

Accelerating the photocatalytic water splitting in catalyst-dye complexes Shao, Y.

Citation

Shao, Y. (2021, February 24). Accelerating the photocatalytic water splitting in catalyst-dye complexes. Retrieved from https://hdl.handle.net/1887/3147173

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3147173

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/3147173</u> holds various files of this Leiden University dissertation.

Author: Shao, Y. Title: Accelerating the photocatalytic water splitting in catalyst-dye complexes Issue date: 2021-02-24

Accelerating the Photocatalytic Water Splitting in Catalyst–Dye Complexes

Yang Shao 邵洋

Yang Shao Accelerating the Photocatalytic Water Splitting in Catalyst–Dye Complexes Ph.D. thesis, Leiden University

Cover and Bookmark designed by Yang Shao Printed by PRINTSUPPORT4U || www.printsupport4u.nl

This research was financed by the Chinese Scholarship Council (Grant No. 201606450019) and Leiden University. The use of supercomputer facilities at SURFsara was sponsored by NWO Physical Sciences, with financial support from the Netherlands Organization for Scientific Research (NWO) in the context of the NWO Solar to Products program (project number 733.000.007).

Accelerating the Photocatalytic Water Splitting in Catalyst-Dye Complexes

PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof.dr.ir. H. Bijl, volgens besluit van het College voor Promoties te verdedigen op woensdag 24 februari 2021 klokke 13:45 uur

door

Yang Shao

geboren te Shandong, China in 1990

Promotiecommissie

Promotor:	Prof. dr. Huub J. M. de Groot
Copromotor:	Dr. Francesco Buda
Overige leden:	Prof. dr. Hermen S. Overkleeft (Leiden University)
	Prof. dr. Sylvestre Bonnet (Leiden University)
	Prof. dr. Evert Jan Meijer (University of Amsterdam)
	Prof. dr. Sandra Luber (University of Zurich)

For my parents, my wife, and my son

Table of Contents

List of Abbreviations	ii
List of Symbols	iv

Chapter 1

Introduction & Co	omputational Tools
1.1. Introduction	n
1.1.1 Moving to	oward Sustainable Energy Sources
1.1.2 Natural I	Photosynthesis4
1.1.3 Artificial	Photosynthesis5
1.1.4 Dye-sens	sitized Photoelectrochemical Cell7
1.1.5 Catalytic	Water Oxidation Mechanism9
1.2. Computatio	nal Tools14
1.2.1 Density I	Functional Theory (DFT)14
1.2.2 Exchang	e-Correlation Functionals and Other Approximations17
1.2.3 Car-Parr	inello Molecular Dynamics (CPMD)18
1.2.4 Free Ene	rgy Calculations20
1.3. Aim and Ou	ıtline of This Thesis21
1.4. References.	

Chapter 2

Photocatalytic Water Splitting Cycle in a Catalyst–dye Supramolecu	lar Complex
2.1. Introduction	
2.2 Computational Details	
2.2.1 Geometry Optimization at DFT level	
2.2.2 Constrained <i>ab initio</i> Molecular Dynamics	
2.3. Results and Discussion	
2.3.1 Second Catalytic Water Oxidation Step	
2.3.2 Third Catalytic Water Oxidation Step: O-O Bond Formation	41

	2.3.2.1 Atta	cking Water Rearrangement and Electron Transfer	42
	2.3.2.2 Prot	ton Diffusion	45
2.	.3.3 Fourth (Catalytic Water Oxidation Step	49
2.4.	Conclusion	ns	51
2.5	References.		53
A.	Appendix		57

Chapter 3

A Proton Acceptor near the Active Site Lowers Dramatically the O–O Bond Formation Energy Barrier
3.1. Introduction
3.2 Computational Details74
3.3. Results and Discussion74
3.3.1 Inclusion and Equilibration of an OH- Ion in the Simulation Box74
3.3.2 Photooxidation of the NDI and O–O Bond Formation77
3.3.3 Spontaneous Proton Transfer Following OOH Ligand Formation
3.3.4 Activation Free Energy Barrier and Reaction Rate Evaluation80
3.4. Conclusions
3.5 References
3.A. Appendix

Chapter 4

Tuning the Proton-Coupled Electron Transfer Rate by Ligand Modification in Catalyst–Dye Supramolecular Complexes		
4.1. Introduction		
4.2. Results and Discussion96		
4.2.1 Geometry Optimization of the WOC–dye Complexes		
4.2.2 Equilibration of WOC-dye Complexes in the Explicit Solvent Model98		
4.2.3 Constrained MD Simulations of the O–O Bond Formation Step99		
4.2.4 Free Energy Profile and Reaction Rate Estimation		
4.2.5 Coupling between Electronic and Nuclear Motions104		
4.3. Conclusions		
4.4 References		
4.A. Appendix 111		

Chapter 5

Two-Channel Model for Electron Transfer in a Dye–Catalyst–Dye Supramolecular Complex
5.1. Introduction127
5.2. Results and Discussion130
5.2.1 Geometry Optimization of the Dye-WOC-Dye Complex with DFT130
5.2.2 Equilibration of the System and Photooxidation of two NDI Dyes
5.2.3 Constrained AIMD Simulations and Catalytic Water Oxidation Steps 132
5.2.4 Free Energy Profile and Reaction Rate Evaluation
5.3. Conclusions
5.4. References140
5.A. Appendix142

Chapter 6

Conclusions and Outlook153		
6.1.	Conclusions	155
6.2.	Outlook	159
6.3.	References	161

Appendices

Summary	163
Samenvatting	165
List of Publications	
Curriculum Vitae	171
Acknowledgments	

List of Abbreviations

ADF	Amsterdam Density Functional
AIMD	Ab Initio Molecular Dynamics
APT	Concerted Atom-Proton Transfer
BO	Born-Oppenheimer approximation
BOMD	Born-Oppenheimer Molecular Dynamics
bpy	2,2'-bipyridine
СВ	Conduction Band
CFF	Consistent Force Field
CHARMM	Chemistry at HARvard Macromolecular Mechanics
COSMO	Conductor-like Screening Model
CPMD	Car-Parrinello Molecular Dynamics
су	<i>p</i> -cymene
DCACP	Dispersion-Correcting Atom-Centered Potential
DFT	Density Functional Theory
DFT-MD	DFT-based Car-Parrinello Molecular Dynamics
DS-PEC	Dye-Sensitized Photoelectrochemical Cell
DSSC	Dye-sensitized Solar Cells
EPT	Concerted Electron-Proton Transfer
ET	Electron Transfer
FMD	Free Molecular Dynamics
FS	Final State
GEA	Gradient Expansion Approximation
GGA	Generalized Gradient Approximation
GTH	Goedecker-Teter-Hutter
HEC	Hydrogen-Evolving Catalyst
НОМО	Highest Occupied Molecular Orbital
IEM	Ion Exchange Membrane
IS	Initial State
I2M	Oxo-oxo Coupling
KS	Kohn-Sham
LDA	Local Density Approximation
LUMO	Lowest Unoccupied Molecular Orbital
MD	Molecular dynamics
NCAP	Nonadiabatic Conversion by Adiabatic Passage
NDI	2,6-diethoxy-1,4,5,8-diimide-naphthalene
NPT	Isothermal-isobaric Ensemble

NVT	Canonical Ensemble
OEC	Oxygen Evolving Center
OPBE	OPTX-Perdew-Burke-Ernzerhof
OPTX	Handy's Optimized Exchange
PBC	Periodic Boundary Conditions
PBE	Perdew-Burke-Ernzerhof
PCET	Proton-Coupled Electron Transfer
PEC	Photoelectrochemical Cell
PEM	Proton Exchange Membrane
PSI	PhotoSystem I
PSII	PhotoSystem II
PV-E	PV-Electrolysis
РТ	Proton Transfer
PV	Photovoltaics
SOMO	Singly Occupied Molecular Orbital
TD-DFT	Time-Dependent Density Functional Theory
TIP3P	Transferable Intermolecular Potential with 3 Points
TS	Transition State
TZP	Triple-Zeta Polarized Basis Set
VDOS	Vibrational Density of States
VMD	Visual Molecular Dynamics
WNA	Water Nucleophilic Attack
WOC	Water Oxidation Catalyst

List of Symbols

pre-exponential frequency factor
C–N bond length
C–N bond length of the initial intermediate
C–N bond length of the final intermediate
time-averaged C–N bond length
Euler's number
overpotential
ground state energy
exchange-correlation functional
total bonding energy
energy difference between molecular orbitals
energy difference between intermediates
excitation energy around the transition state
oscillator strength
radial distribution function
activation free energy barrier
thermodynamic driving force
free energy change
calculated free energy change
experimentally measured free energy change
Planck constant
classical Coulomb interaction
reaction rate
Boltzmann constant
Kohn-Sham orbital
coordination number
O…O distance
Universal gas constant
electron density
total spin angular momentum
spin multiplicity
thermodynamic temperature
kinetic energy
standard deviation
dihedral angle
dihedral angle of the initial intermediate

$\theta_{\text{fin}} < \theta >$	dihedral angle of the final intermediate time-averaged dihedral angle
λ	constraint force
<λ>	time-averaged constraint force
<λ> _r	running average of constraint force
μ	fictitious mass of the electronic degrees of freedom
$\Lambda_{ m ij}$	Lagrange multipliers
$V_{ m ee}[ho]$	electron-electron interaction
$V_{ m ext}[ho]$	nucleus-electron interaction
$v_{\rm ext}(r)$	external potential
ω	vibrational frequency