[
f ′(ξ + hj) + f ′(ξ − hj)− 2f ′(ξ)

]
= (∆hf

′)(ξ).
(2.7.34)

Proof of Lemma 2.7.2. Pick χ > 0 and set

R = {λ ∈ C : − λ̃2 ≤ Reλ ≤ χ and |Imλ| ≤ π|c|
h }. (2.7.35)

The proof of Lemma 2.5.7 implies that we can choose β∗ > 0 and K∗ > 0 in such a way
that

‖∆L∞;λ
(z)−1‖ ≤ K∗

1+|Im z| (2.7.36)

for all λ ∈ R and all z ∈ C with |Re z| ≤ 2β∗. In particular, it follows that (y 7→
∆L∞;λ

(iy)−1) ∈ L2(R). By the Plancherel Theorem it follows that G∞;λ is a well-
defined function in L2(R). In particular, it is bounded. Shifting the integration path
in (2.7.19) in the standard fashion described in [103, 130], we obtain the bound

|G∞;λ(ξ − ξ0)| ≤ K∗e−β∗|ξ−ξ0| (2.7.37)

for all ξ, ξ0 ∈ R and λ ∈ R.

We loosely follow the approach of [102, §5.1], which considers a similar setting for
Green’s functions for Banach space-valued operators with finite range interactions. Pick
λ ∈ R. We rewrite the definition of ∆L∞;λ

given in (2.5.18) in the more general form

1
c∆L∞;λ

(z) = z −B∞;λe
z·, (2.7.38)

For α ∈ R close to 0 we introduce the expression RL∞;λ;α by

RL∞;λ;α(z) = c∆L∞;λ
(z)−1 − 1

z−α −
B∞;λe

z·−α
(z−α)2 (2.7.39)

for z ∈ C unequal to α and |Re z| ≤ 2β∗. Since we can compute

c∆L∞;λ
(z)−1 =

[
z − α+

(
α−B∞;λe

z·)]−1

= (z − α)−1
[
1 + (z − α)−1

(
α−B∞;λe

z·)]−1

= (z − α)−1
[
1− (z − α)−1

(
α−B∞;λe

z·)+O((z − α)−2)
]
,

(2.7.40)
we obtain the estimate

|RL∞;λ;α(iy)| ≤ K∗
1+|y|3 , (2.7.41)

for all y ∈ R, possibly after increasing K∗.

Exploiting the decomposition (2.7.39), we write

G∞;λ = 1
cMα + 1

cRα, (2.7.42)
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where we have introduced

Mα(ξ) = 1
2π

∫∞
−∞ eiηξ

(
1

iη−α −
B∞;λe

iη·−α
(iη−α)2

)
dη,

Rα(ξ) = 1
2π

∫∞
−∞ eiηξRL∞;λ;α(iη) dη

(2.7.43)

for any α ∈ R \ {0} and ξ ∈ R. Using [102, Lem. 5.8] we can explicitly compute

Mα(ξ) = −eαξH(−ξ)−
[
B∞;λ − α

](
· eα·H(−·)

)
(ξ), (2.7.44)

where we have introduced the Heaviside function H as

H(ξ) =


I, ξ > 0
1
2I, ξ = 0

0, ξ < 0.

(2.7.45)

Since ξ 7→ ξeαξH(−ξ) is continuous everywhere and differentiable outside of ξ = 0,
Lemma 2.7.5 implies that Mα is continuous everywhere outside of ξ = 0 and differen-
tiable outside of {hk : k ∈ Z}. Moreover, we have the jump discontinuity

Mα(0+)−Mα(0−) = I (2.7.46)

and we can easily compute

M′α(ξ) = αMα(ξ)− [B∞;λ − α]
[
eα·H(−·)

]
(ξ), (2.7.47)

from which it follows that

1
cL∞;λMα(ξ) = M′α(ξ)−B∞;λMα(ξ)

= −αeαξH(−ξ)− α
[
B∞;λ − α

](
· eα·H(−·)

)
(ξ)

−[B∞;λ − α]
[
eα·H(−·)

]
(ξ) +B∞;λ

[
eα·H(−·)

]
(ξ)

+B∞;λ

[
[B∞;λ − α]

(
· eα·H(−·)

)
(∗)
]
(ξ)

= [B∞;λ − α]
[
[B∞;λ − α]

(
· eα·H(−·)

)
(∗)
]
(ξ).

(2.7.48)

Since RL∞;λ;α ∈ L1(R) we see that Rα is continuous. Therefore, G∞;λ is continuous
outside of ξ = 0. Similarly to [102, Eq. (5.79)] we observe that

1
c∆L∞;λ

(z)RL∞;λ;α(z) =
(B∞;λe

z·−α)2

(z−α)2 , (2.7.49)

which yields

1
cL∞;λRα(ξ) = R′α(ξ)−B∞;λRα(ξ)

= 1
2πc

∫∞
−∞ eiξy∆L∞;λ

(iy)RL∞;λ;α(iy)dy

= 1
2π

∫∞
−∞ eiξy

(B∞;λe
iy·−α)2

(iy−α)2 dy

= −[B∞;λ − α]
[
[B∞;λ − α]

(
· eα·H(−·)

)
(∗)
]
(ξ),

(2.7.50)
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using [102, Lem. 5.8]. In particular, we see that

L∞;λG∞;λ(ξ) = 0 (2.7.51)

for all ξ outside of {hk : k ∈ Z}. Lemma 2.7.5 subsequently shows that G∞;λ is C1-
smooth outside of {hk : k ∈ Z}.

Fix f ∈ H1. For any δ > 0 we may compute

0 =
∫∞
δ

[
L∞;λG∞;λ(·)

]
(ξ)f(ξ)dξ

=
[
cG∞;λf

]∞
δ
−
∫∞
δ
cG∞;λ(ξ)f ′(ξ) + [cB∞;λG∞;λ](ξ)f(ξ),

(2.7.52)

together with

0 =
[
cG∞;λf

]−δ
−∞
−
∫ −δ
−∞ cG∞;λ(ξ)f ′(ξ) + [cB∞;λG∞;λ](ξ)f(ξ). (2.7.53)

Using (2.7.46) we can hence compute

∫∞
−∞

[
L∞;λG∞;λ(·)

]
(ξ)f(ξ)dξ = limδ↓0

[
cG∞;λf

]∞
δ
−
[
cG∞;λf

]−δ
−∞

= f(0).
(2.7.54)

Lemma 2.7.6. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Fix

λ ∈ C with Reλ ≥ − λ̃2 . Then there exist constants K > 0 and β > 0 so that for any
g ∈ L2 and f ∈ H1 that satisfy (L+ λ)f = g, the pointwise bound

|f(ξ)| ≤ Ke−α|ξ|‖f‖∞ +K
∫∞
−∞ e−|η−ξ|g(η)dη (2.7.55)

holds for all ξ ∈ R.

Proof. On account of Lemma 2.7.2 we can lift the results from [130, Prop. 5.2-5.3] to
our current infinite range setting. The proof of these results are identical, since the
estimate [130, Eq. (5.4)] still holds in our setting on account of (Hα2). A more detailed
description for this procedure can be found in [20, Lem. 4.1-Lem. 4.3].

Proof of Lemma 2.7.3. Pick λ ∈ C \ σ(−L) and compute

(λ+ L)Gλ(·, ξ0) = (λ+ L)G∞;λ(· − ξ0)− [L− L∞]G∞;λ(· − ξ0)

= (λ+ L∞)G∞;λ(· − ξ0).
(2.7.56)

The last statement follows immediately from this identity.

Write

Ĝ∞;λ(· − ξ0) = [L− L∞]G∞;λ(· − ξ0). (2.7.57)
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We have already seen that Ĝ∞;λ(· − ξ0) ∈ L2(R,Mat2(C)). Hence, it follows that

(λ+ L)−1Ĝ∞;λ(· − ξ0) ∈ H1(R,Mat2(C)). (2.7.58)

In particular, this function is continuous. Together with Lemma 2.7.2 we obtain that
Gλ(·, ξ0) is continuous on R \ {ξ0}.

Set H = (λ + L)−1Ĝ∞;λ and write H =

(
H(1,1) H(1,2)

H(2,1) H(2,2)

)
. Using the definition

of L we see that
c ddξH = −λH − Ĝ∞ − H̃, (2.7.59)

where

H̃ = −
(
−∆hH

(1,1) − gu(u)H(1,1) +H(2,1) ∆hH
(1,2) − gu(u)H(1,2) +H(2,2)

−ρH(1,1) + γρH(2,1) −ρH(1,2) + γρH(2,2)

)
.

(2.7.60)
Since u′ ∈ H1 and, hence, u′ is continuous, we must have that u is continuous. As
argued before ∆hH

(1,1) and ∆hH
(1,2) are also continuous. Hence, we see that c ddξH

is continuous on R \ {ξ0} and thus that d
dξH is continuous on R \ {ξ0}. Therefore, we

obtain that Gλ(·, ξ0) is C1-smooth on R \ {ξ0 + kh : k ∈ Z}.

We now proceed to the verification of the integral representation (2.7.27). As a
preparation, we need to show that whenever λ has a sufficiently large real part, the
function Gλ is bounded uniformly by a constant. This result is based on [13, Lem. 4.1].

Lemma 2.7.7. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then
there exist constants K and λunif so that the Green’s function Gλ enjoys the uniform
estimate

|Gλ(ξ, ξ0)| ≤ K, (2.7.61)

for all ξ, ξ0 ∈ R, whenever Reλ > λunif .

Proof. We write L = c ddξ +B with

B =

(
−∆h − gu(u) 1
−ρ γρ

)
. (2.7.62)

We introduce G0
λ as the Green’s function of (λ+ c ddξ ) viewed as a map from H1 to L2.

Luckily, it is well-known that this Green’s function admits the estimate

|G0
λ(ξ, ξ0)| ≤ 1

|c|e
−Reλ|ξ−ξ0|/|c|. (2.7.63)

We can look for the Green’s function Gλ as the solution of the fixed point problem

Gλ(ξ, ξ0) = G0
λ(ξ, ξ0) +

∫
RGλ(ξ, z)(BG0

λ)(z, ξ0)dz. (2.7.64)

Since λ+ L is invertible by Theorem 2.2.2, Gλ must necessarily satisfy the fixed point
problem (2.7.64).
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For a matrix A ∈ Mat2(C) we write A =

(
A(1,1) A(1,2)

A(2,1) A(2,2)

)
. We make the decom-

position

B = B0 +B1, (2.7.65)

where

B0 =

(
−∆h 0
0 0

)
,

B1 =

(
−gu(u) 1
−ρ γρ

)
.

(2.7.66)

We estimate

|(B0G
0
λ)(ξ, ξ0)| = |∆hG

0
λ(ξ, ξ0)(1,1)|

≤
∞∑
j=1

[
1
h2 |αj |

(
|G0

λ(ξ + hj, ξ0)(1,1)|+ |G0
λ(ξ − hj, ξ0)(1,1)|

+2|G0
λ(ξ, ξ0)(1,1)|

)]
≤ 1

|c|

∞∑
j=1

[
1
h2 |αj |

(
e−Reλ|ξ+hj−ξ0|/|c| + e−Reλ|ξ−hj−ξ0|/|c|

+2e−Reλ|ξ−ξ0|/|c|
)]

(2.7.67)
and observe that

∫
R |(B0G

0
λ)(ξ, ξ0)| dξ ≤ 1

|c|

(
∞∑
j=1

4
[

1
h2 |αj | 1

Reλ/|c|

])
= 4

h2Reλ

∞∑
j=1

|αj |.
(2.7.68)

We now fix G ∈ L∞(R2,Mat2(C)) and consider the expressions

I0 =
∫
R

[
G(ξ, z)(B0G

0
λ)(z, ξ0)

](1,1)

dz,

I1 =
∫
R

[
G(ξ, z)(B1G

0
λ)(z, ξ0)

](1,1)

dz.

(2.7.69)

Using Fubini’s theorem for positive functions to switch the integral and the sum, we
obtain the estimates

|I0| ≤ ‖G‖L∞
∫
R |(B0G

0
λ)(z, ξ0)| dz

≤ ‖G‖L∞ 4
h2Reλ

∞∑
j=1

|αj |
(2.7.70)
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and

|I1| ≤ ‖G‖L∞
∫
R

(
|gu(u(z))||G0

λ(z, ξ0)(1,1)|+ ρ|G0
λ(z, ξ0)(1,1)|

+(1 + γρ)|G0
λ(z, ξ0)(2,1)|

)
dz

≤ ‖G‖L∞ 1
|c|
∫
R

((
|gu(u(z))|+ ρ+ 1 + γρ

)
e−Reλ|z−ξ0|/|c|

)
dz

≤ ‖G‖L∞ 1
|c|

(
‖gu(u)‖L∞ + ρ+ 1 + γρ

)(
1

Reλ/|c|

)
≤ ‖G‖L∞

(
g∗ + ρ+ 1 + γρ

) (
1

Reλ

)
.

(2.7.71)

Similar estimates hold for the other components of
∫
RG(ξ, z)(BG0

λ)(z, ξ0)dz. Therefore,
the mapping G 7→

∫
RG(ξ, z)(BG0

λ)(z, ξ0)dz is a contraction in L∞(R2,Mat2(C)) for
Reλ > λunif for λunif large enough, with λunif possibly dependent of h ∈ (0, h∗∗).
Hence, we get a unique bounded solution of (2.7.64), which must be Gλ. The desired
bound on Gλ is now immediate.

Proof of Proposition 2.7.4. Fix j0 ∈ Z and t0 ∈ R. Since (2.7.8) is merely a linear ODE
in the Banach space L2, it follows from the Cauchy-Lipschitz theorem that (2.7.8)
indeed has a unique solution V : [t0,∞)→ L2. For any Z ∈ C∞c (R;L2), an integration
by parts yields

−Zj0(t0) =
∫∞
t0

∑
j∈Z

[(
dVj
dt (t)− (A(t) · V(t))j

)
Zj(t)

]
dt−

∑
j∈Z Vj(t0)Zj(t0)

=
∫∞
t0

∑
j∈Z

[
− dZj

dt (t)Vj(t)− (A(t) · V)j(t)Zj(t)
]
dt.

(2.7.72)
We want to show that the function Vj(t) := Gj0j (t, t0) defined by (2.7.27) coincides

with V on [t0,∞). To accomplish this, we define

I =
∫∞
t0

∑
j∈Z

[
− dZj

dt (t)Vj(t)− (A(t) · V (t))jZj(t)
]
dt (2.7.73)

and show that V is a weak solution to (2.7.8) in the sense that

I = −Zj0(t0) (2.7.74)

holds for all Z ∈ C∞c (R;L2). Indeed, the uniqueness of weak solutions then implies
that V = V.

Note first that V (t) = 0 for t < t0, which can be seen by using (2.7.61) and taking
χ → ∞ in (2.7.27). We write y = hj0 + ct0, χ− = χ − iπc

h and χ+ = χ + iπc
h . We see

that

I =
∞∫
−∞

∑
j∈Z

[
− dZj

dt (t)Vj(t)− (A(t) · V (t))jZj(t)
]
dt, (2.7.75)

since V (t) = 0 for t < t0. Moreover, we write

Gj(t) = Gλ(hj + ct, y). (2.7.76)
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Using our definition of V (t), we have

I = − h
2πi

χ+∫
χ−

∑
j∈Z

[ ∞∫
−∞
Ij(t, λ)dt

]
dλ, (2.7.77)

where

Ij(t, λ) = eλ(t−t0)
[
−Gj(t)dZjdt (t)− (A(t) ·G(t))jZj(t)

]
. (2.7.78)

The permutation of the summations and integrations is allowed by Lebesgue’s theorem,
because Z and dZ

dt are compactly supported and Gλ is uniformly bounded by (2.7.61).
Fix χ− ≤ λ ≤ χ+ and j ∈ Z. Using the change of variable x = hj + ct we obtain

∞∫
−∞
Ij(t, λ)dt = 1

c

x=∞∫
x=−∞

[
− cGj

(
x−hj
c

)
dZj
dx + λGj

(
x−hj
c

)
Zj(x, λ)

−
(
A
(
x−hj
c

)
·G
(
x−hj
c

))
j
Zj(x, λ)

]
dx,

(2.7.79)

where
Zj(x, λ) = eλ((x−hj)/c−t0)Zj

(
x−hj
c

)
. (2.7.80)

Exploiting the fact that Zj and, therefore, Zj is compactly supported, (2.7.26) yields

∞∫
−∞
Ij(t, λ)dt = 1

c

∫∞
−∞[(L+ λ)Gλ(x, y)Zj(x, λ)]dx

= 1
cZj(y).

(2.7.81)

Now since Zj is compactly supported, we can exchange sums and integrals in equation
(2.7.77). This allows us to compute

I = − h
2πi

1
c

χ+∫
χ−

∑
j∈Z

∞∫
−∞
Ij(t, λ)dtdλ

= − h
2πi

1
c

χ+∫
χ−

∑
j∈Z
Zj(y, λ)dλ

= − h
2πic

χ+∫
χ−

∑
j∈Z

eλ
(hj0−hj)

c Zj

(
(hj0−hj)

c + t0

)
dλ

= − h
2πic

∑
j∈Z

χ+∫
χ−

eλ
(hj0−hj)

c Zj

(
(hj0−hj)

c + t0

)
dλ

= − h
2πic

∑
j∈Z

2πich δ
j0
j Zj

(
(hj0−hj)

c + t0

)
= −Zj0(t0),

(2.7.82)

as desired.

2.7.2 Meromorphic expansion of Gλ

In this subsection we set out to explicitly isolate the pole at λ = 0 in the meromorphic
expansion of Gλ. In addition, we show that both parts of this decomposition decay
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exponentially in a λ-uniform fashion. This will allow us to shift the integration path in
(2.7.27) to the left of the imaginary axis. The decomposition (2.7.13) for the Green’s
function G together with the exponential decay estimates (2.7.15) can subsequently be
read off from the shifted contour integral.

Lemma 2.7.8. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exist constants K1 > 0,K2 > 0, δ > 0 and δ̃ > 0 such that

|Φ+(ξ)| ≤ K1e
−δ|ξ|‖Φ+‖∞,

|Φ−(ξ)| ≤ K2e
−δ̃|ξ|‖Φ−‖∞

(2.7.83)

for all ξ ∈ R.

Proof. We obtain from Lemma 2.7.6 that there are constants δ > 0 and K1 > 0 for
which

|Ψ(ξ)| ≤ K1e
−δ|ξ|‖Ψ‖∞ +K1

∫∞
−∞ e−δ|ξ−η||Θ(η)|dη (2.7.84)

holds for each Ψ ∈ H1, where Θ = LΨ. Since LΦ+ = 0 we conclude that

|Φ+(ξ)| ≤ K1e
−δ|ξ|‖Φ+‖∞ (2.7.85)

for all ξ. Note that the operator L∗ is also asymptotically hyperbolic. Hence, there are
δ̃ > 0 and K2 > 0 for which

|Ψ(ξ)| ≤ K2e
−δ̃|ξ|‖Ψ‖∞ +K2

∫∞
−∞ e−δ̃|ξ−η||Θ(η)|dη (2.7.86)

holds for each Ψ ∈ H1, where Θ = L∗Ψ. Since L∗Φ− = 0 we obtain that

|Φ−(ξ)| ≤ K2e
−δ̃|ξ|‖Φ−‖∞ (2.7.87)

for all ξ.

Lemma 2.7.9. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then
there exist constants K3 > 0 and δ > 0 such that

|(Φ±)′(ξ)| ≤ K3e
−δ|ξ| (2.7.88)

for all ξ ∈ R.

Proof. Lemma 2.7.8 implies that

|∆hφ
+(ξ)| ≤ 1

h2K1

∑
k>0

|αk|(e−δ|ξ+hk| + e−δ|ξ−hk| + 2e−δ|ξ|)

≤ K1e
−δ|ξ|( 1

h2

∑
k>0

|αk|(2eδhk + 2)),
(2.7.89)

where the last sum converges by (Hα2), possibly after decreasing δ > 0. Using the fact
that

(Φ+)′ = 1
c

(
∆hφ

+ + gu(u)φ+ − ψ+

ρφ+ − ργψ+

)
(2.7.90)
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we hence see that there exists a constant K3 > 0 such that

|(Φ+)′(ξ)| ≤ K3e
−δ|ξ|. (2.7.91)

The proof for the bound on (Φ−)′ is identical.

We recall the spaces

X := Xh = {Θ ∈ H1 : 〈Φ−,Θ〉 = 0}

Y := Yh = {Θ ∈ L2 : 〈Φ−,Θ〉 = 0},
(2.7.92)

together with the operators L−1 in the spaces B(X,X) and in B(Y,X) that were de-
fined in Proposition 2.5.2. We also recall the notation LqinvΘ that was introduced in
Corollary 2.5.4 for the unique solution Ψ of the equation

LΨ = Θ− 〈Φ−,Θ〉
〈Φ−,Φ+〉Φ

+ (2.7.93)

in the space X, which is given explicitly by

LqinvΘ = L−1
[
Θ− 〈Φ−,Θ〉

〈Φ−,Φ+〉Φ
+
]
. (2.7.94)

We now exploit these operators to decompose the Green’s function of λ + L into a
meromorphic and an analytic part. This result is based on [109, Lem. 2.7].

Lemma 2.7.10. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exists a constant 0 < λ ≤ λ0 such that for all 0 < |λ| < λ we have the represen-
tation

Gλ(ξ, ξ0) = Eλ(ξ, ξ0) + G̃λ(ξ, ξ0) (2.7.95)

Here the meromorphic (in λ) term can be written as

Eλ(ξ, ξ0) = − 1
λΩ

(
φ−(ξ0)φ+(ξ) ψ−(ξ0)φ+(ξ)
φ−(ξ0)ψ+(ξ) ψ−(ξ0)ψ+(ξ)

)
(2.7.96)

and the analytic (in λ) term G̃λ is given by

G̃λ(ξ, ξ0) = G∞;λ(ξ − ξ0)−
[
[I + λL−1]−1Lqinv(L− L∞)G∞;λ(· − ξ0)

]
(ξ)

− 1
Ω 〈Φ

−, G∞;λ(· − ξ0)〉Φ+(ξ).
(2.7.97)

Here we recall the notation
Ω = 〈Φ−,Φ+〉. (2.7.98)

Proof. Pick λ ∈ C with 0 < |λ| < λ0. By the proof of Proposition 2.6.2 we see that

(L+ λ)−1Θ = λ−1 〈Φ−,Θ〉
Ω Φ+ + LqinvΘ− [I + λL−1]−1λL−1LqinvΘ (2.7.99)

for Θ ∈ L2. We now compute

〈Φ−, (L− L∞)G∞;λ(· − ξ0)〉 = 〈Φ−,−L∞G∞;λ(· − ξ0)〉

= −Φ−(ξ0) + λ〈Φ−, G∞;λ(· − ξ0)〉.
(2.7.100)
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In particular, writing

L̂ = L− L∞, (2.7.101)

we obtain

(L+ λ)−1L̂G∞;λ(· − ξ0) = 1
λΩ

(
φ−(ξ0)φ+ ψ−(ξ0)φ+

φ−(ξ0)ψ+ ψ−(ξ0)ψ+

)
+
〈Φ−,G∞;λ(·−ξ0)〉

Ω Φ+ + LqinvL̂G∞;λ(· − ξ0)

−[I + λL−1]−1λL−1LqinvL̂G∞;λ(· − ξ0).
(2.7.102)

We may hence write

Gλ(ξ, ξ0) = Eλ(ξ, ξ0) + G̃λ(ξ, ξ0) (2.7.103)

with

Eλ(ξ, ξ0) = − 1
λΩ

(
φ−(ξ0)φ+(ξ) ψ−(ξ0)φ+(ξ)
φ−(ξ0)ψ+(ξ) ψ−(ξ0)ψ+(ξ)

)
(2.7.104)

and

G̃λ(·, ξ0) = G∞;λ(· − ξ0)− LqinvL̂G∞;λ(· − ξ0)

+[I + λL−1]−1λL−1LqinvL̂G∞;λ(· − ξ0)

− 1
Ω 〈Φ

−, G∞;λ(· − ξ0)〉Φ+

= G∞;λ(· − ξ0)− [I + λL−1]−1LqinvL̂G∞;λ(· − ξ0)

− 1
Ω 〈Φ

−, G∞;λ(· − ξ0)〉Φ+.

(2.7.105)

Clearly Eλ is meromorphic in λ, while G̃λ is analytic in λ in the region |λ| < λ0.

We fix χ > λunif , where λunif was defined in Lemma 2.7.3, and set

R = {λ ∈ C : − λ̃2 ≤ Reλ ≤ χ and |Imλ| ≤ π|c|
h }. (2.7.106)

We now set out to obtain an estimate on the function G̃λ from Lemma 2.7.10 by
exploiting the asymptotic hyperbolicity of L. We treat each of the terms in (2.7.97)
separately in the results below.

Lemma 2.7.11. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exist constants K4 > 0 and χ̃ > 0 such that for all λ ∈ R∣∣〈Φ−, (L− L∞)G∞;λ(· − ξ0)〉

∣∣ ≤ K4e
−χ̃|ξ0|. (2.7.107)

Proof. We reuse the notation L̂ = L − L∞ from the previous proof. Lemma 2.7.2
implies that we can pick constants β∗ > 0 and K∗ > 0 in such a way that

|G∞;λ(ξ − ξ0)| ≤ K∗e
−β∗|ξ−ξ0| (2.7.108)



100 CHAPTER 2. THE INFINITE-RANGE FITZHUGH-NAGUMO SYSTEM

for all values of ξ, ξ0. Recall the constants K2, δ̃ from Lemma 2.7.8 and set K3 =
K2‖Φ−‖∞. Then we obtain

|〈Φ−, L̂G∞;λ(· − ξ0)〉| ≤
∫∞
−∞K3e

−δ̃|ξ|g∗K∗e
−β∗|ξ−ξ0| dξ

= K3g∗K∗

(
1

δ̃+β∗
(e−δ̃|ξ0| + e−β∗|ξ0|) + 1

β∗−δ̃
(e−δ̃|ξ0| − e−β∗|ξ0|)

)
≤ K3g∗K∗

(
1

δ̃+β∗
2e−min{δ̃,β∗}|ξ0| + 1

|β∗−δ̃|
2e−min{δ̃,β∗}|ξ0|

)
= K4e

−χ̃|ξ0|

(2.7.109)
for some K4 > 0 and χ̃ > 0.

Lemma 2.7.12. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exist constants K10 > 0 and γ̃ > 0 such that for all λ ∈ R∣∣∣[Lqinv(L− L∞)G∞;λ(· − ξ0)

]
(ξ)
∣∣∣ ≤ K10e

−γ̃|ξ|e−γ̃|ξ0|

≤ K10e
−γ̃|ξ−ξ0|.

(2.7.110)

Proof. We reuse the notation L̂ = L−L∞ from the previous proof. Recall the constants
K1, δ from Lemma 2.7.8. Writing

Hξ0(ξ) =
[
LqinvL̂G∞;λ(· − ξ0)

]
(ξ), (2.7.111)

we may use Lemma 2.7.6 to estimate

|Hξ0(ξ)| ≤ K1e
−δ|ξ|‖Hξ0‖∞ +K1

∫∞
−∞ e−δ|ξ−η||LHξ0(η)|dη. (2.7.112)

Recalling (2.7.92)-(2.7.94), we obtain

‖Hξ0‖∞ ≤ ‖Hξ0‖H1

≤ Cunif ||L̂G∞;λ(· − ξ0)− 〈Φ
−,L̂G∞;λ(·−ξ0)〉

Ω Φ+||L2

≤ Cunif

(
1 +

‖Φ−‖L2

Ω ‖Φ+‖L2

)
‖L̂G∞;λ(· − ξ0)‖L2

≤ K5‖L̂G∞;λ(· − ξ0)‖L2

(2.7.113)

for some constant K5 > 0.

Using Lemma 2.7.8 we see that there exists a constant K6 > 0 for which

|u(ξ)| = |
∫ ξ
∞ u′(ξ′) dξ′|

≤
∫∞
ξ
K1‖(u′, w′)‖∞e−δ|ξ

′| dξ′

= K6e
−δ|ξ|

(2.7.114)

holds for all ξ ∈ R. Recall that

L̂ =

(
−gu(u) + r0 0
0 0

)
. (2.7.115)
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Observe that −gu(0) + r0 = 0. Then we obtain that

| − gu(u(ξ)) + r0| ≤ K7e
−δ|ξ| (2.7.116)

for all ξ ∈ R and for some constant K7 > 0. Lemma 2.7.2 implies that

|G∞;λ(ξ − ξ0)| ≤ K∗e
−β∗|ξ−ξ0| (2.7.117)

for all ξ ∈ R. Therefore, we must have

‖L̂G∞;λ(· − ξ0)‖2
L2 ≤

∫
RK

2
7K

2
∗e
−2δ|ξ|e−2β∗|ξ−ξ0| dξ

≤ K8e
−2γ̃|ξ0|

(2.7.118)

for some constants K8 > 0, γ̃ > 0 with γ̃ ≤ β∗, γ̃ ≤ 1
2δ and γ̃ ≤ 1

2 χ̃. In particular, we
obtain the estimate

‖Hξ0‖∞ ≤ K5

√
K8e

−γ̃|ξ0|. (2.7.119)

In a similar fashion, using Lemma 2.7.11, we see that

|LHξ0(ξ)| ≤
∣∣∣[L̂G∞;λ(· − ξ0)

]
(ξ)− 〈Φ

−,L̂G∞;λ(·−ξ0)〉
Ω Φ+(ξ)

∣∣∣
≤ K7K∗e

−δ|ξ|e−β∗|ξ−ξ0| + 1
ΩK4e

−χ̃|ξ0|K1e
−δ|ξ|

≤ K9

[
e−2γ̃|ξ|e−γ̃|ξ−ξ0| + e−γ̃|ξ0|e−γ̃|ξ|

] (2.7.120)

for all ξ ∈ R and some constant K9 > 0. Combining (2.7.112) with (2.7.113) and
(2.7.118), we hence obtain

|Hξ0(ξ)| ≤ K1e
−δ|ξ|‖Hξ0‖∞ +K1

∫∞
−∞ e−δ|ξ−η||LHξ0(η)|dη

≤ K1e
−δ|ξ|K5

√
K8e

−γ̃|ξ0|

+K1

∫∞
−∞ e−δ|ξ−η|K9

[
e−2γ̃|η|e−γ̃|η−ξ0| + e−γ̃|ξ0|e−γ̃|η|

]
dη

≤ K1e
−δ|ξ|K5

√
K8e

−γ̃|ξ0| +K1

∫∞
−∞ e−δ|ξ−η|2K9e

−γ̃|η|e−γ̃|ξ0|dη

≤ K10e
−γ̃|ξ|e−γ̃|ξ0|

≤ K10e
−γ̃|ξ−ξ0|

(2.7.121)
for some constant K10 > 0.

Remark 2.7.13. In the proof of Lemma 2.7.12, in particular in (2.7.116), we explicitly
used that U is a pulse solution, instead of a traveling front solution. If one would want
to transfer these results to a more general system where the waves have different limits
at ξ = ±∞, then Lemma 2.7.12 would only hold for ξ0 ≥ 0. However, the definition
(2.7.25) remains valid upon using the reference system at ξ = −∞ instead of ξ = +∞.
This new formulation allows the desired estimates for ξ0 ≤ 0 to be recovered.
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Lemma 2.7.14. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exist constants K13 > 0 and ω > 0 such that the function G̃λ from Lemma
2.7.10 satisfies the bound

|G̃λ(ξ, ξ0)| ≤ K13e
−ω|ξ−ξ0| (2.7.122)

for all ξ, ξ0 and all 0 < |λ| < λ.

Proof. As before, we write

Hξ0(ξ) = LqinvL̂G∞;λ(· − ξ0)(ξ). (2.7.123)

Using Lemma 2.7.6 Lemma 2.7.12 and (2.7.119) and recalling (2.7.92)-(2.7.94), we
obtain the estimate

|L−1Hξ0(ξ)| ≤ K1e
−α|ξ|‖L−1Hξ0‖∞ +K1

∫∞
−∞ e−α|ξ−η||Hξ0(η)|dη

≤ K1e
−α|ξ|Cunif‖Hξ0‖L2 +K1

∫∞
−∞ e−α|ξ−η|K10e

−γ̃|η−ξ0|dη

≤ K1e
−α|ξ|CunifK5

√
K8e

−γ̃|ξ0| +K1

∫∞
−∞ e−α|ξ−η|K10e

−γ̃|η−ξ0|dη

≤ K10K11e
−γ̃|ξ−ξ0|

(2.7.124)
for some constants K11 > 0 and 2γ̃ ≤ α. Using Proposition 2.5.2 and (2.7.119) we
obtain that

‖(L−1)nHξ0‖H1 ≤ K5

√
K8(Cunif)

ne−γ̃|ξ0| (2.7.125)

for all n ∈ Z>0. Continuing in this fashion, we see that

|(L−1)nHξ0(ξ)| ≤ K10K
n
11e
−γ̃|ξ−ξ0| (2.7.126)

for all n ∈ Z>0. If we set

λ = min{ λ̃2 , λ0, χ,
1

CunifK5

√
K8
, 1
K11
}, (2.7.127)

then for each n ∈ Z>0 and each 0 < |λ| < λ we have

‖(−λ)n(L−1)nHξ0‖H1 ≤ 1
2 . (2.7.128)

In particular, it follows that

N∑
n=0

(−λ)n(L−1)nHξ0 → [I + λL−1]−1Hξ0 (2.7.129)

in H1 as N → ∞. Since H1-convergence implies point-wise convergence, we conclude
that ∣∣[I + λL−1]−1Hξ0(ξ)

∣∣ =
∣∣∣ ∞∑
n=0

(−λ)n(L−1)nHξ0(ξ)
∣∣∣

≤
∞∑
n=0

λ
n
K11K

n
12e
−γ̃|ξ−ξ0|

≤ K11

1−λK11
e−γ̃|ξ−ξ0|

:= K12e
−γ̃|ξ−ξ0|

(2.7.130)
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for all ξ ∈ R and for some constant K12 > 0.

Combining this estimate with Lemma 2.7.8 and Lemma 2.7.12 yields the desired
bound

|G̃λ(ξ, ξ0)| =
∣∣G∞;λ(ξ − ξ0)−

[
[I + λL−1]−1LqinvL̂G∞;λ(· − ξ0)

]
(ξ)

− 1
Ω 〈Φ

−, G∞(· − ξ0)〉Φ+(ξ)
∣∣

≤ K∗e
−β∗|ξ−ξ0| +K12e

−γ̃|ξ−ξ0| +K4
1
Ωe
−χ̃|ξ0|K1e

−δ|ξ|‖Φ+‖∞
≤ K13e

−ω|ξ−ξ0|

(2.7.131)
for some constants K13 > 0 and ω > 0.

We write

S = {−λ+ iω : ω ∈ [−π|c|h , π|c|h ]}, (2.7.132)

where λ is defined in the proof of Lemma 2.7.14.

Lemma 2.7.15. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
Then there exist constants K > 0 and β̃ > 0 such that for all λ ∈ S we have the bound

|Gλ(ξ, ξ0)| ≤ Ke−β̃|ξ−ξ0| (2.7.133)

for all ξ, ξ0.

Proof. Fix λ0 ∈ S. For λ ∈ S sufficiently close to λ0 we have[
L+ λ

]−1

=
[
L+ λ0 + λ− λ0

]−1

=
[(
L+ λ0

)(
I + (L+ λ0)−1(λ− λ0)

)]−1

=
[
I + (L+ λ0)−1(λ− λ0)

]−1[
L+ λ0

]−1

.

(2.7.134)

In particular, upon writing

Hξ0(ξ) =
[
[L+ λ0]−1L̂Gλ;∞(· − ξ0)

]
(ξ), (2.7.135)

we see that

Gλ(ξ, ξ0)−G∞;λ(ξ − ξ0) =
[
[I + (L+ λ0)−1(λ− λ0)]−1Hξ0

]
(ξ). (2.7.136)

Using Lemma 2.7.6 we can pick constants kλ0
> 0 and αλ0

> 0 in such a way that

|Hξ0(ξ)| ≤ kλ0
e−αλ0

|ξ|‖Hξ0‖∞ + kλ0

∫∞
−∞ e−αλ0

|ξ−η||(L+ λ0)Hξ0(η)|dη.
(2.7.137)

Recall the constant CS appearing in Proposition 2.3.3. This allows us to estimate

‖Hξ0‖∞ ≤ ‖Hξ0‖H1

≤ CS‖L̂Gλ0
(ξ, ξ0)‖L2

≤ CS
√
K8e

−γ̃|ξ0|.

(2.7.138)
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This yields the bound

|Hξ0(ξ)| ≤ kλ0e
−αλ0

|ξ|CS
√
K8e

−γ̃|ξ0| + kλ0

∫∞
−∞ e−αλ0

|ξ−η||L̂Gλ;∞(η, ξ0)|dη

≤ kλ0e
−αλ0

|ξ|CS
√
K8e

−γ̃|ξ0| + kλ0

∫∞
−∞ e−αλ0

|ξ−η|K7K∗e
−δ|η|e−2β∗|η−ξ0|dη

≤ kλ0;2e
−αλ0;2|ξ−ξ0|

(2.7.139)
for some constants kλ0;2, αλ0;2, which may depend on λ0, but not on λ. Arguing as in
(2.7.124), we obtain∣∣[L+ λ0]−1Hξ0(ξ)

∣∣ ≤ kλ0
e−αλ0

|ξ|‖[L+ λ0]−1Hξ0‖∞
+kλ0

∫∞
−∞ e−αλ0

|ξ−η||Hξ0(η)|dη

≤ kλ0;2kλ0;3e
−αλ0;2|ξ−ξ0|

(2.7.140)

for some constant kλ0;3 > 0, which may depend on λ0, but not on λ. Following the
same steps as the proof of Lemma 2.7.14 and setting

ελ0 = min{ 1
kλ0

CS
√
K8
, 1
kλ0;3
}, (2.7.141)

we conclude that

|Gλ(ξ, ξ0)−G∞;λ(ξ − ξ0)| =
∣∣∣[[I + [L+ λ0]−1(λ− λ0)]−1Hξ0

]
(ξ)
∣∣∣

≤ kλ0;4e
−αλ0;2|ξ−ξ0|

(2.7.142)

holds for each λ ∈ S with |λ − λ0| < ελ0
, for some constant kλ0;4 > 0, which may

depend on λ0. In particular, we obtain that

|Gλ(ξ, ξ0)| ≤ kλ0;4e
−αλ0;2|ξ−ξ0| +K∗e

−β∗|ξ−ξ0|

≤ kλ0;5e
−αλ0;2|ξ−ξ0|

(2.7.143)

holds for each λ ∈ S with |λ − λ0| < ελ0
, for some constant kλ0;5 > 0, which may

depend on λ0.

Since S is compact we can find λ1, ..., λn ∈ S in such a way that

S ⊂
n⋃
i=1

{λ ∈ C : |λ− λi| < ελi}. (2.7.144)

Setting
K = max{kλi;5 : i ∈ {1, ...n}},

β̃ = min{αλi;2 : i ∈ {1, ..., n}},
(2.7.145)

we conclude that

|Gλ(ξ, ξ0)| ≤ Ke−β̃|ξ−ξ0| (2.7.146)

holds for all λ ∈ S and all ξ, ξ0 ∈ R.
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2.7.3 Decomposition into stable and center modes

In this final subsection we establish Proposition 2.7.1. In particular, the decomposition
(2.7.13) and the exponential bounds (2.7.15) for the Green’s function G can be found
by using the splitting of Gλ obtained in §2.7.2. This is performed in Lemma 2.7.16,
which is based on [109, Cor. 2.8].

We subsequently carefully study the terms appearing in (2.7.13) and show that they
can be interpreted as a spectral decomposition that splits the flow associated to the
linear system (2.7.6) into two invariant subspaces. The stable component decays expo-
nentially in a uniform fashion, while the center component can be described explicitly.

Lemma 2.7.16. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For
any pair t ≥ t0 and any j, j0 ∈ Z, we have the representation

Gj0j (t, t0) = Ej0j (t, t0) + G̃j0j (t, t0) (2.7.147)

in which

Ej0j (t, t0) = h
Ω

(
φ−(hj0 + ct0)φ+(hj + ct) ψ−(hj0 + ct0)φ+(hj + ct)
φ−(hj0 + ct0)ψ+(hj + ct) ψ−(hj0 + ct0)ψ+(hj + ct)

)
,

(2.7.148)
while G̃ satisfies the bound

|G̃j0j (t, t0)| ≤ Ke−β̃(t−t0)e−β̃|hj+ct−hj0−ct0| (2.7.149)

for some K > 0 and β̃ > 0.

Proof. Recall the representation of Gj0j from Proposition 2.7.4. Note that Gλ(ξ, ξ0) is

meromorphic for λ in the strip {λ ∈ C : Reλ ≥ −λ3, |Imλ| ≤ cπ
h } with a simple pole at

λ = 0 by Lemma 2.7.10, Lemma 2.7.3 and Theorem 2.2.2. Lemma 2.7.10 also implies
that the residue of Gλ(ξ, ξ0) in λ = 0 is given by

Res(Gλ(ξ, ξ0), 0) = − 1
Ω

(
φ−(ξ0)φ+(ξ) ψ−(ξ0)φ+(ξ)
φ−(ξ0)ψ+(ξ) ψ−(ξ0)ψ+(ξ)

)
. (2.7.150)

We write

H(·, ξ0) = e2πi 1
hkξ0(L+ λ+ 2πik ch )e−2πi 1

hk
Gλ(·, ξ0). (2.7.151)

In a similar fashion as in the proof of Lemma 2.6.1 we see that for k ∈ Z we have

(L+ λ+ 2πik ch )e−2πi 1
hk

= e−2πi 1
hk

(L+ λ). (2.7.152)

Therefore, it follows that

H(·, ξ0) = e2πi 1
hkξ0(L+ λ+ 2πik ch )e−2πi 1

hk
Gλ(·, ξ0)

= e2πi 1
hkξ0e−2πi 1

hk
(L+ λ)Gλ(·, ξ0).

(2.7.153)
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For any f ∈ H1 we may hence compute∫
H(ξ, ξ0)f(ξ0) dξ0 =

∫
e2πi 1

hkξ0e−2πi 1
hkξ(L+ λ)Gλ(·, ξ0)(ξ)f(ξ0) dξ0

= e−2πi 1
hkξ[e2πi 1

hkξf(ξ)]

= f(ξ).

(2.7.154)

Therefore, by the invertibility of L+ λ+ 2πik ch , we must have

Gλ+2πik ch
(ξ, ξ0) = e2πik 1

h (ξ0−ξ)Gλ(ξ, ξ0). (2.7.155)

Now recall the constants χ, χ+, χ− from (the proof of) Proposition 2.7.4 and define

λ
−

= −λ2 − i
πc
h

λ
+

= −λ2 + iπch .
(2.7.156)

Writing x = hj + ct, y = hj0 + ct0, we see that

χ−∫
λ
−
eλ(t−t0)Gλ(x, y) dλ =

χ+∫
λ

+

e(λ+2πi ch )(t−t0)e−2πi 1
h (y−x)Gλ(x, y) dλ

=
χ+∫
λ

+

eλ(t−t0)Gλ(x, y) dλ.

(2.7.157)

Hence, if we integrate the function eλ(t−t0)Gλ(hj + ct, hj0 + ct0) along the rectangle

with edges −λ2 − i
πc
h ,−

λ
2 + iπch , χ − i

πc
h and χ + iπch , then the integrals from χ − iπch

to −λ2 − i
πc
h and from −λ2 + iπch to χ+ iπch cancel each other out. In particular, again

writing x = hj + ct, y = hj0 + ct0, the residue theorem implies

Gj0j (t, t0) = −h
2πi

χ+iπch∫
χ−iπch

eλ(t−t0)Gλ(x, y) dλ

= h
2πi

−λ2 +iπch∫
−λ2−i

πc
h

eλ(t−t0)Gλ(x, y) dλ+ h
Ω

(
φ−(y)φ+(x) ψ−(y)φ+(x)
φ−(y)ψ+(x) ψ−(y)ψ+(x)

)
.

(2.7.158)
Using Lemma 2.7.15 we also get the estimate

∣∣∣ h2πi −λ2 +iπch∫
−λ2−i

πc
h

eλ(t−t0)Gλ(x, y) dλ
∣∣∣ ≤ h

2π
2cπ
h e−λ(t−t0)Ke−β̃|x−y|, (2.7.159)

which yields the desired bound (2.7.149).

For any t ∈ R, we introduce the suggestive notation

Πc(t) = E(t, t) (2.7.160)
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together with

Πs(t) = I −Πc(t). (2.7.161)

Recalling the notation introduced in (2.7.12), we set out to show that Πc(t) ∗ Πc(t) =
Πc(t) and Πs(t) ∗ Πs(t) = Πs(t). Later on, we will view these operators as projections
that correspond to the center and stable parts of the flow induced by G respectively.

To establish the identity Πc(t) ∗Πc(t) = Πc(t), it suffices to show that(
φ−(xj0)φ+(xj) ψ−(xj0)φ+(xj)
φ−(xj0)ψ+(xj) ψ−(xj0)ψ+(xj)

)
= h

Ω

∑
i∈Z

(
φ−(xi)φ

+(xj) ψ−(xi)φ
+(xj)

φ−(xi)ψ
+(xj) ψ−(xi)ψ

+(xj)

)
×
(
φ−(xj0)φ+(xi) ψ−(xj0)φ+(xi)
φ−(xj0)ψ+(xi) ψ−(xj0)ψ+(xi)

)
,

(2.7.162)
in which xi = hi+ ct for i ∈ Z. We now write our linear operator in the form

LΨ(ξ) = c ddξΨ(ξ) +
∞∑

j=−∞
Aj(ξ)Ψ(ξ + jh), (2.7.163)

where

Aj(ξ) =



(
1
h2α|j| 0

0 0

)
if j 6= 0 −2 1

h2

∑
k>0

αk + gu(u(ξ)) 1

−ρ ργ

 if j = 0.

(2.7.164)

Before we continue, we first prove a small lemma that will help us to relate discrete
inner products with their continuous counterparts.

Lemma 2.7.17. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For
all ξ ∈ R we have the identity

c

(
φ−(ξ)φ+(ξ)
ψ−(ξ)ψ+(ξ)

)
=

∞∑
j=−∞

∫ hj
0
B(ξ + θ − hj)Aj(ξ + θ − hj)Φ+(ξ + θ)dθ,

(2.7.165)
where

B(ξ) =

(
φ−(ξ) 0
0 ψ−(ξ)

)
. (2.7.166)

Proof. Our strategy is to differentiate both sides of (2.7.165) and to show their deriva-
tives are equal. Starting with the first component, we pick N ∈ Z>0 ∪ {∞} and write

D(N) := d
dξ

N∑
j=−N

∫ hj
0
φ−(ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+(ξ + θ)

](1)

dθ. (2.7.167)
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For finite N , we may compute

D(N) = d
dξ

N∑
j=−N

∫ ξ
ξ−hj φ

−(θ)
[
Aj(θ)Φ

+(θ + hj)
](1)

dθ

=
N∑

j=−N
φ−(ξ)

[
Aj(ξ)Φ

+(ξ + hj)
](1)

−
N∑

j=−N
φ−(ξ − hj)

[
Aj(ξ − hj)Φ+(ξ)

](1)

.

(2.7.168)

Now for j > 0 we have |Aj(ξ)Φ+(ξ + hj)| ≤ 1
h2 |αj |, so the partial sums converge

uniformly. Hence, it follows that

D(∞) =
∞∑

j=−∞
φ−(ξ)

[
Aj(ξ)Φ

+(ξ + hj)
](1)

−
∞∑

j=−∞
φ−(ξ − hj)

[
Aj(ξ − hj)Φ+(ξ)

](1)

= φ−(ξ)c(φ+)′(ξ) + c(φ−)′(ξ)φ+(ξ)

= c(φ−φ+)′(ξ),

(2.7.169)

since Φ+ ∈ ker(L) and Φ− ∈ ker(L∗).

We now set out to show that both sides of (2.7.165) converge to zero as ξ → ∞.
Pick ε > 0 and let N ∈ Z>0 be large enough to ensure that∑

j≥N

1
h2 j|αj | ≤ ε

4(1+‖φ−‖∞)‖Φ+‖∞ . (2.7.170)

In addition, let Ξ be large enough to have

|φ−(ξ)| ≤ ε

4(1+
N∑

j=−N
|jα|j||)‖Φ+‖∞ (2.7.171)

for all ξ ≥ Ξ−N . This Ξ exists since φ− ∈ H1. For such ξ we may estimate

|
∞∑

j=−∞

∫ hj
0
φ−(ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+(ξ + θ)

](1)

dθ| < ε, (2.7.172)

which allows us to compute

lim
ξ→∞

∞∑
j=−∞

∫ hj
0
φ−(ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+(ξ + θ)

](1)

dθ = 0

= lim
ξ→∞

cφ−(ξ)φ+(ξ).

(2.7.173)
With that we have proved our claim. Furthermore, we can repeat the arguments above
to obtain

cψ−(ξ)ψ+(ξ) =
∞∑

j=−∞

∫ hj
0
ψ−(ξ + θ − hj)

[
Aj(ξ + θ − hj)Φ+(ξ + θ)

](2)

dθ.

(2.7.174)
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We are now ready to show that Πc(t) ∗ Πc(t) = Πc(t) and Πs(t) ∗ Πs(t) = Πs(t).
This result is based on the first part of [109, Lem. 2.9].

Lemma 2.7.18. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
Then Πc(t) ∗Πc(t) = Πc(t) and Πs(t) ∗Πs(t) = Πs(t) for all t ∈ R.

Proof. For k ∈ Z we write xk = hk + ct. In addition, for notational convenience we

write Bj(θ) =
[
Aj(θ)Φ

+(θ+hj)
](1)

for j ∈ Z and θ ∈ R. Using the results from Lemma

2.7.17 we may compute

c
∞∑

k=−∞
φ−(xk)φ+(xk) =

∞∑
k=−∞

∞∑
j=−∞

hj∫
0

φ−(xk + θ − hj)Bj(xk + θ − hj)dθ

=
∞∑

k=−∞

∞∑
j=−∞

xk∫
xk−j

φ−(θ)Bj(θ)dθ

=
∞∑

j=−∞

∞∫
−∞

jφ−(θ)Bj(θ)dθ,

(2.7.175)
where we were allowed to interchange the two infinite sums because

∣∣ N∑
k=−N

xk∫
xk−j

φ−(θ)Bj(θ)dθ
∣∣ ≤ ∣∣ ∞∫

−∞
jφ−(θ)Bj(θ)dθ

∣∣
≤ ‖φ−‖1 1

h2 |jα|j||‖φ+‖∞
(2.7.176)

holds for all N ∈ Z>0 and j ∈ Z. This expression is summable over j, allowing us to
apply Lebesgue’s theorem. On the other hand, we have

c
∞∫
−∞

φ−(ξ)φ+(ξ) dξ =
∞∫
−∞

∞∑
j=−∞

hj∫
0

φ−(ξ + θ − hj)Bj(ξ + θ − hj)dθ dξ

=
∞∑

j=−∞

hj∫
0

∞∫
−∞

φ−(ξ + θ − hj)Bj(ξ + θ − hj) dξdθ

=
∞∑

j=−∞

hj∫
0

∞∫
−∞

φ−(ξ − hj)Bj(ξ − hj)dξdθ

=
∞∑

j=−∞
hj

∞∫
−∞

φ−(ξ − hj)Bj(ξ − hj)dξ.

(2.7.177)

Interchanging the integral with the sum was allowed since φ− and φ+ decay exponen-
tially, say |φ−(x)| ≤ κe−δ|x| and |φ+(x)| ≤ κe−δ|x|. In particular, for each N ∈ Z>0

and each ξ ∈ R we have

|
N∑

j=−N

hj∫
0

φ−(ξ + θ − hj)Bj(ξ + θ − hj)dθ| ≤
∞∑

j=−∞
hκ2e−δ|ξ||jα|j||‖Φ+‖∞,

(2.7.178)
which is integrable in ξ. Furthermore, the interchanging of the two integrals was al-
lowed, since by the exponential decay of φ− we also see that for each j ∈ Z, ξ ∈ R and
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θ ∈ (0, hj) we have

|φ−(ξ + θ − hj)Bj(ξ + θ − hj)| ≤ κe−δ|ξ+θ−hj||α|j||‖Φ+‖∞. (2.7.179)

This is an integrable function for (ξ, θ) ∈ R × (0, hj), allowing us to apply Fubini’s
theorem.

In particular, we see that

∞∫
−∞

φ−(ξ)φ+(ξ) dξ = h
∞∑

k=−∞
φ−(xk)φ+(xk). (2.7.180)

In the same way we obtain

∞∫
−∞

ψ−(ξ)ψ+(ξ) dξ = h
∞∑

k=−∞
ψ−(xk)ψ+(xk). (2.7.181)

By writing out the sums it now follows that indeed (2.7.162) holds.

Proof of Proposition 2.7.1. The calculations above imply that E(t, t0) = E(t, t0)∗Πc(t0),
which means that we must also have E(t, t0) ∗Πs(t0) = 0.

Observe that for any t0 ∈ R, the function Vj(t) :=

(
φ+(hj + ct)
ψ+(hj + ct)

)
is the unique

solution to (2.7.6) with Vj(t0) =

(
φ+(hj + ct0)
ψ+(hj + ct0)

)
. Hence, by the definition of the

Green’s function G(t, t0) we see that

V (t) = G(t, t0) ∗ V (t0) (2.7.182)

for all t ∈ R. Furthermore, we recall that

Ej0j (t0, t0) = Vj(t0)Φ−(hj0 + ct0). (2.7.183)

For j, j0 ∈ Z we may hence compute[
G(t, t0) ∗Πc(t0)

]j0
j

=
∑
i∈Z
Gij(t, t0) ∗ Ej0i (t, t0)

= h
Ω

∑
i∈Z
Gij(t, t0)i ∗ Vi(t0)Φ−(hj0 + ct0)

= h
ΩVj(t)Φ

−(hj0 + ct0)

= Ej0j (t, t0).

(2.7.184)

In particular, we obtain G(t, t0) ∗Πc(t0) = E(t, t0) and thus

G̃(t, t0) ∗Πc(t0) = G(t, t0) ∗Πc(t0)− E(t, t0) ∗Πc(t0)

= E(t, t0)− E(t, t0)

= 0.

(2.7.185)
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Therefore, we must have

G(t, t0) = E(t, t0) + G̃(t, t0)

= E(t, t0) ∗
(

Πc(t0) + Πs(t0)
)

+ G̃(t, t0) ∗
(

Πc(t0) + Πs(t0)
)

= E(t, t0) ∗Πc(t0) + G̃(t, t0) ∗Πs(t0),

(2.7.186)

which completes the proof.

2.8 Nonlinear stability

In this section, we will finally prove Theorem 2.2.3, along the lines of the approach
described in [109]. The main contribution here is that we give a detailed description of
the manner in which one can account for the shift-periodicity of the underlying problem
when constructing the stable manifolds for the family U(·+ ϑ).

Recall from §2.2 that the space `p is defined by

`p = {V ∈ (R2)Z : ‖V ‖`p :=
∑
j∈Z
|Vj |p <∞} (2.8.1)

for 1 ≤ p <∞ and

`∞ = {V ∈ (R2)Z : ‖V ‖`∞ := sup
j∈Z
|Vj | <∞}. (2.8.2)

In addition, we recall the notation (U)j(t) =
(
u(hj + ct), w(hj + ct)

)
and we let β̃ > 0

be the constant appearing in Proposition 2.7.1.

Exploiting Lemma 2.7.8 we see that

‖Ej0j (t, t0)‖ ≤ C1e
−β̃|hj+ct−hj0−ct0| (2.8.3)

for some constant C1 > 0. Lemma 2.7.18 hence allows us to define Πc(t) ∈ B(`p; `p)
and Πs(t) ∈ B(`p, `p) by writing

Πc(t)V = E(t, t) ∗ V,

Πs(t)V =
[
I −Πc(t)

]
V.

(2.8.4)

The proof of our nonlinear stability result proceeds in two main steps. In particular,
we first construct the stable manifolds of the solutions (u,w)(·− θ̃) for each θ̃ ∈ R. This
result is based on the first half of the proof of [109, Prop. 2.1].

Proposition 2.8.1. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There exists a constant η > 0, independent of p, such that for each θ̃ ∈ R and each

Ws ∈ Range(Πs(θ̃)) with ‖Ws‖`p < η there is a unique function U θ̃∗ (Ws) : [0,∞) → `p

such that
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1. U(t) = U(t+ θ̃) + U θ̃∗ (Ws)(t) is a solution of (2.2.1) for all t ≥ 0,

2. U θ̃∗ (Ws)(t) decays exponentially to 0 as t→∞,

3. Πs(θ̃)U θ̃∗ (Ws)(0) = Ws.

In addition, there exist constants C6 > 0 and C13 > 0, independent of p, such that the
estimate

‖Πc(θ̃)U θ̃∗ (Ws)(0)‖`p ≤ C6‖Ws‖2`p (2.8.5)

holds for all θ̃ ∈ R and each Ws ∈ Range(Πs(θ̃)) with ‖Ws‖`p < η, while the estimate

‖Πc(θ̃1)U θ̃1∗ (W 1
s )(0)−Πc(θ̃2)U θ̃2∗ (W 2

s )(0)‖`p ≤ C13

[
‖W 1

s ‖`p + ‖W 2
s ‖`p

]
×
[
‖W 1

s −W 2
s ‖`p + |θ1 − θ2|

]
(2.8.6)

holds for all W 1
s ∈ Range(Πs(θ̃1)), all W 2

s ∈ Range(Πs(θ̃2)) and all θ̃1 ∈ R and θ̃2 ∈ R
with ‖W 1

s ‖`p < η, ‖W 2
s ‖`p < η and |θ̃2 − θ̃1| < η.

It then suffices to show that the space around the family of travelling pulse solutions
can be completely covered by these stable manifolds. We remark that θ̃ in the result
below will correspond with the asymptotic phase shift.

Proposition 2.8.2. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
Then there exists a constant δ > 0, which does not depend on p, such that for all initial
conditions U0 ∈ `p with ‖U0 − U(0)‖`p < δ there exists θ̃ ∈ R and Ws ∈ Range(Πs(θ̃))
such that

U0 = U(θ̃) + U θ̃∗ (Ws). (2.8.7)

We write the LDE (2.2.1) as

d
dtV (t) = F

(
V (t)

)
, (2.8.8)

where

F
(
V (t)

)
j

= 1
c

 1
h2

∑
k>0

αk

[
V

(1)
j+k(t) + V

(1)
j−k(t)− 2V

(1)
j (t)

]
+ g(V

(1)
j (t))− V (2)

j (t)

ρ[V
(1)
j (t)− γV (2)

j (t)]

 .

(2.8.9)

Then we see that A(t) = DF
(
U(t)

)
, where A(t) is defined in (2.7.6). We now write

Nθ
(
t, V (t)

)
= F

(
V (t) + U(t+ θ)

)
−F(U(t+ θ))−DF

(
U(t+ θ)

)
V (t)

(2.8.10)
and set out to solve the differential equation

d
dtV (t) = DF

(
U(t+ θ)

)
V (t) +Nθ

(
t, V (t)

)
. (2.8.11)
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Indeed, if V satisfies (2.8.11), then we see that

d
dt

(
U(t+ θ) + V (t)

)
= F

(
U(t+ θ)

)
+DF

(
U(t+ θ)

)
V (t) +Nθ

(
t, V (t)

)
= F

(
U(t+ θ) + V (t)

)
,

(2.8.12)
which means that U(·+ θ) + V is indeed a solution of (2.2.1).

Our goal is to construct decaying solutions to (2.8.11) for multiple values of θ using
a single Green’s function. To this end, we write

Mθ̃
(
θ, t, V

)
= Nθ

(
t, V (t)

)
+DF

(
U(t+ θ)

)
V (t)−DF

(
U(t+ θ̃)

)
V (t).

(2.8.13)
This allow us to rewrite (2.8.11) as

d
dtV (t) = DF

(
U(t+ θ̃)

)
V (t) +Mθ̃

(
θ, t, V

)
. (2.8.14)

Lemma 2.8.3. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then

Mθ̃(θ, t, ·) maps `p into itself and there exists a constant C2 > 0, independent of p and
θ̃, so that we have the estimate

‖Mθ̃(θ, t, V )‖`p ≤ C2‖V ‖2`p + C2|θ̃ − θ|‖V ‖`p , (2.8.15)

for V ∈ `p with ‖V ‖`p ≤ 1 and θ ∈ R with |θ − θ̃| ≤ 1, together with

‖Mθ̃(θ1, t, V1)−Mθ̃(θ2, t, V2)‖`p ≤ C2‖V1 − V2‖`p
[
‖V1‖`p + ‖V2‖`p

+|θ̃ − θ1|+ |θ2 − θ̃|
]

+C2|θ̃1 − θ̃2|
[
‖V1‖`p + ‖V2‖`p

]
(2.8.16)

for V1 ∈ `p, V2 ∈ `p, θ1 ∈ R and θ2 ∈ R with ‖V1‖`p ≤ 1, ‖V2‖`p ≤ 1, |θ1 − θ̃| ≤ 1 and
|θ2 − θ̃| ≤ 1.

Proof. A Taylor expansion around U
(1)

(t+ θ̃) yields the pointwise identity

Mθ̃(θ, t, V )(1) = 1
c

(
g
(
V (1) + U

(1)
(t+ θ)

)
− gu

(
U

(1)
(t+ θ̃)

)
V (1) − g

(
U

(1)
(t+ θ)

))
= 1

c

(
1
2guu(ξ1)(V (1))2 +

[
gu

(
U

(1)
(t+ θ)

)
− gu

(
U

(1)
(t+ θ̃)

)]
V (1)

)
= 1

c

(
1
2guu(ξ1)(V (1))2 + 1

2guu(ξ2)
[
U

(1)
(t+ θ)− U (1)

(t+ θ̃)
]
V (1)

)
= 1

c

(
1
2guu(ξ1)(V (1))2 + 1

2guu(ξ2)
[
d
dtU

(1)
(ξ3)

]
|θ − θ̃|V (1)

)
,

Mθ̃(θ, t, V )(2) = 0,
(2.8.17)



114 CHAPTER 2. THE INFINITE-RANGE FITZHUGH-NAGUMO SYSTEM

where ξ1 is between U
(1)

(t+ θ̃) and U
(1)

(t+ θ̃)+V , ξ2 is between U
(1)

(t+ θ̃) and U
(1)

(t)
and ξ3 is between t + θ and t + θ̃. For a bounded function f , we have the pointwise
bound

|guu(f)| = |6f + 2r0 + 2|

≤ 6‖f‖∞ + 2r0 + 2.
(2.8.18)

Therefore we get the pointwise bound

|Mθ̃(θ, t, V )| ≤

∣∣∣∣∣ 1c 1
2

( (
6‖u‖∞ + 2r0 + 2

)
‖u′‖∞|θ − θ̃|V (1)

0

)∣∣∣∣∣
+

∣∣∣∣∣ 1c 1
2

( (
6‖V (1)‖`∞ + 6‖u‖∞ + 2r0 + 2

)
(V (1))2

0

)∣∣∣∣∣
≤ 1

|c|
1
2

(
6‖u‖∞ + 2r0 + 2

)
‖u′‖∞|θ − θ̃||V |

+ 1
|c|

1
2 (6‖V ‖`∞ + 6‖u‖∞ + 2r0 + 2)|(V (1))|2.

(2.8.19)
Furthermore, for 1 ≤ p <∞ we see

‖
(
|(V (1))|2
0

)
‖`p =

(∑
j∈Z
|V (1)
j |2p

) 1
p

≤

((∑
j∈Z
|V (1)
j |p

)(
supj∈Z |V

(1)
j |p

)) 1
p

≤ ‖V ‖2`p ,

(2.8.20)

which clearly also holds for p =∞ upon skipping the intermediate two steps. We hence
obtain the bound

‖Mθ̃(θ, t, V )‖`p ≤ 1
|c|

1
2

(
6‖u‖∞ + 2r0 + 2

)
‖u′‖∞|θ − θ̃|‖V ‖`p

+ 1
|c|

1
2 (6‖u‖∞ + 2r0 + 8)‖V ‖2`p

≤ C2‖V ‖2`p + C2|θ − θ̃|‖V ‖`p ,

(2.8.21)

for some constant C2 > 0, which is independent of p and θ̃.

We now write

dM = Mθ̃
(
θ1, t, V1

)
−Mθ̃

(
θ2, t, V2

)
= 1

c

(
g
(
V

(1)
1 + U

(1)
(t+ θ1)

)
− gu

(
U

(1)
(t+ θ̃)

)
V

(1)
1 − g

(
U

(1)
(t+ θ1)

)
0

)

+ 1
c

(
−g
(
V

(1)
2 + U

(1)
(t+ θ2)

)
+ gu

(
U

(1)
(t+ θ̃)

)
V

(1)
2 + g

(
U

(1)
(t+ θ2)

)
0

)
.

(2.8.22)
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Using Taylor expansions around U
(1)

(t+ θ1) and U
(1)

(t+ θ2), we obtain the pointwise
identities

g
(
V

(1)
1 + U

(1)
(t+ θ1)

)
− g
(
U

(1)
(t+ θ1)

)
= 1

6guuu(ξ1)(V
(1)
1 )3

+ 1
2guu(U

(1)
(t+ θ1))(V

(1)
1 )2

+gu

(
U

(1)
(t+ θ1)

)
V

(1)
1 ,

g
(
V

(1)
2 + U

(1)
(t+ θ2)

)
− g
(
U

(1)
(t+ θ2)

)
= 1

6guuu(ξ2)(V
(1)
2 )3

+ 1
2guu(U

(1)
(t+ θ2))(V

(1)
2 )2

+gu

(
U

(1)
(t+ θ2)

)
V

(1)
2 ,

(2.8.23)

where ξ1 is in between U
(1)

(t+θ1) and V
(1)
1 +U

(1)
(t+θ1) and ξ2 is in between U

(1)
(t+θ2)

and U
(1)

(t + θ2) + V2. This allows us to collect all terms of the same order together
and write

dM = dM1 + dM2 + dM3, (2.8.24)

where

dM1 = 1
c

(
1
6guuu(ξ1)(V

(1)
1 )3 − 1

6guuu(ξ2)(V
(1)
2 )3

0

)
,

dM2 = 1
c

(
1
2guu

(
U

(1)
(t+ θ1)

)
(V

(1)
1 )2 − 1

2guu

(
U

(1)
(t+ θ2)

)
(V

(1)
2 )2

0

)
,

dM3 = 1
c

( [
gu

(
U

(1)
(t+ θ1)

)
− gu

(
U

(1)
(t+ θ̃)

)]
V

(1)
1

0

)

+ 1
c

(
−
[
gu

(
U

(1)
(t+ θ2)

)
− gu

(
U

(1)
(t+ θ̃)

)]
V

(1)
2

0

)
.

(2.8.25)

Note that guuu = 6 is constant. A Taylor expansion around U
(1)

(t+ θ1) yields the
pointwise identity

dM
(1)
2 = 1

c

(
1
2

(
guu(U

(1)
(t+ θ1))− guu(U

(1)
(t+ θ2))

)
(V

(1)
1 )2

)
+ 1
c

(
− 1

2guu(U
(1)

(t+ θ2))
(

(V
(1)
2 )2 − (V

(1)
1 )2

))
= 1

c

(
3
(
U

(1)
(t+ θ1)− U (1)

(t+ θ2)
)

(V
(1)
1 )2

)
+ 1
c

(
− 1

2guu(U
(1)

(t+ θ2))
(

(V
(1)
2 )2 − (V

(1)
1 )2

))
= 1

c

(
3(U

(1)
)′(ξ3)(θ1 − θ2)(V

(1)
1 )2

)
+ 1
c

(
− 1

2guu(U
(1)

(t+ θ2))
(

(V
(1)
2 )2 − (V

(1)
1 )2

))
,

(2.8.26)
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where ξ3 is in between t+ θ1 and t+ θ2. Using Taylor expansions around U
(1)

(t+ θ2)

and U
(1)

(t+ θ̃), we obtain the pointwise identity

dM
(1)
3 = 1

c

[
gu

(
U

(1)
(t+ θ1)

)
− gu

(
U

(1)
(t+ θ̃)

)]
V

(1)
1

− 1
c

[
gu

(
U

(1)
(t+ θ2)

)
− gu

(
U

(1)
(t+ θ̃)

)]
V

(1)
2

= 1
c

([
guu(ξ4)(θ1 − θ2)

]
V

(1)
1 −

[
guu(ξ5)(θ2 − θ̃)

]
V

(1)
2

)
,

(2.8.27)

where ξ4 is in between U
(1)

(t + θ1) and U
(1)

(t + θ2) and ξ5 is in between U
(1)

(t) and

U
(1)

(t+ θ2). We estimate

‖dM1‖`p ≤ 1
|c|‖V

3
1 − V 3

2 ‖`p

≤ 1
|c|

[
‖V1‖`∞‖V 2

1 − V 2
2 ‖`p + ‖V1 − V2‖`∞‖V 2

2 ‖`p
]

≤ 1
|c|

[
‖V1‖`p

[
‖V1‖`p + ‖V2‖`p

]
‖V1 − V2‖`p + ‖V1 − V2‖`p‖V2‖2`p

]
,

(2.8.28)
together with

‖dM2‖`p ≤ 1
|c|

[
3‖(U (1)

)′(ξ3)(θ1 − θ2)‖∞‖V1‖2`p

+
(

6‖u‖∞ + 2r0 + 2
)[
‖V1‖`∞‖V1 − V2‖`p + ‖V1 − V2‖`∞‖V2‖`p

]]
≤ 1

|c|

[
3‖u′‖∞|θ1 − θ2|‖V1‖2`p

+
(

6‖u‖∞ + 2r0 + 2
)[
‖V1‖`p + ‖V2‖`p

]
‖V1 − V2‖`p

]
(2.8.29)

and

‖dM3‖`p ≤ 1
|c|

[
‖guu(ξ4)(θ1 − θ2)‖∞‖V1‖`p + ‖guu(ξ5)(θ2 − θ̃)‖∞‖V1 − V2‖`p

]
≤ 1

|c|

[(
6‖u‖∞ + 2r0 + 2

)
|θ1 − θ2|‖V1‖`p

+
(

6‖u‖∞ + 2r0 + 2
)
|θ2 − θ̃|‖V1 − V2‖`p

]
.

(2.8.30)
Combining these estimates yields

‖dM‖`p ≤ C2

[
‖V1‖`p + ‖V2‖`p + |θ̃ − θ1|+ |θ2 − θ̃|

]
‖V1 − V2‖`p

+C2|θ̃1 − θ̃2|
[
‖V1‖`p + ‖V2‖`p

]
.

(2.8.31)

Lemma 2.8.4. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then
there exists a constant C3 > 0, independent of p, such that for V ∈ `p we have the bound

‖G̃(t, t0)V ‖`p ≤ C3e
−β̃(t−t0)‖V ‖`p , (2.8.32)
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for all t, t0 ∈ R.

Proof. We let f(t, t0)j = e−β̃|ct−ct0+hj| and write Ṽj = |Vj | for V ∈ `p. Using Lemma
2.7.16 and Young’s inequality we obtain

‖G̃(t, t0)V ‖`p ≤ 8Ce−β̃(t−t0)‖f(t, t0) ∗ Ṽ ‖`p(Z,R)

≤ 8Ce−β̃(t−t0)‖f(t, t0)‖`1(Z,R)‖Ṽ ‖`p(Z,R)

= 8Ce−β̃(t−t0)‖f(t, t0)‖`1(Z,R)‖V ‖`p

≤ C3e
−β̃(t−t0)‖V ‖`p ,

(2.8.33)

where

C3 = 8C supx∈[0]

∑
j∈Z

e−β̃|hj+x| <∞. (2.8.34)

Note that C3 is independent of p.

From the defining system (2.7.8), it is clear that for each θ̃ ∈ R the Green’s function
of the linearisation of (2.2.1) around the wave U(·+ θ̃) is given by G(t+ θ̃, t0 + θ̃).

Fix Ws ∈ Range
(

Πs(θ̃)
)

and consider the fixed point problem

V (t) = G̃(t+ θ̃, θ̃)Ws +
∫ t

0
G̃(t+ θ̃, t0 + θ̃)Πs(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)
dt0

+
∫ t
∞ E(t+ θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)
dt0.

(2.8.35)
We aim to construct decaying solutions to (2.8.14) by solving this fixed point problem
in the space

BC−β̃/2([0,∞), `p) := {V ∈ C([0,∞), `p) : ‖V ‖−β̃/2 <∞}, (2.8.36)

where

‖V ‖−β̃/2 = supξ∈[0,∞) e
β̃
2 ξ‖V (ξ)‖`p (2.8.37)

Here the integrals are taken component-wise, but we see that for each 1 ≤ p ≤ ∞ this
component-wise integral corresponds to the Bochner integral.

Lemma 2.8.5. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. If
the function V ∈ BC−β̃/2([0,∞), `p) satisfies the fixed point problem (2.8.35), then V

satisfies (2.8.14) and, hence, V (t) + U(t+ θ) is a solution of (2.2.1).
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Proof. If V (t) satisfies this fixed point problem then we see that

d
dt

(
G̃(t+ θ̃, θ̃)Ws

)
= DF

(
U(t+ θ̃)

)
G̃(t+ θ̃, θ̃)Ws

+DF
(
U(t+ θ̃)

)
E(t+ θ̃, θ̃)Πc(θ̃)Ws

− d
dt

(
E(t+ θ̃, θ̃)Πc(θ̃)Ws

)
= DF

(
U(t+ θ̃)

)
G̃(t+ θ̃, θ)Ws + 0− 0

= DF
(
U(t+ θ̃)

)
G̃(t+ θ̃, θ̃)Ws.

(2.8.38)

Writing

D(t) = d
dtV (t)− d

dt

(
G̃(t+ θ̃, θ̃)Ws

)
, (2.8.39)

we can compute

D(t) =
∫ t

0
d
dt

[
G̃(t+ θ̃, t0 + θ̃)Πs(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)]
dt0

+
∫ t
∞

d
dt

[
E(t+ θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)]
dt0

+G̃(t+ θ̃, t+ θ̃)Πs(t+ θ̃)Mθ̃
(
θ, t, V (t)

)
+E(t+ θ̃, t+ θ̃)Πc(t+ θ̃)Mθ̃

(
θ, t, V (t)

)
=

∫ t
0
d
dt

[
G(t+ θ̃, t0 + θ̃)Πs(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)]
dt0

+
∫ t
∞

d
dt

[
G(t+ θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)]
dt0

+G(t+ θ̃, t+ θ̃)Mθ̃
(
θ, t, V (t)

)
.

(2.8.40)

Exploiting G(t+ θ̃, t+ θ̃) = I, this yields

D(t) =
∫ t

0
DF

(
U(t+ θ̃)

)
G(t+ θ̃, t0 + θ̃)Πs(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)
dt0

+
∫ t
∞DF

(
U(t+ θ̃)

)
G(t+ θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)
dt0

+Mθ̃
(
θ, t, V (t)

)
= DF

(
U(t+ θ̃)

) ∫ t
0
G̃(t+ θ̃, t0 + θ̃)Πs(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)
dt0

+DF
(
U(t+ θ̃)

) ∫ t
∞ E(t+ θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)
dt0

+Mθ̃
(
θ, t, V (t)

)
(2.8.41)

and thus
d
dtV (t) = DF

(
U(t+ θ̃)

)
V (t) +Mθ̃

(
θ, t, V (t)

)
= DF

(
U(t+ θ)

)
V (t) +Nθ

(
t, V (t)

)
.

(2.8.42)
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Lemma 2.8.6. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.

There exists η > 0, independent of p and θ̃, so that for all Ws ∈ Range
(

Πs(θ̃)
)

that

have ‖Ws‖`p ≤ η and all |θ − θ̃| ≤ η, the fixed point problem (2.8.35) has a unique

solution W θ̃
∗;θ(Ws) in the space BC−β̃/2([0,∞), `p).

Proof. We first rewrite (2.8.35) as

V = T (Ws, V ), (2.8.43)

where

T (Ws, V ) = G̃(t+ θ̃, θ̃)Ws +
∫ t

0
G̃(t+ θ̃, t0 + θ̃)Πs(t0 + θ̃)Mθ̃

(
θ̃, t0, V (t0)

)
dt0

+
∫ t
∞ E(t+ θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ

(
θ, t0, V (t0)

)
dt0.

(2.8.44)
Pick V ∈ BC−β̃/2([0,∞), `p) with ‖V ‖−β̃/2 ≤ 1. Writing

I =
∫ t

0
G̃(t+ θ̃, t0 + θ̃)Πs(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)
dt0, (2.8.45)

Lemma 2.8.3 and Lemma 2.8.4 imply

‖I‖`p ≤
∫ t

0
‖G̃(t+ θ̃, t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)
‖`p dt0

≤
∫ t

0
C3e

−β̃(t−t0)‖Mθ̃
(
θ, t0, V (t0)

)
‖`p dt0

≤
∫ t

0
C3e

−β̃(t−t0)C2‖V (t0)‖`p
[
‖V (t0)‖`p + |θ − θ̃|

]
dt0

≤
∫ t

0
C3e

−β̃(t−t0)C2‖V ‖−β̃/2e−β̃t0/2
[
e−β̃t0/2‖V ‖−β̃/2 + |θ − θ̃|

]
dt0

≤ C3C2‖V ‖−β̃/2
[
te−β̃t‖V ‖−β̃/2 + 2

β̃
e−β̃t/2|θ − θ̃|

]
.

(2.8.46)

Observe that if we multiply this final function with eβ̃t/2 we still have a bounded
function. Since this holds for all p we see that

‖I‖−β̃/2 ≤ C4‖V ‖−β̃/2
[
‖V ‖−β̃/2 + |θ − θ̃|

]
(2.8.47)

for some constant C4, which is independent of p.

We write

J (t) =
∫∞
t
E(t+ θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃

(
θ, t0, V (t0)

)
dt0. (2.8.48)

Mimicking the computation above and using the explicit expression (2.8.3), we see that

‖J (t)‖`p ≤
∫ t
∞ C1C2‖V ‖−β̃/2e−β̃t0/2

[
e−β̃t0/2‖V ‖−β̃/2 + |θ − θ̃|

]
dt0

= C1C2‖V ‖−β̃/2
[

1
β̃
e−β̃t‖V ‖−β̃/2 + 2

β̃
e−β̃t/2|θ − θ̃|

]
.

(2.8.49)
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Observe that if we multiply this final function with e
β̃
2 t we still have a bounded function.

Since this holds for all p we see that

‖J ‖−β̃/2 ≤ C5‖V ‖−β̃/2
[
‖V ‖−β̃/2 + |θ − θ̃|

]
(2.8.50)

for some constant C5, which is independent of p.

Finally, Lemma 2.8.4 yields the bound

‖G̃(t+ θ̃, θ̃)Ws‖`p ≤ C3e
−β̃t‖Ws‖`p , (2.8.51)

which means
‖G̃(t+ θ̃, θ̃)Ws‖−β̃/2 ≤ C3‖Ws‖`p . (2.8.52)

This yields the bound

‖T (Ws, V )‖−β̃/2 ≤ C3‖Ws‖`p + (C4 + C5)‖V ‖−β̃/2
[
‖V ‖−β̃/2 + |θ − θ̃|

]
.

(2.8.53)
Let V1 ∈ BC−β̃/2([0,∞), `p) and V2 ∈ BC−β̃/2([0,∞), `p) with ‖V1‖−β̃/2 ≤ 1 and

‖V2‖−β̃/2 ≤ 1. Again, we write

dM = Mθ̃
(
θ, t, V1(t)

)
−Mθ̃

(
θ, t, V2(t)

)
. (2.8.54)

Using Lemma 2.8.3 it follows that

‖dM‖`p ≤ C2

[
‖V1‖`p + ‖V2‖`p + |θ − θ̃|

]
‖V1 − V2‖`p . (2.8.55)

Mimicking the above computations, this yields

‖T (Ws, V1)− T (Ws, V2)‖−β̃/2 ≤ (C4 + C5)‖V1 − V2‖−β̃/2
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

+|θ − θ̃|
]
.

(2.8.56)
We now fix

δ = min{1, 1
4(C4+C5)} (2.8.57)

and
η = min{ 1

4(C4+C5) ,
δ

4C3
}. (2.8.58)

For each V ∈ BC−β̃/2([0,∞), `p), V1 ∈ BC−β̃/2([0,∞), `p) and V2 ∈ BC−β̃/2([0,∞), `p)

with ‖V ‖−β̃/2 ≤ δ, ‖V1‖−β̃/2 ≤ δ and ‖V2‖−β̃/2 ≤ δ, each θ ∈ R with |θ − θ̃| < η and

each Ws ∈ `p with ‖Ws‖`p < η, we now obtain

‖T (Ws, V )‖−β̃/2 ≤ δ
4 + δ

[
1
4 + 1

4

]
≤ δ

(2.8.59)

and

‖T (Ws, V1)− T (Ws, V2)‖−β̃/2 ≤
[

1
4 + 1

4 + 1
4

]
‖V1 − V2‖−β̃/2. (2.8.60)
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Hence we see that the equation (2.8.35) has a unique solution W θ̃
∗;θ(Ws).

Lemma 2.8.7. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.

For each Ws ∈ Range
(

Πs(θ̃)
)

with ‖Ws‖`p ≤ η and each |θ − θ̃| ≤ η we have

Πs(θ̃)W θ̃
∗;θ(Ws)(0) = Ws and ‖Πc(θ̃)W θ̃

∗;θ(Ws)(0)‖`p ≤ C6‖Ws‖2`p for some constant

C6 > 0, which is independent of p and θ̃.

Proof. It is clear that

Πs(θ̃)G̃(θ̃, t0 + θ̃) = G̃(θ̃, θ̃ + t0),

Πc(θ̃)E(θ̃, θ̃ + t0) = E(θ̃, t0 + θ̃).
(2.8.61)

This allows us to compute

Πs(θ̃)W θ̃
∗;θ(Ws)(0) = Πs(θ̃)G̃(θ̃, θ̃)Ws

+Πs(θ̃)
0∫
0

G̃(θ̃, t0 + θ̃)Πs(t0 + θ̃)Mθ̃
(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

+Πs(θ̃)
0∫
∞
E(θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

= Πs(θ̃)Ws

+
∫ 0

∞Πs(θ̃)E(θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃
(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

= Ws + 0

= Ws,
(2.8.62)

together with

Πc(θ̃)W θ̃
∗;θ(Ws)(0) = Πc(θ̃)G̃(θ̃, θ̃)Ws

+Πc(θ̃)
∫ 0

0
G̃(θ̃, t0 + θ̃)Πs(t0 + θ̃)Mθ̃

(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

+Πc(θ̃)
∫ 0

∞ E(θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃
(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0

=
∫ 0

∞ E(θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃
(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0.

(2.8.63)
We assume without loss of generality that η is small enough to ensure

(C4 + C5)‖W θ̃
∗;θ(Ws)‖−β̃/2

[
‖W θ̃
∗;θ(Ws)‖−β̃/2 + |θ − θ̃|

]
≤ 1

2‖W
θ̃
∗;θ(Ws)‖−β̃/2.

(2.8.64)
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Using (2.8.53), we obtain

‖
∫ 0

∞ E(θ̃, t0 + θ̃)Πc(t0 + θ̃)Mθ̃
(
θ, t0,W θ̃

∗;θ(Ws)(t0)
)
dt0‖`p ≤ C5

[
‖W θ̃
∗;θ(Ws)‖−β̃/2

+|θ − θ̃|
]

≤ 4C5C
2
3‖Ws‖2`p

:= C6‖Ws‖2`p .
(2.8.65)

This yields the desired estimate

‖Πc(θ̃)W θ̃
∗;θ(Ws)‖`p ≤ C6‖Ws‖2`p . (2.8.66)

Exploiting Lemma 2.7.8 and Lemma 2.7.9, we pick C7 > 0 in such a way that

|Φ±(ξ)|+ |(Φ±)′(ξ)| ≤ C7e
−β̃|ξ| (2.8.67)

holds for all ξ ∈ R, decreasing β̃ if necessary.

Lemma 2.8.8. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. Then
there exists a constant C9 > 0, independent of p such that for each θ ∈ R we have the
bound

‖Φ+(h ·+θ)‖`p ≤ C9. (2.8.68)

In addition, for each θ ∈ R and each sequence {ξ(j)} with ‖ξj‖∞ ≤ 1, we have the
bound

‖(Φ−)′(h ·+ξ(·))‖`1 ≤ C9. (2.8.69)

Proof. Note that for each k ∈ Z we have

‖Φ+(h ·+θ1)‖p`p =
∑
j∈Z |Φ+(hj + θ1)|p

=
∑
j∈Z |Φ+

(
hj + hk + (θ1 − hk)

)
|p

=
∑
j∈Z |Φ+

(
hj + (θ1 − hk)

)
|p

= ‖Φ+
(
h ·+(θ1 − hk)

)
‖p`p .

(2.8.70)

Hence we assume without loss of generality that |θ1| ≤ 1. We see with (2.8.67) that
there is a constant C8 > 0 such that

‖Φ+(h ·+cθ1)‖`p ≤ C8‖e−β̃|h·+θ1||‖`p(Z,R)

≤ C8‖e−β̃|h·|eβ̃|θ1|‖`p(Z,R)

≤ C8e
β̃|θ1|‖e−β̃p|h·|‖

1
p

`1(Z,R)

≤ 2C8max{1, ‖e−β̃|h·|‖`1(Z,R)}

:= C9,

(2.8.71)



2.8. NONLINEAR STABILITY 123

if we assume that β̃ is small enough such that eβ̃|θ1| ≤ eβ̃ ≤ 2. A similar calculation
yields

‖(Φ−)′(h ·+ξ(·))‖`1 ≤ C8‖e−β̃|h·+ξ(·)|‖`1(Z,R)

≤ C8‖e−β̃|h·|eβ̃‖`1(Z,R)

≤ C8e
β̃‖e−β̃|h·|‖`1(Z,R)

≤ 2C8max{1, ‖e−β̃|h·|‖`1(Z,R)}

= C9.

(2.8.72)

We have

(Πc(θ)V )j = 1
Ω

∑
j0∈Z
〈Φ−(hj0 + cθ), Vj0〉Φ+(hj + cθ̃). (2.8.73)

For notational compactness we write

Πc(θ)V = λ
c
(θ)(V )Φ+(h ·+cθ). (2.8.74)

Lemma 2.8.9. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied. For
V ∈ `p and θ1, θ2 ∈ R with |θ2 − θ1| ≤ 1 we have the bounds

‖Πc(θ1)Πs(θ2)V ‖`p ≤ C10|θ1 − θ2|‖V ‖`p (2.8.75)

and
‖Πs(θ1)Πc(θ2)V ‖`p ≤ C10|θ1 − θ2|‖V ‖`p (2.8.76)

for some constant C10 > 0 which does not depend on p.

Proof. Writing

P = λ
c
(θ1)

(
Πs(θ2)V

)
, (2.8.77)

we obtain

‖P‖`p = | 1Ω
∑
j0∈Z
〈Φ−(hj0 + cθ1), (Πs(θ2)V )j0〉|

= Ω−1

∣∣∣∣∣ ∑j0∈Z〈Φ−(hj0 + cθ1)− Φ−(hj0 + cθ2), (Πs(θ2)V )j0〉

∣∣∣∣∣
≤ Ω−1

∑
j0∈Z
|Φ−(hj0 + cθ1)− Φ−(hj0 + cθ2)||(Πs(θ2)V )j0 |

≤ Ω−1‖Φ−(h ·+cθ1)− Φ−(h ·+cθ2)‖`1‖Πs(θ2)V ‖`∞

≤ Ω−1|θ1 − θ2|‖c(Φ−)′(h ·+ξ(·))‖`1‖Πs(θ2)V ‖`p ,

(2.8.78)

where each ξ(j) is in between cθ1 and cθ2. Thus we obtain with Lemma 2.8.4 and
Lemma 2.8.8

‖Πc(θ1)Πs(θ2)V ‖`p ≤ 1
ΩC9|c||θ1 − θ2|‖(Πs(θ2)V )‖`pC9

≤ 1
ΩC9|c||θ1 − θ2|C3‖V ‖`pC9

≤ 1
2C10|θ1 − θ2|‖V ‖`p

(2.8.79)
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for some constant C10 > 0 which is independent of p.

Furthermore we can compute

Πs(θ1)Πc(θ2)V =
[
I −Πc(θ1)

][
I −Πs(θ2)

]
V

= V −Πc(θ1)V −Πs(θ2)V + Πc(θ1)Πs(θ2)V

= −Πc(θ1)V + Πc(θ2)V + Πc(θ1)Πs(θ2)V.

(2.8.80)

This allows us to estimate

‖−Πc(θ1)V + Πc(θ2)V ‖`p ≤ |λc(θ1)(V )− λc(θ2)(V )|‖Φ+(θ1)‖`p

+|λ(θ2)|‖Φ+(θ1)− Φ+(θ2)‖`p

≤ C9|θ1 − θ2|C9‖V ‖`p

+C9|θ2||θ1 − θ2|‖(Φ−)′(h ·+η(·))‖`1‖V ‖`p

≤ C9|θ1 − θ2|C9‖V ‖`p + C9|θ2||θ1 − θ2|C9‖V ‖`p

≤ 1
2C10|θ1 − θ2|‖V ‖`p ,

(2.8.81)
where each η(j) is between cθ1 and cθ2. We thus obtain

‖Πs(θ1)Πc(θ2)V ‖`p ≤ C10|θ1 − θ2|‖V ‖`p . (2.8.82)

Proof of Proposition 2.8.1. We set

U θ̃∗ (Ws) = W θ̃
∗;θ̃(Ws) (2.8.83)

for all θ̃ ∈ R.

Fix θ̃ ∈ R and pick θ ∈ R with |θ − θ̃| ≤ η and pick Ws ∈ Range(Πs(θ)) with
‖Ws‖`p ≤ η. By uniqueness of the solution to (2.8.35) it follows that

Uθ∗ (Ws) = W θ̃
∗;θ(W

0
s ) (2.8.84)

for someW 0
s ∈ Range

(
Πs(θ̃)

)
. Since Πs(θ̃)W θ̃

∗;θ(·)(0) is the identity map on Range
(

Πs(θ̃)
)

,

it follows that
W 0
s = Πs(θ̃)Uθ∗ (Ws)(0). (2.8.85)

We now see

W 0
s −Ws = Πs(θ̃)Uθ∗ (Ws)(0)−Ws

= Πs(θ̃)
[
Uθ∗ (Ws)(0)−Ws

]
+ Πs(θ̃)Ws −Ws

= Πs(θ̃)Πc(θ)Uθ∗ (Ws)(0) +Ws −Πc(θ̃)Ws −Ws

= Πs(θ̃)Πc(θ)Uθ∗ (Ws)(0)−Πc(θ̃)Πs(θ)Ws.

(2.8.86)
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Lemma 2.8.9 hence implies

‖W 0
s −Ws‖`p ≤ C10|θ̃ − θ|‖Uθ∗ (Ws)(0)‖`p + C10|θ̃ − θ|‖Ws‖`p

≤ C10|θ̃ − θ|
[
‖Ws‖`p + C6‖Ws‖2`p

]
+ C10|θ̃ − θ|‖Ws‖`p

≤ C11|θ̃ − θ|‖Ws‖`p .

(2.8.87)

Now fix W θ̃
s ∈ Range

(
Πs(θ̃)

)
with ‖W θ̃

s ‖`p ≤ η. Then we can compute

Πc(θ)Uθ∗ (Ws)(0)−Πc(θ̃)U θ̃∗ (W θ̃
s )(0) = Uθ∗ (Ws)(0)−Ws −Πc(θ̃)W θ̃

∗;θ̃(W
θ̃
s )

= W θ̃
∗;θ(W

0
s )(0)−Ws −W θ̃

∗;θ̃(W
θ̃
s )(0) +W θ̃

s

= W 0
s −Ws +W θ̃

∗;θ(W
0
s )(0)

−W 0
s −W θ̃

∗;θ̃(W
θ̃
s )(0) +W θ̃

s .

(2.8.88)
Writing

V1 = W θ̃
∗;θ(W

0
s ),

V2 = W θ̃
∗;θ̃(W

θ̃
s ),

(2.8.89)

we can mimic the steps in (2.8.56) to obtain the estimate

‖V1(0)−W 0
s − V2(0) +W θ̃

s ‖`p ≤ C12

[
‖V1‖−β̃/2 + ‖V2‖−β̃/2 + |θ̃ − θ|

]
‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
(2.8.90)

for some constant C12 > 0, which is independent of p and θ̃. Without loss of generality
we can assume that η is small enough to ensure

C12

[
‖V1‖−β̃/2 + ‖V2‖−β̃/2 + |θ̃ − θ|

]
≤ 1

2 . (2.8.91)

An estimate similar to (2.8.56) therefore yields

‖V1 − V2‖−β̃/2 ≤ C3‖W 0
s −W θ̃

s ‖`p

+C12

[
‖V1‖−β̃/2 + ‖V2‖−β̃/2 + |θ̃ − θ|

]
‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
≤ C3‖Ws −W θ̃

s ‖`p + C3‖Ws −W 0
s ‖`p + 1

2‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
≤ C3‖Ws −W θ̃

s ‖`p + C3C11|θ̃ − θ|‖Ws‖`p + 1
2‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
,

(2.8.92)
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and thus

‖V1 − V2‖−β̃/2 ≤ 2C3‖Ws −W θ̃
s ‖`p + 2C3C11|θ̃ − θ|‖Ws‖`p

+2C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
.

(2.8.93)

Exploiting (2.8.65), this yields

dP := ‖Πc(θ)Uθ∗ (Ws)(0)−Πc(θ̃)U θ̃∗ (W θ̃
s )(0)‖`p

≤ C11|θ̃ − θ|‖Ws‖`p + C12

[
‖V1‖−β̃/2 + ‖V2‖−β̃/2 + |θ̃ − θ|

]
‖V1 − V2‖−β̃/2

+C12|θ̃ − θ|
[
‖V1‖−β̃/2 + ‖V2‖−β̃/2

]
≤ C13

[
‖Ws‖`p + ‖W θ̃

s ‖`p + |θ̃ − θ|
]
‖Ws −W θ̃

s ‖`p

+C13|θ̃ − θ|
[
‖Ws‖`p + ‖W θ̃

s ‖`p
]

(2.8.94)
for some constant C13, which is independent of p and θ̃.

We now expand upon the ideas developed in the second half of [109, Prop. 2.1] to
foliate the state space surrounding the travelling pulses U(·+ θ̃) by the stable manifolds
constructed above. We proceed by showing that these stable manifolds depend contin-
uously on θ̃. This allows us to set up an appropriate fixed point problem to establish
Proposition 2.8.2.

We write

U(θ̃) = U(0)− θ̃U ′(0) +N θ̃
1 . (2.8.95)

Lemma 2.8.10. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
Then we have the bounds

‖N θ̃
1 ‖`p ≤ C14θ̃

2 (2.8.96)

and

‖N θ̃2
1 −N

θ̃1
1 ‖`p ≤ C15(|θ̃1|+ |θ̃2|)|θ̃1 − θ̃2|, (2.8.97)

for θ̃, θ̃1, θ̃2 ∈ [−η, η] and for some constants C14 > 0 and C15 > 0, which do not depend
on p.

Proof. Using Lemma 2.7.9 we see that there exists a sequence {ξj} with |ξj | ≤ |θ̃| such
that

‖N θ̃
1 ‖`p = 1

2‖{θ̃
2U
′′
(ξj)}‖`p

≤ 1
2C7θ̃

2‖{e−β̃|hj+cξj |}‖p

≤ 1
2C7θ̃

2eβ̃|cθ̃|‖{e−β̃|hj|}‖p

≤ C7θ̃
2‖{e−β̃|hj|}‖p

:= C14θ̃
2,

(2.8.98)
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where C14 does not depend on p as before. We can hence write

U(θ̃) = U(0)− θ̃U ′(0) +N θ̃
1 (2.8.99)

with

‖N θ̃
1 ‖`p ≤ C14θ̃

2. (2.8.100)

Furthermore, using Lemma 2.7.9, we see that we can find sequences {ξj} and {ηj}
with ξj between hj + cθ̃1 and hj + cθ̃2 and ηj between hj and hj + cθ̃1 so that

‖N θ̃2
1 −N

θ̃1
1 ‖`p = ‖U(θ̃1) + θ̃1U

′
(0)− U(θ̃2)− θ̃2U

′
(0)‖`p

≤ |θ̃1 − θ̃2|2‖{U
′′
(ξj)}‖`p + |θ̃1 − θ̃2|‖U

′
(0)− U ′(θ̃1)‖`p

≤ |θ̃1 − θ̃2|2‖{U
′′
(ξj)}‖`p + |θ̃1 − θ̃2||θ̃1|‖{U

′′
(ηj)}‖`p

≤ C15(|θ̃1|+ |θ̃2|)|θ̃1 − θ̃2|,
(2.8.101)

similarly to the calculations from Lemma 2.8.3.

We write

N θ̃
2 (W ) = U θ̃∗ (Πs(θ̃)W )(0)−Πs(θ̃)W (2.8.102)

for W ∈ Range(Πs(0)) with ‖Πs(θ̃)W‖`p < η. We note that Lemma 2.8.4 implies that
this inequality holds if ‖W‖`p < η

C3
.

Lemma 2.8.11. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
Recall the constants C6 and C13 appearing in Proposition 2.8.1 and Lemma 2.8.4. Then

for any θ̃ ∈ [−η, η] and W ∈ Range
(

Πs(0)
)

with ‖W‖`p < η
C3

we have the bound

‖N θ̃
2 (W )‖`p ≤ C6‖V ‖2`p . (2.8.103)

In addition, for any θ̃1, θ̃2 ∈ [−η, η] and W1,W2 ∈ Range
(

Πs(0)
)

with ‖W1‖`p < η
C3

and ‖W2‖`p < η
C3

, we have

‖N θ̃2
2 (W2)−N θ̃1

2 (W1)‖`p ≤ C13

[
‖W1‖`p + ‖W2‖`p + |θ1 − θ2|

]
‖W1 −W2‖`p

+C13|θ1 − θ2|
[
‖W1‖`p + ‖W2‖`p

]
.

(2.8.104)

Proof. Note that

Πs(θ̃)N θ̃
2 (W ) = 0, (2.8.105)

so that
N θ̃

2 (W ) = Πc(θ̃)U θ̃∗ (W )(0)−Πc(θ̃)Πs(θ̃)W

= Πc(θ̃)U θ̃∗ (W )(0).
(2.8.106)

Therefore, both bounds follow from Proposition 2.8.1.
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Let δ > 0 be a small constant, which we will determine later. Pick U0 in such a
way that ‖U0 − U(0)‖`p < δ. We write U0 = U(0) + V0.

Our goal is to find a small W ∈ Range
(

Πs(0)
)

and a small θ̃ in such a way that

V 0 + U(0) = U(θ̃) + U θ̃∗ (Πs(θ̃)W )(0). (2.8.107)

Using our notation from above we see that

U(θ̃) + U θ̃∗ (Πs(θ̃)W )(0) = U(θ̃) + Πs(θ̃)W +N θ̃
2 (W )

= U(0) + θ̃U
′
(0) +N θ̃

1 + Πs(θ̃)W +N θ̃
2 (W )

= U(0) + θ̃U
′
(0) +N θ̃

1 +W −Πc(θ̃)W +N θ̃
2 (W ),

(2.8.108)
which means that (2.8.107) can be written as

V 0 = θ̃U
′
(0) +N θ̃

1 +W −Πc(θ̃)W +N θ̃
2 (W ) (2.8.109)

We write λ
c

: Range(Πc(0)) → R for the map µU
′ 7→ µ. This allow us to rephrase

(2.8.109) as the fixed point problem Πs(0)V 0 = Πs(0)N θ̃
1 +W −Πs(0)Πc(θ̃)(W ) + Πs(0)

(
N θ̃

2 (W )
)

λ
c
[
Πc(0)V 0

]
= θ̃ + λ

c
[
Πc(0)N θ̃

1

]
− λc

[
Πc(0)Πc(θ̃)(W )

]
+ λ

c
[
Πc(0)

(
N θ̃

2 (W )
)]
.

(2.8.110)
We show that equation (2.8.110) has a solution in the space

Xκ,εθ := {V ∈ Range(Πs(0)) : ‖V ‖`p ≤ κ} × [−εθ, εθ] (2.8.111)

for some κ, εθ which we will determine later. Without loss of generality we assume that
κ, εθ are small enough such that all previous inequalities hold.

Lemma 2.8.12. Assume that (HP1),(HP2), (HS), (Hα1) and (Hα2) are satisfied.
There are small constants δ > 0 κ > 0 and εθ > 0, independent of p, such that for
each V 0 ∈ `p with ‖V 0‖`p < δ the fixed point problem (2.8.110) has a unique solution
(W, θ̃) ∈ Xκ,εθ . Moreover there is a constant C19 > 0 such that we have the bound

‖W‖`p ≤ C19‖V 0‖`p . (2.8.112)

Proof. We show that the map

T : (W, θ) 7→

(
Πs(0)V 0 −Πs(0)N θ̃

1 + Πs(0)Πc(θ̃)(W )−Πs(0)(N θ̃
2 (W ))

λ
c
[
Πc(0)V 0

]
− λc

[
Πc(0)N θ̃

1

] )

+

(
0

λ
c
[
Πc(0)Πc(θ̃)(W )

]
− λc

[
Πc(0)(N θ̃

2 (W )
] )

(2.8.113)
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maps Xκ,εθ into Xκ,εθ and is a contraction. Recall the constant C1 from (2.8.3). Note
that

Πc(0)Πc(θ̃)(W ) = Πc(0)(W )−Πc(0)Πs(θ̃)(W )

= −Πc(0)Πs(θ̃)(W )
(2.8.114)

We see, using Lemma 2.8.9, Lemma 2.8.10 and Lemma 2.8.11, and setting

C16 = C1

∑
j∈Z

e−β̃|hj|, (2.8.115)

that

‖T (W, θ̃)(1)‖`p ≤ (1 + C16)‖V 0 −N θ̃
1 −N θ̃

2 (W )‖`p + C10|θ̃|‖W‖`p

≤ (1 + C16)
(
‖V 0‖`p + C14θ̃

2 + C6‖W‖2`p
)

+ C10|θ̃|‖W‖`p

≤ C17

[
‖V 0‖`p + θ̃2 + ‖W‖2`p + |θ̃|‖W‖`p

]
(2.8.116)

and

|T (W, θ̃)(2)| ≤ C16(‖V 0‖`p+C14θ̃
2+C6‖W‖2`p )+(1+C16)C10|θ̃|‖W‖`p

Ω

≤ C17

[
‖V 0‖`p + θ̃2 + ‖W‖2`p + |θ̃|‖W‖`p

] (2.8.117)

for some constant C17 > 0, which is independent of p. Note that

Πc(θ̃2)(W2)−Πc(θ̃1)(W1) = Πc(θ̃2)W2 −Πc(θ̃1)W2 + Πc(θ̃1)(W1 −W2)

= Πc(θ̃2)W2 −Πc(θ̃1)W2

+Πc(θ̃1)(W1 −W2)−Πc(0)(W1 −W2).
(2.8.118)

Using Lemma 2.8.9, (2.8.81), Lemma 2.8.10 and Lemma 2.8.11 we obtain

‖T (W1, θ̃1)(1) − T (W2, θ̃2)(1)‖`p ≤ (1 + C16)
(
‖N θ̃2

1 −N
θ̃1
1 ‖`p

+‖Πc(θ̃2)(W2)−Πc(θ̃1)(W1)‖`p

+‖N θ̃2
2 (W2)−N θ̃1

2 (W1)‖`p
)

≤ (1 + C16)
(
C15(|θ̃1|+ |θ̃2|)|θ̃2 − θ̃1|

+C10|θ̃1 − θ̃2|‖W2‖+ C10|θ̃1|‖W1 −W2‖

+C13

[
‖W1‖`p + ‖W2‖`p + |θ̃1 − θ̃2|

]
‖W1 −W2‖`p

+C13|θ̃2 − θ̃1|
[
‖W1‖`p + ‖W2‖`p

])
≤ C18

[
|θ̃1|+ |θ̃2|+ ‖W1‖`p + ‖W2‖`p

]
×
[
|θ̃1 − θ̃2|+ ‖W1 −W2‖`p

]
,

(2.8.119)
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together with

|T (W1, θ̃1)(2) − T (W2, θ̃2)(2)| ≤ C16‖N
θ̃2
1 −N

θ̃1
1 +Πc(θ̃2)(W2)−Πc(θ̃1)(W1)+N θ̃22 (W2)−N θ̃12 (W1)‖`p

Ω

≤ C18

[
|θ̃1|+ |θ̃2|+ ‖W1‖`p + ‖W2‖`p

]
×
[
|θ̃1 − θ̃2|+ ‖W1 −W2‖`p

]
(2.8.120)

for some constant C18 > 0, which is independent of p. First we let 0 < κmax < 1 and
0 < θmax < 1 be constants such that all inequalities above hold for all |κ| ≤ κmax and
all |θ| ≤ θmax. In particular, we demand that κmax < η, κmax < η

C3
and θmax < η.

Finally we write

δ = κ = εθ = 1
20min{κmax, θmax,

1
C17

, 1
C18
} > 0. (2.8.121)

With these choices we obtain the estimate

‖T (W, θ̃)(1)‖`p ≤ C17

[
‖V 0‖`p + θ̃2 + ‖W‖2`p + |θ̃|‖W‖`p

]
≤ 1

20κ+ 1
20κ+ 1

20κ+ 1
20κ

≤ 1
2κ.

(2.8.122)

Furthermore we see that
|T (W, θ̃)(2)| ≤ 1

2εθ. (2.8.123)

Hence we see that the map T indeed maps Xκ,εθ into Xκ,εθ .

In addition, (2.8.119) implies

‖T (W1, θ̃1)(1) − T (W2, θ̃2)(1)‖`p ≤ C18

[
|θ̃1|+ |θ̃2|+ ‖W1‖`p + ‖W2‖`p

]
×
[
|θ̃1 − θ̃2|+ ‖W1 −W2‖`p

]
≤ 4

20 |θ̃1 − θ̃2|+ 4
20‖W1 −W2‖`p ,

(2.8.124)
while (2.8.120) yields

|T (W1, θ̃1)(2) − T (W2, θ̃2)(2)| ≤ 4
20 |θ̃1 − θ̃2|+ 4

20‖W1 −W2‖`p . (2.8.125)

Therefore the map T is a contraction and thus the fixed point problem (2.8.110) has a
unique solution (W, θ̃). Moreover we see that

‖(W, θ̃)‖`p×R ≤ ‖T (W, θ̃)− T (0, 0)‖`p×R + ‖T (0, 0)‖`p×R

≤ 1
2‖(W, θ̃)‖`p×R + 2C17‖V 0‖`p ,

(2.8.126)

which yields
‖(W, θ̃)‖`p×R ≤ 4C17‖V 0‖`p

= C19‖V 0‖`p
(2.8.127)
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as desired.

Proof of Proposition 2.8.2. If (W, θ̃) satisfies (2.8.110) then we see from (2.8.108) that

U0 = U(0) + V 0

= U(θ̃) + U θ̃∗ (W )(0),
(2.8.128)

as desired.

Proof of Theorem 2.2.3. Let U be the solution of (2.2.1) with an initial condition
U(0) = U0 for which ‖U0 − U(0)‖`p < δ. By Proposition 2.8.2 and by uniqueness of
the solution we see that

U = U(θ̃) + U θ̃∗ (W ) (2.8.129)

for some small θ̃ ∈ R and W ∈ `p with

‖W‖`p ≤ C19‖U0 − U(0)‖`p . (2.8.130)

Hence we obtain

‖U(t)− U(t+ θ̃)‖`p ≤ e−
β̃
2 t‖U θ̃∗

(
Πc(θ̃)(W )

)
‖−β̃/2

≤ 2C3e
− β̃2 t‖Πc(θ̃)(W )‖`p

≤ 2C3e
− β̃2 tC16‖W‖`p

≤ 2C3C16C19‖U0 − U(0)‖`pe−
β̃
2 t,

(2.8.131)

as desired.
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Chapter 3

Travelling waves for spatially
discrete systems of
FitzHugh-Nagumo type with
periodic coefficients

This chapter has been published in SIAM Journal on Mathematical Analysis 54(4)
(2019) 3492–3532 as W.M. Schouten-Straatman and H.J. Hupkes “Travelling waves for
spatially discrete systems of FitzHugh-Nagumo type with periodic coefficients” [151].

Abstract. We establish the existence and nonlinear stability of travelling wave
solutions for a class of lattice differential equations (LDEs) that includes the discrete
FitzHugh-Nagumo system with alternating scale-separated diffusion coefficients. In
particular, we view such systems as singular perturbations of spatially homogeneous
LDEs, for which stable travelling wave solutions are known to exist in various settings.

The two-periodic waves considered in this paper are described by singularly per-
turbed multicomponent functional differential equations of mixed type (MFDEs). In
order to analyze these equations, we generalize the spectral convergence technique that
was developed by Bates, Chen and Chmaj to analyze the scalar Nagumo LDE. This al-
lows us to transfer several crucial Fredholm properties from the spatially homogeneous
to the spatially periodic setting. Our results hence do not require the use of comparison
principles or exponential dichotomies.
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Key words: Lattice differential equations, FitzHugh-Nagumo system, periodic coeffi-
cients, singular perturbations.

3.1 Introduction

In this paper we consider a class of lattice differential equations (LDEs) that includes
the FitzHugh-Nagumo system

u̇j = dj(uj+1 + uj−1 − 2uj) + g(uj ; aj)− wj ,

ẇj = ρj [uj − γjwj ]
(3.1.1)

with cubic nonlinearities

g(u; a) = u(1− u)(u− a) (3.1.2)

and two-periodic coefficients

(0,∞)× (0, 1)× (0, 1)× (0,∞) 3 (dj , aj , ρj , γj) =

{
(ε−2, ao, ρo, γo) for odd j,

(1, ae, ρe, γe) for even j.
(3.1.3)

We assume that the diffusion coefficients are of different orders in the sense 0 < ε� 1.
Building on the results obtained in [108, 109] for the spatially homogeneous FitzHugh-
Nagumo LDE, we show that (3.1.1) admits stable travelling pulse solutions with sepa-
rate waveprofiles for the even and odd lattice sites. The main ingredient in our approach
is a spectral convergence argument, which allows us to transfer Fredholm properties
between linear operators acting on different spaces.

Signal propagation The LDE (3.1.1) can be interpreted as a spatially inhomoge-
neous discretisation of the FitzHugh-Nagumo partial differential equation (PDE)

ut = uxx + g(u; a)− w,

wt = ρ
[
u− γw

]
,

(3.1.4)

again with ρ > 0 and γ > 0. This PDE was proposed in the 1960s [74, 76] as a
simplification of the four-component system that Hodgkin and Huxley developed to
describe the propagation of spike signals through the nerve fibers of giant squids [98].
Indeed, for small ρ > 0 (3.1.4) admits isolated pulse solutions of the form

(u,w)(x, t) = (u0, w0)(x+ c0t), (3.1.5)

in which c0 is the wavespeed and the waveprofile (u0, w0) satisfies the limits

lim
|ξ|→∞

(u0, w0)(ξ) = 0. (3.1.6)
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(a)
(b)

Figure 3.1: (a) Simplified representation of the system (3.1.1) as an electrical circuit in a
nerve fiber, analogous to [24, Fig. 1.11]. In this paper, the resistances Ro and Re, as well as
the capacitances Co and Ce in the cell membrane alternate between the even and odd mem-
branes. The resistivity of the intracellular fluid R is constant. (b) Schematic representation
of the u-component of a travelling pulse for the system (3.1.1), which alternates between two
waveprofiles.

Such solutions were first observed numerically by FitzHugh [75], but the rigorous
analysis of these pulses turned out to be a major mathematical challenge that is still
ongoing. Many techniques have been developed to obtain the existence and stability
of such pulse solutions in various settings, including geometric singular perturbation
theory [31, 97, 117, 119], Lin’s method [32, 33, 124], the variational principle [36] and
the Maslov index [46, 47].

It turns out that electrical signals can only reach feasible speeds when travelling
through nerve fibers that are insulated by a myelin coating. Such coatings are known
to admit regularly spaced gaps at the nodes of Ranvier [143], where propagating signals
can be chemically reinforced. In fact, the action potentials effectively jump from one
node to the next through a process called saltatory conduction [127]. In order to include
these effects, it is natural [123] to replace (3.1.4) by the FitzHugh-Nagumo LDE

u̇j = 1
ε2 (uj+1 + uj−1 − 2uj) + g(uj ; a)− wj ,

ẇj = ρ[uj − γwj ].
(3.1.7)

In this equation the variable uj describes the potential at the node j ∈ Z node, while
wj describes the dynamics of the recovery variables. We remark that this LDE arises
directly from (3.1.4) by using the nearest-neighbour discretisation of the Laplacian on
a grid with spacing ε > 0.

In [108, 109], Hupkes and Sandstede studied (3.1.7) and showed that for a sufficiently
far from 1

2 and small ρ > 0, there exists a stable locally unique travelling pulse solution

(uj , wj)(t) = (u,w)(j + ct). (3.1.8)
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The techniques relied on exponential dichotomies and Lin’s method to develop an
infinite-dimensional analogue of the exchange lemma. In [69], the existence part of
these results was generalized to versions of (3.1.7) that feature infinite-range discretisa-
tions of the Laplacian that involve all neighbours instead of only the nearest neighbours.
The stability results were also recently generalized to this setting [150], but only for
small ε > 0 at present. Such systems with infinite-range interactions play an important
role in neural field models [15, 23, 24, 142], which aim to describe the dynamics of large
networks of neurons.

Our motivation here for studying the 2-periodic version (3.1.1) of the FitzHugh-
Nagumo LDE (3.1.7) comes from recent developments in optical nanoscopy. Indeed,
the results in [50, 51, 165] clearly show that certain proteins in the cytoskeleton of nerve
fibers are organized periodically. This periodicity turns out to be a universal feature
of all nerve systems, not just those which are insulated with a myelin coating. Since
it also manifests itself at the nodes of Ranvier, it is natural to allow the parameters in
(3.1.7) to vary in a periodic fashion. This can be understood by considering the generic
circuit-models that are typically used to model nerve axons; see Figure 3.1(a).

The results in this paper are a first step in this direction. The restriction on the
diffusion parameters is rather severe, but the absence of a comparison principle forces
us to take a perturbative approach. We emphasize that the scale separation in the
diffusion coefficients means that there is no natural continuum limit for (3.1.9) that
can be recovered by sending the node separation to zero.

Periodicity Periodic patterns are frequently encountered when studying the be-
haviour of physical systems that have a discrete underlying spatial structure. Examples
include the presence of twinning microstructures in shape memory alloys [17] and the
formation of domain-wall microstructures in dielectric crystals [158].

At present, however, the mathematical analysis of such models has predominantly
focused on one-component systems. For example, the results in [39] cover the bistable
Nagumo LDE

u̇j = dj(uj+1 + uj−1 − 2uj) + g(uj ; aj) (3.1.9)

with spatially periodic coefficients (dj , aj) ∈ (0,∞)× (0, 1). Exploiting the comparison
principle, the authors were able to establish the existence of stable travelling wave so-
lutions. Similar results were obtained in [89] for monostable versions of (3.1.9).

Let us also mention the results in [65, 67, 100], where the authors consider chains
of alternating masses connected by identical springs (and vice versa). The dynamical
behaviour of such systems can be modelled by LDEs of Fermi–Pasta–Ulam type with
periodic coefficients. In certain limiting cases the authors were able to construct so-
called nanopterons, which are multicomponent wave solutions that have low-amplitude
oscillations in their tails.
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In the examples above, the underlying periodicity is built into the spatial system
itself. However, periodic patterns also arise naturally as solutions to spatially homoge-
neous discrete systems. As an example, systems of the form (3.1.9) with homogeneous
but negative diffusion coefficients dj = d < 0 have been used to describe phase tran-
sitions for grids of particles that have visco-elastic interactions [29, 30, 159]. Upon
introducing separate scalings for the odd and even lattice sites, this one-component
LDE can be turned into a 2-periodic system of the form

v̇j = de
(
wj + wj−1 − 2vj

)
− fe(vj),

ẇj = do
(
vj+1 + vj − 2wj

)
− fo(wj)

(3.1.10)

with positive coefficients de > 0 and do > 0. Systems of this type have been analyzed in
considerable detail in [26, 160], where the authors establish the co-existence of patterns
that can be both monostable and bistable in nature.

As a final example, let us mention that the LDE (3.1.9) with positive spatially ho-
mogeneous diffusion coefficients dj = d > 0 can admit many periodic equilibria [129].
In [106], the authors construct bichromatic travelling waves that connect spatially ho-
mogeneous rest-states with such 2-periodic equilibria. Such waves can actually travel
in parameter regimes where the standard monochromatic waves that connect zero to
one are trapped. This presents a secondary mechanism by which the stable states zero
and one can spread throughout the spatial domain.

Wave equations Returning to the 2-periodic FitzHugh-Nagumo LDE (3.1.1), we use
the travelling wave Ansatz

(u,w)j(t) =

(uo, wo)(j + ct) when j is odd,

(ue, we)(j + ct) when j is even,
(3.1.11)

illustrated in Figure 3.1(b), to arrive at the coupled system

cu′o(ξ) = 1
ε2

(
ue(ξ + 1) + ue(ξ − 1)− 2uo(ξ)

)
+ g(uo(ξ); ao)− wo(ξ),

cw′o(ξ) = ρo[uo(ξ)− γowo(ξ)],

cu′e(ξ) =
(
uo(ξ + 1) + uo(ξ − 1)− 2ue(ξ)

)
+ g(ue(ξ); ae)− we(ξ),

cw′e(ξ) = ρe[ue(ξ)− γewe(ξ)].

(3.1.12)

Multiplying the first line by ε2 and then taking ε ↓ 0, we obtain the direct relation

uo(ξ) = 1
2

[
ue(ξ + 1) + ue(ξ − 1)

]
, (3.1.13)

which can be substituted into the last two lines to yield

cu′e(ξ) = 1
2

(
ue(ξ + 2) + ue(ξ − 2)− 2ue(ξ)

)
+ g(ue(ξ); ae)− we(ξ),

cw′e(ξ) = ρe[ue(ξ)− γewe(ξ)].
(3.1.14)
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All the odd variables have been eliminated from this last equation, which, in fact,
describes pulse solutions to the spatially homogeneous FitzHugh-Nagumo LDE (3.1.7).
Plugging these pulses into the remaining equation, we arrive at

cw′o(ξ) + ρoγowo(ξ) = 1
2ρo
[
ue(ξ + 1) + ue(ξ − 1)

]
. (3.1.15)

This can be solved to yield the remaining second component of a singular pulse solution
that we denote by

U0 =
(
uo;0, wo;0, ue;0, we;0

)
. (3.1.16)

The main task in this paper is to construct stable travelling wave solutions to (3.1.1)
by continuing this singular pulse into the regime 0 < ε � 1. We use a functional an-
alytic approach to handle this singular perturbation, focusing on the linear operator
associated to the linearization of (3.1.12) with ε > 0 around the singular pulse. We
show that this operator inherits several crucial Fredholm properties that were estab-
lished in [109] for the linearization of (3.1.14) around the even pulse

(
ue;0, we;0

)
.

Our results are not limited to the two-component system (3.1.1). Indeed, we con-
sider general (n+k)-dimensional reaction diffusion systems with 2-periodic coefficients,
where n ≥ 1 is the number of components with a nonzero diffusion term and k ≥ 0 is
the number of components that do not diffuse. We can handle both travelling fronts
and travelling pulses, but do impose conditions on the end-states that are stronger than
the usual temporal stability requirements. Indeed, at times we will require (submatri-
ces of) the corresponding Jacobians to be negative definite instead of merely spectrally
stable. We emphasize that these distinctions disappear for scalar problems. In partic-
ular, our framework also covers the Nagumo LDE (3.1.9), but does not involve the use
of a comparison principle.

Spectral convergence The main inspiration for our approach is the spectral con-
vergence technique that was developed in [6] to establish the existence of travelling
wave solutions to the homogeneous Nagumo LDE1 (3.1.9) with diffusion coefficients
dj = 1/ε2 � 1. The linear operator

Lεv(ξ) = c0v
′(ξ)− 1

ε2

[
v(ξ + ε) + v(ξ − ε)− 2v(ξ)

]
− gu(u0(ξ); a)v(ξ) (3.1.17)

plays a crucial role in this approach, where the pair (c0, u0) is the travelling front
solution of the Nagumo PDE

ut = uxx + g(u; a). (3.1.18)

This front solutions satisfies the system

c0u
′
0(ξ) = u′′0(ξ) + g(u(ξ); a), u0(−∞) = 0, u0(+∞) = 1,

(3.1.19)

1The power of the results in [6] is that they also apply to variants of (3.1.9) with infinite-range
interactions. We describe their ideas here in a finite-range setting for notational clarity.
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to which we can associate the linear operator

[L0v](ξ) = c0v
′(ξ)− v′′(ξ)− gu

(
u(ξ); a

)
v(ξ), (3.1.20)

which can be interpreted as the formal ε ↓ 0 limit of (3.1.17). It is well-known that
L0 + δ : H2 → L2 is invertible for all δ > 0. By considering sequences

wj = (Lεj + δ)vj , ‖vj‖H1 = 1, εj → 0 (3.1.21)

that converge weakly to a pair

w0 = (L0 + δ)v0, (3.1.22)

the authors show that also Lε + δ : H1 → L2 is invertible. To this end one needs to
establish a lower bound for ‖w0‖L2 , which can be achieved by exploiting inequalities of
the form〈

v(·+ ε) + v(· − ε)− 2v(·), v(·)
〉
L2 ≤ 0, 〈v′, v〉L2 = 0 (3.1.23)

and using the bistable structure of the nonlinearity g.

In [150], we showed that these ideas can be generalized to infinite-range versions of
the FitzHugh-Nagumo LDE (3.1.7). The key issue there, which we must also face in
this paper, is that problematic cross terms arise that must be kept under control when
taking inner products. We are aided in this respect by the fact that the off-diagonal
terms in the linearisation of (3.1.1) are constant multiples of each other.

A second key complication that we encounter here is that the scale separation in
the diffusion terms prevents us from using the direct multicomponent analogue of the
inequality (3.1.23). We must carefully include ε-dependent weights into our inner prod-
ucts to compensate for these imbalances. This complicates the fixed-point argument
used to control the nonlinear terms during the construction of the travelling waves. In
fact, it forces us to take an additional spatial derivative of the travelling wave equations.

This latter situation was also encountered in [112–114], where the spectral conver-
gence method was used to construct travelling wave solutions to adaptive-grid discreti-
sations of the Nagumo PDE (3.1.18). Further applications of this technique can be
found in [111, 152], where full spatial-temporal discretisations of the Nagumo PDE
(3.1.18) and the FitzHugh-Nagumo PDE (3.1.4) are considered.

Overview After stating our main results in §3.2 we apply the spectral convergence
method discussed above to the system of travelling wave equations (3.1.12) in §3.3 and
§3.4. This allows us to follow the spirit of [6, Thm. 1] to establish the existence of
travelling waves in §3.5. In particular, we use a fixed point argument that mimics the
proof of the standard implicit function theorem.
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We follow the approach developed in [150] to analyze the spectral stability of these
travelling waves in §3.6. In particular, we recycle the spectral convergence argument to
analyze the linear operators Lε that arise after linearizing (3.1.12) around the newfound
waves, instead of around the singular pulse U0 defined in (3.1.16). The key complication
here is that for fixed small values of ε > 0 we need results on the invertibility of Lε +λ
for all λ in a half-strip. By contrast, the spectral convergence method gives a range
of admissible values for ε > 0 for each fixed λ. Switching between these two points of
view is a delicate task, but fortunately the main ideas from [150] can be transferred to
this setting.

The nonlinear stability of the travelling waves can be inferred from their spectral
stability in a relatively straightforward fashion by appealing to the theory developed in
[109] for discrete systems with finite range interactions. A more detailed description of
this procedure in an infinite-range setting can be found in §2.7-2.8.

3.2 Main results

Our main results concern the LDE

u̇j(t) = djD
[
uj+1(t) + uj−1(t)− 2uj(t)

]
+ fj

(
uj(t), wj(t)

)
,

ẇj(t) = gj
(
uj(t), wj(t)

)
,

(3.2.1)

posed on the one-dimensional lattice j ∈ Z, where we take uj ∈ Rn and wj ∈ Rk for
some pair of integers n ≥ 1 and k ≥ 0. We assume that the system is 2-periodic in the
sense that there exists a set of four nonlinearities

fo : Rn+k → Rn, fe : Rn+k → Rn, go : Rn+k → Rk, ge : Rn+k → Rk
(3.2.2)

for which we may write

(dj , fj , gj) =

{
(ε−2, fo, go) for odd j,

(1, fe, ge) for even j.
(3.2.3)

Introducing the shorthand notation

Fo(u,w) =
(
fo(u,w), go(u,w)

)
, Fe(u,w) =

(
fe(u,w), ge(u,w)

)
, (3.2.4)

we impose the following structural condition on our system that concerns the roots of
the nonlinearities Fo and Fe. These roots correspond with temporal equilibria of (3.2.1)
that have a spatially homogeneous u-component. On the other hand, the w-component
of these equilibria is allowed to be 2-periodic.

Assumption (HN1). The matrix D ∈ Rn×n is a diagonal matrix with strictly positive
diagonal entries. In addition, the nonlinearities Fo and Fe are C3-smooth and there
exist four vectors

U±e = (u±e , w
±
e ) ∈ Rn+k, U±o = (u±o , w

±
o ) ∈ Rn+k, (3.2.5)
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for which we have the identities u−o = u−e and u+
o = u+

e , together with

Fo(U
±
o ) = Fe(U

±
e ) = 0. (3.2.6)

We emphasize that any subset of the four vectors U±o and U±e is allowed to be
identical. In order to address the temporal stability of these equilibria, we introduce
two separate auxiliary conditions on triplets(

G,U−, U+
)
∈ C1

(
Rn+k;Rn+k

)
× Rn+k × Rn+k, (3.2.7)

which are both stronger2 than the requirement that all the eigenvalues of DG(U±) have
strictly negative real parts. As can be seen, the block structure of this matrix plays an
important role in (hβ), which is why we have chosen to state our results for arbitrary
values of n ≥ 1 and k ≥ 0.

Assumption (hα). The matrices −DG(U−) and −DG(U+) are positive definite.

Assumption (hβ). For any U ∈ Rn+k, write DG(U) in the block form

DG(U) =

(
G1,1(U) G1,2(U)
G2,1(U) G2,2(U)

)
(3.2.8)

with G1,1(U) ∈ Rn×n. Then the matrices −G1,1(U−),−G1,1(U+),−G2,2(U−) and
−G2,2(U+) are positive definite. In addition, there exists a constant Γ > 0 so that
G1,2(U) = −ΓG2,1(U)T holds for all U ∈ Rn×k.

As an illustration, we pick 0 < a < 1 and write

Gngm(u) = u(1− u)(u− a) (3.2.9)

for the nonlinearity associated with the Nagumo equation, together with

Gfhn;ρ,γ(u,w) =

(
u(1− u)(u− a)− w

ρ
[
u− γw

] )
(3.2.10)

for its counterpart corresponding to the FitzHugh-Nagumo system. It can be easily
verified that the triplet (Gngm, 0, 1) satisfies (hα), while the triplet (Gfhn;ρ,γ , 0, 0) sat-
isfies (hβ) for ρ > 0 and γ > 0 with Γ = ρ−1. When a > 0 is sufficiently small, the
Jacobian DGfhn;ρ,γ(0, 0) has a pair of complex eigenvalues with negative real part. In
this case (hα) may fail to hold.

The following assumption states that the even and odd subsystems must both satisfy
one of the two auxiliary conditions above. We emphasize, however, that this does not
necessarily need to be the same condition for both systems.

Assumption (HN2). The triplet (Fo, U
−
o , U

+
o ) satisfies either (hα) or (hβ). The same

holds for the triplet (Fe, U
−
e , U

+
e ).

2See the proof of Lemma 3.4.6 for details.
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We intend to find functions

(uε, wε) : R→ `∞(Z;Rn)× `∞(Z;Rk) (3.2.11)

that take the form

(uε, wε)j(t) =

(uo;ε, wo;ε)(j + cεt), for odd j

(ue;ε, we;ε)(j + cεt) for even j
(3.2.12)

and satisfy (3.2.1) for all t ∈ R. The waveprofiles are required to be C1-smooth and
satisfy the limits

limξ→±∞
(
uo(ξ), wo(ξ)

)
= (u±o , w

±
o ), limξ→±∞

(
ue(ξ), we(ξ)

)
= (u±e , w

±
e ).

(3.2.13)
Substituting the travelling wave Ansatz (3.2.12) into the LDE (3.2.1) yields the coupled
system

cεu
′
o;ε(ξ) = 1

ε2D∆mix[uo;ε, ue;ε](ξ) + fo
(
uo;ε(ξ), wo;ε(ξ)

)
,

cεw
′
o;ε(ξ) = go

(
uo;ε(ξ), wo;ε(ξ)

)
,

cεu
′
e;ε(ξ) = D∆mix[ue;ε, uo;ε](ξ) + fe

(
ue;ε(ξ), we;ε(ξ)

)
,

cεw
′
e;ε(ξ) = ge

(
ue;ε(ξ), we;ε(ξ)

)
,

(3.2.14)

in which we have introduced the shorthand

∆mix[φ, ψ](ξ) = ψ(ξ + 1) + ψ(ξ − 1)− 2φ(ξ). (3.2.15)

Multiplying the first line of (3.2.14) by ε2 and taking the formal limit ε ↓ 0, we
obtain the identity

0 = D∆mix[uo;0, ue;0](ξ), (3.2.16)

which can be explicitly solved to yield

uo;0(ξ) = 1
2ue;0(ξ + 1) + 1

2ue;0(ξ − 1). (3.2.17)

In the ε ↓ 0 limit, the even subsystem of (3.2.14) hence decouples and becomes

c0u
′
e;0(ξ) = 1

2D
[
ue;0(ξ + 2) + ue;0(ξ − 2)− 2ue;0(ξ)

]
+ fe

(
ue;0(ξ), we;0(ξ)

)
,

c0w
′
e;0(ξ) = ge

(
ue;0(ξ), we;0(ξ)

)
.

(3.2.18)
We require this limiting even system to have a travelling wave solution that connects
U−e to U+

e .

Assumption (HW1). There exists c0 6= 0 for which the system (3.2.18) has a C1-
smooth solution Ue;0 = (ue;0, we;0) that satisfies the limits

limξ→±∞
(
ue;0(ξ), we;0(ξ)

)
= (u±e , w

±
e ). (3.2.19)
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Finally, taking ε ↓ 0 in the second line of (3.2.14) and applying (3.2.17), we obtain
the identity

c0w
′
o;0(ξ) = go

(
1
2ue;0(ξ + 1) + 1

2ue;0(ξ − 1), wo;0(ξ)
)
, (3.2.20)

in which wo;0 is the only remaining unknown. We impose the following compatibility
condition on this system.

Assumption (HW2). Equation (3.2.20) has a C1-smooth solution wo;0 that satisfies
the limits

limξ→±∞ wo;0(ξ) = w±o . (3.2.21)

Upon writing

U0 = (Uo;0, Ue;0) = (uo;0, wo;0, ue;0, we;0), (3.2.22)

we intend to seek a branch of solutions to (3.2.14) that bifurcates off the singular
travelling wave (U0, c0). In view of the limits

lim
ξ→±∞

(Uo;0, Ue;0)(ξ) = (U±o , U
±
e ), (3.2.23)

we introduce the spaces

H1
e = H1

o = H1(R;Rn)×H1(R;Rk),

L2
e = L2

o = L2(R;Rn)× L2(R;Rk)
(3.2.24)

to analyze the perturbations from U0. The subscripts e and o in the spaces above are
used solely for notational convenience.

Linearizing (3.2.18) around the solution Ue;0, we obtain the linear operator Le :
H1
e → L2

e that acts as

Le = c0
d
dξ −DFe(Ue;0)− 1

2

(
D(S2 − 2) 0

0 0

)
, (3.2.25)

in which we have introduced the notation

[S2φ](ξ) = φ(ξ + 2) + φ(ξ − 2). (3.2.26)

Our perturbation argument to construct solutions of (3.2.14) requires Le to have an
isolated simple eigenvalue at the origin.

Assumption (HS1). There exists δe > 0 so that the operator Le + δ is a Fredholm
operator with index 0 for each 0 ≤ δ < δe. It has a simple eigenvalue in δ = 0, i.e., we

have Ker
(
Le
)

= span(U
′
e;0) and U

′
e;0 /∈ Range

(
Le
)
.

We are now ready to formulate our first main result, which states that (3.2.14)
admits a branch of solutions for small ε > 0 that converges to the singular wave (U0, c0)
as ε ↓ 0. Notice that the ε-scalings on the norms of Φ′ε and Φ′′ε are considerably better
than those suggested by a direct inspection of (3.2.14).
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Theorem 3.2.1 (See §3.5). Assume that (HN1), (HN2), (HW1), (HW2) and (HS1)
are satisfied. There exists a constant ε∗ > 0 so that for each 0 < ε < ε∗, there exist
cε ∈ R and Φε = (Φo;ε,Φe;ε) ∈ H1

o ×H1
e for which the function

Uε = U0 + Φε (3.2.27)

is a solution of the travelling wave system (3.2.14) with wave speed c = cε. In addition,
we have the limit

limε↓0

[
‖εΦ′′o;ε‖L2

o
+ ‖Φ′′e;ε‖L2

e
+ ‖Φ′ε‖L2

o×L2
e

+ ‖Φε‖L2
o×L2

e
+ |cε − c0|

]
= 0

(3.2.28)
and the function Uε is locally unique up to translation.

In order to show that our newfound travelling wave solution is stable under the flow
of the LDE (3.2.1), we need to impose the following extra assumption on the operator
Le. To understand the restriction on λ, we recall that the spectrum of Le admits the
periodicity λ 7→ λ+ 2πic0.

Assumption (HS2). There exists a constant λe > 0 so that the operator Le + λ :
H1
e → L2

e is invertible for all λ ∈ C \ 2πic0Z that have Reλ ≥ −λe.

Together with (HS1) this condition states that the wave (Ue;0, c0) for the limiting
even system (3.2.18) is spectrally stable. Our second main theorem shows that this can
be generalized to a nonlinear stability result for the wave solutions (3.2.12) of the full
system (3.2.1).

Theorem 3.2.2 (see §3.6). Assume that (HN1), (HN2), (HW1), (HW2), (HS1) and
(HS2) are satisfied and pick a sufficiently small ε > 0. Then there exist constants δ > 0,
C > 0 and β > 0 so that for all 1 ≤ p ≤ ∞ and all initial conditions

(u0, w0) ∈ `p(Z;Rn)× `p(Z;Rk) (3.2.29)

that admit the bound

E0 := ‖u0 − uε(0)‖`p(Z;Rn) + ‖w0 − wε(0)‖`p(Z;Rk) < δ, (3.2.30)

there exists an asymptotic phase shift θ̃ ∈ R such that the solution (u,w) of (3.2.1) with
the initial condition (u,w)(0) = (u0, w0) satisfies the estimate

‖u(t)− uε(t+ θ̃)‖`p(Z;Rn) + ‖w(t)− wε(t+ θ̃)‖`p(Z;Rk) ≤ Ce−βtE0 (3.2.31)

for all t > 0.

Our final result shows that our framework is broad enough to cover the two-periodic
FitzHugh-Nagumo system (3.1.1). We remark that the condition on γe ensures that
(0, 0) is the only spatially homogeneous equilibrium for the limiting even subsystem
(3.1.14). This allows us to apply the spatially homogeneous results obtained in [108,
109].
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Corollary 3.2.3. Consider the LDE (3.1.1) and suppose that γo > 0 and ρo > 0 both
hold. Suppose, furthermore, that ae is sufficiently far away from 1

2 , that 0 < γe <
4(1 − ae)

−2 and that ρe > 0 is sufficiently small. Then for each sufficiently small
ε > 0, there exists a nonlinearly stable travelling pulse solution of the form (3.2.12)
that satisfies the limits

limξ→±∞
(
uo(ξ), wo(ξ)

)
= (0, 0), limξ→±∞

(
ue(ξ), we(ξ)

)
= (0, 0).

(3.2.32)

Proof. Assumption (HN1) can be verified directly, while (HN2) follows from the discus-
sion above concerning the nonlinearity Gfhn;ρ,γ defined in (3.2.10). Assumption (HW1)
follows from the existence theory developed in [108], while (HS1) and (HS2) follow from
the spectral analysis in [109]. The remaining condition (HW2) can be verified by noting
that the nonlinearity go is, in fact, linear and invertible with respect to wo;0 on account
of Lemma 3.3.5 below.

3.3 The limiting system

In this section we analyze the linear operator that is associated to the limiting system
that arises by combining (3.2.18) and (3.2.20). In order to rewrite this system in a
compact fashion, we introduce the notation

[Siφ](ξ) = φ(ξ + i) + φ(ξ − i) (3.3.1)

together with the (n+ k)× (n+ k)-matrix JD that has the block structure

JD =

(
D 0
0 0

)
. (3.3.2)

This allows us to recast (3.2.25) in the shortened form

Le = c0
d
dξ −

1
2JD(S2 − 2)−DFe(Ue;0). (3.3.3)

One can associate a formal adjoint L
adj

e : H1
e → L2

e to this operator by writing

L
adj

e = −c0 d
dξ −

1
2JD(S2 − 2)−DFe(Ue;0)T . (3.3.4)

Assumption (HS1), together with the Fredholm theory developed in [130], implies
that

ind(Le) = −ind(L
adj

e ) (3.3.5)

holds for the Fredholm indices of these operators, which are defined as

ind(L) = dim
(
ker(L)

)
− codim

(
Range(L)

)
. (3.3.6)

In particular, (HS1) implies that there exists a function

Φ
adj

e;0 ∈ Ker(L
adj

e ) ⊂ H1
e (3.3.7)
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that can be normalized to have

〈U ′e;0,Φ
adj

e;0 〉L2
e

= 1. (3.3.8)

We also introduce the operator Lo : H1(R;Rk) → L2(R;Rk) associated to the
linearization of (3.2.20) around Uo;0, which acts as

Lo = c0
d
dξ −D2go(Uo;0). (3.3.9)

Here we introduced the notation D2go to refer to the k× k Jacobian of go with respect
to the final k entries. In order to couple the operator Lo with Le, we introduce the
spaces

H1
� = H1(R;Rk)×H1

e, L2
� = L2(R;Rk)× L2

e, (3.3.10)

together with the operator
L�;δ : H1

� → L2
� (3.3.11)

that acts as

L�;δ =

(
Lo + δ 0

0 Le + δ

)
. (3.3.12)

Our first main result shows that L�;δ inherits several properties of Le + δ.

Proposition 3.3.1. Assume that (HN1), (HN2), (HW1), (HW2) and (HS1) are sat-
isfied. Then there exist constants δ� > 0 and C� > 0 so that the following holds true:

(i) For every 0 < δ < δ�, the operator L�,δ is invertible as a map from H1
� to L2

�.

(ii) For any Θ� ∈ L2
� and 0 < δ < δ� the function Φ� = L−1

�,δΘ� ∈ H1
� satisfies the

bound
‖Φ�‖H1

�
≤ C�

[
‖Θ�‖L2

�
+ 1

δ

∣∣〈Θ�, (0,Φadj

e;0 )〉L2
�

∣∣]. (3.3.13)

If (HS2) also holds, then we can consider compact sets λ ∈ M ⊂ C that avoid the
spectrum of Le. To formalize this, we impose the following assumption on M and state
our second main result.

Assumption (hMλ0
). The set M ⊂ C is compact with 2πic0Z∩M = ∅. In addition,

we have Reλ ≥ −λ0 for all λ ∈M .

Proposition 3.3.2. Assume that (HN1), (HN2), (HW1), (HW2), (HS1) and (HS2)
are all satisfied and pick a sufficiently small constant λ� > 0. Then for any set M ⊂ C
that satisfies (hMλ0

) for λ0 = λ� there exists a constant C�;M > 0 so that the following
holds true:

(i) For every λ ∈M , the operator L�,λ is invertible as a map from H1
� to L2

�.

(ii) For any Θ� ∈ L2
� and λ ∈M , the function Φ� = L−1

�,λΘ� ∈ H1
� satisfies the bound

‖Φ�‖H1
�
≤ C�;M‖Θ�‖L2

�
. (3.3.14)
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3.3.1 Properties of Lo

The assumptions (HS1) and (HS2) already contain the information on Le that we
require to establish Propositions 3.3.1 and 3.3.2. Our task here is, therefore, to under-
stand the operator Lo. As a preparation, we show that the top-left and bottom-right
corners of the limiting Jacobians DFo(U

±
o ) are both negative definite, which will help

us to establish useful Fredholm properties.

Lemma 3.3.3. Assume that (HN1) and (HN2) are both satisfied. Then the matrices
D1f#(U±# ) and D2g#(U±# ) are all negative definite for each # ∈ {o, e}.

Proof. Note first that D1f# and D2g# correspond with G1,1, respectively, G2;2 in
the block structure (3.2.8) for DF#. We hence see that the matrices D1f#(U±# ) and

D2g#(U±# ) are negative definite, either directly by (hβ) or by the fact that they are

principal submatrices of DF#(U±# ), which are negative definite if (hα) holds.

Lemma 3.3.4. Assume that (HN1), (HN2), (HW1) and (HW2) are satisfied. Then
there exists λo > 0 so that the operator Lo + λ is Fredholm with index zero for each
λ ∈ C with Reλ ≥ −λo.

Proof. For any 0 ≤ ρ ≤ 1 and λ ∈ C we introduce the constant coefficient linear
operator Lρ,λ : H1(R;Rk)→ L2(R;Rk) that acts as

Lρ,λ = c0
d
dξ − ρD2go(U

−
o )− (1− ρ)D2go(U

+
o ) + λ (3.3.15)

and has the characteristic function

∆Lρ,λ(z) = c0z − ρD2go(U
−
o )− (1− ρ)D2go(U

+
o ) + λ. (3.3.16)

Upon introducing the matrix

Bρ = −ρD2go(U
−
o )− (1− ρ)D2go(U

+
o )− ρD2go(U

−
o )T − (1− ρ)D2go(U

+
o )T ,
(3.3.17)

which is positive definite by Lemma 3.3.3, we pick λo > 0 in such a way that Bρ − 2λo
remains positive definite for each 0 ≤ ρ ≤ 1. It is easy to check that the identity

∆Lρ,λ(iy) + ∆Lρ,λ(iy)† = Bρ + 2Reλ (3.3.18)

holds for any y ∈ R. Here we use the symbol † for the conjugate transpose matrix. In
particular, if we assume that Reλ ≥ −λo and that ∆Lρ,λ(iy)vo = 0 for some nonzero

vo ∈ Ck, y ∈ R and 0 ≤ ρ ≤ 1, then we obtain the contradiction

0 = Re
[
v†o
[
∆Lρ(iy) + ∆Lρ(iy)†

]
vo
]

= Re v†o
[
Bρ + 2Reλ

]
vo

> 0.

(3.3.19)

Using [130, Thm. A] together with the spectral flow principle in [130, Thm. C], this
implies that Lo + λ is a Fredholm operator with index zero.
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Lemma 3.3.5. Assume that (HN1), (HN2), (HW1) and (HW2) are satisfied and pick
a sufficiently small constant λo > 0. Then for any λ ∈ C with Reλ ≥ −λo the operator
Lo + λ is invertible as a map from H1(R;Rk) into L2(R;Rk). In addition, for each
compact set

M ⊂ {λ : Reλ ≥ −λo} ⊂ C (3.3.20)

there exists a constant KM > 0 so that the uniform bound

‖
[
Lo + λ]−1χo‖H1(R;Rk) ≤ KM‖χo‖L2(R;Rk) (3.3.21)

holds for any χo ∈ L2(R;Rk) and any λ ∈M .

Proof. Recall the constant λo defined in Lemma 3.3.4 and pick any λ ∈ C with
Reλ ≥ −λo. On account of Lemma 3.3.4 it suffices to show that Lo + λ is injective.
Consider therefore any nontrivial ψ ∈ Ker

(
Lo + λ

)
, which necessarily satisfies the

ordinary differential equation (ODE)3

ψ′(ξ) = 1
c0
D2go

(
Uo;0(ξ)

)
ψ(ξ)− λ

c0
ψ(ξ) (3.3.22)

posed on Ck. Without loss of generality we may assume that c0 > 0.

Since Uo;0(ξ)→ U±o as ξ → ±∞, Lemma 3.3.3 allows us to pick a constant m� 1
in such a way that the matrix −D2go

(
Uo;0(ξ)

)
−2λo is positive definite for each |ξ| ≥ m,

possibly after decreasing the size of λo > 0. Assuming that Reλ ≥ −λo and picking
any ξ ≤ −m, we may hence compute

d
dξ |ψ(ξ)|2 = 2Re〈ψ′(ξ), ψ(ξ)〉Ck

= 2
c0

Re〈D2go
(
Uo;0(ξ)

)
ψ(ξ), ψ(ξ)〉Ck − 2Reλ

c0
〈ψ(ξ), ψ(ξ)〉Ck

≤ − 2λo
c0
|ψ(ξ)|2,

(3.3.23)

which implies that (
e

2λo
c0

ξ|ψ(ξ)|2
)′
≤ 0. (3.3.24)

Since ψ cannot vanish anywhere as a nontrivial solution to a linear ODE, we have

|ψ(ξ)|2 ≥ e−
2λo
c0

(m+ξ)|ψ(−m)|2 > 0 (3.3.25)

for ξ ≤ −m, which means that ψ(ξ) is unbounded. In particular, we see that ψ /∈
H1(R;Rk), which leads to the desired contradiction. The uniform bound (3.3.21) fol-
lows easily from continuity considerations.

Proof of Proposition 3.3.1. Since the operator Le defined in (3.2.25) has a simple
eigenvalue in zero, we can follow the approach of [150, Lem. 3.1(5)] to pick two constants
δ� > 0 and C > 0 in such a way that Le + δ : H1

e → L2
e is invertible with the bound

‖
[
Le + δ]−1(θe, χe)‖H1

e
≤ C

[
‖(θe, χe)‖L2

e
+ 1

δ

∣∣〈(θe, χe),Φadj

e;0 〉L2
e

∣∣]. (3.3.26)

3The discussion at https://math.stackexchange.com/questions/2668795/bounded-solution-to-
general-nonautonomous-ode gave us the inspiration for this approach.
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for any 0 < δ < δ� and (θe, χe) ∈ L2
e. Combining this estimate with Lemma 3.3.5

directly yields the desired properties.

Proof of Proposition 3.3.2. These properties can be established in a fashion analo-
gous to the proof of Proposition 3.3.1.

3.4 Transfer of Fredholm properties

Our goal in this section is to lift the bounds obtained in §3.3 to the operators associated
to the linearization of the full wave equation (3.2.14) around suitable functions. In
particular, the arguments we develop here will be used in several different settings. In
order to accommodate this, we introduce the following condition.

Assumption (hFam). For each ε > 0 there is a function Ũε = (Ũo;ε, Ũe;ε) ∈ H1
o×H1

e

and a constant c̃ε 6= 0 such that Ũε − U0 → 0 in H1
o ×H1

e and c̃ε → c0 as ε ↓ 0. In
addition, there exists a constant K̃fam > 0 so that

|c̃ε|+ |c̃−1
ε |+

∥∥∥Ũε∥∥∥
∞
≤ K̃fam (3.4.1)

holds for all ε > 0.

In §3.5 we will pick Ũε = U0 and c̃ε = c0 in (hFam) for all ε > 0. On the other
hand, in §3.6 we will use the travelling wave solutions described in Theorem 3.2.1 to
write Ũε = Uε and c̃ε = cε. We remark that (3.4.1) implies that there exists a constant
K̃F > 0 for which the bound

‖DFo(Ũo;ε)‖∞ + ‖D2Fo(Ũo;ε)‖∞ + ‖DFe(Ũe;ε)‖∞ + ‖D2Fe(Ũe;ε)‖∞ ≤ K̃F

(3.4.2)
holds for all ε > 0.

For notational convenience, we introduce the product spaces

H1 = H1
o ×H1

e, L2 = L2
o × L2

e. (3.4.3)

Since we will need to consider complex-valued functions during our spectral analysis,
we also introduce the spaces

L2
C = {Φ + iΨ : Φ,Ψ ∈ L2},

H1
C = {Φ + iΨ : Φ,Ψ ∈ H1}

(3.4.4)

and remark that any L ∈ L(H1; L2) can be interpreted as an operator in L(H1
C; L2

C)
by writing

L(Φ + iΨ) = LΦ + iLΨ. (3.4.5)

It is well-known that taking the complexification of an operator preserves injectivity,
invertibility and other Fredholm properties.
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Recall the family (Ũε, c̃ε) introduced in (hFam). For any ε > 0 and λ ∈ C we
introduce the linear operator

L̃ε,λ : H1
C → L2

C (3.4.6)

that acts as

L̃ε,λ =

(
c̃ε

d
dξ + 2

ε2 JD −DFo(Ũo;ε) + λ − 1
ε2 JDS1

−JDS1 c̃ε
d
dξ + 2JD −DFe(Ũe;ε) + λ

)
.

(3.4.7)
In order to simplify our notation, we introduce the (2n2 + k)× (2n+ 2k) diagonal

matrices
M1

ε = diag
(
ε, 1, 1, 1

)
,

M2
ε = diag

(
1, ε, 1, 1

)
,

M1,2
ε = diag

(
ε, ε, 1, 1

)
.

(3.4.8)

In addition, we recall the sum S1 defined in (3.3.1) and introduce the operator

Jmix =

(
−2JD JDS1

JDS1 −2JD

)
, (3.4.9)

which allows us to restate (3.4.7) as

L̃ε,λ = c̃ε
d
dξ −M

1
1/ε2Jmix −DF (Ũε) + λ. (3.4.10)

Our two main results generalize the bounds in Proposition 3.3.1 and Proposition 3.3.2
to the current setting. The scalings on the odd variables allow us to obtain certain key
estimates that are required by the spectral convergence approach.

Proposition 3.4.1. Assume that (hFam), (HN1), (HN2), (HW1), (HW2) and (HS1)
are satisfied. Then there exist positive constants C0 > 0 and δ0 > 0 together with a
strictly positive function ε0 : (0, δ0) → R>0, so that for each 0 < δ < δ0 and 0 < ε <
ε0(δ) the operator L̃ε,δ is invertible and satisfies the bound

‖M1,2
ε Φ‖H1 ≤ C0

[
‖M1,2

ε Θ‖L2 + 1
δ

∣∣〈Θ, (0,Φadj

e;0 )〉L2

∣∣] (3.4.11)

for any Φ ∈ H1 and Θ = L̃ε,δΦ.

Proposition 3.4.2. Assume that (hFam), (HN1), (HN2), (HW1), (HW2), (HS1) and
(HS2) are all satisfied and pick a sufficiently small constant λ0 > 0. Then for any set
M ⊂ C that satisfies (hMλ0

), there exist positive constants CM > 0 and εM > 0 so that
for each λ ∈M and 0 < ε < εM the operator L̃ε,λ is invertible and satisfies the bound

‖Φ‖H1
C
≤ CM‖Θ‖L2

C
(3.4.12)

for any Φ ∈ H1
C and Θ = L̃ε,λΦ.

By using bootstrapping techniques it is possible to obtain variants of the estimate
in Proposition 3.4.1. Indeed, it is possible to remove the scaling on the first component
of Φ (but not on the first component of Φ′).
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Corollary 3.4.3. Consider the setting of Proposition 3.4.1. Then for each 0 < δ < δ0
and 0 < ε < ε0(δ), the operator L̃ε,δ satisfies the bound

‖M1,2
ε Φ′‖L2 + ‖M2

εΦ‖L2 ≤ C0

[
‖M1,2

ε Θ‖L2 + 1
δ

∣∣〈Θ, (0,Φadj

e;0 )〉L2

∣∣] (3.4.13)

for any Φ ∈ H1 and Θ = L̃ε,δΦ, possibly after increasing C0 > 0.

Proof. Write Φ = (φo, ψo, φe, ψe) and Θ = (θo, χo, θe, χe). Note that the first
component of the equation Θ = L̃ε,δΦ yields

2Dφo = DS1φe − ε2c̃εφ
′
o + ε2D1fo(Ũo;ε)φo + ε2D2fo(Ũo;ε)ψo − δε2φo + ε2θo.

(3.4.14)
Recall the constants K̃fam and K̃F from (3.4.1) and (3.4.2), respectively, and write

dmin = min1≤i≤nDi,i, dmax = max1≤i≤nDi,i. (3.4.15)

We can now estimate

2dmin‖φo‖L2(R;Rn) ≤ 2‖Dφo‖L2(R;Rn)

≤ ‖DS1φe‖L2(R;Rn) + ε|c̃ε|‖εφ′o‖L2(R;Rn)

+ε‖D1fo(Uo;ε)‖∞‖εφo‖L2(R;Rn)

+ε‖D2fo(Uo;ε)‖∞‖εψo‖L2(R;Rk)

+εδ‖εφo‖L2(R;Rn) + ε‖εθo‖L2(R;Rn)

≤
[
2dmax + ε(K̃fam + 2K̃F + δ0)

] ∥∥M1,2
ε Φ

∥∥
H1 + ε‖M1,2

ε Θ‖.

(3.4.16)
The desired bound hence follows directly from Proposition 3.4.1.

The scaling on the second components of Φ and Φ′ can be removed in a similar
fashion. However, in this case one also needs to remove the corresponding scaling on
Θ.

Corollary 3.4.4. Consider the setting of Proposition 3.4.1. Then for each 0 < δ < δ0
and 0 < ε < ε0(δ), the operator L̃ε,δ satisfies the bound

‖M1
εΦ
′‖L2 + ‖Φ‖L2 ≤ C0

[
‖M1

εΘ‖L2 + 1
δ

∣∣〈Θ, (0,Φadj

e;0 )〉L2

∣∣] (3.4.17)

for any Φ ∈ H1 and Θ = L̃ε,δΦ, possibly after increasing C0 > 0.

Proof. Writing Φo = (φo, ψo) and Θo = (θo, χo), we can inspect the definitions
(3.4.7) and (3.3.12) to obtain

(Lo + δ)ψo = D1go(Ũo;ε)φo + χo. (3.4.18)

Using Lemma 3.3.5 we hence obtain the estimate

‖ψo‖H1(R;Rk) ≤ C ′1

[
‖D1go(Ũo;ε)‖∞‖φo‖L2(R;Rn) + ‖χo‖L2(R;Rk)

]
(3.4.19)
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for some C ′1 > 0. Combining this with (3.4.13) yields the desired bound (3.4.17).

Our final result here provides information on the second derivatives of Φ, in the
setting where Θ is differentiable. In particular, we introduce the spaces

H2
o = H2

e = H2(R;Rn)×H2(R;Rk), H2 = H2
o ×H2

e. (3.4.20)

We remark here that we have chosen to keep the scalings on the second components
of Φ′′ and Θ′ because this will be convenient in §3.5. Note also that the stated bound
on ‖Φ‖H1 can actually be obtained by treating L̃ε,δ as a regular perturbation of L�,δ.
The point here is that we gain an order of regularity, which is crucial for the nonlinear
estimates.

Corollary 3.4.5. Consider the setting of Proposition 3.4.1 and assume furthermore
that ‖Ũ ′ε‖∞ is uniformly bounded for ε > 0. Then for each 0 < δ < δ0 and any
0 < ε < ε0(δ), the operator L̃ε,δ : H2 → H1 is invertible and satisfies the bound

‖M1,2
ε Φ′′‖L2 + ‖Φ‖H1 ≤ C0

[
‖M1

εΘ‖L2 + ‖M1,2
ε Θ′‖L2 + 1

δ

∣∣〈Θ, (0,Φadj

e;0 )〉L2

∣∣]
(3.4.21)

for any Φ ∈ H2 and Θ = L̃ε,δΦ, possibly after increasing C0 > 0.

Proof. Pick two constants 0 < δ < δ0 and 0 < ε < ε0(δ) together with a function
Φ = (Φo,Φe) ∈ H1 and write Θ = L̃ε,δΦ ∈ L2. If in fact Φ ∈ H2, then a direct
differentiation shows that

Θ′ = L̃ε,δΦ′ −D2F
(
Ũε
)[
Ũ ′ε,Φ

]
, (3.4.22)

which due to the boundedness of Φ implies that Θ ∈ H1. In particular, L̃ε,δ maps H2

into H1. Reversely, suppose that we know that Θ ∈ H1. Rewriting (3.4.22) yields

c̃εΦ
′′ = Θ′ − δΦ′ +M1

1/ε2JmixΦ′ +DF (Ũε)Φ
′ +D2F (Ũε)

[
Ũ ′ε,Φ

]
. (3.4.23)

Since Φ is bounded, this allows us to conclude that Φ ∈ H2. On account of Proposition
3.4.1 we hence see that L̃ε,δ is invertible as a map from H2 to H1.

Fixing δref = 1
2δ0, a short computation shows that

L̃ε,δref
Φ′ = Θ′ +D2F [Ũ ′ε,Φ] + (δref − δ)Φ′. (3.4.24)

By (3.4.17) we obtain the bound

‖M1
εΦ
′‖L2 + ‖Φ‖L2 ≤ C0

[
‖M1

εΘ‖L2 + 1
δ

∣∣〈Θ, (0,Φadj

e;0 )〉L2

∣∣]. (3.4.25)

On the other hand, (3.4.13) yields the estimate

‖M1,2
ε Φ′′‖L2 + ‖M2

εΦ
′‖L2 ≤ C0

[
‖M1,2

ε Θ′‖L2 + ‖M1,2
ε D2F [Ũ ′ε,Φ]‖L2

+‖M1,2
ε (δref − δ)Φ′‖L2

]
+ C0

δref

∣∣∣〈Θ′ −D2F (Ũε)[Ũ
′
ε,Φ]

−(δref − δ)Φ′, (0,Φ
adj

e;0 )〉L2

∣∣∣.
(3.4.26)



3.4. TRANSFER OF FREDHOLM PROPERTIES 153

Since Ũε and Ũ ′ε are uniformly bounded by assumption, we readily see that

‖M1,2
ε D2F (Ũε)[Ũ

′
ε,Φ]‖L2 ≤ ‖D2F (Ũε)[Ũ

′
ε,Φ]‖L2 ≤ C ′1‖Φ‖L2 (3.4.27)

for some C ′1 > 0. In particular, we find

‖M1,2
ε Φ′′‖L2 + ‖M2

εΦ
′‖L2 ≤ C ′2

[
‖M1,2

ε Θ′‖L2 + ‖Φ‖L2 + ‖M1,2
ε Φ′‖L2

+‖Θ′e‖L2
e

+ ‖Φ′e‖L2
e

] (3.4.28)

for some C ′2 > 0. Exploiting the estimates

‖Φ′e‖L2
e
≤ ‖M1,2

ε Φ′‖L2 ≤ ‖M1
εΦ
′‖L2 , ‖Θ′e‖L2

e
≤ ‖M1,2

ε Θ′‖L2 ,
(3.4.29)

together with

‖Φ′‖L2 ≤
∥∥M1

εΦ
′
∥∥
L2 +

∥∥M2
εΦ
′
∥∥
L2 , (3.4.30)

the bounds (3.4.25) and (3.4.28) can be combined to arrive at the desired inequality
(3.4.21).

3.4.1 Strategy

In this subsection we outline our broad strategy to establish Proposition 3.4.1 and
Proposition 3.4.2. As a first step, we compute the Fredholm index of the operators
L̃ε,λ for λ in a right half-plane that includes the imaginary axis.

Lemma 3.4.6. Assume that (hFam), (HN1), (HN2), (HW1) and (HW2) are satisfied.
Then there exists a constant λ0 > 0 so that the operators L̃ε,λ are Fredholm with index
zero whenever Reλ ≥ −λ0 and ε > 0.

Proof. Upon writing

F
(1)
o;ρ = ρDFo(U

−
o ) + (1− ρ)DFo(U

+
o ),

F
(1)
e;ρ = ρDFe(U

−
e ) + (1− ρ)DFe(U

+
e )

(3.4.31)

for any 0 ≤ ρ ≤ 1, we introduce the constant coefficient operator Lρ;ε,λ : H1
C → L2

C
that acts as

Lρ;ε,λ =

(
c̃ε

d
dξ + 2

ε2 JD − F
(1)
o;ρ + λ − 1

ε2 JDS1

−JDS1 c̃ε
d
dξ + 2JD − F (1)

e;ρ + λ

)
(3.4.32)

and has the associated characteristic function

∆Lρ;ε,λ(z) =

 c̃εz + 2
ε2 JD − F

(1)
o;ρ + λ − 1

ε2 JD

[
ez + e−z

]
−JD

[
ez + e−z

]
c̃εz + 2JD − F (1)

e;ρ + λ

 . (3.4.33)
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Upon writing

F
(1)
ρ =

(
F

(1)
o;ρ 0

0 F
(1)
e;ρ

)
, (3.4.34)

together with

A(y) =

(
JD −JD cos(y)
−JD cos(y) JD

)
, (3.4.35)

we see that

M1,2
ε2 ∆Lρ;ε,λ(iy) = (c̃εiy + λ)M1,2

ε2 + 2A(y)−M1,2
ε2 F

(1)
ρ . (3.4.36)

For any y ∈ R and V ∈ C2(n+k) we have

ReV †c̃εiyM1,2
ε2 V = 0, (3.4.37)

together with
ReV †A(y)V ≥ 0. (3.4.38)

In particular, we see that

ReV †M1,2
ε2 ∆Lρ;ε,λ(iy)V ≥ −ε2Re

[
V †o (F

(1)
o;ρ − λ)Vo

]
− Re

[
V †e (F

(1)
e;ρ − λ)Ve

]
.

(3.4.39)
Let us pick an arbitrary λ0 > 0 and suppose that ∆Lρ;ε,λ(iy)V = 0 holds for some

V ∈ C2(n+k) \ {0} and Reλ ≥ −λ0. We claim that there exist constants ϑ1 > 0 and
ϑ2 > 0, that do not depend on λ0, so that

−ReV †#(F
(1)
#;ρ − λ)V# ≥ (ϑ2 − ϑ1λ0)|V#|2 (3.4.40)

for # ∈ {o, e}. Assuming that this is indeed the case, we pick λ0 = ϑ2

2ϑ1
and obtain the

contradiction
0 = ReV †M1,2

ε2 ∆Lρ;ε,λ(iy)V

≥ 1
2ϑ2

[
ε2|Vo|2 + |Ve|2

]
> 0.

(3.4.41)

The desired Fredholm properties then follow directly from [130, Thm. C].

In order to establish the claim (3.4.40), we first assume that F# satisfies (hα). The

negative-definiteness of F
(1)
#;ρ then directly yields the bound

ReV †#(F
(1)
#;ρ − λ)V# ≤ (λ0 − ϑ2)|V#|2 (3.4.42)

for some ϑ2 > 0.

On the other hand, if F# satisfies (hβ), then we can use the identity

(c̃εiy + λ)w# − [F
(1)
#;ρ]2,2w# = [F

(1)
#;ρ]2,1v# (3.4.43)
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to compute

ReV †#

(
0 [F

(1)
#;ρ]1,2

[F
(1)
#;ρ]2,1 0

)
V# = ReV †#

(
0 −Γ[F

(1)
#;ρ]

†
2,1

[F
(1)
#;ρ]2,1 0

)
V#

= Re
[
− Γv†#[F

(1)
#;ρ]

†
2,1w# + w†#[F

(1)
#;ρ]2,1v#

]
= (1− Γ)Rew†#[F

(1)
#;ρ]2,1v#

= (1− Γ)Rew†#
[
c̃εiy + λ

]
w#

−(1− Γ)Rew†#[F
(1)
#;ρ]2,2w#

= (1− Γ)Reλ|w#|2

−(1− Γ)Rew†#[F
(1)
#;ρ]2,2w#.

(3.4.44)
In particular, Lemma 3.3.3 allows us to obtain the estimate

ReV †#(F
(1)
#;ρ − λ)V# = −ΓReλ|w#|2 + ΓRew†#[F

(1)
#;ρ]2,2w#

−Reλ|v#|2 + Re v†#[F
(1)
#;ρ]2,2v#

≤ (Γ + 1)λ0|V#|2 − ϑ2|V#|2
(3.4.45)

for some ϑ2 > 0, as desired.

For any ε > 0 and 0 < δ < δ� we introduce the quantity

Λ(ε, δ) = inf
Φ∈H1,‖M1,2

ε Φ‖H1=1

[
‖M1,2

ε L̃ε,δΦ‖L2 + 1
δ

∣∣〈L̃ε,δΦ, (0,Φadj

e;0 )〉L2

∣∣], (3.4.46)

which allows us to define
Λ(δ) = lim inf

ε↓0
Λ(ε, δ). (3.4.47)

Similarly, for any ε > 0 and any subset M ⊂ C we write

Λ(ε,M) = inf
Φ∈H1,λ∈M,‖M1,2

ε Φ‖H1=1
‖M1,2

ε L̃ε,λΦ‖L2 , (3.4.48)

together with
Λ(M) = lim inf

ε↓0
Λ(ε,M). (3.4.49)

The following proposition forms the key ingredient for proving Proposition 3.4.1
and Proposition 3.4.2. It is the analogue of [6, Lem. 3.2].

Proposition 3.4.7. Assume that (hFam), (HN1), (HN2), (HW1), (HW2) and (HS1)
are satisfied. Then there exist constants δ0 > 0 and C0 > 0 so that

Λ(δ) ≥ 2
C0

(3.4.50)

holds for all 0 < δ < δ0.
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Assume furthermore that (HS2) holds and pick a sufficiently small λ0 > 0. Then
for any subset M ⊂ C that satisfies (hMλ0), there exists a constant CM so that

Λ(M) ≥ 2
CM

. (3.4.51)

Proof of Proposition 3.4.1. Fix 0 < δ < δ0. Proposition 3.4.7 implies that we can
pick ε0(δ) > 0 in such a way that Λ(ε, δ) ≥ 1

C0
for each 0 < ε < ε0(δ). This means

that L̃ε,δ is injective for each such ε and that the bound (3.4.11) holds for any Φ ∈ H1.

Since L̃ε,δ is also a Fredholm operator with index zero by Lemma 3.4.6, it must be
invertible.

Proof of Proposition 3.4.2. The result can be established by repeating the arguments
used in the proof of Proposition 3.4.1, noting that the operator M1,2

ε is invertible.

3.4.2 Proof of Proposition 3.4.7

We now set out to prove Proposition 3.4.7. In Lemma 3.4.8 and Lemma 3.4.9 we
construct weakly converging sequences that realize the infima in (3.4.46)–(3.4.49). In
Lemmas 3.4.10-3.4.15 we exploit the structure of our operator (3.4.10) to recover lower
bounds on the norms of the derivatives of these sequences that are typically lost when
taking weak limits. First recall the constant δ� from Proposition 3.3.1.

Lemma 3.4.8. Consider the setting of Proposition 3.4.7 and pick 0 < δ < δ�. Then
there exists a sequence

{(εj ,Φj ,Θj)}j≥1 ⊂ (0, 1)×H1 × L2 (3.4.52)

together with a pair of functions

Φ ∈ H1, Θ ∈ L2 (3.4.53)

that satisfy the following properties.

(i) We have lim
j→∞

εj = 0 together with

lim
j→∞

[
‖M1,2

εj Θj‖L2 + 1
δ

∣∣〈Θj , (0,Φ
adj

e;0 )〉L2

∣∣] = Λ(δ). (3.4.54)

(ii) For every j ≥ 1 we have the identity

L̃εj ,δΦj = Θj (3.4.55)

together with the normalization

‖M1,2
εj Φj‖H1 = 1. (3.4.56)

(iii) Writing Φ = (φo, ψo, φe, ψe), we have φo = 0.
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(iv) The sequence M1,2
εj Φj converges to Φ strongly in L2

loc and weakly in H1. In

addition, the sequence M1,2
εj Θj converges weakly to Θ in L2.

Proof. Items (i) and (ii) follow directly from the definition of Λ(δ). The normal-
ization (3.4.56) and the limit (3.4.54) ensure that ‖M1,2

εj Φj‖H1 and ‖M1,2
εj Θj‖L2 are

bounded, which allows us to obtain the weak limits (iv) after passing to a subsequence.

In order to obtain (iii), we write Φj = (φo,j , ψo,j , φe,j , ψe,j) together with Θj =
(θo,j , χo,j , θe,j , χe,j) and note that the first component of (3.4.55) yields

2Dφo,j −DS1φe,j = −ε2
j c̃εjφ

′
o,j + ε2

jD1fo(Ũo;εj )φo,j

+ε2
jD2fo(Ũo;εj )ψo,j − δε2

jφo,j + ε2
jθo,j .

(3.4.57)

The normalization condition (3.4.56) and the limit (3.4.54) hence imply that

limj→∞‖2Dφo;j −DS1φe,j‖L2(R;Rn) = 0. (3.4.58)

In particular, we see that {φo;j}j≥1 is a bounded sequence. This yields the desired
identity
φo = lim

j→∞
εjφo,j = 0.

Lemma 3.4.9. Consider the setting of Proposition 3.4.7 and pick a sufficiently small
λ0 > 0. Then for any M ⊂ C that satisfies (hMλ0

), there exists a sequence

{(λj , εj ,Φj ,Θj)}j≥1 ⊂ M × (0, 1)×H1 × L2, (3.4.59)

together with a triplet
Φ ∈ H1, Θ ∈ L2, λ ∈M, (3.4.60)

that satisfy the limits

εj → 0, λj → λ, ‖M1,2
εj Θj‖L2 → Λ(M) (3.4.61)

as j →∞, together with the properties (ii)–(iv) from Lemma 3.4.8, with δ replaced by
λj in (3.4.55).

Proof. These properties can be obtained by following the proof of Lemma 3.4.8 in
an almost identical fashion.

In the remainder of this section, we will often treat the settings of Lemma 3.4.8 and
Lemma 3.4.9 in a parallel fashion. In order to streamline our notation, we use the value
λ0 stated in Lemma 3.4.6 and interpret {λj}j≥1 as the constant sequence λj = δ when
working in the context of Lemma 3.4.8. In addition, we write λmax = δ� in the setting
of Lemma 3.4.8 or λmax = max{|λ| : λ ∈M} in the setting of Lemma 3.4.9.

Lemma 3.4.10. Consider the setting of Lemma 3.4.8 or Lemma 3.4.9. Then the
function Φ from Lemma 3.4.8 satisfies

‖Φ‖H1 ≤ C�Λ(δ), (3.4.62)

while the function Φ from Lemma 3.4.9 satisfies

‖Φ‖H1 ≤ C�;MΛ(M). (3.4.63)
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Proof. In order to take the ε ↓ 0 limit in a controlled fashion, we introduce the
operator

L̃0;λ = lim
j→∞

M1
ε2j
L̃εj ,λj . (3.4.64)

Upon introducing the top-left block

[L̃0;λ]1,1 =

(
2D 0

−D1go(Uo;0) Lo + λ

)
, (3.4.65)

we can explicitly write

L̃0;λ =

(
[L̃0;λ]1,1 −JDS1

−JDS1 c0
d
dξ + 2JD −DFe(Ue;0) + λ

)
. (3.4.66)

Note that L̃0;λ and its adjoint L̃adj
0;λ are both bounded operators from H1 to L2.

In addition, we introduce the commutators

Bj = L̃εj ,λjM1,2
εj −M

1,2
εj L̃εj ,λj . (3.4.67)

A short computation shows that

Bj =

(
[Bj ]1,1 ( 1

εj
− 1

ε2j
)JDS1

(1− εj)JDS1 0

)
, (3.4.68)

in which the top-left block is given by

[Bj ]1,1 = (1− εj)
(

0 D2fo(Ũo;εj )

−D1go(Ũo;εj ) 0

)
. (3.4.69)

Pick any test-function Z ∈ C∞(R;R2n+2k) and write

Ij = 〈M1
ε2j
L̃εj ,λjM1,2

εj Φj , Z〉L2 . (3.4.70)

Using the strong convergence

L̃adj
εj ,λj
M1

ε2j
Z → L̃adj

0;λZ ∈ L2, (3.4.71)

we obtain the limit
Ij = 〈M1,2

εj Φj , L̃adj
εj ,λj
M1

ε2j
Z〉L2

→ 〈Φ, L̃adj
0;λZ〉L2

= 〈L̃0;λΦ, Z〉L2

(3.4.72)

as j →∞.
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In particular, we see that

Ij = 〈M1
ε2j
M1,2

εj L̃εj ,λjΦj , Z〉L2 + 〈M1
ε2j
BjΦj , Z〉L2

= 〈M1
ε2j
M1,2

εj Θj , Z〉L2 + 〈M1
ε2j
BjΦj , Z〉L2

→ 〈M1
0Θ, Z〉L2 +

〈(
−DS1φe,−D1go(Uo;0)φo,DS1φo, 0

)
, Z
〉
L2 .

(3.4.73)

It hence follows that

L̃0;δΦ = M1
0Θ +

(
−DS1φe,−D1go(Uo;0)φo,DS1φo, 0

)
. (3.4.74)

Introducing the functions

Φ� = (ψ0, φe, ψe), Θ� = (χo, θe, χe), (3.4.75)

the identity φo = 0 implies that

L�,λΦ� = Θ�. (3.4.76)

In the setting of Lemma 3.4.8, we may hence use Proposition 3.3.1 to compute

‖Φ�‖H1
�
≤ C�

[
‖Θ�‖L2

�
+ 1

δ

∣∣〈Θ�, (0,Φadj

e;0 )〉L2
�

∣∣]
≤ C�

[
‖Θ‖L2 + 1

δ

∣∣〈Θ, (0,Φadj

e;0 )〉L2

∣∣]. (3.4.77)

The lower semi-continuity of the L2-norm and the convergence in (iv) of Lemma 3.4.8
imply that

‖Θ‖L2 + 1
δ

∣∣〈Θ, (0,Φadj

e;0 )〉L2

∣∣ ≤ Λ(δ). (3.4.78)

In particular, we find

‖Φ‖H1 = ‖Φ�‖H1
�
≤ C�Λ(δ), (3.4.79)

as desired. In the setting of Lemma 3.4.9 the bound follows in a similar fashion.

We note that

M1,2
ε2j

Θj = c̃εjM
1,2
ε2j

Φ′j +M1,2
ε2j

(
−DF (Ũεj ) + λj

)
Φj − JmixΦj , (3.4.80)

in which Jmix is given by (3.4.9) and in which

DF (Ũε) =

(
DFo(Ũo;ε) 0

0 DFe(Ũe;ε)

)
. (3.4.81)

Lemma 3.4.11. Assume that (HN1) is satisfied. Then the bounds

Re 〈−JmixΦ,Φ′〉L2 = 0,

Re 〈−JmixΦ,Φ〉L2 ≥ 0
(3.4.82)

hold for all Φ ∈ H1
C.
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Proof. Pick Φ ∈ H1
C and write Φ = (Φo,Φe). We can compute

Re 〈−JmixΦ,Φ′〉L2 = Re 〈2JDΦo,Φ
′
o〉L2

o
− Re 〈JDS1Φe,Φ

′
o〉L2

o

−Re 〈JDS1Φo,Φ
′
e〉L2

e
+ 2Re 〈JDΦe,Φ

′
e〉L2

e

= 0,

(3.4.83)

since we have Re 〈JDS1Φe,Φ
′
o〉L2

o
= −Re 〈JDS1Φo,Φ

′
e〉L2

e
. Moreover, we can estimate

Re 〈−JmixΦ,Φ〉L2 = Re 〈2JDΦo,Φo〉L2
o
− Re 〈JDS1Φe,Φo〉L2

o

−Re 〈JDS1Φo,Φe〉L2
e

+ 2Re 〈JDΦe,Φe〉L2
e

≥ 2‖
√
JDΦo‖2L2

o
+ 2‖

√
JDΦe‖2L2

e
− 4‖
√
JDΦo‖L2

o
‖
√
JDΦe‖L2

e

≥ 2‖
√
JDΦo‖2L2

o
+ 2‖

√
JDΦe‖2L2

e

−4
(

1
2‖
√
JDΦo‖2L2

o
+ 1

2‖
√
JDΦe‖2L2

e

)
= 0.

(3.4.84)

Lemma 3.4.12. Consider the setting of Lemma 3.4.8 or Lemma 3.4.9. Then the bound∣∣Re
〈
M1,2

ε2j

(
−DF (Ũεj ) + λj

)
Φj ,Φ

′
j

〉
L2

∣∣ ≤ 2(K̃F + λmax)‖M1,2
εj Φ‖L2‖M1,2

εj Φ′j‖L2

(3.4.85)
holds for all j ≥ 1.

Proof. We first note that

Re
〈
M1,2

ε2j

(
−DF (Ũεj ) + λj

)
Φj ,Φ

′
j

〉
L2 = Re〈εj(−DFo(Ũo;εj ) + λj)Φo,j , εjΦ

′
o,j〉L2

o

+Re〈(−DFe(Ũe;εj ) + λj)Φe,j ,Φ
′
e,j〉L2

e
.

(3.4.86)
Using Cauchy-Schwarz we compute∣∣Re

〈
M1,2

ε2j

(
−DF (Ũεj ) + λj

)
Φj ,Φ

′
j

〉
L2

∣∣ ≤ (
K̃F + λmax

)
‖εjΦo,j‖L2

o
‖εjΦ′o,j‖L2

o

+
(
K̃F + λmax

)
‖Φe,j‖L2

e
‖Φ′e,j‖L2

e

≤ 2
(
K̃F + λmax

)
‖M1,2

εj Φj‖L2‖M1,2
εj Φ′j‖L2 ,

(3.4.87)
as desired.

Lemma 3.4.13. Consider the setting of Lemma 3.4.8 or Lemma 3.4.9, possibly de-
creasing the size of λ0 > 0. Then there exist strictly positive constants (a,m, g) together
with a constant β ≥ 0 so that the bound

Re
〈
M1,2

ε2j

(
−DF (Ũεj ) + λj

)
Φj ,Φj

〉
L2 ≥ a‖M1,2

εj Φj‖2L2 − g
∫

|x|≤m
|M1,2

εj Φj |2

−β‖M1,2
εj Θj‖2L2

(3.4.88)
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holds for all j ≥ 1.

Proof. We first note that

Re
〈
M1,2

ε2j

(
−DF (Ũεj ) + λj

)
Φj ,Φj

〉
L2 = ε2No;j +Ne;j , (3.4.89)

in which we have defined

N#,j = Re
〈(
−DF#(Ũ#;εj ) + λj

)
Φ#,j ,Φ#,j

〉
L2

#
(3.4.90)

for # ∈ {o, e}.

Let us first suppose that F# satisfies (hβ) and let Γ# be the proportionality constant
from that assumption. We start by studying the cross-term

C#,j = −Re
〈
D2f#

(
Ũ#;εj

)
ψ#,j , φ#,j

〉
L2(R;Rn)

−Re
〈
D1g#

(
Ũ#;εj

)
φ#,j , ψ#,j

〉
L2(R;Rk)

.
(3.4.91)

Recalling that

χ#,j = c̃εjψ
′
#,j −Dg#;1(Ũ#;εj )φ#,j −Dg#;2(Ũ#;εj )ψ#,j + λjψ#,j , (3.4.92)

we obtain the identity

C#,j = (Γ# − 1)Re〈D1g#(Ũ#;εj )φ#,j , ψ#,j〉L2(R;Rk)

= (Γ# − 1)Re〈c̃εjψ′#,j −D2g#(Ũ#;εj )ψ#,j + λjψ#,j − χ#,j , ψ#,j〉L2(R;Rk)

= c̃εj (Γ# − 1)Re〈ψ′#,j , ψ#,j〉L2(R;Rk)

+(Γ# − 1)Re 〈−D2g#(Ũ#;εj )ψ#,j + λjψ#,j − χ#,j , ψ#,j〉L2(R;Rk)

= (1− Γ#)Re 〈D2g#(Ũ#;εj )ψ#,j , ψ#,j〉L2(R;Rk)

+(Γ# − 1)
[
Reλ ‖ψ#,j‖2L#

− 〈χ#,j , ψ#,j〉L2(R;Rk)

]
.

(3.4.93)
In particular, we see that

N#,j = Γ#Reλ〈ψ#,j , ψ#,j〉L2(R;Rk) − Γ#Re 〈D2g#(Ũ#;εj )ψ#,j , ψ#,j〉L2(R;Rk)

+Reλ〈φ#,j , φ#,j〉L2(R;Rn) − Re 〈D1f#(Ũ#;εj )φ#,j , φ#,j〉L2(R;Rn)

−(Γ# − 1)〈χ#,j , ψ#,j〉L2(R;Rk).
(3.4.94)

Recall that Ũε → U0 in L∞, Ũo;εj (ξ)→ U±o and Ũe;εj (ξ)→ U±e for ξ → ±∞. Using
Lemma 3.3.3 and decreasing λ0 if necessary, we see that there exist a > (Γ# +1)λ0 > 0
and m� 1 so that

3a|Φ#,j(ξ)|2 ≤ −Re
〈
D1f#

(
Ũ#;εj (ξ)

)
φ#,j(ξ), φ#,j(ξ)

〉
Rn

−Γ#Re
〈
D2g#

(
Ũ#;εj (ξ)

)
ψ#,j(ξ), ψ#,j(ξ)

〉
Rk

(3.4.95)
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for all |ξ| ≥ m. We hence obtain

N#,j ≥ 2a
∫
|ξ|≥m |Φ#,j(ξ)|2 dξ − (Γ# + 1)

(
K̃F + λmax

) ∫
|ξ|≤m |Φ#,j(ξ)|2 dξ

−(Γ# + 1)‖χ#,j‖L2(R;Rk)‖ψ#,j‖L2(R;Rk)

≥ 2a‖Φ#,j‖2L2
#
− (Γ# + 1)

(
2a+ K̃F + λmax

) ∫
|ξ|≤m |Φ#,j(ξ)|2 dξ

−(Γ# + 1)‖χ#,j‖L2(R;Rk)‖ψ#,j‖L2(R;Rk).
(3.4.96)

Using the standard identity xy ≤ 1
4zx

2 + zy2 for x, y ∈ R and z > 0, we now find

N#,j ≥ a‖Φ#,j‖2L2
#
− (Γ# + 1)

(
2a+ K̃F + λmax

) ∫
|ξ|≤m |Φ#,j(ξ)|2 dξ

− 1
4a (Γ# + 1)2‖χ#,j‖2L2(R;Rk),

(3.4.97)

which has the desired form.

In the case where F# satisfies (hα), a similar bound can be obtained in an analo-
gous, but far easier fashion.

Lemma 3.4.14. Consider the setting of Lemma 3.4.8 or Lemma 3.4.9. Then there
exists a constant κ > 0 so that the bound

κ‖M1,2
εj Φj‖2L2 ≥ ‖M1,2

εj Φ′j‖2L2 − 2K̃2
fam‖M1,2

εj Θj‖2L2 (3.4.98)

holds for all j ≥ 1.

Proof. For convenience, we assume that c̃εj > 0 for all j ≥ 1. Recalling the
decomposition (3.4.80), we can use Lemma 3.4.11 and Lemma 3.4.12 to compute

Re〈M1,2
εj Θj ,M1,2

εj Φ′j〉L2 = c̃εjRe〈M1,2
εj Φ′j ,M1,2

εj Φ′j〉L2 + Re〈−JmixΦj ,Φ
′
j〉L2

+Re
〈
M1,2

ε2j

(
−DF (Ũεj ) + λj

)
Φj ,Φ

′
j

〉
L2

≥ −2
(
K̃F + λmax

)
‖M1,2

εj Φj‖L2‖M1,2
εj Φ′j‖L2

+c̃εj‖M1,2
εj Φ′j‖2L2 .

(3.4.99)
We hence see that

c̃εj‖M1,2
εj Φ′j‖2L2 ≤ 2

(
K̃F + λmax

)
‖M1,2

εj Φj‖L2‖M1,2
εj Φ′j‖L2

+‖M1,2
εj Θj‖L2‖M1,2

εj Φ′j‖L2 .
(3.4.100)

Dividing by ‖M1,2
εj Φ′j‖L2 and squaring, we find

c̃2εj‖M
1,2
εj Φ′j‖2L2 ≤ 8

(
K̃F + λmax

)2‖M1,2
εj Φj‖2L2 + 2‖M1,2

εj Θj‖2L2 , (3.4.101)

as desired.
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Recall the constants (g,m, a, β) introduced in Lemma 3.4.13. Throughout the re-
mainder of this section, we set out to obtain a lower bound for the integral

Ij = g
∫

|ξ|≤m
|M1,2

εj Φj(ξ)|2 dξ. (3.4.102)

Lemma 3.4.15. Consider the setting of Lemma 3.4.8 or Lemma 3.4.9. Then the bound

Ij ≥ a
2‖M

1,2
εj Φj‖2L2 −

(
1
2a + β

)
‖M1,2

εj Θj‖2L2 (3.4.103)

holds for all j ≥ 1.

Proof. Recall the decomposition (3.4.80). Combining the estimates in Lemma 3.4.11
and Lemma 3.4.13 and remembering that Re〈M1,2

εj Φ′j ,M1,2
εj Φj〉L2 = 0, we find

Ij ≥ a‖M1,2
εj Φj‖2L2 − Re〈M1,2

εj Θj ,M1,2
εj Φj〉L2 − β‖M1,2

εj Θj‖2L2

≥ a‖M1,2
εj Φj‖2L2 − ‖M1,2

εj Θj‖L2‖M1,2
εj Φj‖L2 − β‖M1,2

εj Θj‖2L2 .
(3.4.104)

Using the standard identity xy ≤ z
2x

2 + 1
2z y

2 for x, y ∈ R and z > 0 we can estimate

Ij ≥ a
2‖M

1,2
εj Φj‖2L2 −

(
1
2a + β

)
‖M1,2

εj Θj‖2L2 , (3.4.105)

as desired.

Proof of Proposition 3.4.7. Introducing the constant γ = a
2(κ+1) , we add γ times

(3.4.98) to (3.4.103) and find

Ij + aκ
2(κ+1)‖M

1,2
εj Φj‖2L2 ≥ a

2‖M
1,2
εj Φj‖2L2 −

(
1
2a + β

)
‖M1,2

εj Θj‖2L2

+ a
2(κ+1)‖M

1,2
εj Φ′j‖L2 − aK̃2

fam

2(κ+1)‖M
1,2
εj Θj‖2L2 .

(3.4.106)
We hence obtain

Ij ≥ a
2(κ+1)‖M

1,2
εj Φj‖H1 −

(
1
2a + β +

aK̃2
fam

2(κ+1)

)
‖M1,2

εj Θj‖2L2

:= C1 − C2‖M1,2
εj Θj‖2L2 .

(3.4.107)

Letting j →∞ in the setting of Lemma 3.4.8 yields

C1 − C2Λ(δ)2 ≤ g
∫

|ξ|≤m
|Φ(ξ)|2 dξ ≤ gC2

�Λ(δ)2. (3.4.108)

As such, we can conclude that
Λ(δ) ≥ 2

C0
(3.4.109)

for some C0 > 0, as required. An analogous computation can be used for the setting
of Lemma 3.4.9.
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3.5 Existence of travelling waves

In this section we follow the spirit of [6, Thm. 1] and develop a fixed point argument
to show that (3.2.1) admits travelling wave solutions of the form (3.2.12). The main
complication is that we need ε-uniform bounds on the supremum norm of the wave-
profiles in order to control the nonlinear terms. This can be achieved by bounding the
H1-norm of the perturbation, but the estimates in Proposition 3.4.1 feature a prob-
lematic scaling factor on the odd component. Fortunately, Corollary 3.4.5 does provide
uniform H1-bounds, but it requires us to take a derivative of the travelling wave system.

Throughout this section we will apply the results from §3.4 to the constant family(
Ũε, c̃ε

)
=

(
U0, c0

)
, (3.5.1)

which clearly satisfies (hFam). In particular, we fix a small constant δ > 0 and write
Lε,δ for the operators given by (3.4.7) in this setting. We set out to construct a branch
of wavespeeds cε and small functions

Φε = (Φo;ε,Φe;ε) ∈ H2 (3.5.2)

in such a way that U0 + Φε is a solution to (3.2.14). A short computation shows that
this is equivalent to the system

Lε,δ(Φε) = Fδ(cε,Φε), (3.5.3)

which we split up by introducing the expressions

R(c,Φ) = (c0 − c)∂ξ
(
U0 + Φ

)
,

E0 =
(
− Jc0U

′
o;0 + JFo(Uo;0), 0

)
,

N#(Φ#) = F#(U#;0 + Φ#)−DF#(U#;0)Φ# − F#(U#;0)

(3.5.4)

for # ∈ {o, e} and writing

Fδ(cε,Φε) = R(cε,Φε) + E0 +
(
No(Φo;ε),Ne(Φe;ε)

)
+ δΦ. (3.5.5)

Notice that R contains a derivative of Φ. It is hence crucial that L−1
ε,δ gains an order of

regularity, which we obtained by the framework developed in §3.4.

For any ε > 0 and Φ ∈ H2 we introduce the norm

‖Φ‖2Xε
=

∥∥∥M1,2
ε ∂2

ξΦ
∥∥∥2

L2
+ ‖Φ‖2H1 , (3.5.6)

which is equivalent to the standard norm on H2. For any η > 0, this allows us to
introduce the set

Xη;ε = {Φ ∈ H2 : ‖Φ‖Xε
≤ η}. (3.5.7)
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For convenience, we introduce the constant η∗ =
[
2‖Φadj

e;0‖L2
e

]−1
, together with the

formal expression

cδ(Φe) = c0 +
[
1 + 〈∂ξΦe,Φ

adj

e;0 〉L2
e

]−1
[
δ〈Φe,Φ

adj

e;0 〉L2
e

+ 〈Ne(Φe),Φ
adj

e;0 〉L2
e

]
.

(3.5.8)

Lemma 3.5.1. Assume that (HN1), (HN2), (HW1), (HW2) and (HS1) are satisfied
and pick a constant 0 < η ≤ η∗. Then the expression (3.5.8) is well-defined for any
ε > 0 and any Φ = (Φo,Φe) ∈ Xη;ε. In addition, the equation〈

Fδ(c,Φ), (0,Φ
adj

e;0 )
〉
L2 = 0 (3.5.9)

has the unique solution c = cδ(Φe).

Proof. We first note that

〈∂ξΦe,Φ
adj

e;0 〉L2
e
≥ −‖∂ξΦe‖L2

e

∥∥∥Φ
adj

e;0

∥∥∥
L2
e

≥ − 1
2 , (3.5.10)

which implies that (3.5.8) is well-defined. The result now follows by noting that

〈E0, (0,Φ
adj

e;0 )〉L2 = 0 and that〈
R(c,Φ), (0,Φ

adj

e;0 )
〉
L2 = (c0 − c)

(
〈U ′0;e,Φ

adj

e;0 〉L2
e

+ 〈∂ξΦe,Φ
adj

e;0 〉L2
e

)
= (c0 − c)

(
1 + 〈∂ξΦe,Φ

adj

e;0 〉L2
e

)
,

(3.5.11)

which implies that〈
Fδ(c,Φ), (0,Φ

adj

e;0 )
〉
L2 = (c0 − c)

(
1 + 〈∂ξΦe,Φ

adj

e;0 〉L2
e

)
+ δ〈Φe,Φ

adj

e;0 〉L2
e

+〈Ne(Φe),Φ
adj

e;0 〉L2
e
.

(3.5.12)

Consider the setting of Corollary 3.4.5 and pick 0 < δ < δ0 and 0 < ε < ε0(δ). Our
goal here is to find solutions to (3.5.3) by showing that the map Tε,δ : Xη;ε → H2 that
acts as

Tε,δ(Φ) = (Lε,δ)−1Fδ
(
cδ(Φe),Φ

)
(3.5.13)

admits a fixed point. For any triplet (Φ,ΦA,ΦB) ∈ X3
η;ε, the bounds in Corollary 3.4.5

imply that

‖Tε,δ(Φ)‖Xε
≤ C0

[ ∥∥M1
εFδ

(
cδ(Φe),Φ

)∥∥
L2 +

∥∥M1,2
ε ∂ξFδ

(
cδ(Φe),Φ

)∥∥
L2

]
,

(3.5.14)
together with∥∥Tε,δ(ΦA)− Tε,δ(ΦB)

∥∥
Xε

≤ C0

∥∥∥M1
ε

(
Fδ
(
cδ(Φ

A
e ),ΦA

)
−Fδ

(
cδ(Φ

B
e ),ΦB

))∥∥∥
L2

+C0

∥∥∥M1,2
ε ∂ξ

(
Fδ
(
cδ(Φ

A
e ),ΦA

)
−Fδ

(
cδ(Φ

B
e ),ΦB

))∥∥∥
L2
.

(3.5.15)
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In order to show that Tε,δ is a contraction mapping, it hence suffices to obtain suitable
bounds for the terms appearing on the right-hand side of these estimates.

We start by obtaining pointwise bounds on the nonlinear terms. To this end, we
compute

∂ξNo(Φo) =
(
DFo(Uo;0 + Φo)−DFo(Uo;0)−D2Fo(Uo;0)Φo

)
U
′
o;0

+
(
DFo(Uo;0 + Φo)−DFo(Uo;0)

)
∂ξΦo

(3.5.16)

and note that a similar identity holds for ∂ξNe(Φe). In addition, we remark that there
is a constant KF > 0 for which the bounds

‖DF#(U#;0 + Φ#)‖∞ + ‖D2F#(U#;0 + Φ#)‖∞ + ‖D3F#(U#;0 + Φ#)‖∞ < KF

(3.5.17)
hold for # ∈ {o, e} and all Φ = (Φo,Φe) that have ‖Φ‖H1 ≤ η∗.

Lemma 3.5.2. Assume that (HN1), (HN2), (HW1) and (HW2) are satisfied. There
exists a constant Kp > 0 so that for each Φ = (Φo,Φe) ∈ H1 with ‖Φ‖H1 ≤ η∗, we have
the pointwise estimates

|No(Φo)| ≤ Kp|Φo|2,

|Ne(Φe)| ≤ Kp|Φe|2.
(3.5.18)

Proof. Using [55, Thm. 2.8.3] we obtain

|No(Φo)| ≤ 1
2KF |Φo|2. (3.5.19)

The estimate for Ne follows similarly.

Lemma 3.5.3. Assume that (HN1), (HN2), (HW1) and (HW2) are satisfied. There
exists a constant Kp > 0 so that for each Φ = (Φo,Φe) ∈ H1 with ‖Φ‖H1 ≤ η∗, we have
the pointwise estimates

|∂ξNo(Φo)| ≤ Kp

(
|∂ξΦo||Φo|+ |Φo|2

)
,

|∂ξNe(Φe)| ≤ Kp

(
|∂ξΦe||Φe|+ |Φe|2

)
.

(3.5.20)

Proof. We rewrite (3.5.16) to obtain

∂ξNo(Φo) = DFo(Uo;0 + Φo)∂ξ(Uo;0 + Φo)−DFo(Uo;0)∂ξ(Uo;0 + Φo)

−D2Fo(Uo;0)[Φo, ∂ξ(Uo;0 + Φo)] +D2Fo(Uo;0)[Φo, ∂ξΦo].
(3.5.21)

This allows us to use [55, Thm. 2.8.3] and obtain the pointwise estimate

|∂ξNo(Φo)| ≤ 1
2KF |Φo|2

(
|U ′o;0|+ |∂ξΦo|

)
+KF |Φo||∂ξΦo|

≤ Kp

(
|∂ξΦo||Φo|+ |Φo|2

)
.

(3.5.22)

The estimate for Ne follows similarly.
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Lemma 3.5.4. Assume that (HN1), (HN2), (HW1) and (HW2) are satisfied. There
exists a constant Kp > 0 so that for each pair

ΦA = (ΦAo ,Φ
A
e ) ∈ H1, ΦB = (ΦBo ,Φ

B
e ) ∈ H1 (3.5.23)

that satisfies ‖ΦA‖H1 ≤ η∗ and ‖ΦB‖H1 ≤ η∗, we have the pointwise estimates

|No(ΦAo )−No(ΦBo )| ≤ Kp

[
|ΦAo |+ |ΦBo |

]
|ΦAo − ΦBo |,

|Ne(ΦAe )−Ne(ΦBe )| ≤ Kp

[
|ΦAe |+ |ΦBe |

]
|ΦAe − ΦBe |.

(3.5.24)

Proof. We first compute

No(ΦAo )−No(ΦBo ) = Fo
(
Uo;0 + ΦBo + (ΦAo − ΦBo )

)
− Fo

(
Uo;0 + ΦBo

)
−DFo

(
Uo;0 + ΦBo

)(
ΦAo − ΦBo

)
+
[
DFo

(
Uo;0 + ΦBo

)
−DFo(Uo;0)

](
ΦAo − ΦBo

)
.

(3.5.25)
Applying [55, Thm. 2.8.3] twice yields the pointwise estimate

|No(ΦAo )−No(ΦBo )| ≤ KF

[
1
2 |Φ

A
o − ΦBo |2 + |ΦBo ||ΦAo − ΦBo |

]
≤ 2KF

[
|ΦAo |+ |ΦBo |

]
|ΦAo − ΦBo |.

(3.5.26)

The estimate for Ne follows similarly.

Lemma 3.5.5. Assume that (HN1), (HN2), (HW1) and (HW2) are satisfied. There
exists a constant Kp > 0 so that for each pair

ΦA = (ΦAo ,Φ
A
e ) ∈ H1, ΦB = (ΦBo ,Φ

B
e ) ∈ H1 (3.5.27)

that satisfies ‖ΦA‖H1 ≤ η∗ and ‖ΦB‖H1 ≤ η∗ we have the pointwise estimates

|∂ξN#(ΦA#)− ∂ξN#(ΦB#)| ≤ Kp

[
|∂ξΦA#|+ |ΦA#|+ |∂ξΦB#|+ |ΦB#|

]
|ΦA# − ΦB#|

+Kp

[
|ΦA#|+ |ΦB#|

]
|∂ξ(ΦA# − ΦB#)|

(3.5.28)
for # ∈ {o, e}.

Proof. Differentiating (3.5.25) line by line, we obtain

∂ξNo(ΦAo )− ∂ξNo(ΦBo ) = d1 + d2 + d3 (3.5.29)
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with

d1 = DFo
(
Uo;0 + ΦBo + (ΦAo − ΦBo )

)(
U
′
o;0 + ∂ξΦ

B
o + ∂ξ(Φ

A
o − ΦBo )

)
−DFo

(
Uo;0 + ΦBo

)
∂ξ
(
Uo;0 + ΦBo

)
,

d2 = −D2Fo
(
Uo;0 + ΦBo

)[
ΦAo − ΦBo , ∂ξ(Uo;0 + ΦBo )

]
−DFo

(
Uo;0 + ΦBo

)
∂ξ(Φ

A
o − ΦBo ),

d3 =
[
DFo

(
Uo;0 + ΦBo

)
−DFo(Uo;0)

]
∂ξ
(
ΦAo − ΦBo

)
+D2Fo

(
Uo;0 + ΦBo

)
[∂ξ(Uo;0 + ΦBo ),ΦAo − ΦBo

]
−D2Fo(Uo;0)[U

′
o;0,Φ

A
o − ΦBo

]
.

(3.5.30)

Upon introducing the expressions

dI = DFo
(
Uo;0 + ΦBo + (ΦAo − ΦBo )

)
∂ξ
(
Uo;0 + ΦBo

)
−DFo

(
Uo;0 + ΦBo

)
∂ξ
(
Uo;0 + ΦBo

)
−D2Fo

(
Uo;0 + ΦBo

)[
ΦAo − ΦBo , ∂ξ(Uo;0 + ΦBo )

]
,

dII =
[
DFo

(
Uo;0 + ΦBo + (ΦAo − ΦBo )

)
−DFo

(
Uo;0 + ΦBo

)]
∂ξ(Φ

A
o − ΦBo ),

(3.5.31)
we see that

d1 + d2 = dI + dII . (3.5.32)

Applying [55, Thm. 2.8.3] we obtain the bounds

|dI | ≤ 1
2KF |ΦAo − ΦBo |2

[
|U ′o;0|+ |∂ξΦBo |

]
,

|dII | ≤ KF |ΦAo − ΦBo ||∂ξ(ΦAo − ΦBo )|.
(3.5.33)

In addition, the expressions

dIII =
[
DFo

(
Uo;0 + ΦBo

)
−DFo(Uo;0)

]
∂ξ
(
ΦAo − ΦBo

)
,

dIV = D2Fo
(
Uo;0 + ΦBo

)
[U
′
o;0,Φ

A
o − ΦBo

]
−D2Fo(Uo;0)[U

′
o;0,Φ

A
o − ΦBo

]
,

dV = D2Fo
(
Uo;0 + ΦBo

)
[∂ξΦ

B
o ,Φ

A
o − ΦBo

]
(3.5.34)

allow us to write
d3 = dIII + dIV + dV . (3.5.35)

Applying [55, Thm. 2.8.3] we may estimate

|dIII | ≤ KF |ΦBo ||∂ξ(ΦAo − ΦBo )|,

|dIV | ≤ KF |ΦBo ||ΦAo − ΦBo |,

|dV | ≤ KF |∂ξΦBo ||ΦAo − ΦBo |.

(3.5.36)

These bounds can all be absorbed into (3.5.28). The estimate for Ne follows simi-
larly.
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With the above pointwise bounds in hand, we are ready to estimate the nonlinear-
ities in the appropriate scaled function spaces. To this end, we introduce the notation

N (Φ) =
(
No(Φo),Ne(Φe)

)
(3.5.37)

for any Φ = (Φo,Φe) ∈ H1.

Lemma 3.5.6. Assume that (HN1), (HN2), (HW1) and (HW2) are satisfied. There
exists a constant KN > 0 so that for each 0 < η ≤ η∗, each ε > 0 and each triplet
(Φ,ΦA,ΦB) ∈ X3

η;ε we have the bounds

‖M1
εN (Φ)‖L2 ≤ KN η

2,

‖M1,2
ε ∂ξN (Φ)‖L2 ≤ KN η

2,

‖M1
ε

(
N (ΦA)−N (ΦB)

)
‖L2 ≤ KN η‖ΦA − ΦB‖L2 ,

‖M1,2
ε ∂ξ

(
N (ΦA)−N (ΦB)

)
‖L2 ≤ KN η

(
‖ΦA − ΦB‖L2 + ‖∂ξ(ΦA − ΦB)‖L2

)
.

(3.5.38)

Proof. All bounds follow immediately from Lemma 3.5.2-Lemma 3.5.5 upon using
the Sobolev estimate ‖φ‖∞ ≤ C ′1‖φ‖H1 to write

‖Φo‖∞ ≤ C ′1η, ‖∂ξΦo‖∞ ≤ C ′1
η
ε ,

‖Φe‖∞ ≤ C ′1η, ‖∂ξΦe‖∞ ≤ C ′1η,
(3.5.39)

with identical bounds for ΦA and ΦB .

Lemma 3.5.7. Assume that (HN1), (HN2), (HW1) and (HW2) are satisfied. Then
there exists a constant KE > 0 so that for each ε > 0 we have the bound

‖M1
εE0‖L2 + ‖M1,2

ε ∂ξE0‖L2 ≤ εKE . (3.5.40)

Proof. The structure of the matrix J allows us to bound∥∥M1
εE0
∥∥
L2 ≤ ε ‖E0‖L2 ,

∥∥M1,2
ε ∂ξE0

∥∥
L2 ≤ ε ‖∂ξE0‖L2 . (3.5.41)

The result hence follows from the inclusions

U
′
o;0 ∈ H1

o, Fo(Uo;0) ∈ H1
o. (3.5.42)

The first of these can be obtained by differentiating (3.2.18) and (3.2.20). The second
inclusion follows from the fact that Uo;0 converges exponentially fast to its limiting
values, which are zeroes of Fo.

Lemma 3.5.8. Assume that (HN1), (HN2), (HW1), (HW2) and (HS1) are satisfied.
Then there exists a constant Kc > 0 in such a way that for each 0 < η ≤ η∗, each
ε > 0, each δ > 0 and each triplet (Φ,ΦA,ΦB) ∈ X3

η;ε we have the bounds

|cδ(Φe)− c0| ≤ Kc

[
δη + η2

]
,

|cδ(ΦAe )− cδ(ΦBe )| ≤ Kc

(
δ + η

)
‖ΦA − ΦB‖L2 .

(3.5.43)
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Proof. Since we only need to use regular L2-norms for these estimates, the proof of
Lemma 2.4.4 also applies here.

Lemma 3.5.9. Assume that (HN1), (HN2), (HW1), (HW2) and (HS1) are satisfied.
Then there exists a constant KR > 0 in such a way that for each 0 < η ≤ η∗, each
0 < ε < 1, each δ > 0 and each triplet (Φ,ΦA,ΦB) ∈ X3

η;ε we have the bound

‖M1
εR(cδ(Φe),Φ)‖L2 + ‖M1,2

ε ∂ξR(cδ(Φe),Φ)‖L2 ≤ KR[δη + η2]. (3.5.44)

Writing

∆ABR := R(cδ(Φ
A
e ),ΦA)−R(cδ(Φ

B
e ),ΦB), (3.5.45)

we also have the bound

‖M1
ε∆ABR‖L2 + ‖M1,2

ε ∂ξ∆ABR‖L2 ≤ KR
(
δ + η)‖ΦA − ΦB‖L2

+ηKR(η + δ)‖∂ξ(ΦA − ΦB)‖L2

+ηKR(η + δ)‖M1,2
ε ∂2

ξ (ΦA − ΦB)‖L2 .

(3.5.46)

Proof. Using Lemma 3.5.8 we immediately obtain the bound

‖M1
εR(cδ(Φe),Φ)‖L2 ≤ Kc

[
δη + η2

](
‖M1

ε∂ξΦ‖L2 + ‖M1
εU
′
0‖L2

)
≤ Kc

[
δη + η2

](
η + ‖U ′0‖L2

)
,

(3.5.47)

together with

‖M1,2
ε ∂ξR(cδ(Φe),Φ)‖L2 ≤ Kc

[
δη + η2

](
‖M1,2

ε ∂2
ξΦ‖L2 + ‖M1,2

ε U
′′
0‖L2

)
≤ Kc

[
δη + η2

](
η + ‖U ′′0‖L2

)
.

(3.5.48)
In addition, we may compute

∆ABR =
(
cδ(Φ

B
e )− cδ(ΦAe )

)
∂ξ
(
U0 + ΦA

)
+
(
c0 − cδ(ΦBe )

)
∂ξ(Φ

A − ΦB),
(3.5.49)

which allows us to estimate

‖M1
ε∆ABR‖L2 ≤ Kc

(
δ + η

)
‖ΦA − ΦB‖L2

(
‖M1

εU
′
0‖L2 + ‖M1

ε∂ξΦ
A‖L2

)
+Kc

[
δη + η2

]
‖M1

ε∂ξ(Φ
A − ΦB)‖L2

≤ Kc

(
δ + η

)
‖ΦA − ΦB‖L2

(
‖U ′0‖L2 + η

)
+Kc

[
δη + η2

]
‖∂ξ(ΦA − ΦB)‖L2 ,

(3.5.50)
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together with

‖M1,2
ε ∂ξ∆ABR‖L2 ≤ Kc

(
δ + η

)
‖ΦA − ΦB‖L2

(
‖M1,2

ε U
′′
0‖L2 + ‖M1,2

ε ∂ξΦ
A‖L2

)
+Kc

[
δη + η2

]
‖M1,2

ε ∂2
ξ (ΦA − ΦB)‖L2

≤ Kc

(
δ + η

)
‖ΦA − ΦB‖L2

(
‖U ′′0‖L2 + η

)
+Kc

[
δη + η2

]
‖M1,2

ε ∂ξ(Φ
A − ΦB)‖L2 .

(3.5.51)
These terms can all be absorbed into (3.5.46).

Proof of Theorem 3.2.1. Using Lemma 3.5.6, Lemma 3.5.7 and Lemma 3.5.9, to-
gether with the decomposition (3.5.5) and the estimates (3.5.14)-(3.5.15), we find that
there exists a constant KT > 0 for which the bounds

‖Tε,δ(Φ)‖Xε
≤ KT

[
δη + η2 + ε

]
,∥∥Tε,δ(ΦA)− Tε,δ(ΦB)

∥∥
Xε

≤ KT

[
δ + η

]
‖ΦA − ΦB‖Xε

(3.5.52)

hold for any η ≤ η∗, any 0 < ε < ε0(δ) and any triplet (Φ,ΦA,ΦB) ∈ X3
η;ε. As such,

we fix
δ = 1

3KT
, η = min{η∗, 1

3KT
}. (3.5.53)

Finally, we select a small positive ε∗ such that ε∗ ≤ ε0(δ) and ε∗ ≤ 1
3KT

η. We conclude
that for each 0 < ε ≤ ε∗, Tε,δ maps Xη;ε into itself and is a contraction. This completes
the proof.

3.6 Stability of travelling waves

Introducing the family (
Ũε, c̃ε

)
=

(
Uε, cε

)
, (3.6.1)

which satisfies (hFam) on account of Theorem 3.2.1, we see that the theory developed
in §3.4 applies to the operators

Lε,λ : H1 → L2 (3.6.2)

that act as
Lε,λ = cε

d
dξ −M

1
1/ε2Jmix −DF (Uε) + λ. (3.6.3)

We emphasize that these operators are associated to the linearization of the travelling
wave system (3.2.14) around the wave solutions (Uε, cε). For convenience, we also
introduce the shorthand

Lε = Lε,0 = cε
d
dξ −M

1
1/ε2Jmix −DF (Uε). (3.6.4)

We remark that the spectrum of Lε is 2πicε-periodic on account of the identity(
Lε + λ

)
e2πi· = e2πi·(Lε + λ+ 2πicε

)
. (3.6.5)
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As a final preparation, we note that there exists a constant KF > 0 for which the
bound

‖DFo(Uo;ε)‖∞ + ‖D2Fo(Uo;ε)‖∞ + ‖DFe(Ue;ε)‖∞ + ‖D2Fe(Ue;ε)‖∞ ≤ KF

(3.6.6)
holds for all 0 < ε < ε∗.

Our main task here is to reverse the parameter dependency used in §3.4. In par-
ticular, for a fixed small value of ε > 0 we study the behaviour of the map λ 7→ Lε,λ.
This allows us to obtain the main result of this section, which lifts the spectral stability
assumptions (HS1) and (HS2) to the full system (3.2.14).

Proposition 3.6.1. Assume that (HN1), (HN2), (HW1), (HW2), (HS1) and (HS2)
are satisfied. Then there exists a constant ε∗∗ > 0 so that the following properties hold
for all 0 < ε < ε∗∗.

(i) We have

Ker
(
Lε
)

= span
(
U
′
ε

)
(3.6.7)

together with U
′
ε /∈ Range

(
Lε,0

)
.

(ii) For each λ ∈ C \ 2πicεZ with Reλ ≥ −λ∗, the operator Lε,λ is invertible.

These spectral stability properties can be turned into a nonlinear stability result
by applying the theory developed in [109]. The main idea is to consider a temporal
Green’s function for the LDE (3.2.1) and spatial Green’s functions for the travelling
wave equation (3.2.14). These Green’s functions can be related to each other using an
integral representation. Our detailed knowledge of the spectrum of the operator Lε
allows us to shift the integration path and split the temporal Green’s function for the
linearization of (3.2.1) around the wave Uε into two components. The first corresponds

to the neutral part of the flow along the eigenfunction U
′
ε, while the second encodes

the exponentially decaying stable part of the flow. The full orbital neighbourhood of
the travelling wave Uε can now be spanned by the family of stable manifolds for the
shifted waves Uε(· + ϑ), which all have codimension one. In particular, every initial
condition in this neighbourhood converges exponentially to a shifted version of Uε.

Proof of Theorem 3.2.2. For j ∈ Z we introduce the new variables(
uj;o, wj;o, uj;e, wj;e

)
=

(
u2j+1, w2j+1, u2j , w2j

)
, (3.6.8)

which allows us to reformulate the 2-periodic system (3.2.1) as the equivalent 2(n+k)-
component system

u̇j;o(t) = 1
ε2D

[
uj+1;e(t) + uj;e(t)− 2uj;o(t)

]
+ fo

(
uj;o(t), wj;o(t)

)
,

u̇j;o(t) = go
(
uj;o(t), wj;o(t)

)
,

u̇j;e(t) = D
[
uj;o(t) + uj−1;o(t)− 2uj;e(t)

]
+ fe

(
uj;e(t), wj;e(t)

)
,

ẇj;e(t) = ge
(
uj;e(t), wj;e(t)

)
,

(3.6.9)
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which is spatially homogeneous.

On account of Theorem 3.2.1 and Proposition 3.6.1, it is clear that 3.6.9 satisfies
the conditions (HV), (HS1)-(HS3) from [109]. An application of [109, Prop. 2.1] im-
mediately yields the desired result.

3.6.1 The operator Lε
Observe first that Lε is a Fredholm operator with index zero on account of Lemma
3.4.6. Our goal in this subsection is to establish the characterization of the kernel and
range of this operator given in item (i) of Proposition 3.6.1. We note that this state-
ment implies that the zero eigenvalue of Lε is simple.

At times, our discussion closely follows the lines of [150, sects. 4–5]. The novel
ingredient here, however, is that we do not need to modify the spectral convergence
argument from §3.4 to ensure that it also applies to the adjoint operator. Indeed, we
show that all the essential properties can be obtained from the following quasi-inverse
for Lε, which can be constructed by mimicking the approach of [111, Prop. 3.2].

Lemma 3.6.2. Assume that (HN1), (HN2), (HW1), (HW2), (HS1) and (HS2) are
satisfied and pick a sufficiently small constant ε∗∗ > 0. Then for every 0 < ε < ε∗∗
there exist linear maps

γε : L2 → R

Lqinv

ε : L2 → H1,
(3.6.10)

so that for all Θ ∈ L2 the pair

(γ,Ψ) = (γεΘ,L
qinv

ε Θ) (3.6.11)

is the unique solution to the problem

LεΨ = Θ + γU
′
0 (3.6.12)

that satisfies the normalisation condition

〈(0,Φadj
e;0 ),Ψ〉L2 = 0. (3.6.13)

In addition, there exists C > 0 such that for all 0 < ε < ε∗∗ and all Θ ∈ L2 we have
the bound

|γεΘ|+ ‖M1
ε(L

qinv

ε Θ)′‖L2 + ‖Lqinv

ε Θ‖L2 ≤ C‖M1
εΘ‖L2 . (3.6.14)

Proof. The proof of [150, Lem. 4.9] remains valid in this setting.

We can now concentrate on the kernel of Lε. The quasi-inverse constructed above
allows us to develop a Liapunov-Schmidt argument to exclude kernel elements other

than U
′
ε.
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Lemma 3.6.3. Assume that (HN1), (HN2), (HW1), (HW2), (HS1) and (HS2) are
satisfied. Then for all sufficiently small ε > 0 we have

ker(Lε) = span{U ′ε}. (3.6.15)

Proof. This result can be obtained by following the procedure used in the proof of
[150, Lem. 4.10–4.11].

We now set out to show that the eigenfunction U
′
ε is, in fact, simple. As a technical

preparation, we obtain a lower bound on γε(U
′
ε), which will help us to exploit the

quasi-inverse constructed in Lemma 3.6.2.

Lemma 3.6.4. Assume that (HN1), (HN2), (HW1), (HW2), (HS1) and (HS2) are
satisfied. Then there exists a constant γ∗ > 0 so that the inequality

|γεU
′
ε| ≥ γ∗ (3.6.16)

holds for all sufficiently small ε > 0.

Proof. We note first that the limit U
′
ε → U

′
0 in L2 and the inequality 〈U ′e;0,Φ

adj
e;0 〉L2

e
6=

0 imply that there exists a constant ν∗ > 0 so that

|〈U ′ε, (0,Φ
adj
e;0 )〉L2 | ≥ ν∗ (3.6.17)

for all small ε > 0.

We now introduce the function

Ψε = Lqinv

ε U
′
ε. (3.6.18)

The uniform bound (3.6.14) shows that we may assume an a-priori bound of the form

‖Ψε‖L2 ≤ C ′1 (3.6.19)

for some C ′1 > 0.

For any sufficiently small δ > 0 and 0 < ε < ε0(δ), the explicit form of γε given in
[150, eq. (4.47)] implies that

γεU
′
ε =

〈
(0,Φadj

e;0 ),
(
Lε+δ

)−1(
U
′
ε+δΨε

)〉
L2〈

(0,Φadj
e;0 ),
(
Lε+δ

)−1
U
′
0

〉
L2

=

〈
(0,Φadj

e;0 ),δ−1U
′
ε+
(
Lε+δ

)−1
δΨε

〉
L2〈

(0,Φadj
e;0 ),
(
Lε+δ

)−1
U
′
0

〉
L2

.

(3.6.20)

Since
(
Lε + δ

)−1
δΨε is uniformly bounded in L2 for all sufficiently small δ > 0 and

0 < ε < ε0(δ) on account of Corollary 3.4.4 and (3.6.19), we can use the lower bound
(3.6.17) to assume that δ > 0 is small enough to have∣∣〈(0,Φadj

e;0 ), δ−1U
′
ε +

(
Lε + δ

)−1
δΨε

〉
L2

∣∣ ≥ C ′2δ
−1 (3.6.21)
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for all such (ε, δ). Moreover, the uniform bound in Corollary 3.4.4 also yields the upper
bound ∣∣〈(0,Φadj

e;0 ),
(
Lε + δ

)−1
U
′
0

〉
L2

∣∣ ≤ C ′3(1 + δ−1) (3.6.22)

for all such (ε, δ). This gives us the lower bound

|γεU
′
ε| ≥

C′2
C′3

δ−1

1+δ−1 ≥ γ∗ (3.6.23)

for some γ∗ > 0 that can be chosen independently of δ > 0.

Lemma 3.6.5. Assume that (HN1), (HN2), (HW1), (HW2), (HS1) and (HS2) are

satisfied. Then for all sufficiently small ε > 0 we have U
′
ε /∈ Range(Lε).

Proof. Arguing by contradiction, let us suppose that there exists Ψε ∈ H1 for which
the identity

LεΨε = U
′
ε (3.6.24)

holds. The observation above allows us to add an appropriate multiple of U
′
ε to Ψε to

ensure that 〈Ψε, (0,Φ
adj
e;0 )〉L2 = 0. In particular, Lemma 3.6.2 implies that

γεU
′
ε = 0, Lqinv

ε U
′
ε = Ψε, (3.6.25)

which immediately contradicts Lemma 3.6.4.

3.6.2 Spectral stability

Here we set out to establish the statements in Proposition 3.6.1 for λ /∈ 2πicεZ. In
contrast to the setting in [150], the period 2πicε can be uniformly bounded for ε ↓ 0.
In particular, we will only consider values of ε > 0 that are sufficiently small to ensure
that

3
4c0 < cε < 3

2c0 (3.6.26)

holds. Recalling the constant λ0 introduced in Proposition 3.4.2, this allows us to
restrict our spectral analysis to the set

R := {λ ∈ C : Reλ ≥ −λ0, |Imλ| ≤ 3
2πc0} \ {0}. (3.6.27)

On account of Lemma 3.4.6, the operators Lε,λ are all Fredholm with index 0 on this
set. We hence only need to establish their injectivity.

It turns out to be convenient to partition this strip into three ε-independent parts,
which we illustrate in Figure 3.2. The first part (red) contains values of λ that are close
to 0, which can be analyzed using the theory developed in §3.6.1. The second part
(blue) contains all values of λ for which Reλ is sufficiently large. Such values can be
excluded from the spectrum by straightforward norm estimates. The remaining part
(green) is compact, which allows us to appeal to Proposition 3.4.2.
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Figure 3.2: Illustration of the decomposition of the spectrum into ε-independent regions.

Lemma 3.6.6. Assume that (HN1), (HN2), (HW1), (HW2), (HS1) and (HS2) are
satisfied. There exists constants λI > 0 and εI > 0 so that the operator Lε,λ : H1 → L2

is injective for all λ ∈ C with 0 < |λ| < λI and 0 < ε < εI .

Proof. We argue by contradiction. Pick a small λI > 0 and 0 < ε < ε∗∗ and assume
that there exists Ψ ∈ H1 and 0 < |λ| < λI with Ψ 6= 0 and

LεΨ = λΨ. (3.6.28)

Aiming to exploit the quasi-inverse in Lemma 3.6.2, we use (3.6.17) to decompose Ψ as

Ψ = κU
′
ε + Ψ⊥ (3.6.29)

for some κ ∈ R and Ψ⊥ ∈ H1 that satisfies the normalisation condition

〈(0,Φadj
e;0 ),Ψ⊥〉L2 = 0. (3.6.30)

In view of Lemma 3.6.2, the identity (3.6.28) implies that

γε
[
κλU

′
ε + λΨ⊥

]
= 0, Lqinv

ε

[
κλU

′
ε + λΨ⊥

]
= Ψ⊥. (3.6.31)

On account of the uniform bound (3.6.14), we can assume that λI is small enough to
have

λI‖L
qinv

ε ‖B(L2;L2) < 1
2 . (3.6.32)

Since |λ| < λI , this means that we can rewrite (3.6.31) to obtain

Ψ⊥ =
[
I − λLqinv

ε

]−1Lqinv

ε

[
κλU

′
ε

]
. (3.6.33)
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In particular, the first identity in (3.6.31) allows us to write

0 = γε

[
κλU

′
ε + λ

[
I − λLqinv

ε

]−1Lqinv

ε

[
κλU

′
ε

]]
= κλγε

[
U
′
ε + λ

[
I − λLqinv

ε

]−1Lqinv

ε

[
U
′
ε

]]
.

(3.6.34)

We note that the restriction (3.6.32) ensures that the second identity in (3.6.31) has no
nonzero solutions Ψ⊥ for κ = 0. In particular, (3.6.34) implies that we must have

γεU
′
ε = −λγε

[[
I − λLqinv

ε

]−1Lqinv

ε

[
U
′
ε

]]
. (3.6.35)

On account of (3.6.14) we hence obtain the estimate

|γεU
′
ε| ≤ C ′1|λ| ≤ C ′1λI (3.6.36)

for some C ′1 > 0. However, Lemma 3.6.4 shows that the left-hand side remains bounded
away from zero, which yields the desired contradiction after restricting the size of λI .

Lemma 3.6.7. Assume that (HN1), (HN2), (HW1), (HW2), (HS1) and (HS2) are
satisfied. There exist constants λII > 0 and εII > 0 so that the operator Lε,λ : H1 → L2

is injective for all λ ∈ R with Reλ ≥ λII and 0 < ε < εII .

Proof. The identity Lε,λΦ = 0 implies that

cεΦ
′ = M1

1/ε2JmixΦ +DF (Uε)Φ− λΦ. (3.6.37)

Taking the inner product with M1,2
ε2 Φ, we may use Lemma 3.4.11 to obtain

0 ≤ −Re 〈JmixΦ,Φ〉L2

= Re 〈DF (Uε)Φ,M1,2
ε2 Φ〉L2 − Reλ

∥∥M1,2
ε Φ

∥∥
L2

≤ (KF − Reλ)
∥∥M1,2

ε Φ
∥∥
L2 .

(3.6.38)

For Reλ ≥ KF this hence implies Φ = 0, as desired.

Proof of Proposition 3.6.1. On account of Lemmas 3.6.3, 3.6.5-3.6.7, it remains to
consider the set

M = {λ ∈ R : |λ| ≥ λI ,Reλ ≤ λII}. (3.6.39)

Since this set satisfies (hMλ0
), we can apply Proposition 3.4.2 to show that for each

sufficiently small ε > 0, the operators Lε,λ are invertible for all λ ∈M .
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Chapter 4

Travelling wave solutions for
fully discrete
FitzHugh-Nagumo type
equations with infinite-range
interactions

Sections 4.1-4.5 and 4.A have been submitted as W.M. Schouten-Straatman and H.J.
Hupkes “Travelling wave solutions for fully discrete FitzHugh-Nagumo type equations
with infinite-range interactions” [152].

Abstract. We investigate the impact of spatial-temporal discretisation schemes
on the dynamics of a class of reaction-diffusion equations that includes the FitzHugh-
Nagumo system. For the temporal discretisation we consider the family of six backward
differential formula (BDF) methods, which includes the well-known backward-Euler
scheme. The spatial discretisations can feature infinite-range interactions, allowing us
to consider neural field models. We construct travelling wave solutions to these fully dis-
crete systems in the small time-step regime by viewing them as singular perturbations
of the corresponding spatially discrete system. In particular, we refine the previous
approach by Hupkes and Van Vleck for scalar fully discretised systems, which is based
on a spectral convergence technique that was developed by Bates, Chen and Chmaj.
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Key words: Travelling waves, FitzHugh-Nagumo system, singular perturbation, spatial-
temporal discretisation.

4.1 Introduction

In this paper, we consider spatial-temporal discretisations of a class of reaction-diffusion
systems that contains the FitzHugh-Nagumo partial differential equation (PDE). This
PDE is given by

ut = uxx + g(u; r)− w

wt = ρ(u− γw).
(4.1.1)

Here g is the bistable, cubic nonlinearity g(u; r) = u(1−u)(u− r) with r ∈ (0, 1), while
ρ > 0 and γ > 0 are positive constants. In particular, our goal is to show that travelling
waves for the system (4.1.1) persist under these spatial-temporal discretisations. As
such, we contribute to the broad study of numerical schemes and their impact on the
solutions under consideration, which has produced an immense quantity of literature.
The main distinguishing feature is that we are interested in structures that persist for
all time, while almost all of the studies in this area focus on finite time estimates.

Pulse propagation The system (4.1.1) was introduced in the 1960s [74, 76] as a
simplification of the Hodgkin-Huxley equations, which were used to describe the prop-
agation of spike signals through the nerve fibers of giant squids [98]. After observing
similar pulse solutions for the system (4.1.1) numerically [75], a more rigorous, analyt-
ical approach to understanding these pulse solutions turned out to be rather delicate.
Indeed, many new tools have been developed, some even very recently, to construct
these pulses and analyse their stability in various settings. These techniques include
geometric singular perturbation theory [31, 97, 117, 119], the variational principle [36],
Lin’s method [32, 33, 124], and the Maslov index [46, 47]. Pulse solutions for the system
(4.1.1) take the form

(u,w)(x, t) = (u0, w0)(x+ c0t) (4.1.2)

for some wavespeed c0 and smooth wave profiles u0, w0 that satisfy the limits

lim
|ξ|→∞

(u0, w0)(ξ) = 0. (4.1.3)

Spatially discrete systems It is well-known that electrical pulses can only move
through nerve fibres at appropriate speeds if the nerves are insulated with a myelin
coating. This coating admits regularly spaced gaps at the so-called nodes of Ranvier
[143]. In fact, through a process called saltatory conduction, excitations of these nerves
appear to jump from one node to the next [127]. Since the FitzHugh-Nagumo PDE
(4.1.1) does not take this discrete structure into account directly, it has been proposed
[123] to, instead, model these phenenomena using a so-called lattice differential equation
(LDE). For example, by applying a nearest-neighbour spatial discretisation to (4.1.1),
we arrive at

u̇j = τ(uj+1 + uj−1 − 2uj) + g(uj ; r)− wj
ẇj = ρ[uj − γwj ],

(4.1.4)
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where the variable j ranges over the lattice Z. In the system (4.1.4), the variable uj
represents the potential at the jth node of the nerve fibre, while the variable wj de-
scribes a recovery component. Finally, we have τ ∼ h−2, where h > 0 is the distance
between subsequent nodes. We emphasize that the time variable remains continuous.

Spatialy discrete travelling pulses for the system (4.1.4) take the form

(u,w)j(t) = (u0, w0)(j + c0t), (4.1.5)

for some wavespeed c0, again with the limits (4.1.3). Plugging the Ansatz (4.1.5) into
the LDE (4.1.4) yields the functional differential equation of mixed type (MFDE)

c0u
′
0(ξ) = τ [u0(ξ + 1) + u0(ξ − 1)− 2u0(ξ)] + g(u0(ξ); r)− w0(ξ)

c0w
′
0(ξ) = ρ[u0(ξ)− γw0(ξ)]

(4.1.6)

in which ξ = j+ c0t. In [108, 109], Hupkes and Sandstede developed an infinite dimen-
sional version of the exchange lemma to show that the system (4.1.4) admits nonlinearly
stable travelling pulse solutions. They relied heavily on the existence of exponential di-
chotomies for MFDEs, which were established in [96, 133]. In addition, we established
the existence and nonlinear stability of pulse solutions for a spatially periodic version
of (4.1.4) [151] by building on a spectral convergence method developed by Bates, Chen
and Chmaj [6]. The spectral convergence method plays an important role in this paper
as well and will be treated in more detail later on.

Infinite-range interactions Neural field models aim to describe the dynamic be-
haviour of large networks of neurons. In neural networks, neurons interact with each
other over large distances through their interconnecting nerve axons [15, 23, 24, 142].
It has been proposed [23, Eq. (3.31)] to capture these long distance interactions using
an infinite-range version of the system (4.1.4). To be concrete, we focus our discussion
on the prototype system

u̇j = τ
∑

m∈Z>0

e−m
2

[uj+m + uj−m − 2uj ] + g(uj ; r)− wj

ẇj = ρ[uj − γwj ].
(4.1.7)

This system can also be obtained directly from the PDE (4.1.1) by using an infinite-
range spatial discretisation.

We emphasize that infinite-range interactions also arise naturally when considering
discretisations of fractional Laplacians [43]. Indeed, such operators are intrinsically
nonlocal and are used in many physical systems that feature nonstandard diffusion
processes, such as amorphous semiconductors [87] and liquid crystals [44].

Substituting the travelling pulse Ansatz (4.1.5) into (4.1.7) now yields the MFDE

c0u
′
0(ξ) = τ

∑
m∈Z>0

e−m
2

[u0(ξ +m) + u0(ξ −m)− 2u0(ξ)] + g(u0(ξ); r)− w0(ξ)

c0w
′
0(ξ) = ρ[u0(ξ)− γw0(ξ)],

(4.1.8)
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which features infinitely many shifts. Since exponential dichotomies for MFDEs with
infinitely many shifts have only been established very recently [149], the techniques
used by Hupkes and Sandstede for the LDE (4.1.4) have not yet been fully developed
for the system (4.1.8). Instead, Faye and Scheel [69] used a functional analytic approach
to construct pulse solutions for the system (4.1.7). In addition, by applying the previ-
ously mentioned spectral convergence method, we were able to show that these pulses
are nonlinearly stable [150] for τ � 1, which corresponds to fine discretisations of the
PDE (4.1.1). As of now, no comprehensive result has been found for the system (4.1.7).

Spatial-temporal discretisations Our main goal here is to understand the impact
of temporal discretisation schemes on the behaviour of travelling wave solutions of the
system (4.1.7). This is a relatively novel area of study, although a handful of results
have been established for scalar problems. For example, Bambusi, Faou, Greébert and
Jézéquel constructed solutions to fully discrete Schrödinger equations with Dirichlet or
periodic spatial boundary conditions in [4, 64]. Most other studies have focused on
spatial-temporal discretisations of the Nagumo PDE

ut = uxx + g(u; r), (4.1.9)

or, equivalently, temporal discretisations of the Nagumo LDE

u̇j = τ(uj+1 + uj−1 − 2uj) + g(uj ; r). (4.1.10)

The PDE (4.1.9) and the LDE (4.1.10) can be seen as scalar versions of the FitzHugh-
Nagumo PDE (4.1.1) and LDE (4.1.4) respectively.

The early works by Elmer and Van Vleck [58–60] provided ad-hoc techniques to un-
derstand the impact of spatial-, temporal- and spatial-temporal discretisations of the
PDE (4.1.9) on the dynamics of travelling waves. In addition, Chow, Mallet-Paret and
Shen [42] established the existence of travelling wave solutions to temporal discretisa-
tions of the LDE (4.1.10) by considering Poincare return maps for the dynamics of this
LDE. These results were later expanded by Hupkes and Van Vleck [111], whose meth-
ods allowed them to address issues of uniqueness and parameter-dependence. Let us
also mention the recent series of papers [112–114] by Hupkes and Van Vleck, who study
spatial discretisation schemes with an adaptive grid. That is, the authors consider a
time dependent moving mesh method which aims to equidistribute the arclength of the
solution under consideration.

In order to introduce the temporal discretisation schemes that we study in this
paper, we briefly discuss the test problem

v̇ = λv (4.1.11)

with λ < 0. Applying the forward-Euler discretisation scheme with time-step ∆t > 0
yields

vn+1 = vn + λ∆tvn = (1 + λ∆t)vn, (4.1.12)
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where n ∈ Z. Since a nontrivial solution of the test problem (4.1.11) converges to zero
as t → ∞, the convergence vn → 0 should also be enforced. However, this yields the
restriction 0 < ∆t < 2|λ|−1, which cannot be satisfied for all λ < 0 for a fixed time-step
∆t > 0. In contrast, these issues do not occur for the backward-Euler discretisation
scheme. For the test problem (4.1.11), this scheme yields

vn+1 = vn + λ∆tvn+1, (4.1.13)

or equivalently
vn+1 = (1− λ∆t)−1vn. (4.1.14)

In particular, we see that vn → 0 for any value of λ < 0 and time-step ∆t > 0. A
numerical scheme is called A(α) stable if this property holds for all λ in the wedge
{z ∈ C \ {0} : Arg(−z) < α}. We note that the backward-Euler discretisation is A(π2 )
stable.

In fact, the backward-Euler discretisation scheme is one of six so-called backwards
differentiation formula (BDF) methods. These BDF methods are all A(α) stable for
various coefficients 0 < α ≤ π

2 and have several convenient analytical properties. For
this reason, we have to chosen to focus on these temporal discretisation schemes in this
paper. We do, however, emphasize that there are other stable discretisation schemes
which we could have used, see for example [90].

Applied to the Nagumo system, the backward-Euler discretisation scheme yields the
evolution

1
∆t

[
Uj(n∆t)− Uj

(
(n− 1)∆t

)]
= τ

[
Uj+1 + Uj−1 − 2Uj

]
(n∆t) + g

(
Uj(n∆t); r

)
.

(4.1.15)
A travelling wave solution for the system (4.1.15) with wavespeed c takes the form

Uj(n∆t) = Φ(j + nc∆t), (4.1.16)

with the limits
lim

ξ→−∞
Φ(ξ) = 0, lim

ξ→∞
Φ(ξ) = 1. (4.1.17)

As such, the travelling waves need to satisfy the system

1
∆t

[
Φ(ξ)− Φ(ξ − c∆t)

]
= τ

[
Φ(ξ + 1) + Φ(ξ − 1)− 2Φ(ξ)

]
+ g(Φ(ξ); r). (4.1.18)

Hupkes and Van Vleck showed [111] that, for sufficiently large, rational values of
M = (c∆t)−1, the system (4.1.15) admits travelling wave solutions with wavespeed
c. These travelling waves are constructed as perturbations of travelling wave solutions
of the LDE (4.1.10). The corresponding transition from the semi-discrete setting to the
fully discrete setting is highly singular, since a derivative is replaced by a difference.
The rationality of M plays a key role here, as it ensures that the domain of the variable
ξ in the system (4.1.18) is a discrete subset of the real line. This restriction arises
naturally in the analysis, since it ensures we can use finitely many interpolations to go
from a fully discrete to a spatially discrete setting.
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Spectral convergence In order to analyse this singular perturbation, Hupkes and
Van Vleck relied heavily on the previously mentioned spectral convergence method,
which also plays an important role in [9, 112–114, 150, 151]. This method was in-
troduced in [6] to construct travelling wave solutions to an infinite-range version of
the Nagumo LDE (4.1.10) in the near-continuum regime, i.e. when the discretisation

distance h ∼ τ−
1
2 is sufficiently small. A key role in [6] is reserved for the family of

operators

Lhv(ξ) = c0v
′(ξ)− 1

h2

[
v(ξ + h) + v(ξ − h)− 2v(ξ)

]
− gU (u0(ξ); r)v(ξ), (4.1.19)

which arise as the linearization of the travelling wave MFDE corresponding to the LDE
(4.1.10) around the travelling wave solution (c0, u0) to the PDE (4.1.9). The main
question is what properties these operators inherit from their continuous counterpart

L0v(ξ) = c0v
′(ξ)− v′′(ξ)− gU (u0(ξ); r)v(ξ). (4.1.20)

In particular, the authors in [6] fixed a constant δ > 0 and used the invertibility of
the operator L0 + δ to establish the invertibility of the operator Lh + δ for h > 0
sufficiently small. Indeed, they considered weakly converging sequences {vn} and {wn}
with Lhvn+δvn = wn and tried to find a uniform (in h and δ) lower bound on the norm
of v′n in terms of the norm of wn. Such a lower bound prevents the limitless transfer of
energy into oscillatory modes, a common concern when dealing with weakly converging
sequences. The bistable nature of the nonlinearity g was used to control the behaviour
at ±∞, while the local L2-norm can be bounded on the remaining compact set. We
emphasize that this method requires a detailed understanding of the limiting operator
L0.

In [111], this method was lifted to the fully discrete Nagumo equation (4.1.18).
Writing M = p

q with gcd(p, q) = 1, the corresponding limiting operator resembles a q

times coupled version of the operator Lh given by (4.1.19). For q = 2, this limiting
operator takes the form

Kqv(ζ, ξ) = cv′(ζ, ξ)− τ
[
v(ζ + 1

2 , ξ + 1) + v(ζ − 1
2 , ξ − 1)− 2v(ζ, ξ)

]
−gU (u(ξ); r)v(ζ, ξ),

(4.1.21)

where u is the travelling wave solution of the LDE (4.1.10) with wavespeed c. Here
the domain of the variables ζ and ξ is given by ζ ∈ {0, 1

2} and ξ ∈ R, with the
convention that v(ζ+1, ξ) = v(ζ, ξ). Since the MFDE corresponding to (4.1.21) admits
a comparison principle, the Fredholm properties of the operator Kq follow directly from
the general results in [110]. Hupkes and Van Vleck generalized the spectral convergence
method to lift the Fredholm properties of the operator Kq to the operator

KMv(ζ, ξ) = cM
[
v(ζ, ξ)− v(ζ, ξ −M−1)

]
−τ
[
v(ζ + 1

2 , ξ + 1− 1
2M

−1) + v(ζ − 1
2 , ξ − 1 + 1

2M
−1)− 2v(ζ, ξ)

]
−gU

(
u(ξ); r

)
v(ζ, ξ),

(4.1.22)
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in the regime M � 1, again with ζ ∈ {0, 1
2} and ξ ∈ 1

2M
−1Z. The operator KM arises

as the linearisation of the fully discrete system (4.1.18) around the travelling wave u,
using the additional ζ variable to ensure that all ξ-shifted arguments are multiples of
M−1 .

Results In this paper, we consider reaction-diffusion LDEs such as (4.1.7) and replace
the temporal derivative by one of the six BDF discretisation schems. For example,
applying the backward-Euler method to (4.1.7), we arrive at the prototype system

1
∆t [Uj(n∆t)− Uj((n− 1)∆t)] = τ

∞∑
m=1

e−m
2[
Uj+m + Uj−m − 2Uj

]
(n∆t)

+g(Uj(n∆t); r)−Wj(n∆t)

1
∆t [Wj(n∆t)−Wj((n− 1)∆t)] = ρ[Uj(n∆t)− γWj(n∆t)].

(4.1.23)
Our main result states that systems such as (4.1.23) admit travelling wave solutions.
To achieve this, we extend the spectral convergence method that was developed in [111]
for scalar LDEs with finite-range spatial interactions to the current setting, which fea-
tures multi-component systems with infinite-range interactions. This generalisation is
far from trivial and requires several technical obstructions to be resolved.

The first main obstacle is that the spectral convergence method hinges on the un-
derstanding of the corresponding limiting operator. Indeed, the analog of the operator
Kq from (4.1.21) for our system (4.1.23) does not admit a comparison principle, since
this is not available for FitzHugh-Nagumo type systems. As such, very limited a-priori
knowledge is available for this limiting operator, which forces us to prove many of its
properties from scratch. For this, we mainly employ techniques from harmonic analysis.

The second main obstacle is that the system setting introduces several cross-terms
that need to be controlled. Several key techniques from our earlier works [150, 151]
concerning spatially discrete systems can be adjusted to handle these cross-terms in
the present fully-discrete setting. However, several crucial points in the analysis still
require these terms to be handled with special care.

The remaining obstacles are directly related to the infinite-range interactions, which
introduce several convergence issues that need to be overcome. It also requires us to
establish more refined estimates on the decay rates of solutions to our limiting MFDE.
We achieve this by employing an explicit representation of the corresponding inverse
linear operator that was first introduced in [150].

Loss of uniqueness In [111], Hupkes and Van Vleck extensively studied the unique-
ness and parameter-dependence of the travelling wave solutions of (4.1.15). The key
observation is that the rationality of the variable M = (c∆t)−1 breaks the translational
symmetry in the travelling wave problem, potentially allowing a family of solutions to
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exist. For example, one can apply an irrational phase shift to the continuous wave-
profiles for (4.1.10) that underlies the perturbation argument discussed above. In this
fashion, one could construct a different fully discrete wave for the same detuning pa-
rameter value r in the nonlinearity g(·; r). However, this is a very delicate issue. In
particular, M = (c∆t)−1 is fixed in the analysis, so additional work is required to ob-
tain results for fixed time-steps ∆t > 0.

For the backward-Euler discretisation scheme, this nonuniqueness can be made fully
rigorous. In particular, Hupkes and Van Vleck showed that, for a fixed time step ∆t > 0
both the r(c) relation and the c(r) relation can be multi-valued. In particular, for a
fixed value of c there can be multiple values of r for which a solution to the system
(4.1.15) exists and vice-versa. This can be achieved by embedding the system (4.1.18)
into an MFDE that admits a comparison principle, allowing it to be analysed using the
techniques developed by Keener [122] and Mallet-Paret [131].

By contrast, the c(r) relation for travelling wave solutions to the PDE (4.1.9) and
the LDE (4.1.10) are both single-valued. The same holds for the r(c) relation, with
the single exception that it can be multi-valued for (4.1.10) in the special case c = 0
[57, 99]. This reflects the well-known wave-pinning phenomenon caused by the broken
translational symmetry of the lattice [16, 56, 62, 99, 122, 132].

In this paper we study the r(c) and the c(r) relation for a fully-discrete version of
the FitzHugh-Nagumo system. For the corresponding PDE (4.1.1) and LDE (4.1.4),
numerical evidence [34, 125] suggests that both these relations are at most 2-valued.
In addition, theoretical results [32] for this PDE usually yield a locally unique r(c)
relation. For the system (4.1.23) a comparison principle is not available, rendering a
direct analysis similar to the one in [111] infeasible. Instead, we run several numerical
simulations to investigate these issues. These computations indicate that both the r(c)
and the c(r) relation are typically multi-valued. Indeed, the points (r, c) points at which
we were able to find solutions appear to map onto a surface instead of a curve. That is,
there exists an entire spectrum of travelling wave solutions with different wavespeeds
to the same fully discrete system.

4.2 Main result

Our main goal is to study the impact of several important temporal discretisation
schemes on travelling wave solutions of reaction-diffusion LDEs of the form

U̇j = τ
∑
m>0

αm[Uj+m + Uj−m − 2Uj ] + G(Uj ; r). (4.2.1)

This LDE is posed on the one-dimensional lattice j ∈ Z, but may have multiple com-
ponents in the sense that Uj ∈ Rd for some integer d ≥ 1. We start by discussing
the structural conditions that we impose on the LDE (4.2.1) and its travelling wave
solutions in §4.2.1 respectively §4.2.2. In §4.2.3 we introduce the appropriate temporal
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discretisation schemes and formulate our main result. Finally, we discuss some nu-
merical results concerning the nonuniqueness of the fully discrete travelling waves in
§4.2.4.

4.2.1 The spatially discrete system

Besides a handful of exceptions [6, 68, 69, 88, 149, 150], almost all results concerning
LDEs of the form (4.2.1) assume that only finitely many of the coefficients αm in
(4.2.1) are nonzero. However, following [6, 150], we will impose the following much
weaker conditions.

Assumption (HS1). The coefficients {αm}m∈Z>0
are diagonal d × d matrices and

τ > 0 is a positive constant. There exists 1 ≤ ddiff ≤ d so that for each 1 ≤ i ≤ ddiff we

have α
(i,i)
m 6= 0 for some m ∈ Z>0, while α

(j,j)
n = 0 for all n ∈ Z>0 and all ddiff < j ≤ d.

The coefficients {αm}m∈Z>0
satisfy the bound∑

m>0
|αm|emν < ∞ (4.2.2)

for some constant ν > 0, as well as the identity∑
m>0

α
(i,i)
m m2 = 1 (4.2.3)

for each 1 ≤ i ≤ ddiff . Finally, the inequality

Ai(z) :=
∑
m>0

α
(i,i)
m

(
1− cos(mz)

)
> 0 (4.2.4)

holds for all z ∈ (0, 2π) and all 1 ≤ i ≤ ddiff .

In particular, the diffusion matrices {αm}m∈Z>0 only act directly on the first ddiff

components of Uj . For example, for the FitzHugh-Nagumo LDE

u̇j = τ
∑
m>0

αm[uj+m + uj−m − 2uj ] + uj(1− uj)(uj − r)− wj

ẇj = ρ
[
uj − γwj

]
,

(4.2.5)

we have d = 2 and ddiff = 1, while for the Nagumo LDE

u̇j = τ
∑
m>0

αm[uj+m + uj−m − 2uj ] + uj(1− uj)(uj − r) (4.2.6)

we have d = ddiff = 1.

We note that (4.2.4) is automatically satisfied if α
(i,i)
m ≥ 0 for all m ∈ Z>0 and

α
(i,i)
1 6= 0. The conditions in (HS1) ensure that for φ ∈ L∞(R;R) with φ′′ ∈ L2(R;R)

and 1 ≤ i ≤ ddiff , we have the limit

lim
h↓0
‖ 1
h2

∑
m>0

α
(i,i)
m

[
φ(·+ hm) + φ(· − hm)− 2φ(·)

]
− φ′′‖L2(R;R) = 0; (4.2.7)
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see [6, Lem. 2.1]. In particular, (HS1) ensures that (4.2.5) can be interpreted as the
spatial discretisation of the FitzHugh-Nagumo PDE (4.1.1) on a grid with distance h,
where τ = 1

h2 . Additional remarks concerning this assumption in the scalar case d = 1
can be found in [6, §1].

We now turn to the spatially homogeneous equilibrium solutions to (4.2.1), which
are roots of the nonlinearity G. We will assume that there are two r-independent
equilibria P±, but emphasize that they are allowed to be identical.

Assumption (HS2). The parameter dependent nonlinearity G : Rd × (0, 1) → Rd is
C2-smooth. There exist P± ∈ Rd so that G(P±; r) = 0 holds for all r ∈ (0, 1).

The temporal stability of these two equilibria P± plays an essential and delicate
role in our analysis. Indeed, it does not suffice to simply require that the eigenvalues of
DG(P±) have strictly negative real parts, see the proof of [151, Lem. 4.6] for details.
Following [151], we consider two auxiliary assumptions on the triplet (G, P−, P+) to
address this issue. Recalling the constant 1 ≤ ddiff ≤ d from (HS1), we first write
DG(U ; r) in the block form

DG(U ; r) =

(
G[1,1](U ; r) G[1,2](U ; r)
G[2,1](U ; r) G[2,2](U ; r)

)
(4.2.8)

for any U ∈ Rd and r ∈ (0, 1), taking DG[1,1](U ; r) ∈ Rddiff×ddiff .

Assumption (HS3r). The triplet (G, P−, P+) satisfies at least one of the following
conditions.

(a) The matrices −DG(P−; r) and −DG(P+; r) are positive definite.

(b) The matrices −G[1,1](P−; r),−G[1,1](P+; r),−G[2,2](P−; r) and −G[2,2](P+; r) are
positive definite. In addition, there exists a constant Γ > 0 so that G[1,2](U ; r) =
−ΓG[2,1](U ; r)T holds for all U ∈ Rd.

To illustrate these assumptions, we consider the nonlinearity

Gfhn(u,w; r) =

(
u(1− u)(u− r)− w

ρ
[
u− γw

] )
(4.2.9)

corresponding to the FitzHugh-Nagumo LDE (4.2.5). The triplet (Gfhn, 0, 0) can easily
be seen to satisfy (HS3r(b)) with Γ = 1

ρ . However, when r > 0 is sufficiently small the

Jacobian DGfhn(0; r) has a pair of complex eigenvalues with negative real part. In this
case, the condition (HS3r(a)) may fail to hold.

4.2.2 Spatially discrete travelling waves

Our final two assumptions for (4.2.1) concern the existence and stability of travelling
wave solutions that connect the equilibria P− and P+. These solutions take the form

Uj(t) = U0(j + c0t) (4.2.10)
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for some smooth profile U0 and nonzero wavespeed c0. Substituting the Ansatz (4.2.10)
into (4.2.1) and writing ξ = j + c0t, we see that the pair (c0, U0) must satisfy the
travelling wave MFDE

c0U
′
0(ξ) = τ

∑
m>0

αm

[
U0(ξ +m) + U0(ξ −m)− 2U0(ξ)

]
+ G

(
U0(ξ); r

)
, (4.2.11)

together with the boundary conditions

lim
ξ→±∞

U0(ξ) = P±. (4.2.12)

Assumption (HW1r). There exists a waveprofile U0 and a wavespeed c0 6= 0 that
solve the travelling wave MFDE (4.2.11) for r = r, together with the boundary condi-
tions (4.2.12).

We now turn to the spectral stability of these travelling wave solutions. To this end,
we introduce the operator L0 : H1(R;Rd)→ L2(R;Rd) for the linearisation of (4.2.11)
around the travelling wave U0, which acts as

L0 = c0∂ξ −∆0 −DUG
(
U0; r

)
. (4.2.13)

Here the operator ∆0 : L2(R;Rd)→ L2(R;Rd) is given by

∆0 = τ
∑
m>0

αm

[
Tm0 + T−m0 − 2

]
, (4.2.14)

where

(T0Φ)(ξ) = Φ(ξ + 1). (4.2.15)

In addition, we introduce the formal adjoint L∗0 : H1(R;Rd) → L2(R;Rd) of L0 that
acts as

L∗0 = −c0∂ξ −∆0 −DUG
(
u0; r

)T
. (4.2.16)

We remark that the spectrum of L0 is 2πic0-periodic on account of the identity(
L0 + λ

)
e2πi· = e2πi·(L0 + λ+ 2πic0

)
, (4.2.17)

see [150, Lem. 5.1]. We impose the following condition on the spectral properties of
this operator L0.

Assumption (HW2r). There exist functions Φ±0 ∈ H1(R;Rd), together with a con-
stant λ̃ > 0 so that the following properties hold for the LDE (4.2.1) with r = r.

(i) We have the identity

Φ+
0 = U

′
0, (4.2.18)

together with the normalisation

〈Φ+
0 ,Φ

−
0 〉L2(R;Rd) = 1. (4.2.19)
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(ii) The spectrum of the operator −L0 in the half-plane {z ∈ C : Re z ≥ −λ̃} consists
precisely of the points 2πimc0 with m ∈ Z, which are all eigenvalues of L0.
Moreover, we have the identities

ker(L0) = span{Φ+
0 }

= {g ∈ L2(R;Rd) : 〈g,Ψ〉L2(R;Rd) = 0 for all Ψ ∈ Range(L∗0)}
(4.2.20)

and

ker(L∗0) = span{Φ−0 }

= {g ∈ L2(R;Rd) : 〈g,Ψ〉L2(R;Rd) = 0 for all Ψ ∈ Range(L0)}.
(4.2.21)

Recall that an eigenvalue λ of a Fredholm operator L is said to be simple if the
kernel of L−λ is spanned by one vector v and the equation (L−λ)w = v does not have
a solution w. Note that if L has a formal adjoint L∗, this is equivalent to the condition
that 〈v, w〉 6= 0 for all nontrivial w ∈ ker(L∗ − λ). In particular, the normalisation
(4.2.19) implies that the eigenvalues 2πic0Z are all simple eigenvalues of −L0.

For the FitzHugh-Nagumo system (4.2.5), the assumptions (HW1r) and (HW2r)
are both satisfied for all sufficiently small discretisation distances h > 0 and sufficiently
small ρ > 0, see [150, Thm. 2.1, Thm. 2.2, Prop. 4.2]. If the shifts have finite-range,
i.e. αm = 0 for all sufficiently large m, then these assumptions are satisfied [108, Thm.
1]-[109, Prop. 5.1] for sufficiently small ρ > 0 without any restriction on the discretisa-
tion distance h. There are, however, conditions on r and γ in both cases.

4.2.3 The fully discrete system

We aim to approximate solutions to (4.2.1) at discrete time intervals t = n∆t by

Uj(n∆t) ∼Wj(n∆t). (4.2.22)

We need to apply an appropriate discretisation scheme to the temporal derivative in
(4.2.1). Although there are many different approximation schemes available, we mainly
focus on the six so-called BDF methods. These methods are based on interpolation
polynomials of different degrees. In particular, the BDF method of order k ∈ {1, 2, ..., 6}
approximates U ′ in (4.2.1) at t = n∆t by first constructing an interpolating polynomial
of degree k through the k + 1 points {W ((n − n′)∆t)}kn′=0 and then computing the
derivative of this polynomial at W (n∆t). As such, the temporal discretisations of the
LDE (4.2.1) under consideration are of the form

β−1
k

1
∆t

k∑
n′=0

µn′;kWj

(
n∆t− (k − n′)∆t

)
= τ

∑
m>0

αm[Wj+m(n∆t) +Wj−m(n∆t)

−2Wj(n∆t)]

+G
(
Wj(n∆t); r

)
.

(4.2.23)
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µn;k k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

n = 0 −1 1
3 − 2

11
3
25 − 12

137
10
147

n = 1 1 − 4
3

9
11 − 16

25
75
137 − 72

147

n = 2 1 − 18
11

36
25 − 200

137
225
147

n = 3 1 − 48
25

300
137 − 400

147

n = 4 1 − 300
137

450
147

n = 5 1 − 360
147

n = 6 1

βk 1 2
3

6
11

12
25

60
137

60
147

Table 4.1: The coefficients µn;k and βk associated to the BDF discretisation schemes as given
by (4.2.24).

The coefficients βk and {µn;k} in (4.2.23) are given implicitly by the identities

k∑
n=0

µn;kv
(
(n− k)∆t

)
=

k∑
n′=1

[∂n
′
v](0),

βk =
k∑

n=0
µn;k(n− k),

(4.2.24)

which must hold for any scalar function v. Here we have introduced the notation

[∂v](n∆t) = v
(
n∆t

)
− v
(
(n− 1)∆t

)
. (4.2.25)

This definition yields that
k∑

n=0
µn;k = 0, which allows us to identify

βk =
k∑

n=0
µn;k(n−m) =

k∑
n=1

µn;kn. (4.2.26)

For convenience, the values of the coefficients βk and µn;k can be found in Table 4.1.
We note that the BDF method of order 1 is the well-known backward-Euler method.

Our main goal is to study travelling wave solutions to the fully discrete system
(4.2.23), utilizing our assumptions for the spatially discrete system (4.2.1). Such solu-
tions are given by the Ansatz

Wj(n∆t) = Φ(j + nc∆t), (4.2.27)

for some wave speed c and profile Φ with the boundary conditions

Φ(±∞) = P±, (4.2.28)
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in a sense that we make precise below.

For notational convenience, we introduce the quantity M = (c∆t)−1. Substituting
the Ansatz (4.2.27) into (4.2.23) yields the system

c[Dk,MΦ](ξ) = τ
∑
m>0

αm[Φ(ξ +m) + Φ(ξ −m)− 2Φ(ξ)] + G
(
Φ(ξ); r

)
, (4.2.29)

for all ξ that can be written as ξ = n+ jM−1 for (j, n) ∈ Z2. Here we have introduced
the discrete derivatives

[Dk,MΦ](ξ) = β−1
k M

k∑
n′=0

µn′;kΦ
(
ξ − (k − n′)M−1

)
, (4.2.30)

for k ∈ {1, 2, ..., 6}. From [111, eq. (2.13)] we obtain the useful estimate

|[Dk,MΦ](ξ)− Φ′(ξ)| ≤ ClM
−l sup−kM−1≤θ≤0 |Φ(l+1)(ξ + θ)|, (4.2.31)

for all integers 1 ≤ l ≤ k and all Φ ∈ Cl+1(R;Rd), in which the constant Cl ≥ 1 is
independent of k, Φ and M . Indeed, this estimate shows that the regular derivative can
be approximated by the discrete derivatives as the time step ∆t shrinks to zero. We
emphasize that BDF discretisation schemes of order k ≥ 2 do not allow for a compari-
son principle, even when the original LDE does allow for one. This is a consequence of
the existence of coefficients µn;k > 0 that have n < k.

Most of our results, including our main theorem, require a restriction on the values
of M that are allowed. In particular, upon fixing an integer q ≥ 1, we introduce the set

Mq = {pq : p ∈ N has gcd(p, q) = 1 and p ≥ q}. (4.2.32)

Often, we introduce M = p
q ∈Mq, which implicitly defines the integer p = p(M) = qM .

Moreover, we see that the natural domain for the values of ξ in the system (4.2.29), as
well as in the boundary conditions (4.2.28), is precisely the set p−1Z.

Theorem 4.2.1. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers 1 ≤ k ≤ 6 and
q ≥ 1. Then there exist constants M∗ � 1 and δr > 0 so that for any M = p

q ∈ Mq

with M ≥M∗, there exist continuous functions

cM : R× [r − δr, r + δr] → R,

UM : R× [r − δr, r + δr] → `∞(p−1Z;Rd)
(4.2.33)

that satisfy the following properties.

(i) For any (θ, r) ∈ R × [r − δr, r + δr], the pair c = cM (θ, r) and U = UM (θ, r)
satisfies the system

c[Dk,MU ](ξ) = τ
∑
m>0

αm[U(ξ +m) + U(ξ −m)− 2U(ξ)] + G
(
U(ξ); r

)
(4.2.34)

for ξ ∈ p−1Z, together with the boundary conditions

lim
ξ→±∞,ξ∈p−1Z

U(ξ) = P±. (4.2.35)
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(ii) For any (θ, r) ∈ R × [r − δr, r + δr], the solution U = UM (θ, r) admits the
normalisation∑

ξ∈p−1Z

[〈
Φ−0 (ξ + θ), U(ξ)− U0(ξ + θ)

〉
Rd

]
= 0. (4.2.36)

(iii) For any (θ, r) ∈ R× [r − δr, r + δr], we have the shift-periodicity

cM (θ + p−1, r) = cM (θ, r),

UM (θ + p−1, r)(ξ) = UM (θ, r)(ξ + p−1).
(4.2.37)

In addition, there exists δ > 0 such that the following holds true. Any triplet (c, U, θ) ∈
R× `∞(p−1Z;Rd)× R that satisfies (4.2.34) for some pair (r,M) ∈ (0, 1)×Mq with

|r − r| < δ, M = p
q > δ−1 ≥ M∗ (4.2.38)

and also enjoys the estimate

p−1
∑

ξ∈p−1Z

[
|U(ξ)− U0(ξ + θ)|2 + |Dk,MU(ξ)−Dk,MU0(ξ + θ)|2

]
< δ2,

(4.2.39)
must actually satisfy c = cM (θ̃, r) and U = UM (θ̃, r) for some θ̃ ∈ R.

The factor p−1 in (4.2.39) is used to compensate the growing number of terms as
p→∞. In particular, we can view this as a uniqueness result with respect to a scaled
L2-norm that will be specified later.

4.2.4 Nonuniqueness and numerical examples

Fixing r ∈ [r−δr, r+δr], M = p
q ≥M∗ and θ ∈ R, the travelling wave (cM (θ, r), UM (θ, r))

is constructed as a perturbation of the travelling wave (c0, U0(· + θ)) on the domain
p−1Z. Since the wave profiles U0(·+θ) and U0(·+θ+p−1) are simply translates of each
other on this domain, the shift-periodicity (4.2.37) follows easily. However, it is not
clear how, specifically, the travelling wave depends on θ. Indeed, in [111, §5], Hupkes
and Van Vleck show that it is reasonable to expect that the derivative ∂θcM (θ, r) is
exponentially small in M . As such, it is unclear how to further analyse this dependence.

We emphasize that in general the travelling wave solution will not necessarily be
unique, even up to translation. In particular, fixing θ ∈ (0, p−1), we note that the waves
U0 and U0(·+ θ) are different on the domain p−1Z. One might be tempted to conclude
that if M is sufficiently large, the wave profiles UM (0, r) and UM (θ, r) are different
as well. However, a larger value of M means that the grid p−1Z becomes finer. In
particular, since the travelling waves UM (0, r) and UM (θ, r) are perturbations of the
waves U0 and U0(·+ θ), it could be that these perturbations cancel out the difference
between U0 and U0(·+ θ).
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In addition, since the constant M = (c∆t)−1 is fixed in the statement of Theorem
4.2.1, fluctuations in c automatically lead to changes in ∆t. This complicates our un-
derstanding of the fully discrete system for a fixed timestep ∆t > 0. Our main goal
here is to show that the wavespeed c and the detuning parameter r do not depend on
each other in a locally unique fashion, which is in major contrast to the corresponding
continuous and semi-discrete systems.

However, the lack of a comparison principle for FitzHugh-Nagumo systems heavily
complicates a direct analysis. As such, we have chosen to, instead, use numerical
simulations to illustrate these phenomena. In particular, we focus on the backward-
Euler discretisation of the FitzHugh-Nagumo MFDE, which takes the form

(h∆t)−1[u(ξ)− u(ξ − c∆t)] = h−2[u(ξ + 1) + u(ξ − 1)− 2u(ξ)] + g(u(ξ); r)− w(ξ)

(h∆t)−1[u(ξ)− u(ξ − c∆t)] = ρ
[
u(ξ)− γw(ξ)

]
.

(4.2.40)
Here we fix ρ = 0.01, γ = 5, h = 5

8 and we let g be the bistable nonlinearity

g(u; r) = u(1− u)(u− r). (4.2.41)

Upon fixing the timestep ∆t = 2, we repeatedly solved the system (4.2.40) with Neu-
mann boundary conditions on the interval [−80, 80] for different values of the parame-
ters (c, r) ∈ Q× (0, 1).

These simulations turned out to be rather delicate, since the quality of the initial
condition heavily influenced whether a solution could be found. In many cases, the
simulation returned the zero solution. Simply augmenting an extra nontriviality con-
dition often produced no solution at all. In addition, the value of c greatly determines
the number of points ξ ∈ R for which the values (u, v)(ξ) need to be determined. In
particular, upon writing

c = q∆t
p , (4.2.42)

we needed to consider the points in the set p−1Z ∩ [−80, 80], which rapidly grows in
number as p increases. We considered values of c of the form (4.2.42) for values of
p ∈ {1, 2, ..., 8} and q ∈ {1, 2, ..., 2p} with gcd(p, q) = 1, while the values of r were taken
in 1

100Z ∩ (0, 1
5 ).

Figure 4.1(a) depicts the pairs (c, r) for which such a numerical solution could be
found. It is highly likely that a solution still exists at some of the other parameter values
that we investigated. In any case, our simulations clearly show that the parameters c
and r depend on each other in an intricate fashion. In particular, our results suggest
that travelling wave solutions to the system (4.2.40) are not unique, since we were able
to find solutions with a range of different wavespeeds at the same value for r. We refer
to [34] and [125] for the corresponding dependence for the FitzHugh-Nagumo PDE and
LDE respectively. In both cases, this dependence is given by a curve in the (c, r)-plane
that resembles the symbol ∩.
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Figure 4.1: (a) Numerical computations of the pairs (c, r) for which travelling wave solutions
to the system (4.2.40) exist. We emphasize that there may be parameter values where we could
not find a solution, but where a solution exists nonetheless. These simulations clearly show
that the relationship r(c) is multi-valued. (b) A plot of one of the travelling waves found in
this numerical procedure with r = 0.11 and c = 0.3125.

4.3 Setup

The fully discrete travelling wave equation (4.2.29) is a highly singular perturbation of
the semi-discrete travelling wave MFDE (4.2.11), which is the key complication for our
analysis. In order to tackle this issue, we start by studying the linear operators that
arise when linearizing the fully discrete travelling wave equation (4.2.29) around the
semi-discrete travelling wave (c0, U0). In particular, we define the linear expressions

Lk,MΦ(ξ) = c0[Dk,MΦ](ξ)−∆0Φ(ξ)−DUG
(
U0(ξ)

)
Φ(ξ). (4.3.1)

Our aim is to establish that the operators Lk,M inherit several useful properties from
the operator L0 defined in (4.2.13) in the small timestep regime ∆t� 1.

In this section we summarize and adept the setup from [111], sticking to the same
notation as much as possible. In order to formulate our results, we need to define
several function spaces. For any η ∈ R, we write

BCη(R;Rd) = {F ∈ C(R;Rd) | supξ∈R e
−η|ξ||F (ξ)| <∞},

BC1
η(R;Rd) = {F ∈ C1(R;Rd) | supξ∈R e

−η|ξ|[|F (ξ)|+ |F ′(ξ)|] <∞}.
(4.3.2)

In addition, given a Hilbert space H and any µ > 0, we define the corresponding
sequence space

`2µ(H) = {v : µ−1Z→ H | ‖v‖`2µ(H) := 〈v, v〉
1
2

`2µ(H) <∞}, (4.3.3)

which is a Hilbert space equipped with the inner product

〈v, v〉`2µ(H) = µ−1
∑

ξ∈µ−1Z
〈v(ξ), w(ξ)〉H . (4.3.4)
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For now, we fix two integers q ≥ 1 and 1 ≤ k ≤ 6, together with a constant
M = p

q ∈ Mq. To streamline our notation, we write YM to refer to the space `2p(Rd),
i.e.,

YM = `2p(Rd), 〈Φ,Ψ〉YM = 〈Φ,Ψ〉`2p(Rd). (4.3.5)

Moreover, we introduce the space Y1
k,M , which differs from YM only by its inner product.

To be more precise, we write

Y1
k,M = `2p(Rd),

〈Φ,Ψ〉Y1
k,M

= 〈Φ,Ψ〉`2p(Rd) + 〈Dk,MΦ,Dk,MΨ〉`2p(Rd).
(4.3.6)

In addition, for f ∈ BC−η(R;Rd) with η > 0, we write πYM for the sequence[
πYM f

]
(ξ) = f(ξ), ξ ∈ p−1Z. (4.3.7)

If moreover f ∈ BC1
−η(R;Rd) and we wish to be explicit, we often write πY1

k,M
f to

refer to the restriction (4.3.7). The restriction operators πYM and πY1
k,M

are bounded,

see Lemma 4.A.1.

We can now consider the operators Lk,M appearing in (4.3.1) as bounded linear
maps

Lk,M : Y1
k,M → YM . (4.3.8)

Our goal is to define new sequence spaces, which allow us to pass to the limit M →∞
in a controlled fashion. The basic idea is to use L2-interpolants for functions in YM
and H1-interpolants for functions in Y1

k,M , so that the sequences in these spaces can
be compared regardless of the different values of M . The main difficulty is to control
terms of the form v(ξ + p−1)− v(ξ) for v ∈ Y1

k,M with M = p
q , which is impossible to

extract solely from the behaviour of Dk,Mv.

To tackle this issue, we need to perform q separate interpolations. Each of these
interpolations must bridge a gap of size M−1 = q

p . In particular, upon fixing an integer
q ≥ 1 and writing

Zq = {0, 1, 2, ..., q},

Z◦q = {1, 2, ..., q − 1},
(4.3.9)

we introduce the space

`2q,⊥ = {Φ : q−1Zq → Rd}, (4.3.10)

equipped with the inner product

〈Φ,Ψ〉`2q,⊥ = q−1
[

1
2Φ(0)Ψ(0) + 1

2Φ(1)Ψ(1) +
∑

ζ∈q−1Z◦q
Φ(ζ)Ψ(ζ)

]
. (4.3.11)

Upon introducing the notation Φ(ζ, ξ) = [Φ(ξ)](ζ) for Φ ∈ `2M (`2q,⊥) with ζ ∈ q−1Zq
and ξ ∈M−1Z, we define the space

HM = {φ ∈ `2M (`2q,⊥) : Φ(1, ξ) = Φ(0, ξ +M−1) for all ξ ∈M−1Z}, (4.3.12)
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equipped with the inner product

〈Φ,Ψ〉HM = M−1
∑

ξ∈M−1Z
〈Φ(·, ξ),Ψ(·, ξ)〉`2q,⊥ . (4.3.13)

For any η > 0 and any f ∈ BC−η(R;Rd), we now write πHM f ∈ HM for the
function

[πHM f ](ζ, ξ) = f(ξ + ζM−1), ζ ∈ q−1Zq, ξ ∈M−1Z. (4.3.14)

We extend the operators Dk,M to HM by writing

[Dk,MΦ](ζ, ξ) = [Dk,MΦ(ζ, ·)](ξ). (4.3.15)

Note that these operators act only on the second component of Φ. This allows us to
define our final space

H1
k,M = HM , (4.3.16)

equipped with the inner product

〈Φ,Ψ〉H1
k,M

= 〈Φ,Ψ〉HM + 〈Dk,MΦ,Dk,MΨ〉HM . (4.3.17)

In fact, we can relate the spaces HM and H1
k,M to the spaces defined earlier. To see

this, we define the isometries

JM : YM → HM , J 1
k,M : Y1

k,M → H1
k,M , (4.3.18)

for M = p
q ∈Mq, which both act as

[JMΦ](ζ, ξ) = [J 1
k,MΦ](ζ, ξ) = Φ(ξ +M−1ζ), (4.3.19)

for ζ ∈ q−1Zq and ξ ∈M−1Z, see Lemma 4.A.3. Note that πHM = JMπYM .

Our goal is to interpret Lk,M as a map from H1
k,M into HM . To this end, we pick

n ∈ Z and 0 < ϑ ≤ 1 in such a way that

1 = (n+ ϑ)M−1. (4.3.20)

Since M = p
q ∈Mq, we see that ϑ = p−nq

q , which yields

nM−1 = 1− ϑM−1, ϑ ∈ q−1Zq \ {0}. (4.3.21)

In fact, because gcd(p, q) = 1, it follows that gcd(p, ϑq) = 1.

With these preparations in hand, we now write Kk,M : H1
k,M → HM for the linear

operator that acts as

[Kk,MΦ] (ζ, ξ) = c0[Dk,MΦ](ζ, ξ)−
[
∆MΦ

]
(ζ, ξ)−DUG

(
U0(ξ + ζM−1); r

)
Φ(ζ, ξ),
(4.3.22)
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for ζ ∈ q−1Zq and ξ ∈M−1Z. Here the operator ∆M is given by

∆M = τ
∑
m>0

αm

[
TmM + T−mM − 2

]
, (4.3.23)

where we have introduced the twist operator TM : HM → HM that acts as

[TMΦ](ζ, ξ) = Φ(ζ + ϑ, ξ + nM−1), (4.3.24)

taking into account the convention

Φ(ζ ± 1, ξ) = Φ(ζ, ξ ±M−1). (4.3.25)

In particular, we see that the shift ϑ acts as a rotation number, connecting the different
components of Φ in the ζ-direction. The inequality

〈∆MΦ,Φ〉HM ≤ 0 (4.3.26)

for Φ ∈ HM is almost trivial to verify in the finite-range setting, but turns out to
be much harder to establish when dealing with infinite-range interactions; see Lemma
4.A.5.

Finally, we introduce the notation

DG
(
πHMU0; r

)
: HM → HM (4.3.27)

to refer to the multiplication operator

[DG
(
πHMU0; r

)
Φ](ζ, ξ) = DUG

(
U0(ξ + ζM−1); r

)
Φ(ζ, ξ). (4.3.28)

In fact, it is easy to see that

Kk,MJ 1
k,M = JMLk,M , (4.3.29)

which shows that Kk,M and Lk,M are equivalent.

Since the operator Kk,M is not self-adjoint, we need to introduce the formal adjoint
K∗k,M : H1

k,M → HM of Kk,M by writing

K∗k,MΦ = c0[D∗k,MΦ]−∆MΦ−DG
(
πHMU0; r

)T
Φ, (4.3.30)

in which we have defined

[D∗k,MΦ](ζ, ξ) = β−1
k M

k∑
n′=0

µn′;kΦ(ξ + (k − n′)M−1). (4.3.31)

Moreover, we introduce the space

`2q,⊥;∞ = {φ ∈ `2q,⊥ : φ(1) = φ(0)}, (4.3.32)
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together with the map

[π⊥f ](ζ, ξ) = f(ξ), ζ ∈ q−1Zq, ξ ∈ R, (4.3.33)

which constructs a function π⊥f ∈ L2(R, `2q,⊥;∞) from a function f ∈ L2(R;Rd).

Taking the limit M → ∞, while keeping ϑ and q fixed as in (4.3.20), we see that
Kk,M and K∗k,M formally approach the limiting operators

Kq,ϑ : H1(R, `2q,⊥;∞) → L2(R, `2q,⊥;∞),

K∗q,ϑ : H1(R, `2q,⊥;∞) → L2(R, `2q,⊥;∞),
(4.3.34)

that act as
Kq,ϑΘ = c0∂ξΘ−∆q,ϑΘ−DG

(
πHMU0; r

)
Θ,

K∗q,ϑΘ = −c0∂ξΘ−∆q,ϑΘ−DG
(
πHMU0; r

)T
Θ.

(4.3.35)

Here the operator ∆q,ϑ is given by

∆q,ϑ = τ
∑
m>0

αm

[
Tmq,ϑ + T−mq,ϑ − 2

]
, (4.3.36)

in which we have introduced the twist operator[
Tq,ϑΘ

]
(ζ, ξ) = Θ(ζ + ϑ, ξ + 1), (4.3.37)

for ζ ∈ q−1Zq and ξ ∈ R. In the same spirit as (4.3.25), we here make the convention
Φ(ζ + 1, ξ) = Φ(ζ, ξ). Notice that the limiting operator Kq,ϑ reduces to the operator
L0 defined in (4.2.13) for ζ-independent functions.

4.4 The limiting system

Our goal here is to exploit our understanding of the operator L0 in order to determine
the Fredholm properties of the limiting operator Kq,ϑ. Due to the lack of a comparison
principle we cannot immediately appeal to a general Frobenius-Peron-type result as
was possible in [111]. The theory in this section aims to fill these gaps and can be
considered the key technical contribution of this paper. We collect the main results in
the following Proposition, which plays an essential role in Lemma 4.5.3 below.

Proposition 4.4.1 (cf. [111, Lem. 3.6]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix an integer
q ≥ 1, together with a constant ϑ ∈ q−1Zq that has gcd(ϑq, q) = 1. Then the operators

Kq,ϑ and K∗q,ϑ are both Fredholm operators with index 0 and we have the identities

ker(Kq,ϑ) = span{π⊥Φ+
0 }, ker(K∗q,ϑ) = span{π⊥Φ−0 }. (4.4.1)

Moreover, recalling the constant λ̃ appearing in (HW2r), the operator Kq,ϑ + λ is in-

vertible for each λ ∈ C that has Reλ ≥ −λ̃ and λ /∈ 2πic0q
−1Z. Finally, there exists
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constants C > 0 and δ0 > 0 so that for each 0 < δ < δ0 and each Θ ∈ L2(R, `2q,⊥;∞) we
have the bound

‖[Kq,ϑ + δ]−1Θ‖H1(R,`2q,⊥;∞) ≤ C
[
‖Θ‖L2(R,`2q,⊥;∞) + 1

δ |〈Θ, π⊥Φ−0 〉L2(R,`2q,⊥;∞)|
]
.

(4.4.2)

The first step towards proving Proposition 4.4.1 is to find the eigenvalues of the
operator Kq,ϑ. After that, we will focus on the essential spectrum of this operator. The
idea behind the proof of Lemma 4.4.2 below can best be illustrated by considering the
case q = 2. In this case, we have ϑ = 1

2 , together with[
T2, 12

Θ
]
(ζ, ξ) = Θ

(
ζ + 1

2 , ξ + 1
)
. (4.4.3)

Upon writing

[Π0Θ](ξ) := Θ(0, ξ) + Θ( 1
2 , ξ), [Π1Θ](ξ) := Θ(0, ξ)−Θ( 1

2 , ξ), (4.4.4)

one may verify the commutation relations[
T0Π0Θ

]
(ξ) =

[
Π0T2, 12

Θ
]
(ξ),

[
T0Π1Θ

]
(ξ) = −

[
Π1T2, 12

Θ
]
(ξ). (4.4.5)

In particular, if Θ is in the kernel of K2, 12
+ λ, the functions

X0(ξ) = [Π0Θ](ξ), X1(ξ) = e−πiξ[Π1Θ](ξ) (4.4.6)

are eigenfunctions of the operator L0 with eigenvalues −λ and −λ− c0πi respectively.
Since −λ and −λ− c0πi cannot both be eigenvalues of L0 at the same time in view of
(HW2r), this means that at least one of the functions X0 or X1 is identically 0.

Without loss, we assume that X0 = 0. In this case, the function Θ can explicitly
be identified as

Θ(0, ξ) = 1
2e
πiξX1(ξ), Θ( 1

2 , ξ) = − 1
2e
πiξX1(ξ). (4.4.7)

As such, the eigenfunctions of Kq,ϑ can be expressed in terms of those of L0, thus
providing an upper bound on the dimension of the corresponding eigenspace.

Lemma 4.4.2. Consider the setting of Proposition 4.4.1. Then for any λ ∈ C with
Reλ ≥ −λ̃ and λ /∈ c02πiq−1Z, we have the identity

ker(Kq,ϑ + λ) = {0}. (4.4.8)

In addition, we have the identity

ker(Kq,ϑ) = span{π⊥Φ+
0 }. (4.4.9)

Proof. Fix λ ∈ C with Reλ ≥ −λ̃. Suppose that Θ is in the kernel of the operator
Kq,ϑ + λ. For n ∈ {0, ..., q − 1} we set

[ΠnΘ](ξ) =
q−1∑
n′=0

ζn·n
′

q Θ
(
n′ϑ, ξ

)
, (4.4.10)
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together with

Xn(ξ) = e−
2πin
q ξ[ΠnΘ](ξ) = ζ−nξq [ΠnΘ](ξ), (4.4.11)

with ζq = exp[2πi/q] the q-th root of unity. Recalling that gcd(ϑq, q) = 1, it follows
that this sum contains each of the functions Θ

(
0, ξ
)
, ...,Θ

(
(q − 1)q−1, ξ

)
exactly once.

Recalling the definitions of the operators T0 and Tq,ϑ from (4.2.15) and (4.3.37), we
can compute

[T0ΠnΘ](ξ) = [ΠnΘ](ξ + 1)

=
q−1∑
n′=0

ζnn
′

q Θ
(
n′ϑ, ξ + 1

)
=

q−1∑
n′=0

ζnn
′

q (Tq,ϑΘ)
(
(n′ − 1)ϑ, ξ

)
= ζnq

q−1∑
n′=0

ζ
n(n′−1)
q (Tq,ϑΘ)

(
(n′ − 1)ϑ, ξ

)
= ζnq [ΠnTq,ϑΘ](ξ),

(4.4.12)

which implies

T0Xn(ξ) = ζ
−n(ξ+1)
q [T0ΠnΘ](ξ + 1)

= ζ
−n(ξ+1)
q ζnq [ΠnTq,ϑΘ](ξ)

= ζ−nξq [ΠnTq,ϑΘ](ξ).

(4.4.13)

This allows us to obtain the identity

(L0 + λ)Xn(ξ) = c0X
′
n(ξ)−∆0Xn(ξ)−DUG

(
U0(ξ); r

)
Xn(ξ) + λXn(ξ)

= c0ζ
−nξ
q [ΠnΘ]′(ξ)− c0 2πin

q Xn(ξ)− ζ−nξq [Πn∆q,ϑΘ](ξ)

−ζ−nξq DUG
(
U0(ξ); r

)
[ΠnΘ](ξ) + ζ−nξq λ[ΠnΘ](ξ)

= ζ−nξq

[
Πn

(
Kq,ϑ + λ

)
Θ
]
(ξ)− c0 2πin

q Xn(ξ)

= −c0 2πin
q Xn(ξ).

(4.4.14)
Suppose first that λ /∈ 2c0πiq

−1Z. Then it follows from (HW2r) that−2c0πinq
−1−λ

is no eigenvalue of L0 for all 0 ≤ n ≤ q − 1. In particular, we must have Xn = 0 for all
0 ≤ n ≤ q−1. This means that the functions ΠnΘ for 0 ≤ n ≤ q−1 are also identically
0. Since the q×q Vandermonde matrix Z given by Zn,n′ = ζn·n

′

q is invertible, we obtain
Θ(nϑ, ·) = 0 for all 0 ≤ n ≤ q − 1 from which (4.4.8) follows.

Turning to the case λ = 0, we see that −2c0πinq
−1 − λ = −2c0πinq

−1 can only
be an eigenvalue of L0 when nq−1 ∈ Z on account of (HW2r). Since nq−1 /∈ Z for
1 ≤ n ≤ q − 1, we have Xn = 0 for those values of n. In addition, we have X0 = µΦ+

0

for some µ ∈ C. Recalling the invertible matrix Z given by Zn,n′ = ζn·n
′

q , we obtain
the identity(

Θ
(
0, ·
)
,Θ
(
ϑ, ·
)
, ....,Θ

(
(q − 1)ϑ, ·

))T
= Z−1

(
µΦ+

0 , 0, ..., 0
)T
. (4.4.15)
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In particular, the kernel ker(Kq,ϑ) is one-dimensional. Since L0Φ+
0 = 0 by (HW2r), it

follows immediately that Kq,ϑπ⊥Φ+
0 = 0, which implies (4.4.9).

We now shift our attention to the Fredholm properties of Kq,ϑ, which we aim to
extract from those of L0 in a similar fashion. The results in [68, 130] show that it
suffices to consider the limiting operators

Kq,ϑ,±∞Θ = c0∂ξΘ−∆q,ϑΘ−DG
(
P±; r

)
Θ,

L±∞Θ = c0∂ξΘ−∆0Θ−DG
(
P±; r

)
Θ,

(4.4.16)

which have constant coefficients. For λ ∈ C and 0 ≤ ρ ≤ 1 we introduce the notation

Kq,ϑ,ρ;λ = ρKq,ϑ,−∞ + (1− ρ)Kq,ϑ,∞ + λ,

Lρ;λ = ρL−∞ + (1− ρ)L∞ + λ.
(4.4.17)

We set out to show that for λ in a suitable right half-plane and 0 ≤ ρ ≤ 1, the operators
Kq,ϑ,ρ;λ and Lρ;λ are hyperbolic in the sense of [68, 130]. In particular, we write

∆q,ϑ,ρ;λ(z) =
[
Kq,ϑ,ρ;λezξ

]
(0), ∆ρ;λ(z) =

[
Lρ;λe

zξ
]
(0) (4.4.18)

and establish that det
(
∆q,ϑ,ρ;λ(iy)

)
6= 0 for all y ∈ R by first showing that det

(
∆ρ;λ(iy)

)
6=

0. We can subsequently use the spectral flow principle to compute the Fredholm index
of Kq,ϑ + λ.

We start by considering the characteristic function ∆ρ;λ from (4.4.18). For nota-
tional convenience we set

DGρ = ρDG
(
P−; r

)
+ (1− ρ)DG

(
P+; r

)
(4.4.19)

for 0 ≤ ρ ≤ 1 and use the definition (4.2.4) to write

∆ρ;λ(iy) = c0iy − τ
∑
m>0

αm

[
emiy + e−miy − 2

]
−DGρ + λ

= c0iy + τ
∑
m>0

αm

[
2− 2 cos(my)

]
−DGρ + λ

= c0iy + 2τA(y)−DGρ + λ.

(4.4.20)

For any V = (v1, ..., vd) ∈ Cd we may exploit the inequality (4.2.4) to obtain

τV †A(y)V = 2τ
d∑
j=1

|vj |2Aj(y) ≥ 0. (4.4.21)

Here we introduced † for the conjugate transpose.

In order to prove that L±∞+λ is hyperbolic, we need to distinguish between the set-
ting where the triplet (G, P−, P+) satisfies (HS3r(a)) and where it satisfies (HS3r(b)).
A similar computation was performed in [151, Lem. 4.6].
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Lemma 4.4.3. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HW1r) and (HW2r) are satisfied. Assume that the triplet (G, P−, P+) satisfies
(HS3r(a)). Pick λ ∈ C with Reλ > −λ̃ and 0 ≤ ρ ≤ 1. Then we have det

(
∆ρ;λ(iy)

)
6=

0 for all y ∈ R.

Proof. For fixed y ∈ R we introduce the matrix

X = 1
2

[
∆ρ;λ(iy) + ∆ρ;λ(iy)†

]
= τA(y)−DGρ −DGTρ + Reλ.

(4.4.22)

By decreasing λ̃ if necessary, we can assume that −DGρ −DGTρ + Reλ is positive def-
inite. It follows that X is the sum of a positive semi-definite matrix and a positive
definite matrix and as such, it is positive definite itself. As a consequence, ∆ρ;λ is
positive definite as well and hence we obtain det

(
∆ρ;λ(iy)

)
6= 0.

Lemma 4.4.4. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HW1r) and (HW2r) are satisfied. Assume that the triplet (G, P−, P+) satisfies
(HS3r(b)). Pick λ ∈ C with Reλ > −λ̃ and 0 ≤ ρ ≤ 1. Then we have det

(
∆ρ;λ(iy)

)
6=

0 for all y ∈ R.

Proof. We recall the proportionality constant Γ > 0 from (HS3r(b)). In particular,
upon writing

DGρ =

(
DG[1,1]

ρ DG[1,2]
ρ

DG[2,1]
ρ DG[2,2]

ρ

)
, (4.4.23)

we have DG[1,2]
ρ = −Γ(DG[2,1]

ρ )T . Suppose that ∆ρ;λ(iy)V = 0 for some V ∈ Cd. Write
V = (u,w) where u contains the first ddiff components of V . Then we can compute

0 = ReV †∆ρ;λ(iy)V

= Re
[
− τV †A(y)V − V †DGρV + λ|V |2

]
= Re

[
− τV †A(y)V − u†DG[1,1]

ρ u− u†DG[1,2]
ρ w

−w†DG[2,1]
ρ u− w†DG[2,2]

ρ w + λ|u|2 + λ|w|2
]
.

(4.4.24)

The second component of the equation ∆ρ;λ(iy)V = 0 is equivalent to

DG[2,1]
ρ u = −DG[2,2]

ρ w + λw. (4.4.25)

As such, we can rewrite the cross-terms in (4.4.24) to obtain

Re
[
− u†DG[1,2]

ρ w − w†DG[2,1]
ρ u

]
= Re (1− Γ)

[
− w†DG[2,1]

ρ u
]

= Re (Γ− 1)
[
− w†DG[2,2]

ρ w + λ|w|2
]
.

(4.4.26)
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As a consequence, (4.4.24) reduces to

0 = Re
[
− τV †A(y)V − u†DG[1,1]

ρ u+ λ|u|2 − Γw†DG[2,2]
ρ w + Γλ|w|2

]
. (4.4.27)

By decreasing λ̃ if necessary, we can assume that −DG[1,1]
ρ +Reλ and −ΓDG[2,2]

ρ +ΓReλ
are positive definite. Therefore, we must have V = 0, from which it follows that
det
(
∆ρ;λ(iy)

)
6= 0.

Lemma 4.4.5. Consider the setting of Proposition 4.4.1. Pick λ ∈ C with Reλ > −λ̃
and 0 ≤ ρ ≤ 1. Then we have det

(
∆q,ϑ,ρ;λ(iy)

)
6= 0 for all y ∈ R.

Proof. Suppose there exists V ∈ `2q,⊥;∞ and y ∈ R for which

∆q,ϑ,ρ;λ(iy)V = 0. (4.4.28)

We then write
W
(
n
q , ξ
)

= eiyξV
(
n
q

)
(4.4.29)

for 0 ≤ n ≤ q − 1. The definition of the characteristic function yields

Kq,ϑ,ρ;λW = eiyξ
[
Kq,ϑ,ρ;λeiyξV

]
(0)

= eiyξ∆q,ϑ,ρ;λ(iy)V

= 0.

(4.4.30)

Recalling the projections (4.4.10), we write

Xn(ξ) = e−
2πin
q ξ[ΠnW ](ξ) (4.4.31)

and use a computation similar to (4.4.14) to find

Lρ;λXn(ξ) = e−
2πin
q ξ
[
ΠnKq,ϑ,ρ;λW

]
(ξ)− c0 2πin

q Xn(ξ)

= −c0 2πin
q Xn(ξ).

(4.4.32)

On account of Lemmas 4.4.3-4.4.4, it follows from the spectral flow theorem [68, Thm.
1.6] and [68, Thm. 1.7] that Lρ;λ−c02πinq−1 is hyperbolic. Applying [150, Lem. 6.3],
which is a generalization of [130, Thm. 4.1], yields that Lρ;λ−c02πinϑ is invertible as
a map from W 1,∞(R;Rd) to L∞(R;Rd). Therefore, we must have Xn = 0 for all
0 ≤ n ≤ q − 1. This implies that W (nq , ξ) = 0 for all 0 ≤ n ≤ q − 1 and thus that
V = 0, which yields the desired result.

Proof of Proposition 4.4.1. These results, except the bound (4.4.2), follow from
combining Lemma 4.4.2, Lemma 4.4.5 and the spectral flow theorem [68, Thm. 1.6-
1.7]. The bound (4.4.2) can be obtained by following the proof of [6, Lem. 3.1].
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4.5 Linear theory for ∆t→ 0

In this section, we apply the spectral convergence method to lift the Fredholm properties
of the semi-discrete system to the fully discrete system in the small timestep regime
∆t� 1. In particular, we establish the main result below, which gives a quasi-inverse
for the operators Lk,M . This turns out to be the key ingredient in the construction
of the discrete waves, which can subsequently be proved by means of a standard fixed
point argument.

Proposition 4.5.1 (cf. [111, Prop. 3.2]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
integers 1 ≤ k ≤ 6 and q ≥ 1, together with a sufficiently small η > 0 and sufficiently
large constants M∗ ∈ Mq and C > 0. Then for each M ∈ Mq with M ≥ M∗ there
exist linear maps

γ∗k,M : YM → R, V∗k,M : YM → Y1
k,M , (4.5.1)

so that for all Ψ ∈ YM the pair

(γ, V ) = (γ∗k,MΨ,V∗k,MΨ) (4.5.2)

is the unique solution to the problem

Lk,MV = Ψ + γπYMDk,MU0 (4.5.3)

that satisfies the normalisation condition

〈πYMΦ−0 , V 〉YM = 0. (4.5.4)

In addition, for all Ψ ∈ YM we have the bound

|γ∗k,MΨ|+ ‖V∗k,MΨ‖Y1
k,M

≤ C‖Ψ‖YM . (4.5.5)

In order to facilitate the reading, we first outline our strategy and formulate two
intermediate results in §4.5.1. This strategy heavily follows the program in [111], al-
lowing us to simply refer to these results in many cases. However, due to the lack of
a comparison principle and the many cross-terms we need to control, there are several
key points in the analysis that need a fully new approach, which we develop in §4.5.2.
In addition, the infinite-range setting forces us to obtain an extra order of regularity
on the operator (L0 + δ)−1, which we achieve in §4.5.3.

4.5.1 Strategy

Recalling the spaces HM and H1
k,M from (4.3.12) and (4.3.15), we introduce the quan-

tities

Ek,M (δ) = inf‖Φ‖H1
k,M

=1

[
‖Kk,MΦ + δΦ‖HM + δ−1

∣∣∣〈πHMΦ−0 ,Kk,MΦ + δΦ〉HM
∣∣∣],

E∗k,M (δ) = inf‖Φ‖H1
k,M

=1

[
‖K∗k,MΦ + δΦ‖HM + δ−1

∣∣∣〈πHMΦ+
0 ,K∗k,MΦ + δΦ〉HM

∣∣∣],
(4.5.6)
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together with
κ(δ) = lim infM→∞,M∈Mq

Ek,M (δ),

κ∗(δ) = lim infM→∞,M∈Mq E∗k,M (δ)
(4.5.7)

for δ ∈ (0, δ0).

The key step towards proving Proposition 4.5.1 is the establishment of lower bounds
for these quantities. This procedure is based on [6, Lem. 3.2]. Our strategy to prove
it is essentially the same, but some major modifications are needed to incorporate the
difficulties arising from the discrete derivatives.

Proposition 4.5.2 (cf. [111, Prop. 3.7]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
integers 1 ≤ k ≤ 6 and q ≥ 1. Then there exists κ > 0 such that for all 0 < δ < δ0 we
have

κ(δ) ≥ κ, κ∗(δ) ≥ κ. (4.5.8)

We are now ready to start our interpolation procedure. For any ξ ∈ R, we pick two
quantities ξ±M (ξ) ∈M−1Z in such a way that

ξ−M (ξ) ≤ ξ < ξ+
M (ξ), ξ+

M (ξ)− ξ−M (ξ) = M−1. (4.5.9)

Using these quantities, we can define two interpolation operators

I0
M : HM → L2(R, `2q,⊥;∞),

I1
k,M : H1

k,M → H1(R, `2q,⊥;∞),
(4.5.10)

that act as

[I0
Mφ](ζ, ξ) = φ

(
ζ, ξ−M (ξ)

)
,

[I1
k,Mφ](ζ, ξ) = M

[(
ξ − ξ−M (ξ)

)
φ
(
ζ, ξ+

M (ξ)
)

+ (ξ+
M (ξ)− ξ)φ

(
ζ, ξ−M (ξ)

)]
,

(4.5.11)
for all ζ ∈ q−1Zq and all ξ ∈ R. These operators can be seen as interpolations of order
zero and one respectively, both acting only on the second coordinate of φ. We refer to
[111, Lem. 3.10-3.12] for some useful estimates involving these interpolations.

With these preparations in hand, we start the proof of Proposition 4.5.2 using the
methods described in the proof of [6, Lem. 3.2]. We focus on the quantity κ(δ) defined
in (4.5.7), noting that κ∗(δ) can be treated in a similar fashion. In particular, we find
a lower bound for κ(δ) by constructing sequences that minimize this quantity. At this
point it becomes clear why we work on the spaces H1(R, `2q,⊥) and L2(R, `2q,⊥), as we
exploit the fact that bounded closed subsets of these spaces are weakly compact.

Lemma 4.5.3 (cf. [111, Lem. 3.16-3.17]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
integers 1 ≤ k ≤ 6 and q ≥ 1, as well as 0 < δ < δ0. Then there exist two functions

Φ∗ ∈ H1(R, `2q,⊥;∞), Ψ∗ ∈ L2(R, `2q,⊥;∞), (4.5.12)
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together with three sequences

{Mj}j∈N ⊂ Mq, {Φj}j∈N ⊂ H1
k,Mj

, {Ψj}j∈N ⊂ HMj (4.5.13)

and two constants ϑ ∈ q−1Zq \ {0} and K1 > 0 that satisfy the following properties.

(i) We have limj→∞Mj =∞ and ‖Φj‖H1
k,Mj

= 1 for all j ∈ N.

(ii) The identity

Ψj = Kk,Mj
Φj + δΦj (4.5.14)

holds for all j ∈ N.

(iii) Recalling the constant κ(δ) defined in (4.5.7), we have the limit

κ(δ) = limj→∞

[
‖Kk,MΦj + δΦj‖HMj + δ−1

∣∣∣〈πHMjΦ−0 ,Kk,MjΦj + δΦj〉HMj
∣∣∣].

(4.5.15)

(iv) As j →∞, we have the weak convergences

I1
k,Mj

Φj ⇀ Φ∗ ∈ H1(R, `2q,⊥),

I0
Mj

Ψj ⇀ Ψ∗ ∈ L2(R, `2q,⊥).
(4.5.16)

(v) For any compact interval I ⊂ R, we have the strong convergences

(I1
k,Mj

, I1
k,Mj

)Φj → Φ∗ ∈ L2(I, `2q,⊥),

(I0
Mj
, I0
Mj

)Ψj → Ψ∗ ∈ L2(I, `2q,⊥)
(4.5.17)

as j →∞.

(vi) The function Φ∗ is a weak solution to (Kq,ϑ + δ)Φ∗ = Ψ∗ and we have the bound

‖Φ∗‖H1(R,`2q,⊥;∞) ≤ K1κ(δ). (4.5.18)

Proof. In view of Proposition 4.4.1 and Lemma 4.A.6, we can follow the proof of
[111, Lem. 3.16-3.17] almost verbatim.

In order to prove Proposition 4.5.2, we need to establish a lower bound on the norm
‖Φ∗‖H1(R,`2q,⊥;∞) on account of (4.5.18). In Proposition 4.5.4 we follow the approach of

[111, Lem. 3.18] in order to obtain this lower bound. Here we have to deal with both
the cross-terms arising from the system setting as well as the infinite-range interactions.

Proposition 4.5.4 (see §4.5.2). Consider the setting of Lemma 4.5.3. Then there exist
constants K2 > 1 and K3 > 1 so that for any 0 < δ < δ0, the function Φ∗ satisfies the
bound

‖Φ∗‖2H1(R,`2q,⊥;∞)
≥ K2 −K3κ(δ)2. (4.5.19)
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Proof of Proposition 4.5.2. Combining the bounds (4.5.18) and (4.5.19) immediately
yields

K2 −K3κ(δ)2 ≤ K2
1κ(δ)2. (4.5.20)

Solving this quadratic inequality, we obtain

κ(δ) ≥
√

K2

K2
1+K3

:= κ. (4.5.21)

The lower bound on κ∗(δ) follows in a similar fashion.

In order to establish Proposition 4.5.1, we need more control on the operator L0 than
in [150]. In particular, due to the infinite-range interactions it is not immediately clear
that this operator preserves the exponential decay properties of the function spaces
(4.3.2).

Proposition 4.5.5. Assume that (HS1) and (HS2) are satisfied and pick r in such a
way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a sufficiently small constant
η > 0. Then there exist constants δ∗ > 0 and K > 0, so that for each 0 < δ < δ∗ and
each G ∈ BC1

−η(R;Rd) we have the bounds

‖(L0 + δ)−1G‖BC−η(R;Rd) ≤ Kδ−1‖G‖BC−η(R;Rd)

‖[(L0 + δ)−1G]′‖BC−η(R;Rd) ≤ Kδ−1‖G‖BC−η(R;Rd)

‖[(L0 + δ)−1G]′′‖BC−η(R;Rd) ≤ Kδ−1‖G‖BC1
−η(R;Rd).

(4.5.22)

Proof of Proposition 4.5.1. On account of Proposition 4.5.5, we can follow the pro-
cedure developed in [111, §3.3] to arrive at the desired result.

4.5.2 Spectral convergence

In this section we set out to prove Proposition 4.5.4 using the spectral convergence
method. The main idea is to derive an upper bound for the discrete derivative Dk,MjΦj ,
together with a lower bound for Φj restricted to a large—but finite—interval. This pre-
vents the H1

k,Mj
-norm of Φj from leaking away into oscillations or tail effects, providing

the desired control on the limit (4.5.17). All constants introduced in Lemmas 4.5.6-4.5.8
and Proposition 4.5.4 are independent of 0 < δ < δ0.

Lemma 4.5.6. Consider the setting of Lemma 4.5.3. Then there exists a constant
C1 > 0 so that the bound

2‖Ψj‖2HMj + 2C1‖Φj‖2HMj ≥ c20‖Dk,Mj
Φj‖2HMj (4.5.23)

holds for all j ∈ N.

Proof. We will assume c0 > 0, noting that the case where c0 < 0 can be treated in
a similar fashion. In view of the identity

Kk,Mj
Φj + δΦj = Ψj , (4.5.24)
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we can compute

〈Ψj ,Dk,Mj
Φj〉HMj = c0‖Dk,Mj

Φj‖2HMj − 〈∆Mj
Φj ,Dk,Mj

Φj〉HMj
−〈DG

(
πHMjU0; r

)
Φj ,Dk,Mj

Φj〉HMj + δ〈Φj ,Dk,Mj
Φj〉HMj .

(4.5.25)
Writing

K = ‖DG
(
U0; r

)
‖∞ + 4τ

∑
m>0
|αm| (4.5.26)

and remembering that 0 < δ < δ0 < 1, we may use the Cauchy-Schwarz inequality to
obtain

K‖Φj‖HMj ‖Dk,MjΦj‖HMj ≥ 〈∆MjΦj ,Dk,MjΦj〉HMj
+〈DG

(
πHMjU0; r

)
Φj ,Dk,MjΦj〉HMj

−δ〈Φj ,Dk,Mj
Φj〉HMj

= c0‖Dk,MjΦj‖2HMj − 〈Ψj ,Dk,MjΦj〉HMj
≥ c0‖Dk,Mj

Φj‖2HMj − ‖Ψj‖HMj ‖Dk,Mj
Φj‖HMj .

(4.5.27)
This yields the bound

‖Ψj‖HMj +K‖Φj‖HMj ≥ c0‖Dk,MjΦj‖HMj . (4.5.28)

Squaring this inequality gives the desired estimate (4.5.23).

Lemma 4.5.7. Consider the setting of Lemma 4.5.3 and assume that the triplet (G, P−, P+)
satisfies (HS3r(a)). There exist positive constants µ, C3, C4 and C5 so that the bound

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ ≥ C3‖Φj‖2HMj − C4‖Ψj‖2HMj − C5M

−1
j ‖Dk,Mj

Φj‖2HMj

(4.5.29)
holds for all j ∈ N.

Proof. Invoking Lemma 4.A.4 and Lemma 4.A.5, we can estimate

〈Ψj ,Φj〉HMj = 〈[Kk,Mj + δ]Φj ,Φj〉HMj
= c0〈Dk,Mj

Φj ,Φj〉HMj − 〈∆Mj
Φj ,Φj〉HMj

−〈DG
(
πHMjU0; r

)
Φj ,Φj〉HMj + δ‖Φj‖2HMj

≥ c0〈Dk,Mj
Φj ,Φj〉HMj − 〈DG

(
πHMjU0; r

)
Φj ,Φj〉HMj

≥ −C2M
−1
j ‖Dk,Mj

Φj‖2HMj − 〈DG
(
πHMjU0; r

)
Φj ,Φj〉HMj

(4.5.30)

for some C2 > 1. Since −DG
(
P±; r

)
is positive definite and −DG is continuous, we

can choose µ > 0 and a > 0 in such a way that the matrix

B(ξ) = −DG
(
U0(ξ); r

)
− a (4.5.31)
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is positive definite for all |ξ| ≥ µ. Using the definition of this matrix and writing

I = (‖DG
(
U0; r

)
‖∞ + a)M−1

j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ , (4.5.32)

we can estimate

−〈DG
(
πHMjU0; r

)
Φj ,Φj〉HMj = a‖Φj‖2HMj − 〈BΦj ,Φj〉HMj

≥ a‖Φj‖2HMj −M
−1
j

∑
ξ∈M−1

j Z
|B(ξ)Φj(·, ξ)|2`2q,⊥

≥ a‖Φj‖2HMj − I.
(4.5.33)

In particular, we can combine (4.5.30) and (4.5.33) to obtain

〈Ψj ,Φj〉HMj ≥ a‖Φj‖2HMj − I − C2M
−1
j ‖Dk,MjΦj‖2HMj . (4.5.34)

We can hence rearrange (4.5.34) and estimate

I ≥ a‖Φj‖2HMj − C2M
−1
j ‖Dk,Mj

Φj‖2HMj − 〈Ψj ,Φj〉HMj
≥ a

2‖Φj‖
2
HMj

− 2
a‖Ψj‖2HMj − C2M

−1
j ‖Dk,MjΦj‖2HMj ,

(4.5.35)

which yields the desired bound.

Lemma 4.5.8. Consider the setting of Lemma 4.5.3 and assume that the triplet (G, P−, P+)
satisfies (HS3r(b)). Then there exist positive constants µ, C3, C4 and C5 so that the
bound

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ ≥ C3‖Φj‖2HMj − C4‖Ψj‖2HMj

−C5M
−1
j ‖Dk,Mj

Φj‖2HMj
(4.5.36)

holds for all j ∈ N.

Proof. Recall the proportionality constant Γ > 0 from (HS3r(b)). In particular,
upon writing

DG =

(
DG[1,1] DG[1,2]

DG[2,1] DG[2,2]

)
, (4.5.37)

we have DG[1,2] = −Γ(DG[2,1])T . For each M ∈Mq, we introduce the decomposition

HM = H[1]
M ×H

[2]
M , (4.5.38)

which splits every Φ = (φ, θ) ∈ HM in such a way that φ ∈ H[1]
M contains the first ddiff

components of Φ, while θ ∈ H[2]
M contains the other d − ddiff components. For each

j ≥ 0 we write Φj = (φj , θj) and Ψj = (ψj , χj) with φj , ψj ∈ H[1]
Mj

and θj , χj ∈ H[2]
Mj

.
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Using this decomposition, we can expand the inner product as

−〈DG
(
πHMjU0; r

)
Φj ,Φj〉HMj = −〈DG[1,1](πHMjU0)φj , φj〉H[1]

Mj

+ C

−〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

,
(4.5.39)

where we have introduced the cross-terms

C := −〈DG[1,2](πHMjU0)θj , φj〉H[1]
Mj

− 〈DG[2,1](πHMjU0)φj , θj〉H[2]
Mj

. (4.5.40)

Recalling DG[1,2] = −Γ(DG[2,1])T and exploiting the identity

χj = c0Dk,Mjθj −DG[2,1](πHMjU0)φj −DG[2,2](πHMjU0)θj + δθj , (4.5.41)

we can rewrite the cross-terms to obtain

C = −〈DG[1,2](πHMjU0)θj , φj〉H[1]
Mj

− 〈DG[2,1](πHMjU0)φj , θj〉H[2]
Mj

= −(1− Γ)〈DG[2,1](πHMjU0)φj , θj〉H[2]
Mj

= (Γ− 1)〈c0Dk,Mj
θj −DG[2,2](πHMjU0)θj + δθj − χj , θj〉H[2]

Mj

.

(4.5.42)

The identities (4.5.39) and (4.5.42) allow us to expand the inner product

〈Ψj ,Φj〉HMj = 〈[Kk,Mj
+ δ]Φj ,Φj〉HMj

= c0〈Dk,MjΦj ,Φj〉HMj − 〈∆MjΦj ,Φj〉HMj
−〈DG

(
πHMjU0; r

)
Φj ,Φj〉HMj + δ‖Φj‖2HMj

= c0〈Dk,Mj
φj , φj〉H[1]

Mj

+ Γc0〈Dk,Mj
θj , θj〉H[2]

Mj

− 〈∆Mj
Φj ,Φj〉HMj

−〈DG[1,1](πHMjU0)φj , φj〉H[1]
Mj

− Γ〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

−(Γ− 1)〈χj , θj〉H[2]
Mj

+ δ‖φj‖2H[1]
Mj

+ δΓ‖θj‖H[2]
Mj

.

(4.5.43)
As such, we can use Lemma 4.A.4 and Lemma 4.A.5 to estimate

〈Ψj ,Φj〉HMj ≥ c0〈Dk,Mj
φj , φj〉H[1]

Mj

+ Γc0〈Dk,Mj
θj , θj〉H[2]

Mj

−〈DG[1,1](πHMjU0)φj , φj〉H[1]
Mj

− Γ〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

−(Γ + 1)‖χj‖H[2]
Mj

‖θj‖H[2]
Mj

≥ −(1 + Γ)C2M
−1
j ‖Dk,Mj

Φj‖2HMj
−〈DG[1,1](πHMjU0)φj , φj〉H[1]

Mj

− Γ〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

−(Γ + 1)‖χj‖H[2]
Mj

‖θj‖H[2]
Mj

(4.5.44)
for some C2 > 1.
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Since −DG[1,1](P±) and −DG[2,2](P±) are positive definite and −DG is continuous,
we can choose µ > 0 and a > 0 to be positive constants such that the matrices

B1(ξ) = −DG[1,1]
(
U0(ξ)

)
− a, B2(ξ) = −ΓDG[2,2]

(
U0(ξ)

)
− a (4.5.45)

are positive definite for all |ξ| ≥ µ. Defining I as in (4.5.32), this allows us to estimate

−〈DG[1,1](πHMjU0)φj , φj〉H[1]
Mj

= a‖φj‖2H[1]
Mj

+ 〈B1φj , φj〉H[1]
Mj

≥ a‖Φj‖2HMj −M
−1
j

∑
ξ∈M−1

j Z
|B1(ξ)φj(·, ξ)|2`2q,⊥

≥ a‖Φj‖2HMj − I,
(4.5.46)

together with

−Γ〈DG[2,2](πHMjU0)θj , θj〉H[2]
Mj

≥ a‖θj‖2H[2]
Mj

− ΓI. (4.5.47)

Combining the estimates (4.5.44), (4.5.46) and (4.5.47) yields the bound

〈Ψj ,Φj〉HMj ≥ a‖Φj‖2HMj − (1 + Γ)I − (1 + Γ)C2M
−1
j ‖Dk,Mj

Φj‖2HMj
−(Γ + 1)‖χj‖H[2]

Mj

‖θj‖H[2]
Mj

.
(4.5.48)

Hence we obtain

(1 + Γ)I ≥ a‖Φj‖2HMj − (1 + Γ)C2M
−1
j ‖Dk,MjΦj‖2HMj

−〈Ψj ,Φj〉HMj − (Γ + 1)‖χj‖H[2]
Mj

‖θj‖H[2]
Mj

≥ a
2‖Φj‖

2
HMj

−
(

1
a + Γ+1

a

)
‖Ψj‖2HMj − (1 + Γ)C2M

−1
j ‖Dk,Mj

Φj‖2HMj ,
(4.5.49)

which yields the desired bound.

Proof of Proposition 4.5.4. Rescaling (4.5.23) yields

0 ≥ C3

c20+2C1

[
c20‖Dk,MjΦj‖2HMj − 2C1‖Φj‖2HMj − 2‖Ψj‖2HMj

]
, (4.5.50)

which can be added to (4.5.29) or (4.5.36) to obtain

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ ≥ C3‖Φj‖2HMj − C4‖Ψj‖2HMj − C5M

−1
j ‖Dk,Mj

Φj‖2HMj

+ C3

c20+2C1

[
c20‖Dk,Mj

Φj‖2HMj − 2C1‖Φj‖2HMj
−2‖Ψj‖2HMj

]
=

c20C3

c20+2C1

[
‖Dk,Mj

Φj‖2HMj + ‖Φj‖2HMj
]

−
[
C4 + C3

c20+2C1

]
‖Ψj‖2HMj

−C5M
−1
j ‖Dk,MjΦj‖2HMj .

(4.5.51)
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Remembering that ‖Φj‖H1
k,Mj

= 1, we can pick constants C6 > 0, C7 > 0 and C8 > 0,

which all are independent of 0 < δ < δ0, in such a way that

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ ≥ C6 − C7‖Ψj‖2HMj − C8M

−1
j .

(4.5.52)

The strong convergence I0
Mj

Φj → Φ∗ ∈ L2([−µ−1, µ+ 1]; `2q,⊥) now yields the limiting
behaviour

M−1
j

∑
ξ∈M−1

j Z:|ξ|≤µ
|Φj(·, ξ)|2`2q,⊥ =

∫ µ+M−1
j

−µ

∣∣∣[I0
Mj

Φj ](·, ξ)
∣∣∣2
`2q,⊥

dξ

≤
∫ µ+1

−µ

∣∣∣[I0
Mj

Φj ](·, ξ)
∣∣∣2
`2q,⊥

dξ

→
∫ µ+1

−µ

∣∣∣Φ∗(·, ξ)∣∣∣2
`2q,⊥

dξ,

(4.5.53)

as j → ∞. In view of the bound lim supj→∞‖Ψj‖2HMj ≤ κ(δ)2, this gives the desired

inequality

‖Φ∗‖2H1(R,`2q,⊥)
≥

∫ µ+1

−µ

∣∣∣Φ∗(·, ξ)∣∣∣2
`2q,⊥

dξ ≥ C6 − C7κ(δ)2. (4.5.54)

4.5.3 Exponential decay

In this section we set out to prove Proposition 4.5.5. The main ingredient to establish
this result is to show that for 0 < δ < δ0 the map (L0 + δ)−1 maps BC1

−η(R;Rd) into
the space

BC2
−η(R;Rd) = {F ∈ BC−η(R;Rd) : supξ∈R e

−η|ξ|[|F (ξ)|+ |F ′(ξ)|+ |F ′′(ξ)|] <∞}.
(4.5.55)

This is not immediately clear, since if we have

F = (L0 + δ)−1G (4.5.56)

with G ∈ BC1
−η(R;Rd), it is impossible to express F as a local function of G due to the

infinite-range interactions. We first establish this result for the subspaces H1(R;Rd)
and H2(R;Rd).

Lemma 4.5.9. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Then for each 0 < δ < δ0 and each
G ∈ H1(R;Rd) we have

(L0 + δ)−1G ∈ H2(R;Rd). (4.5.57)
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Proof. Fix 0 < δ < δ0 and G ∈ H1(R;Rd). Write F = (L0 + δ)−1G ∈ H1(R;Rd).
Then we can rewrite the equation (L0 + δ)F = G in the form

c0F
′ = G+ ∆0F +DUG

(
U0; r

)
F − δF. (4.5.58)

From this representation it immediately follows that F ′ ∈ L∞(R;Rd). Differentiating
both sides yields

c0F
′′ = G′ + (∆0F )′ +DUG

(
U0; r

)
F ′ +D2G

(
U0; r)[U

′
0, F ]− δF ′. (4.5.59)

Writing

Fn(x) = τ
n∑

m=1
αm

[
F (x+m) + F (x−m)− 2F (x)

]
(4.5.60)

for n ∈ Z>0, we can compute

F ′n(x) = τ
n∑

m=1
αm

[
F ′(x+m) + F ′(x−m)− 2F ′(x)

]
. (4.5.61)

This allows us to estimate

|F ′n(x)− (∆0F
′)(x)| ≤ 4τ

∞∑
m=n+1

|αm|‖F ′‖∞. (4.5.62)

In particular, the sequence {F ′n} converges uniformly to ∆0F
′, from which it follows

that

(∆0F )′(x) = τ
∞∑
m=1

αm

[
F ′(x+m) + F ′(x−m)− 2F ′(x)

]
= (∆0F

′)(x).

(4.5.63)
Since F,G ∈ H1(R;Rd), these considerations yield that F ′′ ∈ L2(R;Rd), from which
the desired result follows.

We now turn to the desired exponential decay. The assumptions (HW1r) and
(HW2r) yield the following useful properties of the operator L0.

Lemma 4.5.10. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Then the following properties hold for
the LDE (4.2.1) with r = r.

(i) The functions Φ+
0 and Φ−0 together with their derivatives decay exponentially.

(ii) Upon introducing the spaces

X0 = {F ∈ H1(R;Rd) : 〈Φ−0 , F 〉L2(R;Rd) = 0} (4.5.64)

and
Y0 = {G ∈ L2(R;Rd) : 〈Φ−0 , G〉L2(R;Rd) = 0}, (4.5.65)

the operator L0 : X0 → Y0 is invertible.
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In addition, there exists a constant η̃ > 0 in such a way that for each 0 < η < η̃ the
map L0 maps BC1

−η(R;Rd) into BC−η(R;Rd).

Proof. The proof of the statements (i)-(ii) follows the procedure described [150,
Lem. 4.15, 6.8, 6.9] and will hence be omitted. It hence suffices to prove that ∆0 maps
BC−η(R;Rddiff ) into itself for η small enough. Upon picking F ∈ BC−η(R;Rddiff ) and
K ∈ R>0 in such a way that the bound

|F (ξ)| ≤ Ke−η|ξ| (4.5.66)

holds, we estimate

|∆0F (ξ)| ≤ τ
∑
m>0
|αm|K

(
e−η|ξ+m| + e−η|ξ−m| + 2e−η|ξ|

)
≤ τ

∑
m>0
|αm|Ke−η|ξ|

(
2eηm + 2

)
.

(4.5.67)

We can hence set η̃ = ν, where ν is defined in (HS1). A computation similar to the proof
of [150, Lem. 6.5] yields the continuity of ∆0f , from which the desired result follows.

We now recall the notation Lqinv
0 G that was introduced in [150, Cor. 4.4] for the

unique solution F of the equation

L0F = G−
〈Φ−0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0 (4.5.68)

in the space X0, which is given explicitly by

Lqinv
0 G = L−1

0

[
G−

〈Φ−0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0

]
. (4.5.69)

The proof of [150, Prop. 5.2] provides the representation

(L0 + δ)−1G = δ−1 〈Φ
−
0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0 + [I + δL−1

0 ]−1Lqinv
0 G (4.5.70)

for each 0 < δ < δ0 and each G ∈ L2(R;Rd). In addition, we can use Lemma 4.5.10 to
pick constants K̃ > 0 and α̃ > 0 in such a way that

|Φ+
0 (x)| ≤ K̃e−α̃|x| (4.5.71)

holds for all x ∈ R. Let η̃ > 0 be the constant from Lemma 4.5.10. Using [150, Lem.
6.6], which is a generalization of [130, Prop. 5.3], we can pick constants K1 > 0 and
0 < α ≤ min{η̃, α̃} in such a way that

|Lqinv
0 G(x)| ≤ K1e

−α|x|‖Lqinv
0 G‖∞

+K1

∫∞
−∞ e−α|x−y|

∣∣∣G(y)−
〈Φ−0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0 (y)

∣∣∣dy (4.5.72)

holds for each G ∈ L2(R;Rd). The following three results use (4.5.70) and (4.5.72) to
establish the desired pointwise bound for (L0 + δ)−1.
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Lemma 4.5.11. Assume that (HS1) and (HS2) are satisfied and pick r in such a
way that (HS3r), (HW1r) and (HW2r) are satisfied. Recall the constant α > 0 from
(4.5.72) and fix 0 < η ≤ α. Then there exists a constant K > 0 so that for each
G ∈ BC1

−η(R;Rd) we have the bound

|Lqinv
0 G(x)| ≤ K‖G‖BC−η(R;Rd)e

−η|x|. (4.5.73)

Proof. Pick 0 < η ≤ α and G ∈ BC1
−η(R;Rd). Recalling (4.5.72), we can estimate

‖Lqinv
0 G‖∞ ≤ ‖Lqinv

0 G‖H1(R;Rd)

≤ ‖L−1
0 ‖L(Y0,X0)‖G−

〈Φ−0 ,G〉L2(R;Rd)

〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

Φ+
0 ‖L2(R;Rd)

≤ ‖L−1
0 ‖L(Y0,X0)

(
1 + 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

)
‖G‖L2(R;Rd).

(4.5.74)

Combining these estimates yields the bound

|Lqinv
0 G(x)| ≤ K1e

−α|x|‖L−1
0 ‖L(Y0,X0)

(
1 + 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

)
‖G‖L2(R;Rd)

+K1

(
‖G‖BC−η(R,Rd) + K̃ 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|‖G‖L2(R;Rd)

)
×
∫∞
−∞ e−α|x−y|e−η|x|dy

≤ K1e
−α|x|‖L−1

0 ‖L(Y0,X0)

(
1 + 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

)
‖G‖L2(R;Rd)

+K1

(
‖G‖BC−η(R,Rd) + K̃ 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|‖G‖L2(R;Rd)

)
e−η|x|

≤ K2

(
‖G‖BC−η(R;Rd) + ‖G‖L2(R;Rd)

)
e−η|x|.

(4.5.75)
Finally, we note that ‖G‖L2(R;Rd) ≤ K3‖G‖BC−η(R;Rd) for some constant K3 > 0, which
implies the desired result.

Lemma 4.5.12. Consider the setting of Lemma 4.5.11. Then there exist constants
0 < δ∗ ≤ δ0 and K > 0 so that for each 0 < δ < δ∗ and each G ∈ BC1

−η(R;Rd) we
have the bound

|[I + δL−1
0 ]−1Lqinv

0 G(x)| ≤ K‖G‖BC−η(R;Rd)e
−η|x|. (4.5.76)

Proof. Pick G ∈ BC1
−η(R;Rd). For n ∈ Z>0 a calculation similar to (4.5.74) yields

‖(L−1
0 )nLqinv

0 G‖∞ ≤ ‖L−1
0 ‖

n+1
L(Y0,X0)

(
1 + 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

)
‖G‖L2(R;Rd). (4.5.77)

Using [150, Lem. 6.6] and Lemma 4.5.11, we obtain

|L−1
0 Lqinv

0 G(x)| ≤ K1e
−α|x|‖L−1

0 Lqinv
0 G‖∞ +K1

∫∞
−∞ e−α|x−y|

∣∣∣Lqinv
0 G

∣∣∣dy
≤ K1

(
1 + ‖L−1

0 ‖L(Y0,X0)

)
K‖G‖BC−η(R;Rd)e

−η|x|.

(4.5.78)
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Continuing in this fashion we see that the estimate

|(L−1
0 )nLqinv

0 G(x)| ≤ Kn
2K‖G‖BC−η(R;Rd)e

−η|x| (4.5.79)

holds for all n ∈ Z>0 and for some constant K2 > 0. If we set

δ∗ = min
{
δ0,

1

‖L−1
0 ‖L(Y0,X0)

(
1+ 1

|〈Φ−0 ,Φ
+
0 〉L2(R;Rd)

|

) , 1
K2

}
,

(4.5.80)

then for each n ∈ Z>0 and each 0 < δ < δ∗ we have

‖(−δ)n(L−1
0 )nLqinv

0 G‖∞ ≤ 1
2‖G‖BC−η(R;Rd). (4.5.81)

In particular, it follows that

∞∑
n=0

(−δ)n(L−1
0 )nLqinv

0 G → [I + δL−1
0 ]−1Lqinv

0 G (4.5.82)

in H1(R;Rd). Since H1(R;Rd)-convergence implies pointwise convergence we see that

|[I + δL−1
0 ]−1Lqinv

0 G(x)| = |
∞∑
n=0

(−δ)n(L−1
0 )nLqinv

0 G(x)|

≤
∞∑
n=0

δn∗KK
n
2 ‖G‖BC−η(R;Rd)e

−η|x|

≤ K3‖G‖BC−η(R;Rd)e
−η|x|.

(4.5.83)

Corollary 4.5.13. Consider the setting of Lemma 4.5.12. There exists a constant
K > 0 so that for each 0 < δ < δ∗ and each G ∈ BC1

−η(R;Rd) we have the bound

|(L0 + δ)−1G(x)| ≤ Kδ−1‖G‖BC−η(R;Rd)e
−η|x|,

|[(L0 + δ)−1G]′(x)| ≤ Kδ−1‖G‖BC−η(R;Rd)e
−η|x|,

|[(L0 + δ)−1G]′′(x)| ≤ Kδ−1‖G‖BC1
−η(R;Rd)e

−η|x|.

(4.5.84)

Proof. Fix 0 < δ < δ∗ and G ∈ BC1
−η(R;Rd). Write F = (L0 + δ)−1G. The

representation (4.5.70) together with Lemma 4.5.12 immediately yields the bound

|F (x)| ≤ δ−1 1
|〈Φ−0 ,Φ

+
0 〉L2(R;Rd)

|‖G‖L2(R;Rd)K̃e
−α̃|x| +K‖G‖BC−η(R;Rd)e

−η|x|

≤ δ−1K2‖G‖BC−η(R;Rd)e
−η|x|.

(4.5.85)
In addition, the representation (4.5.58) together with the bounds (4.5.67) and (4.5.85)
yields that

|F ′(x)| ≤ Kδ−1‖G‖BC−η(R;Rd)e
−η|x| (4.5.86)

for some constant K > 0. Similarly, the representation (4.5.59) yields the bound

|F ′′(x)| ≤ Kδ−1‖G‖BC1
−η(R;Rd)e

−η|x|. (4.5.87)

Proof of Proposition 4.5.5. Corollary 4.5.13 implies the desired result.
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4.6 Proof of main result

In this section we mainly follow the approach of [111, §4.1]. We lift the computations
from [111] in a more detailed fashion, in order to ensure that the multi-component
nature of the nonlinearity G does not cause any issues. Luckily, we only need to take
care of some minor, technical difficulties. For example, due to the higher generality of
the nonlinearity G, we can no longer refer to [52, Lem. App.IV.1.1] to conclude that
G depends continuously on the perturbation. Instead, we need to prove this continuity
in a direct fashion, carefully employing the exponential decay of the travelling wave U
and the perturbations involved.

Let us fix an integer q ≥ 1, together with a constant M = p
q ∈ Mq. Our goal is to

construct a solution U to the nonlinear problem

c[Dk,MU ](ξ) = τ
∑
m>0

αm[U(ξ +m) + U(ξ −m)− 2U(ξ)] + G
(
U(ξ); r

)
, (4.6.1)

where ξ ∈ p−1Z, that has the form

U(ξ) = U0(ξ + θ) + Φ(ξ), ξ ∈ p−1Z, (4.6.2)

for some θ ∈ R and some Φ ∈ YM . Note that this form automatically ensures that U
satisfies the boundary conditions

lim
ξ→±∞,ξ∈p−1Z

U(ξ) = P±. (4.6.3)

For notational compactness, we introduce the functions

Uθ(ξ) = U0(ξ + θ), Φ+
θ (ξ) = Φ+

0 (ξ + θ), Φ−θ (ξ) = Φ−0 (ξ + θ),
(4.6.4)

together with the linear operators

Lk,M ;θ : Y1
k,M → YM , (4.6.5)

that act as

Lk,M ;θΦ(ξ) = c0[Dk,MΦ](ξ)−∆0V (ξ)−DUG
(
U0(ξ + θ); r

)
Φ(ξ), (4.6.6)

where ξ ∈ p−1Z. Naturally, these operators satisfy the properties described in Propo-
sition 4.5.1 provided all occurrences of Φ+

0 and Φ−0 are replaced by Φ+
θ and Φ−θ respec-

tively. In particular, we write

γ∗k,M ;θ : YM → R,

V∗k,M ;θ : YM → Y1
k,M

(4.6.7)

for the maps appearing in that result, as well as M∗;θ and Cθ for the corresponding
constants. Since the nonlinearity G(·; r) and the travelling wave U0 are continuous, it
is clear that the map

θ 7→ Lk,M ;θ ∈ L(Y1
k,M ,YM ) (4.6.8)
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is continuous. The representations [111, Eq. (3.149)] and [111, Eq. (3.150)], therefore,
imply that the maps

θ 7→ γ∗k,M ;θ ∈ L(YM ,R)

θ 7→ V∗k,M ;θ ∈ L(YM ,Y1
k,M )

(4.6.9)

are continuous as well. As such, the constants M∗;θ and Cθ can be chosen to depend
continuously on θ. Our goal is to find a lower bound for these constants. For θ ∈ R
we write Sθ for the shift operator f 7→ f(· + θ). For any M ∈ Mq we observe that
S1 and S−1 map Y1

k,M and YM into themselves and that these maps are isometric
isomorphisms. Moreover, we observe that for each θ ∈ R we have the identity

Lk,M ;θ = S1Lk,M ;θ−1S−1. (4.6.10)

As such, we can restrict ourselves to the values of M∗;θ and Cθ for θ ∈ [0, 1]. Since
[0, 1] is compact and M∗;θ and Cθ depend continuously on θ, we can pick an uniform
quantities Cunif > 0 and Munif in such a way that the bounds

|γ∗k,M ;θf |+ ‖V∗k,M ;θf‖Y1
k,M

≤ Cunif‖f‖YM (4.6.11)

and ∣∣γ∗k,M ;θf − 〈πYMΦ−0 , πYM f〉YM
∣∣ ≤ CunifM

−1‖f‖L2(R;Rd) (4.6.12)

hold for all sufficiently small η > 0, all M ∈Mq with M ≥Munif , all f ∈ BC1
−η(R;Rd)

and all θ ∈ R.

4.6.1 Existence of solutions

Substituting the Ansatz (4.6.2) into (4.6.1), we obtain

c[Dk,MΦ](ξ) + c[Dk,MUθ](ξ) = ∆0Uθ(ξ) + ∆0Φ(ξ) + G
(
Uθ(ξ) + Φ(ξ); r

)
.

(4.6.13)
The proof of Theorem 4.2.1 proceeds in two main steps. In particular, we first show the
existence of wave solutions to (4.6.1) before we turn to the uniqueness. The existence
results are summarized in the following proposition.

Proposition 4.6.1. Assume that (HS1) and (HS2) are satisfied and pick r in such a
way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers 1 ≤ k ≤ 6
and q ≥ 1. Then there exist constants M∗ � 1 and δr > 0 so that for any M = p

q ∈Mq

with M ≥M∗, there exist continuous functions

cM : R× [r − δr, r + δr] → R

UM : R× [r − δr, r + δr] → `∞(p−1Z,Rd),
(4.6.14)

that satisfy properties (i)-(iii) of Theorem 4.2.1.

For any V ∈ Rd and (ξ, θ, r) ∈ R× R× (0, 1) we consider the nonlinear expression

N0(V ; ξ, θ, r) = G
(
Uθ(ξ) + V ; r

)
− G

(
Uθ(ξ); r

)
−DUG

(
Uθ(ξ); r

)
V. (4.6.15)
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Plugging this expression into (4.6.13) we arrive at

c[Dk,MΦ](ξ) + c[Dk,MUθ](ξ) = ∆0Uθ(ξ) + ∆0Φ(ξ) +DUG
(
Uθ(ξ); r

)
Φ(ξ)

+G
(
Uθ(ξ); r

)
+N0(Φ(ξ); ξ, θ, r)

+DUG
(
Uθ(ξ); r

)
Φ(ξ)−DUG

(
Uθ(ξ); r

)
Φ(ξ).

(4.6.16)
Exploiting that Uθ is a wave solution of the semi-discrete equation, i.e. that

c0U
′
θ(ξ) = ∆0Uθ(ξ) + G

(
Uθ(ξ); r

)
, (4.6.17)

we find that the pair (c,Φ) must satisfy the equation

Lk,M ;θΦ = (c0 − c)[Dk,MUθ](ξ) + [RA(c,Φ)](ξ)

+[RB(Φ; θ, r)](ξ) + [RC(θ,M)](ξ).
(4.6.18)

Here we have introduced the quantities

[RA(c,Φ)](ξ) = (c0 − c)[Dk,MΦ](ξ)

[RB(v; θ, r)](ξ) = DUG
(
Uθ(ξ); r

)
Φ(ξ)−DUG

(
Uθ(ξ); r

)
Φ(ξ)

+G
(
Uθ(ξ); r

)
− G

(
Uθ(ξ); r

)
+N0(Φ(ξ); ξ, θ, r)

= G
(
Uθ(ξ) + Φ(ξ); r

)
− G

(
Uθ(ξ) + Φ(ξ); r

)
+N0(Φ(ξ); ξ, θ, r),

(4.6.19)
together with

[RC(θ,M)](ξ) = −c0[Dk,MUθ](ξ) + ∆0Uθ(ξ) + G
(
Uθ(ξ); r

)
= c0

[
U
′
θ −Dk,MUθ

]
(ξ).

(4.6.20)

Note that the term RB incorporates the effects caused by varying the parameters in our
equation, while the term RC describes the effect of moving from the regular derivative
to the discrete derivative.

Note that in our current notation the normalization condition (4.2.36) reduces to

〈πYMΦ−0 (·+ θ), U − πYMU0(·+ θ)〉YM = 0. (4.6.21)

Proposition 4.5.1 and our considerations above show that solutions (c,Φ) to (4.6.18)
must satisfy the fixed point problem

c0 − c = γ∗k,M ;θ

[
RA(c,Φ) +RB(Φ; θ, r) +RC(θ,M)

]
Φ = V∗k,M ;θ

[
RA(c,Φ) +RB(v; θ, r) +RC(θ,M)

]
.

(4.6.22)
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Lemma 4.6.2 ([111, Lem. 4.1]). Assume that (HS1) and (HS2) are satisfied and pick
r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers
1 ≤ k ≤ 6 and q ≥ 1. There exists a constant C > 1 so that for all M = p

q ∈ Mq and

Φ ∈ Y1
k,M we have the bound

‖Φ‖∞ := sup
ξ∈p−1Z

|Φ(ξ)| ≤ C‖Φ‖Y1
k,M

. (4.6.23)

Lemma 4.6.3 (cf. [111, Lem. 4.2]). Assume that (HS1) and (HS2) are satisfied
and pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair
of integers 1 ≤ k ≤ 6 and q ≥ 1. There exists a constant C > 1 so that for all
M = p

q ∈ Mq, all (θ, r) ∈ R × (0, 1) and Φ ∈ Y1
k,M with ‖Φ‖Y1

k,M
≤ 1 we have the

bound
‖RB(Φ; θ, r)‖Y1

k,M
≤ C|r − r|+ C‖Φ‖YM ‖Φ‖Y1

k,M
. (4.6.24)

Proof. The restriction on Φ, together with Lemma 4.6.2 yields the bound

‖Φ‖∞ ≤ C1 (4.6.25)

for some C1 > 0. For each ξ ∈ p−1Z we get using a Taylor expansion the uniform
estimate

|N0(Φ(ξ); ξ, θ, r)| = |R1

(
U0(ξ),Φ(ξ)

)
|

≤ C2|Φ(ξ)|2,
(4.6.26)

for some remainder termR1

(
U0(ξ),Φ(ξ)

)
. Note that C2 > 0 can be chosen independent

of ξ,Φ, θ,M and r, see for example [55, Thm. 2.8.3]. This allows us to estimate

‖N0(Φ(·); ·, θ, r)‖2YM = p−1
∑

ξ∈p−1Z
|N0(Φ(ξ); ξ, θ, r)|2

≤ [C2]2p−1
∑

ξ∈p−1Z
|Φ(ξ)|4

≤ [C2]2p−1‖v‖2∞
∑

ξ∈p−1Z
|Φ(ξ)|2

≤ C3‖Φ‖2Y1
k,M
‖Φ‖2YM

(4.6.27)

for some C3 > 0.

Using a Taylor expansion we can write

G
(
Uθ(ξ) + Φ(ξ); r

)
− G

(
Uθ(ξ) + Φ(ξ); r

)
= D2G

(
Uθ(ξ) + Φ(ξ), ζ(ξ)

)
(r − r)

(4.6.28)
where ζ(ξ) is in between r and r.

With Lemma 4.5.10 we pick C4 > 0 and α > 0 in such a way that

|U ′0(ξ)| ≤ C4e
−α|ξ| (4.6.29)

holds for all ξ ∈ R. The limiting value lim
ξ→−∞

U0(ξ) = P− implies that for ξ < 0 we can

write

U0(ξ)− P− =
∫ ξ
−∞ U

′
0(ξ′)dξ′. (4.6.30)
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This allows us to compute

|U0(ξ)− P−| ≤
∫ ξ
−∞ C4e

αξ′dξ′

= 1
αC4e

αξ

= 1
αC4e

−α|ξ|

(4.6.31)

for ξ < 0. The limiting value lim
ξ→∞

U0(ξ) = P+ implies that for ξ ≥ 0 we can write

U0(ξ)− P+ =
∫∞
ξ
U
′
0(ξ′)dξ′, (4.6.32)

which allows us to do the analogous computation to obtain

|U0(ξ)− P+| ≤ 1
αC4e

−α|ξ| (4.6.33)

for ξ ≥ 0.

Note that D2G(P±, ρ) = 0 for all 0 < ρ < 1 and that D1D2G(V, ρ) is bounded for
|V | ≤ ‖U0‖∞ + C1 and 0 < ρ < 1. Therefore, we can pick a constant C5 > 0 in such a
way that

|D2G(V, ρ)| ≤ C5min{|V − P−|, |V − P+|}, (4.6.34)

for |V | ≤ ‖U0‖∞ + C1 and 0 < ρ < 1. As such, we can estimate

d := ‖D2G
(
Uθ(ξ) + Φ(ξ), ζ(ξ)

)
‖2YM

≤ p−1
∑

ξ∈p−1Z
C5min

{
|Uθ(ξ) + Φ(ξ)− P−|2, |Uθ(ξ) + Φ(ξ)− P+|2

}
≤ 2C5p

−1
∑

ξ∈p−1Z

[
min

{
|Uθ(ξ)− P−|2, |Uθ(ξ)− P+|2

}
+ |Φ(ξ)|2

]
≤ 2C5

[
‖Φ‖YM + p−1

∑
ξ∈p−1Z

1
αC4e

−α|ξ|
]

≤ C6

(4.6.35)

for some constant C6 > 0. The desired bound on RB now follows from combining
(4.6.27) with the representation (4.6.28) and the bound (4.6.35).

Lemma 4.6.4 ([111, Lem. 4.2]). Assume that (HS1) and (HS2) are satisfied and pick
r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers
1 ≤ k ≤ 6 and q ≥ 1. There exists a constant C > 1 so that for all M = p

q ∈ Mq, all

(c, θ) ∈ R× R and Φ ∈ Y1
k,M with ‖Φ‖Y1

k,M
≤ 1 we have the bounds

‖RA(c,Φ)‖Y1
k,M

≤ |c− c0|‖Dk,MΦ‖YM ,

‖RC(θ,M)‖Y1
k,M

≤ CM−1.
(4.6.36)

Lemma 4.6.5 (cf. [111, Lem. 4.3]). Assume that (HS1) and (HS2) are satisfied and
pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
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integers 1 ≤ k ≤ 6 and q ≥ 1. Then there exists a constant C > 1 such that for any
pair of constants 0 < δc < 1 and 0 < δφ < 1 and any multiplet

(Φ1,Φ2, c1, c2, r, θ) ∈ Y1
k,M × Y1

k,M × R× R× (0, 1)× R (4.6.37)

with
‖Φ1‖Y1

k,M
+ ‖Φ2‖Y1

k,M
≤ δφ

|c1 − c0|+ |c0 − c2| ≤ δc,
(4.6.38)

we have the bounds

‖RA(c1,Φ1)−RA(c2,Φ2)‖Y1
k,M

≤ δφ|c1 − c2|+ δc‖Dk,M [Φ1 − Φ2]‖YM ,

‖RB(Φ1; θ, r)−RB(Φ2; θ, r)‖Y1
k,M

≤ C|r − r|‖Φ1 − Φ2‖YM + Cδφ‖Φ1 − Φ2‖YM .
(4.6.39)

Proof. The estimate for RA is immediate. Lemma 4.6.2 implies that ‖Φ1‖∞ +
‖Φ2‖∞ ≤ C1δφ for some C1 > 0. Using two Taylor approximations, we write

dN := |N0(Φ1(ξ); ξ, θ, r)−N0(Φ2(ξ); ξ, θ, r)|

=
∣∣∣G(Uθ(ξ) + Φ2(ξ) +

(
Φ1(ξ)− Φ2(ξ)

)
; r
)
− G

(
Uθ(ξ) + Φ2(ξ); r

)
−DUG

(
Uθ(ξ) + Φ2(ξ); r

)(
Φ1(ξ)− Φ2(ξ)

)
+
[
DUG

(
Uθ(ξ) + Φ2(ξ); r

)
−DUG

(
Uθ(ξ); r

)](
Φ1(ξ)− Φ2(ξ)

)∣∣∣
=

∣∣∣R1

(
Uθ(ξ) + Φ2(ξ),Φ1(ξ)− Φ2(ξ)

)(
Φ1(ξ)− Φ2(ξ)

)
+R2

(
Uθ(ξ),Φ2(ξ)

)(
Φ1(ξ)− Φ2(ξ)

)∣∣∣,
(4.6.40)

for some remainder terms R1

(
Uθ(ξ) + Φ2(ξ),Φ1(ξ) − Φ2(ξ)

)
and R2

(
Uθ(ξ),Φ2(ξ)

)
.

Using [55, Thm. 2.8.3] we can pick a constant C1 > 0 in such a way that∣∣∣R1

(
Uθ(ξ) + Φ2(ξ),Φ1(ξ)− Φ2(ξ)

)∣∣∣ ≤ C1

∣∣Φ1(ξ)− Φ2(ξ)
∣∣ ≤ 2C1δφ,∣∣∣R2

(
Uθ(ξ),Φ2(ξ)

)∣∣∣ ≤ C1|Φ2(ξ)| ≤ C1δφ.
(4.6.41)

We, therefore, obtain the pointwise inequality

dN ≤ 3C1δφ
∣∣Φ1(ξ)− Φ2(ξ)

∣∣, (4.6.42)

which allows us to compute

‖N0(Φ1(ξ); ξ, θ, r)−N0(Φ2(ξ); ξ, θ, r)‖2YM ≤ p−1
∑

ξ∈p−1Z
[C2]2δ2

φ|Φ1(ξ)− Φ2(ξ)|2

= [3C1]2δ2
φ‖Φ1 − Φ2‖2YM .

(4.6.43)
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Similarly to (4.6.28), we can now write

dg := G
(
Uθ(ξ) + Φ1(ξ); r

)
− G

(
Uθ(ξ) + Φ1(ξ); r

)
−G
(
Uθ(ξ) + Φ2(ξ); r

)
+ G

(
Uθ(ξ) + Φ2(ξ); r

)
= D2G

(
Uθ(ξ) + Φ2(ξ), ζ1(ξ)

)
−D2G

(
Uθ(ξ) + Φ1(ξ), ζ2(ξ)

)
,

(4.6.44)

where ζ1(ξ) and ζ2(ξ) are both in between r and r. Similarly to (4.6.34) we can pick a
constant C2 > 0 in such a way that

|D2G(U1, ρ)−D2G(U2, ρ)| ≤ C2|U1 − U2|, (4.6.45)

for |U1|, |U2| ≤ ‖U0‖∞ + C1δφ and 0 < ρ < 1. Thus we can immediately estimate

‖dg‖YM ≤ C2‖Φ1 − Φ2‖YM , (4.6.46)

which yields the desired bound for RB .

Lemma 4.6.6 (cf. [111, Lem. 4.4]). Assume that (HS1) and (HS2) are satisfied and
pick r in such a way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of
integers 1 ≤ k ≤ 6 and q ≥ 1. For all M = p

q ∈Mq, the function

Ñ0 : Y1
k,M × R× (0, 1) → YM (4.6.47)

given by
[Ñ0(Φ; θ, r)](ξ) = N0(Φ(ξ); ξ, θ, r), ξ ∈ p−1Z (4.6.48)

is continuous.

Proof. Fix (Φ, θ, r) ∈ Y1
k,M × R × (0, 1) and let ε > 0 be a small constant. Pick

any triplet (Ψ, θ̃, r̃) ∈ Y1
k,M × R × (0, 1) with ‖Φ − Ψ‖Y1

k,M
< 1. Lemma 4.6.2 yields

that ‖Φ − Ψ‖∞ ≤ C1 for some C1 > 0. Since G is C2-smooth, we can pick a constant
C2 > 0 in such a way that for any V,W ∈ Rd with |V |, |W | ≤ ‖U0‖∞ + 2C1 and any
0 < r1, r2 < 1 we have the bound∣∣∣G(V ; r1)− G(W ; r1)

∣∣∣ ≤ C2

∣∣∣V −W ∣∣∣,∣∣∣DG(V ; r1)−DG(W, r2)
∣∣∣ ≤ C2

∣∣∣(V, r1)− (W, r2)
∣∣∣. (4.6.49)

Moreover, using two Taylor approximations we write

dG1 := G
(
Uθ(ξ) + Φ(ξ); r

)
− G

(
U θ̃(ξ) + Ψ(ξ); r̃

)
= G

(
Uθ(ξ) + Φ(ξ); r

)
− G

(
U θ̃(ξ) + Ψ(ξ); r

)
−D2G

(
U θ̃(ξ) + Ψ(ξ); ζ2(Ψ(ξ), ξ)

)
(r − r̃),

dG2 := G
(
Uθ(ξ); r

)
− G

(
U θ̃(ξ); r̃

)
= G

(
Uθ(ξ); r

)
− G

(
U θ̃(ξ); r

)
−D2G

(
U θ̃(ξ)(r − r̃); ζ1(ξ)

)
(r − r̃),

(4.6.50)
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where ζ1(ξ) and ζ2(Ψ(ξ), ξ) are both in between r and r̃. Similarly to (4.6.34) we can
pick a constant C3 > 0 in such a way that

|D2G(V, ρ)| ≤ C3min{|V − P−|, |V − P+|} (4.6.51)

for any 0 < ρ < 1 and |V | ≤ ‖U0‖∞ + 2C1. This allows us to obtain the pointise
estimate

dÑ :=
∣∣∣[Ñ0(Φ; θ, r)](ξ)− [Ñ0(Ψ; θ̃, r̃)](ξ)

∣∣∣
≤ dG1 + dG2 + |Φ(ξ)|

∣∣∣DG(Uθ(ξ); r)−DG(U θ̃(ξ); r̃)∣∣∣
+
∣∣Φ(ξ)−Ψ(ξ)

∣∣∣∣∣DG(U θ̃(ξ); r̃)∣∣∣
≤ C2

∣∣∣Uθ(ξ) + Φ(ξ)− U θ̃(ξ)−Ψ(ξ)
∣∣∣

+C3(r − r̃)min
{
|U θ̃(ξ) + Ψ(ξ)− P−|, |U θ̃ + Ψ(ξ)− P+|

}
+C2

∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣+ C3(r − r̃)min
{
|U θ̃(ξ)− P−|, |U θ̃ − P+|

}
+|Φ(ξ)|

∣∣∣(Uθ(ξ), r)− (U θ̃(ξ), r̃)
∣∣∣+
∣∣Φ(ξ)−Ψ(ξ)

∣∣
≤ 2C2

∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣+ (1 + C2)
∣∣Φ(ξ)−Ψ(ξ)

∣∣
+
(
1 + |Ψ(ξ)|

)
C3(r − r̃)min

{
|U θ̃(ξ)− P−|, |U θ̃ − P+|

}
+|Φ(ξ)|

[∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣+
∣∣r − r̃∣∣].

(4.6.52)
Since Uθ decays exponentially to its limits, we can pick 0 < δ < 1 in such a way that
for each θ̃ ∈ R with |θ − θ̃| < δ and each ξ −1Z we have the bound

|Uθ(ξ)− U θ̃(ξ)| ≤ min{ pε
30C22|n|

, pε
30(‖Φ‖YM+1)2|n|

}. (4.6.53)

This yields the estimates

2C2p
−1
∑
ξ∈p−1Z

∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣ ≤ ε
5 ,

p−1
∑
ξ∈p−1Z |Φ(ξ)|

∣∣∣Uθ(ξ)− U θ̃(ξ)∣∣∣ ≤ ε
5 .

(4.6.54)

Moreover, similarly to (4.6.33) we pick C4 > 0 in such a way that the pointwise estimate

min
{
|U θ̃(ξ)− P−|, |U θ̃(ξ)− P+|

}
≤ 1

αC4e
−α|ξ| (4.6.55)

holds for any ξ ∈ R and any θ̃ ∈ R with |θ̃ − θ| < δ. As such we can pick C5 > 0 in
such a way that the bound

‖min
{
|U θ̃ − P−|, |U θ̃ − P+|

}
‖YM ≤ C5 (4.6.56)

holds for any θ̃ ∈ R with |θ̃ − θ| < δ.
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Then we obtain for each triplet (Ψ, θ̃, r̃) ∈ Y1
k,M × R × (0, 1) with ‖Φ − Ψ‖Y1

k,M
<

min{1, ε
5(1+C2)}, |θ − θ̃| < δ and |r − r̃| < min

{
ε

5(1+C1)C3C5
, ε

5(‖Φ‖YM+1)

}
that

‖dÑ ‖YM = ‖[Ñ0(Φ; θ, r)]− [Ñ0(Ψ; θ̃, r̃)]‖YM
≤ ε

5 + (1 + C2) ε
5(1+C2) + (1 + C1)C3

ε
5(1+C1)C3C5

C5

+ ε
5 + ‖Φ‖YM ε

5(‖Φ‖YM+1)

< ε.

(4.6.57)

Therefore, the function Ñ0 is continuous in the point (Φ, θ, r), which yields the desired
result.

Proof of Proposition 4.6.1. Recall the constants Cunif > 1 and Munif ∈Mq, together
with the bounds (4.6.11) and (4.6.12). We let C > 1 be the constant from Lemmas
4.6.3-4.6.5. For any 0 < δφ < 1 and 0 < δc < 1 we introduce the space

Zδc,δφ = {(c,Φ) ∈ R× Y1
k,M : |c− c0| ≤ 1

2δc and ‖Φ‖Y1
k,M
≤ 1

2δφ}, (4.6.58)

together with the map

Tδc,δφ : Zδc,δφ → R× Y1
k,M ,

(c,Φ) 7→

 γ∗k,M ;θ

[
RA(c0 − c,Φ) +RB(Φ; θ, r) +RC(θ,M)

]
V∗k,M ;θ

[
RA(c,Φ) +RB(Φ; θ, r) +RC(θ,M)

]
 .

(4.6.59)
Upon setting

δφ = δc = min{ 1
64Cunif

, 1
32CunifC

}, (4.6.60)

fixing M∗ ∈Mq with M∗ ≥Munif in such a way that the bound

M−1 ≤ 1
16CunifC

(4.6.61)

holds for all M ∈Mq with M ≥M∗, together with the constant

δr = 1
32CunifC

δφ, (4.6.62)

we use Lemmas 4.6.3-4.6.4 to compute

‖Tδc,δφ(c,Φ)‖R×Y1
k,M

≤ Cunif

[
|c− c0|‖Dk,MΦ‖YM

+C|r − r|+ C‖Φ‖YM ‖Φ‖Y1
k,M

+ CM−1
]

≤ Cunif

[
|c− c0|‖Φ‖Y1

k,M
+ C|r − r|+ C‖Φ‖2Y1

k,M
+ CM−1

]
≤ Cunif

[
1

16Cunif
δφ + C 1

16CunifC
δφ + C 1

16CunifC
δφ + C 1

16CunifC

]
= 1

4δφ
(4.6.63)
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for any (c,Φ) ∈ Zδc,δφ , any θ ∈ R, any r ∈ [r − δr, r + δr] and any M ∈ Mq with
M ≥ M∗. As such, we have Tδc,δφ(c,Φ) ∈ Zδc,δφ . Moreover, using Lemma 4.6.5 we
obtain the estimate

dT := ‖Tδc,δφ(c1,Φ1)− Tδc,δφ(c2,Φ2)‖R×Y1
k,M

≤ 2Cunif

[
δφ|c1 − c2|+ 2δc‖Φ1 − Φ2‖Y1

k,M

+C|r − r|‖Φ1 − Φ2‖Y1
k,M

+ Cδφ‖Φ1 − Φ2‖YM
]

≤ 2Cunif

[
1

32Cunif
|c1 − c2|+ 2 1

64Cunif
‖Φ1 − Φ2‖Y1

k,M

+C 1
32CunifC

‖Φ1 − Φ2‖Y1
k,M

+ C 1
32CunifC

‖Φ1 − Φ2‖Y1
k,M

]
= 1

16 |c1 − c2|+
3
16‖Φ1 − Φ2‖Y1

k,M

≤ 1
2‖(c1,Φ1)− (c2,Φ2)‖R×Y1

k,M
,

(4.6.64)

for any (c1,Φ1), (c2,Φ2) ∈ Zδc,δφ , any θ ∈ R, any r ∈ [r − δr, r + δr] and any M ∈ Mq

with M ≥M∗, which shows that Tδc,δφ is a contraction. The fixed point theorem now
implies that the map Tδc,δφ , and therefore the fixed point problem (4.6.22), has a unique

fixed point
(
c∗M (θ, r),Φ∗M (θ, r)

)
. By construction the pair

(
cM (θ, r), UM (θ, r)

)
=(

c∗M (θ, r), Uθ + Φ∗M (θ, r)
)

satisfies (4.2.34) with the boundary conditions (4.2.35).

The solution to this fixed point problem depends continuously on the parameters
(θ, r) on account of Lemma 4.6.6 and our observations concerning the continuity of the
functions θ 7→ γ∗k,M ;θ and θ 7→ V∗k,M ;θ. In addition, the normalisation (4.2.36) follows
from the normalisation of the function V∗k,M ;θ in Proposition 4.5.1. Finally, it is clear

that the pair
(
c∗M (θ + p−1, r),Φ∗M (θ + p−1, r)(· − p−1)

)
is also a solution to the fixed

point problem (4.6.22), which by the uniqueness of solutions yields the shift-periodicity
(4.2.37).

4.6.2 Local uniqueness of solutions

We now turn to the uniqueness claim in the statement of the main theorem. The main
issue is to obtain the decomposition (4.6.66) below. Indeed, this implies that (4.2.39)
ensures that (c, U, θ) is captured by the fixed point argument associated to the phase
ϑ.

Proposition 4.6.7. Assume that (HS1) and (HS2) are satisfied and pick r in such a
way that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers q ≥ 1 and
1 ≤ k ≤ 6. Then there exists a small constant δ > 0 so that for each M = p

q ∈ Mq

with M ≥M∗ and any (c, U, θ) ∈ R× `∞(p−1Z;R)× R that satisfies

‖U − Uθ‖Y1
k,M

< δ, (4.6.65)

the function U can be decomposed as

U = πYMU θ̃ + Φ (4.6.66)
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for some Φ ∈ Y1
k,M with 〈πYMΦ−

θ̃
,Φ〉YM = 0 and some θ̃ close to θ.

Using a Taylor approximation we can pick for each θ̃ ∈ R a sequence {ζθ̃(p−1n)}n∈Z,

with ζθ̃(p
−1n) in between p−1n+ θ and p−1n+ θ̃ for each n ∈ Z in such a way that

U θ̃(ξ)− Uθ = (θ̃ − θ)U ′θ(ξ) + (θ̃ − θ)2U
′′
θ

(
ζθ̃(ξ)

)
(4.6.67)

holds for all ξ ∈ p−1Z. For θ̃ ∈ R we denote θ̃0 for the unique element of [0, 1) which
has θ̃ − θ̃0 ∈ Z and pick n ∈ Z in such a way that θ0 = θ − n. For any θ̃ ∈ R with
|θ̃ − θ| < 1 we can compute

〈πYMU
′
θ, πYMΦ−

θ̃
〉YM = 〈πYMU

′
θ0 , πYMΦ−

θ̃−nh〉YM . (4.6.68)

Lemma 4.6.8. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Fix a pair of integers q ≥ 1 and
1 ≤ k ≤ 6. Then there exists a constant κ > 0 in so that for any M ∈ Mq with

M ≥M∗ and any pair (θ, θ̃) ∈ R× R with |θ̃ − θ| < 1 we have the lower bound

〈πYMU
′
θ, πYMΦ−

θ̃
〉YM > 1

κ . (4.6.69)

Proof. On account of Lemma 4.5.10 we can pick constants C1 > 0 and α > 0 in
such a way that the bounds

|U ′0| ≤ C1e
−α|ξ|,

|U ′′0 | ≤ C1e
−α|ξ|,

|Φ−0 (ξ)| ≤ C1e
−α|ξ|,

|(Φ−0 )′(ξ)| ≤ C1e
−α|ξ|

(4.6.70)

hold for all ξ ∈ R. For any θ̃ ∈ R with |θ̃ − θ| < 1 we hence obtain

|Φ−
θ̃−n(ξ)| ≤ C1e

−α|ξ+θ̃−n| ≤ C1e
α|θ̃−n|e−α|ξ| ≤ C1e

2αe−α|ξ|, (4.6.71)

which yields
‖Φ−

θ̃−n‖BC−α(R;R) ≤ C1e
2α. (4.6.72)

A similar computation provides the bounds

‖U ′θ0‖BC−α(R;R) ≤ C1e
2α,

‖U ′′θ0‖BC−α(R;R) ≤ C1e
2α,

‖(Φ−
θ̃−n)′‖BC−α(R;R) ≤ C1e

2α.

(4.6.73)

On account of Lemma 4.A.2 and the fact that 〈U ′0,Φ−0 〉L2(R;Rd) > 0, we can assume
without loss of generality that M∗ is large enough for the bound

〈πYMU
′
θ, πYMΦ−

θ̃
〉YM > 1

κ
(4.6.74)
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to hold for all M ∈ Mq with M ≥ M∗, all θ ∈ R, all θ̃ ∈ R with |θ − θ̃| < 1 and for
some constant κ > 0, as desired.

Fix a small constant 0 < δθ < 1. In order to find a θ̃ close to θ in such a way that

〈Φ− πYMU θ̃, πYMΦ−
θ̃
〉YM = 0, (4.6.75)

we aim to solve the fixed point problem

θ̃ − θ = Fθ,δθ (θ̃)

:= −〈πYMU
′
θ, πYMΦ−

θ̃
〉−1
YM

[
〈Φ− πYMUθ, πYMΦ−

θ̃
〉YM

+(θ − θ̃)2〈πYMU
′′
θ

(
ζθ̃(·)

)
, πYMΦ−

θ̃
〉YM

] (4.6.76)

on the space [θ − δθ, θ + δθ].

Lemma 4.6.9. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Consider the setting of Proposition
4.6.7. Then there exist constants C2 > 0 and C3 > 0 so that the bound

|Fθ,δθ (θ̃)| ≤ κ
[
δC3 + δ2

θC2

]
(4.6.77)

holds for all θ̃ ∈ [θ − δθ, θ + δθ].

Proof. For θ̃ ∈ R and M ∈Mq with M ≥M∗ we can estimate

|〈πYMU
′′
θ

(
ζθ̃(·)

)
, πYMΦ−

θ̃
〉YM | ≤ p−1

∑
ξ∈p−1Z

|U ′′θ
(
ζθ̃(ξ)

)
||Φ−

θ̃
(ξ)|

≤ ‖U ′′θ‖L∞(R;R)p
−1

∑
ξ∈p−1Z

|Φ−
θ̃

(ξ)|

= ‖U ′′0‖L∞(R;R)p
−1

∑
ξ∈p−1Z

|Φ−
θ̃0

(ξ)|

≤ ‖U ′′0‖L∞(R;R)p
−1

∑
ξ∈p−1Z

C1e
−α|ξ+θ̃0|

≤ ‖U ′′0‖L∞(R;R)p
−1

∑
ξ∈p−1Z

C1e
αθ̃0e−α|ξ|

≤ C1e
αh‖U ′′0‖L∞(R;R)p

−1
∑

ξ∈p−1Z
e−α|ξ|

≤ C2

(4.6.78)

for some constant C2 > 0, since p−1
∑

ξ∈p−1Z
e−α|ξ| is bounded as p → ∞. A similar

calculation yields the existence of a constant C3 > 0 for which the bounds

‖πYMΦ−
θ̃
‖YM ≤ C3,

‖πYMU
′
θ̃‖YM ≤ C3

(4.6.79)
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hold for all θ̃ ∈ R and M ∈ Mq with M ≥ M∗. The Cauchy-Schwarz inequality now
yields the bound

|Fθ,δθ (θ̃)| ≤ κ
[
δC3 + (θ − θ̃)2C2

]
≤ κ

[
δC3 + δ2

θC2

]
(4.6.80)

for all θ̃ ∈ [θ − δθ, θ + δθ].

Lemma 4.6.10. Assume that (HS1) and (HS2) are satisfied and pick r in such a way
that (HS3r), (HW1r) and (HW2r) are satisfied. Consider the setting of Proposition
4.6.7. Then there exist constants C4 > 0 and C7 > 0 so that the bound

|Fθ,δθ (θ̃1)− Fθ,δθ (θ̃1)| ≤ κ|θ̃1 − θ̃2|
[
δC4 + δθC7

]
+ κ2C3C4|θ̃1 − θ̃2|

[
δC3 + δ2

θC2

]
(4.6.81)

holds for all θ̃1, θ̃2 ∈ [θ − δθ, θ + δθ].

Proof. Fix θ̃1, θ̃2 ∈ [θ − δθ, θ + δθ] and write

θ̃1 = (θ̃1)0 + n (4.6.82)

with (θ̃1)0 ∈ [0, 1) and n ∈ Z. Using a Taylor approximation we pick a sequence
{ζ̃(ξ) : ξ ∈ p−1Z} in such a way that ζ̃(ξ) is in between ξ + (θ̃1)0 and ξ + θ̃2 − n and
we have the identity

(Φ−
(θ̃1)0

− Φ−
θ̃2−n

)(ξ) =
(
(θ̃1)0 − (θ̃2 − n)

)
(Φ−

θ̃2−n
)′
(
ζ̃(ξ)

)
= (θ̃1 − θ̃2)(Φ−

θ̃2−n
)′
(
ζ̃(ξ)

)
.

(4.6.83)

The Cauchy-Schwarz inequality now yields the estimate

d2
1 := |〈Φ− πYMUθ, πYM (Φ−

θ̃1
− Φ−

θ̃2
)〉YM |2

≤ δ2
[
p−1

∑
ξ∈p−1Z

|(Φ−
θ̃1
− Φ−

θ̃2
)(ξ)|2

]
= δ2

[
p−1

∑
ξ∈p−1Z

|(Φ−
(θ̃1)0

− Φ−
θ̃2−n

)(ξ)|2
]

= δ2
[
p−1

∑
ξ∈p−1Z

|(θ̃1 − θ̃2)(Φ−
θ̃2−n

)′
(
ζ̃(ξ)

)
|2
]

≤ δ2|θ̃1 − θ̃2|2
[
p−1

∑
ξ∈p−1Z

C1e
−2α|ζ̃(ξ)|

]
≤ C1δ

2|θ̃1 − θ̃2|2
[
p−1

∑
ξ∈p−1Z

e−2α|ξ|e2α(1+δθ)
]

≤ (C4)2δ2|θ̃1 − θ̃2|2

(4.6.84)

for some constant C4 > 0, since δθ < 1 and p−1
∑

ξ∈p−1Z
e−2α|ξ| is bounded as p → ∞.
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Moreover, we obtain the estimate

d2 :=
∣∣∣(θ − θ̃1)2〈πYMU

′′
θ̃1

(
ζθ̃1(·)

)
, πYMΦ−

θ̃1
〉YM

−(θ − θ̃2)2〈πYMU
′′
θ

(
ζθ̃2(·)

)
, πYMΦ−

θ̃2
〉YM

∣∣∣
≤ (θ − θ̃1)2

[∣∣∣〈πYMU ′′θ̃1(ζθ̃1(·)
)
− πYMU

′′
θ̃2

(
ζθ̃2(·)

)
, πYMΦ−

θ̃1
〉YM

∣∣∣
+
∣∣∣〈πYMU ′′θ̃1(ζθ̃1(·)

)
, πYMΦ−

θ̃1
− πYMΦ−

θ̃2
〉YM

∣∣∣]
+
[
|θ̃1 − θ|+ |θ̃2 − θ|

]
|θ̃1 − θ̃2|

∣∣∣〈πYMU ′′θ(ζθ̃2(·)
)
, πYMΦ−

θ̃2
〉YM

∣∣∣
≤ δ2

θ

[
d3 + d4

]
+ 2δθ|θ̃1 − θ̃2|C2,

(4.6.85)

where we introduced

d3 =
∣∣∣〈πYMU ′′θ(ζθ̃1(·)

)
− πYMU

′′
θ

(
ζθ̃2(·)

)
, πYMΦ−

θ̃1
〉YM

∣∣∣,
d4 =

∣∣∣〈πYMU ′′θ(ζθ̃1(·)
)
, πYMΦ−

θ̃1
− πYMΦ−

θ̃2
〉YM

∣∣∣. (4.6.86)

Again using a Taylor approximation we pick a sequence {ζ(ξ) : ξ ∈ p−1Z} in such
a way that ζ(ξ) is in between ξ + (θ̃1)0 and ξ + θ̃2 − n and we have the identity

(U (θ̃1)0
− U θ̃2−n)(ξ) = (θ̃1 − θ̃2)(U

−
θ̃2−n)′

(
ζ(ξ)

)
. (4.6.87)

The definition (4.6.67) of ζθ̃1 and ζθ̃2 and the Cauchy-Schwarz inequality allow us to
estimate

d2
3 =

∣∣∣〈πYM (U θ̃1 − U θ̃2 + (θ̃1 − θ̃2)U
′
θ), πYMΦ−

θ̃1
〉YM

∣∣∣2
≤ |θ̃1 − θ̃2|2(C3)4 + (C3)2

[
p−1

∑
ξ∈p−1Z

|θ̃1 − θ̃2|2|U
′
θ̃2−n

(
ζ(ξ)

)
|2
]

≤ (C5)2|θ̃1 − θ̃2|2

(4.6.88)

for some constant C5 > 0 using a calculation similar to (4.6.84). Moreover, upon
combining the ideas behind (4.6.78) and (4.6.84) we arrive at

d4 ≤ C6|θ̃1 − θ̃2| (4.6.89)

for some constant C6 > 0. This yields the bound

d2 ≤ δ2
θ

[
d3 + d4

]
+ 2δθ|θ̃1 − θ̃2|C2

≤ δ2
θ |θ̃1 − θ̃2|

[
C5 + C6

]
+ 2δθ|θ̃1 − θ̃2|C2

≤ C7δθ|θ̃1 − θ̃2|

(4.6.90)

for some constant C7 > 0. The Cauchy-Schwarz inequality combined with the estimate
(4.6.84) yields

d5 := |〈πYMU
′
θ, πYMΦ−

θ̃1
− πYMΦ−

θ̃2
〉YM |

≤ C3C4|θ̃1 − θ̃2|.
(4.6.91)
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We therefore can estimate

d6 := |〈πYMU
′
θ, πYMΦ−

θ̃1
〉−1
YM − 〈πYMU

′
θ, πYMΦ−

θ̃2
〉−1
YM |

=
∣∣∣ d5

〈πYMU
′
θ,πYMΦ−

θ̃1
〉YM 〈πYMU

′
θ,πYMΦ−

θ̃2
〉YM

∣∣∣
≤ κ2C3C4|θ̃1 − θ̃2|.

(4.6.92)

Combining all these estimates yields

|Fθ,δθ (θ̃1)− Fθ,δθ (θ̃1)| ≤ κ
[
d1 + d2

]
+ d6

[
δC3 + δ2

θC2

]
≤ κ|θ̃1 − θ̃2|

[
δC4 + δθC7

]
+ κ2C3C4|θ̃1 − θ̃2|

[
δC3 + δ2

θC2

]
.

(4.6.93)

Proof of Proposition 4.6.7. Upon fixing

δθ = min{1, 1
2κC2

, 1
8κC7

, 1
8κ2C2C3C4

},

δ = min{ δθ
2κC3

, 1
8κC4

, 1
8κ2(C3)2C4

},
(4.6.94)

we obtain, using Lemma 4.6.9 and Lemma 4.6.10, for any θ̃, θ̃1, θ̃2 ∈ [θ− δθ, θ+ δθ] the
estimate

|Fθ,δθ (θ̃)| ≤ κ
[
δC3 + δ2

θC2

]
≤ δθ, (4.6.95)

together with

|Fθ,δθ (θ̃1)− Fθ,δθ (θ̃2)| ≤ κ|θ̃1 − θ̃2|
[
δC4 + δθC7

]
+ κ2C3C4|θ̃1 − θ̃2|

[
δC3 + δ2

θC2

]
≤ 1

2 |θ̃1 − θ̃2|.
(4.6.96)

Therefore, the map Fθ,δθ maps [θ−δθ, θ+δθ] into itself and is a contraction, so that the

fixed point problem (4.6.76) has a unique solution θ̃. By construction this θ̃ satisfies
the property that upon defining

Φ = U − U θ̃ ∈ Y1
k,M , (4.6.97)

we have the identity
〈πYMΦ−

θ̃
,Φ〉YM = 0. (4.6.98)

Proof of Theorem 4.2.1. The items (i)-(iii) follow from proposition 4.6.1. Let δ > 0
be the constant from Proposition 4.6.7, fix M = p

q ∈Mq with M ≥M∗ and fix a triplet

(c, U, θ) ∈ R × `∞(p−1Z,R) × R that satisfies (4.2.34) and (4.2.39). With Proposition
4.6.7 we fix a θ̃ ∈ R close to θ in such a way that U can be decomposed as

U = πYMU θ̃ + Φ (4.6.99)
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for some Φ ∈ Y1
k,M with 〈πYMΦ−

θ̃
,Φ〉YM = 0.

Using a Taylor approximation as before, we note that

‖Uθ − U θ̃‖BC1
−α(R;R) ≤ 2|θ − θ̃|C1e

2α. (4.6.100)

On account of Lemma 4.A.1 we pick a constant C1 > 0 in such a way that

‖Φ‖Y1
k,M

≤ ‖U − Uθ‖Y1
k,M

+ ‖Uθ − U θ̃‖Y1
k,M

≤ δ + C1‖Uθ − U θ̃‖BC1
−α(R;R)

≤ δ + C12|θ − θ̃|C1e
2α

≤ δ + C12C1e
2αδθ

:= δ + C2δθ.

(4.6.101)

Recall the constant Cunif from (4.6.11) and we let C > 1 be the constant from Lemmas
4.6.3-4.6.4. Now we decrease δθ > 0, while letting δ > 0 be given by (4.6.94), in such a
way that

δ = δθ
2κC3

,

Cunif

[
δ + C2δθ

]
≤ 1

2 ,

2CunifC
[
δ + C2δθ

]
≤ 1

4δc.

(4.6.102)

In particular, we see that

‖Φ‖Y1
k,M

≤ δ + C2δθ

= δ
[
1 + C22κC3

]
:= C3δ.

(4.6.103)

Inspecting the first line of the fixed point problem (4.6.22), yields that we can write

c0 − c = (c0 − c)γ∗k,M ;θ̃

(
Dk,MΦ

)
+ γ∗

k,M ;θ̃

(
RB(Φ; θ̃, r) +RC(θ̃,M)

)
. (4.6.104)

Since we assumed Cunif‖Φ‖Y1
k,M
≤ 1

2 we can solve this equation for c = c(Φ) as

c0 − c(Φ) =
[
1− γ∗

k,M ;θ̃

(
Dk,MΦ

)]−1

γ∗
k,M ;θ̃

(
RB(Φ; θ̃, r) +RC(θ̃,M)

)
.

(4.6.105)
Finally, our earlier estimates yield

|c0 − c(Φ)| ≤ 2CunifC
[
δr + C3δ +M−1

]
≤ 1

16δc + 1
4δc + 1

8δc

≤ 1
2δc.

(4.6.106)
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Therefore, we see that (c(Φ),Φ) ∈ Zδc,δφ and that Tδc,δφ(c(Φ),Φ) = (c(Φ),Φ). By the

uniqueness of the fixed point of Tδc,δφ , we obtain c(Φ) = c∗M (θ̃, r),Φ = Φ∗M (θ̃, r), which
implies

c = cM (θ̃, r), U = UM (θ̃, r) (4.6.107)

as desired.

4.A Auxiliary results

In this section we collect several useful results that we use throughout this paper. The
first three results concern the sequence spaces YM and Y1

k,M and their associated inner
products (4.3.5)-(4.3.6).

Lemma 4.A.1 ([111, Lem. 3.1]). Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1, together
with a constant η > 0. Then there exists a constant C ≥ 1 for which the bounds

‖πYM f‖YM ≤ C‖f‖BC−η ,

‖πY1
k,M

g‖Y1
k,M

≤ C‖g‖BC1
−η

(4.A.1)

hold for all M ∈Mq and all functions f ∈ BC−η(R;R) and g ∈ BC1
−η(R;R).

Lemma 4.A.2 ([111, Lem. 3.4]). Fix an integer q ≥ 1. Then there exists C > 1 so
that the bound∣∣〈f, g〉L2(R;Rd) − 〈πYM f, πYM g〉YM

∣∣ ≤ CM−1‖f‖BC1
−η(R;Rd)‖g‖BC1

−η(R;Rd)

(4.A.2)
holds for all M ∈Mq and all functions f, g ∈ BC1

−η(R;Rd).

Lemma 4.A.3 ([111, Lem. 3.5]). Fix an integer q ≥ 1. For any M = p
q ∈ Mq, the

operators JM and J 1
k,M defined in (4.3.19) are isometries between YM and HM and

between Y1
k,M and H1

k,M respectively.

The following results can be seen as the fully discrete generalizations of the well-
known facts

〈u, u′〉 = 0, 〈u′′, u〉 ≤ 0 (4.A.3)

that hold for smooth, localized functions u. When dealing solely with nearest-neighbour
interactions as in [111] the inequality 〈∆MΦ,Φ〉HM ≤ 0 follows immediately from the
Cauchy-Schwarz inequality. However, in our setting, some of the coefficients αk may
not be positive definite, preventing us from taking them out of the inner product. This
motivates the indirect approach that is taken in the proof of Lemma 4.A.5.

Lemma 4.A.4 ([111, Cor. 3.15]). Fix a pair of integers 1 ≤ k ≤ 6 and q ≥ 1. There
exists a constant K > 1 so that for all M ∈Mq and all Φ ∈ H1

k,M we have the bound∣∣∣〈Φ,Dk,MΦ〉HM
∣∣∣ ≤ KM−1‖Dk,MΦ‖2HM . (4.A.4)
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Lemma 4.A.5 (cf. [111, Lem. 3.13]). Assume that (HS1) is satisfied. Fix an integer
q ≥ 1 and pick M ∈Mq. Then the bound

〈∆MΦ,Φ〉HM ≤ 0 (4.A.5)

holds for each Φ ∈ HM .

Proof. Pick Φ ∈ HM and define the stepwise interpolation function Φ̃ ∈ L2(R;Rd)
by setting

Φ̃
(
ξ + ζM−1 + ε

)
= Φ

(
ζ, ξ
)

(4.A.6)

for ξ ∈M−1Z, ζ ∈ q−1Z◦q ∪ {0} and 0 ≤ ε < M−1q−1. Upon recalling that

ϑ = p−nq
q , nM−1 = 1− ϑM−1 (4.A.7)

and observing that

1 = p qpq
−1 =

(
(p− nq) + nq

)
M−1q−1, (4.A.8)

we may compute

Tm0 Φ̃
(
ξ + ζM−1

)
= Φ̃

(
ξ + ζM−1 +m

)
= Φ̃

(
ξ +mnM−1 + (ζ +m(p− nq)q−1)M−1

)
= Φ

(
ζ +m(p− nq)q−1, ξ +mnM−1

)
= Φ

(
ζ +mϑ, ξ +m−mϑM−1

)
= TmMΦ(ζ, ξ)

(4.A.9)

for arbitrary ξ ∈ M−1Z, ζ ∈ q−1Z◦q ∪ {0} and m ∈ Z. In particular, for m ∈ Z we
obtain the identity

〈Tm0 Φ̃, Φ̃〉L2(R;Rd) = q−1M−1
∑

ξ∈M−1Z

∑
ζ∈q−1Z◦q∪{0}

〈
Tm0 Φ̃

(
ξ + ζM−1

)
, Φ̃
(
ξ + ζM−1

)〉
Rd

= q−1M−1
∑

ξ∈M−1Z

∑
ζ∈q−1Z◦q∪{0}

〈
TmMΦ(ζ, ξ),Φ

(
ζ, ξ
)〉

Rd

= 〈TmMΦ,Φ〉HM .
(4.A.10)

We hence obtain

〈∆0Φ̃, Φ̃〉L2(R;Rd) = τ
∑
m>0

αm
[
〈Tm0 Φ̃, Φ̃〉L2(R;Rd) + 〈T−m0 Φ̃, Φ̃〉L2(R;Rd)

−2〈Φ̃, Φ̃〉L2(R;Rd)

]
= τ

∑
m>0

αm
[
〈TmMΦ,Φ〉HM + 〈T−mM Φ,Φ〉HM − 2〈Φ,Φ〉HM

]
= 〈∆MΦ,Φ〉HM .

(4.A.11)
The desired result now follows from [6, Lem. 2.1].

We now show that Kk,M approaches Kq,ϑ in a more rigorous fashion. The infinite-
range interactions cause complications here, because we need to interchange a limit and
an infinite sum. For M̃ ∈ Mq we introduce the notation ϑ(M̃) to refer to the value of

ϑ in (4.3.20) with M = M̃ .
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Lemma 4.A.6. Assume that (HS1) is satisfied. Fix an integer q ≥ 1 and consider any
sequence {Mj}j∈N in Mq with the property that limj→∞Mj = ∞ and ϑ(Mj) = ϑ for
all j ∈ N and some ϑ ∈ q−1Zq \ {0}. Then for any Z ∈ C∞c (R; `2q,⊥;∞) ⊂ C∞c (R; `2q,⊥)
we have the limit

limj→∞‖∆Mj
Z −∆q,ϑZ‖L2(R,`2q,⊥) = 0. (4.A.12)

Proof. Fix any test function Z ∈ C∞c (R; `2q,⊥;∞) ⊂ C∞c (R; `2q,⊥) and pick a suffi-
ciently large µ ∈ N for which supp(Z) ⊂ [−µ, µ]. Without loss of generality we assume
that ‖Z‖L2(R,`2q,⊥) = 1. Pick ε > 0, together with K ∈ Z>µ in such a way that

τ
∑

m≥K−µ
4|αm| < ε

8 . (4.A.13)

Moreover, by the strong continuity of the shift-semigroup [61, Example I.5.4], we can
pick J ∈ N in such a way that for each j ≥ J and each |m| ≤ 4K + 4l we have the
bound

τ |αm|‖TmMj
Z − Tmq,ϑZ‖L2(R,`2q,⊥) = τ |αm|‖Z(·+mnjM

−1
j )− Z(·+m)‖L2(R,`2q,⊥)

< ε
16(µ+K) ,

(4.A.14)
together with

|njM−1
j − 1| ≤ 1

2 . (4.A.15)

Here we introduced nj for the value of n in (4.3.20) with M = Mj . Fix j ≥ J . Since
supp(Z) ⊂ [−µ, µ], we obtain

∆Mj
Z(ξ)−∆q,ϑZ(ξ) = τ

∑
m≥K−µ

αm

[
Z(ξ −mnjM−1

j )− Z(ξ −m)
]

(4.A.16)

for any ξ > K, which allows us to estimate

‖∆Mj
Z −∆q,ϑZ‖

L2
(

(K,∞),`2q,⊥

) ≤ τ
∑

m≥K−µ
2|αm|‖Z‖L2(R,`2q,⊥) < ε

4 .

(4.A.17)
A similar computation yields

‖∆Mj
Z −∆q,ϑZ‖

L2
(

(−∞,−K),`2q,⊥

) < ε
4 . (4.A.18)

Finally, for ξ ∈ [−K,K] we see that

∆Mj
Z(ξ)−∆q,ϑZ(ξ) = τ

4l+4K∑
m=1

αm

[
Z(ξ +mnjM

−1
j )− Z(ξ +m)

+Z(ξ −mnjM−1
j )− Z(ξ −m)

]
= τ

4l+4K∑
m=1

αm

[
TmMj

Z(ξ)− Tmq,ϑZ(ξ) + T−mMj
Z(ξ)− T−mq,ϑ Z(ξ)

]
.

(4.A.19)
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On account of (4.A.14), we can, hence, estimate

‖∆MjZ −∆q,ϑZ‖
L2
(

[−K,K],`2q,⊥

) ≤ τ
4l+4K∑
m=1

|αm|
[
‖TmMj

Z − Tmq,ϑZ‖L2(R,`2q,⊥)

+‖T−mMj
Z − T−mq,ϑ Z‖L2(R,`2q,⊥)

]
< 2(4l + 4K) ε

16(µ+K)

= ε
2 .

(4.A.20)
Combining these estimates yields the bound

‖∆MjZ −∆q,ϑZ‖L2(R,`2q,⊥) < ε, (4.A.21)

from which the desired limit follows.
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Chapter 5

Exponential dichotomies for
nonlocal differential operators
with infinite-range interactions

This chapter has been submitted as W.M. Schouten-Straatman and H.J. Hupkes “Ex-
ponential Dichotomies for Nonlocal Differential Operators with Infinite Range Interac-
tions” [149].

Abstract. We show that MFDEs with infinite range discrete and/or continuous
interactions admit exponential dichotomies, building on the Fredholm theory developed
by Faye and Scheel for such systems. For the half line, we refine the earlier approach
by Hupkes and Verduyn Lunel. For the full line, we construct these splittings by gener-
alizing the finite-range results obtained by Mallet-Paret and Verduyn Lunel. The finite
dimensional space that is ‘missed’ by these splittings can be characterized using the
Hale inner product, but the resulting degeneracy issues raise subtle questions that are
much harder to resolve than in the finite-range case. Indeed, there is no direct analogue
for the standard ’atomicity’ condition that is typically used to rule out degeneracies,
since it explicitly references the smallest and largest shifts.

We construct alternative criteria that exploit finer information on the structure
of the MFDE. Our results are optimal when the coefficients are cyclic with respect
to appropriate shift semigroups or when the standard positivity conditions typically
associated to comparison principles are satisfied. We illustrate these results with explicit
examples and counter-examples that involve the Nagumo equation.
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Key words: Exponential dichotomies, functional differential equations of mixed type,
nonlocal interactions, infinite-range interactions, Hale inner product, cyclic coefficients.

5.1 Introduction

Many physical, chemical and biological systems feature nonlocal interactions that can
have a fundamental impact on the underlying dynamical behaviour. A typical mech-
anism to generate such nonlocality is to include dependencies on spatial averages of
model components, often as part of a multi-scale approach. For example, plants take
up water from the surrounding soil through their spatially-extended root network, which
can be modelled by nonlocal logistic growth terms [84, 85]. The propagation of cancer
cells depends on the orientation of the surrounding extracellular matrix fibres, which
leads naturally to nonlocal flux terms [155]. Additional examples can be found in the
fields of population dynamics [25, 86, 153, 154, 157], material science [5, 8, 71, 164] and
many others.

A second fundamental route that leads to nonlocality is the consideration of spatial
domains that feature some type of discreteness. The broken translational and rotational
symmetries often lead to highly complex and surprising behaviour that disappears in
the continuum limit. For example, recent experiments have established that light waves
can be trapped in well-designed photonic lattices [136, 163]. Other settings where dis-
crete topological effects play an essential role include the movement of domain walls
[53], the propagation of dislocations through crystals [35] and the development of frac-
tures in elastic bodies [156]. In fact, even the simplest discretizations of standard scalar
reaction-diffusion systems are known to have far richer properties than their continuous
local counterparts [40, 42, 105].

Myelinated nerve fibres A commonly used modelling prototype to illustrate these
issues concerns the propagation of electrical signals through nerve fibres. These nerve
fibres are insulated by segments of myelin coating that are separated by periodic gaps
at the so-called nodes of Ranvier [143]. Signals travel quickly through the coated re-
gions, but lose strength rapidly. The movement through the gaps is much slower, but
the signal is chemically reinforced in preparation for the next segment [127].

One of the first mathematical models proposed to capture this propagation was the
FitzHugh-Nagumo partial differential equation (PDE) [76]. This model is able to re-
produce the travelling pulses observed in nature [75] and has been studied extensively
as a consequence. These studies have led to the development of many important math-
ematical techniques in areas such as singular perturbation theory [31–33, 97, 117, 119]
variational calculus [36], Maslov index theory [10, 37, 46, 47, 101] and stochastic dynam-
ics [92–94]. However, as a fully local equation it is unable to incorporate the discrete
structure in a direct fashion.
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In order to repair this, Keener and Sneyd [123] proposed to replace the FitzHugh-
Nagumo PDE by its discretized counterpart

u̇j = uj+1 + uj−1 − 2uj + g(uj ; a)− wj ,

ẇj = ρ[uj − wj ],
(5.1.1)

indexed on the spatial lattice j ∈ Z. Here the variable uj describes the potential on
the jth node of Ranvier, while wj describes a recovery component. The nonlinearity
can be taken as the bistable cubic g(u; a) = u(1 − u)(u − a) for some a ∈ (0, 1) and
0 < ρ � 1 is a small parameter. Such an infinite system of coupled ODEs is referred
to as a lattice differential equation (LDE)—a class of equations that arises naturally
when discretizing the spatial derivatives in PDEs.

Since we are mainly interested in the propagation of electrical pulses, we introduce
the travelling wave Ansatz

(uj , wj)(t) = (u,w)(j + ct), (u,w)(±∞) = 0. (5.1.2)

Here c is the speed of the wave and the smooth functions (u,w) : R→ R2 represent the
two waveprofiles. Plugging (5.1.2) into the LDE (5.1.1) yields the differential equation

cu′(σ) = u(σ + 1) + u(σ − 1)− 2u(σ) + g(u(σ); a)− w(σ),

cw′(σ) = ρ[u(σ)− w(σ)]
(5.1.3)

in which σ = j + ct. Since this system contains both advanced (positive) and retarded
(negative) shifts, such an equation is called a functional differential equation of mixed
type (MFDE).

In [108, 109] Hupkes and Sandstede established the existence and nonlinear stability
of such pulses, under a ‘nonpinning’ condition for the associated Nagumo LDE

u̇j = uj+1 + uj−1 − 2uj + g(uj ; a). (5.1.4)

This LDE arises when considering the first component of (5.1.1) with w = 0. It admits
travelling front solutions

uj(t) = u∗(j + c∗t), u∗(−∞) = 0, u∗(+∞) = 1 (5.1.5)

that necessarily satisfy the MFDE

c∗u
′
∗(σ) = u∗(σ + 1) + u∗(σ − 1)− 2u∗(σ) + g(u∗(σ); a). (5.1.6)

The ‘nonpinning’ condition mentioned above demands that the wavespeed c∗—which
depends uniquely on a [131]—does not vanish. In the PDE case this is automatic for
a 6= 1

2 , but in the discrete setting this is a nontrivial demand due to the energy barriers
caused by the lattice [16, 56, 62, 99, 122, 132].
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The main idea behind the approach developed in [108, 109] is to use Lin’s method
[104, 128] to combine the fronts (5.1.5) and their reflections to form so-called quasi-
front and quasi-back solutions to (5.1.3). Such solutions admit gaps in predetermined
finite-dimensional subspaces that can be closed by choosing the correct wavespeed.
The existence of these subspaces is directly related to the construction of exponential
dichotomies for the linear MFDE

cu′(σ) = u(σ + 1) + u(σ − 1)− 2u(σ) + gu(u∗(σ); a)u(σ), (5.1.7)

which arises as the linearization of (5.1.6) around the front solutions (5.1.5).

Exponential dichotomies for ODEs Roughly speaking, a linear differential equa-
tion is said to admit an exponential dichotomy if the space of initial conditions can be
written as a direct sum of a stable and an unstable subspace. Initial conditions in the
former can be continued as solutions that decay exponentially in forward time, while
initial conditions in the latter admit this property in backward time. In order to be
more specific, we first restrict our attention to the ODE

d
dσu = A(σ)u, (5.1.8)

referring to the review paper by Sandstede [147] for further details. Here u(σ) ∈ CM
and A(σ) is an M ×M matrix for any σ ∈ R. Let us write Φ(σ, τ) for the evolution
operator associated to (5.1.8), which maps u(τ) to u(σ).

Suppose first that the system (5.1.8) is autonomous and hyperbolic, i.e. A(σ) = A
for some matrix A that has no spectrum on the imaginary axis. Writing Es0 and Eu0 for
the generalized stable respectively unstable eigenspaces of A, we subsequently obtain
the decomposition

CM = Es0 ⊕ Eu0 . (5.1.9)

In addition, each of these subspaces is invariant under the action of Φ(σ, τ) = exp[A(σ−
τ)], which decays exponentially on Es0 for σ > τ and on Eu0 for σ < τ .

In order to generalize such decompositions to non-autonomous settings, the splitting
(5.1.9) will need to vary with the base time τ ∈ I. Here we pick I to be one of the three
intervals R−, R+ or R. In particular, (5.1.8) is said to be exponentially dichotomous
on I if the following properties hold.

• There exists a family of projection operators {P (τ)}τ∈I on CM that commute
with the evolution Φ(σ, τ).

• The restricted operators Φs(σ, τ) := Φ(σ, τ)P (τ) and Φu(σ, τ) := Φ(σ, τ)
(
id −

P (τ)
)

decay exponentially for σ ≥ τ respectively σ ≤ τ .

Many important features concerning these dichotomies were first described by Palmer
in [139, 140]. For example, the well-known roughness theorem states that exponential
dichotomies persist under small perturbations of the matrices A(σ). In addition, there
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is a close connection with the Fredholm properties of the associated linear operators.
Consider for example the family of linear operators

Λ(λ) : H1(R;CM ) → L2(R;CM ), u 7→ d
dσu−A(σ)u− λu, (5.1.10)

defined for λ ∈ C. Then Λ(λ) is a Fredholm operator if and only if the system

d
dσu = A(σ)u+ λu (5.1.11)

admits exponential dichotomies on both R+ and R−. In addition, Λ(λ) is invertible if
and only if (5.1.11) admits exponential dichotomies on R. Since systems of the form
(5.1.11) arise frequently when considering the spectral properties of wave solutions to
nonlinear PDEs, exponential dichotomies have a key role to play in this area. In fact,
the well-known Evans function [63, 139–141] detects precisely when the dichotomies on
R− and R+ can be patched together to form a dichotomy on R.

Exponential dichotomies for MFDEs Several important points need to be ad-
dressed before the concepts above can be extended to linear MFDEs such as (5.1.7).
The first issue is that MFDEs are typically ill-posed [144], preventing a natural ana-
logue of the evolution operator Φ to be defined. The second issue is that CM is no
longer an appropriate state space. For example, computing u′(0) in (5.1.7) requires
knowledge of u on the interval [−1, 1]. These issues were resolved independently and
simultaneously by Mallet-Paret and Verduyn Lunel in [133] and by Härterich, Scheel
and Sandstede in [96] by decomposing suitable function spaces into separate parts that
individually do admit (exponentially decaying) semiflows.

Applying the results in [133] to (5.1.7), we obtain the decomposition

C([−1, 1];R) = P (τ) +Q(τ) + Γ(τ) (5.1.12)

for each τ ∈ R. Here Γ(τ) is finite dimensional, while functions in P (τ) and Q(τ)
can be extended to exponentially decaying solutions of the MFDE (5.1.7) on the inter-
vals (−∞, τ ] respectively [τ,∞). In particular, the intersection P (τ) ∩ Q(τ) contains
segments of functions that belong to the kernel of the associated linear operator

[Lv](σ) = −cv′(σ) + v(σ + 1) + v(σ − 1)− 2v(σ) + gu(u∗(σ); a)v(σ). (5.1.13)

After dividing these segments out from either P or Q, the decomposition (5.1.12) be-
comes a direct sum. Similar results were obtained in [96], but here the authors use the
augmented statespace CM × L2([−1, 1];R).

In many applications, it is crucial to understand the dimension of Γ(τ). A key tool
to achieve this is the so-called Hale inner product [91], which in the present context is
given by

〈ψ, φ〉τ = 1
c

[
ψ(0)φ(0) +

0∫
−1

ψ(s+ 1)φ(s)ds−
1∫
0

ψ(s− 1)φ(s)ds
]

(5.1.14)
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for two functions φ, ψ ∈ C([−1, 1];R). Indeed, one of the main results achieved in [133]
is the identification

P (τ) +Q(τ) =
{
φ ∈ C([−1, 1];R) : 〈b(τ + ·), φ〉τ = 0 for every b ∈ kerL∗

}
.

(5.1.15)
Here L∗ stands for the formal adjoint of L, which arises by switching the sign of c in
(5.1.13).

There are two potential issues that can impact the usefulness of this result. The first
is that the Hale inner product could be degenerate, the second is that kernel elements
of L∗ could vanish on large intervals. For instance, [52, Ex. V.4.8] features an example
system that admits compactly supported kernel elements, which are often referred to as
small solutions. Fortunately, both types of degeneracies can be ruled out by imposing
an invertibility condition on the coefficients related to the smallest and largest shifts in
the MFDE. This is easy to check and obviously satisfied for (5.1.7).

These results from [96, 133] have been used in a variety of settings by now. These
include the construction of travelling waves [108, 115], the stability analysis of such
waves [11, 109], the study of homoclinic bifurcations [83, 104], the analysis of pseu-
dospectral approximations [22] and the detection of indeterminacy in economic models
[48]. Partial extensions of these results for MFDEs taking values in Banach spaces can
be found in [102], but only for autonomous systems at present.

Infinite-range interactions In recent years, an active interest has arisen in systems
that feature interactions that can take place over arbitrarily large distances. For exam-
ple, diffusion models based on Lévy processes lead naturally to fractional Laplacians in
the underlying PDE [2, 14]. These operators are inherently nonlocal and often feature
infinitely many terms in their discretization schemes [43]. Systems of this type have
been used for example to describe amorphous semiconductors [87], liquid crystals [44],
porous media [19] and game theory [18]; see [27] for an accessible introduction. Exam-
ples featuring other types of infinite-range interactions include Ising models to describe
the behaviour of magnetic spins on a grid [6] and SIR models to capture the spread of
infectious diseases [126].

Returning to the study of nerve axons, let us now consider large networks of neurons.
These neurons interact with each other over large distances through their connecting
fibres [15, 23, 24, 142]. Such systems generally have a very complex structure and finding
effective equations to describe their behaviour is highly challenging. One candidate that
has been proposed [24] involves FitzHugh-Nagumo type models such as

u̇j = h−2
∑

k∈Z>0

e−k
2

[uj+k + uj−k − 2uj ] + g(uj ; a)− wj ,

ẇj = ρ[uj − wj ].
(5.1.16)

Here the constant h > 0 represents the (scaled) discretization distance. Alternatively,
one can replace or supplement the sum in (5.1.16) by including a convolution with a
smooth kernel.
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The travelling wave Ansatz

(uj , wj)(t) = (uh, wh)(hj + cht), (uh, wh)(±∞) = 0 (5.1.17)

now yields the MFDE

chu
′
h(σ) = h−2

∑
k∈Z>0

e−k
2

[uh(σ + hk) + uh(σ − hk)− 2uh(σ)]

+g(uh(σ); a)− wh(σ)

chw
′
h(σ) = ρ[uh(σ)− wh(σ)],

(5.1.18)

which includes infinite-range interactions. In particular, it is no longer possible to apply
the exponential splitting results from [96, 133]. Nevertheless, Faye and Scheel obtained
an existence result for such waves in [69], pioneering a new approach to analyze spatial
dynamics that circumvents the use of a state space. Extending the spectral convergence
technique developed by Bates, Chen and Chmaj [6], we were able to show that such
waves are nonlinearly stable [150], but only for small h > 0. In any case, at present
there is no clear mechanism that allows finite-range results to be easily extended to
settings with infinite-range interactions.

Infinite-range MFDEs In this paper we take a step towards building such a bridge
by constructing exponential dichotomies for the non-autonomous, integro-differential
MFDE

ẋ(σ) =
∞∑

j=−∞
Aj(σ)x(σ + rj) +

∫
RK(ξ;σ)x(σ + ξ)dξ, (5.1.19)

which is allowed to have infinite-range interactions. Here, we have x(σ) ∈ CM for t ∈ R
and the scalars rj for j ∈ Z are called the shifts. Typically, we use Cb(R) as our state
space, but whenever this is possible we use smaller spaces to formulate sharper results.
This allows us to consider settings where the shifts are unbounded in one direction only.
This occurs for example when considering delay equations.

The Fredholm properties of the linear operator associated to (5.1.19) have been
described by Faye and Scheel in [68]. We make heavy use of these properties here,
continuing the program initiated in the bachelor thesis of Jin [116], who considered au-
tonomous versions of (5.1.19). In such settings, it is possible to extend the techniques
developed by Hupkes and Augeraud-Véron in [102] for MFDEs posed on Banach spaces.
However, it is unclear at present how to generalize these methods to non-autonomous
systems.

Splittings on the full line In §5.3-5.4 we construct exponential splittings for (5.1.19)
on the full line. Our main result essentially states that the decomposition (5.1.12) and
the characterization (5.1.15) remain valid for the state space Cb(R). In addition, we
explore the Fredholm and continuity properties of the projection operators associated
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to the splitting (5.1.12). Our arguments in these sections are heavily based on the
framework developed by Mallet-Paret and Verduyn Lunel in [133]. However, the un-
bounded shifts raise some major technical challenges.

The primary complication is that the iteration scheme used in [133] to establish the
exponential decay of functions in P (τ) and Q(τ) breaks down. Indeed, the authors
show that there exist L > 0 so that supremum of the former solutions on half-lines
(−∞, τ∗] is halved each time one makes the replacement τ∗ 7→ τ∗ − L. To achieve this,
they exploit the fact that the behaviour of solutions on the latter interval does not ‘see’
the behaviour at τ∗. This is no longer true for unbounded shifts and required us to
develop a novel iteration scheme that is able to separate short-range from long-range
effects.

A second major complication arises whenever continuous functions are approxi-
mated by C1-functions. Indeed, in [133] these approximations automatically have
bounded derivatives, but in our case we can no longer assume that these functions
live in W 1,∞(R). This prevents a direct application of the Fredholm theory in [68],
forcing us to take a more involved approach to carefully isolate the regions where the
unbounded derivatives occur.

The final obstacle is caused by the frequent use of the Ascoli-Arzela theorem in
[133]. Indeed, in our setting we only obtain convergence on compacta instead of full
uniform convergence. Fortunately, this can be circumvented relatively easily by using
the exponential decay to provide the missing compactness at infinity.

Splittings on the half line We proceed in §5.5 by constructing exponential di-
chotomies for (5.1.19) on the half-line R+. In particular, for any τ ≥ 0 we establish the
decomposition

Cb(R) = Q(τ)⊕R(τ). (5.1.20)

Here Q(τ) contains (shifted) exponentially decaying functions that satisfy (5.1.19) on
[τ,∞), while (shifts of) functions in R(τ) satisfy (5.1.19) on [0, τ ]. This generalizes the
finite-range results obtained by Hupkes and Verduyn Lunel in [104], which we achieve
by following a very similar strategy.

Besides the general complications discussed above, the main technical obstruction
here is that the construction of half-line solutions to inhomogeneous versions of (5.1.19)
becomes rather delicate. Indeed, the approach taken in [104] modifies the inhomoge-
neous terms outside the ‘influence region’ of the half-line of interest. However, in our
setting here this region encompasses the whole line, forcing us to revisit the problem
in a more elaborate—and technical—fashion.

Degeneracies In order to successfully exploit the characterization (5.1.15) in appli-
cations, it is essential to revisit the degeneracy issues related to the Hale inner product
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and the kernel elements of L∗. Unfortunately, the absence of a ‘smallest’ and ‘largest’
shift in the infinite-range setting prevents an easy generalization of the invertibility
criterion discussed above. We explore this crucial issue at length in §5.6.

In order to sketch some of the issues involved, we discuss the MFDE

cu′(σ) =
∞∑
k=1

γk[u(σ + k) + u(σ − k)− 2u(σ)] + gu(u∗(σ); a)u(σ), (5.1.21)

which can be interpreted as an infinite-range version of the MFDE (5.1.7) that arises
by linearizing the Nagumo LDE around a travelling wave u∗. In particular, we again
assume the limits (5.1.5). This MFDE fits into our framework provided that the coef-
ficients γk decay exponentially.

For the case γk = e−k, we construct an explicit nontrivial function ψ that satisfies
〈ψ, φ〉τ = 0 for each φ ∈ Cb(R), where 〈·, ·〉τ denotes the appropriate Hale inner product
for our setting. In particular, even for strictly positive coefficients there is no guaran-
tee that the Hale inner product is nondegenerate. We also provide such examples for
systems featuring convolution kernels.

One way to circumvent this problem is to focus specifically on the kernel elements
in (5.1.15). If these can be chosen to be nonnegative along with the coefficients γk, then
we are able to recover the relation between the dimension of Γ(τ) in (5.1.12) and the
dimension of the kernel of the operator L∗ associated to the adjoint of (5.1.19). Fortu-
nately, such positivity conditions follow naturally for systems that admit a comparison
principle.

We also explore a second avenue that can be used without sign restrictions on the
coefficients γk. This requires us to borrow some abstract functional analytic results.
In particular, whenever the collection of sequences {γk}k≥N obtained by taking N ∈ N
spans an infinite dimensional subset of `2(N;C), we show that the Hale inner product
is nondegenerate in a suitable sense. Fortunately, this rather abstract condition can
often be made concrete. For example, we show that it can be enforced by imposing the
Gaussian decay rate γk ∼ exp[−k2].

5.2 Main results

Our main results consider the integro-differential MFDE1

ẋ(t) =
∞∑

j=−∞
Aj(t)x(t+ rj) +

∫
R
K(ξ; t)x(t+ ξ)dξ, (5.2.1)

1In the interest of readability we use t as our main variable throughout the remainder of this paper,
departing from the notation σ that we used in §5.1. However, the reader should keep in mind that
this variable is related to a spatial quantity for most applications.
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where we take x ∈ CM for some integer M ≥ 1. The set of scalarsR := {rj : j ∈ Z} ⊂ R
and the support of K(·; t) need not be bounded. In fact, we pick two constants

−∞ ≤ rmin ≤ 0 ≤ rmax ≤ ∞, rmin < rmax (5.2.2)

in such a way that

rj ∈ (rmin, rmax), for all j ∈ Z,

supp
(
K(·; t)

)
⊂ (rmin, rmax), for all t ∈ R,

(5.2.3)

while |rmin| and |rmax| are as small as possible. One readily sees that potential solutions
to (5.2.1) must be defined on intervals that have a minimal length of rmax − rmin.

Naturally, one can always artificially increase the quantities |rmin| and |rmax| by
adding matrices Aj = 0 to (5.2.1) with large associated shifts |rj | � 1. However, we
will see that this only weakens the predictive power of our results by needlessly enlarg-
ing the relevant state spaces.

A more general version of (5.2.1) might take the form

ẋ(t) =
rmax∫
rmin

dθ(t, θ)x(t+ θ), (5.2.4)

where dθ(t, θ) is an M ×M matrix of finite Lebesgue-Stieltjes measures on (rmin, rmax)
for each t ∈ R. However, the adjoint of the system (5.2.4) is not always a system of
similar type, so to avoid technical complications we will restrict ourselves to the system
(5.2.1).

We now formulate our two main conditions on the coefficients in (5.2.1), which
match those used in [68]. As a preparation, we define the exponentially weighted space

L1
η(R;CM×M ) :=

{
V ∈ L1(R;CM×M )

∣∣∣‖eη|·|V(·)‖L1(R;CM×M ) <∞
}

(5.2.5)

for any η > 0, with its natural norm

‖V‖η := ‖eη|·|V(·)‖L1(R;CM×M ). (5.2.6)

We note that the conditions onR below are not actual restrictions as long as the closure
R is countable. Indeed, one can simply add the missing shifts to R and write Aj = 0
for the associated matrix.

Assumption (HA). For each j ∈ Z the map t 7→ Aj(t) is bounded and belongs to
C1(R;CM×M ). Moreover, there exists a constant η̃ > 0 for which the bound

∞∑
j=−∞

‖Aj(·)‖∞eη̃|rj | < ∞ (5.2.7)

holds. In addition, the set R is closed with 0 ∈ R.
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Assumption (HK). There exists a constant η̃ > 0 so that the following properties
hold.

• The map t 7→ K(·; t) belongs to C1
(
R;L1

η̃(R;CM×M )
)
.

• The kernel K is localized in the sense that

sup
t∈R
‖K(·; t)‖η̃ + sup

t∈R
‖ ddtK(·; t)‖η̃ < ∞,

sup
t∈R
‖K(·; t− ·)‖η̃ + sup

t∈R
‖ ddtK(·; t− ·)‖η̃ < ∞.

(5.2.8)

Our third structural condition involves the behaviour of the coefficients in (5.2.1)
as t → ±∞. Following [68, 130], we say that the system (5.2.1) is asymptotically
hyperbolic if the limits

Aj(±∞) := lim
t→±∞

Aj(t), K(ξ;±∞) := lim
t→±∞

K(ξ; t) (5.2.9)

exist for each j ∈ Z and ξ ∈ R, while the characteristic functions

∆±(z) = zI −
∫
RK(ξ;±∞)ezξdξ −

∞∑
j=−∞

Aj(±∞)ezrj (5.2.10)

associated to the limiting systems

ẋ(t) =
∞∑

j=−∞
Aj(±∞)x(t+ rj) +

∫
R
K(ξ;±∞)x(t+ ξ)dξ (5.2.11)

satisfy

det ∆±(iy) 6= 0 (5.2.12)

for all y ∈ R. In fact, we require that these limiting systems are approached in a
summable fashion.

Assumption (HH). The system (5.2.1) is asymptotically hyperbolic and satisfies the
limits

lim
t→±∞

∞∑
j=−∞

|Aj(t)−Aj(±∞)|eη̃|rj | = 0, (5.2.13)

together with

lim
t→±∞

‖K(·; t)−K(·;±∞)‖η̃ = 0, lim
t→±∞

‖K(·; t− ·)−K(·;±∞)‖η̃ = 0.

(5.2.14)

Bounded solutions to the system (5.2.1) can be interpreted as kernel elements of
the linear operator Λ : W 1,∞(R)→ L∞(R) that acts as

(Λx)(t) = ẋ(t)−
∞∑

j=−∞
Aj(t)x(t+ rj)−

∫
R
K(ξ; t)x(t+ ξ)dξ. (5.2.15)
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We will write Λ∗ : W 1,∞(R)→ L∞(R) for the formal adjoint of this operator, which is
given by

(Λ∗y)(t) = −ẏ(t)−
∞∑

j=−∞
Aj(t− rj)†y(t− rj)−

∫
R
K(ξ; t− ξ)†y(t− ξ)dξ,

(5.2.16)
using † to denote the conjugate transpose of a matrix. Indeed, one may readily verify
the identity

〈y,Λx〉L2(R) = 〈Λ∗y, x〉L2(R) (5.2.17)

whenever x, y ∈ H1(R).

For convenience, we borrow the notation from [104, 133] and write

B = ker(Λ), B∗ = ker(Λ∗). (5.2.18)

The following result obtained by Faye and Scheel describes several useful Fredholm
properties that link these kernels to the ranges of the operators Λ and Λ∗.

Proposition 5.2.1 ([68, Thm. 2]). Assume that (HA), (HK) and (HH) are satisfied.
Then both the operators Λ and Λ∗ are Fredholm operators. Moreover, the kernels and
ranges satisfy the identities

Range(Λ) = {h ∈ L∞(R) |
∞∫
−∞

y(t)†h(t)dt = 0 for every y ∈ B∗},

Range(Λ∗) = {h ∈ L∞(R) |
∞∫
−∞

x(t)†h(t)dt = 0 for every x ∈ B}
(5.2.19)

and the Fredholm indices can be computed by

ind(Λ) = −ind(Λ∗) = dimB − dimB∗. (5.2.20)

Finally, there exist constants C > 0 and 0 < α ≤ η̃ so that the estimate

|b(t)| ≤ Ce−α|t|‖b‖∞ (5.2.21)

holds for any b ∈ B ∪ B∗ and any t ∈ R.

5.2.1 State spaces

Let us introduce the intervals

DX = (rmin, rmax), DY = (−rmax,−rmin), (5.2.22)

together with the state spaces

X = Cb(DX), Y = Cb(DY ), (5.2.23)

which contain bounded continuous functions that we measure with the supremum norm.
Suppose now that x and y are two bounded continuous functions that are defined on
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(at least) the interval t + DX respectively t + DY . We then write xt ∈ X and yt ∈ Y
for the segments

xt(θ) = x(t+ θ), yt(θ) = y(t+ θ), (5.2.24)

in which θ ∈ DX respectively θ ∈ DY . This allows us to introduce the kernel segment
spaces

B(τ) = {φ ∈ X | φ = xτ for some x ∈ B},

B∗(τ) = {ψ ∈ Y | ψ = yτ for some y ∈ B∗}
(5.2.25)

for every τ ∈ R. Observe that B(τ) and B∗(τ) are just shifted versions of B and B∗ if
rmin = −∞ and rmax =∞ both hold.

The Hale inner product [91] provides a useful coupling between X and Y . The
natural definition in the current setting is given by

〈ψ, φ〉t = ψ(0)†φ(0)−
∞∑

j=−∞

rj∫
0

ψ(s− rj)†Aj(t+ s− rj)φ(s)ds

−
∫
R

r∫
0

ψ(s− r)†K(r; t+ s− r)φ(s)dsdr
(5.2.26)

for any pair (φ, ψ) ∈ X×Y . Note that, by decreasing η̃ if necessary, we can strengthen
(5.2.7) to obtain

∞∑
j=−∞

‖Aj(·)‖∞|rj |eη̃|rj | < ∞. (5.2.27)

Together with (5.2.8), this ensures that the Hale inner product is well-defined. In
Lemma 5.3.12 below we verify the identity

d
dt 〈y

t, xt〉t = y†(t)[Λx](t) + [Λ∗y](t)†x(t) (5.2.28)

for x, y ∈ W 1,∞(R), which indicates that the Hale inner product can be seen as the
duality pairing between Λ and Λ∗.

An important role in the sequel is reserved for the subspaces

X⊥(τ) = {φ ∈ X | 〈ψ, φ〉τ = 0 for every ψ ∈ B∗(τ)}, (5.2.29)

which have finite codimension

β(τ) := codimXX
⊥(τ) ≤ dimB∗(τ) ≤ dimB∗. (5.2.30)

In the ODE case rmin = rmax = 0, so one readily concludes that β(τ) = dimB∗. How-
ever, in the present setting it is possible for the Hale inner product to be degenerate
or for kernel elements to vanish on large intervals. In these cases, the first respectively
second inequality in (5.2.30) could become strict.

In the finite range setting of [133], the authors ruled out these degeneracies by
imposing an atomic condition on the matrices {Aj} corresponding to the shifts rmin

and rmax. However, there is no obvious way to generalize this condition when |rmin| or
rmax are infinite. As an alternative, some of our results require the following technical
assumption.
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Assumption (HKer). Consider any nonzero d ∈ B ∪B∗ and τ ∈ R. Then d does not
vanish on (−∞, τ ] and also does not vanish on [τ,∞).

A similar assumption was used in [11, Assumption H3(iii)], where the authors re-
move the |rmin| = rmax restriction from the exponential dichotomy constructions in [96].
However, this condition is naturally much harder to verify than the previous atomicity
condition. We explore this issue at length in §5.6, where we present several scenarios
under which (HKer) can be verified.

We highlight one of these scenarios in the result below, which requires sign con-
ditions on elements of B and B∗. Fortunately, for a large class of systems—including
the linearization (5.1.21) of the Nagumo LDE—these are known consequences of the
comparison principle.

Proposition 5.2.2 (see Prop. 5.6.10). Assume that (HA), (HK) and (HH) are sat-
isfied. Assume furthermore that there exists Kconst ∈ Z≥1 for which the following
structural conditions are satisfied.

(a) We have rj = j for j ∈ Z, which implies rmin = −∞ and rmax =∞.

(b) The function Aj(·) is constant and positive definite whenever |j| ≥ Kconst.

(c) For any |ξ| ≥ Kconst the function K(ξ; ·) is constant and positive definite.

(d) We either have B = {0} or B = span{b} for some nonnegative function b. The
same holds for B∗.

Then the nontriviality condition (HKer) is satisfied.

In §5.5-5.6 we explore some of the consequences of (HKer). In addition, we propose
weaker conditions under which equality holds for one or both of the inequalities in
(5.2.30). However, for now we simply state the following result.

Corollary 5.2.3 (cf. [133, Cor. 4.7], see §5.6). Assume that (HA), (HK), (HH) and
(HKer) are all satisfied. Then the identities

dimB(τ) = dimB, β(τ) = dimB∗(τ) = dimB∗ (5.2.31)

hold for every τ ∈ R.

5.2.2 Exponential dichotomies on R
We now set out to describe our exponential splittings for (5.2.1) on the full line R. To
this end, we introduce the intervals

D	τ = (−∞, τ + rmax), D⊕τ = (τ + rmin,∞) (5.2.32)

for each τ ∈ R. Following the notation in [104, 133], this allows us to define the solution
spaces

P(τ) = {x ∈ Cb(D	τ ) | x is a bounded solution of (5.2.1) on (−∞, τ ]},

Q(τ) = {x ∈ Cb(D⊕τ ) | x is a bounded solution of (5.2.1) on [τ,∞)},
(5.2.33)
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together with the associated initial segments

P (τ) = {φ ∈ X | φ = xτ for some x ∈ P(τ)},

Q(τ) = {φ ∈ X | φ = xτ for some x ∈ Q(τ)}. (5.2.34)

For τ ∈ R we call x ∈ P(τ) a left prolongation of an element φ = xτ ∈ P (τ), with
a similar definition for right prolongations. Note that, if rmin = −∞, each φ ∈ P (τ)
is simply a translation of a function in P(τ). The corresponding result holds for Q(τ)
and Q(τ) if rmax =∞.

Again following [133], we also work with the spaces

P̂(τ) = {x ∈ P(τ) |
τ+rmax∫
−∞

y(t)†x(t)dt = 0 for every y ∈ B},

Q̂(τ) = {x ∈ Q(τ) |
∞∫

τ+rmin

y(t)†x(t)dt = 0 for every y ∈ B},
(5.2.35)

together with

P̂ (τ) = {φ ∈ X | φ = xτ for some x ∈ P̂(τ)},

Q̂(τ) = {φ ∈ X | φ = xτ for some x ∈ Q̂(τ)}.
(5.2.36)

The integrals in (5.2.35) convergence since functions in B decay exponentially. Finally,
we write

S(τ) = P (τ) +Q(τ), Ŝ(τ) = P̂ (τ) + Q̂(τ). (5.2.37)

Our first two results here provide exponential decay estimates for functions in P̂(τ)

and Q̂(τ), together with a direct sum decomposition for S(τ). In addition, we show
that the latter space can be identified with X⊥(τ) from (5.2.29). We remark that the
structure of these results matches their counterparts from [91] almost verbatim.

Theorem 5.2.4 (cf. [133, Thm. 4.2], see §5.3). Assume that (HA), (HK) and (HH)
are satisfied and choose a sufficiently large τ∗ > 0. Then there exist constants Kdec > 0
and α > 0 so that for any τ ≤ −τ∗ and p ∈ P(τ) we have the bound

|p(t)|+ |ṗ(t)| ≤ Kdece
α(t−τ)‖pτ‖∞, t ≤ τ, (5.2.38)

while for any τ ≥ τ∗ and q ∈ Q(τ) we have the corresponding estimate

|q(t)|+ |q̇(t)| ≤ Kdece
−α(t−τ)‖qτ‖∞, t ≥ τ. (5.2.39)

In addition, the bounds (5.2.38)-(5.2.39) also hold for any p ∈ P̂(τ) and q ∈ Q̂(τ),
now without any restriction on the value of τ ∈ R, but with possibly different values of
Kdec and α.
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Theorem 5.2.5 (cf. [133, Thm. 4.3], see §5.3). Assume that (HA), (HK) and (HH)

are satisfied. For each τ ∈ R the spaces P (τ), Q(τ), S(τ) and their counterparts P̂ (τ),

Q̂(τ), Ŝ(τ) are all closed subspaces of X. Moreover, we have the identities

P (τ) = P̂ (τ)⊕B(τ), Q(τ) = Q̂(τ)⊕B(τ),

Ŝ(τ) = P̂ (τ)⊕ Q̂(τ), S(τ) = Ŝ(τ)⊕B(τ)

= P̂ (τ)⊕ Q̂(τ)⊕B(τ).

(5.2.40)

Finally, we have the identification

S(τ) = X⊥(τ), (5.2.41)

where X⊥(τ) is defined in (5.2.29).

However, these theorems provide no information on how the spaces P (τ) and Q(τ)
depend on τ . In order to address this issue, we need to study the projections from the
state space X onto the factors P̂ (τ) and Q̂(τ) using the decomposition in (5.2.40). To
be more precise, for a fixed τ0 ∈ R we write

X = P̂ (τ0)⊕ Q̂(τ0)⊕ Γ (5.2.42)

for a suitable finite dimensional subspace Γ ⊂ X. This allows us define projections ΠP̂

and ΠQ̂ onto the factors P̂ (τ0) respectively Q̂(τ0).

In addition, we are interested in the limiting behaviour as τ → ±∞. To this
end, we apply Theorem 5.2.5 to the two limiting systems (5.2.11), which leads to the
decompositions

X = P (−∞)⊕Q(−∞) = P (∞)⊕Q(∞). (5.2.43)

We write
←−
ΠP and

←−
ΠQ for the projections onto the factors P (−∞) and Q(−∞) respec-

tively, together with
−→
ΠP and

−→
ΠQ for the projections onto the factors P (∞) and Q(∞).

Theorem 5.2.6 (cf. [133, Thm. 4.6], see §5.4). Assume that (HA), (HK) and (HH)

are satisfied. Then the spaces P̂ (τ), Q̂(τ) and Ŝ(τ) vary upper semicontinuously with
τ , while the quantities dimB(τ) and β(τ) vary lower semicontinuously with τ .

In particular, fix τ0 ∈ R and consider any τ sufficiently close to τ0. Then the
restrictions

ΠP̂ : P̂ (τ) → ΠP̂

(
P̂ (τ)

)
⊂ P̂ (τ0),

ΠQ̂ : Q̂(τ) → ΠQ̂

(
Q̂(τ)

)
⊂ Q̂(τ0)

(5.2.44)

of the projections associated to the decomposition (5.2.42) are isomorphisms onto their
ranges, which are closed. Moreover, the norms satisfy

lim
τ→τ0

‖I −ΠP̂ |P̂ (τ)‖ = 0, lim
τ→τ0

‖I −ΠQ̂|Q̂(τ)‖ = 0, (5.2.45)
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in which I denotes the inclusion of P̂ (τ) or Q̂(τ) into X.
In addition, we have the identities

←−
ΠP

(
P (τ)

)
= P (−∞),

−→
ΠQ

(
Q(τ)

)
= Q(∞),

(5.2.46)

for sufficiently negative values of τ in the first line of (5.2.46) and for sufficiently
positive values of τ in the second line of (5.2.46). The associated norms satisfy the
limits

lim
τ→−∞

‖I −
←−
ΠP |P (τ)‖ = 0, lim

τ→∞
‖I −

−→
ΠQ|Q(τ)‖ = 0. (5.2.47)

These results can be strengthened if we also assume that (HKer) holds. Indeed,
Corollary 5.2.3 implies that the codimension of S(τ) remains constant. This can be
leveraged to obtain the following continuity properties.

Corollary 5.2.7 (cf. [133, Cor. 4.7], see §5.6). Assume that (HA), (HK), (HH) and

(HKer) are all satisfied. Then the spaces P̂ (τ) and Q̂(τ) vary continuously with τ ,

i.e. the projections ΠP̂ and ΠQ̂ from (5.2.44) are isomorphisms onto P̂ (τ0) and Q̂(τ0)

respectively. The same conclusion holds for their counterparts P (τ) and Q(τ).

5.2.3 Exponential dichotomies on half-lines

In many applications it is useful to consider exponential dichotomies on half-lines such
as [0,∞), instead of the full line. Our main goal here is to show to prove the natural
generalisation of Theorem 5.2.5 to this half-line setting, along the lines of the results
in [104].

In particular, we set out to obtain decompositions of the form

X = Q(τ)⊕R(τ), (5.2.48)

where Q(τ) is defined in (5.2.34) and segments in R(τ) should be ‘extendable’ to solve
(5.2.1) on [0, τ ]. Since this is a finite interval however there is no longer a ‘canonical’
definition for R(τ). In fact, we define these spaces in a indirect fashion, by constructing
appropriate subsets

R(τ) ⊂ {r ∈ Cb(D	τ ) | r is a bounded solution of (5.2.1) on [0, τ ]} (5.2.49)

and writing
R(τ) = {φ ∈ X | φ = xτ for some x ∈ R(τ)}. (5.2.50)

In order to achieve this, we exploit continuity properties for the projection operators
that are stronger than those obtained in Theorem 5.2.6. In particular, we again impose
the nontriviality condition (HKer). However, we explain in §5.5 how this condition
can be weakened slightly. For example, we need less information concerning the kernel
space B to apply our construction.
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Theorem 5.2.8 (cf. [104, Thm. 4.1], see §5.5). Assume that (HA), (HK), (HH) and
(HKer) are satisfied. Then for every τ ≥ 0 there exists a closed subspace R(τ) ⊂
Cb(D

	
τ ) that satisfies the inclusion (5.2.49) together with the following properties.

(i) Recalling the spaces (5.2.34) and (5.2.50), the splitting (5.2.48) holds for every
τ ≥ 0.

(ii) There exist constants Kdec > 0 and α > 0 so that the exponential estimate

|x(t)| ≤ Kdece
−α|t−τ |‖xτ‖∞ (5.2.51)

holds for every x ∈ R(τ) and every pair 0 ≤ t ≤ τ .

(iii) The spaces R(τ) are invariant, in the sense that xt ∈ R(t) holds whenever x ∈
R(τ) and 0 ≤ t ≤ τ . The corresponding statement holds for the spaces Q(τ).

(iv) The projections ΠQ(τ) and ΠR(τ) associated to the splitting (5.2.48) depend con-
tinuously on τ ≥ 0. In addition, there exists a constant C ≥ 0 so that the uniform
bounds ‖ΠQ(τ)‖ ≤ C and ‖ΠR(τ)‖ ≤ C hold for all τ ≥ 0.

5.3 The existence of exponential dichotomies

Our goal in this section is to establish Theorems 5.2.4-5.2.5. The strategy that we fol-
low is heavily based on [133], allowing us to simply refer to the results there from time
to time. However, the unbounded shifts force us to develop an alternative approach at
several key points in the analysis. We have therefore structured this section in such a
way that these modifications are highlighted.

The first main task is to show that functions in the spaces P(τ) and Q(τ), together
with their derivatives, decay exponentially in a uniform fashion. When the shifts are
unbounded, the methods developed in [133] can no longer be used to establish this
exponential decay. In particular, the bound (5.3.4) below was obtained in [133], but
one cannot simply make the replacement rmax →∞ and still recover the desired expo-
nential decay of solutions. Indeed, the iterative scheme in [133] breaks down, forcing
us to use a different approach.

The key ingredient is to show that the cumulative influence of the large shifts decays
exponentially. The following preliminary estimate will help us to quantify this.

Lemma 5.3.1. Assume that (HA), (HK) and (HH) are satisfied. Then there exist
three constants (p,Kexp, α) ∈ R3

>0 for which the bound

∑
rj≥|t|

|Aj(s)|eα|rj | +
∞∫
|t|
|K(ξ; s)|eα|ξ|dξ ≤ Kexpe

−2α|t|
(5.3.1)

holds for all t < −p and all s ∈ R. In addition, if rmax <∞, then we can pick p = rmax.
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Proof. Suppose first that rmax =∞. Setting α = η̃
3 , we can derive from (5.2.7) that∑

rj≥|t|
‖Aj(·)‖∞eα|rj | ≤ e−2αt

∑
rj≥|t|

‖Aj(·)‖∞eη̃|rj |

≤ e−2αt
∞∑

j=−∞
‖Aj(·)‖∞eη̃|rj |

(5.3.2)

for |t| sufficiently large. The second term in (5.3.1) can be bounded in the same fashion
using (5.2.8). If rmax <∞ then (5.3.1) follows trivially for p = rmax, since the left-hand
side is always zero for t < −p and s ∈ R.

Our first main result generalizes the bound (5.3.4) to the setting where rmax =∞.
This is achieved by splitting the relevant interval [τ,∞) into two parts [τ, τ + p] and
[τ + p,∞) that we analyze separately. We use the ideas from [133] to study the first
part, while careful estimates involving (5.3.1) allow us to control the contributions from
the unbounded second interval.

Proposition 5.3.2. Assume that (HA), (HK) and (HH) are satisfied, recall the con-
stants (p,Kexp, α) ∈ R3

>0 from Lemma 5.3.1 and pick a sufficiently negative τ− � −1.
Then there exists a constant σ > 0 so that for each τ ≤ τ− and each x ∈ P(τ) we have
the bound

|x(t)| ≤ max
{

1
2 sup
s∈(−∞,τ+p]

|x(s)|, Kexp sup
s∈[p+τ,∞)

e−α(s−t)|x(s)|
}
, t ≤ −σ + τ

(5.3.3)
when rmax =∞, or alternatively

|x(t)| ≤ 1
2 sup
s∈(−∞,τ+rmax]

|x(s)|, t ≤ −σ + τ (5.3.4)

when rmax <∞. The same2 bounds hold for x ∈ P̂(τ), but now any τ ∈ R is permitted.

The second main complication occurs when one tries to mimic the approach in [133]
to study the properties of S(τ). Although it is relatively straightforward to show that
this space is closed and has finite codimension in X, the explicit description (5.2.41)
for S(τ) is much harder to obtain. The arguments in [133] approximate elements of
X⊥(τ) by C1-smooth functions and apply the Fredholm operator Λ to (extensions of)
these approximants. However, when DX is unbounded this approach breaks down,
because C1-smooth functions in X need not have a bounded derivative. One can hence
no longer directly appeal to the useful Fredholm properties of Λ.

Our second main result provides an alternative approach that circumvents these
difficulties. The novel idea is that we split such problematic functions into two parts
that both confine the regions where the derivatives are unbounded to a half-line. This
turns out to be sufficient to allow the main spirit of the analysis in [133] to proceed.

Proposition 5.3.3. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and
let X⊥(τ) be given by (5.2.29). Then there exists a dense subset D ⊂ X⊥(τ) with
D ⊂ S(τ).

2Naturally, one may need to change the value of the constant σ > 0.
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Besides these two main obstacles, we encounter smaller technical issues at many
points during our analysis. For example, the lack of full uniform convergence on un-
bounded intervals from the Ascoli-Arzela theorem requires significant attention. In
addition, manipulations involving the Hale inner product on unbounded domains raise
subtle convergence issues that must be addressed.

5.3.1 Preliminaries

In this subsection, we collect several preliminary properties satisfied by the spaces
introduced in (5.2.25), (5.2.33) and (5.2.34). In particular, we discuss whether functions
in P (τ) or Q(τ) have unique extensions in P(τ) and Q(τ) and study the intersection
P (τ) ∩Q(τ).

Lemma 5.3.4. Assume that (HA), (HK) and (HH) are satisfied and fix τ ∈ R. Then
the spaces defined in §5.2 have the following properties.

(i) We have the inequalities dimB(τ) ≤ dimB < ∞ and dimB∗(τ) ≤ dimB∗ < ∞.
In addition, if |rmin| = rmax = ∞, then dimB(τ) = dimB and dimB∗(τ) =
dimB∗.

(ii) The inclusions P̂(τ) ⊂ P(τ), Q̂(τ) ⊂ Q(τ), P̂ (τ) ⊂ P (τ) and Q̂(τ) ⊂ Q(τ) have
finite codimension of at most dimB.

(iii) We have B(τ) = P (τ) ∩Q(τ).

Proof. Items (i) and (ii) are clear from their definition and Proposition 5.2.1. For
item (iii) we note that the inclusion B(τ) ⊂ P (τ) ∩ Q(τ) is trivial. Conversely, for
φ ∈ P (τ) ∩ Q(τ) we pick x ∈ P(τ) and y ∈ Q(τ) with φ = xτ = yτ , so that x = y on
DX + τ . This allows us to consider the function z that is defined on the real line by

z(t) =

x(t), t ≤ rmax + τ

y(t), t ≥ rmin + τ.
(5.3.5)

It is now easy to see that z ∈ B, which implies φ ∈ B(τ).

Lemma 5.3.5. Assume that (HA), (HK) and (HH) are satisfied. Then there exists
µ− ∈ (−∞,∞] such that every φ ∈ P (τ) with τ < µ− has a unique left prolongation
in P(τ). Similarly, there exists µ+ ∈ [−∞,∞) such that every φ ∈ Q(τ) with τ > µ+

has a unique right prolongation in Q(τ). On the other hand, any element of P̂ (τ) and

Q̂(τ) has a unique left respectively right prolongation, this time for any τ ∈ R.

Proof. We only consider the left prolongations. If rmin = −∞, then both results are
trivial with µ− =∞. If, on the other hand, rmin > −∞, then we can follow the proof
of [133, Props. 4.8 and 4.10] to arrive at the desired conclusion.
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5.3.2 Exponential decay

Our task here is to furnish a proof for Proposition 5.3.2 and to use this result to
establish Theorem 5.2.4. Our approach consists of three main steps: constructing a
uniform limit for a sequence that contradicts (5.3.3), showing that this limit satisfies
one of the asymptotic systems (5.2.11) and subsequently concluding that this violates
the hyperbolicity assumption (HH). The main technical novelties with respect to [133]
are contained in the first two steps, where we need to take special care to handle the
tail contributions arising from the unbounded shifts.

Lemma 5.3.6. Consider the setting of Proposition 5.3.2 and let {σn}n≥1, {xn}n≥1

and {τn}n≥1 be sequences with the following properties.

(a) We have σn > 0 for each n, together with σn ↑ ∞.

(b) We either have xn ∈ P(τn) and τn ≤ τ− for each n or xn ∈ P̂(τn) and τn ∈ R
for each n.

(c) For each n ≥ 1 we have the bound

|xn(−σn + τn)| ≥ 1
2 , (5.3.6)

together with the normalization

sup
s∈(−∞,τn+p]

|xn(s)| = 1. (5.3.7)

(d) If rmax =∞, then we have the additional bound

|xn(−σn + τn)| ≥ Kexpe
α(−σn+τn) sup

s∈[p+τn,∞)

e−αs|xn(s)|. (5.3.8)

Then upon defining zn(t) = xn(t − σn + τn) and passing to a subsequence, we have
zn → z uniformly on compact subsets of R. Moreover, we have z 6= 0 and |z| ≤ 1 on R.

Proof. We first consider the case rmax = ∞ and treat the two possibilities xn ∈
P(τn) and xn ∈ P̂(τn) simultaneously. In particular, we establish the desired uniform
convergence on the compact interval IL = [−L,L] for some arbitrary L ≥ 1, which is
contained in (−σN , σN ) for some sufficiently large N .

For n ≥ N and t ∈ IL we have |zn(t)| ≤ 1. In addition, upon writing

Aj,n(t) = Aj(t− σn + τn)xn(t− σn + τn + rj),

Kn(ξ; t) = K(ξ; t− σn + τn)xn(t− σn + τn + ξ),
(5.3.9)

we obtain

|żn(t)| = |ẋn(t− σn + τn)| ≤
∞∑

j=−∞

∣∣Aj,n(t)
∣∣+
∫
R

∣∣Kn(ξ; t)
∣∣dξ. (5.3.10)



260CHAPTER 5. EXPONENTIAL DICHOTOMIES FOR INFINITE-RANGEMFDES

We now split the sum above over the two sets

J−n (t) = {j ∈ Z | rj ≤ p+ σn − t} ⊂ {j ∈ Z | rj ≤ p},

J+
n (t) = {j ∈ Z | rj > p+ σn − t} ⊂ {j ∈ Z | rj ≥ −L+ σn + p}.

(5.3.11)

For j ∈ J−n (t) we have t−σn + τn + rj ≤ τn + p, which in view of the normalization
(5.3.7) allows us to write ∣∣Aj,n(t)

∣∣ ≤ ‖Aj(·)‖∞. (5.3.12)

On the other hand, for j ∈ J+
n (t) we may use (5.3.7)-(5.3.8) to obtain∣∣Aj,n(t)

∣∣ ≤ ‖Aj(·)‖∞K−1
expe

α(σn−τn)eα(t−σn+τn+rj)|xn(−σn + τn)|

≤ ‖Aj(·)‖∞K−1
expe

αteαrj

≤ ‖Aj(·)‖∞K−1
expe

αLeαrj .

(5.3.13)

In particular, we may use (5.3.1) to estimate

∞∑
j=−∞

∣∣Aj,n(t)
∣∣ ≤ ∑

j∈J−n (t)

‖Aj(·)‖∞ +
∑

j∈J+
n (t)

‖Aj(·)‖∞K−1
expe

αLeαrj

≤
∑
rj≤p
‖Aj(·)‖∞ + e−2α|L−σn−p|+αL

=
∑
rj≤p
‖Aj(·)‖∞ + eα(3L−2p−2σn).

(5.3.14)

In a similar fashion, we obtain the corresponding bound

∫
R
∣∣Kn(ξ; t)

∣∣dξ ≤ sup
s∈R

p∫
−∞
|K(ξ; s)|dξ + eα(3L−2p−2σn). (5.3.15)

We hence see that both {zn}n≥N and {żn}n≥N are uniformly bounded on IL.

Using the Ascoli-Arzela theorem, we can now pass over to some subsequence to
obtain the convergence zn → z uniformly on compact subsets of R. Moreover, since
zn(0) ≥ 1

2 for each n, we obtain z(0) ≥ 1
2 and thus z 6= 0. The bound on zn(t) obtained

above implies that also |z| ≤ 1 on R.

If rmax < ∞ then this procedure can be repeated, but now one does not need the
second terms in (5.3.14) and (5.3.15). In particular, the argument reduces to the one
in [133].

Lemma 5.3.7. Consider the setting of Proposition 5.3.2 and Lemma 5.3.6. If the
sequence {−σn + τn}n≥1 is unbounded, then the limiting function z satisfies one of
the limiting equations (5.2.11). If, on the other hand, the sequence {−σn + τn}n≥1 is
bounded, then there exists β ∈ R in such a way that the function x(t) = z(t−β) satisfies
x ∈ B.
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Proof. Without loss of generality we assume that −σn + τn → ∞ if the sequence
{−σn + τn}n≥1 is unbounded or −σn + τn → β if the sequence {−σn + τn}n≥1 is
bounded. For convenience, we (re)-introduce the expressions

Aj,n(s) = Aj(s− σn + τn)zn(s+ rj),

Kn(ξ; s) = K(ξ; s− σn + τn)zn(s+ ξ)
(5.3.16)

and use the integrated form of (5.2.1) to write

z(t2)− z(t1) = lim
n→∞

zn(t2)− zn(t1)

= lim
n→∞

t2∫
t1

∞∑
j=−∞

Aj,n(s)ds+ lim
n→∞

t2∫
t1

∫
R
Kn(ξ; s)dξds

:= JA + JK

(5.3.17)

for an arbitrary pair t1 < t2 that we fix. Upon introducing the tail expression

EA;N = lim
n→∞

t2∫
t1

∞∑
|j|=N+1

Aj,n(s) ds (5.3.18)

for any N ≥ 0, we readily observe that

JA = lim
n→∞

t2∫
t1

N∑
j=−N

Aj,n(s)ds+ EA;N

=
t2∫
t1

N∑
j=−N

Aj(∞)z(s+ rj)ds+ EA;N

(5.3.19)

if the sequence {−σn + τn}n≥1 is unbounded, while

JA =
t2∫
t1

N∑
j=−N

Aj(s+ β)z(s+ rj)ds+ EA;N (5.3.20)

if the sequence {−σn + τn}n≥1 is bounded. Here we evaluated the limit using the
convergence −σn + τn →∞ or −σn + τn → β. Slightly adapting the estimate (5.3.14)
with L = max{|t1|, |t2|}, we find

|EA;N | ≤ (t2 − t1)
∑
|j|>N

‖Aj(·)‖∞ + limn→∞(t2 − t1)e−2ασneα(3L−2p)

= (t2 − t1)
∑
|j|>N

‖Aj(·)‖∞,
(5.3.21)

which yields EA;N → 0 as N →∞. Since |z| ≤ 1 on R, we can now use the dominated
convergence theorem to conclude that

JA =
t2∫
t1

∞∑
j=−∞

Aj(∞)z(s+ rj)ds (5.3.22)

if the sequence {−σn + τn}n≥1 is unbounded, while

JA =
t2∫
t1

∞∑
j=−∞

Aj(s+ β)z(s+ rj)ds (5.3.23)
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if the sequence {−σn + τn}n≥1 is bounded. A similar argument for JK hence shows
that z is a solution of the limiting system (5.2.11) at +∞.

Proof of Proposition 5.3.2. Arguing by contradiction, we assume that (5.3.3) or
(5.3.4) fails. We can then construct sequences {σn}n≥1, {xn}n≥1 and {τn}n≥1 that
satisfy properties (i)-(iv) of Lemma 5.3.6. If the sequence {−σn + τn}n≥1 is also un-
bounded, then Lemma 5.3.7 yields that z is a nontrivial, bounded solution of one of
the limiting equations (5.2.11), contradicting the hyperbolicity of these systems.

If on the other hand the sequence {−σn + τn}n≥1 is bounded, we can assume that
−σn + τn → β for some β ∈ R. Since necessarily τn → ∞, this can only happen if
xn ∈ P̂(τn) for each n. Lemma 5.3.7 yields that xn → x uniformly on compact subsets
of R and that 0 6= x ∈ B. On account of Proposition 5.2.1 we find that x decays
exponentially. By definition of P̂ we, therefore, obtain

0 =
∞∫
−∞

x(t)†xn(t)dt →
∞∫
−∞
|x(t)|2dt, (5.3.24)

which yields a contradiction since x 6= 0.

We now shift our attention to the proof of Theorem 5.2.4. In particular, we set
up an iteration scheme to leverage the bound (5.3.3) and show that solutions in P(τ)
decay exponentially. As a preparation, we provide a uniform bound on the supremum
of such solutions.

Lemma 5.3.8. Assume that (HA), (HK) and (HH) are satisfied. Recall the constant
µ− from Lemma 5.3.5 and fix τ− < µ−. Then there exists C > 0 in such a way for
each τ ≤ τ− and each x ∈ P(τ) we have the bound

‖x‖Cb(D	τ ) ≤ C‖xτ‖∞. (5.3.25)

The same bound holds for any x ∈ P̂(τ), with a possibly different value of C, where
now any τ ∈ R is permitted.

Proof. The bound (5.3.25) is in fact an equality with C = 1 if rmin = −∞, so we
assume that rmin > −∞. If rmax < ∞ the final part of the proof of [133, Thm. 4.2]
can be repeated, hence we also assume that rmax =∞.

Arguing by contradiction, we consider sequences {xn}n≥1, {τn}n≥1 and {Cn}n≥1

with Cn →∞ and

‖xn‖Cb(D	τn ) = Cn‖(xn)τn‖∞ = 1, (5.3.26)

with either xn ∈ P(τn) and τn ≤ τ− for each n or xn ∈ P̂(τn) and τn ∈ R.

We want to emphasize that due to the lack of a natural choice for the sequence
{σn}n≥1 which satisfies (a) of Lemma 5.3.6, we cannot immediately apply this result.
However, we will follow more or less the same procedure to arrive at a slightly weaker
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conclusion. Note that the function zn(t) = xn(t + τn) is a solution of (5.2.1) on the
interval (−∞, 0] for each value of n. In addition, we note that

sup
t∈[rmin,∞)

|zn(t)| ≤ ‖(xn)τn‖∞ = C−1
n . (5.3.27)

We can now follow the proof of Lemma 5.3.6, using (5.3.27) to control the behaviour
of zn on [0,∞), and pass to a subsequence to obtain zn → z uniformly on compact
subsets of (−∞, 0]. In addition, (5.3.27) allows us to extend this convergence to all
compact subsets of R, with z0 = 0. For each n ≥ 1 we pick sn in such a way that
|xn(−sn+τn)| = 1. On account of Proposition 5.3.2 the set {sn}n≥1 is bounded, which
means that z is not identically zero.

Suppose first that the sequence {τn}n≥1 is unbounded. Since each function zn is a
solution of (5.2.1) on (−∞, 0], we can follow the proof of Lemma 5.3.7 to conclude that
z is a bounded solution of one of the limiting equations (5.2.11) on (−∞, 0]. Moreover,
since z0 = 0 it follows that z is also a solution of the limiting equation (5.2.11) on
[0,∞). Hence z is a nontrivial, bounded solution on R of one of the limiting equations
(5.2.11), which yields a contradiction.

Suppose now that {τn}n≥1 is in fact a bounded sequence. Then after passing to a
subsequence we obtain τn → τ0. Following the proof of Lemma 5.3.7, we see that the
function x(t) = z(t− τ0) is a nontrivial, bounded solution of (5.2.1) on (−∞, τ0]. Since
z0 = 0, we get that xτ0 = 0 and therefore x is a nontrivial, bounded left prolongation
of the zero solution from the starting point τ0. If τ0 < µ−, this gives an immediate
contradiction to Lemma 5.3.5. If on the other hand τ0 ≥ µ− > τ−, then our assump-
tions allow us to conclude that xn ∈ P̂(τn) for all n. A computation similar to (5.3.24)

shows that x ∈ P̂(τ0), which contradicts Lemma 5.3.5. This establishes (5.3.25).

Lemma 5.3.9. Assume that (HA), (HK) and (HH) are satisfied. Recall the constant
µ− from Lemma 5.3.5 and fix τ− < µ−. Then there exist constants K̃ > 0 and α̃ > 0
so that the bound

|x(t)| ≤ K̃eα(t−τ)‖x‖Cb(D	τ ) (5.3.28)

holds for all τ ≤ τ−, all x ∈ P(τ) and all t ≤ τ + p.

Proof. The proof of [133, Thm. 4.2] can be used to handle the case rmax < ∞,
so we assume here that rmax = ∞. Pick any x ∈ P(τ), which we normalize to have
‖x‖Cb(D	τ ) = 1. Recalling the constants from Proposition 5.3.2, we assume without loss
of generality that

Kexp ≥ 1, Kexpe
−α(σ+p) ≤ 1

4 . (5.3.29)

For t ≤ −σ + τ , this allows us to estimate

|x(t)| ≤ max
{

1
2 sup
s∈(−∞,τ+p]

|x(s)|,Kexp sup
s∈[p+τ,∞)

e−α(s−t)|x(s)|
}

≤ max
{

1
2 ,Kexpe

−α(p+τ+σ−τ)
}

= 1
2 .

(5.3.30)
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We aim to show, by induction, that for each integer m ≥ 0 we have the bound

|x(t)| ≤ 2−(m+1), t ≤ tm, (5.3.31)

where we have introduced

tm := −m(σ + p)− σ + τ. (5.3.32)

Indeed, if (5.3.31) holds for each m ∈ Z≥0, then we obtain the desired estimate

|x(t)| ≤ K̃eα̃(t−τ) (5.3.33)

for any t ≤ τ with α̃ = ln(2)
σ+p and K̃ = eα̃(σ+p), which concludes the proof.

The case m = 0 follows from (5.3.30), so we pick M ≥ 1 and assume that (5.3.31)
holds for each value of 0 ≤ m ≤M − 1. Since x ∈ P(τ) and since σ > 0 and p > 0, we
must have x ∈ P(tM +σ) as well. Fix t ≤ tM . Then Proposition 5.3.2 yields the bound

|x(t)| ≤ max
{

1
2 sup
s∈(−∞,tM+σ+p]

|x(s)|,Kexp sup
s∈[tM+σ+p,∞)

e−α(s−t)|x(s)|
}
.

(5.3.34)
Since tM + σ + p = tM−1, we may apply (5.3.31) with m = M − 1 to obtain

1
2 sup
s∈(−∞,tM+σ+p]

|x(s)| ≤ 1
22−M = 2−(M+1). (5.3.35)

In addition, we may use (5.3.29) and (5.3.31) to estimate

Kexp sup
s∈[tm,tm−1]

e−α(s−t)|x(s)| ≤ Kexpe
−α
(
tm−tM

)
2−m

= Kexpe
−α(M−m)(p+σ)2−m

≤
(

1
4

)M−m
2−m

≤ 2−(M+1),

(5.3.36)

for 0 ≤ m ≤M − 1. Finally, we can estimate

Kexp sup
s∈[τ−σ,∞)

e−α(s−t)|x(s)| ≤ Kexpe
−α(τ−σ−tM )

= Kexpe
−αM(p+σ)

≤ 2−(M+1).

(5.3.37)

Combining (5.3.34) with (5.3.35)-(5.3.37) now yields the bound

|x(t)| ≤ 2−(M+1), (5.3.38)

as desired.

Proof of Theorem 5.2.4. We only show the result for the P-spaces; the result for
the Q-spaces follows analogously. If rmax < ∞, the proof of [133, Thm. 4.2] can be
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repeated, so we assume that rmax = ∞. Pick any x ∈ P(τ). From Lemma 5.3.9 we
obtain the bound

|x(t)| ≤ K̃eα(t−τ)‖x‖Cb(D	τ ) (5.3.39)

for all t ≤ τ + p. Since x ∈ P(τ), we can write

ẋ(t) =
∞∑

j=−∞
Aj(t)x(t+ rj) +

∫
RK(ξ; t)x(t+ ξ)dξ (5.3.40)

for t ≤ τ . Lemma 5.3.1 allows us to estimate

∣∣ ∞∑
j=−∞

Aj(t)x(t+ rj)dξ
∣∣ ≤ ∑

t+rj≤τ+p

‖Aj(·)‖∞K̃eα(t+rj−τ)‖x‖∞

+
∑

t+rj>τ+p
‖Aj(·)‖∞‖x‖∞

≤
∑

t+rj≤τ
‖Aj(·)‖∞eα|rj |K̃eα(t−τ)‖x‖∞ +Kexpe

2α(t−τ)‖x‖∞

≤
∞∑

j=−∞
‖Aj(·)‖∞eα|rj |K̃eα(t−τ)‖x‖∞ +Kexpe

2α(t−τ)‖x‖∞

(5.3.41)
for any t ≤ τ . Using a similar estimate for the convolution kernel, we obtain the bound

|ẋ(t)| ≤ K̃eα(t−τ)‖x‖∞
∞∑

j=−∞
‖Aj(·)‖∞eα|rj | +Kexpe

2α(t−τ)‖x‖∞

+K̃eα(t−τ)‖x‖∞ sup
s∈R
‖K(·; s)‖η̃ +Kexpe

2α(t−τ)‖x‖∞
(5.3.42)

for any t ≤ τ . Since rmax =∞, we can derive from Lemma 5.3.8 that

‖x‖∞ = ‖x‖Cb(D	τ ) ≤ C‖xτ‖∞. (5.3.43)

The bounds (5.3.42)-(5.3.43) together establish the desired result.

5.3.3 The restriction operators π+ and π−

It is often convenient to split the domain DX into the two parts

D−X = (rmin, 0), D+
X = (0, rmax) (5.3.44)

and study the restriction of functions in X to the spaces

X− = Cb(D
−
X), X+ = Cb(D

+
X). (5.3.45)

In particular, we introduce the operators π+ : X → X+ and π− : X → X− that act as

(π±f)(t) = f(t), t ∈ D±X . (5.3.46)

Moreover, for a subspace E ⊂ X we let π+
E and π−E denote the restrictions of π+ and π−

to E. We obtain some preliminary compactness results below, leaving a more detailed
analysis of these operators to §5.4.
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Proposition 5.3.10 (cf. [133, Thm. 4.4]). Assume that (HA), (HK) and (HH) are
satisfied. Then for every τ ∈ R, the operators π−P (τ), π

+
Q(τ), π

−
P̂ (τ)

and π+

Q̂(τ)
are all

compact.

Proof. Suppose first that rmin = −∞ and fix τ ∈ R. Let {φn}n≥1 be a bounded

sequence in P̂ (τ) and write {xn}n≥1 for the corresponding sequence in P̂(τ) that has
(xn)τ = φn for each n ≥ 1. After passing to a subsequence, the exponential bound
(5.2.38) allows us to obtain the convergence xn → x uniformly on compact subsets
of (−∞, 0]. For any ε > 0, we can use (5.2.38) to pick L � 1 in such a way that
|xn(t)| < ε

2 and hence |x(t)| ≤ ε
2 holds for all t ≤ −L. The uniform convergence on

[−L, 0] now allows us to pick N � 1 so that |xn(t)− x(t)| ≤ ε for all t ≤ 0 and n ≥ N .
In particular, {xn}n≥1 converges in X−, which shows that π−

P̂ (τ)
is compact.

The case where rmin > −∞ can be treated as in the proof of [133, Thm. 4.4] and
will be omitted. The compactness of π+

Q̂(τ)
follows by symmetry. Finally, the operators

π−P (τ) and π+
Q(τ) are compact since they are finite-dimensional extensions of π−

P̂ (τ)
and

π+

Q̂(τ)
respectively.

The second part of Corollary 5.3.11 below references the subpaces P (±∞) ⊂ X and
Q(±∞) ⊂ X, being the spaces corresponding the limiting equations (5.2.11) with the
decomposition given in (5.2.40). Since the systems (5.2.11) also satisfy the conditions
(HA), (HK) and (HH), we can apply the results from the previous sections to the
subspaces P (±∞) and Q(±∞).

Corollary 5.3.11 (cf. [133, Cor. 4.11]). Assume that (HA), (HK) and (HH) are

satisfied and let {φn}n≥1 and {ψn}n≥1 be bounded sequences, with φn ∈ P̂ (τn) and

ψn ∈ P̂ (τ0) for each n ≥ 1. Suppose furthermore that τn → τ0 and that the sequence
{π+(φn − ψn)}n≥1 converges in X+. Then after passing to a subsequence, the differ-

ences {φn−ψn}n≥1 converge to some φ ∈ P̂ (τ0), uniformly on compact subsets of DX .

The conclusion above remains valid after making the replacements

{P̂ (τn), P̂ (τ0), τ0} 7→ {P (τn), P (−∞),−∞}. (5.3.47)

In addition, the analogous results hold for the spaces Q̂ and Q after replacing π+ by
π− and −∞ by +∞.

Proof. For each n ≥ 1 we let yn ∈ P̂(τn) and zn ∈ P̂(τ0) denote the left prolonga-
tions of φn and ψn respectively. Moreover, we write xn(t) = yn(t+ τn − τ0)− zn(t) for
t ≤ τ0 + rmax. Then xn satisfies the inhomogeneous version of (5.2.1) given by

ẋn(t) =
∞∑

j=−∞
Aj(t)xn(t+ rj) +

∫
R
K(ξ; t)xn(t+ ξ)dξ + hn(t), (5.3.48)

in which hn is defined by

hn(t) =
∞∑

j=−∞

(
Aj(t+ τn − τ0)−Aj(t)

)
yn(t+ rj + τn − τ0)

+
∫
R

(
K(ξ; t+ τn − τ0)−K(ξ; t)

)
yn(t+ ξ + τn − τ0)dξ.

(5.3.49)



5.3. THE EXISTENCE OF EXPONENTIAL DICHOTOMIES 267

Because xn satisfies the inhomogeneous equation (5.3.48), since
∞∑
|j|=N

‖Aj‖∞ → 0 as

N → ∞, since sup
t∈R
‖K(·; t)‖η̃ < ∞, and since both yn and zn enjoy the uniform ex-

ponential estimates in Theorem 5.2.4, we see that the sequence {xn}n≥1 is uniformly
bounded and equicontinuous. Hence we can apply the Ascoli-Arzela theorem to pass
over to a subsequence for which xn → x uniformly on compact subsets of (−∞, τ0].
Moreover, x is bounded and the convergence xn → x is uniform on D+

X + τ0 since
{π+(φn −ψn)}n≥1 converges in X+. However, in contrast to [133] we cannot conclude
that this convergence is uniform on DX , since this interval is not necessarily compact.

We see that hn → 0 in L1(I) for any bounded interval I ⊂ (−∞, τ0], again using

the limit
∞∑
|j|=N

‖Aj‖∞ → 0 as N →∞, the bound sup
t∈R
‖K(·; t)‖η̃ <∞ and the fact that

the sequence {yn}n≥1 is bounded uniformly on D	0 . Similarly to the proof of Lemma
5.3.7, we obtain that x : D	τ0 → CM is a bounded solution of (5.2.1) on (−∞, τ0], which
yields x ∈ P(τ0). Finally, for every w ∈ B we obtain

0 =
τn+rmax∫
−∞

w(t)†yn(t)dt−
τ0+rmax∫
−∞

w(t)†zn(t)dt

=
τ0+rmax∫
−∞

w(t)†xn(t)dt−
τn+rmax∫
−∞

(
w(t)− w(t− τn − τ0)

)†
yn(t)dt

→
τ0+rmax∫
−∞

w(t)†x(t)dt,

(5.3.50)

since w decays exponentially on account of Proposition 5.2.1. Therefore we must have
x ∈ P̂(τ0) and thus φ := xτ0 ∈ P̂ (τ0).

The result for P (τn) where τn → −∞ follows a similar proof. We now use the
estimate (5.2.38), which is valid for sufficiently small τ . Naturally, the integral compu-
tation (5.3.50) is not needed in this proof. The remaining results follow by symmetry.

5.3.4 Fundamental properties of the Hale inner product

We now shift our focus towards the Hale inner product, which plays an important role
throughout the remainder of the paper. In particular, we establish the identity (5.2.28),
which requires special care on account of the infinite sums. In addition, we study the
limiting behaviour of the Hale inner product and establish a uniform estimate that
holds for exponentially decaying functions.

Lemma 5.3.12. Assume that (HA), (HK) and (HH) are satisfied and fix two functions
x, y ∈ Cb(R). Suppose furthermore that x and y are both differentiable at some time
t ∈ R. Then we have the identity

d
dt 〈y

t, xt〉t = y†(t)[Λx](t) + [Λ∗y](t)†x(t). (5.3.51)

In particular, if y ∈ B∗ and either x ∈ P(τ) or x ∈ Q(τ) for some τ ∈ R, then
d
dt 〈y

t, xt〉t = 0 for all t ≤ τ or all t ≥ τ respectively.
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Proof. For any t ∈ R we can rewrite the Hale inner product in the form

〈yt, xt〉t = yt(0)†xt(0)−
∞∑

j=−∞

rj∫
0

yt(s− rj)†Aj(t+ s− rj)xt(s)ds

−
∫
R

r∫
0

yt(s− r)†K(r; t+ s− r)xt(s)dsdr

= y(t)†x(t)−
∞∑

j=−∞

t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds

−
∫
R

t+r∫
t

y(s− r)†K(r; s− r)x(s)dsdr.

(5.3.52)

We aim to compute the derivative d
dt 〈y

t, xt〉t, so the main difficulty compared to [133]
is that we need to interchange a derivative and an infinite sum as well as a derivative
and an integral instead of a derivative and a finite sum. Since we can estimate

∞∑
j=−∞

∣∣∣ ddt t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds
∣∣∣ =

∞∑
j=−∞

∣∣∣y(t)†Aj(t)x(t+ rj)

−y(t− rj)†Aj(t− rj)x(t)
∣∣∣

≤ 2‖x‖∞‖y‖∞
∞∑

j=−∞
‖Aj(·)‖∞,

(5.3.53)
we see that this series converges uniformly. In a similar fashion we can estimate∫

R

∣∣∣ ddt t+r∫
t

y(s− r)†K(r; s− r)x(s)ds
∣∣∣dr =

∫
R

∣∣y(t)†K(r; t)x(t+ r)

−y(t− r)†K(r; t− r)x(t)
∣∣dr

≤ ‖x‖∞‖y‖∞
[

sup
t∈R
‖K(·; t)‖η̃

+ sup
t∈R
‖K(·; t− ·)‖η̃

]
.

(5.3.54)
We can hence freely exchange a time derivative with the integral and sum in (5.3.53)
to obtain

d
dt 〈y

t, xt〉t = ẏ(t)†x(t) + y(t)†ẋ(t)

−
∞∑

j=−∞

[
y(t)†Aj(t)x(t+ rj)− y(t− rj)†Aj(t− rj)x(t)

]
−
[ ∫
R
y(t)†K(r; t)x(t+ r)dr −

∫
R
y(t− r)†K(r; t− r)x(t)dr

]
= y†(t)[Λx](t) + [Λ∗y](t)†x(t).

(5.3.55)
The final statement follows trivially from (5.3.51).

Lemma 5.3.13. Assume that (HA), (HK) and (HH) are satisfied and fix two functions
x, y ∈ Cb(R). Suppose furthermore that y(t) decays exponentially as t → ∞. Then we
have the limit

lim
t→∞
〈yt, xt〉t = 0. (5.3.56)
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The corresponding estimate holds for t→ −∞ if y(t) decays exponentially as t→ −∞.

Proof. Pick 0 < β < η̃ and K > 0 in such a way that |y(t)| ≤ Ke−βt for t ≥ 0.
Upon choosing a small ε > 0, we first pick N ∈ Z≥1 in such a way that the bound

∞∑
|j|=N+1

|rjAj(s− rj)|‖x‖∞‖y‖∞ +
∫

(−∞,−N ]∪[N,∞)

|rK(r; s− r)|‖x‖∞‖y‖∞dr ≤ ε
6

(5.3.57)
holds for all s ∈ R. We pick T > N in such a way that also T > max{|rj | : −N ≤ j ≤
N} and that we have the estimates

|y(t)|‖x‖∞ ≤ ε
3 ,

Ke−βt
N∑

j=−N
eβ|rj ||rjAj(s)|‖x‖∞ ≤ ε

6 ,

Ke−βt
∫ N
−N e

β|r||rK(r; s− r)|‖x‖∞dr ≤ ε
6

(5.3.58)

for all t ≥ T and all s ∈ R. In particular, we can estimate

I1 :=
∞∑

j=−∞

∣∣ t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds
∣∣

=
N∑

j=−N

∣∣ t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds
∣∣

+
∞∑

|j|=N+1

∣∣ t+rj∫
t

y(s− rj)†Aj(s− rj)x(s)ds
∣∣

≤ sup
s∈R

N∑
j=−N

Kmax{e−βt, e−β(t−rj)}|rjAj(s− rj)|‖x‖∞

+ sup
s∈R

∞∑
|j|=N+1

|rjAj(s− rj)|‖x‖∞‖y‖∞

≤ Ke−βt sup
s∈R

N∑
j=−N

eβ|rj ||rjAj(s− rj)|‖x‖∞ + ε
4

≤ ε
3

(5.3.59)

for any t ≥ T . In a similar fashion, we obtain the estimate

I2 :=
∫
R

∣∣ t+r∫
t

y(s− r)†K(r; s− r)x(s)ds
∣∣dr

=
N∫
−N

∣∣ t+r∫
t

y(s− r)†K(r; s− r)x(s)ds
∣∣dr

+
∫

(−∞,−N ]∪[N,∞)

∣∣ t+r∫
t

y(s− r)†K(r; s− r)x(s)ds
∣∣dr

≤ ε
3

(5.3.60)
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for t ≥ T . The representation (5.3.52) now allows us to estimate

|〈yt, xt〉t| ≤ |y(t)||x(t)|+
∞∑

j=−∞

∣∣ t+rj∫
t

∣∣y(s− rj)†Aj(s− rj)x(s)
∣∣ds∣∣

+
∫
R

∣∣ t+r∫
t

∣∣y(s− r)†K(r; s− r)x(s)
∣∣ds∣∣dr

≤ |y(t)|‖x‖∞ + I1 + I2

≤ ε,

(5.3.61)

for any t ≥ T , as desired.

Lemma 5.3.14. Assume that (HA), (HK) and (HH) and (HKer) are satisfied. Suppose
furthermore that rmin = −∞ and consider a pair of constants (K0, α0) ∈ R2

>0. Then
there exists a positive constant B > 0 so that the estimate

|〈ψ, y0〉0| ≤ B‖ψ‖∞‖yτ‖∞e−ατ (5.3.62)

holds for any τ ≥ 0, any ψ ∈ Y and any y ∈ Cb(D
	
τ ) that satisfies the exponential

bound

|y(t)| ≤ K0e
−α0(τ−t)‖yτ‖∞, t ≤ τ. (5.3.63)

Proof. Recall the constants (Kexp, α, p) ∈ R3
>0 from Lemma 5.3.1. By lowering α

and increasing Kexp if necessary, we may assume that α ≤ α0 and Kexp ≥ K0. A first
crude estimate yields∣∣∣ ∞∑

j=−∞

rj∫
0

x(s− rj)Aj(t+ s− rj)y(s)ds
∣∣∣ ≤ ‖x‖∞

∞∑
j=−∞

‖Aj(·)‖∞
∣∣ rj∫

0

y(s)ds
∣∣.

(5.3.64)
Splitting this sum into two parts and using the decay (5.3.63), we obtain the bound

∞∑
j=−∞

‖Aj(·)‖∞
∣∣ rj∫

0

y(s)ds
∣∣ =

∑
rj≤τ
‖Aj(·)‖∞

∣∣ rj∫
0

y(s)ds
∣∣+

∑
rj>τ
‖Aj(·)‖∞

rj∫
0

|y(s)|ds

≤
∑
rj≤τ
‖Aj(·)‖∞Kexp‖yτ‖∞

∣∣ rj∫
0

e−α(τ−s)ds
∣∣

+
∑
rj>τ
‖Aj(·)‖∞rj‖y0‖∞

≤
∑
rj≤τ
‖Aj(·)‖∞Kexp‖yτ‖∞ 1

α

∣∣eα(rj−τ) − e−ατ
∣∣

+Kexpe
−2ατ‖y0‖∞

≤ Kexp‖yτ‖∞ 1
αe
−ατ

∞∑
j=−∞

‖Aj(·)‖∞ +Kexpe
−2ατ‖yτ‖∞,

(5.3.65)
where we used rmin = −∞ to conclude ‖y0‖∞ ≤ ‖yτ‖∞. A similar computation for the
convolution term yields the desired bound (5.3.62).
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5.3.5 Exponential splitting of the state space X

In the remainder of this section, we set out to establish Proposition 5.3.3 and com-
plete the proof of Theorem 5.2.5. In particular, the main technical goal is to establish
the identity (5.2.41). We start by considering the inclusion X⊥(τ) ⊂ S(τ), which will
follow from Proposition 5.3.3 and the closedness of S(τ). In particular, we show that
C1(DX) ∩X⊥(τ) is contained in S(τ).

Again, the main complication is that the derivatives of functions x in this subset
need not be bounded, which hence also holds for Λx. However, we do know that ẋ−Λx
is bounded, which allows us to use a technical splitting of x to achieve the desired
result. In order to establish the consequences of this splitting, we will need to exploit
the fundamental properties of the Hale inner product from §5.3.4.

Lemma 5.3.15. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and pick
a differentiable function x ∈ Cb(R)∩C1(R) with φ := xτ ∈ X⊥(τ). Recall the operator
Λ from (5.2.15), write h = Λx and consider the functions h− and h+ given by

h−(t) =

{
h(t), t ≤ τ,
0, t > τ,

h+(t) =

{
0, t ≤ τ,
h(t), t > τ.

(5.3.66)

Then there exists a decomposition x = x−+x+ with x−, x+ ∈ Cb(R)∩C1(R) for which
we have the inclusions

h− − Λx− ∈ Range(Λ), h+ − Λx+ ∈ Range(Λ). (5.3.67)

Proof. We choose the decomposition x− + x+ = x with x± ∈ Cb(R) ∩ C1(R) in
such a way that x− = 0 on [τ + 1,∞), while x+ = 0 on (−∞, τ − 1]. Although the
derivative of x− need not be bounded on (−∞, τ ], while the derivative of x+ need not
be bounded on [τ,∞), we do claim that

h− − Λx− ∈ L∞(R), h+ − Λx+ ∈ L∞(R). (5.3.68)

To see this, we note that by construction Λx− is bounded on [τ,∞), while Λx+ is
bounded on (−∞, τ ]. In particular, h+ − Λx+ is automatically bounded on (−∞, τ ].
On the other hand, for t ≥ τ we may compute

h+(t)− [Λx+](t) = h(t)− [Λx](t) + [Λx−](t) = [Λx−](t), (5.3.69)

which shows that h+ − Λx+ is also bounded on [τ,∞). The claim for x− follows by
symmetry.

We now set out to show that h+−Λx+ ∈ Range(Λ) by exploiting the characteriza-
tion (5.2.19). In particular, pick any u ∈ B∗ and consider the integral

I :=
∞∫
−∞

u(t)†
[
h+(t)− (Λx+)(t)

]
dt

=
∞∫
τ

u(t)†
[
h+(t)− (Λx+)(t)

]
dt+

τ∫
−∞

u(t)†
[
h+(t)− (Λx+)(t)

]
dt

=: I+ + I−.

(5.3.70)
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Exploiting (5.3.69) we obtain

I+ =
∞∫
τ

u(t)†
[
ẋ−(t)−

∞∑
j=−∞

Aj(t)x−(t+ rj)−
∫
R
K(ξ; t)x−(t+ ξ)dξ

]
dt

=
∞∫
τ

u(t)†[Λx−](t)dt.
(5.3.71)

Since Λ∗u = 0 we can immediately exploit the fundamental property of the Hale inner
product from Lemma 5.3.12 to obtain

I+ =
∞∫
τ

u(t)†[Λx−](t)dt

=
∞∫
τ

(
u(t)†[Λx−](t) + [Λ∗u](t)x−(t)

)
dt

=
∞∫
τ

d
dt 〈u

t, (x−)t〉t dt

= lim
t→∞
〈ut, (x−)t〉t − 〈uτ , (x−)τ 〉τ

= −〈uτ , (x−)τ 〉τ .

(5.3.72)

The final equality follows in consideration of Lemma 5.3.13, since the function u ∈ B∗
decays exponentially on account of Proposition 5.2.1. In a similar fashion, we obtain

I− = −〈uτ , (x+)τ 〉τ . (5.3.73)

As such, we can use φ ∈ X⊥(τ) to compute

I = I+ + I− = −〈uτ , xτ 〉τ = −〈uτ , φ〉τ = 0. (5.3.74)

The identity (5.2.19) now yields the desired conclusion.

Proof of Proposition 5.3.3. Inspecting the definition of the Hale inner product
(5.2.26), we readily see that the map φ 7→ 〈ψ, φ〉τ is continuous for any τ ∈ R and any
ψ ∈ B∗(τ). In particular, the space X⊥(τ) is closed and has finite codimension in X.
We now write

E = C1(DX) ∩X⊥(τ) (5.3.75)

and note that E is indeed dense in X⊥(τ) by [133, Lem. 4.14]. Pick any φ ∈ E and
extend it arbitrarily to a bounded C1 function x : R→ CM that has xτ = φ. Recalling
the functions h± and x± from Lemma 5.3.15, we use this result to find a function
ỹ ∈W 1,∞ that has Λỹ = h+ − Λx+. Writing y = ỹ + x+ ∈ Cb(R), we see that

[Λy](t) = h+(t) (5.3.76)

which vanishes for t ≤ τ . In particular, we have y ∈ P(τ). In a similar fashion, we can
find a function z ∈ Q(τ) with Λz = h−.

Writing w = x− y − z ∈ Cb(R), we readily compute

Λw = h− h+ − h− = 0, (5.3.77)



5.3. THE EXISTENCE OF EXPONENTIAL DICHOTOMIES 273

which implies w ∈ B and hence

φ = xτ = yτ + zτ + wτ ∈ P (τ) +Q(τ) +B(τ) = S(τ), (5.3.78)

as desired.

We now turn to the remaining inclusion S(τ) ⊂ X⊥(τ). As before, we exploit the
fundamental identity (5.2.28). Combined with the exponential decay of functions in
P (τ) and Q(τ), this will allow us to show that both spaces are contained in X⊥(τ).

Lemma 5.3.16. Assume that (HA), (HK) and (HH) are satisfied. Then for each τ ∈ R
we have the inclusion S(τ) ⊂ X⊥(τ).

Proof. By symmetry, it suffices to show that P (τ) ⊂ X⊥(τ). To this end, we pick
x ∈ P(τ) and y ∈ B∗ and note that

d
dt 〈y

t, xt〉t = 0 (5.3.79)

for all t ≤ τ by Lemma 5.3.12. Since x(t) is bounded as t→ −∞ while y(t)→ 0 at an
exponential rate, we may use Lemma 5.3.13 to obtain

〈yτ , xτ 〉τ = lim
t→−∞

〈yt, xt〉t = 0, (5.3.80)

as desired.

The remainder of the proof of Theorem 5.2.5 uses arguments that are very similar
to those in [133]. The main point is that the compactness properties obtained in §5.3.3

allow us to show that P̂ (τ) and Q̂(τ) are closed, which allows the computations above
to be leveraged.

Lemma 5.3.17. Assume that (HA), (HK) and (HH) are satisfied. Then for each

τ ∈ R, the spaces P (τ), Q(τ), P̂ (τ) and Q̂(τ) are all closed subspaces of X.

Proof. Let {φn}n≥1 be a sequence in P̂ (τ) that converges in X to some φ ∈ X.
Picking τn = τ and ψn = 0 in Corollary 5.3.11 then immediately implies that {φn}n≥1

converges uniformly on compact sets to some φ̂ ∈ P̂ (τ). By necessity we hence have

φ = φ̂, which means that P̂ (τ) and by symmetry Q̂(τ) are both closed. This subse-
quently must also hold for the finite dimensional extensions P (τ) and Q(τ).

Lemma 5.3.18. Assume that (HA), (HK) and (HH) are satisfied. Then for each τ ∈ R
the spaces S(τ) and Ŝ(τ) are closed subspaces of X. Moreover, the decompositions
(5.2.40) hold.

Proof. In view of Proposition 5.3.10 and Lemma 5.3.17, the result can be obtained
by following the proof of [133, Prop. 4.12 & Prop. 4.13], together with the first part of
the proof of [133, Thm. 4.3].
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Proof of Theorem 5.2.5. Every statement except the identity (5.2.41) follows from
Lemma 5.3.17 and Lemma 5.3.18. In addition, Lemma 5.3.16 yields the inclusion
S(τ) ⊂ X⊥(τ), while Proposition 5.3.3 yields the inclusion D ⊂ S(τ) for some dense
set D ⊂ X⊥(τ). Since S(τ) is closed, we immediately obtain (5.2.41).

5.4 Fredholm properties of the projections ΠP̂ and
ΠQ̂

The goal of this section is to understand the projection operators ΠP̂ and ΠQ̂ associ-

ated to the decomposition (5.2.42). In contrast to the previous section, we can follow
the approach from [133] relatively smoothly here. The main difficulty is that the argu-
ments in [133] often use Corollary 5.3.11 to conclude that certain subsequences converge
uniformly, while we can only conclude that this convergence takes place on compact
subsets. The primary way in which we circumvent this issue is by appealing to the
exponential estimates in Theorem 5.2.4.

As a bonus, we also obtain information on the Fredholm properties of the restriction
operators π± introduced in §5.3.3. In particular, besides proving Theorem 5.2.6, we
also establish the following two results.

Proposition 5.4.1 (cf. [133, Thm. 4.5]). Assume that (HA), (HK) and (HH) are
satisfied. Then the operators π+

P (τ), π
−
Q(τ), π

+

P̂ (τ)
and π−

Q̂(τ)
are all Fredholm for every

τ ∈ R. Recalling the function β(τ) defined in (5.2.30), the Fredholm indices satisfy the
identities

ind(π+
P (τ)) + ind(π−Q(τ)) = −M + dimB(τ)− β(τ),

ind(π+

P̂ (τ)
) + ind(π−

Q̂(τ)
) = −

(
M + dimB(τ) + β(τ)

)
.

(5.4.1)

Proposition 5.4.2 (cf. [133, Thm. 4.6]). Assume that (HA), (HK) and (HH) are
satisfied. Fix τ0 ∈ R and consider the projections ΠP̂ and ΠQ̂ associated to the decom-

position (5.2.42). Then we have the identities

ind(π+

P̂ (τ)
) = ind(π+

P̂ (τ0)
)− codimP̂ (τ0)ΠP̂

(
P̂ (τ)

)
,

ind(π−
Q̂(τ)

) = ind(π−
Q̂(τ0)

)− codimQ̂(τ0)ΠQ̂

(
Q̂(τ)

)
.

(5.4.2)

Moreover, the quantities ind(π+

P̂ (τ)
) and ind(π−

Q̂(τ)
) vary upper semicontinuously with

τ . In addition, we have the identities

ind(π+

P̂ (τ)
) + dimB(τ) = ind(π+

P (τ)) = ind(π+
P (−∞)),

ind(π−
Q̂(τ)

) + dimB(τ) = ind(π−Q(τ)) = ind(π−Q(∞)),
(5.4.3)

for sufficiently negative values of τ in the first line of (5.4.3) and for sufficiently positive
values of τ in the second line of (5.4.3).
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We first need to study the projection operators π+ and π− from (5.3.46) in more
detail. We proceed largely along the lines of [133], taking a small detour in order to
establish that the ranges are closed.

Lemma 5.4.3. Assume that (HA), (HK) and (HH) are satisfied. Then the operators
π+

P̂ (τ)
and π−

Q̂(τ)
have finite dimensional kernels for each τ ∈ R.

Proof. This can be established by repeating the first half of the proof of [133, Lem.
3.8].

Lemma 5.4.4 (cf. [133, Lem. 3.8]). Assume that (HA), (HK) and (HH) are satisfied.
Then the operators π+

P̂ (τ)
and π−

Q̂(τ)
have closed ranges for each τ ∈ R.

Proof. By symmetry, we pick τ ∈ R and restrict attention to the operator π+

P̂ (τ)
.

We fix a closed complement C ⊂ P̂ (τ) for the finite dimensional space ker(π+

P̂ (τ)
), so

that P̂ (τ) = ker(π+

P̂ (τ)
) ⊕ C. We now consider a sequence {φn}n≥1 ⊂ C and suppose

that the restrictions ψn = π+

P̂ (τ)
φn satisfy the uniform convergence ψn → ψ on D+

X . If

the sequence {φn}n≥1 is bounded, then an application of Corollary 5.3.11 immediately

yields that φn → φ ∈ P̂ (τ) uniformly on compacta, after passing to a subsequence.
This implies that ψ = π+

P̂ (τ)
φ and thus ψ ∈ Range(π+

P̂ (τ)
), as desired.

Let us assume therefore that ‖φn‖∞ ↑ ∞ and consider the rescaled sequence φ̃n =
‖φn‖−1

∞ φn, which satisfies

π+

P̂ (τ)
φ̃n = ‖φn‖−1

∞ ψn → 0 (5.4.4)

uniformly on D+
X . We may again apply Corollary 5.3.11 to obtain φ̃n → φ̃ ∈ P̂ (τ)

uniformly on compacta, with π+φ̃ = 0. In contrast to the setting of [133, Lem. 3.8],
this convergence is not immediately uniform on the (possibly unbounded) interval D−X .
On account of Proposition 5.3.10, the operator π−

P̂ (τ)
is compact, so we can pass to yet

another subsequence to obtain the limit φ̃n → φ̃ uniformly on D−X . As such, φ̃n → φ̃
uniformly both on D−X and on D+

X , so the convergence is uniform on DX . Moreover,

π+

P̂ (τ)
φ̃ = 0, so φ̃ ∈ ker(π+

P̂ (τ)
). Since the convergence φ̃n → φ̃ is uniform on DX we

get ‖φ̃‖∞ = 1, as ‖φ̃n‖∞ = 1 for each n. However, C is closed and φ̃n ∈ C for each
n, so φ̃ ∈ C. Therefore, φ̃ is a nontrivial element of ker(π+

P̂ (τ)
) ∩ C, which yields a

contradiction.

Proof of Proposition 5.4.1. The proof is identical to that of [133, Prop. 4.12] and, as
such, will be omitted. It uses Theorem 5.2.5, together with Lemmas 5.4.3 and 5.4.4.

Lemma 5.4.5. Assume that (HA), (HK) and (HH) are satisfied. Fix τ0 ∈ R and
consider the projections ΠP̂ and ΠQ̂ associated to the decomposition (5.2.42). Then for
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τ sufficiently close to τ0, the restrictions

ΠP̂ : P̂ (τ) → ΠP̂

(
P̂ (τ)

)
⊂ P̂ (τ0),

ΠQ̂ : Q̂(τ) → ΠQ̂

(
Q̂(τ)

)
⊂ Q̂(τ0)

(5.4.5)

to the subspaces P̂ (τ) and Q̂(τ) are isomorphisms onto their ranges, which are closed.
Moreover, we have the limits

lim
τ→τ0

‖I −ΠP̂ |P̂ (τ)‖ = 0, lim
τ→τ0

‖I −ΠQ̂|Q̂(τ)‖ = 0, (5.4.6)

in which I denotes the inclusion of P̂ (τ) or Q̂(τ) into X.

Proof. By symmetry, we only have to consider the projection ΠP̂ . In order to
establish the limit (5.4.6), we pick an arbitrary bounded sequence {φn}n≥1 that has

φn ∈ P̂ (τn) and τn → τ0. Using the decomposition (5.2.42), we write

φn = ρn + ψn + σn, (5.4.7)

with ρn ∈ P̂ (τ0), ψn ∈ Q̂(τ0) and σn ∈ Γ for each n. Then each of the sequences
{ρn}n≥1, {ψn}n≥1 and {σn}n≥1 is bounded. It is sufficient to show that φn − ρn → 0
for some subsequence. Note that this also establishes the claim that the restriction in
(5.4.5) is an isomorphism with closed range.

By Proposition 5.3.10 and the finite dimensionality of Γ, we can pass over to a
subsequence for which both {π+

Q̂(τ0)
ψn}n≥1 and {σn}n≥1 converge. As such, {π+(φn −

ρn)}n≥1 converges, so Corollary 5.3.11 implies that φn − ρn → φ ∈ P̂ (τ0) uniformly on
compact subsets of DX after passing to a further subsequence. In particular, we obtain
the convergence ψn + σn → φ, uniformly on D+

X and uniformly on compact subsets of
D−X .

If rmin 6= −∞ then the convergence ψn+σn → φ is in fact uniform on DX , allowing
us to follow the approach in [133]. In particular, we obtain φ ∈

(
Q̂τ0 ⊕ Γ

)
∩ P̂τ0 and

hence φ = 0 as desired. Assuming therefore that rmin = −∞, we use the convergence of
{σn}n≥1 to conclude that ψn → ψ uniformly on D+

X and uniformly on compact subsets

of (−∞, 0]. For any n ≥ 1 we write yn ∈ Q̂(τ0) for the right-extension of ψn, i.e.,
ψn = (yn)τ0 . Using the uniform estimates in Theorem 5.2.4 for large positive t, we can
use the Ascoli-Arzela theorem to pass to a subsequence that has yn → y, uniformly on
compact subsets of R. Necessarily we have

yτ0(t) = ψ(t), t ∈ (−1, rmax). (5.4.8)

Since ψn → ψ uniformly on D+
X , it follows that yn → y uniformly on τ0 + D+

X . We
can hence follow the proof of Lemma 5.3.7 to see that y is a solution of (5.2.1) on
[τ0,∞) and therefore ψ ∈ Q(τ0). Similarly to the proof of Corollary 5.3.11 we even get

ψ ∈ Q̂(τ0). This yields φ ∈
(
Q̂(τ0)⊕ Γ

)
∩ P̂ (τ0) and therefore φ = 0.
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Proof of Theorem 5.2.6. The first statement and (5.2.45) follow from Lemma 5.4.5,
while the lower semicontinuity of dimB(τ) and β(τ) and the limit in (5.2.47) can be
established in a fashion similar to the proof of [133, Thm. 4.6].

It remains to show that (5.2.46) holds. Following [133], it suffices to find a bounded
function y : R→ CM that satisfies the inhomogeneous system

ẏ(t) =
∞∑

j=−∞
A

(τ)
j (t)y(t+ rj) +

∫
R
K(τ)(ξ; t)y(t+ ξ)dξ + h(τ)(t), (5.4.9)

in which we have introduced the coefficients

A
(τ)
j (t) =

{
Aj(t+ τ),

Aj(−∞),

t < 0,
t ≥ 0,

K(τ)(ξ; t) =

{
K(ξ; t+ τ),

K(ξ;−∞),

t < 0,
t ≥ 0,

(5.4.10)
together with the inhomogeneity

h(τ)(t) =
∞∑

j=−∞

(
Aτj (t)−Aj(−∞)

)
x(t+ rj) +

∫
R

(
Kτ (ξ; t)−K(ξ;−∞)

)
x(t+ ξ)dξ.

(5.4.11)
This can be achieved by following the same steps as in [133], but now using the proof
of [68, Lem. 3.1 (step 3)]3 instead of the results in [130].

Proof of Proposition 5.4.2. The proof is identical to that of [133, Thm. 4.6] and, as
such, will be omitted. It uses Theorems 5.2.5 and 5.2.6.

5.5 Exponential dichotomies on half-lines

In this section, we adapt the approach of [104] to obtain exponential splittings for
(5.2.1) on the half-line [0,∞). The main idea is to explicitly construct suitable finite-
dimensional enlargements of P(τ) for τ ≥ 0. The extra functions {y(τ)}τ≥0 satisfy
(5.2.1) on [0, τ ], but not on (−∞, τ ]. In fact, we will exploit the fundamental identity
(5.2.28) to guarantee that the segments {(y(τ))τ} are not contained in S(τ).

In order to achieve this, we need to construct inverses for the Fredholm operator
Λ restricted to half-lines. In the ODE case one can write down explicit variation-of-
constants formula’s to achieve this, but such constructions are problematic at best in
the current setting. Instead, we follow [104] and solve Λx = h by appropriately modi-
fying h outside the half-line of interest in order to satisfy 〈y, h〉L2 = 0 for all y ∈ B∗.
In order to ensure that such a modification is not precluded by degeneracy issues, we
need to assume that (HKer) holds.

3The matrices Aτj and Kτ need not be continuous, while in [68] the coefficients are assumed to be
continuous. However, the continuity is not used in the parts of the proof that are relevant for us.



278CHAPTER 5. EXPONENTIAL DICHOTOMIES FOR INFINITE-RANGEMFDES

The main complication in the setting rmin = −∞ is that this modification of h
is visible directly in the equation satisfied by x, rather than only indirectly via the
Fredholm properties of Λ as in [104]. This raises issues when using a standard boot-
strapping procedure to obtain estimates on ẋ. Naturally, the unbounded shifts also
cause technical problems similar to those encountered in §5.3-5.4, but fortunately the
same tricks also work here.

Remark 5.5.1. In fact, in this section it suffices to assume a weaker version of the
nontriviality condition (HKer). In particular, we do not need the condition that each
nonzero d ∈ B vanishes on the intervals (−∞, τ ] for τ < 0 or [τ,∞) for τ > 0. This
is because the formulation of Theorem 5.2.8 references the specific half-line R+, rather
than arbitrary half-lines.

5.5.1 Strategy

In order to ensure that the spaces we construct are invariant with respect to τ , we need
to slightly modify the τ -dependent normalization condition used in (5.2.35). Indeed,
upon writing

P̃(τ) = {x ∈ P(τ) |
∫min(τ+rmax,0)

−∞ y(t)†x(t)dt = 0 for every y ∈ B},

Q̃(τ) = {x ∈ Q(τ) |
∫max(τ+rmin,0)

∞ y(t)†x(t)dt = 0 for every y ∈ B},

P̃ (τ) = {φ ∈ X | φ = xτ for some x ∈ P̃(τ)},

Q̃(τ) = {φ ∈ X | φ = xτ for some x ∈ Q̃(τ)},

(5.5.1)

we see that the upper bounds for the defining integrals are now constant for τ ≥ 0 and
τ ≤ 0 respectively. In view of the nontriviality assumption (HKer), all the conclusions
from the previous sections remain valid for these new spaces. In particular, we have
the following result.

Corollary 5.5.2 (cf. [104, Prop. 4.2]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Recall the spaces S(τ) from Theorem 5.2.5. Then we have the direct sum
decomposition

S(τ) = P̃ (τ)⊕ Q̃(τ)⊕B(τ) (5.5.2)

for any τ ∈ R.

Our first goal is to find an explicit complement for the space S(τ) in X. In view
of the identification S(τ) = X⊥(τ), we actually build a duality basis for B∗(τ) with
respect to the Hale inner product; see (5.5.3).

Proposition 5.5.3 (cf. [104, Lem. 4.3]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Write nd = dim(B∗) and choose a basis {di : 1 ≤ i ≤ nd} for B∗. Then
there exists a constant r0 > 0, together with a family of functions yi(τ) ∈ Cb(D

	
τ ),

defined for every τ ≥ 0 and every integer 1 ≤ i ≤ nd, that satisfies the following
properties.

(i) For any τ ≥ 0 and any integer 1 ≤ i ≤ nd we have
[
Λyi(τ)

]
(t) = 0 for every

t ∈ (∞,−r0] ∪ [0, τ ].
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(ii) For any 0 ≤ t ≤ τ and any pair 1 ≤ i, j ≤ nd we have the identity

〈(di)t, (yj(τ))t〉t = δij . (5.5.3)

(iii) For any fixed constant t ≥ 0 and fixed integer 1 ≤ i ≤ nd, the map τ 7→ (yi(τ))t is

continuous from the interval [t,∞) into the state space X.

(iv) For any triplet 0 ≤ t ≤ τ1 ≤ τ2 and any integer 1 ≤ i ≤ nd, we have the inclusion[
yi(τ1) − y

i
(τ2)

]
t
∈ P̃ (t). (5.5.4)

(v) For any τ ≥ 0 and any integer 1 ≤ i ≤ nd, the integral condition∫ 0

−∞ b(t)†y(τ)(t)dt = 0 (5.5.5)

holds for all b ∈ B.

Upon using the functions in Proposition 5.5.3 to introduce the finite-dimensional
spans

Y(τ) = span
{
yi(τ)

}nd
i=1

, Y (τ) = span
{

(yi(τ))τ
}nd
i=1

, (5.5.6)

we can now define the spaces R(τ) and R(τ) that appear in Theorem 5.2.8 by writing

R(τ) = P̃(ξ)⊕ Y(τ), R(τ) = P̃ (ξ)⊕ Y (τ). (5.5.7)

The identities in (5.5.3) show that the dimension of the space Y (τ) is precisely nd.
Moreover, in combination with Theorem 5.2.5 they yield

S(τ) ∩ Y (τ) = {0}, (5.5.8)

which means that we have the direct sum decomposition

X = P̃ (τ)⊕ Y (τ)⊕Q(τ) (5.5.9)

for any τ ≥ 0.

Our final main result here generalizes the exponential decay estimates contained
in Theorem 5.2.4 to the half-line setting. The main obstacle here is that it is more
involved to control the derivative of functions in Y(τ), preventing a direct application
of the Ascoli-Arzela theorem. Indeed, these functions have a nonzero right-hand side
on the interval [−r0, 0] when substituted into (5.2.1).

Proposition 5.5.4 (cf. [104, Prop. 4.4]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Then for any τ ≥ 0, every function x ∈ R(τ) is C1-smooth on (−∞, τ ].
In addition, there exist constants Kdec > 0 and α > 0 in such a way that for all τ ≥ 0
and all t ≤ τ we have the pointwise estimate

|x(t)|+ |ẋ(t)| ≤ Kdece
−α(τ−t)‖xτ‖∞ (5.5.10)

for every x ∈ R(τ).
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5.5.2 Construction of Y(τ)

In order to construct the functions {yi(τ)} from Proposition 5.5.3, we will use the freedom
we still have to choose complements for the range and the kernel of the operator Λ.

Lemma 5.5.5 (cf. [104, Lem. 3.4]). Assume that (HA), (HK), (HH) and (HKer) are
satisfied and fix τ ∈ R. Write nd = dim(B∗) and choose a basis {di : 1 ≤ i ≤ nd} for

B∗. Then there exists a constant r
(τ)
0 > 0, together with functions

{φi(τ) : 1 ≤ i ≤ nd} ⊂ Cb[τ, τ + r
(τ)
0 ], {ψi(τ) : 1 ≤ i ≤ nd} ⊂ Cb[τ − r(τ)

0 , τ ]
(5.5.11)

that satisfy the identities

τ+r
(τ)
0∫

τ

di(t)†φj(τ)(t)dt = δi,j ,

τ∫
τ−r(τ)

0

di(t)†ψj(τ)(t)dt = δi,j

(5.5.12)

for any 1 ≤ i, j ≤ nd, together with

0 = φj(τ)(τ) = φj(τ)(τ + r
(τ)
0 ),

0 = ψj(τ)(τ − r
(τ)
0 ) = ψj(τ)(τ),

(5.5.13)

for any 1 ≤ j ≤ nd.

Proof. By symmetry, we only consider the construction of the functions {ψi(τ) : 1 ≤
i ≤ nd}. We first note that the restriction operator

B∗ → Cb[−r(τ)
0 + τ, τ ], d 7→ d|

[−r(τ)
0 +τ,τ ]

(5.5.14)

is injective for some r
(τ)
0 > 0. This follows trivially from (HKer) and the fact that B∗

is finite dimensional.

Let us denote [·, ·]τ for the integral product

[ψ, φ]τ =
τ∫

τ−r(τ)
0

ψ(t)†φ(t)dt. (5.5.15)

Consider any set of functions {ψ̃i : 1 ≤ i ≤ nd} ⊂ Cb[τ − r(τ)
0 , τ ] with

0 = ψ̃j(τ − r(τ)
0 ) = ψ̃j(τ), (5.5.16)

for which the nd×nd-matrix Z with entries Zij = [di|
[−r(τ)

0 +τ,τ ]
, ψ̃j ]τ is invertible. This

is possible on account of the linear independence of the sequence {di|
[−r(τ)

0 +τ,τ ]
: 1 ≤

i ≤ nd}. For any integer 1 ≤ j ≤ nd we can now choose

ψj(τ) =
nd∑
k=1

Z−1
kj ψ̃

k. (5.5.17)
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By construction, we have ψj(τ)(τ − r
(τ)
0 ) = ψj(τ)(τ) = 0 and we can compute

τ∫
τ−r(τ)

0

di(t)†ψj(τ)(t)dt =
[
di|

[−r(τ)
0 +τ,τ ]

, ψj
]
τ

=
nd∑
k=1

Z−1
kj

[
di|

[−r(τ)
0 +τ,τ ]

, ψ̃k
]
τ

=
nd∑
k=1

Z−1
kj Zik

= δi,j

(5.5.18)

for any 1 ≤ i, j ≤ nd, as desired.

Lemma 5.5.6 (cf. [104, Pg. 13]). Assume that (HA), (HK), (HH) and (HKer) are
satisfied and fix τ ∈ R. Then there exist bounded linear operators

Λ−1
+;τ : L∞

(
[τ,∞);CM

)
→ W 1,∞(D⊕τ ;CM ),

Λ−1
−;τ : L∞

(
(−∞, τ ];CM

)
→ W 1,∞(D	τ ;CM )

(5.5.19)

with the property that the identities

[ΛΛ−1
+;τf ](t) = f(t), t ≥ τ,

[ΛΛ−1
−;τg](s) = g(s) t ≤ τ

(5.5.20)

hold for f ∈ L∞
(
[τ,∞);CM

)
and g ∈ L∞

(
(−∞, τ ];CM

)
.

Proof. By symmetry, we will only construct the operator Λ−1
+;τ . We write R =

Range(Λ) and K = B. Let R⊥ and K⊥ be arbitrary complements of R and K respec-
tively, so that we have

W 1,∞(R;CM ) = K ⊕K⊥, L∞(R;CM ) = R⊕R⊥. (5.5.21)

Let πR and πR⊥ denote the projections corresponding to this splitting. Then Λ : K⊥ →
R is invertible, with a bounded inverse Λ−1 ∈ L(R,K⊥).

We let r
(τ)
0 > 0 and {ψi(τ) : 1 ≤ i ≤ nd} be the constant and the functions from

Lemma 5.5.5 for this value of τ . For 1 ≤ i ≤ nd we write gi(τ) ∈ L
∞(R;CM ) for the

function that has gi(τ) = ψi(τ) on [−r(τ)
0 +τ, τ ], while gi(τ) = 0 on (−∞,−r(τ)

0 +τ)∪(τ,∞).

Since we have gi(τ) /∈ R for 1 ≤ i ≤ nd by Proposition 5.2.1 and these functions are
linearly independent, we can explicitly choose the projection πR⊥ to be given by

πR⊥f =
nd∑
i=1

[ ∫∞
−∞ di(t)†f(t)dt

]
gi(τ). (5.5.22)

Upon writing 1[τ,∞) for the indicator function on [τ,∞), we can define the inverse
of Λ on the positive half-line [τ,∞) by

Λ−1
+;τf = Λ−1πR1[τ,∞)f. (5.5.23)
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By construction, we have gi(τ)(t) = 0 for all t ≥ τ and all 1 ≤ i ≤ nd. As such, we

have [πR⊥1[τ,∞)f ](t) = 0 for any t ≥ τ and any f ∈ L∞([τ,∞);CM ). Hence a short
computation shows that we have

[ΛΛ−1
+;τf ](t) = [1[τ,∞)f ](t)−

[
πR⊥1[τ,∞)f

]
(t) = f(t) (5.5.24)

for t ≥ τ and f ∈ L∞([τ,∞);CM ), as desired.

For notational convenience, we write

r0 := r
(0)
0 , ψi := ψi(0) (5.5.25)

for the constant and functions obtained in Lemma 5.5.5 for τ = 0. As in the proof of
Lemma 5.5.6, we also write gi ∈ L∞(R;CM ) for the function

gi(t) =

ψ
i(t), t ∈ [−r0, 0]

0, t ∈ (∞,−r0] ∪ [0,∞).
(5.5.26)

On account of the identity (5.5.13), we note that the function gi is continuous.

Proof of Proposition 5.5.3. For any k ∈ Z≥1 we write Λ−1
−;k for the inverse operator

constructed in Lemma 5.5.6 for the half-line (−∞, k], together with yi(k) = Λ−1
−;kg

i.

Assumption (HKer) implies that any basis of B remains linearly independent when
restricted to the interval (−∞, 0]. As such, we can add an appropriate element of B to
y(k) to ensure that the integral condition (5.5.5) is satisfied. For any integer 1 ≤ j ≤ nd,
Lemma 5.3.12 and the exponential decay of the function dj allow us to compute

〈(dj)t, (yi(k))t〉t =
∫ t
−∞ dj(s)†

[
Λyi(k)

]
(s)dt

=
∫ 0

−r0 d
j(s)†gi(s)ds

= δij

(5.5.27)

for any 0 ≤ t ≤ k. We now pick a continuous function χ : [0,∞) → [0, 1] that is zero
near even integers and one near odd integers. Upon defining

yi(τ) = χ(2τ)yi(dτe) +
[
1− χ(2τ)

]
yi

(dτ+ 1
2 e)
, (5.5.28)

in which dτe denotes the closest integer larger or equal to τ , it is easy to see that
properties (i) through (v) are all satisfied.

5.5.3 Exponential decay

We now focus on the exponential decay of functions in Y(τ), noting that Theorem 5.2.4
already captures the corresponding behaviour for functions in P̃(τ). The technical is-
sues that we encountered during the proof of Theorem 5.2.4 persist in this half-line
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setting. In particular, we need to control the behaviour of functions in Y(τ) on a left
half-line and a right half-line at the same time.

In addition, in the proof of the corresponding result in [104], the authors were ex-
plicitly able to avoid the region where Λyi(τ) is nonzero when considering the states

(yi(τ))τ . This is of course no longer possible in our setting when |rmin| is infinite. As

such, we need to control the value of Λyi(τ) in a more rigorous fashion.

Our first result can be see as the analogue of Lemma 5.3.6, but now the goal is to
obtain estimates on Λyn for bounded sequences {yn ∈ Y(τn)}. As a preparation, we
recall from the proof of Proposition 5.5.3 that the identity

Λy =
nd∑
i=1

gi〈(di)0, y0〉0 (5.5.29)

holds for y ∈ Y(τ). In addition, we recall the constants p > 0,Kexp > 0 and α > 0
introduced in Lemma 5.3.1.

Lemma 5.5.7. Assume that (HA), (HK), (HH) and (HKer) are satisfied and let
{σn}n≥1, {yn}n≥1 and {τn}n≥1 be sequences with the following properties.

(a) We have σn > 0 for each n, together with σn ↑ ∞.

(b) We have yn ∈ Y(τn) and τn ≥ 0 for each n.

(c) For each n ≥ 1 we have the bound

|yn(−σn + τn)| ≥ 1
2 , (5.5.30)

together with the normalization

sup
s∈(−∞,τn+p]

|yn(s)| = 1. (5.5.31)

(d) If rmax =∞, then we have the additional bound

|yn(−σn + τn)| ≥ Kexpe
α(−σn+τn) sup

s∈[p+τn,∞)

e−αs|yn(s)|. (5.5.32)

(e) The limit −σn + τn → β0 holds for some β0 ∈ R.

Then the set of scalars {〈(di)0, (yn)0〉0} is bounded uniformly for n ≥ 1 and 1 ≤ i ≤ nd.

Proof. Suppose first that rmax = ∞. Fixing n ∈ Z≥1 and 1 ≤ i ≤ nd, we can use
the bounds (5.5.30) and (5.5.32) to estimate

|〈(di)0, (yn)0〉0| ≤ |di(0)†yn(0)|+
∣∣∣ ∞∑
j=−∞

∫ rj
0
di(s− rj)†Aj(s− rj)yn(s)ds

∣∣∣
+
∣∣∣ ∫R ∫ r0 di(s− r)†K(r; s− r)y(s)dsdr

∣∣∣
≤ |di(0)|+ S1(i, n) + S2(i, n) + S3(i, n)

+I1(i, n) + I2(i, n) + I3(i, n),
(5.5.33)
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in which we have defined

S1(i, n) =
∑

rj≤p+τn

∣∣ ∫ rj
0
di(s− rj)†Aj(s− rj)ds

∣∣,
S2(i, n) =

∑
rj>p+τn

∣∣ ∫ p+τn
0

di(s− rj)†Aj(s− rj)ds
∣∣,

S3(i, n) =
∑

rj>p+τn

∣∣ ∫ rj
p+τn

di(s− rj)†Aj(s− rj)K−1
expe

α(σn−τn)eαsds
∣∣, (5.5.34)

together with the corresponding expressions I1(i, n), I2(i, n) and I3(i, n) related to the
integrals involving K.

We easily obtain the bounds

|S1(i, n)| ≤ max1≤k≤nd

∞∑
j=−∞

∣∣ ∫ rj
0
|dk(s− rj)†Aj(s− rj)|ds

∣∣,
|S2(i, n)| ≤ max1≤k≤nd

∑
rj>p

∫∞
0
|dk(s− rj)†Aj(s− rj)|ds,

|I1(i, n)| ≤ max1≤k≤nd
∫
R
∣∣ ∫ r

0
|dk(s− r)†K(r; s− r)|ds

∣∣dr,
|I2(i, n)| ≤ max1≤k≤nd

∫∞
p

∫∞
0
|dk(s− r)†K(r; s− r)|dsdr,

(5.5.35)

which are uniform in i and n. Turning to the remaining expressions, we pick a small
ε > 0 and assume that n is large enough to have |β0 + σn − τn| < ε. This allows us to
estimate

|S3(i, n)| ≤ K−1
expe

α(σn−τn)
∑

rj>p+τn

‖Aj‖∞|rj |eαrj‖di‖∞

≤ K−1
expe

α(σn−τn)Kexpe
−2α(p+τn)‖di‖∞

≤ e−2α(p+τn)eαβ0+αεmax1≤k≤nd‖dk‖∞,

(5.5.36)

with a corresponding bound for I3. In particular, both S3(i, n) and I3(i, n) converge to
0 as n→∞, so they can be bounded from above uniformly in i and n.

In the case where rmax < ∞, we can repeat this procedure with p = rmax. The
quantities S3(i, n) and I3(i, n) are identically zero in this case.

Lemma 5.5.8. Assume that (HA), (HK), (HH) and (HKer) are satisfied and suppose
that rmax =∞. Then for each τ ≥ 0 and each y ∈ Y(τ) we have the bound

|y(t)| ≤ max
{

1
2 sup
s∈(−∞,τ+p]

|y(s)|,Kexp sup
s∈[p+τ,∞)

e−α(s−t)|y(s)|
}
, t ≤ −σ + τ.

(5.5.37)
If rmax <∞, then the same statements hold with (5.5.37) replaced by

|y(t)| ≤ 1
2 sup
s∈(−∞,τ+rmax]

|y(s)|, t ≤ −σ + τ. (5.5.38)

Proof. Arguing by contradiction, let us consider sequences {σn}n≥1, {τn}n≥1 and
{yn}n≥1 that satisfy properties (a)-(d) in Lemma 5.5.7. If the sequence {−σn+ τn}n≥1
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is unbounded then we can follow the proof of Proposition 5.3.2 to arrive at a contra-
diction, since the interval [−r0, 0] on which Λyn might be nonzero gets ‘pushed out’
towards ±∞.

Suppose therefore that −σn+τn → β0 ∈ R, possibly after passing to a subsequence.
Combining Lemma 5.5.7 with (5.5.29) shows that {Λyn}n≥1 is uniformly bounded,
which allows us to apply the Ascoli-Arzela theorem to conclude that yn → y∗ uniformly
on compact subsets of R. A computation similar to the proof of Lemma 5.3.7 shows
that [Λy∗](t) = 0 for every t ≥ 0, since the functions gi vanish for these values of t.
In particular, we must have (y∗)0 ∈ Q(0). On account of Theorem 5.2.5, we obtain
(y∗)0 ∈ X⊥(0), which yields

〈(di)0, (y∗)0〉0 = 0 (5.5.39)

for each 1 ≤ i ≤ nd. In view of (5.5.29) this means that Λyn → 0 uniformly on every
compact subset of the real line. In particular, we must have Λy∗ = 0 on the entire
real line, which implies that y∗ ∈ B. However, this contradicts the integral condition
(5.5.5).

Lemma 5.5.9. Assume that (HA), (HK), (HH) and (HKer) are satisfied. Then there
exists C > 0 so that for all τ ≥ 0 and all y ∈ Y(τ) we have the bound

‖y‖Cb(D	τ ) ≤ C‖yτ‖∞. (5.5.40)

Proof. The bound (5.5.40) is in fact an equality with C = 1 if rmin = −∞.
Hence we assume that rmin > −∞. Arguing by contradiction, we can pick sequences
{yn}n≥1, {τn}n≥1 and {Cn}n≥1 with Cn → ∞ with τn ≥ 0 and yn ∈ Y(τn) for each n
in such a way that we have the identity

‖yn‖Cb(D	τn ) = Cn‖(yn)τn‖∞ = 1. (5.5.41)

If the sequence {τn}n≥1 is unbounded we can follow the first half of the proof of Lemma
5.3.8 to arrive at a contradiction.

Hence we suppose that, after passing to a subsequence, we have τn → τ∗ ≥ 0. Since
the bounds on the functions {yn}n≥1 are stronger than those in (5.5.30) or (5.5.32),
we can repeat the procedure from Lemma 5.5.7 to conclude that yn → y∗ uniform
on compact subsets of (−∞, τ∗]. For each n ≥ 1 we pick sn in such a way that
|yn(−sn + τn)| = 1. On account of Lemma 5.5.8, the set {sn}n≥1 is bounded. Hence,
we obtain that

y∗(t) 6= 0, for some t ∈ (rmin + τ∗, σ + τ∗). (5.5.42)

In addition, we have (yn)τn → 0 uniformly as n→∞, so we even obtain that yn → y∗
uniformly on D+

X + τ∗. If rmax < ∞, we set y∗ = 0 on (rmax + τ∗,∞). In particular,
we have (y∗)τ∗ = 0 and thus [Λy∗](t) = 0 for any t ∈ [τ∗,∞). Moreover, we have
[Λy∗](t) = 0 for any t ∈ [0, τ∗], since Λyn is zero for these values of t for each n ∈ Z≥1.
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This means that y∗ ∈ Q(0) and, as before, this yields a contradiction.

Proof of Proposition 5.5.4. Using Lemmas 5.5.8 and 5.5.9, we can extend the proof
of Theorem 5.2.4 to also include functions in Y(τ). As such, for all τ ≥ 0 and x ∈ R(τ)
we have the pointwise estimate

|x(t)| ≤ Kdece
−α(τ−t)‖xτ‖∞, t ≤ τ. (5.5.43)

The exponential decay of ẋ for x ∈ P̃ (τ) follows directly from Theorem 5.2.4. Let us
therefore consider an arbitrary y ∈ Y(τ), which satisfies the exponential bound (5.3.63).
Recalling the constant B > 0 from Lemma 5.3.14, we write

C =
∞∑

j=−∞
‖Aj(·)‖∞eα|rj | + sup

t∈R
‖K(·; t)‖α,

B̃ = Beαr0
nd∑
i=1

‖(di)0‖∞‖gi‖∞.
(5.5.44)

Recalling the bound (5.3.62) and the identity (5.5.29), we obtain that

|Λy|(t) =
∣∣ nd∑
i=1

gi〈(di)0, y0〉0
∣∣

≤
nd∑
i=1

‖gi‖∞
∣∣〈(di)0, y0〉0

∣∣
≤ B

nd∑
i=1

‖gi‖∞‖(di)0‖∞‖yτ‖∞e−ατ

≤ e−α(τ−t)B̃‖yτ‖∞

(5.5.45)

for any −r0 ≤ t ≤ 0. Since gi(t) = 0 for t ≥ 0 and t ≤ −r0 and since gi is continuous,
we see that (5.5.45) is, in fact, valid for any t ≤ τ . As such, we immediately obtain

|ẏ(t)| ≤ Kdece
−α(τ−t)

(
C + B̃

)
‖yτ‖∞, t ≤ τ (5.5.46)

for any τ ≥ 0 and any y ∈ Y(τ).

For the final statement we first recall the identity (5.5.29). Since the coefficients
Aj(t) and K(·; t) depend continuously on t and since the functions gi are continuous,
the identity (5.5.29) yields that ẋ is continuous on (−∞, τ ] for any x ∈ R(τ) and any
τ ≥ 0.

5.5.4 Projection operators

In order to complete the proof of Theorem 5.2.8, we need to consider the behaviour of
several projection operators. In particular, we recall the splitting

X = P (∞)⊕Q(∞) (5.5.47)
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corresponding to the hyperbolic limiting system (5.2.11) at +∞, together with the

notation
−→
ΠP and

−→
ΠQ for the projections onto the factors P (∞) and Q(∞). In addition,

we recall the decompositions

X = R(τ)⊕Q(τ) = P̃ (τ)⊕ Y (τ)⊕Q(τ), τ ≥ 0 (5.5.48)

obtained above in this section and write ΠP̃ (τ), ΠY (τ) and ΠQ(τ) for the corresponding
projections.

Our first result can be seen as a supplement for the bound (5.2.47) in Theorem
5.2.6. Indeed, together these bounds allow the full structure of the two decompositions
above to be compared with each other for τ � 1.

Lemma 5.5.10 (cf. [104, Lem. 4.5]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Then we have the limit

lim
τ→∞

‖I −
−→
ΠP |R(τ)‖ = 0. (5.5.49)

Proof. If rmin > −∞ then we can follow the proof of [104, Lem. 4.5] to obtain the
desired result, so we assume that rmin = −∞. Recalling the positive constants Kdec

and α from Proposition 5.5.4, we write

C =
∞∑

j=−∞
‖Aj(·)‖∞eα|rj | + sup

t∈R
‖K(·; t)‖α +

∞∑
j=−∞

|Aj(∞)|eα|rj | + ‖K(·;∞)‖α.

(5.5.50)
Fix an arbitrary ε > 0 and pick τ0 � 1 in such a way that the bounds

4Kdec

(
1 + C

)
e−ατ0 < ε

2 ,

∞∑
j=−∞

∣∣Aj(t)−A+
j (∞)

∣∣+ ‖K(·; t)−K(·;∞)‖α + ‖K(·; t− ·)−K(·;∞)‖α < ε
2

(5.5.51)
hold for all t ≥ τ0. Recall the constant r0 from (5.5.25) and fix any τ ≥ 2τ0 + p+ r0.

First we pick any y ∈ R(τ) and write φ = yτ ∈ R(τ). We now set out to show that

‖
−→
ΠQφ‖∞ ≤ εC ′‖φ‖∞, (5.5.52)

for some constant C ′ > 0. Indeed, this upper bound implies that

‖I −
−→
ΠP |Y (τ)‖ = ‖

−→
ΠQ|Y (τ)‖ ≤ C ′ε, (5.5.53)

which yields the desired result.

On account of Proposition 5.5.4 we note that y is continuously differentiable on
(−∞, τ ], which yields that φ is continuously differentiable on (−∞, 0]. In addition,
Proposition 5.5.4 implies that both φ and φ̇ decay exponentially for t → −∞. which
means that φ|(−∞,0] ∈ C1

b

(
(−∞, 0]

)
. We can hence approximate φ by functions {φk}k≥1
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in C1
b (DX) which have φk(t) = φ(t) for any t ∈ (−∞, 0]. These functions can be

extended to C1-smooth functions {yk}≥1, defined on R, which have (yk)τ = φk. As
such, they have yk(t) = y(t) for any t ≤ τ . Due to the uniform bound on both y and ẏ
from Proposition 5.5.4 we can pick the functions {yk}k≥1 in such a way that the bound

|ẏk(t)|+ |yk(t)| ≤ 4Kdece
−α(τ−t)

(
1 + C

)
‖yτ‖∞ (5.5.54)

holds for any t ≤ 0 and any k ∈ Z≥1.

We now introduce the Heaviside function Hτ that acts as Hτ (t) = I if t ≥ τ and
zero otherwise, together with the operator

[Λ∞x](t) = ẋ(t)−
∞∑

j=−∞
Aj(∞)x(t+ rj)−

∫
RK(s;∞)x(t+ s)ds. (5.5.55)

Recalling the splitting (5.5.47), we observe that for any function x ∈ C1
b (R) we have(

Λ−1
∞ HτΛ∞x

)
τ
∈ P (∞),

(
Λ−1
∞ [I −Hτ ]Λ∞x

)
τ
∈ Q(∞), (5.5.56)

together with
xτ =

(
Λ−1
∞ HτΛ∞x

)
τ

+
(
Λ−1
∞ [I −Hτ ]Λ∞x

)
τ
. (5.5.57)

As such, we have the representation

−→
ΠQxτ =

(
Λ−1
∞ [I −Hτ ]Λ∞x

)
τ

(5.5.58)

for any C1-smooth function x. For any t ∈ R and any k ∈ Z≥1, we observe that

[Λ∞yk](t) = [Λyk](t) +
∞∑

j=−∞

[
Aj(t)−Aj(∞)

]
yk(t+ rj)

+
∫
R
(
K(s; t)−K(s;∞)

)
yk(t+ s)ds.

(5.5.59)

Since [Λyk](t) = [Λy](t) = 0 for τ0 ≤ t ≤ τ and any k ∈ Z≥1, we may hence estimate

‖[I −Hτ ]Λ∞yk‖∞ ≤ sup
t≤τ0

[
|ẏk(t)|+ C‖yt‖∞

]
+ sup
τ0≤t≤τ

ε
2‖(yk)t‖∞

≤ 4Kdec

(
1 + C

)
e−α(τ−τ0)‖φk‖∞ + ε

2‖φk‖∞
≤ 4Kdec

(
1 + C

)
e−ατ0‖φk‖∞ + ε

2‖φk‖∞
≤ ε‖φk‖∞.

(5.5.60)

By the boundedness of the operator Λ−1
∞ , we find that there exists a constant C ′ > 0

that allows us to write

‖
−→
ΠQφk‖∞ = ‖

(
Λ−1
∞ [I −Hτ ]Λ∞yk

)
τ
‖∞ ≤ εC ′‖φk‖∞. (5.5.61)

The operator
−→
ΠQ is continuous, so we can take the limit k →∞ to obtain

‖
−→
ΠQφ‖∞ ≤ εC ′‖φ‖∞. (5.5.62)
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This yields the desired bound

‖I −
−→
ΠP |Y (τ)‖ = ‖

−→
ΠQ|Y (τ)‖ ≤ C ′ε. (5.5.63)

Lemma 5.5.11 (cf. [104, Lem. 4.6]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied and fix τ0 ≥ 0. Then we have the limits

‖[I −ΠP̃ (τ0)]|P̃ (τ)‖ → 0 as τ → τ0,

‖[I −ΠY (τ0)]|Y (τ)‖ → 0 as τ → τ0,

‖[I −ΠQ(τ0)]|Q(τ)‖ → 0 as τ → τ0.

(5.5.64)

Proof. The first and the third limit follow from Theorem 5.2.6. The second limit
follows from the finite dimensionality of the spaces Y and from item (iii) of Proposition
5.5.3.

Lemma 5.5.12 (cf. [104, Lem. 4.7]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Then the projections ΠQ(τ) from Lemma 5.5.11 can be uniformly bounded
for all τ ≥ 0.

Proof. The proof is identical to that of [104, Lem. 4.7] and, as such, will be omitted.
It uses Proposition 5.3.10, together with Lemmas 5.5.10 and 5.5.11.

Corollary 5.5.13 (cf. [104, Cor. 4.8]). Assume that (HA), (HK), (HH) and (HKer)
are satisfied. Then the projections ΠR(τ) and ΠQ(τ) corresponding to the first splitting
in (5.5.48) depend continuously on τ ∈ R≥0. In addition, we have the limits

lim
τ→∞

‖ΠQ(τ) −
−→
ΠQ‖ = 0, lim

τ→∞
‖ΠR(τ) −

−→
ΠP ‖ = 0. (5.5.65)

Proof. The proof is identical to that of [104, Cor. 4.8] and, as such, will be omitted.
It uses Lemmas 5.5.10 and 5.5.12.

Proof of Theorem 5.2.8. Upon defining the space R(τ) by (5.5.7), the exponential
decay rates follow from Theorem 5.2.4 and Proposition 5.5.4. The continuity of the
projections follows from Corollary 5.5.13, while the uniform bounds on the projections
follow from Lemma 5.5.12.

5.6 Degeneracies and their avoidance

In this section, we set out to prove Corollaries 5.2.3 and 5.2.7. In fact, our main result
below formulates alternative conditions that can be used instead of (HKer) to obtain
the same conclusions. These alternatives involve the Hale inner product, which we
require to be (partially) nondegenerate in the following sense.
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Definition 5.6.1. Let F ⊂ Y be a subset with 0 ∈ F and fix τ ∈ R. We say that the
Hale inner product is left-nondegenerate at τ for functions in F if ψ = 0 is the only
function ψ ∈ F for which 〈ψ, φ〉τ = 0 holds for every φ ∈ X.

Definition 5.6.2. Let E ⊂ X be a subset with 0 ∈ E and fix τ ∈ R. We say that the
Hale inner product is right-nondegenerate at τ for functions in E if φ = 0 is the only
function φ ∈ E for which 〈ψ, φ〉τ = 0 holds for every ψ ∈ Y .

Proposition 5.6.3 (cf. [133, Cor. 4.7]). Assume that (HA), (HK) and (HH) are
satisfied. Suppose furthermore that at least one of the following three conditions is
satisfied.

(a) The nontriviality condition (HKer) holds.

(b) We have |rmin| = rmax =∞ and the Hale inner product is left-nondegenerate for
functions in B∗(τ) at each τ ∈ R.

(c) We have rmin < 0 < rmax and for each τ ∈ R the Hale inner product at τ is both
left-nondegenerate for functions in B∗(τ) and right-nondegenerate for functions
in B(τ).

Then the identities

dimB(τ) = dimB, β(τ) = dimB∗(τ) = dimB∗ (5.6.1)

hold for every τ ∈ R. Moreover, the four Fredholm indices appearing in (5.4.1) are
independent of τ and given by (5.6.1). In addition, the first equation in (5.4.1) becomes

ind(π+
P (τ)) + ind(π−Q(τ)) = −M + ind(Λ) (5.6.2)

with Λ as in (5.2.15). Finally, the spaces P (τ), Q(τ), P̂ (τ) and Q̂(τ) all vary contin-
uously with respect to τ .

In §5.6.1 we provide various structural conditions on the system (5.2.1) that allow
the conditions (a)-(c) above to be verified. They turn out to be closely related, as
illustrated by the examples that we provide in §5.6.2. We establish our main result
in §5.6.3, where we also describe how partial results can be obtained under weaker
conditions.

5.6.1 Structural conditions

In order to use Proposition 5.6.3 to compute the codimension of the space S(τ) in X,
we either need to establish the nondegeneracy of the Hale inner product or show that
the nontriviality condition (HKer) is satisfied. However, it is by no means clear how
this can be achieved in practice for concrete systems. Our goal here is to describe sev-
eral more-or-less explicit criteria that can be used to verify these nondegeneracy and
nontriviality conditions.



5.6. DEGENERACIES AND THEIR AVOIDANCE 291

Some of these criteria reference the adjoint of the system (5.2.1), which is closely
related to the operator Λ∗ defined in (5.2.16). This system is given by

ẏ(t) = −
∞∑

j=−∞
Aj(t− rj)†y(t− rj)−

∫
R
K(ξ; t− ξ)†y(t− ξ)dξ. (5.6.3)

Most of our conditions impose the following basic structural condition, which demands
that the coefficients corresponding to large shifts are autonomous. This is valid for
many common reaction-diffusion systems such as those studied in [6, 150]. Indeed,
the large shifts usually arise from discretizations of the diffusion, which is typically
autonomous. The nonautonomous reaction terms are typically localized in space.

Assumption (hB). There exists a constant Kconst ∈ Z≥1 together with families of
diagonal matrices{
Ãj : j ∈ Z with |j| ≥ Kconst

}
⊂ CM×M ,

{
K̃(ξ) : ξ ∈ R with |ξ| ≥ Kconst

}
⊂ CM×M ,

(5.6.4)
so that the following structural conditions are satisfied.

(a) We have rj = j for j ∈ Z, which implies rmin = −∞ and rmax =∞.

(b) We have Aj(t) = Ãj for all t ∈ R whenever |j| ≥ Kconst.

(c) We have K(ξ; t) = K̃(ξ) for all t ∈ R whenever |ξ| ≥ Kconst.

Remark 5.6.4. The assumption (hB) can be relaxed by assuming that there exists
a basis for CM on which the matrices Ãj for j ≤ −Kconst are diagonal, together with

a separate basis on which the matrices Ãj for j ≥ Kconst are diagonal. However, for
notational simplicity, we do not pursue such an approach.

Remark 5.6.5. The condition (hB) can be relaxed to include shifts rj with |rj | <
Kconst that are not equidistant. In addition, there does not need to be any limit on the
number of these small shifts. However, for notational simplicity we do not pursue such
a level of generality.

We divide our discussion into several scenarios for the unbounded coefficients that
we each discuss in turn. Our general results are formulated at the end of this subsection.

5.6.1.1 Bounded shifts and compact support

The methods from [133] can be applied almost directly when the nonlocal terms all
have finite range, except that we need to take care of accumulation points of the shifts.
In any case, it is straightforward to formulate the appropriate atomic condition at a
point τ ∈ R.

Assumption (hFin). We have |rmin| + rmax < ∞ and there is a small δ > 0 so that
the convolution kernel K(·; t) is supported in the interval [rmin + δ, rmax − δ] for each
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t ∈ R. In addition, neither rmin nor rmax is an accumulation point of the set of shifts
R and there are unique integers jmin, jmax that satisfy

rmin = rjmin
, rmax = rjmax

. (5.6.5)

Finally, we have det
(
Ajmin

(t)
)
6= 0 for a dense set of t ∈ [τ + rmin, τ − rmin], together

with det
(
Ajmax

(t)
)
6= 0 for a dense set of t ∈ [τ − rmax, τ + rmax].

5.6.1.2 Unbounded shifts and compact support

We here consider the case where the discrete shifts are unbounded, but the convolution
kernels all have finite support. For convenience, we formulate this as an assumption.

Assumption (hSh1). Assumption (hB) is satisfied. In addition, K(·; t) is supported
in the interval [−Kconst,Kconst] for each t ∈ R.

Our approach here exploits the functional analytic framework of cyclic vectors for
the backward shift operator on `2, which was first described in [54]. This framework
allows us to find sufficient conditions under which the nontriviality condition (HKer)
holds and the Hale inner product is nondegenerate for exponentially decaying func-
tions. Reversely, we also provide a condition that guarantees the Hale inner product
to be degenerate, even for exponentially decaying functions; see Proposition 5.6.6 below.

Let us first collect the necessary terminology. We consider the backward shift op-
erator S on the sequence space `2(N0;C), defined by

S : `2(N0;C) → `2(N0;C), (an)n≥0 7→ (an)n≥1. (5.6.6)

We call a vector a = (an)n≥0 ∈ `2(N0;C) cyclic if the span of the set {SNa : N ≥ 0}
is dense in `2(N0;C). Our main condition here demands that the diagonal elements of
the matrices Ãj can be used to form such cyclic sequences. Our first result shows that
this is in fact essential for the nondegeneracy of the Hale inner product.

Assumption (hSh2). Upon writing jn = Kconst + n together with

α(k) =
(
Ã

(k,k)
−jn

)
n≥0
⊂ `2(N0;C) β(k) =

(
Ã

(k,k)
jn

)
n≥0
⊂ `2(N0;C),

(5.6.7)
the sequences α(k) and β(k) are cyclic for the backwards shift operator for any 1 ≤ k ≤
M .

Proposition 5.6.6 (see §5.6.5). Assume that (HA), (HK) and (HH) and (hSh1) are
all satisfied. If the cyclicity condition (hSh2) is not satisfied, then there exists a nonzero
function ψ ∈ Y that decays exponentially and satisfies 〈ψ, φ〉τ = 0 for every φ ∈ X and
each τ ∈ R.

For the backward shift operator on `2(N0;C), the criterion for an exponentially
decaying sequence to be cyclic can be made explicit; see §5.6.4. This allows us to for-
mulate two results that can be used to verify (hSh2).
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Lemma 5.6.7 (see §5.6.4). Assume that (HA), (HK) and (HH) and (hSh1) are all
satisfied. Consider the functions f (k) and g(k) that are defined on their natural domain
by

f (k)(z) =
∞∑

j=Kconst

Ã
(k,k)
−j zj , g(k)(z) =

∞∑
j=Kconst

Ã
(k,k)
j zj . (5.6.8)

Then the cyclicity condition (hSh2) is satisfied if and only if the functions f (k) and g(k)

are not rational functions for any 1 ≤ k ≤M .

Lemma 5.6.8 (see §5.6.4). Assume that (HA), (HK) and (HH) and (hSh1) are all
satisfied and consider the sequences α(k) and β(k) defined in (5.6.7). Then the sets
{SNα(k) : N ≥ 0} and {SNβ(k) : N ≥ 0} are both infinite dimensional for each
1 ≤ k ≤M if and only if the cyclicity condition (hSh2) is satisfied.

5.6.1.3 Bounded shifts, unbounded support

We now consider the reverse of the setting discussed in §5.6.1.2. In particular, we
assume that the discrete shifts are bounded.

Assumption (hCyc1). Assumption (hB) is satisfied, with Ãj = 0 whenever |j| ≥
Kconst.

In this case, one is interested in the translation semigroup {St}t≥0 on the space L1,
which acts as

(Stf)(s) = f(s+ t) (5.6.9)

for f ∈ L1
(
[0,∞);C

)
. A function f ∈ L1

(
[0,∞);C

)
is said to be cyclic for the transla-

tion semigroup if span{Stf : t ≥ 0} is dense in L1
(
[0,∞);C

)
. We impose the following

counterpart to (hSh2), which will allow us to establish (HKer) together with the non-
degeneracy of the Hale inner product for bounded functions.

Assumption (hCyc2). For any 1 ≤ k ≤M , the functions

f (k)(s) = K̃(Kconst + s)(k,k), g(k)(s) = K̃(−Kconst − s)(k,k) (5.6.10)

are cyclic for the translation semigroup on L1
(
[0,∞);C

)
.

It is well-known that there exist kernels that satisfy (hCyc2) and (HK), see Lemma
5.6.15 below. In addition, translates of such kernels remain cyclic. However, we are
unaware of any criterion to explicitely characterize them. This prevents us from for-
mulating a result analogous to Lemma 5.6.7.

5.6.1.4 Positive-definite coefficients

Our final scenario requires information on the sign of the coefficient functions (5.6.4)
and the kernel elements in B∗. Such information can typically be obtained by applying
Krein-Rutman type arguments, see for example [39, 110, 131]. In each of these examples
the kernels B and B∗ are at most one-dimensional. Notice that our main condition here
is weaker than the requirements formulated in Proposition 5.2.2. For convenience we
split the conditions on the coefficients and the kernels into separate assumptions.
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Assumption (hPos1). Assumption (hB) is satisfied and the matrices (5.6.4) are all
positive semidefinite. Finally, at least one of the following two conditions holds.

(a) For each m ≥ Kconst there exist i ≥ m and j ≤ −m for which the matrices Ãi
and Ãj are positive definite.

(b) The map s 7→ K̃(s) is continuous on (−∞,−Kconst] ∪ [Kconst,∞). In addition,
for each m ≥ Kconst there exists s ≥ m and r ≤ −m for which the matrices K̃(s)
and K̃(r) are positive definite.

Assumption (hPos2). The adjoint kernel satisfies B∗ = {0} or B∗ = span{b} for
some nonnegative function b.

In Proposition 5.6.10 below, we show that the nontriviality condition (HKer) is
satisfied if (hPos1) holds, while (hPos2) holds both for the system (5.2.1) as well as its
adjoint (5.6.3). On the other hand, the left-nondegeneracy of the Hale inner product
follows from the positivity condition (hPos1) without any additional assumptions on B
or B∗.

5.6.1.5 Summary of results

Our main results for this subsection can now be formulated as follows.

Proposition 5.6.9 (see §5.6.5). Assume that (HA), (HK) and (HH) are satisfied.
Then we have the following implications.

(i) If the atomic condition (hFin) is satisfied at some point τ ∈ R, then the Hale
inner product 〈·, ·〉τ is left-nondegenerate at τ for functions in Y and right-
nondegenerate at τ for functions in X.

(ii) If the cyclicity conditions (hSh1) and (hSh2) are satisfied, then at each τ ∈ R
the Hale inner product 〈·, ·〉τ is left-nondegenerate and right-nondegenerate for
exponentially decaying functions.

(iii) If the cyclicity conditions (hCyc1) and (hCyc2) are satisfied, then at each τ ∈ R
the Hale inner product 〈·, ·〉τ is left-nondegenerate for functions in Y and right-
nondegenerate for functions in X.

(iv) If the positivity condition (hPos1) is satisfied, then at each τ ∈ R the Hale in-
ner product 〈·, ·〉τ is left-nondegenerate and right-nondegenerate for nonnegative
functions.

In each of the cases (i)-(iii), the quantity in (5.2.30) satisfies β(τ) = dimB∗(τ). This
also holds for case (iv) provided that the positivity condition (hPos2) is satisfied.

Proposition 5.6.10 (see §5.6.6). Assume that (HA), (HK) and (HH) are satisfied.
Then we have the following implications.

(i) If the atomic condition (hFin) is satisfied at each τ ∈ R, then the nontriviality
condition (HKer) is satisfied for the system (5.2.1).
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(ii) If the cyclicity conditions (hSh1) and (hSh2) are satisfied, then the nontriviality
condition (HKer) is satisfied for the system (5.2.1).

(iii) If the cyclicity conditions (hCyc1) and (hCyc2) are satisfied, then the nontriviality
condition (HKer) is satisfied for the system (5.2.1).

(iv) If the positivity condition (hPos1) is satisfied and (hPos2) holds both for (5.2.1)
and its adjoint (5.6.3), then the nontriviality condition (HKer) is satisfied for the
system (5.2.1).

Note that the nontriviality condition (HKer) does not directly imply that the the
Hale inner product is nondegenerate in some form. Instead, it enables us construct an
explicit complement to the space S(τ). In particular, the nondegeneracy of the Hale
inner product is useful, but not necessary to compute the codimension β(τ).

5.6.2 Examples

In order to illustrate the results above, we consider the infinite-range nonlinear MFDE

u̇(t) =
∞∑
k=1

γk[u(t+ k) + u(t− k)− 2u(t)] +
∞∫
0

θ(ξ)[u(t+ ξ) + u(t− ξ)− 2u(t)]dξ

+g
(
u(t); a

)
,

(5.6.11)
in which the nonlinearity g is given by the cubic nonlinearity

g(u; a) = u(1− u)(u− a), a ∈ (0, 1), (5.6.12)

while the sequence γ and the function θ decay exponentially. This MFDE can be
interpreted as the travelling wave equation for a nonlocal version of the Nagumo PDE.
One is typically interested in the front solutions, which satisfy the limits

lim
t→−∞

u(t) = 0, lim
t→∞

u(t) = 1. (5.6.13)

Results concerning the existence of such these solutions in a variety of settings can be
found in [6, 95, 122, 131]. For our purposes here, we will simply assume such a solution
exists and consider the associated linearization of (5.6.11), which is given by

u̇(t) =
∞∑
k=1

γk[u(t+ k) + u(t− k)− 2u(t)] +
∞∫
0

θ(ξ)
[
u(t+ ξ) + u(t− ξ)− 2u(t)

]
dξ

+gu(u(t); a)u(t).
(5.6.14)

We remark that a simple differentiation automatically yields d
dtu ∈ B.

In this setting, the Hale inner product is given by

〈ψ, φ〉τ = ψ(0)φ(0) +
∞∑
k=1

0∫
−k

ψ(s+ k)γkφ(s)ds−
∞∑
k=1

k∫
0

ψ(s− k)γ|k|φ(s)ds

−
∫
R

r∫
0

ψ(s− r)θ(|r|)φ(s)dsdr,

(5.6.15)
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which is independent of τ and the function u. With the exception of (hPos2), we can
hence investigate the validity of our assumptions and the nondegeneracy of the Hale
inner product without any knowledge regarding the wave u besides the limits (5.6.13).

For example, we note that (hB) is automatically satisfied with Kconst = 1 and

Ãj = γ|j| K̃(ξ) = θ(|ξ|) (5.6.16)

for |j| ≥ 1 and ξ 6= 0. In addition, we have

A0(t) = −2
∞∑
k=1

γk − 2
∫∞

0
θ(ξ)dξ + gu(u(t); a). (5.6.17)

In particular, it is clear that (HA) and (HK) hold. However, one needs additional in-
formation on the coefficients in order to verify the hyperbolicity assumption (HH).

We consider various choices for γ and θ in our discussion below. In each case we are
able to distinguish whether or not the Hale inner product is degenerate. For each of
the two degenerate cases, we construct an explicit nontrivial function ψ ∈ Y for which
〈ψ, φ〉τ = 0 for all φ ∈ X and all τ ∈ R. However, we emphasize again that this does
not prevent us from showing that (HKer) holds.

5.6.2.1 Positive coefficients

Consider the system (5.6.14) and suppose that the coefficients {γk}k≥1 and the convo-
lution kernels θ(ξ) are positive. The bistablity of the nonlinearity g then allows us to
conclude that the hyperbolicity condition (HH) is satisfied. In addition, (hPos1) holds
and hence the Hale inner product is nondegenerate for nonnegative functions.

These positivity conditions imply that a comparison principle holds for (5.6.14).
In such a setting, one can typically derive that the kernels B and B∗ are both one-
dimensional and spanned by a strictly positive function. For example, the wave u is
typically monotonically increasing and the associated derivative d

dtu spans B and is
strictly positive. Results of this type have been proven in various settings, see for
example [7, 8, 38]. In each case, the system (5.6.14) together with its adjoint (5.6.3)
satisfy (hPos2). In particular, the nontriviality condition (HKer) holds.

5.6.2.2 noncyclic shift coefficients

Consider the system (5.6.14) with θ(ξ) = 0 for each t ∈ R and γk = e−k for k ≥ 1. This
system satisfies (hSh1). Since the coefficients {γk}k≥1 are positive, the results from
§5.6.2.1 show that (HH) is satisfied and that the Hale inner product for the system
(5.6.14) is nondegenerate for nonnegative functions.

However, it is easy to see that∑
k≥1

γkz
k = z

e−z , (5.6.18)
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which is a rational function. Hence, this system does not satisfy (hSh2) on account of
Lemma 5.6.7. Alternatively, letting S denote the backwards shift operator on `2(N0;C),
the sequence α = (γk)k≥1 satisfies SNα = e−Nα for any N ≥ 0. In particular, the set
span{SNα : N ≥ 0} is one-dimensional, which in view of Lemma 5.6.8 again shows
that (hSh2) is not satisfied. In particular, Proposition 5.6.6 implies that the Hale inner
product is not nondegenerate for all exponentially decaying functions.

To make this more explicit, we consider the continuous, bounded function ψ : R→ R
that has

ψ(s) = 0 for s ≤ 1, ψ
(3

2

)
= 1, ψ

(5

2

)
= −e, ψ(s) = 0 for s ≥ 3 (5.6.19)

and is linear in the missing segments. This choice is motivated by the fact that

β = (1,−e, 0, 0, ...) ∈ `2(N0;C) (5.6.20)

is perpendicular to the set span{SNα : N ≥ 0} and ensures that

∞∑
k=m

ψ
(
s̃+ k + 1−m

)
γk = s̃

(
e−m − e · e−(m+1)

)
= 0, (5.6.21)

for any m ∈ Z≥1 and any s̃ ∈ [0, 1). For an arbitrary s ≤ 0 we make the decomposition

s = s̃+ 1−m (5.6.22)

for some integer m ≥ 1 and s̃ ∈ [0, 1). Applying (5.6.21), we now compute∑
k≥1−s

ψ(s+ k)γk =
∑

k≥m−s̃
ψ(s̃+ k + 1−m)γk = 0 (5.6.23)

since the final sum in fact ranges over k ≥ m.

Since ψ(s) = 0 for s ≤ 1, the Hale inner product reduces to

〈ψ, φ〉τ =
∞∑
k=1

0∫
−k

ψ(s+ k)γkφ(s)ds

=
∞∑
k=1

0∫
−k+1

ψ(s+ k)γkφ(s)ds,

(5.6.24)

for φ ∈ Cb(R) and τ ∈ R. The dominated convergence theorem allows us to interchange
the sum and the infinite integral, which yields

〈ψ, φ〉τ =
0∫
−∞

∑
k≥1−s

ψ(s+ k)γkφ(s)ds = 0, (5.6.25)

for any φ ∈ Cb(R) and τ ∈ R. Since γk > 0 for any k ∈ Z≥1, this example shows that
a naive generalization of the atomic condition (hFin) is not sufficient to establish the
nondegeneracy of the Hale inner product.
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5.6.2.3 noncyclic convolution kernel

Consider the system (5.6.14) with θ(ξ) = exp(−ξ) and γk = 0 for k ≥ 1. This system
satisfies (hCyc1). Since the kernel θ is positive, the results from §5.6.2.1 again show
that (HH) is satisfied and that the Hale inner product for the system (5.6.14) is non-
degenerate for nonnegative functions.

However, the identity

θ(t+ ξ) = exp(−t)θ(ξ), (ξ, t) ∈ R2
≥0 (5.6.26)

directly implies that span{θ(· + t) : t ≥ 0} is one dimensional in L1
(
[0,∞);C

)
. In

particular, the cyclicity condition (hCyc2) fails to be satisfied. While we cannot appeal
to a general result here, we can show by hand that the Hale inner product is degenerate
for an exponentially decaying function.

To this end, we consider the bounded, continuous function ψ : R→ R that has

ψ(s) = 0 for s ≤ 0, ψ(1) = −1, ψ(2) = 0, ψ(3) = e2, ψ(s) = 0 for s ≥ 4
(5.6.27)

and is linear in the missing segments. By construction, the identity

∞∫
0

ψ(r)θ(r − s)dr = exp(s)
∞∫
0

ψ(r)θ(r)dr = 0 (5.6.28)

holds for any s ≤ 0. For any φ ∈ Cb(R) we can again use the dominated convergence
theorem to compute

〈ψ, φ〉τ = ψ(0)φ(0)−
∫
R

r∫
0

ψ(s− r)†θ(|r|)φ(s)dsdr

= −
∞∫
0

0∫
−r
ψ(s+ r)†θ(r)φ(s)dsdr

= −
0∫
−∞

∞∫
0

1{s∈[−r,0]}ψ(s+ r)†θ(r)φ(s)drds

= −
0∫
−∞

∞∫
−s
ψ(s+ r)†θ(r)φ(s)drds

= −
0∫
−∞

∞∫
0

ψ(r)†θ(r − s)φ(s)drds

= 0

(5.6.29)

for any τ ∈ R.

5.6.2.4 Cyclic shifts with mixed coefficients

For our final example, we choose θ = 0 and consider a sequence γ that admits Gaussian
decay. In particular, we write

γk = 1
h2 ck exp(−k2), h > 0, (5.6.30)
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for some bounded sequence {ck}k≥1 that can have both positive and negative elements,
but must be uniformly bounded away from zero. In particular, (hSh1) is satisfied,
but this may not hold for the positivity condition (hPos1). In order to verify the
hyperbolicity condition (HH), it suffices to impose the restriction∑

k>0

ck exp(−k2)
(

1− cos(kz)
)

> 0, z ∈ (0, 2π); (5.6.31)

see [150, Lem. 5.6]. This can be interpreted as the statement that the sum in (5.6.14)
is spectrally similar to the Laplacian.

We now set out to establish the cyclicity condition (hSh2) by appealing to Lemma
5.6.8. Recalling the backward shift operator (5.6.6), we consider the vector e =
(en)n≥0 ∈ `2(N0;C) given by

ek−1 = ck exp(−k2), k ≥ 1 (5.6.32)

and set out to show that the set

A := span{SNe : N ≥ 0} (5.6.33)

is an infinite dimensional subspace of `2(N0;C).

Arguing by induction, we pick ` ≥ 1 and assume that the vectors e, Se, ..., S`−1e are
linearly independent. Suppose now that we have a nonzero multiplet (λ0, ..., λ`) ∈ C`+1

for which ∑̀
i=0

λiS
ie = 0. (5.6.34)

Let 0 ≤ i∗ < ` be the smallest integer with λi∗ 6= 0. Our assumption on c implies that
the sequence {| ckck+1

|}k≥1 is uniformly bounded away from zero, which implies that the

quotient
| ek−1

ek
| = | ckck+1

| exp(2k + 1) (5.6.35)

grows to infinity as k →∞. In particular, by picking a sufficiently large index K � 1
we obtain the bound

|
∑̀

i=i∗+1

λi(S
ie)K | ≤

∑̀
i=i∗+1

|λieK+i|

< |λi∗eK+i∗ |

= |λi∗(Si∗e)K |,

(5.6.36)

which contradicts the K-th component of the identity (5.6.34). In particular, Proposi-
tion 5.6.9 yields that there is no exponentially decaying ψ ∈ Y that has 〈ψ, φ〉τ = 0 for
each φ ∈ X.

If h > 0 is sufficiently small, then the existence of a travelling front solution for
(5.6.11) is guaranteed by [6, Thm. 1]. One can subsequently use Proposition 5.6.10 to
conclude that the nontriviality condition (HKer) is satisfied.
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5.6.3 (Co)-dimension counting

The main goal of this subsection is to establish the identities (5.6.1) concerning the
dimensions of B(τ) and B∗(τ) and the codimension of S(τ). The remainder of the
statements in Proposition 5.6.3 follow readily from these computations, using the main
results in §5.2. We aim to use as little information as possible, providing partial results
under weaker conditions.

Lemma 5.6.11. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and
suppose first that the Hale inner product is left-nondegenerate at τ for functions in
B∗(τ). Then the identity

β(τ) = dimB∗(τ) (5.6.37)

holds. Alternatively, if the nontriviality condition (HKer) is satisfied, then the identity
(5.6.37) is valid for all τ ∈ R.

Proof. In the first case, this follows directly from the characterisation of S(τ) given
by (5.2.41). In the second case, the statement for τ ≥ 0 follows from the direct sum
decomposition (5.5.9) and the identities in (5.5.3). Using symmetry arguments this can
be extended to τ < 0.

Lemma 5.6.12. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and
suppose first that any nonzero d ∈ B ∪ B∗ does not vanish on (−∞, τ ] and does not
vanish on [τ,∞). Then we have the identities

dimB(τ) = dimB, dimB∗(τ) = dimB∗. (5.6.38)

In particular, if the nontriviality condition (HKer) holds then (5.6.38) is valid for each
τ ∈ R.

Proof. Since the statements hold trivially if |rmin| = rmax = ∞ on account of
Lemma 5.3.4, we will use symmetry to assume without loss that rmax < ∞. Arguing
by contradiction to establish the first identity, let us consider a nontrivial kernel element
x ∈ B that has xτ = 0. If rmin = −∞, this means that x vanishes identically on D	τ
and hence (−∞, τ ], violating our assumption. On the other hand, if rmin > −∞ we
can assume without loss that x does not vanish on (rmax,∞). Upon introducing the
new function

x̃(t) =

x(t), t ≥ τ + rmin,

0, t < τ + rmin,
(5.6.39)

we see that x̃ is a nontrivial element of B that vanishes on D	τ , again violating our
assumption. The second identity in (5.6.38) can be obtained in a similar fashion.

Lemma 5.6.13. Assume that (HA), (HK) and (HH) are satisfied and that rmin < 0 <
rmax. Suppose that for each τ ∈ R the Hale inner product is left-nondegenerate for
functions in B∗(τ). Then we have the identity

dimB∗(τ) = dimB∗ (5.6.40)
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for any τ ∈ R. Similarly, if for each τ ∈ R the Hale inner product is right-nondegenerate
for functions in B(τ), then the identity

dimB(τ) = dimB (5.6.41)

holds for each τ ∈ R.

Proof. Both identities follow trivially from Lemma 5.3.4 if |rmin| = rmax = ∞. By
symmetry we only consider the identity (5.6.40). Suppose that (5.6.40) fails, allowing us
to pick a nonzero y ∈ B∗ that has yτ = 0 for some τ ∈ R. Possibly after increasing τ , we
may assume by symmetry that rmin > −∞ and that there exists a small 0 < ε < |rmin|
so that

y(τ − rmin + δ) 6= 0 (5.6.42)

holds for each δ ∈ (0, ε). In particular, 0 6= yτ+ε ∈ B∗(τ + ε), so by the left-
nondegeneracy of the Hale inner product at τ + ε, we can pick φ ∈ X with

〈yτ+ε, φ〉τ+ε 6= 0. (5.6.43)

Without loss, we can assume that φ is differentiable, allowing us to pick a differentiable
function x ∈ Cb(R) that has φ = xτ+ε. On account of Lemma 5.3.12 we can compute

d
dt 〈y

t, xt〉t = y∗(t)[Λx](t) + [Λ∗y](t)x(t) = 0 (5.6.44)

for any t ∈ (τ − rmax, τ − rmin), since yτ = 0 and since y ∈ B∗. As such, 〈yt, xt〉t is
constant on (τ − rmax, τ − rmin]. Since yτ = 0, it follows that 〈yτ , xτ 〉τ = 0. However,
this yields the identity

0 = 〈yτ+ε, xτ+ε〉τ+ε = 〈yτ+ε, φ〉τ+ε, (5.6.45)

which contradicts (5.6.43).

Proof of Proposition 5.6.3. We first aim to establish (5.6.1). If the nontriviality
condition (HKer) holds, this follows by combining Lemmas 5.6.11 and Lemma 5.6.12.
Alternatively, if (b) holds, then (5.6.1) follows by combining Proposition 5.6.9 with Lem-
mas 5.3.4 and 5.6.11. Finally, if (c) holds, then (5.6.1) follows by combining Proposition
5.6.9 with Lemmas 5.6.11 and 5.6.13.

Turning to the Fredholm indices, we remark that the right-hand side of (5.4.1) is
now constant in τ . Since both ind(π+

P (τ)) and ind(π−Q(τ)) are upper semi-continuous by

Proposition 5.4.2, both these factors must be constant as well. By Theorem 5.2.5 the in-
clusions P̂ (τ) ⊂ P (τ) and Q̂(τ) ⊂ Q(τ) have constant codimension dimB(τ) = dimB.
Hence the indices ind(π+

P̂ (τ)
) and ind(π−

Q̂(τ)
) are also constant. Moreover, these four

subspaces vary continuously in τ . Finally, the identity (5.6.2) follows from (5.4.1) and
(5.6.1), using the value of ind(Λ) given in Proposition 5.2.1.

Proof of Corollaries 5.2.3 and 5.2.7. These results follow directly from Proposition
5.6.3.
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5.6.4 Cyclic coefficients

In this subsection, we collect several results from the literature concerning the cyclicity
of the backwards shift operator and the translation semigroup. In addition, we translate
these results into our setting and explore their consequences.

Proposition 5.6.14 ([54, Thm. 2.2.4, Rem. 2.2.6]). Consider a sequence α =
(αn)n≥0 ∈ `2(N0;C) that decays exponentially and write f for the associated function

f(z) =
∞∑
n=0

αnz
n, (5.6.46)

defined on its natural domain in C. Then the sequence α is cyclic for the backwards
shift operator (5.6.6) if and only if f is not a rational function. In fact, if α is not
cyclic, then span{SNα : N ≥ 0} is finite dimensional in `2(N0;C).

Lemma 5.6.15. For any T > 0 and any function f ∈ L1
(
[0,∞);C

)
that is cyclic for

the translation group (St)t≥0 defined in (5.6.9), the shifted function s 7→ f(s+T ) is also
cyclic for (St)t≥0. In addition, for any η̃ > 0, there exists a function f ∈ L1

η̃

(
[0,∞);C

)
that is cyclic for the translation group (St)t≥0. In particular, there exists a convolution
kernel that satisfies both (HK) and (hCyc2).

Proof. The first statement follows directly from [134, Lem. 1]. Turning to the exis-
tence claim, we fix η̃ > 0 and let (Tt)t≥0 be the translation semigroup on L1

η̃

(
[0,∞);C

)
.

It follows from [135, Thm. 1(i)] that there exists f ∈ L1
η̃

(
[0,∞);C

)
that is supercyclic

for (Tt)t≥0, which means that {λS(t)f : t ≥ 0, λ ∈ R} is dense in L1
η̃

(
[0,∞);C

)
. Such

a function is clearly also cyclic for (Tt)t≥0 (with respect to the norm ‖·‖η̃). We write

D = span{T (t)f : t ≥ 0} = span{S(t)f : t ≥ 0}. (5.6.47)

Since L1
η̃

(
[0,∞);C

)
contains all compactly supported functions, we see that L1

η̃

(
[0,∞);C

)
is dense in L1

(
[0,∞);C

)
with respect to the usual norm ‖·‖L1 . Hence it is sufficient to

show that D is dense in L1
η̃

(
[0,∞);C

)
with respect to ‖·‖L1 . Fix any g ∈ L1

η̃

(
[0,∞);C

)
and let {gn}n≥1 be a sequence in D with

lim
n→∞

‖gn − g‖η̃ = 0. (5.6.48)

For n ∈ N we can compute

‖gn − g‖η̃ =
∫
R e

η̃|ξ||gn(ξ)− g(ξ)|dξ

≥
∫
R |gn(ξ)− g(ξ)|dξ

= ‖gn − g‖L1 ,

(5.6.49)

which immediately implies that also gn → g in L1
(
[0,∞);C

)
, as desired. Hence f is

cyclic for the translation group (St)t≥0. In particular, the convolution kernel

K(ξ; t) = f(|ξ|) (5.6.50)

satisfies both (HK) and (hCyc2).
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Lemma 5.6.16. Let {Dn}n≥0 be an exponentially decaying sequence of M×M diagonal
matrices. Then the following statements are equivalent.

(i) There exists a nonzero sequence y ∈ `2(N0;CM ) that satisfies

∞∑
n=0

y†nDn+N = 0 (5.6.51)

for each N ∈ Z≥0.

(ii) There exists at least one 1 ≤ k ≤ M for which the sequence (D
(k,k)
n )n≥0 is not

cyclic for the backwards shift operator on `2(N0;C).

In addition, if these statements hold, then the sequence y in (i) can be chosen to decay
exponentially. Finally, if these conditions do not hold, then they also do not hold for
the shifted sequence {Dn}n≥N , for any N ∈ Z≥0.

Proof. As a preparation, we introduce the sequences

α(k);N = (α
(k);N
n )n≥0 =

(
D

(k,k)
n+N

)
n≥0
∈ `2(N0;C) (5.6.52)

for any N ≥ 0 and any 1 ≤ k ≤M . In addition, we define the associated subspaces

D(k) = span{α(k);N | N ≥ 0} (5.6.53)

for 1 ≤ k ≤M .

Let us first assume that (i) holds, but that (ii) fails. Then the subspaces D(k) are
all dense in `2(N0;C). In addition, our diagonality assumption together with (5.6.51)
implies that 〈

y(k), α(k);N
〉
`2(N0;C)

= 0 (5.6.54)

for any N ∈ Z≥0 and 1 ≤ k ≤M and thus〈
y(k), d

〉
`2(N0;C)

= 0 (5.6.55)

for any d ∈ D(k) and 1 ≤ k ≤M . Together these two properties yield the contradiction
y = 0.

Let us now assume that (ii) holds. Then Proposition 5.6.14 implies there exists
1 ≤ k0 ≤M for which the subspace D(k0) defined in (5.6.53) is finite dimensional, with
a basis that consists of exponentially decaying sequences. In particular, we can pick an
exponentially decaying sequence ψ ∈ `2(N0;C) that satisfies 〈ψ, d〉`2(N0;C) = 0 for any

d ∈ D(k0). Upon writing y = (0, ..., 0, ψ, 0, ..., 0) ∈ `2(N0;CM ), where ψ takes the kth
0

position, we hence see that (5.6.51) is satisfied by construction.

The final statement follows from the characterization in Proposition 5.6.14, which
implies that (non)-cyclicity is preserved under translation. Indeed, if the function f
defined in (5.6.46) is not a rational function, then the function

fN (z) = z−N
[
f(z)−

N−1∑
n=0

αnz
n
]

(5.6.56)
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associated to the shifted sequence SNα is also not rational.

Proof of Lemmas 5.6.7 and 5.6.8. Both results follow directly from Proposition
5.6.14 and Lemma 5.6.16.

5.6.5 Nondegeneracy of the Hale inner product

In this subsection we show how the nondegeneracy of the Hale inner product can be
derived from the conditions formulated in §5.6.1. In particular, we establish Proposi-
tions 5.6.6 and 5.6.9.

As a convenience, we first connect the right-nondegeneracy properties for the system
(5.2.1) to the left-nondegeneracy properties for the adjoint system (5.6.3). This will
allows us to focus solely on the left-nondegeneracy of the Hale inner product with
respect to functions in B∗(τ).

Lemma 5.6.17. Assume that (HA), (HK) and (HH) are satisfied. Fix τ ∈ R and
E ⊂ X with 0 ∈ E. Then the Hale inner product for the system (5.2.1) at τ is right-
nondegenerate for functions in E if and only if the Hale inner product for the adjoint
system (5.6.3) at τ is left-nondegenerate for functions in E.

Proof. For any φ ∈ X, ψ ∈ Y and τ ∈ R, the Hale inner product for the adjoint
system (5.6.3) is given by

〈φ, ψ〉adj
τ = φ(0)†ψ(0) +

∞∑
j=−∞

−rj∫
0

φ(s+ rj)
†Aj(τ + s− rj)†ψ(s)ds

+
∫
R

r∫
0

φ(s− r)†K(s− r; τ + s− r)†ψ(s)dsdr.

(5.6.57)

A short computation shows that

〈φ, ψ〉adj
τ = ψ(0)†φ(0)−

∞∑
j=−∞

rj∫
0

ψ(s− rj)†Aj(τ + s− rj)φ(s)ds

−
∫
R

r∫
0

ψ(s− r)†K(r; τ + s− r)φ(s)dsdr

= 〈ψ, φ〉τ ,

(5.6.58)

which directly implies the desired result.

We proceed by discussing the cyclicity criteria in introduced in §5.6.1.2 and §5.6.1.3.
The following preparatory result will help us to link the discussion in §5.6.4 to the
degeneracy properties of the Hale inner product.

Lemma 5.6.18. Assume that (HA), (HK), (HH) and (hB) are satisfied and fix τ ∈ R.
Pick any ψ ∈ Y that does not vanish on D+

Y and satisfies 〈ψ, φ〉τ = 0 for every φ ∈ X.
Writing

σ = inf{s ∈ D+
Y | ψ(s) 6= 0}, (5.6.59)
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there exist ε > 0 and N0 ∈ Z≥Kconst
so that the identity

∞∑
j=0

ψ(s+ j)†Ã−j−N +
∞∫

σ−s
ψ(s+ r)†K̃(−r −N)dr = 0 (5.6.60)

holds for almost every s ∈ (σ, σ + ε) and every integer N ≥ N0. In addition, if Ãj = 0
for each j ≤ −N0, then we in fact have

∞∫
0

ψ(σ + r)†K̃(−r − θ)dr = 0 (5.6.61)

for all (reals) θ ≥ N0 + ε.

Proof. We first pick an arbitrary s < 0 with s /∈ Z. Using a sequence of functions
supported on small intervals that shrink to the singleton {s}, we can use (5.2.26) to
conclude that∑

j<s

ψ(s− j)†Aj(τ + s− j) +
s∫
−∞

ψ(s− r)†K(r; τ + s− r)dr = 0. (5.6.62)

Imposing the further restriction s ≤ −Kconst, this can be rephrased as∑
j<s

ψ(s− j)†Ãj +
s∫
−∞

ψ(s− r)†K̃(r)dr = 0. (5.6.63)

We now choose ε > 0 to be so small that (σ, σ + ε) contains no integers. Then
for any sufficiently large integer N � 1, we can combine (5.6.63) together with the
definition of σ to conclude that∑

j<s−σ
ψ(s− j)†Ãj +

s−σ∫
−∞

ψ(s− r)†K̃(r)dr = 0 (5.6.64)

for all s ∈ (σ −N, σ + ε−N). This yields (5.6.60) upon introducing new variables

(s′, j′, r′) = (s+N,−j −N,−r −N) (5.6.65)

and dropping the primes, noting that dσ − s′e = 0. The final statement follows from
the fact that we no longer need to rule out integer values of s′ above, together with the
replacement r 7→ r + σ − s.

Lemma 5.6.19. Assume that (HA), (HK) and (HH) are satisfied and fix τ ∈ R.
Assume moreover that the cyclicity conditions (hSh1)-(hSh2) are satisfied. Then the
Hale inner product at τ is left-nondegenerate for exponentially decaying functions.

Proof. Assume that ψ ∈ Y decays exponentially and has 〈ψ, φ〉τ = 0 for every
φ ∈ X. Exploiting symmetry, we assume further that ψ does not vanish on D+

Y and set
out to find a contradiction. Recalling the setting of Lemma 5.6.18 and remembering
that K̃ = 0 on (−∞,−Kconst], we obtain from (5.6.60) that the identity

∞∑
j=0

ψ(s+ j)†Ã−j−N = 0 (5.6.66)
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holds for almost every s ∈ (σ, σ + ε) and every N ≥ N0 ≥ Kconst.

By (hSh2) and the invariance of cyclicity under translations, the sequences (Ã
(k,k)
−j )j≥N

are cyclic for each 1 ≤ k ≤ M . In particular, Lemma 5.6.16 implies that that the se-
quence ψ(s + N0) ∈ `2(N0;CM ) and hence also the first coordinate ψ(s) must vanish
for all s ∈ (σ, σ + ε). This contradicts the definition of σ.

Proof of Proposition 5.6.6. Assume without loss of generality that the sequence

(Ã
(k,k)
−j )j≥Kconst

is not cyclic for the backwards shift operator. Lemma 5.6.16 then
allows us to pick an exponentially decaying nonzero sequence

y = (yn)n≥0 ∈ `2(N0;CM ) (5.6.67)

for which the identity
∞∑
j=0

y†j Ã−j−N = 0 (5.6.68)

holds for all integers N ≥ Kconst.

We now define a continuous, bounded function ψ : DY → CM by writing

ψ(s) = 0, s ∈ (−∞,Kconst), (5.6.69)

together with

ψ(j) = 0, ψ(j + 1
2 ) = yj−Kconst , j ∈ Z≥Kconst (5.6.70)

and performing a linear interpolation between these prescribed values. This construc-
tion implies that

∞∑
j=N

ψ
(
s̃+ j +Kconst −N

)†
Ã−j = s̃

∞∑
j=0

y†j Ã−N−j = 0, (5.6.71)

for any integer N ≥ Kconst and any s̃ ∈ [0, 1).

Let us now consider an arbitrary s ≤ 0 and make the decomposition

s = s̃+Kconst −N (5.6.72)

for some integer N ≥ Kconst and s̃ ∈ [0, 1). Applying (5.6.71), we now compute∑
j≥Kconst−s

ψ(s+ j)Ã−j =
∑

j≥N−s̃
ψ(s̃+ j +Kconst −N)Ã−j = 0 (5.6.73)

since the final sum in fact ranges over j ≥ N .

For any φ ∈ X, we note that (5.2.26) reduces to

〈ψ, φ〉τ = −
∞∑

j=−∞

j∫
0

ψ(s− j)†Aj(τ + s− j)φ(s)ds

−
∫
R

r∫
0

ψ(s− r)†K(r; t+ s− r)φ(s)dsdr

(5.6.74)
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since ψ(0) = 0. Exploiting (hB), this can be further simplified and recast as

〈ψ, φ〉τ = −
−Kconst∑
j=−∞

j∫
0

ψ(s− j)†Ãjφ(s)ds

= −
∞∑

j=Kconst

Kconst−j∫
0

ψ(s+ j)†Ã−jφ(s)ds.

(5.6.75)

The dominated convergence theorem allows us to interchange the infinite sum and the
integral, which yields

〈ψ, φ〉τ = −
−∞∫
0

∑
j≥Kconst−s

ψ(s+ j)†Ã−jφ(s)ds = 0 (5.6.76)

on account of (5.6.73).

Lemma 5.6.20. Assume that (HA), (HK) and (HH) are satisfied and fix τ ∈ R.
Assume moreover that the cyclicity conditions (hCyc1)-(hCyc2) are satisfied. Then the
Hale inner product at τ is left-nondegenerate for functions in Y .

Proof. Assume that ψ ∈ Y has 〈ψ, φ〉τ = 0 for every φ ∈ X. Exploiting symme-
try, we assume further that ψ does not vanish on D+

Y and set out to find a contradiction.

We pick 1 ≤ k ≤ M for which ψ(k) does not vanish on D+
Y . Recalling the setting

of Lemma 5.6.18 and remembering that Ãj = 0 for each |j| ≥ Kconst, we obtain from
(5.6.61) that the identity

∞∫
0

ψ(σ + r)†K̃(−r − θ)dr = 0 (5.6.77)

holds for every θ ≥ N + ε. We introduce the subspace

D = span
{
t 7→ K̃(k,k)(−t− r) | r ≥ N + ε

}
, (5.6.78)

which is dense in L1
(
[0,∞);C

)
by (hCyc2) and Lemma 5.6.15. We therefore have

∞∫
0

ψ(k)(σ + r)∗f(r)dr = 0 (5.6.79)

for every f ∈ D.

We fix any f ∈ L1
(
[0,∞);C

)
and let {fn}n≥1 be a sequence in D(k) with fn → f .

Using (5.6.79) we can estimate∣∣∣ ∞∫
0

ψ(k)(σ + r)∗f(r)dr
∣∣∣ =

∣∣∣ ∞∫
0

ψ(k)(σ + r)∗
(
f(r)− fn(r)

)
dr
∣∣∣

≤ ‖ψ‖∞
∞∫
0

|f(r)− fn(r)|dr,
(5.6.80)
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which converges to 0 as n → ∞. Hence (5.6.79) holds for any f ∈ L1
(
[0,∞);C

)
. In

particular, we pick s ∈ (σ, σ+ ε) for which ψ(k)(s) 6= 0 and we let f ∈ L1
(
[0,∞);C

)
be

a sufficiently small peak function, centered around s− σ. This immediately yields

∞∫
0

ψ(k)(σ + r)∗f(r)dr 6= 0, (5.6.81)

which contradicts (5.6.79).

Lemma 5.6.21. Assume that (HA), (HK) and (HH) are satisfied and fix τ ∈ R.
Assume moreover that the positivity condition (hPos1) is satisfied. Then the Hale inner
product at τ is left-nondegenerate for nonnegative functions.

Proof. Assume that ψ ∈ Y is nonnegative and has 〈ψ, φ〉τ = 0 for every φ ∈ X.
Exploiting symmetry, we assume further that ψ does not vanish on D+

Y and set out to
find a contradiction. Recalling the setting of Lemma 5.6.18, we obtain from (5.6.60)
that the identity

∞∑
j=0

ψ(s+ j)†Ã−j−N +
∞∫

σ−s
ψ(s+ r)†K̃(−r −N)dr = 0 (5.6.82)

holds for almost every s ∈ (σ, σ + ε) and every N ≥ N0 ≥ Kconst. In addition, the
definition of σ allows us to conclude ψ(s) > 0 for s ∈ (σ, σ + ε).

Since the matrices (5.6.4) are all positive semidefinite, we have(
ψ(s+ j)†Ã−j−N

)(k) ≥ 0, s ∈ (σ, σ + ε) (5.6.83)

for all j ≥ 0, 1 ≤ k ≤M and N ≥ N0, together with(
ψ(s+ r)†K̃(−r −N)

)(k) ≥ 0, s ∈ (σ, σ + ε) (5.6.84)

for all r ≥ σ − s, 1 ≤ k ≤ M and all N ≥ N0. On the other hand, fixing j = 0
and r = 0, item (a) and (b) in (hPos1) allow us to find N ≥ N0 for which one or both
of the inequalities (5.6.83)-(5.6.84) are strict. This immediately contradicts (5.6.82).

Lemma 5.6.22. Assume that (HA), (HK) and (HH) are satisfied. Assume moreover
that the atomic condition (hFin) is satisfied at some point τ ∈ R. Then the Hale inner
product at τ is left-nondegenerate for functions in Y .

Proof. The proof is identical to that of [133, Prop. 4.16] and, as such, will be
omitted.

Proof of Proposition 5.6.9. The statements (i)-(iv) follow from Lemmas 5.6.17,
5.6.19, 5.6.20, 5.6.21 and 5.6.22. The final statement follows from the representation
(5.2.30), applying Proposition 5.2.1 for (ii)-(iii) or using the nonnegative B∗(τ)-basis
for (iv).
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Remark 5.6.23. The conclusion in Lemma 5.6.19 that the Hale inner product is non-
degenerate for exponentially decaying functions cannot easily be generalized to bounded
functions. Indeed, the key argument is that the sequence ψ(s+N0)(k) is perpendicular
to a dense subspace of `2(N0;C). This sequence is in `2 itself on account of the expo-
nential decay of ψ and must therefore vanish. However, it is possible for nontrivial `∞

sequences to be perpendicular to a dense subspace of `2(N0;C); see the discussion at
[1]. In a similar fashion, we do not expect Lemma 5.6.21 to be easily generalizable.

5.6.6 The nontriviality condition (HKer)

In this final subsection we show how the nontriviality condition (HKer) can be verified.

Lemma 5.6.24. Assume that (HA), (HK) and (HH) are satisfied. Suppose that the
atomic condition (hFin) holds for the system (5.2.1) at each τ ∈ R. Then the nontriv-
iality condition (HKer) is also satisfied.

Proof. By symmetry and the fact the adjoint system (5.6.3) also satisfies (hFin), it
suffices to show that any nonzero d ∈ B cannot vanish on (−∞, 0]. Arguing by contra-
diction, we assume that d = 0 identically on (−∞, 0]. Defining σ = inf{s ∈ R : d(s) 6=
0}, we have 0 ≤ σ <∞ by construction.

Recalling the constant δ > 0 from (hFin), we pick 0 < ε < δ sufficiently small to
have d(σ + ε) 6= 0 and rj + ε < rmax for any j ∈ Z with rj 6= rmax. Evaluating (5.2.1)
at t = σ + ε− rmax now yields

0 = −ḋ(t) +
∞∑
j=1

Aj(t)d(t+ rj) +
∫
R
K(ξ; t)d(t+ ξ)dξ

= Ajmax(σ + ε− rmax)d(σ + ε).
(5.6.85)

Since the matrix Ajmax(σ+ε−rmax) is nonsingular, we obtain the desired contradiction
d(σ + ε) = 0.

Lemma 5.6.25. Assume that (HA), (HK) and (HH) are satisfied, together with the
cyclicity conditions (hSh1)-(hSh2). Then the nontriviality condition (HKer) also holds.

Proof. By symmetry and the fact the adjoint system (5.6.3) also satisfies (hSh1)-
(hSh2), it suffices to show that any nonzero d ∈ B cannot vanish on (−∞, 0]. Writing
σ = inf{s ∈ R : d(s) 6= 0}, we have 0 ≤ σ <∞ by construction. Recalling the constant
Kconst ∈ Z≥0 from (hB), we use (5.2.1) to conclude that

0 = −ḋ(s) +
∑
j∈Z

Aj(s)d(s+ j) +
∫
R
K(ξ; s)d(s+ ξ)dξ

=
∑

j≥σ−s
Ãjd(s+ j)

(5.6.86)

for any s ∈ (−∞,−Kconst].
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We now pick an integer N0 and a constant ε > 0 in such a way that N0 > σ+Kconst

and d(σ + ε) 6= 0 both hold. Then for any integer N ≥ N0 and any s ∈ (σ, σ + ε), we
can use (5.6.86) to conclude

∞∑
j=0

d(s+ j)†Ãj+N = 0, (5.6.87)

which closely resembles (5.6.66). We can hence follow the proof of Lemma 5.6.19 to
obtain the contradiction d = 0.

Lemma 5.6.26. Assume that (HA), (HK) and (HH) are satisfied. Suppose that the
cyclicity conditions (hCyc1)-(hCyc2) are satisfied for the system (5.2.1). Then the
nontriviality condition (HKer) is satisfied for the system (5.2.1).

Proof. By symmetry and the fact the adjoint system (5.6.3) also satisfies (hCyc1)-
(hCyc2), it suffices to show that any nonzero d ∈ B cannot vanish on (−∞, 0]. We can
follow the proof of Lemmas 5.6.20 and 5.6.25 to arrive at a contradiction.

Lemma 5.6.27. Assume that (HA), (HK) and (HH) and (hPos1) are satisfied. Sup-
pose furthermore that the positivity condition (hPos2) holds for both the system (5.2.1)
and the adjoint system (5.6.3). Then the nontriviality condition (HKer) is also satis-
fied.

Proof. By symmetry, it suffices to show that any nonzero, nonnegative d ∈ B
cannot vanish on (−∞, 0]. Write σ = inf{s ∈ R : d(s) 6= 0} and recall the constant
Kconst ∈ Z≥0 from (hB). Using (5.2.1) we see that

0 = −ḋ(s) +
∑
j∈Z

Aj(s)d(s+ j) +
∫
R
K(ξ; s)d(s+ ξ)dξ

=
∑

j≥σ−s
Ãjd(s+ j) +

∞∫
σ−s
K̃(ξ)d(s+ ξ)dξ

(5.6.88)

for any s ∈ (−∞,−Kconst].

We now pick an integer N0 and a constant ε > 0 in such a way that d(σ+ δ) 6= 0 for
each 0 < δ < ε and N0 > σ+Kconst +ε both hold. If (a) holds in (hPos1), we pick N ≥
N0 in such a way that ÃN is positive definite. Picking s = σ+ ε−N ∈ (−∞,−Kconst],
we arrive at the contradiction

0 ≥
(
ÃNd(σ + ε)

)(k)
> 0 (5.6.89)

for some 1 ≤ k ≤ M . On the other hand, if (b) holds in (hPos1), we pick θ ≥ N0 in
such a way that K̃θ+δ is positive definite whenever |δ| ≤ ε

4 . Picking s = σ + ε
2 − θ ∈

(−∞,−Kconst], we obtain

0 ≥ C inf
t∈[ ε4 ,

3ε
4 ]
{d(σ + t)(k)} > 0 (5.6.90)

for some constant C > 0 and some 1 ≤ k ≤M , a contradiction.

Proof of Proposition 5.6.10. This follows directly from Lemmas 5.6.24-5.6.27.



Chapter 6

Parameter-dependent
exponential dichotomies for
nonlocal differential operators

6.1 Introduction and main result

In this short, final chapter, we extend parts of the theory from Chapter 5 to include
MFDEs such as (5.2.1) that depend smoothly on a parameter µ. For each individual
µ one can construct the corresponding exponential splitting using our previous results,
but this construction contains some noncanonical choices that do not necessarily pre-
serve the smoothness in µ. Often in applications, this smoothness is necessary in order
to obtain uniform estimates and close bifurcation arguments.

For example, exponential dichotomies play a major role in the construction and
stability analysis [108, 109] of travelling pulse solutions to the FitzHugh-Nagumo LDE
(5.1.1). In particular, Hupkes and Sandstede consider a family of linearisations of the
Nagumo MFDE of the form

cu′(σ) = u(σ + 1) + u(σ − 1)− 2u(σ) + gu
(
Θ(ϑ, c, ρ)(σ), a

)
u(σ). (6.1.1)

Here, the relevant parameters are the wavespeed c, which should be close to the
wavespeed of the travelling front solution (5.1.5), the parameter ρ from the correspond-
ing FitzHugh-Nagumo system, which should be close to 0, and a phase shift ϑ. Using
exponential dichotomies for (6.1.1), the authors construct quasi-front and quasi-back
solutions to (5.1.1).

311
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Since we work in more or less the same setting as in Chapter 5 and use several key
results from that chapter, we will reuse the notation and assumptions introduced there.
In particular, we consider the parameter-dependent system

ẋ(t) =
∞∑

j=−∞
Aj(t;µ)x(t+ rj) +

∫
R
K(ξ; t;µ)x(t+ ξ)dξ

:= L(t, µ)xt.
(6.1.2)

Here the parameter µ takes values in an open set U ⊂ Rp, for some integer p ≥ 1
and the notation xt was introduced in (5.2.24). The corresponding linear operators
Λ(µ) : W 1,∞(R;CM )→ L∞(R;CM ) are given by

(Λ(µ)x)(t) = ẋ(t)−
∞∑

j=−∞
Aj(t;µ)x(t+ rj)−

∫
R
K(ξ; t;µ)x(t+ ξ)dξ. (6.1.3)

We assume that the system (6.1.2) depends Ck-smoothly on µ in the following sense.

Assumption (HC). The linear operators Λ(µ) corresponding to the system (6.1.2)
depends Ck-smoothly on the parameter µ ∈ U for some integer k ≥ 0. In addition,
Assumption (HKer) holds for some µ0 ∈ U , while Assumptions (HA), (HK) and (HH)
hold uniformly for µ ∈ U . That is, the constant η̃ and the upper bounds for the
quantities in (5.2.7) and (5.2.8) can be chosen independently of µ ∈ U . Finally, the
limiting operators Λ±∞(µ) depend Ck-smoothly on µ ∈ U .

Our main result below shows that the exponential splittings which were obtained
in §5.5 can be constructed in such a way that the smoothness in the parameter µ is
preserved. The concession we have to make is that the space R(τ ;µ) will be no longer
invariant in the sense of Theorem 5.2.8. We view the results in this chapter as another
step in the ongoing effort to close the gap between MFDEs with finite-range and with
infinite-range interactions. In particular, we expect our results to play an important
part in the stability analysis of the FitzHugh-Nagumo LDE with infinite-range inter-
actions (5.1.16), which, at present, is an open problem if h > 0 is sufficiently far away
from 0.

Theorem 6.1.1 (cf. [104, Thm. 5.1]). Assume that (HC) is satisfied. Then there
exists an open neighbourhood µ0 ∈ U ′ ⊂ U in such a way that for any µ ∈ U ′ and any
τ ≥ 0 there exist subspaces Q(τ, µ), R(τ, µ) ⊂ X that satisfy the following properties.

(i) We have the direct sum decomposition

X = Q(τ ;µ)⊕R(τ ;µ) (6.1.4)

(ii) Each φ ∈ Q(τ ;µ) can be extended to a solution Eτ,µφ of (6.1.2) on the interval
[τ,∞), while each ψ ∈ R(τ ;µ) can be extended to a solution Eτ,µψ of (6.1.2) on
the interval (−∞,−r0] ∪ [0, τ ]. 1

1Here the constant r0 > 0 is defined Proposition 5.5.3.
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(iii) The maps µ 7→ ΠQ(τ ;µ) and µ 7→ ΠR(τ ;µ) are Ck-smooth and all derivatives can
be bounded uniformly for τ ≥ 0.

(iv) There exist constants K > 0 and α > 0 in such a way that we have the pointwise
exponential estimates for each φ ∈ X and each integer 0 ≤ ` ≤ k

|D`
µEτ,µΠQ(τ ;µ)φ|(t) ≤ Ke−α|t−τ |‖φ‖∞, for every t ≥ τ,

|D`
µEτ,µΠR(τ ;µ)φ|(t) ≤ Ke−α|t−τ |‖φ‖∞, for every t ≤ τ,

|Λ(µ)Eτ,µΠR(τ ;µ)φ|(t) ≤ Ke−α|t−τ |‖φ‖∞, for every t ≤ τ.

(6.1.5)

Our results are primarily based on the approach from [104, §3,5], where Hupkes and
Verduyn Lunel construct exponential splittings for parameter-dependent MFDEs with
finite-range interactions. The main difficulty here is that in [104] these splittings are
obtained by solving a linear equation on a space of functions, defined on the interval
D⊕τ , with an exponential weight. However, several operators that are involved in this
linear equation, such as the inclusion of the space Q(τ) into such an exponentially
weighted space, lose their boundedness if rmin = −∞. As a workaround, we reconsider
the problem on a space with a one-sided exponential weight. However, this change
complicates several of the key technical computations.

6.2 One-sided exponential weights

We start by expanding the Fredholm theory from [68] for the system (5.2.1) to spaces
with a one-sided exponential weight. For any η ∈ R and f ∈ L1

loc(R;CM ) we introduce
the function

[e+
η f ](x) = eη(x+)f(x), (6.2.1)

where

x+ =

x, x ≥ 0,

0, x < 0.
(6.2.2)

This allows us to define the spaces

L∞η,+(R;CM ) = {f ∈ L1
loc(R;CM ) | e+

−ηf ∈ L∞(R;CM )},

W 1,∞
η,+ (R;CM ) = {f ∈ L1

loc(R;CM ) | e+
−ηf ∈W 1,∞(R;CM )},

(6.2.3)

with the corresponding norms

‖f‖L∞η,+(R;CM ) := ‖e+
−ηf‖L∞(R;CM ),

‖f‖W 1,∞
η,+ (R;CM ) := ‖e+

−ηf‖W 1,∞(R;CM ).
(6.2.4)

For sufficiently small |η| we can consider the shifted operator Λ̃η,+ : W 1,∞(R;CM ) →
L∞(R;CM ) that acts as

Λ̃η,+x = e+
η Λe+

−ηx. (6.2.5)
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Lemma 6.2.1. Assume that (HA), (HK) and (HH) are satisfied. Pick any η ∈ R
with |η| < η̃

4 . Writing ∆̃±η,+ for the characteristic equations defined in (5.2.10) for the
operator (6.2.5), we have the identities

∆̃+
η,+(z) = ∆+(z − η), ∆̃−η,+(z) = ∆−(z). (6.2.6)

In addition, the adjoint operator (Λ̃η,+)∗ is given by

(Λ̃η,+)∗ = Λ̃∗−η,+. (6.2.7)

Proof. For j ∈ Z we see that

eη(t+)e−η(t+rj)
+

= e−ηrj (6.2.8)

for t sufficiently positive, while

eη(t+)e−η(t+rj)
+

= 1 (6.2.9)

for t sufficiently negative. Similarly for x ∈W 1,∞(R;CM ) we can compute(
e−η(t+)x(t)

)′
= −ηe−η(t+)x(t) + e−η(t+)x′(t) (6.2.10)

for t sufficiently positive, while(
e−η(t+)x(t)

)′
= x′(t) (6.2.11)

for t sufficiently negative. Finally for x ∈W 1,∞(R;CM ) we see that

eη(t+)
∫
RK(ξ; t)e−η(ξ+t)+

x(ξ + t)dξ = eηt
∫ −t
−∞K(ξ; t)x(ξ + t)dξ

+
∫∞
−t K(ξ; t)e−ηξx(ξ + t)dξ

(6.2.12)

for t positive, while

eη(t+)
∫
RK(ξ; t)e−η(ξ+t)+

x(ξ + t)dξ =
∫ −t
−∞K(ξ; t)x(ξ + t)dξ

+e−ηt
∫∞
−t K(ξ; t)e−ηξx(ξ + t)dξ

(6.2.13)
for t negative. These computations directly imply the identities (6.2.6).

In addition, a short computation shows that

〈y, Λ̃η,+x〉L2(R;CM ) =
∫
y(t)†eη(t+)(Λe+

−ηx)(t)dt

=
∫

(e+
η y)(t)†(Λe+

−ηx)(t)dt

=
∫

(Λ∗e+
η y)(t)†e−η(t+)x(t)dt

=
∫

(e+
−ηΛ∗e+

η y)(t)†x(t)dt

= 〈Λ̃∗−η,+y, x〉L2(R;CM ),

(6.2.14)
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which implies (6.2.7), as desired.

Lemma 6.2.1 allows us to define the Fredholm operators Λ(η) : W 1,∞
η,+ (R;CM ) →

L∞η,+(R;CM ) that act as

Λ(η),+ = e+
η ◦ Λ̃−η,+ ◦ e+

−η. (6.2.15)

Our main result here shows that the natural adjoint Λ∗(−η),+ : W 1,∞
−η,+(R;CM ) →

L∞−η,+(R;CM ) is given by

Λ∗(−η),+ = e+
−η ◦ Λ̃∗η,+ ◦ e+

η . (6.2.16)

Note that for x ∈W 1,∞
η,+ (R;CM )∩W 1,∞(R;CM ) and y ∈W 1,∞

−η,+(R;CM )∩W 1,∞(R;CM )
we simply have

Λx = Λ(η),+x, Λ∗y = Λ∗(−η),+y. (6.2.17)

The main reasons we constructed the operators Λ(η),+ in this fashion are that it is

not a-priori clear that Λ maps W 1,∞
η,+ (R;CM ) into L∞η,+(R;CM ) and whether these oper-

ators remain Fredholm operators. We note that Λ(0),+ = Λ, since we have the identities

W 1,∞
0,+ (R;CM ) = W 1,∞(R;CM ) and L∞0,+(R;CM ) = L∞(R;CM ). The following result

is the equivalent of Proposition 5.2.1 for the operator Λ(η),+.

Proposition 6.2.2 (cf. [104, Prop. 3.2]). Assume that (HA), (HK) and (HH) are
satisfied. Pick any η ∈ R with |η| < η̃

4 for which the characteristic equation det ∆+(z) =

0 has no roots with Re z = η. Then both the operators Λ(η),+ : W 1,∞
η,+ (R;CM ) →

L∞η,+(R;CM ) and Λ∗(−η),+ : W 1,∞
−η,+(R;CM ) → L∞−η,+(R;CM ) are Fredholm operators.

Moreover, the ranges admit the characterisation

R
(
Λ(η),+

)
=

{
h ∈ L∞(R)|

∞∫
−∞

y(t)∗h(t)dt = 0 for every y ∈ ker(Λ∗(−η),+)
}
,

R
(
Λ∗(−η),+

)
=

{
h ∈ L∞(R)|

∞∫
−∞

x(t)∗h(t)dt = 0 for every x ∈ ker(Λ(η),+)
}
.

(6.2.18)
The Fredholm indices can be computed by

ind(Λ(η),+) = −ind(Λ∗(−η),+) = dim ker(Λ(η),+)− dim ker(Λ(−η),+). (6.2.19)

Finally, there exist constants K > 0 and 0 < α ≤ η̃ so that

|e+
−ηx(t)| ≤ Ke−α|t|‖e+

−ηx‖∞ (6.2.20)

holds for any x ∈ ker(Λ(η),+) and any t ∈ R, while the bound

|e+
η x(t)| ≤ Ke−α|t|‖e+

η x‖∞ (6.2.21)

holds for any x ∈ ker(Λ∗(−η),+) and any t ∈ R.
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Proof. These results follow from Proposition 5.2.1 and Lemma 6.2.1, together with
the identities

ker
(
Λ(η),+

)
= e+

η ker
(
Λ̃−η,+

)
,

ker
(
Λ∗(−η),+

)
= e+

−ηker
(
Λ̃∗η,+

)
= e+

−ηker
(
(Λ̃−η,+)∗

)
,

Range
(
Λ(η),+

)
= e+

η Range
(
Λ̃−η,+

)
,

Range
(
Λ∗(−η),+

)
= e+

−ηRange
(
Λ̃∗η,+

)
= e+

−ηRange
(
(Λ̃−η,+)∗

)
.

(6.2.22)

We now shift our attention to the parameter-dependent system (6.1.2). The follow-
ing result shows that we can find a quasi-inverse for this system that depends smoothly
on µ.

Proposition 6.2.3 (cf. [104, Prop. 3.3]). Assume that (HC) is satisfied. Pick any
η ∈ R with |η| < η̃

4 for which the characteristic equation det ∆+(z) = 0 for µ = µ0 has
no roots with Re z = η. Write R = Range

(
Λ(η),+(µ0)

)
and pick a complement R⊥ for

R in L∞η,+(R;CM ). Then there exists an open neighbourhood µ0 ∈ U ′ ⊂ U , together

with a Ck-smooth function

C(η),+ : U ′ → L
(
L∞η,+(R;CM ),R⊥

)
(6.2.23)

and a Ck-smooth quasi-inverse

Λqinv
(η),+ : U ′ → L

(
L∞η,+(R;CM ),W 1,∞

η,+ (R;CM )
)

(6.2.24)

that satisfy the following properties.

(i) For any µ ∈ U ′ we have the upper bound

dim
(

ker
(
Λ(η),+(µ)

))
≤ dim

(
ker
(
Λ(η),+(µ0)

))
. (6.2.25)

(ii) For any µ ∈ U ′ and any f ∈ L∞(R;CM ) we have the identity

Λ(η),+(µ)Λqinv
(η),+(µ)f = f + C(η),+(µ)f. (6.2.26)

Moreover, the restriction of the map C(η),+(µ0) to R vanishes identically.

Proof. Upon choosing

Λqinv
(η),+(µ)f =

[
πRΛ(η),+(µ)

]−1
πRf,

C(η),+(µ)f = −πR⊥f + πR⊥Λ(η),+(µ)Λqinv
(η),+(µ)f,

(6.2.27)

we can directly follow the proof of [104, Prop. 3.3] to arrive at the desired result.
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In a similar fashion, we introduce the function

[e−η f ](x) = eη(x−)f(x), (6.2.28)

where

x− =

|x|, x ≤ 0,

0, x > 0,
(6.2.29)

together with the spaces

L∞η,−(R;CM ) = {f ∈ L1
loc(R;CM ) | e−−ηf ∈ L∞(R;CM )},

W 1,∞
η,− (R;CM ) = {f ∈ L1

loc(R;CM ) | e−−ηf ∈W 1,∞(R;CM )},
(6.2.30)

with the corresponding norms

‖f‖L∞η,+(R;CM ) := ‖e+
−ηf‖L∞(R;CM ),

‖f‖W 1,∞
η,+ (R;CM ) := ‖e+

−ηf‖W 1,∞(R;CM ).
(6.2.31)

For sufficiently small |η| we can consider the shifted operator Λ̃η,− : W 1,∞(R;CM ) →
L∞(R;CM ) which acts as

Λ̃η,−x = e−η Λe−−ηx (6.2.32)

and we can define the Fredholm operators Λ(η),− : W 1,∞
η,− (R;CM )→ L∞η,−(R;CM ) by

Λ(η),− = e−η ◦ Λ̃−η,− ◦ e−−η. (6.2.33)

Remark 6.2.4. The equivalent statements in Propositions 6.2.2-6.2.3 can be proven for
the operator Λ(η),− under the assumption that the characteristic equation det ∆−(z) =
0 has no roots with Re z = −η, instead of the condition on ∆+.

For notational simplicity, we use the shorthand

Λqinv(µ) := Λqinv
(0),+(µ) = Λqinv

(0),−(µ). (6.2.34)

The half-line inverses from Lemma 5.5.6 can also be chosen to depend smoothly on the
parameter µ. We recall that the intervals D⊕τ and D	τ were defined in (5.2.32), while
the interval DX was defined in (5.2.22).

Lemma 6.2.5 (cf. [104, Pg. 13]). Assume that (HC) is satisfied. Recall the open
neighbourhood U ′ of µ0 from Proposition 6.2.3 and fix τ ∈ R. Then there exist bounded
linear operators

Λ−1
+;τ (µ) : L∞

(
[τ,∞);CM

)
→ W 1,∞(D⊕τ ;CM ),

Λ−1
−;τ (µ) : L∞

(
(−∞, τ ];CM

)
→ W 1,∞(D	τ ;CM ),

(6.2.35)

defined for µ ∈ U ′, in such a way that the identities

[Λ(µ)Λ−1
+;τ (µ)f ](t) = f(t), t ≥ τ,

[Λ(µ)Λ−1
−;τ (µ)g](s) = g(s), s ≤ τ

(6.2.36)
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hold for f ∈ L∞
(
[τ,∞);CM

)
and g ∈ L∞

(
(−∞, τ ];CM

)
. The operators Λ±;τ depend

Ck-smoothly on the parameter µ.

In addition, if τ > 0 is sufficiently large, there exists bounded linear operators

Λ−1
�;τ (µ) : L∞

(
[0, τ ];CM

)
→ W 1,∞(DX + τ ;CM

)
, (6.2.37)

defined for µ ∈ U ′, in such a way that the identity

[Λ(µ)Λ−1
�;τ (µ)f ](t) = f(t), t ∈ [0, τ ] (6.2.38)

holds for f ∈ L∞
(
[0, τ ];CM

)
. The operators Λ�;τ depend Ck-smoothly on the parameter

µ.

Proof. Using the quasi-inverse Λqinv(µ) instead of the inverse Λ−1, the proof of
Lemma 5.5.6 carries over to the current setting.

6.3 Construction of exponential splittings

In this section, we set out to prove Theorem 6.1.1. For τ ≥ 0 and µ ∈ U we write
Q(τ, µ) for the space Q(τ) from Theorem 5.2.8 at this value of µ. In addition, we
write Q(τ) := Q(τ, µ0). Moreover, we introduce, for notational clarity, the evaluation
operator evt given by

evtφ = φt. (6.3.1)

We will be mainly working in the spaces

BC⊕τ,η =
{
f ∈ Cb

(
D⊕τ ,CM

)
| e+
−ηf ∈ Cb

(
D⊕τ ,CM

)}
,

BC	τ,η =
{
f ∈ Cb

(
D	τ ,CM

)
| e−−ηf ∈ Cb

(
D	τ ,CM

)} (6.3.2)

for τ ≥ 0 and η ∈ R, with the corresponding norms

‖f‖BC⊕τ,η = ‖e+
−ηf‖∞, ‖f‖BC	τ,η = ‖e−−ηf‖∞. (6.3.3)

This choice of spaces is in essential in our analysis and in major contrast to the finite-
range setting in [104]. Indeed, there the authors consider weighted spaces, defined on
the interval D⊕τ , where the weight decays exponentially in positive direction, while it
grows exponentially in the direction of rmin + τ . An essential step in the analysis is
that the inclusion of the space Q(τ) into the exponentially weighted space is a bounded
linear operator. However, this is the case if and only if rmin > −∞. By contrast, the
inclusion of Q(τ) into the space BC⊕τ,η is bounded for η < 0 sufficiently close to 0.

The key ingredients to establish Theorem 6.1.1 are the following two results that we
establish in the sequel. Basically, they state that Q(τ, µ) and R(τ, µ) can be constructed
as a graph over Q(τ, µ0) and R(τ, µ0). For ψ ∈ Q(τ, µ), we write Eτ,µψ for the extension
of the function ψ. That is, Eτ,µψ is a solution of (6.1.2) on the interval [τ,∞).
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Proposition 6.3.1 (cf. [104, Lem. 5.2]). Assume that (HC) is satisfied. Consider
the splitting X = Q(τ) ⊕ R(τ) for τ ≥ 0 for the system (6.1.2) at µ = µ0. Then
there exists an open neighbourhood µ0 ∈ U ′ ⊂ U , together with Ck-smooth functions
u∗Q(τ) : U ′ → L(Q(τ), X), defined for τ ≥ 0, that satisfy the following properties.

(i) For each µ ∈ U ′ we have the identity

ΠQ(τ)u
∗
Q(τ)(µ) = I (6.3.4)

and the limit
lim
µ→µ0

[I −ΠQ(τ)]u
∗
Q(τ)(µ) = 0, (6.3.5)

holds uniformly for τ ≥ 0.

(ii) For µ ∈ U ′ the operator norms of the maps u∗Q(τ)(µ) are bounded uniformly for
τ ≥ 0.

(iii) For µ ∈ U ′ we have Q(τ ;µ) = Range
(
u∗Q(τ)(µ)

)
.

(iv) There exist constants K > 0 and α > 0 in so that the bound∣∣D`
µEτ,µu

∗
Q(τ)(µ)φ

∣∣(t) ≤ Ke−α|t−τ |‖φ‖∞ (6.3.6)

holds for each µ ∈ U ′, each 0 ≤ τ ≤ t, each φ ∈ Q(τ) and each integer 0 ≤ ` ≤ k.

Recall that the space R(τ, µ0) is constructed as a finite-dimensional enlargement of
the space P̃ (τ, µ0). However, it is unclear whether this finite-dimensional space can be
constructed in such a way that it depends smoothly on the parameter µ. As such, we
simply construct the space R(τ, µ) in a fashion similar to Proposition 6.3.1 and treat
this as its definition. The price we have to pay is that this space is no longer invariant.

Proposition 6.3.2 (cf. [104, Lem. 5.3]). Assume that (HC) is satisfied. Consider
the splitting X = Q(τ) ⊕ R(τ) for τ ≥ 0 for the system (6.1.2) at µ = µ0. Then
there exists an open neighbourhood µ0 ∈ U ′ ⊂ U , together with Ck-smooth functions
u∗R(τ) : U ′ → L(R(τ), X), defined for τ ≥ 0, that satisfy the following properties.

(i) For each µ ∈ U ′ we have the identity

ΠR(τ)u
∗
R(τ)(µ) = I (6.3.7)

and the limit
lim
µ→µ0

[I −ΠR(τ)]u
∗
R(τ)(µ) = 0, (6.3.8)

holds uniformly for τ ≥ 0.

(ii) For µ ∈ U ′ we have that the operator norms of the maps u∗R(τ)(µ) are bounded
uniformly for τ ≥ 0.

(iii) Writing R(τ ;µ) = Range
(
u∗R(τ)(µ)

)
, each ψ ∈ R(τ ;µ) extends to a solution Eτ,µψ

of (6.1.2) on the interval (−∞,−r0] ∪ [0, τ ]. In addition, the space R(τ ;µ) ⊂ X
is closed.
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(iv) There exist constants K > 0 and α > 0 in such a way that we have the bound

|D`
µEτ,µu

∗
R(τ)(µ)φ|(t) ≤ Ke−α|t−τ |‖φ‖∞ (6.3.9)

for each µ ∈ U ′, each t ≤ τ , each φ ∈ R(τ) and each integer 0 ≤ ` ≤ k.

(v) We have the uniform bound∣∣Λ(µ)Eτ,µu
∗
R(τ)(µ)φ

∣∣(t) ≤ Ke−α|t−τ |‖φ‖∞ (6.3.10)

for each µ ∈ U ′, each t ∈ [−r0, 0] and each φ ∈ R(τ).

Proof of Theorem 6.1.1. On account of Propositions 6.3.1 and 6.3.2 we can repeat
the arguments used in the proof of [104, Thm. 5.1] to arrive at the desired result.

For any τ ≥ 0 and η > 0, we introduce the map Gτ ;η : U → L
(
BC⊕τ,−η

)
, defined by

Gτ ;η(µ)u = Λqinv
(−η),+(µ0)

[
L(µ)− L(µ0)

]
u− ιτ ;ηΠQ(τ)ev0Λqinv

(−η),+(µ0)
[
L(µ)− L(µ0)

]
u.

(6.3.11)
Here we introduced the notation

[L(µ)u](t) = L(t, µ)ut, (6.3.12)

together with the map ιτ ;η which is the inclusion from Q(τ) into BC⊕τ,−η for τ ≥ 0.

The proof of Proposition 6.3.1 consists of a number of steps. We start by showing
that the map Gτ,α from (6.3.11) is well-defined and bounded for some specified α > 0.
Then we use this map Gτ,α to construct the functions u∗Q(τ). Most of our focus will go

to the identity Q(τ ;µ) = Range
(
u∗Q(τ)(µ)

)
, since the other bounds and identities follow

relatively quickly from the definition.

Lemma 6.3.3. Consider the setting of Proposition 6.3.1 and suppose that rmin = −∞.
Then there exists a constant α > 0 so that the map

Gτ := Gτ ;α (6.3.13)

is a well-defined map Gτ : U → L
(
BC⊕τ,−α

)
. In addition, there exists an open neigh-

bourhood µ0 ∈ U ′ ⊂ U , together with a constant C > 0, so that for all µ ∈ U ′ we have
the uniform bounds

‖Gτ (µ)‖ ≤ 1
2 , ‖D`

µGτ (µ)‖ ≤ C (6.3.14)

for all τ ≥ 0 and all integers 1 ≤ ` ≤ k.

Proof. We let K ≥ 1 and 0 < α < η̃ be the constants from Theorem 5.2.8 applied
to the system (6.1.2) at µ = µ0. Without loss of generality we can assume that α
is so small that the characteristic equation det ∆+(z) for µ = µ0 has no roots with

Re z = −α, which allows us to consider the quasi-inverse Λqinv
(−α),+ from Proposition

6.2.3. We also can assume without loss of generality that e±2αb ∈W 1,∞(R;CM ) for any
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b ∈ B ∪ B∗.

We start by showing that the map Gτ := Gτ ;α is well-defined by showing that the
inclusion map ιτ ;α and the evaluation operator ev0 map Q(τ) into BC⊕τ,−α and BC⊕τ,−α
into X respectively.

On account of Theorem 5.2.4, the map

ιτ := ιτ ;α (6.3.15)

is a well-defined and bounded map ιτ : Q(τ)→ BC⊕τ,−α, since we assumed that rmin =
−∞. In addition, we have the bound

‖ιτφ‖BC⊕τ,−α ≤ Kdec‖φ‖∞ (6.3.16)

for φ ∈ Q(τ).

Let φ ∈ BC⊕τ,−α be given. Then we obtain the pointwise estimate

|(ev0φ)(t)| = e−α(t+)|eα(t+)φ(t)| ≤ e−αt‖φ‖BC⊕τ,−α (6.3.17)

for any t ∈ D+
X , while

|(ev0φ)(t)| = |eα(t+)φ(t)| ≤ ‖φ‖BC⊕τ,−α (6.3.18)

for t ∈ D−X .

Hence, the norms of the operators ev0 and ιτ are bounded by 1 and Kdec respec-
tively. In addition, the projections ΠQ(τ) are uniformly bounded in norm on account of

Theorem 5.2.8. Since the map µ 7→ L(µ) is Ck-smooth, we see that Gτ is smooth as a
map from U into L

(
BC⊕τ,−α

)
. The uniform bounds on the operators ιτ , ΠQ(τ) and ev0

now yield the uniform bound (6.3.14) for τ ≥ 0, integers 1 ≤ ` ≤ k and µ sufficiently
close to µ0.

In particular, we can define the bounded linear maps

v∗Q(τ)(µ) : Q(τ) → BC⊕τ,−α,

φ 7→
[
I − Gτ (µ)

]−1
ιτφ,

(6.3.19)

together with
u∗Q(τ)(µ) = ev0v

∗
Q(τ)(µ). (6.3.20)

Lemma 6.3.4. Consider the setting of Lemma 6.3.3. Then the functions u∗Q(τ)(µ)

defined in (6.3.20) satisfy items (ii) and (iv) of Proposition 6.1.4.

Proof. The uniform bound on the operator norm of u∗Q(τ)(µ) and the exponential

estimate (6.3.6) follow directly from the definition (6.3.20), together with the uniform
bounds (6.3.14) and (6.3.16).
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Lemma 6.3.5. Consider the setting of Lemma 6.3.3. Then we have the identity (6.3.4)
and the limit (6.3.5) holds uniformly for τ ≥ 0.

Proof. Pick any τ ≥ 0 and u ∈ BC⊕τ,−α. Then we can compute

ιτΠQ(τ)ev0ιτΠQ(τ)ev0u = ιτΠQ(τ)ΠQ(τ)ev0u

= ιτΠQ(τ)ev0u.
(6.3.21)

In particular, we see from the definition (6.3.11) that

ιτΠQ(τ)ev0Gτ (µ) = 0. (6.3.22)

This implies
ΠQ(τ)ev0Gτ (µ) = 0, (6.3.23)

which yields

πQ(τ)u
∗
Q(τ)(µ) = ΠQ(τ)ev0

[
I − Gτ (µ)

]−1
ιτ = I, (6.3.24)

as desired. The remainder term (6.3.5) can be bounded by considering the identity[
I −ΠQ(τ)

]
u∗Q(τ)(µ) = ev0

[[
I − Gτ (µ)

]−1 − I
]
ιτ , (6.3.25)

which approaches 0 as µ→ µ0, uniformly for τ ≥ 0.

We now set out to show that Range
(
u∗Q(τ)(µ)

)
= Q(τ, µ). The “⊂”-embedding can

be established by a relatively direct calculation. The “⊃”-embedding follows from the
property (6.3.14) for Gτ .

Lemma 6.3.6. Consider the setting of Lemma 6.3.3. Then we have the inclusion
Range

(
u∗Q(τ)(µ)

)
⊂ Q(τ, µ).

Proof. Similarly to (5.5.26), we pick a basis for Range
(
Λ(−α),+(µ0)

)⊥
that consists

of continuous functions for which the support is contained in the interval [−r0, 0]. We
recall the Ck-smooth operator

C(−α),+ : U ′ → L
(
L∞(−α),+(R;CM ),Range

(
Λ(−α),+(µ0)

)⊥)
(6.3.26)

from Proposition 6.2.3. Recall that α was chosen small enough to have e±2αb ∈W 1,∞(R;CM )
for any b ∈ B ∪ B∗. Since α > 0, we have L∞(−α),+(R;CM ) ⊂ L∞(R;CM ). As such, we

have Λ(µ)x = Λ(−α),+(µ)x for any x ∈ W 1,∞
(−α),+(R;CM ) and any µ ∈ U ′ on account of

(6.2.17). Pick φ ∈ Q(τ) and write

u(t) = [v∗Q(τ)(µ)φ](t− τ), (6.3.27)

so that
evτu = u∗Q(τ)(µ)φ. (6.3.28)
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Writing

uτ (t) = u(t+ τ), (6.3.29)

we can compute

u(t) = [ιτφ](t− τ) + [Gτ (µ)uτ ](t− τ) (6.3.30)

for t ∈ R, so that

[Λ(µ)u](t) =
[
Λ(µ)ιτφ(· − τ)

]
(t) +

[
Λ(µ)Gτ (µ)uτ (· − τ)

]
(t). (6.3.31)

For t ∈ R we can now compute

[Λ(µ)ιτφ(· − τ)](t) =
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t) +

[
Λ(µ0)ιτφ(· − τ)

]
(t),

(6.3.32)
together with

L :=
[
Λ(µ)Gτ (µ)uτ (· − τ)

]
(t)

=
[[
L(µ0)− L(µ)

]
Gτ (µ)uτ (· − τ)

]
(t) +

[
Λ(µ0)[Gτ (µ)uτ ](· − τ)

]
(t)

=
[[
L(µ0)− L(µ)

][
Gτ (µ)[I − Gτ (µ)]−1ιτφ(· − τ)

]]
(t)

+
[
Λ(µ0)Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

−
[
Λ(µ0)ιτΠQ(τ)ev0Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

:= L1 + L2 + L3.

(6.3.33)

We can compute

L1 =
[[
L(µ0)− L(µ)

][
Gτ (µ)[I − Gτ (µ)]−1ιτφ(· − τ)

]]
(t)

= −
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t)

+
[[
L(µ0)− L(µ)

][
[I − Gτ (µ)]−1ιτφ(· − τ)

]]
(t)

= −
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t) +

[[
L(µ0)− L(µ)

]
uτ (· − τ)

]
(t).

(6.3.34)

Moreover, an application of Proposition 6.2.3 yields

L2 =
[
Λ(µ0)Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

=
[[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t) +

[
C(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t).

(6.3.35)
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Combining (6.3.31), (6.3.32), (6.3.34) and (6.3.35), we obtain

[Λ(µ)u](t) =
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t) +

[
Λ(µ0)ιτφ(· − τ)

]
(t)

−
[[
L(µ0)− L(µ)

]
ιτφ(· − τ)

]
(t) +

[[
L(µ0)− L(µ)

]
uτ (· − τ)

]
(t)

+
[[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

+
[
C(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

−
[
Λ(µ0)ιτΠQ(τ)ev0Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

=
[
Λ(µ0)ιτφ(· − τ)

]
(t) +

[
C(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

−
[
Λ(µ0)ιτΠQ(τ)ev0Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t),

(6.3.36)
for any t ∈ R. For t ≥ τ we obtain[

Λ(µ0)ιτφ(· − τ)
]
(t) = 0, (6.3.37)

since φ ∈ Q(τ). In addition, we recall that we chose C(−α),+(µ0)v(s) to be identically
zero for s ≥ 0. Finally, for t ≥ τ we obtain[

Λ(µ0)ιτΠQ(τ)ev0Λqinv
(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t) = 0 (6.3.38)

by definition of Q(τ). Hence we must have

[Λ(µ)u](t) =
[
Λ(µ0)ιτφ(· − τ)

]
(t) +

[
C(−α),+(µ0)

[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

−
[
Λ(µ0)ιτΠQ(τ)ev0Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
uτ (· − τ)

]
(t)

= 0
(6.3.39)

for any t ≥ τ . In particular, we get u ∈ Q(τ, µ) and thus u∗Q(τ)(µ)φ ∈ Q(τ, µ), as
desired.

Lemma 6.3.7. Consider the setting of Lemma 6.3.3. Then we have the inclusion
Range

(
u∗Q(τ)(µ)

)
⊃ Q(τ, µ).

Proof. We pick q1
µ ∈ Q(τ, µ) and write

φ = ΠQ(τ)ev0q
1
µ,

q2
µ(t) = [v∗Q(τ)(µ)φ](t− τ).

(6.3.40)

By Lemma 6.3.6, we see that q2
µ ∈ Q(τ, µ) and therefore also qµ := q1

µ − q2
µ ∈ Q(τ, µ).

Moreover, we can compute

ΠQ(τ)ev0qµ = ΠQ(τ)ev0q
1
µ −ΠQ(τ)u

∗
Q(τ)(µ)φ

= φ− φ

= 0

(6.3.41)
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using (6.3.4). Upon setting

qµ0
= Λqinv

(−α),+(µ0)
[
L(µ)− L(µ0)

]
qµ − qµ, (6.3.42)

we note that

Λ(µ0)qµ0
=

[
L(µ)− L(µ0)

]
qµ + C(−α),+(µ0)

[
L(µ)− L(µ0)

]
qµ − Λ(µ0)qµ

= −Λ(µ)qµ + C(−α),+(µ0)
[
L(µ)− L(µ0)

]
qµ,

(6.3.43)
since L(µ)− L(µ0)− Λ(µ0) = −Λ(µ). In particular, we see that the right-hand side of
(6.3.43) is zero on the halfline [τ,∞), so we must have qµ0

∈ Q(τ) and hence

Gτ (µ)qµ = qµ + qµ0
− ιτΠQ(τ)ev0[qµ + qµ0

]

= qµ + qµ0
− qµ0

= qµ0 .

(6.3.44)

This yields qµ ∈ ker(I−Gτ (µ)) = {0}, which implies evτq
1
µ = evτq

2
µ ∈ Range

(
u∗Q(τ)(µ)

)
and completes the proof.

Proof of Proposition 6.3.1. In the case where rmin > −∞ we can follow the proof of
[104, Lem. 5.2], so we assume that rmin = −∞. In that case, the desired result follows
directly from Lemmas 6.3.3-6.3.7.

For the proof of Proposition 6.3.2, we can proceed in the same fashion as in the proof
of Proposition 6.3.1, where instead of the spaces BC⊕τ,−α, we use the space BC	τ,−α. It

only remains to show that Range
(
u∗R(τ)(µ)

)
⊂ X is closed and to establish (6.3.10).

Lemma 6.3.8. Consider the setting of Proposition 6.3.2. Then Range
(
u∗R(τ)(µ)

)
⊂ X

is closed.

Proof. Consider a sequence {φj}j≥1 in R(τ) and, writing ψj = u∗R(τ)(µ)φj , assume

that ψj → ψ∗. By (6.3.7) we see that ΠR(τ)ψj = φj and by the continuity of ΠR(τ)

this yields φj → ΠR(τ)ψ∗ := φ∗. Since the operator u∗R(τ)(µ) is bounded, we must have

u∗R(τ)(µ)
[
φj − φ∗

]
→ 0 and therefore ψ∗ = u∗R(τ)(µ)φ∗, as desired.

Lemma 6.3.9. Consider the setting of Proposition 6.3.2. Then the uniform bound
(6.3.10) holds for each µ ∈ U ′, each t ∈ [−r0, 0] and each φ ∈ R(τ).

Proof. We fix µ ∈ U ′, −r0 ≤ t ≤ 0 and φ ∈ R(τ) and write

u = Eτ,µu
∗
R(τ)(µ)φ. (6.3.45)

From (6.3.36) we can derive that

[Λ(µ)u](t) =
[
Λ(µ0)ιτφ(· − τ)

]
(t) +

[
C(−α),−(µ0)

[
L(µ)− L(µ0)

]
u
]
(t)

−
[
Λ(µ0)ιτΠR(τ)ev0Λqinv

(−α),−(µ0)
[
L(µ)− L(µ0)

]
u
]
(t)

:= L1 + L2 + L3.

(6.3.46)
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On account of Proposition 5.5.4, we immediately obtain the bound

|L1| =
∣∣[Λ(µ0)ιτφ(· − τ)](t)

∣∣ ≤ K1e
−α|t−τ |‖φ‖∞ (6.3.47)

for some K1 > 0. Recall that α was chosen small enough to have e±2αb ∈W 1,∞(R;CM )
for any b ∈ B ∪ B∗. Let {di}ndi=1 denote a basis for ker(Λ(µ0)∗). In particular, we can
pick a constant K2 > 0 in such a way that the exponential bound

|di(ξ)| ≤ K2e
−2α|ξ| (6.3.48)

holds for any ξ ∈ R and any integer 1 ≤ i ≤ nd. Using the representations from
Proposition 6.2.3 and from (5.5.22) we can compute

L2 =
[
C(−α),−(µ0)

[
L(µ)− L(µ0)

]
u
]
(t)

= −πR⊥
[[
L(µ)− L(µ0)

]
u
]
(t)

+πR⊥
[
Λ(−α),−(µ0)

[
ΠRΛ(−α),−(µ0)

]−1
πR
[
L(µ)− L(µ0)

]
u
]
(t)

= −πR⊥
[[
L(µ)− L(µ0)

]
u
]
(t)

=
nd∑
i=1

[ ∞∫
−∞

di(ξ)∗
[
L(µ0)− L(µ)

]
u(ξ)dξ

]
gi(t).

(6.3.49)
On account of the exponential decay (6.3.9), we can pick a constant K3 > 0, indepen-
dent of µ and u, for which the bound∣∣[L(µ)− L(µ0)

]
u
∣∣(ξ) ≤ K3e

−α(τ−ξ)‖φ‖∞ (6.3.50)

holds for any ξ ≤ τ , while the bound∣∣[L(µ)− L(µ0)
]
u
∣∣(ξ) ≤ K3‖φ‖∞ (6.3.51)

holds for any ξ > τ . In particular, we can estimate

|L2| ≤
nd∑
i=1

[ τ∫
−∞

K2e
−2α|ξ|K3e

−α(τ−ξ)‖φ‖∞dξ +
∞∫
τ

K2e
−2α|ξ|K3‖φ‖∞dξ

]
|gi|(t)

≤ e−ατK2K3‖φ‖∞
[ 0∫
−∞

e3αξdξ +
τ∫
0

e−αξdξ + (2α)−1
]
‖gi‖∞

≤ e−α(τ−t)K2K3‖φ‖∞
[ 0∫
−∞

e3αξdξ +
∞∫
0

e−αξdξ + (2α)−1
]
‖gi‖∞eαr0 .

(6.3.52)
Finally, we obtain the bound

|L3| =
∣∣∣[Λ(µ0)ιτΠR(τ)ev0Λqinv

(−α),−(µ0)
[
L(µ)− L(µ0)

]
u
]
(t)
∣∣∣

≤ Ke−α|t−τ |‖ΠR(τ)ev0Λqinv
(−α),−(µ0)

[
L(µ)− L(µ0)

]
u‖∞

≤ K3e
−α|t−τ |‖φ‖∞

(6.3.53)
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for some constant K3 > 0, using the uniform bounds and the exponential decay in
Theorem 5.2.8 and the bound (6.3.9).

Proof of Proposition 6.3.2. The desired result follows from Lemmas 6.3.8 and
6.3.9.
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[48] H. d’Albis, E. Augeraud-Véron, and H. J. Hupkes. Discontinuous Initial Value
Problems for Functional Differential-Algebraic Equations of Mixed Type. Journal
of Differential Equations, 253(7):1959–2024, 2012.

[49] T. Dauxois. Fermi, Pasta, Ulam and a mysterious lady. Physics Today, 61(1):55–
57, 2008.
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Samenvatting

In een tijd die inmiddels lang vervlogen lijkt, waren er voetbalwedstrijden waar duizen-
den mensen op elkaar gepakt op de tribunes zaten. Bij zo’n wedstrijd was het gebruike-
lijk dat de toeschouwers af en toe spontaan een wave2 vormden: door beurtelings op
te staan en weer te gaan zitten lijkt er een golfbeweging door het publiek te gaan;
zie Figuur 6.1(a). Met de huidige coronavirusmaatregelen kan een wave natuurlijk nog
steeds plaatvinden, al zullen de toeschouwers wel op anderhalve meter afstand uit elkaar
zitten. Dat de afstand groter is, betekent echter niet dat we het niet meer over een
golfverschijnsel kunnen hebben. Er zit natuurlijk wel een limiet op: als bij wijze van
spreken de toeschouwers allemaal honderden meters uit elkaar zitten, dan wordt het
onmogelijk om zonder verdere communicatie nog een wave te kunnen doen. Dat het
medium waar de golf zich door probeert te bewegen discreet is en wat de afstand tussen
de componenten van het medium is, heeft blijkbaar invloed op de vraag of de golf kan
bestaan.

Aan de andere kant kennen wij golfverschijnselen voornamelijk uit scenario’s waar
het medium een continu geheel is, zoals bij watergolven of als een elektrische stroom
door een draad beweegt. Sommige golfverschijnselen lijken zich echter door een continu
medium te bewegen, terwijl ze dat in feite helemaal niet doen. Het bekendste voorbeeld
hiervan is de propagatie van elektrische signalen door zenuwbanen; zie Figuur 6.1(c).
Deze signalen kunnen namelijk enkel propageren als de zenuwbaan is omhuld met een
meyline coating. In deze coating zitten gaten op vaste afstand van elkaar. Deze gaten
worden ook wel de Ranvierknopen genoemd. In de gecoate regio’s beweegt het elek-
trische signaal snel, maar verliest wel veel kracht. Aan de andere kant beweegt het
signaal veel langzamer in de Ranvierknopen, maar herstelt de signaalsterkte zich wel.
Als je met een microscoop naar dit proces kijkt, lijkt het alsof het signaal springt van
een Ranvierknoop naar diens buurknoop. In feite is het dus logischer om dit proces
te beschouwen als een golfverschijnsel door een discreet medium, namelijk de Ranvier-
knopen, dan door de hele zenuwbaan.

Wiskundige modellen proberen de dynamische eigenschappen van dit soort pro-
cessen in vergelijkingen te vangen. Daarbij moet altijd een belangrijke balans worden
gezocht: hoe nauwkeuriger en preciezer je het model probeert te maken, hoe moeilijker
het is om er nog iets zinnigs over te bewijzen. Aan de andere kant moet het model ook

2Dit wordt ook wel een Mexican wave genoemd.

343



344 SAMENVATTING

weer niet zo simpel worden dat het elke connectie met de realiteit verliest.

Een van de eerste wiskundige modellen die de propagatie van elektrische signalen
door zenuwbanen probeerde te beschrijven waren de zogenaamde Hodgkin-Huxley-
vergelijkingen. Dit model is gebaseerd op experimenten op reuzeinktvissen en is voor
het eerst geformuleerd in de jaren 1950; zie Figuur 6.1(b). Wiskundig gezien was het
een erg ingewikkeld model3. Daarom hebben Richard FitzHugh en Jinichi Nagumo
in de jaren 1960 een versimpeld model gëıntroduceerd, wat inmideels bekend staat als
het FitzHugh-Nagumo model. De eerste vraag die wiskundigen bij dit soort modellen
stellen is of er golven zijn die aan de vegelijkingen in dit model voldoen. Tenslotte
probeert het FitzHugh-Nagumo-model de propagatie van elektrische signalen, wat een
golfverschijnsel is, te beschrijven. Richard FitzHugh heeft dat in 1968 (!) al met een
computeranimatie laten zien, maar wiskundigen houden van zekerheid en willen dat
dus graag bewijzen. Vanaf de jaren 1970 zijn er vele wiskundige publicaties verschenen
over het bestaan van golfoplossingen in het FitzHugh-Nagumo-model.

Er is echter een groot probleem met het FitzHugh-Nagumo-model: de hele discrete
structuur met de Ranvierknopen en de meyline coating komt niet direct terug in het
model. In eerste instantie was dat niet zo erg: wiskundigen beginnen vaak met het
begrijpen van een simpeler model voordat ze generalisaties gaan bekijken. De discrete
structuur is echter wel een essentieel onderdeel van het onderliggende biologische pro-
ces. Om deze discrete structuur in te bouwen hebben James Keener en James Sneyd
in 1998 een discrete versie van het FitzHugh-Nagumo-model geformuleerd. Zoals wel
te verwachten was, bleek het veel lastiger te zijn om iets wiskundigs te bewijzen over
dit model. Pas in 2009 is het de jonge wiskundige Hermen Jan Hupkes, samen met
zijn PostDoc-begeleider Bjorn Sandstede, gelukt om te bewijzen dat er golfoplossingen
bestaan in het discrete FitzHugh-Nagumo-model. Dat het zo lang duurde, kwam onder
andere doordat er veel minder algemene wiskundige theorie bekend is voor discrete
systemen dan voor continue systemen.

In dit proefschrift zet ik de volgende stap in het accurater maken van het FitzHugh-
Nagumo-model. Om precies te zijn, analyseer ik drie verschillende generalisaties van
het discrete FitzHugh-Nagumo-model: oneindig bereik, periodieke interacties en tijds-
discretisaties; zie Figuur 6.1(d).

Oneindig bereik In het standaard discrete FitzHugh-Nagumo-model wordt aangenomen
dat elke Ranvierknoop alleen zijn twee directe buurknopen ‘ziet’. In hoofdstuk 2 nemen
we echter aan dat elke knoop in direct contact staat met al zijn buren. In veel systemen
in de wereld om ons heen is dat ook een veel logischere aanname: als er in een voetbal-
stadion een wave wordt gedaan, dan ga je al veel eerder klaarzitten, misschien zelfs al
half opstaan, terwijl de wave zich nog aan de andere kant van het stadion bevindt. Ook
in de context van zenuwbanen is het een natuurlijkere aanname: dit soort zenuwbanen

3Alan Hodgkin en Andrew Huxley waren dan ook geen wiskundigen maar biophysici en in dat soort
vakgebieden verkiest men liever accuraatheid boven oplosbaarheid.
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Figure 6.1: (a) Een wave in een voetbalstadion. De oranje lijn laat het golfprofiel zien. (b) Car-
toon van het experiment waar Hodgkin en Huxley een elektrisch signaal door een reuzeinktvis
sturen. (c) Schematische weergave van de propagatie van elektrische signalen door zenuw-
banen. (d) De verschillende soorten van het FitzHugh-Nagumo-model met in rood en blauw
de ruimte en in groen de tijd: (i) het klassieke, volledig continue model; (ii) het ruimtelijk
gediscretiseerde model, waar elke knoop enkel zijn directe buurknopen ziet; (iii) het ruimtelijk
gediscretiseerde model met oneindig bereik, waar elke knoop alle andere knopen direct ziet; (iv)
het periodieke model, waar twee verschillende typen knopen elkaar afwisselen; (v) het model
waar zowel de ruimte als de tijd is gediscretiseerd.
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vormen een complex netwerk waar interacties over lange afstanden plaatsvinden. We
bewijzen dat er ook in dit soort systemen golfverschijnselen op kunnen treden. We
lopen daar echter wel tegen een ernstige beperking aan: we zijn genoodzaakt om aan
te nemen dat de afstand tusen twee opeenvolgende Ranvierknopen ‘voldoende klein’
is. Voldoende klein is echter een nogal vaag begrip4: hoe weet ik nou of in mijn
toepassing de afstand klein genoeg is? Is de afstand in de zenuwbanen in mijn lichaam
klein genoeg? Daar geeft de wiskunde helaas (nog) geen antwoord op. Sterker nog:
in het standaard discrete FitzHugh-Nagumo-model is deze beperking niet aanwezig.
Wiskundig gezien komt dit doordat wij een totaal andere bewijstechniek gebruiken dan
deze eerdere resultaten. Dit was noodzakelijk, omdat voor system waar alles direct van
elkaar afhangt er nog veel minder algemene theorie beschikbaar is dan voor system die
alleen van hun directe buren afhangen. In hoofdstuk 5 en 6 bouwen we een deel van
deze missende theorie weer op voor systemen waar alles direct van elkaar afhangt. Wij
verwachten dat deze theorie uiteindelijk voldoende, en zeker nodig, gaat zijn om de
beperking van de kleine afstand weg te werken. Dit is iets om in de toekomst naar uit
te kijken.

Periodieke interacties In alle eerdere FitzHugh-Nagumo-modellen wordt aangenomen
dat alle Ranvierknopen identiek zijn. Echter hebben enkele recente experimenten aange-
toond dat bepaalde eiwitten zich slechts om en om aan de Ranvierknopen hechten. In
hoofdstuk 3 bouwen en analyseren we een model dat deze periodieke interacties mee-
neemt. We bewijzen dat dit systeem golfoplossingen toelaat. Echter zien deze golven
er anders uit dan bij eerdere modellen. Normaal gesproken heeft een golfoplossing één
vaste vorm die zich door de ruimte beweegt. Als we de Ranvierknopen nummeren,
dan zien we nu dat er zich tegelijkertijd twee verschillende golven door de zenuwbaan
bewegen, een door de even Ranvierknopen en een door de oneven Ranvierknopen. Of
dat realistischer is, valt echter lastig te zeggen, omdat onze theoretische resultaten nog
niet dicht genoeg bij de realiteit staan voor dit soort uitspraken.

Tijdsdiscretisaties De laatste generalisatie die we bekijken komt niet voort uit een
poging het FitzHugh-Nagumo-model realistischer te maken, maar heeft te maken met
de implementatie van dit soort modellen in computersimulaties. Er wordt wel gezegd
dat mensen het lastig vinden om oneindigheid te bevatten, maar computers zijn er
in elk geval nog veel slechter in. Hoewel we namelijk telkens wel aannemen dat onze
ruimte discreet is, geldt dat natuurlijk niet voor de tijd: tijd is een continu geheel5. Een
computer zal in een simulatie echter altijd tijd in kleine stukjes op moeten delen. Er
zijn in de loop der jaren vele methodes ontwikkeld om dat op een nauwkeurige manier
te doen. Als je een golf probeert te simuleren voor een bepaalde tijd, is typisch de
vraag hoe groot de fout is aan het eind van de simulatie. In hoofdstuk 4 draaien we dit
vraagstuk om. We zien het systeem met gediscretiseerde tijdsstappen als het systeem
wat we gaan analyseren. Dit noemen we een volledige discretisatie. In het bijzonder
bekijken we het volledig gediscretiseerde FitzHugh-Nagumo-model. Ook in dit soort
systemen kun je je afvragen of er golfoplossingen kunnen bestaan. We onderzoeken

4Intüıtief gezien dan, wiskundig gezien heeft het gewoon een nette, precieze definitie.
5Als ik niet na mijn bachelor met natuurkunde was gestopt, had ik daar misschien Plancktijden en

dergelijke tegen in kunnen werpen, maar dat nemen we verder toch niet mee in onze modellen.
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welke simulatiemethoden hiervoor geschikt zijn. Voor zes bekende methoden bewijzen
we dat er golfoplossingen kunnen bestaan.

Wiskunde is natuurlijk nooit af en dat zal vermoedelijk ook voor de analyse van het
FitzHugh-Nagumo-model gelden. Naast de genoemde generalisaties hebben anderen,
onder andere enkelen in Leiden, vele andere extensies onderzocht. Of we ooit de golfo-
plossingen van volledig gediscretiseerde, periodieke, stochastische, hoger-dimensionale
FitzHugh-Nagumo-model met oneindig bereik gaan aantonen, valt nog maar te bezien.
In elk geval zijn er nog genoeg interessante vraagstuken over dat wiskundigen nog wel
even doorkunnen met het analyseren van FitzHugh-Nagumo-modellen.
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naar mijn mening, echt interessante wiskunde hebben kunnen ontwikkelen.

Naast alle inhoudelijke aspecten van mijn promotie, heb ik de afgelopen jaren het
Mathematisch Instituut in Leiden als een warme en gezellige omgeving ervaren. In de
eerste plaats wil ik de vele kantoorgenoten die ik heb de afgelopen jaren heb gehad daar-
voor bedanken, te weten Amine, Dylan, Hent, Jan Pieter, Mark en Stefan (in kamer
217) en Christian, David, Olfa en Robbin (in kamer 202). Dylan, jij bent op dezelfde
dag begonnen als ik en ik heb het altijd fijn gevonden dat we op die manier tegelijk
op konden trekken. Mark, we hebben veel gelachen, geklaagd en het gezellig gehad
samen en jouw aanwezigheid maakte kamer 217 altijd tot een vrolijke en levendige
ruimte. Christian, nadat we jaren geleden in hetzelfde mentorgroepje bij SSR zaten,
kwamen we elkaar nu weer tegen bij dezelfde begeleider, waardoor we elkaars successen
en worstelingen op een dieper niveau begrepen. David, ik heb onze soepele samenwerk-
ing bij het assisteren van Linear Analysis en Functional Analysis altijd erg gewaardeerd
en ik vind dat we dat samen echt goed voor elkaar hebben gekregen. Olfa, ik heb jou
leren kennen als een betrokken persoon en ik vond het heel fijn dat jij kamer 202 tijdens
de lockdown hebt aangespoord om contact te blijven houden. Ook alle mensen met wie
ik samen naar buitenlandse conferenties ben geweest, naast eerdergenoemenden ook
Leonardo, Mia en Timothy, wil ik heel erg bedanken voor hun gezelschap en steun
bij het geven van presentaties daar. Die conferenties zijn een waardevolle verrijking
geweest voor mijn promotie. Daarnaast wil ik alle anderen op het Mathematisch In-
stituut bedanken met wie ik een band heb opgebouwd en met wie ik altijd veel plezier

349



350 DANKWOORD

heb beleefd bij de lunch, koffiepauze en PhD-colloquia. Ik heb mij altijd thuis gevoeld
in Leiden.

Naast mijn vrienden op werk, wil ik ook mijn vrienden buiten werk bedanken voor
hun steun. In het bijzonder wil ik de vrienden voor het leven die ik bij het dispuut
M.O.C.C.A. heb gemaakt bedanken. Zonder hen zou mijn tijd in Leiden, zowel tijdens
mijn studie als tijdens mijn promotie, niet half zo veel waard zijn geweest.

Daarnaast is ook mijn familie mij tot zeer grote steun geweest en wil ik ze daar zeer
hartelijk voor bedanken. In de eerste plaats pap, mam, Bernd en Iris: jullie hebben
altijd gezorgd dat ik het beste uit mezelf heb gehaald en jullie hebben mij en Mayke
door en door gesteund bij alle hoogtepunten, maar ook alle zorgen in de afgelopen jaren.
Daarnaast wil ik ook mijn schoonfamilie, Lidwien, Peter, Rymke en Ruben bedanken.
Ik heb me altijd welkom en thuis gevoeld bij jullie.

Tot slot wil ik de persoon bedanken die mijn dank het meest verdient. Mayke, ik
heb alle successen, teleurstellingen, zorgen en ervaringen met jou kunnen delen en je
hebt mij altijd gesteund. Op wiskundig gebied heb jij meerdere malen mij de cruciale
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