

Tamoxifen pharmacogenetics and pharmacokinetics in early breast cancer

Sanchez Spitman, A.B.

Citation

Sanchez Spitman, A. B. (2021, February 18). Tamoxifen pharmacogenetics and pharmacokinetics in early breast cancer. Retrieved from https://hdl.handle.net/1887/3142390

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	<u>https://hdl.handle.net/1887/3142390</u>

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>https://hdl.handle.net/1887/3142390</u> holds various files of this Leiden University dissertation.

Author: Sanchez Spitman, A.B. Title: Tamoxifen pharmacogenetics and pharmacokinetics in early breast cancer Issue Date: 2021-02-18

CHAPTER

CYP2C19 genotypes and tamoxifen therapy: effect on metabolism and early-breast cancer relapse

Anabel Sanchez Spitman Jesse J. Swen Vincent O. Dezentjé Dirk-Jan A.R. Moes Hans Gelderblom Henk-Jan Guchelaar

Submitted

Abstract

Background

*CYP2C19*2* and *CYP2C19*17* might influence tamoxifen variability. We aim to investigate the effect of *CYP2C19*2* and *CYP2C19*17* on tamoxifen concentrations and metabolic ratios (MRs) and breast cancer recurrence in a large cohort of Caucasian women.

Methods

Genetic variants, tamoxifen and metabolites concentrations, baseline characteristics, and breast cancer recurrence from the CYPTAM study (NTR1509) were used. *CYP2C19*2* and *CYP2C19*17* were evaluated as independent alleles and as groups based on *CYP2D6* genotypes (high, intermediate and low activity). Classification tree analyses (CTAs) were conducted to assess the levels of interactions per polymorphism (CYP2D6, *CYP2C19*2* and *CYP2C19*17*) on concentrations.

Outcomes

Only significant differences (p-value <0.05) in mean concentrations and MR were obtained when comparing tamoxifen activity groups (high, intermediate and low activity). In terms of recurrence (HR), *CYP2C19*2* failed to find an association (Hazard Ratio (HR) for heterozygous: 1.090 (95% Confidence Interval (CI): 0.595-1.994, p-value: 0.666; HR for homozygous: 0.759 (95% CI: 0.101-5.700, p-value: 0.789), whereas for *CYP2C19*17*, HR for hetero- and homozygous was 0.881 (CI: 0.478-1.625, p-value: 0.686) and 1.797 (CI:0.598-5.397, p-value:0.296), respectively. CTAs showed a significant relationship between *CYP2D6* and endoxifen (p-value<0.0001).

Conclusions

CYP2C19 polymorphisms do not have a significant impact on tamoxifen metabolism or breast cancer relapse.

Introduction

Worldwide, breast cancer is still the most frequent malignity in women^{1,2}, and accounted for 571000 deaths in 2015¹. Since the majority of newly diagnosed breast cancer cases are estrogen-receptor positive, endocrine therapy with tamoxifen or aromatase inhibitors is recommended^{3,4}. For many years, tamoxifen has been prescribed as monotherapy or with subsequent switch to an aromatase inhibitor after two or three years of endocrine therapy^{3,4}. In the adjuvant scenario, tamoxifen therapy decreases mortality and disease recurrences of breast cancer⁵, whilst in the metastatic setting prolonged survival outcomes has been observed⁶. Unfortunately, there is a high variability in tamoxifen response, and about 30 % of patients using adjuvant tamoxifen still will have a disease relapse⁵.

Tamoxifen is a competitive estrogen receptor antagonist and is metabolized into its primary metabolites, N-desmethyl-tamoxifen (NDM-tamoxifen) and 4-hydroxy-tamoxifen, followed by a second conversion into endoxifen (**Figure 6.1**)⁷. Both 4-hydroxy-tamoxifen and endoxifen have similar anti-estrogenic potencies⁸, but endoxifen is reported as the active metabolite, as it is found in 5-10 times higher concentrations than 4-hydroxy-tamoxifen⁹.

In tamoxifen metabolism, the limiting step in the transformation to endoxifen is regulated by CYP2D6 enzyme. Although many studies have associated genetic variants in *CYP2D6* gene with clinical outcome¹⁰, many other researchers have reported null-association between survival outcome and decreased CYP2D6 enzyme activity ¹¹. Since *CYP2D6* only partly contributes to explaining the 42.3% variability of endoxifen concentrations¹² and 68.7% of endoxifen formation (metabolic ratio (MR) of NDM-tamoxifen/endoxifen)¹³, *CYP2D6* genotyping has not been implemented in the daily clinical practice in order to predict tamoxifen efficacy. However, other polymorphisms in other drug-metabolizing enzymes involved in tamoxifen metabolism might also have an impact in the endoxifen formation and potentially in clinical outcome.

CYP2C19 gene is highly polymorphic¹⁴, and it plays multiple roles in the tamoxifen pathway (**Figure 6.1**). Several polymorphisms in the gene encoding the CYP2C19 enzyme have been described. While *CYP2C19*17* variant leads to an increased enzymatic activity, other variants e.g. *CYP2C19*2* and *CYP2C19*3*¹⁴ genotypes have a decreased enzyme activity. Regarding the role of these *CYP2C19* genotypes and tamoxifen metabolism, several studies have been published. Lim and colleagues reported no association between tamoxifen and its metabolites concentration levels and *CYP2C19* genotypes. In line with these outcomes, Mürdter *et al.* failed to find an association regarding *CYP2C19* genotypes and endoxifen, 4-hydroxy-tamoxifen and NDM-tamoxifen concentrations or MRs. In contrast, Gjerde *et al.* observed a higher 4-hydroxy-tamoxifen formation in *CYP2C19*17* carriers¹⁵. Interestingly, Lim and colleagues reported in a recent study an association of *CYP2C19*2* with norendoxifen, also named 4-hydroxy-N,N-didesmethyltamoxifen¹⁶. Norendoxifen is an active metabolite of tamoxifen, which is the result of the direct de-methylation of endoxifen. In contrast to endoxifen and tamoxifen, Lu *et al.* characterized this metabolite as dual aromatase inhibitor and selective estrogen-receptor modulator¹⁷ which may lead to an interesting novel drug¹⁸.

Figure 6.1. Tamoxifen metabolism

Also, the relationship between *CYP2C19* genotypes and breast cancer recurrence has been examined, yet contradictory results have also been published. Schroth and colleagues described a more favorable survival outcome for *CYP2C19*17* carriers (Hazard Ratio (HR):0.45; 95 % Confidence Interval (CI): 0.21-0.92; p-value: 0.03)¹⁹. Similarly, a meta-analysis described improved survival outcomes in *CYP2C19*17* carriers ²⁰. However, Moyer failed to find an association between clinical outcome and *CYP2C19*17* genotype (HR: 0.93; 95 % CI: 0.64-1.37; p-value: 0.667)²¹. In line with Moyer, these results were recently ratified by Damkier and colleagues after analyzing the publicly available dataset of the International Tamoxifen Pharmacogenomics Consortium (ITPC)²². In this heterogeneous group, homo- and heterozygotes of the *CYP2C19*17* variant were not associated with better survival outcome.

In the same manner, *CYP2C19*2* genotype has been studied, and conflicting results were found again. Schaik and colleagues reported better clinical outcomes in the advanced setting (HR:0.72; 95 % CI:0.57-0.90; p-value: 0.004) in a cohort of 499 patients²³. In the same line, Beelen observed better survival results in adjuvant tamoxifen-treated group (HR: 0.26; 95 % CI:0.12-0.55; p-value: 0.001)²⁴, which is accordance with Ruiter and colleagues²⁵. In contrast, Damkier showed again no association between *CYP2C19*2* genotype and breast cancer outcomes in a larger group of patients²². Due to this large variety in results, we aimed to investigate the

role of *CYP2C19*2* and *CYP2C19*17* on tamoxifen metabolism and the associations of these two *CYP2C19* variants with breast cancer survival outcomes in the large cohort of the prospective CYPTAM study²⁶, which enrolled 667 Caucasian pre- and post-menopausal patients diagnosed with early-breast cancer receiving adjuvant tamoxifen.

Methods

Study objectives

The primary objective of this study was to investigate the impact of *CYP2C19*2* and *CYP2C19*17* on the concentrations and MRs of tamoxifen, NDM-tamoxifen, 4-hydroxy-tamoxifen and endoxifen. However, tamoxifen metabolism is complex and mainly determined by *CYP2D6*, and accounting only for *CYP2C19*2* and *CYP2C19*17* would not be of significant value, since these genotypes have a minor effect on tamoxifen variability ^{9,27,28}. Therefore, following the approach of Schroth²⁹ and Damkier²², an analysis taking into account the overall tamoxifen enzymatic activity groups (low, intermediate and high) was performed (**Table 6.1**).

		CYP2D6	CYP2C19*17
Activity groups according to	High activity	EM/EM	Yes
CYP2D6 predicted phenotypes and	Intermediate	EM/EM	No
CYP2C19*17 genotype	activity	EM/IM	Yes
		EM/PM	Yes
	Low activity	EM/IM	No
	•	EM/PM	No
		IM/IM	Yes or No
		IM/PM	Yes or No
		PM/PM	Yes or No
		CYP2D6	CYP2C19*2
Activity groups according to	High activity	EM/EM	No
<i>CYP2D6</i> predicted phenotypes and	Intermediate	EM/EM	Yes
CYP2C19*2 genotype	activity	EM/IM	No
		EM/PM	No
	Low activity	EM/IM	Yes
		EM/PM	Yes
		IM/IM	Yes or No
		IM/PM	Yes or No
		PM/PM	Yes or No

 Table 6.1. Overall Tamoxifen enzymatic activity groups according to CYP2D6 predicted phenotypes and CYP2C19*2 and CYP2C19*17

*Ultra-metabolizers (UM) were treated as extensive metabolizers (EM). EM: extensive metabolizers; IM: intermediate metabolizer; PM: poor metabolizer.

The secondary objective was to assess the effect of these two *CYP2C19* variants with breast cancer outcomes in a large cohort of Caucasian patients diagnosed with early-breast cancer receiving adjuvant tamoxifen. In the core CYPTAM study, the selected primary endpoint was relapse-free survival (RFS), which was defined as the time from enrolment to loco-regional or distant relapse or second breast cancer. In case of a switch to an aromatase inhibitor, patients were censored at the moment of tamoxifen discontinuation²⁶.

Study design and population

To research the influence of CYP2C19*2 and CYP2C19*17 variants on tamoxifen metabolism and survival outcomes, whole blood and serum samples and clinical information and follow-up regarding pre- and post-menopausal female patients encompassed in the CYPTAM study were used. Concisely, from February 2008 till December 2010, a total of 667 patients were enrolled in this study, which comprises research from 25 hospitals from Belgium and The Netherlands. The primary objective was to associate CYP2D6 predicted phenotypes and endoxifen serum concentration to breast cancer recurrence²⁶. In this study, female individuals diagnosed with earlybreast cancer and starting 20 mg QD tamoxifen as adjuvant endocrine therapy, were eligible to participate in this observational study. Also, patients were allowed to participate if they were receiving tamoxifen for no longer than twelve months. Exclusion criteria were pregnancy, breast-feeding and earlier malignancy, with the exception of adequately treated in-situ cervix carcinoma and basal-cell carcinoma. The study protocol was approved by the Institutional Review Board of the Leiden University Medical Center (The Netherlands) and registered in the Netherlands Trial Registry (NTR1509). All encompassed female individuals gave written informed consent. For this pharmacogenetic study, the CYPTAM population was analysed, which is described in more detail elsewhere^{12,30}.

Quantification analysis and Genotyping

Serum and whole blood specimens were collected for quantification analysis of tamoxifen and its metabolites and genotyping, respectively. Samples were retrieved after at least two-month of tamoxifen therapy in order to assure steady-state concentrations. Also, a minimum of twelve hours after the last intake was required for steady state trough concentrations.

Quantification of tamoxifen and its metabolites concentrations were performed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/ MS)³¹. *CYP2D6* Genotyping was performed with Amplichip CYP450 test (Roche Diagnostic, Indianapolis, USA). In accordance with their *CYP2D6* genotypes, all individuals were classified in predicted phenotypes, as defined by Schroth *et al* ^{19,32}. More comprehensive description about *CYP2D6* predicted phenotypes is outlined elsewhere³³. In the same manner, *CYP2C19* genotyping was performed with Amplichip CYP450 test (Roche Diagnostic, Indianapolis, USA) for *CYP2C19*2* and TaqMan7500 (Applied Biosystems, Nieuwerkerk a.d. IJssel, The Netherlands) SNP Genotyping Assays for *CYP2C19*17*. The reference genotype was the wild-type *CYP2C19*1*, whereas the analysed variants were *CYP2C19*2* and *CYP2C19*17*.

Due to the low allele frequency of other *CYP2C19* genotypes in the Caucasian population, no other genotypes were assessed in this study. For instance, *CYP2C19*3* variant has a reported frequency of occurrence of 0.04 %, while it has an allele frequency of 5-11% in Asian population groups^{34,35}. Therefore, only the two most common of *CYP2C19* variants among Caucasians, *CYP2C19*2* and *CYP2C19*17*, were investigated.

Statistical analysis

To evaluate the role of *CYP2C19*2* and *CYP2C19*17* on tamoxifen metabolism, concentrations and metabolic ratios of tamoxifen, endoxifen, NDM-tamoxifen and 4-hydroxy-tamoxifen were used. In this case, MRs were considered as concentration of substrate divided by metabolite concentration. To assess differences between groups, analysis of variance (ANOVA) test were carried out. Also, multiple linear regression analyses were performed to investigate the contributions of these *CYP2C19* genotypes to the total explained variability of MRs and concentrations of tamoxifen, endoxifen, NDM-tamoxifen and 4-hydroxy-tamoxifen.

For the second objective, Cox regression was carried to analyse whether RFS varied across all groups (Hazard Ratio: HR). When in the univariable analysis, a p-value below 0.1 was obtained, this covariate was adopted in the multivariable analysis. In addition, the following covariates were fitted in the multivariate analysis due to their known clinical relevance: tumor and nodal stage, histological classification and grade, and Her2 receptor status.

At the same time, we conducted an exploratory examination by performing classification tree analyses in order to determine the levels of interactions by polymorphisms (*CYP2D6*, *CYP2C19*2* and *CYP2C19*17*) on the effect endoxifen concentrations. More detailed information about how these type of analyses are performed is described elsewhere³⁶. All statistical analyses were performed with IBM SPSS for Windows, Version 23.0. Statistical significance was accepted for p-values below 0.05.

Results

Allele frequencies and distributions: CYP2C19*2 and CYP2C19*17

The genotype distributions of *CYP2C19*2* and *CYP2C19*17* variants are described in **Table 6.2.** In this study, both genotypes were found to be in consistency with Hardy-Weinberg equilibrium (*CYP2C19*2*: χ^2 =0.518, p-value=0.472; *CYP2C19*17*: χ^2 =0.135, p-value=0.713). Also, a summary of the overall tamoxifen activity groups depending on *CYP2C19* variant and *CYP2D6* predicted phenotypes is described. Of note, *CYP2D6* ultra-rapid metabolizers (n= 5) were sorted out as extensive metabolizers for the formation of the overall tamoxifen activity groups.

		CYP2D6	*17	Total patients (N)	Frequency (%)
Activity groups	High activity	EM/EM	Yes	155	24.4
according to	Intermediate	EM/EM	No	281	44.3
c <i>rP2D6</i> predicted	activity	EM/IM	Yes		
and CYP2C19*2		EM/PM	Yes		
genotype	Low activity	EM/IM	No	198	31.2
		EM/PM	No		
		IM/IM	Yes or No		
		IM/PM	Yes or No		
		PM/PM	Yes or No		
		CYP2D6	*2		
Activity groups	High activity	EM/EM	No	79	12.8
according to	Intermediate	EM/EM	Yes	249	40.3
phenotypes and	activity	EM/IM	No		
CYP2C19*17		EM/PM	No		
genotype	Low activity	EM/IM	Yes	290	46.9
		EM/PM	Yes		
		IM/IM	Yes or No		
		IM/PM	Yes or No		
		PM/PM	Yes or No		_
			Variants	Total patients (N)	Frequency (%)
CYP2C19*2 genotyp	e		*1/*1	465	71.1
			*1/*2	170	26.0
			*2/*2	19	2.9
CYP2C19*17 genoty	ре		*1/*1	391	61.8
			*1/*17	211	33.3
			*17/*17	31	4.9

Table 6.2. Genotype distribution and frequency in the study population.

Study population

From the CYPTAM study, data from 667 female patients were used: a comprehensive overview of the clinical demographics of the enrolled CYPTAM individuals has been previously described. ^{12,26,30,37}. For this pharmacogenetics sub-analysis from the core CYPTAM cohort, the baseline demographics of the overall tamoxifen enzymatic activity groups (low, intermediate and high) of *CYP2C19*2* and *CYP2C19*17*, are described in **Table 6.3**. At baseline, no differences were observed, concerning tumor and nodal stage, histological classification and grade, progesterone and HER2 receptor status, type of surgery and axillar surgery, adjuvant chemotherapy and radiotherapy and trastuzumab treatment. Also, an overview of the baseline characteristics of the study patients by *CYP2C19*2* and *CYP2C19*17* alleles is listed as **Supplementary Table 6.1**.

Associations of tamoxifen metabolism and CYP2C19 genotypes

When the overall tamoxifen activity groups (high, intermediate and low) were compared, statistically significant differences in mean concentrations of endoxifen, NDM-tamoxifen and 4-hydroxy-tamoxifen were observed in both cases (corrected for the *CYP2D6* predicted phenotypes and *CYP2C19*2* or *CYP2C19*17* alleles)(Figure 6.2 and 6.3). In contrast, tamoxifen mean concentrations did not differ when comparing the overall tamoxifen activity groups (high, intermediate and low). At the same time, significant variations in all MRs were observed in both analyses. In Figure 6.2 and 6.3, mean concentrations and MRs of the overall tamoxifen activity groups (high, intermediate and low) are illustrated.

In contrast, when *CYP2C19*2* or *CYP2C19*17* alleles were independently evaluated, mean concentrations and MRS of tamoxifen, endoxifen, NDM-tamoxifen and 4-hydroxy-tamoxifen were comparable and no statistical differences were observed when comparing homozygotes, heterozygotes and wild-type (**Supplementary Table 6.2**).

To study the additional effect of *CYP2C19*2* and *CYP2C19*17* to the explained variance of endoxifen concentrations and MRs, these variants were fitted in a multiple regression model in which previously *CYP2D6* predicted phenotypes and concentrations of tamoxifen and its metabolites were already assessed¹². When both *CYP2C19* genotypes were introduced in the model, the explained variability of the concentration levels of tamoxifen and its metabolites barely improved. For instance, in the case of endoxifen concentrations, the explained variability varied from 0.423 to 0.425 (p-value 0.362) and 0.427 (p-value: 0.881) when *CYP2C19*2* and *CYP2C19*17* were fitted in the model, respectively. In contrast, the explained variance of the MRs tamoxifen/4-hydroxy-tamoxifen and 4-hydroxy-tamoxifen/endoxifen slightly, yet statistically significantly, increased, varying the improvements of the predictability (R²) between 0.008 and 0.02, respectively. In **Supplementary Table 6.3**, a summary of *CYP2C19* variants covariate analysis is presented.

CITACIA.	17 genotypes grou	sdr								
			Activity grou predicted ph genotype	lps according enotypes and	to <i>CYP2D6</i> <i>CYP2C19*2</i>		Activity grou CYP2D6 pre- CYP2C19*17	Ips according dicted phenot denotype	l to ypes and	
			High activity (N=155)	Intermediate activity (N=281)	Low activity (N=198)	P-value	High activity (N=79)	activity (N=249)	Low activity (N=290)	P-value
Age at enr (SD)	olment (years): N	lean	56.0 (11.3)	56.1 (10.9)	56.5 (11.1)	0.869	56.9 (11.6)	55.8 (10.2)	56.3 (11.5)	0.689
	E	z	76	149	108	0.340	39	127	163	0.343
e		%	22.8%	44.7%	32.4%		11.9%	38.6%	49.5%	
- 90e	12	z	66	113	85		32	106	114	
ts .		%	25.0%	42.8%	32.2%		12.7%	42.1%	45.2%	
	r3/T4	z	0	15	4		9	13	6	
uņ		%	32.1%	53.6%	14.3%		21.4%	46.4%	32.1%	
L	Not specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	0.0%		0.0%	%0.0	0.0%	
~	40	z	70	120	106	0.343	35	116	136	0.523
		%	23.6%	40.5%	35.8%		12.2%	40.4%	47.4%	
~	5	z	60	132	64		29	104	117	
эбе		%	23.4%	51.6%	25.0%		11.6%	41.6%	46.8%	
-z sts	42	z	15	18	22		6	19	27	
let		%	27.3%	32.7%	40.0%		16.4%	34.5%	49.1%	
2	43	z	8	10	9		6	8	6	
١		%	33.3%	41.7%	25.0%		26.1%	34.8%	39.1%	
~	Vot specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	0.0%		0.0%	%0.0	0.0%	
uc Ji	Ductal	z	112	211	159	0.601	59	190	227	0.926
ics itic	adenocarcinoma									
bo soi		%	23.2%	43.8%	33.0%		12.4%	39.9%	47.7%	
lot: tie:	-obular	z	25	42	23		12	35	35	
eiH Sblo	adenocarcinoma	%	27 8%	46 7%	95.6%		14.6%	40 7%	40 7%	
		2		2	200		202	2	table	e continues

	Other	z	16	27	16		õ	22	27	
		%	27.1%	45.8%	27.1%		14.0%	38.6%	47.4%	
	Not specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	%0.0		0.0%	0.0%	0.0%	
ə	ସ	z	20	43	21	0.143	12	35	38	0.402
рв		%	23.8%	51.2%	25.0%		14.1%	41.2%	44.7%	
ցւ	G2	z	95	159	106		44	149	153	
ទេរ		%	26.4%	44.2%	29.4%		12.7%	43.1%	44.2%	
oipo	G3	z	37	77	69		22	63	95	
olo		%	20.2%	42.1%	37.7%		12.2%	35.0%	52.8%	
tei∣	Not specified	z	0	0	0		0	0	0	
н		%	0.0%	0.0%	%0.0		0.0%	0.0%	0.0%	
ə	Positive	z	115	234	154	0.077	62	201	229	0.696
s or s		%	22.9%	46.5%	30.6%		12.6%	40.9%	46.5%	
tus tot iete	Negative	z	35	43	44		14	43	59	
sət əce		%	28.7%	35.2%	36.1%		12.1%	37.1%	50.9%	
S B B B B B B B B B B B B B B B B B B B	Not specified	z	0	0	0		0	0	0	
Ь		%	0.0%	0.0%	%0.0		0.0%	0.0%	0.0%	
	0	z	98	170	115	0.476	51	152	167	0.355
sn		%	25.6%	44.4%	30.0%		13.8%	41.1%	45.1%	
teta	÷	z	34	75	53		13	66	81	
ol a		%	21.0%	46.3%	32.7%		8.1%	41.3%	50.6%	
ptq	2+	z	9	18	10		5	12	17	
əce		%	17.6%	52.9%	29.4%		14.7%	35.3%	50.0%	
; LG	3+	z	15	17	20		10	17	24	
28		%	28.8%	32.7%	38.5%		19.6%	33.3%	47.1%	
эн	Not specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	0.0%		0.0%	0.0%	0.0%	
	Positive	z	17	19	20	0.243	11	18	26	0.198
н	(amplification)									
SI		%	30.4%	33.9%	35.7%		20.0%	32.7%	47.3%	
4	Negative	z	136	261	178		68	229	263	
		%	23.7%	45.4%	31.0%		12.1%	40.9%	47.0%	
									t	able continues

		0.526						0.302						0.710						0.228						0.091					
0	0.0%	135	47.7%	153	46.2%	0	0.0%	148	48.4%	140	45.5%	0	0.0%	204	47.6%	85	45.7%	0	0.0%	170	44.6%	119	50.9%	0	0.0%	25	45.5%	264	47.3%	0	
0	0.0%	108	38.2%	139	42.0%	0	0.0%	125	40.8%	122	39.6%	0	0.0%	173	40.3%	74	39.8%	0	0.0%	163	42.8%	84	35.9%	0	0.0%	18	32.7%	228	40.9%	0	
0	0.0%	40	14.1%	39	11.8%	0	0.0%	33	10.8%	46	14.9%	0	0.0%	52	12.1%	27	14.5%	0	0.0%	48	12.6%	31	13.2%	0	0.0%	12	21.8%	66	11.8%	0	
		0.649						0.157						0.433						0.580						0.136					
0	0.0%	88	29.8%	109	32.5%	0	0.0%	109	34.8%	88	27.8%	0	0.0%	142	32.5%	56	28.9%	0	0.0%	118	29.9%	80	33.8%	0	0.0%	20	35.7%	178	31.1%	0	
0	0.0%	131	44.4%	149	44.5%	0	0.0%	133	42.5%	147	46.4%	0	0.0%	195	44.6%	85	43.8%	0	0.0%	177	44.9%	103	43.5%	0	0.0%	18	32.1%	260	45.5%	0	
0	0.0%	76	25.8%	77	23.0%	0	0.0%	71	22.7%	82	25.9%	0	0.0%	100	22.9%	53	27.3%	0	0.0%	66	25.1%	54	22.8%	0	0.0%	18	32.1%	134	23.4%	0	100 0
z	%	z	%	N gr	%	z	%	z	%	z	%	z	%	z	%	z	%	z	%	z	%	z	%	z	%	z	%	z	%	z	ò
Not specified		Mastectomy		Breast conservi		Not specified		Sentinal node	procedure only	Axillary lymph	node dissection	Not specified		Yes		No		Not specified		Yes		No		Not specified		Yes		No		Not specified	
			Â	Jer	nıć	S		B	lix	e A	ler	ŋrç	S	À	de. 1u	her 19d	uįb ljoi	A bs	ย	λc	tal nt	ev SV3	ou níp	A N9r	IJ	q	م uع	de. Inz	ıəy nı:	T Ser	1

Figure 6.2. Activity groups according to *CYP2D6* predicted phenotypes and *CYP2C19*2* genotype

A) Association between High, Intermediate and Low activity groups and their effect on the concentrations of tamoxifen and its metabolites.

B) Association between High, Intermediate and Low activity groups and their effect on the metabolic ratios of tamoxifen and its metabolites.

Breast cancer recurrence and CYP2C19 genotypes

For the *CYP2C19*2* genotype, analysing the association between the overall tamoxifen enzymatic activity groups (high, intermediate and low) with RFS, no differences in terms of HR were found. In the multi-variable analysis, a HR of 1.191 (95 % CI: 0.538-2.636, p-value: 0.666) and 1.346 (95 % CI: 0.538-2.636, p-value: 0.404) for the intermediate

and high activity group, respectively were obtained. In the same manner, no significant variations for the *CYP2C19*17* genotype across the overall tamoxifen enzymatic activity groups were found. In this case, adjusted HRs for the intermediate and high were 0.819 (95 % CI: 0.302-2.220, p-value: 0.695) and 1.369 (95 % CI: 0.736-2.548, p-value: 0.321), respectively.

Figure 6.3. Activity groups according to *CYP2D6* predicted phenotypes and *CYP2C19*17* genotype.

A) Association between High, Intermediate and Low activity groups and their effect on the concentrations of tamoxifen and its metabolites.

B) Association between High, Intermediate and Low activity groups and their effect on the metabolic ratios of tamoxifen and its metabolites.

For the *CYP2C19*2* genotype, uni- and multi-variable analysis did not reveal differences in terms of RFS between homozygotes and heterozygotes. In these cases, adjusted HRs for associations between *CYP2C19*1/*2* and *CYP2C19*2/*2* compared to the wild-type and RFS were 1.090 (95 % CI: 0.595-1.994) and 0.759 (95 % CI: 0.101-5.700), respectively.

In the same line, no differences in RFS were observed for the *CYP2C19*17* carriers and non-carriers. In contrast, adjusted HRs for *CYP2C19*17* homozygotes and heterozygotes were 1.797 (95 % CI: 0.598-5.397, p-value: 0.296) and 0.881 (95 % CI: 0.478-1.625, p-value:0.686), respectively. A summary of the Cox regression analysis of all CYP2C19 genotypes is presented in **Table 6.4**.

Table 6.4. Cox proportional hazard ratios for *CYP2C19*2* and *CYP2C19*17* genotypes, and comparison of activity groups according to **CYP2D6** predicted phenotypes and *CYP2C19*2* and *CYP2C19*17* genotype.

		Univariable analysis	Multivariable analysis*				
	Ν	HR	95 % CI	p-value	HR	95 % CI	p-value
Activity groups a	ccordin	ig to CYP2D	6 predicted ph	enotypes	and C	<i>YP2C19*2</i> ger	notype
Low activity group	198	1.000	Reference	(0.804)	1.000	Reference	(0.704)
Intermediate activity group	281	1.133	0.531-2.147	0.747	1.191	0.538-2.636	0.666
High activity group	155	1.246	0.648-2.398	0.510	1.346	0.669-2.708	0.404
Activity groups a	ccordin	ig to CYP2D	6 predicted ph	enotypes	and C	<i>YP2C19*17</i> ge	enotype
Low activity group	290	1.000	Reference	(0.582)	1.000	Reference	(0.458)
Intermediate activity group	249	0.832	0.313-2.208	0.711	0.819	0.302-2.220	0.695
High activity group	79	1.271	0.707-2.285	0.423	1.369	0.736-2.548	0.321
CYP2C19*2 geno	type						
No CYP2C19*2 variant	465	1.000	Reference	(0.797)	1.000	Reference	(0.921)
CYP2C19*1/*2	170	1.201	0.668-2.159	0.541	1.090	0.595-1.994	0.781
CYP2C19*2/*2	19	0.796	0.109-5.819	0.822	0.759	0.101-5.700	0.789
CYP2C19*17 gen	otype						
No <i>CYP2C19*17</i> variant	391	1.000	Reference	(0.404)	1.000	Reference	(0.481)
CYP2C19*1/*17	211	0.842	0.463-1.531	0.573	0.881	0.478-1.625	0.686
CYP2C19*17/*17	31	1.787	0.632-5.048	0.273	1.797	0.598-5.397	0.296

Classification Tree analyses

As an exploratory analysis, we conducted different Classification Tree Analyses (CTA) to evaluate the levels of interactions between *CYP2D6* predicted phenotypes and *CYP2C19*2* and *CYP2C19*17* genotypes on endoxifen concentrations. The first CTA was performed with the only focus on the *CYP2D6* predicted phenotypes and endoxifen concentration. In this CTA, patients were subdivided in only one level of the CTA with three different groups of *CYP2D6* phenotypes that statistically different (EM/UM verus hetEM versus IM/PM; p-value<0.001) (**Figure 6.4**). In contrast, when *CYP2C19*2* and *CYP2C19*17* were added into the first CTA (*CYP2D6* predicted phenotypes and endoxifen concentrations), no other levels of the CTA were achieved.

Figure 6.4. Classification Tree analyses for endoxifen concentrations and *CYP2D6* predicted phenotypes. EM: extensive metabolizer; hetEM: heterogenous extensive metabolizer; IM: intermediate metabolizer; N: number of individuals. PM: poor metabolizer; SD: standard deviation; UM: ultrarapid metabolizer.

Discussion

In this study, we assessed the effect of *CYP2C19* genotypes on tamoxifen metabolism and efficacy in an extensive cohort of Caucasian breast cancer patients receiving tamoxifen as adjuvant endocrine therapy. In our study, we failed to find any differences in mean concentrations of tamoxifen, endoxifen, 4-hydroxy-tamoxifen and NDMAtamoxifen when comparing both *CYP2C19*2* and *CYP2C19*17* genotypes to their wild-type. Interestingly, an analysis accounting for *CYP2D6* predicted phenotypes and *CYP2C19* genotypes, in which the overall tamoxifen enzymatic activity was categorized as high, intermediate and low activity, resulted in statistically significant differences in mean concentrations of endoxifen, NDM-tamoxifen, and 4-hydroxy-tamoxifen and their corresponding MR. In contrast, tamoxifen mean concentrations were comparable across all the groups. At the same time, we found a lack of association between *CYP2C19* variant alleles and RFS, when accounting for *CYP2D6* predicted phenotypes and *CYP2C19*2* or *CYP2C19*17* or when comparing both genotypes independently to wild-type.

Tamoxifen has a complex metabolic pathway and many different enzymes are implicated in its activation into endoxifen. Yet, the most relevant enzyme of tamoxifen metabolism is CYP2D6, but it only partially contributes to explaining the inter-variability in endoxifen concentrations between patients. Therefore, many studies have been conducted to find other potentials sources which could clarify the high variability in concentration levels and response to therapy between patients, such as *CYP2C19* genotypes and its *17 and *2 variants.

According to Scroth and colleagues, the CYP2C19*17 with its higher functioning genotypes has been correlated with improved clinical outcome²⁹. In theory, tamoxifen may be more easily metabolized into its active metabolites, e.g. endoxifen, mainly due to the higher enzymatic activity among CYP2C19*17 carriers^{15,29}. Consequently, a higher exposure to the anti-estrogenic activity of tamoxifen and its metabolites could be expected, which potentially may clarify why CYP2C19*17 patients may have an increased survival outcome. However, we failed to find such an association of improved clinical survival in our study, which is in line with Damkier et a^{p_2} . Interestingly, this hypothesis of higher exposure to anti-estrogenic activity due to higher concentration levels of tamoxifen active metabolites was not seen in our study. Instead, no significant differences in mean concentrations or MRs were obtained when comparing CYP2C19*17 hetero- and homozygous to the wild-type. At the same time, adding CYP2C19*17 variant to the multiple regression model, barely improved the inter-patient variability (e.g. R² for endoxifen concentrations varied from 0.423 to 0.427). Although the hypothesis of a prognostic marker for tamoxifen efficacy of only one variant may be tempting, we believe our results do not support that CYP2C19*17 might be it.

Likewise, for the *CYP2C19*2* allele, Van Schaik and colleagues²³, Beelen *et al* ²⁴and Ruiter and colleagues²⁵, found improved survival outcomes in the metastatic setting and in the adjuvant scenario. In this case, the decreased enzymatic activity of *CYP2C19*2* may probably lead to a lower exposure to antiestrogenic activity of tamoxifen and its metabolites, due to the potentially lower concentration levels, and therefore, a worsened clinical outcome. Nevertheless, all of these studies reported improved survival outcomes. A potential explanation for this increased clinical outcome among *CYP2C19*2* carriers may be due to the increased transformation from endoxifen into norendoxifen, which has a dual antiendocrine mechanism of action¹⁶. However, we did not find a statistically significant variations in mean concentration levels or MRs between *CYP2C19*2* homo- or heterozygous in comparison with the wild-type. In this case, our results are again in agreement with Damkier and colleagues, still the main advantage of our study might rely on the use of concentration levels.

Following the approach of Schroth *et al* of creating a new combined variable accounting for CYP2D6 predicted phenotypes and CYP2C19 genotypes²⁹, we also assessed the differences in mean concentrations, MRs and clinical outcome. In this case, we found statistically significant lower mean concentrations (with the exception of tamoxifen) and higher MRs in the low activity group of CYP2C19*2, whereas mean concentrations of 4-hydroxy-tamoxifen and endoxifen in the high activity group of CYP2C19*17 were significantly higher. To evaluate the rationale after this variable, we conducted a CTA. Interestingly, we failed to find any improvement in the prediction of endoxifen concentrations when CYP2C19*2 or CYP2C19*17 were fitted in the corresponding models, whereas only when CYP2D6 predicted phenotypes were introduced, significant differences were observed. Our interpretation is that the use of CYP2C19 genotypes only in order to predict endoxifen concentrations, might lack of usefulness in the clinical setting, and that CYP2D6 genotypes might have the most relevant role in the prediction of endoxifen concentrations. Due to differences in mean concentrations and metabolic ratios when correcting for CYP2D6 predicted phenotypes, we hypothesize that CYP2C19*2 and CYP2C19*17 might help to compensate the formation of endoxifen and 4-hydroxy-tamoxifen in the case of low CYP2D6 enzymatic activity. Yet, this effect did not translate in better clinical outcomes.

A limitation of our study might be our sample size of 667 patients compared to the cohort of 2102 female patients of the ITPC. However, we believe that our study was sufficiently powered to replicate the results of Damkier and colleagues²², with the main advantage of the use of concentrations or MRs.

To conclude, we have shown that *CYP2C19* polymorphisms have no impact on concentration levels and MRs of tamoxifen, endoxifen, 4-hydroxy-tamoxifen and NDM-tamoxifen, or clinical outcomes in breast cancer patients treated with adjuvant tamoxifen. Therefore, *CYP2C19* genotypes might not be clinically decisive for patients with early-breast cancer treated with adjuvant tamoxifen.

References

- 1. WHO Media Centre: Cancer fact sheet, 2018
- 2. Torre LA, Siegel RL, Ward EM, et al: Global Cancer Incidence and Mortality Rates and Trends--An Update. Cancer Epidemiol Biomarkers Prev 25:16-27, 2016
- Burstein HJ, Temin S, Anderson H, et al: Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: american society of clinical oncology clinical practice guideline focused update. J Clin Oncol 32:2255-69, 2014
- 4. Senkus E, Kyriakides S, Ohno S, et al: Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 26 Suppl 5:v8-30, 2015
- 5. Early Breast Cancer Trialists' Collaborative G, Davies C, Godwin J, et al: Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378:771-84, 2011
- Schiavon G, Smith IE: Endocrine therapy for advanced/metastatic breast cancer. Hematol Oncol Clin North Am 27:715-36, viii, 2013
- Stearns V, Johnson MD, Rae JM, et al: Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 95:1758-1764, 2003
- Lim YC, Desta Z, Flockhart DA, et al: Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55:471-8, 2005
- 9. Klein DJ, Thorn CF, Desta Z, et al: PharmGKB summary: tamoxifen pathway, pharmacokinetics. Pharmacogenet. Genomics 23:643-647, 2013
- Goetz MP, Rae JM, Suman VJ, et al: Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23:9312-8, 2005
- 11. Rae JM, Drury S, Hayes DF, et al: CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst 104:452-60, 2012
- Sanchez Spitman AB, Moes DJAR, Gelderblom H, et al: Effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on tamoxifen metabolism. Eur J Clin Pharmacol 73:1589-1598, 2017
- 13. Murdter TE, Schroth W, Bacchus-Gerybadze L, et al: Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 89:708-17, 2011
- 14. Pharmacogene Variation Consortium: CYP2C19 variation, 2018
- Gjerde J, Geisler J, Lundgren S, et al: Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer. BMC Cancer 10:313, 2010
- Lim JS, Sutiman N, Muerdter TE, et al: Association of CYP2C19*2 and associated haplotypes with lower norendoxifen concentrations in tamoxifen-treated Asian breast cancer patients. Br J Clin Pharmacol 81:1142-52, 2016
- 17. Lu WJ, Xu C, Pei Z, et al: The tamoxifen metabolite norendoxifen is a potent and selective inhibitor of aromatase (CYP19) and a potential lead compound for novel therapeutic agents. Breast Cancer Res Treat 133:99-109, 2012

- Lv W, Liu J, Lu D, et al: Synthesis of mixed (E, Z)-, (E)-, and (Z)-norendoxifen with dual aromatase inhibitory and estrogen receptor modulatory activities. Journal of Medicinal Chemistry 56:4611-4618, 2013
- Schroth W, Antoniadou L, Fritz P, et al: Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 25:5187-93, 2007
- 20. Bai L, He J, He GH, et al: Association of CYP2C19 polymorphisms with survival of breast cancer patients using tamoxifen: results of a meta- analysis. Asian Pac J Cancer Prev 15:8331-5, 2014
- Moyer AM, Suman VJ, Weinshilboum RM, et al: SULT1A1, CYP2C19 and disease-free survival in early breast cancer patients receiving tamoxifen. Pharmacogenomics 12:1535-1543, 2011
- 22. Damkier P, Kjaersgaard A, Barker KA, et al: CYP2C19*2 and CYP2C19*17 variants and effect of tamoxifen on breast cancer recurrence: Analysis of the International Tamoxifen Pharmacogenomics Consortium dataset. Sci Rep 7:7727, 2017
- van Schaik RH, Kok M, Sweep FC, et al: The CYP2C19*2 genotype predicts tamoxifen treatment outcome in advanced breast cancer patients. Pharmacogenomics 12:1137-46, 2011
- 24. Beelen K, Opdam M, Severson TM, et al: CYP2C19 2 predicts substantial tamoxifen benefit in postmenopausal breast cancer patients randomized between adjuvant tamoxifen and no systemic treatment. Breast Cancer Res Treat 139:649-55, 2013
- 25. Ruiter R, Bijl MJ, van Schaik RH, et al: CYP2C19*2 polymorphism is associated with increased survival in breast cancer patients using tamoxifen. Pharmacogenomics 11:1367-75, 2010
- Sanchez-Spitman A, Dezentje V, Swen J, et al: Tamoxifen Pharmacogenetics and Metabolism: Results From the Prospective CYPTAM Study. J Clin Oncol:JCO1800307, 2019
- 27. Fernandez-Santander A, Gaibar M, Novillo A, et al: Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients. PLoS One 8:e70183, 2013
- 28. Binkhorst L, Mathijssen RH, Jager A, et al: Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Cancer Treat Rev 41:289-299, 2015
- 29. Schroth W, Antoniadou L, Fritz P, et al: Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 25:5187-5193, 2007
- Sanchez-Spitman AB, Dezentje VO, Swen JJ, et al: Genetic polymorphisms of 3'-untranslated region of SULT1A1 and their impact on tamoxifen metabolism and efficacy. Breast Cancer Res Treat, 2018
- 31. Teunissen SF, Jager NG, Rosing H, et al: Development and validation of a quantitative assay for the determination of tamoxifen and its five main phase I metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 879:1677-85, 2011
- 32. Schroth W, Goetz MP, Hamann U, et al: Association between CYP2D6 polymorphisms

and outcomes among women with early stage breast cancer treated with tamoxifen. Jama 302:1429-36, 2009

- Sanchez Spitman AB, Moes D, Gelderblom H, et al: Effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on tamoxifen metabolism. Eur J Clin Pharmacol 73:1589-1598, 2017
- Tamminga WJ, Wemer J, Oosterhuis B, et al: The prevalence of CYP2D6 and CYP2C19 genotypes in a population of healthy Dutch volunteers. Eur J Clin Pharmacol 57:717-22, 2001
- Sugimoto K, Uno T, Yamazaki H, et al: Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 65:437-9, 2008
- 36. Pander J, Wessels JA, Mathijssen RH, et al: Pharmacogenetics of tomorrow: the 1 + 1 = 3 principle. Pharmacogenomics 11:1011-7, 2010
- Sanchez-Spitman AB, Moes DA, Gelderblom H, et al: The effect of rs5758550 on CYP2D6*2 phenotype and formation of endoxifen in breast cancer patients using tamoxifen. Pharmacogenomics 18:1125-1132, 2017

Supplen	nentary Table 6.1. E	Baselir	ie clinical chara	cteristics of the	CYPTAM pati	ents accc	ording to CYP2	<i>C19*2</i> and <i>CY</i>	′ <i>P2C19*</i> 17ge	notypes
			CYP2C19*2 (genotype			CYP2C19*17	genotype		
			1*/1*	*1/*2	*2/*2	P-value	L*/L*	<i>11*11</i> *	*17/*17	P-value
			N=465	N=170	N=18		N=391	N=211	N=31	
Age at e (SD)	enrolment (years):	Mean	55.72 (10.90)	58.17 (11.57)	54.55 (9.67)	0.038	56.35 (11.37)	56.21 (10.67)	57.29 (10.30)	0.880
	Ħ	z	244	89	12	0.678	211	112	16	0.863
į		%	70.7%	25.8%	3.5%		62.2%	33.0%	4.7%	
əße	T2	z	191	74	9		160	86	12	
sta i		%	70.5%	27.3%	2.2%		62.0%	33.3%	4.7%	
JOU	Т3/Т4	z	22	9	0		14	11	2	
unı		%	78.6%	21.4%	%0.0		51.9%	40.7%	7.4%	
-	Not specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	%0.0		0.0%	0.0%	0.0%	
	NO	z	213	85	13	0.311	181	103	18	0.098
		%	68.5%	27.3%	4.2%		59.9%	34.1%	6.0%	
i	N1	z	190	66	4		167	76	6	
ອດີຍ		%	73.1%	25.4%	1.5%		66.3%	30.2%	3.6%	
ste	N2	z	40	15	0		30	22	+	
leb		%	72.7%	27.3%	%0.0		56.6%	41.5%	1.9%	
oN	N3	z	19	4	-		10	10	c S	
		%	79.2%	16.7%	4.2%		43.5%	43.5%	13.0%	
	Not specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	%0.0		%0.0	0.0%	0.0%	
u I	Ductal adenocarcinoma	z	352	131	13	0.753	297	167	22	0.751
soig oite		%	71.0%	26.4%	2.6%		61.1%	34.4%	4.5%	
toloj oifie	Lobular adenocarcinoma	z	63	27	0		55	24	6	
siH selo		%	67.7%	29.0%	3.2%		64.7%	28.2%	7.1%	
)	Other	z	47	12	2		36	20	ო	
									tab	le continues

128

		%	77 0%	10 7%	3 3%		61 0%	33 0%	5 1%	
		2	0/0	2	2.0		0.0.0	0.00		
	Not specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	0.0%		%0.0	0.0%	0.0%	
	61	z	62	24	ო	0.757	57	29	4	0.907
əpe		%	69.7%	27.0%	3.4%		63.3%	32.2%	4.4%	
gra	G2	z	271	92	6		216	124	16	
ទេទ		%	72.8%	24.7%	2.4%		60.7%	34.8%	4.5%	
oibc	G3	z	125	54	9		114	56	10	
ploi		%	67.6%	29.2%	3.2%		63.3%	31.1%	5.6%	
siF	Not specified	z	0	0	0		0	0	0	
ł		%	0.0%	0.0%	0.0%		%0.0	0.0%	0.0%	
sn ə	Positive	z	373	132	15	0.589	308	173	24	0.496
ono		%	71.7%	25.4%	2.9%		61.0%	34.3%	4.8%	
iter S 1	Negative	z	84	37	ო		77	34	7	
bto Dea		%	67.7%	29.8%	2.4%		65.3%	28.8%	5.9%	
sce oro	Not specified	z	0	0	0		0	0	0	
эЯ Ч		%	0.0%	0.0%	%0.0		0.0%	0.0%	0.0%	
	0	z	292	97	10	0.608	231	130	22	0.141
sr		%	73.2%	24.3%	2.5%		60.3%	33.9%	5.7%	
itet	÷	z	108	51	5		111	44	9	
ı, s		%	65.9%	31.1%	3.0%		68.9%	27.3%	3.7%	
ołq	2+	z	24	8	0		18	16	0	
ခၥ		%	70.6%	23.5%	5.9%		52.9%	47.1%	0.0%	
5 re	3+	z	38	14	-		28	21	ი	
2H3		%	71.7%	26.4%	1.9%		53.8%	40.4%	5.8%	
н	Not specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	0.0%		%0.0	%0.0	0.0%	
H	Positive	z	42	14		0.838	31	22	ო	0.598
SIJ	(ampuncauon)	%	73.7%	24.6%	1.8%		55.4%	39.3%	5.4%	
									t	able continues

	Negative	z	420	156	17		357	189	28	
		%	70.8%	26.3%	2.9%		62.2%	32.9%	4.9%	
	Not specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	%0.0		0.0%	%0.0	0.0%	
	Mastectomy	z	220	73	10	0.451	178	97	14	0.994
Á		%	72.6%	24.1%	3.3%		61.6%	33.6%	4.8%	
Jəf	Breast conserving	Z	241	96	80		209	113	17	
òun		%	69.9%	27.8%	2.3%		61.7%	33.3%	5.0%	
S	Not specified	z	0	0	0		0	0	0	
		%	0.0%	0.0%	0.0%		%0.0	%0.0	0.0%	
e	Sentinal node	z	227	06	თ	0.671	198	100	20	0.202
illix	procedure only	%	69.6%	27.6%	2.8%		62.3%	31.4%	6.3%	
e A	Axillary lymph	z	234	79	0		189	110	4	
Jəƙ	node dissection	%	72.7%	24.5%	2.8%		61.0%	35.5%	3.5%	
) nró	Not specified	z	0	0	0		0	0	0	
S		%	0.0%	0.0%	%0.0		0.0%	%0.0	0.0%	
A	Yes	z	320	121	8	0.065	270	147	21	0.976
de. 1u		%	71.3%	26.9%	1.8%		61.6%	33.6%	4.8%	
her Val	No	z	142	49	10		118	64	10	
uįb Iot		%	70.6%	24.4%	5.0%		61.5%	33.3%	5.2%	
ad A	Not specified	z	0	0	0		0	0	0	
ł		%	0.0%	0.0%	%0.0		%0.0	%0.0	0.0%	
Â	Yes	z	294	95	11	0.206	231	132	20	0.700
rap nt		%	73.5%	23.8%	2.8%		60.3%	34.5%	5.2%	
ihe Vai	No	z	168	75	7		157	79	1	
iou nĺp		%	67.2%	30.0%	2.8%		63.6%	32.0%	4.5%	
iəd A	Not specified	z	0	0	0		0	0	0	
ວ		%	0.0%	0.0%	%0.0		0.0%	0.0%	0.0%	
										table continues

Chapter 6

	Yes	z	42	14	-	0.838	30	23	ო	0.404
) Nab		%	73.7%	24.6%	1.8%		53.6%	41.1%	5.4%	
de. unz	No	z	418	155	17		358	186	28	
ıəų mis		%	70.8%	26.3%	2.9%		62.6%	32.5%	4.9%	
serī T	Not specified	z	0	0	0		0	0	0	
L		%	0.0%	0.0%	0.0%		0.0%	0.0%	0.0%	
Supplen	nentary Table 6.2.C	Overvie	w of Mean	(SD) concentr	ation levels a	nd metabolic	ratios of tamo	xifen. endoxife	en. 4-hydroxy-	amoxifen and:
NDM-tar <i>CYP2C1</i>	noxifen by <i>CYP2C1</i> 19*17 genotypes and	<i>9*2</i> and <i>CYP</i>	d <i>CYP2C1</i> 9 2 <i>C19</i> comb	<pre>>*17 genotype ined gentoype</pre>	s. activity grou es. SD: standa	ups according ard deviation;	to <i>CYP2D6</i> p MR: metaboli	redicted phen c ratio.	otypes and C	<i>P2C19*2</i> and
			amoxifen	-MDM-	4-Hydroxy-	Endoxifen	MR	MR	MR	MR NDM-
				Tamoxifen	Tamoxifen		Tamoxifen / NDM- Tamoxifen	Tamoxifen / 4-Hydroxy- Tamoxifen	4-Hydroxy- Tamoxifen / Endoxifen	Tamoxifen / Endoxifen
		20	lean (SD) SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)	Mean (SD)
€ 3∗2	L*/L*	e C	08.72 122.36)	601.00 (226.14)	5.24 (2.33)	29.21 (15.98)	0.52 (0.13)	63.96 (26.12)	0.20 (0.08)	28.97 (24.62)
suotyp P2C19	*1/*2	ε	20.62 123.93)	607.49 (222.95)	5.11 (2.18)	29.47 (15.83)	0.54 (0.15)	68.02 (28.12)	0.20 (0.10)	30.69 (30.96)
ac AD	*2/*2	ε	03.84 105.45)	606.48 (245.04)	4.84 (2.07)	32.35 (15.70)	0.51 (0.09)	68.21 (23.71)	0.17 (0.07)	24.72 (19.16)
	p-value	0	.538	0.948	0.66	0.712	0.27	0.21	0.217	0.581
ə 21+	1*/1*	σĊ	07.03 115.80)	595.99 (213.82)	5.08 (2.36)	29.25 (16.92)	0.52 (0.13)	66.30 (27.14)	0.20 (0.08)	29.76 (26.51)
suotyp P2C19	L1*/L*	ε	15.07 125.16)	606.27 (240.03)	5.32 (2.07)	29.16 (13.86)	0.54 (0.16)	63.15 (25.54)	0.20 (0.08)	27.79 (22.86)
ас СЛ	*17/*17	0.5	.85.16 80.81)	558.57 (159.31)	5.31 (1.90)	29.77 (14.24)	0.53 (0.14)	57.47 (17.24)	0.20 (0.08)	26.26 (20.64)
										table continues

	p-value	0.381	0.519	0.436	0.980	0.664	0.105	0.906	0.548
oe C≀6∗Σ suot∧bez C∧L5DQ onbz	High activity	302.93 (125.40)	549.08 (219.10)	5.88 (2.68)	35.96 (17.38)	0.56 (0.13)	55.48 (19.57)	0.18 (0.07)	20.83 (21.47)
ctivity gr or CYP2(dr CYP2(d	Intermediate activity	311.58 (122.77)	596.59 (223.28)	5.17 (2.15)	29.21 (14.25)	0.53 (0.12)	63.77 (21.18)	0.20 (0.08)	26.19 (20.25)
A accc pred aı	Low activity	318.40 (119.48)	653.54 (221.72)	4.69 (1.96)	24.34 (14.90)	0.50 (0.16)	74.26 (31.98)	0.23 (0.10)	40.08 (32.79)
	p-value	0.500	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
sccording predicted es and genotγpe	High activity	285.26 (90.48)	512.08 (182.17)	5.67 (1.93)	32.68 (13.31)	0.58 (0.13)	53.74 (18.89)	0.19 (0.08)	21.25 (21.39)
סבכז9∗ז7 סחפחסלאף כצף2ם6 ולע סרסט	Intermediate activity	312.20 (122.46)	583.92 (228.08)	5.50 (2.52)	33.17 (16.59)	0.55 (0.13)	60.87 (22.32)	0.18 (0.07)	23.33 (20.69)
Activi	Low activity	311.88 (119.83)	631.60 (216.91)	4.74 (1.98)	24.89 (14.48)	0.50 (0.14)	71.27 (28.88)	0.22 (0.09)	36.10 (29.54)
	p-value	0.176	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Supplementary Table 6.3. Summary of *CYP2C19* genotypes covariate analysis. Ln(Tamoxifen)= natural log of tamoxifen concentration; Ln(Endoxifen)= natural log of endoxifen concentration; Ln(4-Hydroxy-Tamoxifen)= natural log of 4-hydroxy-tamoxifen concentration; Ln(NDM-Tamoxifen)= natural log of NDM-tamoxifen concentration. MR= Metabolic ratio. Ln(MR Tamoxifen/NDM-Tamoxifen)= natural log of MR Tamoxifen/NDM-Tamoxifen; Ln(MR Tamoxifen/4-hydroxy-tamoxifen)= natural log of MR Tamoxifen/4-hydroxy-tamoxifen; Ln(MR A-Hydroy-Tamoxifen/Endoxifen)= natural log of MR A-Hydroy-Tamoxifen; Ln(MR NDM-Tamoxifen/Endoxifen)= natural log of MR NDM-Tamoxifen/Endoxifen; Ln(MR NDM-Tamoxifen/Endoxifen)= natural log of MR NDM-Tamoxifen/Endoxifen

		R ²	p-value
Ln Tamoxifen	CYP2D6	0.003	0.169
	CYP2C19*2	0.006	0.171
	CYP2C19*17	0.002	0.972
Ln Endoxifen	CYP2D6	0.423	<0.001
	CYP2C19*2	0.425	0.362
	CYP2C19*17	0.427	0.881
Ln 4-Hydroy-Tamoxifen	CYP2D6	0.127	<0.001
	CYP2C19*2	0.127	0.485
	CYP2C19*17	0.134	0.112
Ln NDM-Tamoxifen	CYP2D6	0.138	<0.001
	CYP2C19*2	0.142	0.598
	CYP2C19*17	0.141	0.922
Ln MR Tamoxifen/NDM-Tamoxifen	CYP2D6	0.218	<0.001
	CYP2C19*2	0.223	0.183
	CYP2C19*17	0.225	0.833
Ln MR Tamoxifen/4-hydroxy-tamoxifen	CYP2D6	0.219	<0.001
	CYP2C19*2	0.228	0.021
	CYP2C19*17	0.227	0.046
Ln MR 4-Hydroy-Tamoxifen/Endoxifen	CYP2D6	0.449	<0.001
	CYP2C19*2	0.459	0.009
	CYP2C19*17	0.469	0.028
Ln MR NDM-Tamoxifen/Endoxifen	CYP2D6	0.570	<0.001
	CYP2C19*2	0.576	0.605
	CYP2C19*17	0.582	0.939