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2 | The MUSE Hubble Ultra Deep Field

Survey: XI. Constraining the low-mass

end of the stellar mass – star formation

rate relation at z < 1

Abstract

Star-forming galaxies have been found to follow a relatively tight relation between stellar

mass (M∗) and star formation rate (SFR), dubbed the ‘star formation sequence’. A turnover

in the sequence has been observed, where galaxies with M∗ < 10
10

M� follow a steeper

relation than their higher-mass counterparts, suggesting that the low-mass slope is (nearly)

linear. In this paper, we characterise the properties of the low-mass end of the star form-

ation sequence between 7 ≤ log M∗[M�] ≤ 10.5 at redshift 0.11 < z < 0.91. We use

the deepest MUSE observations of the Hubble Ultra Deep Field and the Hubble Deep Field

South to construct a sample of 179 star-forming galaxies with high signal-to-noise emission

lines. Dust-corrected SFRs are determined from H� �4863 and H� �6565. We model the

star formation sequence with a Gaussian distribution around a hyperplane between log M∗,
log SFR, and log(1 + z), to simultaneously constrain the slope, redshift evolution, and in-

trinsic scatter. We find a sub-linear slope for the low-mass regime where log SFR[M� yr
−1

] =

0.83
+0.07

−0.06
log M∗[M�]+ 1.74

+0.66

−0.68
log(1+ z), increasing with redshift. We recover an intrinsic

scatter in the relation of �intr = 0.44
+0.05

−0.04
dex, larger than typically found at higher masses.

As both hydrodynamical simulations and (semi-)analytical models typically favour a steeper

slope in the low-mass regime, our results provide new constraints on the feedback processes

which operate preferentially in low-mass halos.

L. A. Boogaard, J. Brinchmann, N. Bouché, M. Paalvast, et al.

Astronomy & Astrophysics, 619, A27 (2018)
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2.1 Introduction

How galaxies grow is one of the fundamental questions in astronomy. The picture that has

emerged is that a galaxy builds up its stellar mass mainly through star formation, which is

triggered by gas accretion from the cosmic web (e.g. Dekel et al., 2009; van de Voort et al.,

2012), while mergers with other galaxies play only a minor role (except for massive systems;

Bundy et al., 2009).

In the past decade, star-forming galaxies have been found to form a reasonably tight

quasi-linear relation between stellar mass (M∗) and star formation rate (SFR) (Brinchmann

et al., 2004; Noeske et al., 2007a; Elbaz et al., 2007; Daddi et al., 2007; Salim et al., 2007) over a

wide range of masses and out to high redshifts (Pannella et al., 2009; Santini et al., 2009; Oliver

et al., 2010; Peng et al., 2010; Rodighiero et al., 2010; Karim et al., 2011; Bouwens et al., 2012;

Whitaker et al., 2012; Stark et al., 2013; Whitaker et al., 2014; Ilbert et al., 2015; Lee et al., 2015;

Renzini & Peng, 2015; Schreiber et al., 2015; Shivaei et al., 2015; Salmon et al., 2015; Tasca

et al., 2015; Gavazzi et al., 2015; Kurczynski et al., 2016; Tomczak et al., 2016; Santini et al.,

2017; Bisigello et al., 2018), which is often referred to as the ‘main sequence of star-forming

galaxies’ or the ‘star formation sequence’. In contrast, galaxies that are undergoing a starburst

or have already quenched their star formation respectively lie above and below the relation.

This main sequence is close to a similar scaling relation for halos (Birnboim et al., 2007;

Neistein & Dekel, 2008; Genel et al., 2008; Fakhouri &Ma, 2008; Correa et al., 2015a,b) where

the growth rate increases super-linearly
17
with halo mass, and this has been interpreted as

supporting the picture where galaxy growth is driven by gas accretion from the cosmic web

(e.g. Bouché et al., 2010; Lilly et al., 2013; Rodríguez-Puebla et al., 2016; Tacchella et al., 2016).

This interpretation is supported by hydrodynamical simulations of galaxy formation

(Schaye et al., 2010; Haas et al., 2013a,b; Torrey et al., 2014; Hopkins et al., 2014; Crain et al.,

2015; Hopkins et al., 2016), where a global equilibrium relation is found between the inflow

and outflow of gas and star formation in galaxies. In this picture the star formation acts as a

self-regulating process, where the inflow of gas, through cooling and accretion, is balanced

by the feedback from massive stars and black holes (e.g. Schaye et al., 2010). Furthermore,

semi-analytical models (e.g. Dutton et al., 2010; Mitchell et al., 2014; Cattaneo et al., 2011,

2017) and relatively simple analytic theoretical models which connect the gas supply (from

the cosmological accretion) to the gas consumption can also reproduce the main features of

the main sequence rather well (e.g. Bouché et al., 2010; Davé et al., 2012; Lilly et al., 2013;

Dekel et al., 2013; Dekel & Mandelker, 2014; Mitra et al., 2015; Rodríguez-Puebla et al., 2016,

2017).
18

The parameters of the M∗-SFR relation (i.e. slope, normalisation, and scatter) are thus

important, as they provide uswith insight into the relative contributions of different processes

operating at different mass scales, in particular when comparing the values of the parameters

to their counterparts in dark matter halo scaling relations. The normalisation of the star

formation sequence is governed by the change in cosmological gas accretion rates and gas

17
There is a tension between the shallow slope of the observedmain sequence with the super-linear slope expected

in models, which is set by the index of the initial dark matter power spectrum (Birnboim et al., 2007; Neistein &

Dekel, 2008; Correa et al., 2015a,b).

18
For an alternative interpretation, cf. Gladders et al. (2013); Kelson (2014); Abramson et al. (2016).
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depletion timescales. The slope can be sensitive to the effect of various feedback processes

acting on the accreted gas, which prevent (or enhance) star formation. The intrinsic scatter

around the equilibrium relation is predominantly determined by the stochasticity in the

gas accretion process (e.g. Forbes et al., 2014; Mitra et al., 2017), but can also be driven by

dynamical processes that rearrange the gas inside galaxies (Tacchella et al., 2016). TheM∗-SFR
relation is observed to be reasonably tight, with an intrinsic scatter of only ≈ 0.3 dex (Noeske

et al., 2007a; Salmi et al., 2012; Whitaker et al., 2012; Guo et al., 2013; Speagle et al., 2014;

Schreiber et al., 2015; Kurczynski et al., 2016, though we caution against a blind comparison

as different observables probe star formation on different timescales). Yet, it has proven to

be challenging to place firm constraints on the intrinsic scatter as one needs to deconvolve

the scatter due to measurement uncertainty (e.g. Speagle et al., 2014; Kurczynski et al., 2016;

Santini et al., 2017).

Observationally, the slope has been difficult to measure, particularly at the low-mass end,

as most studies have been sensitive to galaxies with stellar masses above log M∗[M�] ∼ 10

and often lack dynamical range in mass. In addition, while it is well known that there is

significant evolution in the normalisation of the sequence with redshift, most studies have

measured the slope in bins of redshift. For a flux limited sample this could introduce a bias in

the slope because overlapping populations at different normalisations are not sampled equally

in mass within a single redshift bin. The slope may also be mass dependent and indeed recent

studies have observed that the relation turns over around a mass ofM∗ ∼ 10
10

M� (Whitaker

et al., 2012, 2014; Lee et al., 2015; Schreiber et al., 2015; Tomczak et al., 2016) and shows a

steeper slope below the turnover mass. In the low-mass regime, a (nearly) linear slope has

generally been expected (e.g. Schreiber et al., 2015; Tomczak et al., 2016), motivated also by

the fact that there is very little evolution in the faint-end slope of the blue stellar mass function

with redshift (Peng et al., 2014). Leja et al. (2015) showed that the sequence cannot have a

slope a < 0.9 at all masses because this would lead to a too high number density between

10 < log M∗[M�] < 11 at z = 1.

In addition to the observational challenges, careful modelling is required to get reliable

constraints on the parameters (slope, normalisation, scatter) of the star formation sequence.

It is important to properly take selection effects into account as well as the uncertainties on

both the stellar masses and star formation rates (and, if spectroscopy is lacking, also on the

photometric redshifts). The latter in particular, due to the fact that there is intrinsic scatter in

the relation that needs to be deconvolved from the measurement errors. Common statistical

techniques do not take these complications into account self-consistently, which leads to

biases in the results.

Putting the existing observations in perspective, it is clear that a large dynamical range in

mass is necessary to measure the slope of the star formation sequence in the low-mass regime.

Deep field studies, that can blindly detect large numbers of galaxies down to masses much

below 10
10

M� , are invaluable in this regard (e.g. Kurczynski et al., 2016). Yet, such studies are
challenged by having to measure all observables, distances as well as stellar masses and star

formation rates, from the same photometry. This can lead to undesirable correlations between

different observables. At the same time the measurements suffer from the uncertainties

associated with photometric redshifts. Spectroscopic follow up is crucial in this regard, but

can suffer from biases due to photometric preselection.
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With the advent of theMulti Unit Spectroscopic Explorer (MUSE; Bacon et al. 2010) on the

VLT it is now possible to address these concerns. With the deep MUSE data obtained over

the HubbleUltra Deep Field (HUDF; Bacon et al., 2017) and Hubble Deep Field South (HDFS;

Bacon et al., 2015), we can ‘blindly’ detect star-forming galaxies in emission lines down to

very low levels (∼ 10
−3

M� yr
−1
) and obtain a precise spectroscopic redshift estimate at the

same time (Inami et al., 2017). These data provides a unique view into the low-mass regime

of the star formation sequence.

In this paper we present a characterisation of the low-mass end of theM∗-SFR relation,

using deep MUSE observations of the HUDF and HDFS. We characterise the properties of

the M∗-SFR relation down stellar masses of M∗ ∼ 10
8

M� and SFR ∼ 10
−3

M� yr
−1
, out

to z < 1, and trace the SFR in individual galaxies with masses as low as M∗ ≤ 10
7

M� at
z ∼ 0.2. We model the relation using a self-consistent Bayesian framework and describe it

with a Gaussian distribution around a plane in (log mass, log SFR, log redshift)-space. This

allows us to simultaneously constrain the slope and evolution of the star formation sequence

as well as the amount of intrinsic scatter, while taking into account heteroscedastic errors

(i.e. a different uncertainty for each data point).

The structure of the paper is as follows. In § 2.2 we first introduce the MUSE data set and

outline the selection criteria used to construct our sample of star-forming galaxies. We then

go into the methods used to determine a robust stellar mass and a SFR from the observed

emission lines. Before looking at the results, we discuss the consistency of our SFRs in § 2.3.

We then introduce the framework of our Bayesian analysis used to characterise theM∗-SFR
relation (§ 2.4) and present the results in § 2.5. We discuss the robustness of the derived

parameters in § 2.A.1. Finally, we discuss our results in the context of the literature and

models, and the physical implications (§ 2.6). We summarise with our conclusions in § 2.7.

Throughout this paper we assume a Chabrier (2003) stellar initial mass function and a flat

ΛCDM cosmology with H0 = 70 km s
−1

Mpc
−1
, Ωm = 0.3 and ΩΛ = 0.7.

2.2 Observations andmethods

To study the properties of the galaxy population down to low masses and star formation

rates, deep spectroscopic observations are required for a large number of sources. We exploit

the unique observations taken with the MUSE instrument over the HubbleUltra Deep Field

(Bacon et al., 2017) and the Hubble Deep Field South (Bacon et al., 2015) to investigate the star

formation rates in low-mass galaxies at 0.11 < z < 0.91. We provide a brief presentation

of the observations and data reduction in the next section, but refer to the corresponding

papers for details.

TheMUSE instrument is an integral-field spectrograph situated at UT4 of the Very Large

Telescope. It has a field-of-view of 1
′ × 1

′
when operating in wide-field-mode, which is

fed into 24 different integral-field units. These sample the field-of-view at 0.2 ′′ resolution.
The spectrograph covers the spectrum across 4650Å - 9300 Å with a spectral resolution of

R ≡ �/Δ� ' 3000. The result of a MUSE observation is a data cube of the observed field,

with two spatial and one spectral axes, i.e. an image with spectroscopic information at every

pixel.
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Figure 2.1: Redshift distribution of our galaxies plotted against their (dust-corrected) SFR (1� error

bars are in grey). The colour denotes the stellar mass. The solid line depicts the lowest uncorrected

SFR from H� �4863 we can detect in the HUDF at each redshift (which is effectively determined by the

requirement that S/N(H �4342) > 3; see § 2.2.4).

2.2.1 Observations, data reduction, and spectral line fitting

The HUDF (Beckwith et al., 2006) was observed withMUSE in a layered strategy. The deepest

region consists of a single 1
′×1

′
pointingwith a total integration depth of 31 hours. This deep

region lies embedded in a larger 3
′ × 3

′
mosaic consisting of 9 individual MUSE pointings,

each of which is 10 hours deep. The average full width at half maximum (FWHM) seeing

measured in the data cubes is 0.6 ′′ at 7750Å. For the purpose of this work we use all galaxies

from the mosaic region, including the deep (udf10) region, which we refer to collectively as
the (MUSE) HUDF.

Because of its similar depth, we also include theMUSE observation of the HDFS (Williams

et al., 2000) which was observed as part of the commissioning activities. These observations

consist of a single deep field (1
′ × 1

′
) with a total integration time of 27 hours and a median

seeing of 0.7 ′′.
The full data acquisition and reduction of the HUDF is detailed in Bacon et al. (2017) (for

a description of the MUSE data reduction pipeline see Weilbacher et al., in prep.
19
). The data

reduction of the HUDF is essentially based on the reduction of the HDFS, which is detailed in

Bacon et al. (2015), with several improvements. We use HUDF version 0.42 and HDFS version

1.0, which reach a 3�-emission line depth for a point source (1
′′
) of 1.5 and 3.1 × 10

−19

erg s
−1

cm
−2

(udf10 and mosaic) and 1.8 × 10
−19

erg s
−1

cm
−2

(HDFS), measured between

the OH skylines at 7000Å.

Sources in the HUDF were identified using both a blind and a targeted approach. The

latter uses the sources from theUVUDF catalogue (Rafelski et al., 2015) as prior information to

extract objects from theMUSE cube. A blind search of the full cube was also conducted, using

19
Weilbacher et al. (2020)
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a tool specifically developed for MUSE cubes called origin (Bacon et al. 2017; Mary et al., in

prep.
20
). A similar approach was already followed for the HDFS. Here sources were identified

based on the Casertano et al. (2000) catalogue and blind emission line searches of the data cube

were done with the automatic detection tools muselet
21
and LSDCat (Herenz &Wisotzki,

2017) as well as through visual inspection, and cross-correlated with the corresponding

photometric catalogue, as described in Bacon et al. (2015).

The process of determining redshifts and constructing a full catalogue from the extracted

sources is described in Inami et al. (2017) for the HUDF (and a similar approach was followed

for the HDFS). In short, redshifts were determined semi-automatically by cross-matching

template spectra with the identified sources and subsequently inspected and confirmed by

at least two independent investigators. For emission line galaxies an additional constraint

comes from the requirement that the emission line flux is coherent in a narrow band image

around the line in the MUSE cube. The typical error on the MUSE spectroscopic redshifts is

�z = 0.00012(1 + z) (Inami et al., 2017), which we will take into account in the modelling

(conservatively taking �log(1+z) = 0.0005 for all galaxies; § 2.4)

For all detected sources one dimensional spectra are extracted using a straight sum

extraction over an aperture around each source (based on the MUSE point spread function

convolved with the Rafelski et al. (2015) segmentation map, see Bacon et al. 2017). From

the extracted 1D spectra emission line fluxes are fitted in velocity space, using an updated

version of the platefit code described in Tremonti et al. (2004) and Brinchmann et al. (2004,

2008). platefit assumes a Gaussian line profile for all lines, with the same intrinsic width

and velocity. The result is a measurement of the flux and equivalent width of all emission

lines present, with the uncertainties obtained from propagating the original pipeline errors.

We define the signal-to-noise (S/N) in a particular spectral line as the line flux over the line

flux error. We also determine the strength of the 4000 Å break, Dn(4000), measured over

3850− 3950Å and 4000− 4100Å (Kauffmann et al., 2003). We note that the stellar absorption

underlying the emission lines is taken into account by platefit.

2.2.2 Sample selection
From the HUDF and HDFS catalogues we construct our sample of star-forming galaxies

using the following constraints:

1. We use H� �4863 or H� �6565 to derive the SFR (see § 2.2.4) and in either case we

always need H� �4863 (to directly probe the SFR or to correct for dust extinction in

H� �6565). As a result, we are limited to the range of redshifts where H� �4863 falls

within the MUSE spectral range. Subsequently, we only take objects into account that

have a redshift z < (9300/4861) − 1 = 0.913.

2. In order to derive a robust SFR and dust correction, we only allow objects with a signal-

to-noise ratio > 3 in the relevant pair of Balmer lines. This means S/N > 3 in either

H� �4863 and H �4342 (for H� �4863 derived SFRs) or H� �6565 and H� �4863 (for

H� �6565 derived SFRs).

20
Mary et al. (2020)

21
https://mpdaf.readthedocs.io/en/latest/muselet.html

https://mpdaf.readthedocs.io/en/latest/muselet.html
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Figure 2.2: BPT-diagram (Baldwin et al., 1981) of the sources in our H� �6565-subsample for which

we measure [N ii] �6585. All galaxies fall in the star-forming region of the diagram. The filled and

open circles have S/N([N ii] �6585) > 3 and < 3, respectively, and the 5 sources encircled in red are

detected in X-rays (Luo et al., 2017). The solid and dashed curve show the AGN boundary andmaximum

starburst line from Kauffmann et al. (2003) and Kewley et al. (2001), respectively.

Included in the above criteria are some galaxies that are not actively star-forming and lie

on the ‘red-sequence’. Since these galaxies are not expected to lie on theM∗-SFR relation, we

exclude them from the analysis based on their spectral features:

3. We remove 12 galaxies with a strong 4000 Å break by only allowing galaxies with a

Dn(4000) < 1.5.

4. We omit galaxies with a rest-frame equivalent width in either H� �6565 or H� �4863

of < 2Å.
22
This removed an additional 7 and 5 objects, respectively.

In addition, three sources were removed from the sample due to severe artefacts in their

emission lines (see § 2.3). All sources selected based on the MUSE data are detected in the

HST imaging. However, four sources were removed because there photometry was severely

blended, prohibiting a mass estimate.

5. We remove potential AGN from our sample in the HUDF by cross-matching our

sources with the Chandra Deep Field South 7Ms X-ray catalogue (Luo et al., 2017). We

also confirm the location of the sources in the star-forming region of different emission

line diagnostic diagrams.

A total of 16 galaxies with z < 0.913 from theMUSE catalogue are detected in X-rays. Five of

these sources (including one AGN) show passive spectra without emission lines and did not

22
Following the convention that emission-line equivalent widths (EQW) are negative, this translates to excluding

EQW > −2Å.
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Figure 2.3: AGN diagnostics for the sources in our H� �4863-subsample, including all sources which

have S/N> 3 in the relevant emission lines. Overall, our sample is consistent with star-forming

galaxies. We remove one X-ray detected AGN from the sample. Left: The [O ii] ��3727, 3730/H�
vs. [O iii] ��4960, 5008/H� diagnostic from Lamareille et al. (2004) (solid line, with the uncertainty

indicated by the dashed lines). Right: The mass-excitation diagram from Juneau et al. (2011). Galaxies in

the region between the dashed and solid lines are on average identified as intermediate between AGN

and SF.

pass the previous criteria. Cross-matching our star-forming sample (after applying criteria 1

through 4) left 11 galaxies that were detected in X-rays. Five of these sources (ID#855, 861,

863, 895, and 902) are in the H�-subsample and six (ID#867, 869, 874, 875, 884, and 905) are

in the H�-subsample. All of these sources were classified as ‘Galaxy’ in the Luo et al. (2017)

catalogue (according to their 6 criteria based on X-ray luminosity, spectral index, flux-ratios

and previous spectroscopic identification), except for ID# 875 which was classified as an AGN

and which we subsequently removed from the sample. Luo et al. (2017) caution however that

sources classified as ‘Galaxy’ may still host low-luminosity or heavily obscured AGN.

We plot all sources from our H� �6565-subsample for which we have a measurement of

[N ii] �6585 in the BPT-diagram (Baldwin et al., 1981) in Figure 2.2. We include sources for

which we have a low S/N (<3) measurement of [N ii] �6585 as open circles. While we can only

put a subsample of our sources on this diagram, all are in the star-forming region, including

the 5 galaxies which have an X-ray detection. None of the X-ray sources classified as ‘Galaxy’

show spectral signatures of AGN activity. In Figure 2.3 we show a similar consistency check

for the H� �4863-subsample. Because we lack access to the BPT diagram at these redshift,

we instead use the diagnostics from both Lamareille et al. (2004) and Juneau et al. (2011).

Reassuringly, our sample is overall consistent with star-forming galaxies and none of the

galaxies show line-ratios clearly powered by AGN activity (including, perhaps surprisingly,

the single X-ray classified AGN). There is only one source which is above the discriminating

line in both plots (ID#1114), however, it is consistent within errors with being dominated

by star formation and not detected in X-rays. Furthermore, its high [O iii] flux can very well

be driven by star formation and indeed it is part of the sample of high-[O iii]/[O ii] galaxies

identified by Paalvast et al. (2018). Hence, except for X-ray detected AGN ID#875, we do not
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Figure 2.4: Histograms of the stellar mass distributions of the MUSE detected galaxies in the HUDF

and the HDFS. The deep 30h observations allow us to detect and subsequently infer a stellar mass and

SFR for galaxies down to ∼ 10
7

M� .

remove any additional sources from the sample. Finally, we note that none of the methods

to identify AGN are individually foolproof. Therefore, we check the impact of potential

misclassification of AGN and confirm that excluding (1) the sources that are above the pure

star-forming line in either of the diagnostic diagrams or (2) all galaxies that are detected in

X-rays (even when consistent with star formation) does not significantly affect the results.

The final sample then consists of 179 star-forming galaxies, 147 from the HUDF, all

with the highest redshift confidence (Inami et al., 2017), and 32 from the HDFS, between

0.11 < z < 0.91 with a mean redshift of 0.53 (see Figure 2.1).

2.2.3 Stellar masses

The stellar masses of the galaxies were estimated using the Stellar Population Synthesis

(SPS) code FAST (Kriek et al., 2009). The SPS-templates were �2
-fitted to the broad-band

photometry of the different fields for a range of parameters. For the HUDF, we rely on

the deep HST photometry from the UVUDF catalogue (Rafelski et al., 2015) (containing

WFC3/UVIS F225W, F275W and F336W; ACS/WFC F435W, F606W, F775W, and F850LP

and WFC/IR F105W, F125W, F140W and F160W) while for the HDFS we take the WFPC2

photometry from Casertano et al. (2000) (F330W, F450W, F606W, and F814W). The SPS-

templates were constructed from the Conroy et al. (2010) (FSPS)models using a discrete range

of metallicities (Z/Z� = [0.04, 0.20, 0.50, 1.0, 1.58]). We assumed a Chabrier (2003) initial

mass function with an exponentially declining star formation history (SFR ∝ exp(−t/� )
with 8.5 < log(�/yr) < 10 in steps of 0.2 dex). The redshifts were fixed to the accurate

spectroscopic values determined from theMUSE spectra. Ages were allowed to vary between

8 < log Age/yr < 10.2 in steps of 0.2 dex. We parameterised the dust attenuation curve
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according to the Calzetti et al. (2000) dust law with the dust extinction in the visual taken to

be within 0 < AV < 3 (ΔAV = 0.1 magnitudes). For all the parameters error estimates were

obtained through Monte Carlo methods, by re-running the fitting 500 times while varying

the input photometry within their photometric errors (see Kriek et al. 2009 for details).

Stellar masses were determined for all 179 objects in the final sample. The distribution of

masses is shown in Figure 2.4. With these deep MUSE observations we are mainly probing

low-mass (<10
9.5

M�) galaxies and we can still detect star formation from emission lines

in galaxies with mass ∼10
7

M� . The mass estimates with their upper and lower confidence

intervals are shown for the individual objects in Figure 2.7. The mean and standard deviation

of the average errors on the mass estimates are 0.19± 0.06 dex for the HUDF and 0.22± 0.12

dex for the HDFS.

2.2.4 Star formation rates
The star formation rates are inferred from the flux in the H� �6565 or H� �4863 recom-

bination lines emitted by H ii regions, which primarily trace recent (∼10 Myr) massive star

formation. Before we can infer a SFR we need to correct the measured flux in the emission

lines for the attenuation by dust along the line of sight. We do this assuming a dust law accord-

ing to Charlot & Fall (2000) (i.e. � ∝ �−1.3
, appropriate for birth clouds) and using the intrinsic

ratio of the Balmer recombination lines (jH�/jH� = 2.86 and jH�/jH = 2.14; Hummer &

Storey (1987), for an electron temperature and density of T = 10 000 K and ne = 10
3

cm
−3
).

Hence, to derive an SFR(H� �6565) we also require a measurement of H� �4863 and likewise

for SFR(H� �4863) we also require H �4342. After the dust correction we can convert

the intrinsic flux to a luminosity using the measured redshift, given the assumed ΛCDM
cosmology.

To determine the SFR we follow the treatment by Moustakas et al. (2006), which is

essentially based on the relations from Kennicutt (1998a). Out of the SFR indicators that

MUSE has access to, the H� �6565 line presents the least systematic uncertainties, but it

is only available at low redshifts (z ≤ 0.42 for MUSE at 9300Å; 47 galaxies). We convert

the Kennicutt (1998a) relation from a Salpeter to a Chabrier IMF (0.1 < M[M�] < 100) by

multiplying by a factor 0.62 (which is derived by computing the difference in total mass in

both IMFs, while assuming the same number of massive (>10 M�) stars):

SFR(H� �6565) = 4.9 × 10
−42

L(H� �6565)
ergs

−1
M� yr

−1, (2.1)

where L(H� �6565) is the dust-corrected luminosity. We note that this calibration assumes

case B recombination and solar metallicity.

Because H� �6565 moves out of the optical regime at z > 0.42, the H� �4863 luminosity

is the primary tracer of SFR for the majority of our sample (132 galaxies). Given the intrinsic

flux ratio between H� �6565 and H� �4863, we can convert equation Equation 2.1 into a

SFR for L(H� �4863):

SFR(H� �4863) = 1.4 × 10
−41

L(H� �4863)
ergs

−1
M� yr

−1, (2.2)
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where L(H� �4863) is corrected for dust. We note that the H� �4863 derived SFR inherits all

the uncertainties from SFR(H� �6565), including variations in dust reddening (Moustakas

et al., 2006).

We also investigate the SFR using the [O ii] ��3727, 3730 nebular emission line. Here

we use the calibration for the H� �6565 SFR (Equation 2.1), where we assume an intrinsic

flux ratio between [O ii] ��3727, 3730 and H� �6565 of unity (Moustakas et al., 2006). Since

[O ii] ��3727, 3730 is closest to H� �4863, we use the H� �4863/H �4342 ratio to determine

the dust correction, scaled to the appropriate wavelength. The consequence of this is that the

addition of the [O ii] ��3727, 3730 line as a tracer of SFR will not add any new objects to the

sample. Instead, it can be used as a useful comparison, which will be discussed in § 2.3.

To estimate the uncertainty in the SFR estimates (and dust corrections), we use Monte

Carlo methods to derive a confidence interval on the SFR of every individual galaxy. We

create a posterior distribution on the SFR by doing 1000 draws from a Gaussian distribution

centred on the measured flux, with the variance set by the measurement error squared. The

median posterior SFR can then be determined, as well as the ±1� confidence intervals, by

taking the 50
th
, 16

th
and 84

th
percentile from the derived posterior distribution.

2.3 Consistency of SFR indicators

Before turning to the results, we first consider the consistency of the derived SFRs, by com-

paring the SFR estimates from different tracers for the same galaxies. In the remainder of the

paper we only use the dust-corrected Balmer lines as tracers of star formation.

For a significant fraction of our galaxies (≈ 40%) we find that the Balmer line ratios are

below their case B values (as stated in § 2.2.4), indicative of a negative dust correction. While

this might seem surprising, this is not uncommon and similar ratios have been seen in spectra

from, e.g. the SDSS (Groves et al., 2012), MOSDEF (Reddy et al., 2015), KBSS (Strom et al.,

2017) and ZFIRE (Nanayakkara et al., 2017). While ‘unphysical’, these ratios are not entirely

unexpected and can have several causes.

First, these deviations can be caused by noisy spectra. Most galaxies in our sample are

not very dusty and hence have a ratio close to case B. In > 50% of the cases with deviant

ratios, the case B ratio is indeed within the 1� error bars. We conservatively apply no dust

correction for all these galaxies. The mean dust correction for all galaxies in our sample is

� (H�/H ) ≈ 0.6 (setting galaxies with a negative dust correction to zero) or � (H�/H ) ≈ 1

(including only galaxies with a positive dust correction).

Secondly, there could be a problem with the measurement. Three objects that were

significantly offset from the rest of the sample showed particular problems in their emission

lines. In one object (ID#971)H �4342was severely affected by an emission line from a nearby

source ([O iii] �4960 from ID#874 at z = 0.458, another galaxy in our sample, coincidentally

almost exactly at the observed wavelength of H ). For five other objects there was a clear
problem with the fit to the H� �4863 (ID#894, #896, #1027) or H� �6565 (ID#2, #1426)

emission lines. We subsequently removed the first four sources from the analysis; for the

latter two we disregarded the H� �6565 SFR and use the H� �4863 SFR.

A third, intriguing option is that theses objects are real. Indeed, there remains a small
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Figure 2.5: A comparison of the derived star formation rate (SFR) from the H� �6565, H� �4863 and

[O ii] ��3727, 3730 luminosities for the HUDF (top panels, circles) and the HDFS (bottom panels, tri-

angles). The left panels show the logarithm of the SFR from H� �6565 vs. the difference between the log

H� �4863 and log H� �6565 SFRs. The right panels show the same for H� �4863 vs. [O ii] ��3727, 3730.

In the top right corners � indicates the standard deviation (in dex) around the one-to-one relation.

Colour indicates the signal-to-noise ratio (S/N) in the faintest line; H �4342. Only galaxies that al-

lowed for more than one SFR indicator are included in the plot. Overall the SFRs from H� �4863 and

[O ii] ��3727, 3730 agree reasonably well, considering we have not taken into account the metallicity

dependence in SFR([O ii] ��3727, 3730). The scatter in H� �6565 vs. H� �4863 SFR is largely driven

by H �4342 S/N.

number of galaxies which have high-S/N spectra, but still showBalmer ratio’s below their case

B values.
23
Similar objects have also been observed in the other surveys already referenced,

such as SDSS (Jarle Brinchmann, private communication, see also Groves et al. 2012). While

these are very interesting objects on their own, a detailed analysis of these sources is beyond

the scope of this paper. To be conservative and consistent, we apply no dust correction for

these sources.

For some objects in the sample we measure multiple emission lines, which allows us to

infer a SFR from different tracers. In any case a pair of Balmer lines (either H�/H� or H�/H )
23
It is important to point out that this is not caused by stellar absorption in the continuum as this is taken into

account when modelling the emission lines with platefit.
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is available (§ 2.2.2), to allow for a dust correction. The majority of our sample lies at z > 0.42

for which H� �6565 is not available, but (dust-corrected) [O ii] ��3727, 3730 is available as an

SFR indicator. In Figure 2.5we show a comparison for all galaxies that allowed bothH� �6565

and H� �4863 (only some galaxies at z < 0.42) and H� �4863 and [O ii] ��3727, 3730 derived

SFRs (all redshifts). We note thatH� �4863 and [O ii] ��3727, 3730 derived SFRs are corrected

for dust using the same H�/H -ratio.
In the right panels of Figure 2.5 we see that the H� �4863 and [O ii] ��3727, 3730 derived

SFRs agree remarkably well (standard deviation � ≤ 0.28 dex), considering that we have

not taken into account the metallicity dependence of the [O ii] ��3727, 3730 luminosity in

the SFR conversion factor (e.g. Kewley et al., 2004). A few points scatter quite a bit, most of

which have large error bars. At lower SFRs we do see that [O ii] ��3727, 3730 predicts a lower

SFR than H� �4863, which is probably because at low SFR we are also probing low-mass

and low-metallicity galaxies. Stars with a lower metallicity have a higher UV flux, which

causes the ionisation equilibrium for oxygen to shift from [O ii] to [O iii] which diminishes

the observed [O ii] ��3727, 3730 flux. Because of the opposite effect [O ii] ��3727, 3730

occasionally predicts a higher SFR than H� �4863 at the high-SFR end.

For a limited number of objects all three Balmer lines are in the spectral range of MUSE

(0.09 < z < 0.42). We compare the H� �6565 and H� �4863 derived SFRs in the left panel of

Figure 2.5, where we find reasonable agreement (in the HUDF, where we have most sources,

they have a factor of ∼ 2 scatter). Most of the scatter is found at low SFR, where (on average)

the S/N is also the lowest. In theHDFS one object (at low S/N) is a strong outlier, but removing

this source yields a similar scatter to the HUDF. Intuitively the SFRs from H� and H� should
agree very well, which warrants some deeper investigation into the outliers at low SFR.

The main uncertainty in the SFR estimate is the amount of dust attenuation. In Figure 2.6

we compare the inferred optical depth from the H�/H -ratio (� [H�/H ]) to the optical depth

determined from the H�/H� ratio (� [H�/H�]). We note though that Figure 2.6 shows the

measured optical depth, while we set negative � to zero before computing the SFR. Indeed,

while many sources agree well, we see that the amount of dust correction estimated from the

Balmer lines is not consistent for several objects, leading to a different SFR estimate from

H� �6565 and H� �4863.

This tension is in part caused by the nature of the experiment, which requires that all

three Balmer lines are in the spectral range of MUSE simultaneously. Necessarily then,

H� �6565 will be at the long wavelength end of the spectrograph where skylines are more

prevalent, occasionally adding uncertainty to its measurement. For the low-SFR sources,

however, H �4342 might not be very bright, adding uncertainty to the dust correction

of SFR(H� �4863) for these sources (as seen at lower SFR in the left panels of Figure 2.5).

Indeed, most of the outliers have a low S/N in H �4342 (as stated earlier, for the objects

with a negative dust correction from H�/H , we leave the often lower S/N measurement of

H �4342 out of the analysis by setting � (H�/H ) to zero). On the other hand, the converse
is not quite true: for a large number of sources with a low S/N in H �4342 we do have

a consistent SFR estimate. For all objects we use the highest S/N lines available to infer a

dust-corrected SFR, i.e. for objects which have a measurement of all three Balmer line we use

the H� �6565, H� �4863 pair to infer a dust-corrected SFR, which generally has the highest

S/N.
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Figure 2.6: Optical depths at thewavelength ofH� �4863 as derived fromboth theH� �4863/H �4342

and the H� �6565/H� �4863-ratio, coloured by H �4342 signal-to-noise (S/N). The dashed line is the

one-to-one relation. Overall the optical depths agree reasonably well, unless the H S/N is low. Most

galaxies actually show little dust (� close to zero). The shaded area shows the regions of (unphysical)
negative optical depth for each axis. We set the optical depth to zero for galaxies with negative � as this
is often consistent with the error bars and the offset is due to noise in the spectra. We note that some

of the high-S/N outliers actually have discrepant Balmer ratios. If the inferred optical depth is very

different, this will affect the comparison of the dust-corrected SFR from H� �4863 and H� �6565 (see

Figure 2.5).

In summary, we have dust-corrected SFRmeasurement from theH� �6565 andH� �4863

spectral lines for all galaxies at z < 0.42 and the H� �4863, H �4342-pair at higher redshifts.

Comparing H� �6565 and H� �4863 SFRs, we conclude that the dust correction is the largest

uncertainty on the derived SFR. We always use the highest S/N line-pair available to compute

a dust-corrected SFR. Comparing the H� �4863 SFRs with [O ii] ��3727, 3730 at all redshifts,

we see a very consistent picture (they have ≤ 0.3 dex scatter in both fields). Naturally, some

variations between H� �4863 and [O ii] ��3727, 3730 SFRs are expected given the metallicity

dependent nature of [O ii] ��3727, 3730.

2.4 Bayesian model

2.4.1 Definition
The star formation sequence is commonly described by a power-law relation between stellar

mass (M∗) and star formation rate (SFR), which evolves with redshift (z):

SFR ∝ M
a

∗ (1 + z)c, (2.3)
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where a and c are the power law exponents. It has been suggested that the slope (a) becomes

shallower in the high-mass regime (M∗ > 10
10

M�). In this work we will focus on the

low-mass regime, for which we assume the slope is constant with mass. We will revisit this

assumption in § 2.5.2. Given the lack of homogeneous studies with redshift it is still unclear

whether the low-mass slope of the relation evolves with redshift. Here, we assume that the

low-mass slope is independent of redshift over the range that we probe in this study. Likewise,

given the large uncertainties in (the evolution of) the intrinsic scatter, we limit the number of

free parameters in the model and assume that the intrinsic scatter does not depend on any of

the other model parameters.

Following this description, we model the star formation sequence by a plane in (log M∗,
log(1 + z), log SFR)-space:

log SFR[M� yr
−1

] = a log

(
M∗
M0

)
+ b + c log

(
1 + z

1 + z0

)
, (2.4)

where b is now a normalisation constant. We takeM0 = 10
8.5

M� and z0 = 0.55 (close to the

medians of the data) without the loss of generality. Galaxies scatter around this relation with

an amount of intrinsic scatter in the vertical (i.e. log SFR) direction, which we denote by �intr.

In the lack of an obvious alternative, we take the intrinsic scatter to be Gaussian in our model.

In a statistical sense we can then say that our observations (log M∗, log(1 + z), log SFR)

are drawn from a Gaussian distribution around the plane defined by Equation 2.4. To recover

this distribution, we need to take a careful approach, taking into account the heteroscedastic

errors of the measurements.

We adopt a Bayesian approach to determine the posterior distribution of the model

parameters (a, c, b, �intr) (see Andreon & Hurn (2010) for a lucid description of the Bayesian

methodology in an astronomical context). Different approaches to construct the likelihood

have been presented in the literature (see e.g. Kelly 2007 or Hogg et al. 2010). We choose

to adopt a parameterisation of the likelihood following Robotham & Obreschkow (2015)

(hereafter R15).

First, we state that our knowledge about galaxy i (determined by the observations) is

encompassed by the probability density function of a multivariate Gaussian distribution,

N (xi,Ci), with a mean value of:

xi = (log M∗,i, log(1 + zi), log SFRi) (2.5)

and a diagonal covariance matrix:

Ci =
*..
,

�2

log M∗,i 0 0

0 �2

log(1+z),i 0

0 0 �2

log SFR,i

+//
-

(2.6)

containing the variance in each parameter. This is justified as both stellar mass and star

formation rate are measured independently from different data. The covariance with redshift

is negligible as the error on the spectroscopic redshift is very small.
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Secondly, we parameterise the model given by Equation 2.4 (which is a plane in three

dimensions) in terms of its normal vector n, to avoid optimisation problems (R15). The

galaxies scatter around this plane with an amount of intrinsic Gaussian scatter, perpendicular

to the plane, which we denote by �⊥. We note that perpendicular scatter �⊥ is distinct

from the (commonly reported) vertical scatter �intr which lies in the log SFR direction. After

the analysis, we can simply transform the parameters (n, �2⊥) back into familiar parameters

(a, c, b, �2

intr
) (using R15, Eq. 9).

Given the above definitions, we can express our log-likelihood
24
as the sum over N data

points (see also R15):

lnL = −1

2

N∑
i=1

[
ln

(
�2

⊥ +
n>Cin
n>n

)
+

(n>[xi − n])2

�2⊥n>n + n>Cin

]
, (2.7)

where all the parameters have been defined earlier.

Lastly, we have to define our priors on each component of n and on �2⊥. As we want to
impose limited prior knowledge, we express our priors as uniform distributions, with large

bounds compared to the typical values of the parameters (we confirm that the results are

robust, irrespective of the exact choice of bounds).

n ∼ U3(−1000, 1000) (2.8)

�2

⊥ ∼ U(0, 1000),

whereU n
is the n-dimensional multivariate uniform distribution and we take into account

the fact that variance is always positive.

2.4.2 Execution
With the likelihood and priors in hand we determine the posterior usingMarkov chain Monte

Carlo (MCMC) methods. We use the Python implementation called emcee (Foreman-Mackey

et al., 2013), which utilises the affine-invariant ensemble sampler for MCMC from Goodman

&Weare (2010). emcee samples the parameter space in parallel by setting off a predefined

number of ‘walkers’, which we take to be 250.

Following Foreman-Mackey et al. (2013), we first initialise the walkers randomly in a

large volume of parameter space. We then restart the walkers in a small Gaussian ball around

the median of the posterior distribution (i.e. around the ‘best solution’). We (generously) burn

in for a quarter of the total amount of iterations for each walker which we take to be 20000

for the main run (§ 2.5.1; roughly four hundred times the autocorrelation time). We note that

for all subsequent runs described below we follow the same procedure, with similar results.

We take several steps to check whether the emcee algorithm has properly converged. As

an indication, one can look at both the mean acceptance fraction of the samples as well as the

autocorrelation time (Foreman-Mackey et al., 2013). For the main run the acceptance fraction

that resulted from the modelling (0.45) was well within range advocated by Foreman-Mackey

24
Throughout this paper we consistently use ‘log’ for the base-10 logarithm and ‘ln’ for the base-e logarithm, with

one exception: we stick to standard terminology and call ln L the ‘log-likelihood’.
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et al. (2013) (0.2 - 0.5). The autocorrelation time was also relatively short and we let the

walkers sample the posterior well over the autocorrelation time. Furthermore, we confirmed

that the walkers properly explored the parameter space.

Combining the results from all walkers then gives the posterior distribution over which

we can marginalise to find the posterior probability distributions for the model parameters.

We will discuss the results of the modelling in § 2.5.

2.4.3 Model and data limitations

The unique aspect of the likelihood in Equation 2.7 is that it captures both the heteroscedastic

errors on the observables as well as the intrinsic scatter around the plane. Furthermore, it can

simultaneously describe both the slope of the sequence as well as the evolution with redshift.

It is important to determine how well we can recover the ‘true’ parameters with the

observed data at hand. Our MUSE observations are constrained by the fact that we can only

detect galaxies in a certain redshift range and cannot detect galaxies below the flux limit of

the instrument (see Figure 2.1). As the flux limit varies with redshift, this could introduce a

bias in our inferred parameters. The reason behind this is that the lack of low-SFR galaxies

at higher redshift will bias the posterior towards shallower slopes, with a steeper redshift

evolution (see Figure 2.11 for an illustration). In order to correct for such a bias, we analyse a

series of simulated observations. We briefly outline the procedure here, which is described in

detail in § 2.A.

In order to characterise the bias in the inferred parameters, we simulate galaxies from a

mock star formation sequence for a range of values in each parameter, which we call xtrue,k

(see Table 2.2). After applying the redshift-dependent flux limit to the mock data, we model

the remaining galaxies as described in § 2.4 and recover the parameters, xout,k. We then fit

the transformation between the true and recovered parameters with an affine transformation

(xout,k = Axtrue,k + b) as outlined in § 2.A.2. The inverse of the best-fit transformation

(Equation 2.19) can then be used to correct the posterior density distribution as measured

from the MUSE data. In the following, we provide both the uncorrected (directly fitted) and

the corrected values for reference.

2.5 Star formation sequence

2.5.1 Global sample

With a reliable SFR estimate in hand, we can turn to the star formation sequence between

0.11 < z < 0.91 as observed by MUSE. Figure 2.7 shows a plot of stellar mass (M∗) versus
star formation rate (SFR) for all the galaxies in the sample. The figure is based on two dust-

corrected SFR indicators: the H� �4863 and H� �6565 luminosities (Eqs. (2.2) and (2.1)). The

vertical grey lines indicate the errors in (log M∗, log SFR) for each of the individual galaxies.

The mean average error on the SFR is ≈ 0.2 dex in both the HUDF and the HDFS.

We are able to detect star formation in galaxies down to star formation rates as low as

0.003 M� yr
−1
. The galaxies appear to follow theM∗-SFR trend closely over the complete
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Figure 2.7: Left panel: The sample of 179 star-forming galaxies observed with MUSE, plotted on the

M∗-SFR plane. The symbols indicate the field and colour indicates the redshift. The dashed lines show a

constant sSFR, which is equivalent to a linear relationship: SFR ∝ M∗. The red curve shows the model

of the star formation sequence fromWhitaker et al. (2014) for 0.5 < z < 1.0. The vertical grey dashed

line indicates the selection for the low-mass fit (§ 2.5.2). Right panel: Same as the left panel but with

the data points removed, showing (the evolution of) the star formation sequence as seen by MUSE,

according to Equation 2.11.

mass range, down to the lowest masses we can probe here ∼ 10
7

M� . At the high-mass end

it appears we are starting to witness a flattening off of the trend, although we are primarily

sensitive to the intermediate and low-mass galaxies.

Wemodel theM∗-SFR relationwith the BayesianMCMCmethodology described in detail

in § 2.4. We show the resulting posterior probability density distribution for the parameters in

Figure 2.8. Bymarginalising over the various parameters, we recover the posterior probability

distributions for the individual parameters of interest (a, c, b, �intr). These are plotted as

histograms above the various axes in Figure 2.8. By taking the median and the 16
th
and 84

th

percentile from the posterior distributions we derive the median posterior value and a 1�
confidence interval for the parameters of interest.

The (uncorrected) best-fit (i.e. median posterior) parameters of the distribution (with

their confidence intervals) that describe the star formation sequence are:

log SFR[M� yr
−1

] = 0.79
+0.05

−0.05
log

(
M∗
M0

)
− 0.77

+0.04

−0.04

+ 2.78
+0.78

−0.78
log

(
1 + z

1 + z0

)
± 0.46

+0.04

−0.03
, (2.9)

analogous to Equation 2.4. The final term represents the intrinsic scatter (�intr = 0.46
+0.04

−0.03
)

in the vertical (log SFR) direction. We note that while it is a perfectly valid option for the

parameterisation of the likelihood, the posterior distribution does not favour models with

zero intrinsic scatter.

Figure 2.8 shows that some correlations exist between the different parameters of the
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Figure 2.8: Projections of the 4Dposterior distribution for themodel parameters: slope (a), evolution (c),

normalisation (b) and intrinsic scatter (�intr). The histograms on top show themarginalised distributions

of the model parameters. The bias-corrected posterior median value and the 16
th
and 84

th
percentile

are denoted by the dashed lines and by the values above the histograms. The contours show the 0.5,

1, 1.5 and 2 � levels. The posterior directly from the modelling is shown in black, red indicates the

posterior after applying the bias correction (Equation 2.19). Figure created using the corner.pymodule

(Foreman-Mackey, 2016).
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Figure 2.9: The best-fit star formation sequence for the 179 star-forming galaxies observedwithMUSE.

The symbols indicate the dust-corrected tracer used to infer the SFR. The solid line shows best-fit

relation, as presented in Equation 2.11, and the dashed lines show the 1� intrinsic scatter. We subtract

the evolution from the y-axis and scale to the average redshift of the sample; z = 0.55. After accounting

for evolution, the galaxies clearly follow the star formation sequence, down to the lowest masses and

SFRs. The slightly larger fraction of galaxies that scatter into the high-mass, low-SFR regime may be a

result of the flattening of the relation aboveM∗ = 10
10

M� .

model, which is expected. The strongest correlation exists between slope and redshift evolu-

tion as a less steep slope requires more evolution in the normalisation to be compatible with

the data. The complete covariance matrix between the different parameters is:

Σ(a, c, b, �intr) =
*....
,

0.003 −0.019 −0.001 0.000

−0.019 0.620 0.011 0.000

−0.001 0.011 0.002 0.000

0.000 0.000 0.000 0.001

+////
-

. (2.10)

We correct the posterior for observational bias, by applying Equation 2.19, which is

indicated by the red contours in Figure 2.8. This yields a steeper slope, with a significantly

shallower redshift evolution:

log SFR[M� yr
−1

] = 0.83
+0.07

−0.06
log

(
M∗
M0

)
− 0.83

+0.05

−0.05

+ 1.74
+0.66

−0.68
log

(
1 + z

1 + z0

)
± 0.44

+0.05

−0.04
, (2.11)

At the same time, the transformation has little effect on the intrinsic scatter. The covariance

in the corrected posterior is essentially the same as the uncorrected one, with a slight increase
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in covariance with intrinsic scatter.

Σ(a, c, b, �intr) =
*....
,

0.004 −0.016 −0.002 0.002

−0.016 0.459 0.010 −0.003

−0.002 0.010 0.002 −0.001

0.002 −0.003 −0.001 0.002

+////
-

. (2.12)

We compare the generative distribution (i.e. Equation 2.9) with the data in Figure 2.9. As

the plane is three dimensional, we show a projection where we have subtracted the evolution

with redshift from the y-axis. Overall, the distribution appears to describe the data very

well and the scatter in the observations has tightened with respect to Figure 2.7. For a more

familiar representation we also show the resulting star formation sequence in the right panel

of Figure 2.7, for a number of different redshifts.

2.5.2 Low-mass sample (log M∗[M�] < 9.5)

We are primarily interested in the low-mass end of the star formation sequence. Our deep

MUSE sample spans a significant mass range, between log M∗[M�] = 6.5 − 11. As several

studies have suggested different characteristics for the star formation sequence above and

below a turnover mass ofM∗ ∼ 10
10

M� (e.g. Whitaker et al., 2014; Lee et al., 2015; Schreiber

et al., 2015), we repeat the above analysis excluding galaxies above a certain mass threshold.

To be on the conservative side, we choose this mass threshold to lie atM∗ = 10
9.5

M� . This
excludes 31/179 ≈ 17.5% of the sample. We include this threshold as a dashed vertical line

in Figure 2.7. We then repeat the modelling identically to what has been described in the

previous sections.

The bias-corrected star formation sequence for galaxies that have a stellar mass below

M∗ < 10
9.5

M� is:

log SFR[M� yr
−1

] = 0.83
+0.10

−0.09
log

(
M∗
M0

)
− 0.79

+0.05

−0.05

+ 2.22
+0.75

−0.76
log

(
1 + z

1 + z0

)
± 0.47

+0.06

−0.05
. (2.13)

The result is essentially the same, with the main difference being a steeper redshift evolution.

All parameters are within errors consistent with the relation for our complete sample (also

for the uncorrected values, see Table 2.1). This reflects the fact that we are primarily sensitive

to the low-mass end of the galaxy sequence. As this fit utilises only a part of the data we

will refer primarily to the fit based on all the data, Equation 2.11, as the main result in the

remainder of the paper. We report the (un)corrected values for all the fits in Table 2.1.

2.5.3 The effect of redshift bins (2D)
Most previous studies have notmodelled the redshift evolution of the star formation sequence

directly, but have instead divided the data into redshift bins and adopted a non-evolving

relation: log SFR = a log M∗+b. To facilitate the comparisonwith the literature, we adapt our



50 2.5 Star formation sequence

Table 2.1: Star formation sequence parameters for different samples.

Sample Size a b c �intr

3D log SFR[M� yr
−1

] = a log (M∗/M0) + b + c log (1 + z)/(1 + z0)
Full 179 0.79

+0.05

−0.05
−0.77

+0.04

−0.04
2.78

+0.78

−0.78
0.46

+0.04

−0.03

log M∗[M� ] < 9.5 148 0.79
+0.08

−0.07
−0.73

+0.04

−0.04
3.39

+0.91

−0.90
0.49

+0.04

−0.04

3D – bias corrected (via Equation 2.19)

Full 179 0.83
+0.07

−0.06
−0.83

+0.05

−0.05
1.74

+0.66

−0.68
0.44

+0.05

−0.04

log M∗[M� ] < 9.5 148 0.83
+0.10

−0.09
−0.79

+0.05

−0.05
2.22

+0.75

−0.76
0.47

+0.06

−0.05

2D log SFR[M� yr
−1

] = a log (M∗/M0) + b
Full 179 0.89

+0.05

−0.05
−0.82

+0.04

−0.04
0.49

+0.04

−0.04

0.1 < z ≤ 0.5 72 0.86
+0.09

−0.08
−0.92

+0.07

−0.07
0.57

+0.07

−0.06

0.5 < z < 1.0 107 0.84
+0.07

−0.06
−0.73

+0.06

−0.06
0.46

+0.05

−0.05

Notes. For a full description of the different samples, see § 2.5. M0 = 10
8.5

M� and z0 = 0.55.

model to fit the relation in the (log M∗, log SFR)-plane, without taking the redshift evolution
into account. This is easily done, by taking a two-dimensional version of our likelihood,

disregarding the second, log(1 + z)-component in Eq. (2.5)–(2.8) — the rest of the modelling

is be identical. We note that we still take both heteroscedastic errors as well as intrinsic scatter

into account (see § 2.4.1), however, we do not apply the bias correction.

We model both the entire redshift range, as well as the 0.1 < z < 0.5 and 0.5 < z < 1.0
range separately (similar to other studies). The results are collected in Table 2.1. For the full

sample the slope is significantly steeper thanwhenwe take into account the redshift evolution,

when comparing to our uncorrected fits:

log SFR[M� yr
−1

] = 0.89
+0.05

−0.05
log

(
M∗
M0

)
− 0.82

+0.04

−0.04
. (2.14)

This is also the case for the smaller samples in both redshift bins, although the results are

consistent with Equation 2.9 within the error bars (which are larger due to lower number

statistics). The resulting relations are, for 0.1 < z ≤ 0.5;

log SFR[M� yr
−1

] = 0.86
+0.09

−0.08
log

(
M∗
M0

)
− 0.92

+0.07

−0.07
, (2.15)

and for 0.5 < z < 1.0;

log SFR[M� yr
−1

] = 0.84
+0.07

−0.06
log

(
M∗
M0

)
− 0.73

+0.06

−0.06
. (2.16)

Given the significant evolution we found in the star formation sequence with redshift,

this result is expected. While incidently these slopes are similar to our corrected fits, we

caution that this does not imply that not modelling the redshift evolution can circumvent

biases introduced by flux-limited observations.
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2.6 Discussion

We have modelled the star formation sequence down to 10
8

M� at 0.11 < z < 0.91 using a

Bayesian framework (§ 2.4) that takes into account both the heteroscedastic errors on the

observations as well as the intrinsic scatter in the relation. One major advantage of our

framework is that we simultaneously model both the slope and the evolution in theM∗-SFR
relation, while most previous studies have modelled these separately by dividing their sample

into different redshift bins. As demonstrated in § 2.5.3, these results are not necessarily

consistent, which can be attributed to evolution taking place within a single redshift bin.

Another important difference is that we use the Balmer lines to trace the (dust-corrected) star

formation, while most other recent studies have relied on SFRs derived from UV+IR/SED-

fitting, using different dust corrections (Whitaker et al., 2014; Lee et al., 2015; Schreiber et al.,

2015; Kurczynski et al., 2016).

As described in § 2.5.1, we have found that the star formation sequence (shown in Fig-

ure 2.7 and Figure 2.9) is well described by Equation 2.11 (see also Table 2.1). We now compare

our results to other literature measurements and discuss each aspect of the star formation

sequence separately, i.e. the redshift evolution, intrinsic scatter and the slope. We focus

particularly on the slope, for which we find the strongest constraints, and continue with a

discussion of the physical implications of our results.

2.6.1 Comparison with the literature

Evolution with redshift

We find that the normalisation in the star formation sequence increases with redshift as

(1 + z)c with c = 1.74
+0.66

−0.68
(2.22

+0.75

−0.76
for M∗ < 10

9.5
M�). The fact that the normalisation

of the star formation sequence increases with redshift is well known and attributed to the

change in cosmic gas accretion rates and gas depletion timescales. Most studies have probed

the higher mass regime and report values in the range of sSFR ≡ SFR/M∗ ∝ (1 + z)2.5−3.5

at 0 < z < 3 (e.g. Oliver et al., 2010; Karim et al., 2011; Ilbert et al., 2015; Schreiber et al.,

2015; Tasca et al., 2015). Looking specifically at the low-mass regime, Whitaker et al. (2014)

reports sSFR ∝ (1 + z)1.9
, similar to our result. Their more massive end indeed shows

stronger evolution sSFR ∝ (1 + z)2.2−3.5
. Lee et al. (2015) on the other hand, find much

steeper evolution, with sSFR ∝ (1 + z)4.12±0.1
. We note that our parameterisation assumes a

power-law type of evolution of the star formation sequence with redshift. We have decided

to stick to this very common first-order approximation. Still, one should keep in mind

that a more complex evolution with redshift is possible, both non-linear in time as well as

a different evolution in different mass regimes. We do not find strong constraints on the

redshift evolution due to our relatively small redshift range from z = 0.1 to z = 0.91. Still,

the results from § 2.5.3 show that it is important to take the redshift evolution into account,

in order to get a robust constraint on the slope.
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Intrinsic scatter

Constraining the intrinsic scatter in the star formation sequence has proven to be challenging

as one has to separate the intrinsic scatter from the measurement error (e.g. Noeske et al.,

2007a; Salim et al., 2007; Salmi et al., 2012;Whitaker et al., 2012; Guo et al., 2013; Speagle et al.,

2014; Schreiber et al., 2015). This challenge in particular motivates our adopted model, which

directly constrains the amount of intrinsic scatter in the relationship, even in the presence of

measurement errors. Meanwhile, our measurements are not affected by binning, e.g. we do

not boost the scatter artificially because of evolution of the star formation sequence within a

single bin.

In our best fit model we find �intr = 0.44
+0.05

−0.04
dex, which is larger than the value of

∼ 0.2 − 0.4 dex that is commonly found (e.g. Speagle et al., 2014; Schreiber et al., 2015).

Kurczynski et al. (2016) determined an intrinsic scatter of �intr = 0.427 ± 0.011 in their

lowest redshift bin (0.5 < z < 1.0) in the HUDF, similar to our result, but found significantly

smaller scatter at higher redshifts. They determined the intrinsic scatter by decomposing

the total scatter (�Tot = 0.525) using the covariance matrix betweenM∗ and SFR determined

from their SED fitting.

There are several effects that could potentially affect the scatter. Measurement outliers are

not a cause of concern for the intrinsic scatter as they are taken into account by the likelihood

approach. However, if galaxies are included in the sample that are not on theM∗-SFR relation,

such as red-sequence galaxies or starbursts, then these might artificially increase the scatter.

We argue that the former is unlikely as our selection criteria based on the 4000 Å break and

the H� �6565 or H� �4863 equivalent width effectively remove all red-sequence galaxies

from the sample. On the other hand, our sample does include a small number of galaxies

that are offset from the relation towards high SFRs. We verified however that removing all

galaxies with a sSFR > 10 Gyr
−1

from the sample does not significantly increase or decrease

the scatter.

Hypothetically, if the error bars on the SFR are underestimated, this will artificially boost

the intrinsic scatter in the relationship. To determine the influence of the size of the error

bars we redid the modelling while folding in an additional error on the SFR of 0.2 dex in

quadrature (effectively doubling the average error bars); this decreased the scatter by 20% to

∼ 0.4 dex. The sample size does not seem to affect the measurement and splitting our sample

did not yield significantly larger scatter (see § 2.5.3).

Assuming our measured scatter is real, it might be that previous studies have underes-

timated the amount of intrinsic scatter. One potential danger might lie in the derivation of

both stellar mass and SFR from the same photometry. Especially in SEDmodelling this might

introduce correlations betweenM∗ and SFR as both are regularised through the same star

formation history in the model spectrum which could artificially decrease the scatter.

More physically, the difference could also in part be due to the fact that the Balmer lines

trace the SFR on shorter timescales (stars with ages ≤10 Myr and masses >10 M�) than the
UV does (ages of ≤100 Myr and masses >5 M� ; e.g. Kennicutt 1998a; Kennicutt & Evans

2012). Simulations have indeed found that SFRs averaged over timescales decreasing from

10
8
to 10

6
yr could be significantly larger (Hopkins et al., 2014; Sparre et al., 2015), particularly

if star formation histories are bursty (e.g. Dominguez et al., 2015; Sparre et al., 2017).
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Furthermore, as the recent star formation histories of low-mass galaxies are more diverse,

it can be expected that there is more scatter in the star formation sequence at low stellar

masses. This indeed has been predicted by simulations (e.g. Hopkins et al., 2014; Sparre

et al., 2017) as well as semi-analytical models (e.g. Mitra et al., 2017). Observing such a trend

requires a large and highly complete sample of galaxies over an extended mass range and

hence evidence has been inconclusive. Using a large sample of galaxies from the SDSS, Salim

et al. (2007) reported a decrease in the scatter of −0.11 dex
−1

from 10
8 −10

10.5
M� , but such

a trend with mass has not been confirmed by studies at higher masses (Whitaker et al., 2012;

Guo et al., 2013; Schreiber et al., 2015; Kurczynski et al., 2016). Recently though, Santini et al.

(2017) have found indications of decreasing scatter with mass in the Frontier Fields, albeit at

higher redshifts (z > 1.3).

A large and complete sample of galaxies, covering the (log M∗, log SFR, log(1 + z))-space,
with independent stellar mass and SFR estimates, is required to get a firm handle on the

intrinsic scatter in the star formation sequence.

Slope

We find a best-fit (median posterior) slope of the star formation sequence of a = 0.83
+0.07

−0.06

(log SFR ∝ a log M∗). This slope is determined from galaxies that are more than an order of

magnitude lower in mass than most earlier studies at z > 0, i.e. at 10
8

to 10
10

M� , whereas
most previous studies (e.g. Speagle et al., 2014; Lee et al., 2015; Schreiber et al., 2015) have

been primarily sensitive to a higher mass range from 10
9.5

M� to 10
11

M� . For reference, we
plot the polynomial fit fromWhitaker et al. (2014) (down to their mass completeness limit,

based on stacking) in Figure 2.7.

Recent studies have typically observed a shallower slope at the high-mass end, i.e. above

10
10

M� (e.g. Whitaker et al., 2014). Gavazzi et al. (2015) find a turnover mass of M∗ ∼
10

9.7
M� at z = 0.55 (after converting their result to a Chabrier IMF), increasing with

redshift. As discussed in § 2.5.2, excluding galaxies aboveM∗ > 10
9.5

M� has no significant
effect on the slope. Only 15/179 ≈ 8.5% of galaxies in our sample haveM∗ > 10

10
M� and

thus our result is not very sensitive to this turn-over. In light of this, we limit the following

discussion to studies which specifically probe the mass range below the turnover of the star

formation sequence.

Our best-fit slope of 0.83
+0.07

−0.06
is compared to the values found by other recent studies

in Figure 2.10 where we focus on studies with similar redshift ranges (i.e. 0 < z < 1) and

which extend well below M∗ < 10
10

M� . The slope in this regime is notably steeper than the

consensus relation from Speagle et al. (2014) who reported a = 0.6− 0.7 at our redshifts, due

to the fact that this compilation is for a mass range of log M∗[M�] = 9.7 − 11.1, where the
slope is significantly shallower. Our slope is shallower than the low-mass power-law slope

fromWhitaker et al. (2014) (a = 0.94±0.03 forM∗ < 10
10.2

M�) from the 3D-HST catalogues

in CANDELS, but is consistent with the global slope of a = 0.88 ± 0.06 reported by Lee et al.

(2015) in a large sample of star-forming galaxies in COSMOS. Kurczynski et al. (2016) have

also presented a characterisation of the star formation sequence in the HUDF, based on the

CANDELS/GOODS-S (Santini et al., 2015) and UVUDF (Rafelski et al., 2015) catalogues. In

their lowest redshift bin (0.5 < z < 1.0), which goes down to M∗ ∼ 10
7.5

M� they find a
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Figure 2.10: (a) A comparison of the slope (a) as a function of redshift (z) with studies from the literature

that extend down toM∗ < 10
10

M� near our redshift range. Our best-fit (bias-corrected) slope from
Equation 2.11 is shown by the large star. As most studies have probed the slope in bins of redshift, we

also include our results obtained using non-evolving redshift bins (Eqs. (2.14), (2.15) and (2.16); smaller

blue stars). The literature results are from Renzini & Peng (2015, RP15), Kurczynski et al. (2016, K16),

Bisigello et al. (2018, B18) and the low-mass (M∗ . 10
10

M� ) power-law slopes fromWhitaker et al.

(2014, W14) and Lee et al. (2015, L15). We also add Speagle et al. (2014, SP14) for reference, though it is

inferred at higher masses. We indicate the field and SFR-tracer in brackets, though note that distinct

calibrations for the same tracer may be used in different studies. In addition, we add the slopes predicted

by (semi-)analytical models; Bouché et al. (2010, B10), Mitchell et al. (2014, M14), Mitra et al. (2015,

Mi15), Cattaneo et al. (2017, C17), and hydrodynamical simulations; Sparre et al. (2015, Sp15), Furlong

et al. (2015, F15), Sparre et al. (2017, Sp17).

slope of a = 0.919 ± 0.017, which is also steeper (marginally consistent) compared to what

find. We note that they determined both masses and SFRs from the SEDmodelling, taking

into account the correlations between the parameters, as their study was focused particularly

on measuring the intrinsic scatter, see § 2.6.1. In the same field Bisigello et al. (2018) find a

slope of 0.9 ± 0.01 (0.5 ≤ z < 1.0), after selecting galaxies with log sSFR[Gyr
−1

] < −9.8.

The Sloan Digital Sky Survey (SDSS; York et al. 2000; Abazajian et al. 2009) serves as a

natural reference for Balmer line-derived SFRs in the local universe and since Brinchmann

et al. (2004) different studies have derived the star formation sequence slope (e.g, Salim et al.,

2007; Elbaz et al., 2007). The most recent of these is Renzini & Peng (2015), who measure

the slope of the ridge line in theM∗ − N × SFR-plane (where N is the number of galaxies in

everyM∗-SFR bin) and find a = 0.76 ± 0.01, which is significantly flatter than our results.

Taken at face value, our slope of a = 0.83
+0.07

−0.06
is inconsistent with a linear slope (a = 1).

A value (close to) unity may have been expected on the basis of simulations (see next section),

which is also evident from the fact that several parameterisations of the star formation
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sequence asymptote to a linear relation at low mass (e.g. Schreiber et al., 2015; Tomczak et al.,

2016). An independent motivation for a near-linear value comes from the fact that there is

very little evolution in the faint slope of the stellar mass function of star-forming galaxies up

to z = 2 (see, e.g. Tomczak et al. (2014); Davidzon et al. (2017) for recent results). To first order,

this may implies self-similar mass growth for low-mass galaxies (i.e. constant sSFR which

implies a linear slope for the star formation sequence), unless balanced by mergers (Peng et al.,

2014). Leja et al. (2015) investigated the link between the slope of the star formation sequence

and the stellar mass function. While they do not provide precise constraints on the low-mass

slope at low redshift (due to the challenge of disentangling growth through star formation

and mergers), their results indicate that a sub-linear low-mass slope is still consistent with

the stellar mass functions at z < 1.

Evolution of the low-mass slope

Combining results from the local universe out to redshift z ∼ 6, Speagle et al. (2014) found

evidence for an evolving slope at the high-mass end (M∗ > 10
9.7

M�), where the slope gets
shallower with redshift (cf. Abramson et al., 2016, Fig. 5). Given the turnover in the star

formation sequence at high mass, it is important to disentangle to what extent the evolution

in the slope is due to different studies being sensitive to distinct mass regimes. Our data are

too sparse in redshift space to simultaneously constrain the evolution of the slope (and hence

we have adopted a single power-law slope for the sequence).

In light of the potential redshift evolution of the slope, we plot the slope as a function

of redshift in Figure 2.10, compared to literature results which probe the mass rangeM∗ <
10

10
M� at z < 1.5. Figure 2.10 provides evidence for evolution of the low-mass slope

with redshift. However, we caution against a too strong interpretation of such a trend as

the literature suffers from studies probing distinct mass ranges (sometimes including the

turn-over regime). What further complicates a fair comparison is that different tracers of star

formation probe different timescales and additionally use varying dust corrections, which

are not necessarily consistent (e.g. Davies et al., 2016). A consistent analysis of the low-mass

galaxy population out to higher redshifts is important to quantify potential evolution in the

low-mass slope.

2.6.2 The MS slope— a quantitative comparison to models
The galaxy main sequence (MS) is a natural outcome of hydrodynamical models (e.g. Fig. 1b

in Bouche et al. 2005; Davé 2008; Genel et al. 2014; Torrey et al. 2014; Kannan et al. 2014;

Hopkins et al. 2014; Sparre et al. 2015; Furlong et al. 2015) and in semi-analytical models

(e.g. Somerville et al., 2008; Dutton et al., 2010; Cattaneo et al., 2011; Mitchell et al., 2014;

Henriques et al., 2015; Hirschmann et al., 2016; Cattaneo et al., 2017). These models have

reported a slope (and scatter) that, in general, is broadly consistent with observations, but the

quantitative details regarding the slope and/or the evolution of the main sequence often do

not match observations.

Since the pioneering work of Daddi et al. (2007) and Elbaz et al. (2007), it has been noted

that the redshift evolution of the main sequence normalisation, in particular around z = 2,
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is a challenge for models (e.g. Davé, 2008; Damen et al., 2009; Bouché et al., 2010; Dutton

et al., 2010; Dekel &Mandelker, 2014; Torrey et al., 2014; Genel et al., 2014; Mitchell et al.,

2014; Furlong et al., 2015; Sparre et al., 2015; Abramson et al., 2016; Santini et al., 2017).

Here, we focus on a quantitative comparison of the slope of the main sequence (SFR ∝ M
a∗ )

with various models, given that our study yields the tightest constraint on this parameter

(compared to the other parameters in the model).

The Illustris simulations (Vogelsberger et al., 2014; Genel et al., 2014; Sparre et al., 2015)

produce a main-sequence with a slope a that is slightly sub-linear with a / 1.0. In particular,
Genel et al. (2014) noted that sSFR goes as ' −0.1 with stellar mass and using the results

from Sparre et al. (2015), we find that the main sequence in Illustris goes as SFR ∝ M
≈0.95∗ .

The EAGLE simulations (Schaye et al., 2015; Crain et al., 2015) also allow an investigation of

the main sequence and Furlong et al. (2015, their Fig. 5), showed that the sSFR is constant

withM∗ from 10
8

to 10
10

M� at redshifts z = 0.1, 1.0 and 2.0, with a relatively steep decline
above 10

10
M� . Quantitatively, below 10

10
M� , the slope of the main sequence a in Furlong

et al. (2015) is a ≈ 1.04. The MS slope for the Illustris and EAGLE simulations are shown in

Figure 2.10 as the open circles and triangle symbols, respectively. In the FIRE simulations

(Hopkins et al., 2014), Sparre et al. (2017) focused on studying the scatter in the main sequence

for different tracers of SFR and shows a slope of a ≈ 0.98 when using the FUV (their Fig. 2).

The MS slope has also been a challenge for semi-analytical models because different

(regular) feedback prescriptions do not alter the MS slope as shown in Dutton et al. (2010)

and discussed in Mitchell et al. (2014) (however, it can alter the slope in hydrodynamical

simulations, e.g. Haas et al. 2013a,b; Crain et al. 2015). Mitchell et al. (2014) performed a

detailed comparison between predictions from the GALFORM semi-analytical models with

observations and their fiducial model produces a MS slope of a ≈ 0.85 (shown in Figure 2.10

as the down-pointing triangles). Recently, the semi-analytical model of Cattaneo et al. (2017)

using the GALICS2 code was set to reproduce the local luminosity function and the local MS

slope simultaneously. Their MS slope is a ≈ 0.8 (open square in Figure 2.10), but we caution

their use of an extreme feedback model, where the mass loading � is � ∝ V
−6
, where V is

the halo virial velocity. Such a steep scaling between galaxy mass and wind loading is not

supported by the data (e.g. Schroetter et al., 2016).

Bouché et al. (2010) used a simple toy model for galaxy (self-)regulation with which they

showed that variations in feedback prescriptions or in the laws of star formation have no

impact on the MS slope. They argued that while ejective feedback alone is not sufficient to

bring the theoretical slope of the main-sequence in agreement with observations, preventive

feedback can easily do so as several studies have shown (Davé et al., 2012; Lu et al., 2015;

Mitra et al., 2015, 2017). However, while the MS slope of Bouché et al. (2010) is sub-linear

with a ≈ 0.8, a quantitative analysis reveals that the slope varies rapidly with stellar mass,

likely due to the limitations of the model. Indeed, the MS slope of Bouché et al. (2010) goes

from 0.7 atM∗ ∼ 10
9.5

M� to 0.9 atM∗ ∼ 10
10.5

M� . The range of values is indicated by the
light grey box in Figure 2.10.

Mitra et al. (2015) expanded the self-regulation model of Bouché et al. (2010); Davé

et al. (2012, and others) with physically motivated parameters and attempted to determine

these parameters using a Bayesian MCMC approach on a set of observed scaling relations at

0 < z < 2. Their fiducial model yields a MS with a slope that is quasi-linear with a ∼ 0.95
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in our mass regime, i.e. below 10
10

M� . Their MS slope is shown as the dark grey band in

Figure 2.10.

Generally speaking, in the low-mass regime below 10
10

M� , hydrodynamical simulations

have steeper MS slopes with a ≈ 1.0 whereas our estimate (a = 0.83
+0.07

−0.06
) at z < 1 and

recent observations covering that mass range indicate a < 1.0 (see Figure 2.10). The reason

that models tend to predict a steeper main sequence slope lies in the underlying feature in

hydrodynamical simulations and semi-analytical models, where the growth rate for dark

matter halos
˙
Mh scales with mass as

˙
Mh ∝ M

1.15

h
(Birnboim et al., 2007; Genel et al., 2008;

Dekel et al., 2009; Fakhouri & Ma, 2008; Neistein & Dekel, 2008), in combination with rapid

gas cooling.

2.6.3 Implications of a shallow slope

As noted originally by Noeske et al. (2007b) and discussed in Mitchell et al. (2014) and Ab-

ramson et al. (2016), a MS with a sub-linear slope, SFR ∝ M
a∗ with a < 1, implies downsizing

where lower-mass galaxies have longer e-folding time and a later onset of star formation. This

downsizing effect would be amplified if the MS slope is substantially flatter above 10
10

M�
as some studies have indicated (Whitaker et al., 2014; Schreiber et al., 2015; Lee et al., 2015;

Tomczak et al., 2016). This turnover has generally been attributed to either a morphological

transition, such as bulge growth (Abramson et al., 2014; Lee et al., 2015; Whitaker et al., 2015),

or a reduced star formation efficiency (Schreiber et al., 2016).

Our result, that the slope of the main sequence is sub-linear in the low-mass regime,

implies that there are processes at work which either: (1) affect the conversion of the accreted

gas into stars through increased (supernova) feedback or a decrease in the SF efficiency; or (2)

prevent the accretion of gas onto low-mass galaxies. These two processes might conspire

with the fact that the gravitational potential is shallower in low-mass galaxies (Mitra et al.,

2015).

In hydrodynamical simulations low-mass galaxies (up to halo masses of ∼10
11.5

M�)
obtain their gas primarily through ‘cold’-accretion (Kere et al., 2005; van de Voort et al., 2011),

where the gas is never heated to the virial temperature, while ‘hot’ accretion, where gas is

first shock heated to the virial temperature and then cools and accretes, is dominant for

more massive galaxies. A candidate process is feedback from gravitational heating, due to the

formation of virial shocks (e.g. Faucher-Giguère et al., 2011), which becomes more effective

at higher masses, however, can still play a role down to halo masses of 10
10

M� . The heating
of gas through winds (from either supernovae or black hole feedback) can also prevent the

gas from flowing into the galaxy (Oppenheimer et al., 2010; Faucher-Giguère et al., 2011;

van de Voort et al., 2011), in particular in low-mass galaxies. However, Schaye et al. (2010)

pointed out that this type of feedback mainly has a regulatory effect on the gas infall.

As noted by Dutton et al. (2010), Bouché et al. (2010), and Mitchell et al. (2014), in semi-

analytical models, the MS slope is rather insensitive to the ejective (regular) feedback mech-

anisms,
25

such as the heating of gas through winds and/or the star formation efficiency

(Kennicutt, 1998a) because they act primarily on the gas content. Hence, the SFR and stellar

25
with mass loading � ∝ V

−1
or � ∝ V

−2
for momentum or energy-driven winds, respectively.
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mass are affected in a similar way, leaving the slope unchanged, unless the ejective feedback

prescription is strongly mass dependent with � ∝ V
−6
, as in Cattaneo et al. 2017. In addition,

Mitchell et al. (2014) showed that the slope is also insensitive to the gas re-incorporation

prescription (see also Mitra et al., 2015).

Preventive processes (Blanchard et al., 1992; Gnedin, 2000; Mo et al., 2005; Lu & Mo,

2007; Okamoto et al., 2008) that tend to be mass dependent can more easily impact the MS

slope, the Tully-Fischer relation, and the luminosity function as argued by Bouché et al. (2010).

A preventive process which can prevent the inflow of gas specifically in low-mass halos is

photoionisation heating (Quinn et al., 1996). While it has been argued that this process is

primarily effective in dwarf galaxies and becomes ineffective above halo masses of a few times

10
9

M� (e.g. Okamoto et al., 2008), Cantalupo (2010) suggest that photoionisation may still

play a role for more massive halos if there is significant star formation.

2.7 Summary and conclusions

We have exploited the unique capabilities of the MUSE instrument to investigate the star

formation sequence for low-mass galaxies at intermediate redshift (0.11 < z < 0.91). From

the large number of sources detectedwithMUSE in theHUDF andHDFSwe have constructed

a sample of 179 star-forming galaxies down toM∗ ∼ 10
8

M� , with a number of objects at even

lower masses (Figure 2.4). The accurate spectroscopic redshifts fromMUSE are combined

with the deep photometry available over the HUDF and HDFS to determine a robust mass

estimate for the galaxies in our sample through stellar population synthesis modelling.

WithMUSEwe candetect star-forming galaxies down to SFR∼ 10
−3

M� yr
−1

(Figure 2.7).

We show that we can determine robust, dust-corrected SFR estimates from H� �6565 and

H� �4863 recombination lines, by comparing the SFRs from different tracers (Figure 2.5). A

dust-corrected star formation rate is inferred from the H� �6565 and H� �4863 emission

lines observed with S/N > 3 in the MUSE spectra.

We characterise the star formation sequence by a Gaussian distribution around a plane

(Equation 2.4). This methodology is chosen to maximally exploit the data set taking into

account heteroscedastic errors. We constrain the slope, normalisation, intrinsic scatter, and

evolution with redshift from the posterior probability distribution via MCMC methods

(Figure 2.8).

We analyse the robustness of our model and the influence of the MUSE detection limit

on the derived properties of the star formation sequence, by determining how well we can

recover the parameters from a sample of simulated relations (detailed in § 2.A). Using the

results, we correct our inferred parameters for observational biases.

We report a best-fit description of the low-mass end of the galaxy star formation sequence

of log SFR = 0.83
+0.07

−0.06
log M∗ − 0.83

+0.05

−0.05
+ 1.74

+0.66

−0.68
log(1 + z) between 0.11 < z < 0.91,

shown in Figure 2.9. The full description of our parameters, including errors and normalisa-

tion, is found in Equation 2.11.

The intrinsic scatter around the sequence is found to be �intr = 0.44
+0.05

−0.04
dex (in log

SFR). This is notably higher than the average value reported in literature (∼ 0.3 dex), which

could be attributed to a combination of the Balmer lines probing star formation on shorter
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timescales and the star formation histories of low-mass galaxies being more diverse.

Excluding massive galaxies (withM∗ > 10
9.5

M�) has no significant effect on the best-fit
parameters, indicating we are primarily sensitive to low-mass galaxies. Notably though, we

find that the slope steepens when splitting our sample into one or multiple redshift bins, with

the values going up to log SFR[M� yr
−1

] = 0.89
+0.05

−0.05
log M∗[M�]. This shows the importance

of taking into account the evolution with redshift when deriving the properties of the star

formation sequence.

The slope of the star formation sequence is an important observable as it provides in-

formation on the processes that regulate star formation in galaxies. Our slope is shallower

than most simulations and (semi-)analytical models predict, which find a (super-)linear slope

essentially due to the growth rate of dark matter halos. Feedback processes operating specific-

ally in the low-mass regime, which affect the accretion of gas onto galaxies and/or subsequent

star formation, are required to reconcile these differences. Models suggest that supernova

feedback or a decreased star formation efficiency do not affect the slope of the star formation

sequence. Instead, processes that prevent the accretion of gas onto low-mass galaxies are

thought to play an important role in determining the slope of the star formation sequence in

the low-mass regime.
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Appendix 2.A Simulations

2.A.1 Selection function and completeness

We have selected galaxies based on the signal-to-noise of their emission lines, without any

photometric preselection. This means the selection function is essentially determined by

the emission line sensitivity. In general, one might expect galaxies with higher S/N in their

emission lines to have a higher SFR at a fixed mass, or similarly, for galaxies with the same

S/N to have a higher SFR at higher redshift, which potentially introduces biases in our results.

Additionally, we can only observe galaxies that have Balmer lines in the spectral range of

MUSE (z < 0.91).

To investigate the influence of these selections, we determine how well we can recover

the true parameters of the star formation sequence from a set of mock samples of galaxies,

after applying the flux limit from our MUSE observations.

We determine the influence of the selection function on the inferred parameters by

simulating mock data for a range of ‘true’ parameters. The range of values for each mock

parameter is listed in Table 2.2, which combine to form a grid of N = 1260 points. The

extent of grid is chosen such that it encompasses a wide range of possible parameters and

we find that the results are consistent if we enlarge the grid even further (note that, if the

grid is taken too large, non-linearities may arise at the extreme values which potentially

bias the linear transformation approach of § 2.A.2). We denote each set of parameters as

xtrue,k =
(
â, ĉ, ˆ

b, �̂intr

)
T

with k = 1, ...,N .

We generate realistic mock data for each set of parameters through the following proced-

ure: We sample 100 galaxies from a uniform distribution in both mass (7.0 < log M∗[M�] <
10.5) and redshift (0.1 < z < 1). Given the mass and redshift, we compute the SFR (via

Equation 2.4), i.e. assuming a mock main sequence distribution with slope â and evolution ĉ.

We choose our normalisation (
ˆ
b) such that a 10

10
M� galaxy at z = 0 has a SFR of 1 M�/yr,

similar to our results and, e.g. the Milky Way (Chomiuk & Povich, 2011), i.e. we take a zero-

point of b0 = −10. We then sample up to boffset = ±0.4 dex above and below this zero-point.

We provide each galaxy with a random offset from the main sequence (perpendicular to the

(log M∗, log SFR)-relation) drawn fromN (0, �̂intr). Finally, we apply a randommeasurement

error for each galaxy in both log stellarmass and log SFR of 0.3 dex (i.e. drawn fromN (0, 0.3))
and in log redshift of 5 × 10

−4
dex (∼ N (0, 5 × 10

−4)), similar to the observations.

We then apply the same flux limit as our shallowest MUSE observations, namely in

the mosaic with 3 × 10
−19

erg s
−1

cm
−2
, and mark all ‘observed’ galaxies as those that fall

above our detection threshold (we do not take an additional factor for dust into account

as our galaxies are not very dusty on average). We then fit the observed galaxies above the

flux limit. Repeating this process 30 times for each individual set of parameters xtrue, and

marginalising over the combined posterior distribution, we determine the corresponding

recovered parameters xout,k = (a, c, b, �intr)T .
As an example, we show one the experiment for a particular set of parameters in Fig-

ure 2.11. It is clear that the recovered parameters are biased towards a shallower slope and

a steeper redshift evolution. The magnitude of this bias depends on all the parameters and
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Table 2.2: Grid values for our mock simulations.

min max step

â 0.7 1.1 0.05

ĉ 1.5 4.5 0.5

b
offset

-0.4 0.4 0.2

�̂intr 0.3 0.6 0.1

ˆ
b = â

(
log(M0) − b0

)
+ ĉ log(1 + z0) + b

offset

Notes. The normalisation (b0 = −10) is chosen such that a 10
10

M� galaxy at z = 0 has a SFR of

1 M� yr
−1
.

becomes more severe for steeper slopes and shallower redshift evolutions.

To check our methods, we also fit all simulated galaxies (without discarding any data).

Reassuringly, we recover our input parameters towithin the errors, evenwhen simulating only

100 galaxies. Since our actual sample size is 179 galaxies, we are in principle able to recover

the true parameters of the relation, even in the case of intrinsic scatter and heteroscedastic

errors. One feature that does draw attention is that the redshift evolution is marginally

steeper than the input relation (but admittedly poorly constrained and still consistent within

the error). This can be explained due to an intricacy of the model, which assumes that the

intrinsic scatter about the relation is along the normal vector to the plane (�⊥ in § 2.4.1),

i.e. also in the log(1 + z)-direction. If the data are truncated and there is a non-zero slope
(|c | > 0) in redshift space, this may introduce an artificial bias in the corresponding slope

(and scatter) as the truncation boundaries are not parallel to the normal vector. Given the fact

that our data (and mock sample) are limited in redshift space by the spectral range of MUSE,

this means that we may have slight artificial bias towards a steeper redshift evolution. For

interpreting the intrinsic scatter this is not a problem as we can project the scatter along the

(physical) log SFR-axis (which is our �intr).

With our simulations in hand however, we are now in place to apply a correction for both

biases identified above.

2.A.2 Transformation

The simulations show a reasonably well behaved transformation between the true and re-

covered slope. We therefore model the mock data with an affine transformation, to be able to

transform between the measured and true parameters.

We try to find the best transformation matrix A and vector b between the measured and

true parameters. For each set of input (xtrue,k) and output (xout,k) parameters we have:

xout,k ≈ Axtrue,k + b (2.17)
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Figure 2.11: Illustration of the results of the recovery experiment on mock galaxies. The points in

the left and centre panels show one of the 30 realisations of 100 galaxies in (log M∗, log(1 + z), log

SFR)-space from a mock star formation sequence: log SFR ∝ a log M∗ + c log(1 + z), where in this

particular case a = 0.8 and c = 2.0 with �intr = 0.5 dex. The colour indicates redshift, unless a mock

galaxy falls below the solid line in the centre panel, indicating the flux limit of ∼3 × 10
−19

erg s
−1

cm
−2
,

in which case it is a black point. The rightmost panels show the marginalised distributions (slope,

redshift evolution, and intrinsic scatter) from combining all 30 realisations. The thin and thick black

lines indicate the results when taking into account all mock data and only the data above the flux limit,

respectively, and are compared to the input values (dashed lines). With all data points (including noise),

we can recover the input parameters sequence well. When applying the flux limit a slight bias towards a

shallower slope and steeper redshift evolution appears. We plot all curves in the leftmost panel at the

average redshift of the sample (z0). The red line is obtained after applying the correction to the fit of the

data above the limit. These recovered curves are plotted in the leftmost panel as well and compared to

the input mock relation. With our correction, we can recover the true input parameters well, even in

the case of limited data.

Weminimise the function

S(A, b) =
N∑
k=1

| |xout,k − Axtrue,k − b| |22 (2.18)

with respect to each component of A and b in order to find the best-fit transformation A and

b (Späth, 2004). We note that we do not take the errors on each point xout, k into account as
their magnitudes are all comparable (essentially adding a constant to the equation).

With the best-fit A and b in hand, we can then invert the equation to obtain the relation
between the observed and the recovered ‘true’ parameters, which denote as x′

true
:

x′
true
≈ A

−1 (xout − b) (2.19)

*....
,

a
′
c
′
b
′

� ′
intr

+////
-

=

*....
,

1.336 0.014 −0.150 0.171

0.638 0.863 0.574 −2.621

−0.178 −0.008 1.175 −0.185

0.285 0.009 −0.044 1.091

+////
-

*....
,

*....
,

a

c

b

�intr

+////
-

−
*....
,

0.293

0.061

−0.194

0.236

+////
-

+////
-

(2.20)
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For our simulated data, we show the distribution of the difference between the recovered

parameters (x′
true

) and the true parameters (xtrue) in Figure 2.12. We recover the input para-

meters very well, with no mean offset between the recovered and the true parameter. This

shows that the transformation (i.e. A and b) are very well determined. Furthermore, the

scatter in the differences is much smaller than the average uncertainty on each parameter

obtained from the observations (of order ∼ 1%). As an illustration, we show the inverse

transformation applied to the simulation by the red lines in Figure 2.11, which are now in

good agreement with the true values (dashed lines).

In summary, the transformation obtained from the best-fit A and b is a very accurate

description of the bias induced by the flux limit in our simulated data. We use the inverse

of this transformation, Equation 2.19, in § 2.5 to correct our inferred posterior density

distribution from modelling the MUSE data.



64 2.A Simulations

a′− â = 0.00+0.02
−0.03

−0
.6
−0
.3

0.0
0.3
0.6

c′
−

ĉ
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Figure 2.12: Plot of the differences between the recovered parameters, x′
true
=

(
a
′, c′, b′, � ′

intr

)
T

and the true parameters, xtrue =
(
â, ĉ, ˆ

b, �̂intr

)
T

, for the N = 1260 points from our simulation; see

Equation 2.19. We can recover the input parameters of our simulation very well, with no mean offset

and very small scatter (compared to the uncertainty on each parameter obtained from the observations).

Figure created using the corner.pymodule (Foreman-Mackey, 2016).


