

Cold gas in distant galaxies

Boogaard, L.A.

Citation

Boogaard, L. A. (2021, February 25). *Cold gas in distant galaxies*. Retrieved from https://hdl.handle.net/1887/3147175

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3147175

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/3147175</u> holds various files of this Leiden University dissertation.

Author: Boogaard, L.A. Title: Cold gas in distant galaxies Issue date: 2021-02-25

Cold gas in distant galaxies

Cold gas in distant galaxies

Koud gas in verre sterrenstelsels

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. dr. ir. H. Bijl, volgens besluit van het College voor Promoties te verdedigen op donderdag 25 februari 2021 klokke 16.15 uur

door

Lein Adriaan Boogaard

geboren te Oegstgeest in 1992

Promotor:	Prof. dr. P. P. van der Werf	
Co-promotor:	Dr. R. J. Bouwens	
Promotiecommissie:	Prof. dr. H. J. A. Röttgering	
	Prof. dr. J. Schaye	
	Prof. dr. S. Viti	
	Dr. J. A. Hodge	
	Dr. J. Brinchmann	Universidade do Porto (Portugal)
	Dr. F. Walter	MPIA, Heidelberg (Germany)
	Prof. dr. I. R. Smail	Durham University (UK)

Voor mijn ouders

æ

Voor Elisabeth

Copyright © 2021 L. A. Boogaard

Printed by: Gildeprint

Cover design: Arjen Wiersma

Cover images: The Hubble Ultra Deep Field, *credit: NASA, ESA, and S. Beckwith (STScI) and the HUDF Team (front)*, and a 3D rendering of the ALMA Spectroscopic Survey of the HUDF 3 mm datacube (*back*).

An electronic copy of this thesis can be found at https://openaccess.leidenuniv.nl

ISBN 978 94 6419 120 2

Contents

1	Intr	Introduction		
	1.1	From	effect to cause	2
	1.2	The th	eory	4
		1.2.1	Cosmology, galaxy formation and the baryon cycle	4
		1.2.2	Star formation and the cold interstellar medium	6
		1.2.3	The light from galaxies across the electromagnetic spectrum	11
	1.3	The in	struments	12
		1.3.1	Multi Unit Spectroscopic Explorer (MUSE)	13
		1.3.2	Atacama Large Millimeter Array (ALMA)	13
		1.3.3	Other facilities	13
	1.4	The st	ate of the art	14
		1.4.1	Star formation in galaxies across cosmic time	14
		1.4.2	Molecular gas in distant galaxies	15
		1.4.3	The need for molecular deep fields	17
	1.5	The A	LMA Spectroscopic Survey of the HUDF	18
		1.5.1	Motivation	18
		1.5.2	Observing strategy	19
		1.5.3	Data products: two cubes and two images	19
	1.6	The th		23
		1.6.1	This thesis	23
		1.6.2	Related science with ASPECS	25
	1.7	The fu	lture	26
		1.7.1	The cosmic baryon cycle	26
		1.7.2	Science and facilities	27
2	Con	strainii	ng the low-mass end of the M_* -SFR relation at $z < 1$	29
_	2.1	Introd	luction	30
	2.2	Obser	vations and methods	32
		2.2.1	Observations, data reduction, and spectral line fitting	33
		2.2.2	Sample selection	34
		2.2.3	Stellar masses	37
		2.2.4	Star formation rates	38

CONTENTS

	2.3	Consis	stency of SFR indicators
	2.4	Bayesi	an model
		2.4.1	Definition
		2.4.2	Execution
		2.4.3	Model and data limitations 45
	2.5	Star fo	rmation sequence
		2.5.1	Global sample
		2.5.2	Low-mass sample (log $M_*[M_\odot] < 9.5$)
		2.5.3	The effect of redshift bins (2D)
	2.6	Discus	sion
		2.6.1	Comparison with the literature
		2.6.2	The MS slope — a quantitative comparison to models
		2.6.3	Implications of a shallow slope 57
	2.7	Summ	ary and conclusions
	Appe	endix 2.	A Simulations
		2.A.1	Selection function and completeness
		2.A.2	Transformation
3	The	nature	and physical properties of gas-mass selected galaxies 65
5	3.1	Introd	uction 66
	3.1	Observ	v_{ations} 67
	5.2	3 2 1	AI MA Spectroscopic Survey 67
		322	MUSE HUDE Survey 68
		3.2.2	Multi-wavelength data (IW-radio) and MACRUNS 70
		324	X-ray photometry 71
	33	The AS	SPECS-LP sample 72
	5.5	331	Identification of the line search sample 72
		332	Additional sources with MUSE redshift priors at $z < 2.9$ 75
		333	Full sample redshift distribution 78
	34	Physic	al properties 79
	5.1	3 4 1	Star formation rates from MACPHYS and $[O \mu]$ 79
		342	Metallicities 81
		343	Molecular gas properties 81
	35	Result	s: Global sample properties 83
	5.5	3 5 1	Stellar mass and SFR distributions
		352	AGN fraction 85
		353	Obscured and unobscured star formation rates 85
		354	Metallicities at $1.0 < z < 1.42$
	36	Discus	sion 87
	5.0	361	Sensitivity limit to molecular gas reservoirs 87
		3.6.2	Molecular gas across the galaxy main sequence 89
		3.6.3	Evolution of molecular gas content in galaxies 92
	3.7	Summ	arv 93
	Appe	endix 3.	A Source description and redshift identifications
			I

	Appo	endix 3.H	З мадрнуs fits for all CO-detected galaxies	104
4	со	excitatio	on, [C 1] and ISM conditions in galaxies at $z = 1 - 3$	105
	4.1	Introdu	uction	106
	4.2	Observ	vations and ancillary data	108
		4.2.1	ALMA Spectroscopic Survey Data Reduction	108
		4.2.2	ASPECS Sample	110
		4.2.3	Very Large Array Observations (VLASPECS)	111
		4.2.4	Multi-wavelength data and SED fitting	112
	4.3	Metho	ds	112
		4.3.1	Spectral line analysis	112
		4.3.2	Deriving line luminosities and molecular gas masses	115
	4.4	Results	· · · · · · · · · · · · · · · · · · ·	115
		4.4.1	Observed emission lines from CO and [C I]	115
	4.5	CO exc	citation	117
		4.5.1	Individual sources	117
		4.5.2	Stacked line fluxes	120
		4.5.3	LVG modeling	122
		4.5.4	Dust-continuum versus low- <i>I</i> CO	125
	4.6	Atomic	carbon	129
		4.6.1	Atomic carbon abundances	129
		4.6.2	PDR modeling	132
	4.7	Discus	sion	134
		4.7.1	Modest excitation in mid- <i>I</i> lines at $z = 1.0 - 1.6$	134
		4.7.2	Increasing excitation with redshift	136
		4.7.3	The low- <i>I</i> excitation	138
		4.7.4	Broader implications of the flux-limited survey	140
		4.7.5	Implications for the cosmic molecular gas density	140
	4.8	Summa	ary and Conclusions	141
	App	endix 4.A	A Similar widths for the low- <i>I</i> and high- <i>I</i> CO lines	143
	App	endix 4.H	3 Spectral line fits	144
	11		1	
5	Line	-lumin	osity functions and the cosmic density of molecular gas	153
	5.1	Introdu	uction	154
	5.2	Observ	vations	156
		5.2.1	ALMA data	156
		5.2.2	Ancillary data	158
	5.3	Analys	is and Results	158
		5.3.1	Line search at 1.2 mm	158
		5.3.2	Line fluxes	160
		5.3.3	Line identification and redshifts	160
		5.3.4	Line luminosities and molecular gas masses	163
		5.3.5	Luminosity functions and ρ_{H_2}	166
	5.4	Discus	sion	166

CONTENTS

		5.4.1	CO luminosity functions	166
		5.4.2	[C I] and [C II] luminosity functions	169
		5.4.3	ρ_{H_2} vs redshift $\ldots \ldots \ldots$	170
	5.5	Conclu	sions	172
	Appe	endix 5.A	Tabulated luminosity functions	173
	Appe	endix 5.B	Cosmic variance	175
	Appe	endix 5.C	Identification of line candidates without near-infrared counterpart	s 178
6	The	average	molecular gas content of star-forming galaxies at $z = 3 - 4$	181
	6.1	Introdu	ction	182
	6.2	Observ	ations and sample selection	183
		6.2.1	Parent sample selection and physical properties	183
		6.2.2	Measurement of systemic redshifts	185
		6.2.3	Final systemic redshift sample	188
	6.3	Results		190
		6.3.1	Velocity offsets	190
		6.3.2	ALMA Stacking	191
	6.4	Discuss	ion	194
		6.4.1	Molecular gas masses	194
		6.4.2	Low metallicity driving a high molecular gas mass-to-light ratio	196
		6.4.3	Contribution to the cosmic molecular gas density	201
		6.4.4	Implications for observing cold gas in low metallicity galaxies at	
		-	high redshift	201
	6.5	Summa	ry and conclusions	203
	Appe	endix 6.A	Table	205
	Appe	endix 6.B	Spectra	208
Bil	oliogr	aphy		211
Pu	blicat	ion list		221
Ne	derla	ndse sar	nenvatting	227
Cu	rricu	lum Vit	ae	233
Ac	know	ledgem	ents	235