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Sensing chiral magnetic noise via quantum impurity relaxometry
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We present a theory for quantum impurity relaxometry of magnons in thin films, exhibiting quantitative
agreement with recent experiments without needing arbitrary scale factors used in theoretical models thus far.
Our theory reveals that chiral coupling between prototypical spin>1/2 quantum impurities and magnons plays a
central role in determining impurity relaxation, which is further corroborated by our experiments on nickel films
interfaced with nitrogen-vacancy centers. Along with advancing magnonics and understanding decoherence in
hybrid quantum platforms with magnets, the ability of a quantum impurity spin to sense chiral magnetic noise
presents an opportunity to probe chiral phenomena in condensed matter.
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I. INTRODUCTION

Magnons—quanta of spin wave excitations—are funda-
mental to the understanding of the dynamical properties of
magnetically ordered materials. This understanding forms
the basis for creating next-generation classical and hybrid
quantum technologies in magnonics (an emerging field uti-
lizing magnons as information carriers) [1–3], potentially
enabling magnon-mediated coherent control [4] and coupling
distant quantum spins [5]. In addition, topological qubit plat-
forms typically involve magnetic materials [6] which could
introduce an additional source of decoherence. The rapidly
growing field of quantum technology involving magnetic ma-
terials makes it imperative to understand the decoherence
introduced in quantum systems placed in close proximity to
magnetic materials. As such, it is critical to develop sensitive
probes for studying the dynamical properties of magnetically
ordered materials.

Quantum impurity (QI) relaxometry [7,8]—a sensing
scheme measuring the relaxation rate of an impurity spin
due to its coupling with magnetic noise [9–12]—has recently
emerged as a sensitive, local, and noninvasive technique for
probing condensed-matter systems including magnetic mate-
rials [13–21]. QIs coupled to magnetic thin films form model
systems for developing an understanding of decoherence in-
troduced in qubits that are in close proximity to magnetic
materials. It is, therefore, important to develop a predic-
tive model for understanding QI relaxometry of thin film
magnons.

Chirality plays a central role for coupling magnons in
thin films to QIs. On the one hand, spin transitions are only
driven efficiently by rotating magnetic fields of the correct
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handedness. On the other hand, magnons produce magnetic
fields with a handedness that depends on their travel direction
(i.e., their fields are chiral).

The zero-field splitting (ZFS) present in typical spin>1/2
QIs, such as nitrogen-vacancy (NV) centers in diamond
[23,24] and silicon-vacancy centers in SiC [25], gives rise to
opposite effective built-in fields causing the different electron
spin resonance (ESR) transitions to respond to magnetic field
of opposite handedness (provided the applied field is smaller
than the ZFS) as demonstrated in NV centers [26]. Addition-
ally, counterpropagating magnons with a nonzero wave-vector
component transverse to the equilibrium magnetization and fi-
nite out-of-plane deviation (e.g., the Damon-Eschbach modes
of thin magnetic films [27]) produce counter-rotating mag-
netic fields with unequal amplitudes [28]. This results from
the combined effect of bulk ρm ∝ −�∇ · �m and surface σm ∝
�m · n̂ (where n̂ is the surface normal) magnetic charges [cf.
Figs. 1(b) and 1(c)]. Consequently, the ms = 0 → −1 and
ms = 0 → +1 transitions of a prototypical spin-1 QI are
driven by magnon-generated fields of different magnitudes.
Theoretical models used to analyze experiments [13,14,17] by
excluding out-of-plane magnetization fluctuations (and thus
σm) neglect the role of chirality and require arbitrary scale
factors of unknown origin to quantitatively fit the experi-
mentally measured relaxation rates for the ms = 0 → −1 and
ms = 0 → +1 transitions.

In this Rapid Communication, by combining the gen-
eral theoretical framework of quantum relaxometry [12,15]
with Landau-Lifshitz-Gilbert (LLG) phenomenology [29] for
magnon dynamics in thin magnetic films, we construct a
theory for QI relaxometry of magnons which inherently cap-
tures the chiral coupling. As central results, we show that
our theory (i) results in excellent quantitative agreement with
recent experiments without introducing arbitrary scale factors
and (ii) predicts crossover between relaxation rate for the
ms = 0 → −1 and ms = 0 → +1 transitions as a function of
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FIG. 1. (a) Schematic of a QI-FM hybrid where the external field is applied along the QI quantization axis (θQI = θ ) and the direction
of equilibrium magnetization is along ẑ′ (minima of the magnets’ free energy). Oppositely handed chiral fields emanating from (b) left- and
(c) right-moving magnons couple to (0,−1) and (0,+1) QI transitions, respectively [22]. The effective volume (in light blue color) and surface
(in orange color) magnetic charges add (subtract) for left- (right-) moving magnons generating stronger (weaker) dipolar field at the QI.

applied field as an experimental signature of the chiral cou-
pling. We corroborate the latter by presenting data on nickel
thin film interfaced with NV-center QI. Our results highlight
the importance of chirality in constructing predictive models
for advancing magnonics via QI relaxometry. More generally,
they suggest that (i) chirality of magnon-generated fields is
essential in governing decoherence of quantum systems prox-
imal to magnetic materials and (ii) QI relaxometry can be
extended to noninvasively and locally probe the physics of
chiral electronic [30–32] and magnetic modes [33,34] living
in condensed-matter systems of interest via the magnetic noise
emanating from them.

II. RELAXATION MODEL

The hybrid includes a ferromagnetic thin film of thickness
L and a QI located at a height dQI above the thin film [cf.
Fig. 1(a)]. To evaluate the QI relaxation arising from cou-
pling to the magnetic noise emanating from the film at room
temperature, we begin by recasting the relaxation rates of QIs
[12,15] in a classical form, relating them to the magnetization
correlations.

Here, we consider a prototypical spin-1 QI (like NV center)
with spin-triplet ground state |ms〉 labeled by the projec-
tions ms = {−1, 0, 1} along the QI quantization axis. In the
presence of a magnetic field �HQI, the Hamiltonian for the
effective two-level systems formed by the states (| + 1〉, |0〉)
and (|0〉, | − 1〉) denoted by ξ+ and ξ−, respectively, can be
written in terms of identity I and Pauli �σ matrices as

Hξ±
TLS = ω

QI
±
2

[I ± σz] + γ

2
√

2
[HQI

+ σ− + HQI
− σ+], (1)

where γ is the gyromagnetic ratio, ω
QI
± = � ± γ HQI

z are the
QI-ESR frequencies with the ZFS �, and HQI

± = HQI
x ± iHQI

y
[35]. The superscript QI denotes that the field components are
evaluated in the QI frame (where the z axis is aligned along

zQI) attained via the rotation matrix Ryz(θQI, φQI) (representing
rotation about the z axis by φQI followed by a rotation about
the y axis by θQI). This form of the Hamiltonian confirms that
ms = 0 → −1 and ms = 0 → +1 transitions are caused by
fields of opposite handedness HQI

+ and HQI
− , respectively.

The rates corresponding to the transitions |0〉 → | ∓ 1〉
(marked by subscript ∓) are given by the spectral den-
sity of the field perpendicular to the quantization axis
evaluated at the ESR frequencies ω

QI
∓ [12,15]: 
∓(ωQI

∓ ) =
(γ 2/2)

∫
dt eiωQI

∓ t 〈HQI
± (t ) HQI

∓ (0)〉 [35]. Here, 〈...〉 denotes av-
eraging over the noise realizations.

The Fourier component of the field at QI, due to a
spin-wave mode of the film (with an amplitude δ �m′(�k), fre-
quency ω, and wave vector �k which in polar coordinates
depends on magnitude k and angle φk) can be written as
�HQI(�k) = Deff (�k)δ �m′(�k) [35]. Here, δ �m′(�k) is the magneti-

zation deviation in the frame where the z axis is aligned
along magnet equilibrium (magnet frame) and Deff (�k) =
Ryz(θQI, φQI)D(�k)RT

y (θ0) is the rotated dipolar tensor, given

D(�k) = −2πAk

⎛
⎜⎝

cos2 φk sin 2φk/2 i cos φk

sin 2φk/2 sin2 φk i sin φk

i cos φk i sin φk −1

⎞
⎟⎠, (2)

with Ak = Ms e−kdQI [1 − e−kL] [36]. Typically, Hext is aligned
with the QI axis [see Fig. 1(a)], thus θQI = θ and we choose
φQI = 0 [37].

Substituting the fields from spin waves into the relaxation
rate equation of QI, we get


∓(ωQI
∓ )= γ 2

2

∫
d�k

(2π )2

∑
i, j∈{x,y}

Deff
±i (�k)Deff

∓ j (−�k)Ci j (�k, ω
QI
∓ ),

(3)

where the dipolar tensor elements Deff
±ν = Deff

xν ± iDeff
yν (with

ν = {x, y}), and the correlations between the magnetization
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deviations Ci j (�k, ω) is the Fourier transform of Ci j (�r − �r ′, t −
t ′) = 〈δm′

i(�r, t )δm′
j (�r ′, t ′)〉 [35]. Equation (3) relates the QI

relaxation to the magnetization correlations, which we evalu-
ate next for thermal equilibrium magnons.

III. MAGNON CORRELATIONS

The magnetization (with unit vector �m and saturation
magnetization Ms) dynamics is governed by the LLG equa-
tion �̇m = −γ �m × [−∂ �m(F/Ms) + �h] + α �m × �̇m, where α is
the Gilbert damping and �h is the excitation field. Here,
the free-energy density describing the ferromagnetic thin
film includes the Zeeman, exchange, and dipole-dipole en-
ergy terms and is given by F = −Ms( �Hext + �HD/2) · �m +
Ms(Hex/2)

∑
i∈{x,y}(∂i �m)2 where �Hext, Hex, and �HD are the

external, exchange, and demagnetization fields [38]. We find
the Fourier domain magnetic susceptibility in response to �h′
(in the magnet frame) by solving the linearized LLG giv-
ing δm′

i(�k, ω) = Si j (�k, ω)h′
j (�k, ω). The susceptibility matrix

is given by

S(�k, ω) = γ

�

(
ω3 − iαω −ω1 − iω
−ω1 + iω ω2 − iαω

)
, (4)

where ω0 = γ [Hext cos(θ0 − θ ) − Hd cos2 θ0 + Hexk2],

ω1 = γ Hd sin φk cos φk cos θ0 fk,

ω2 = ω0 + γ Hd [ fk cos2 φk cos2 θ0 + (1 − fk ) sin2 θ0],

ω3 = ω0 + γ Hd fk sin2 φk,

� = (ω2 − iαω)(ω3 − iαω) − ω2
1 − ω2, (5)

with Hd = 4πMs and fk = 1 − (1 − exp(−kL))/(kL) [35].
In thermal equilibrium, �h′ is the thermal stochastic field

with zero mean and local, instantaneous correlation [39,40]
〈h′

i(�r, t ) h′
j (�r ′, t ′)〉 = 2Dthδi jδ(t − t ′)δ(�r − �r ′) where Dth =

αkBT/(γ MsL). Using these stochastic field correlations and
the susceptibility matrix elements in Eq. (4), we determine
the magnetization correlations:

Ci j (�k, ω) = 2Dth

∑
ν={x,y}

Siν (�k, ω)S jν (−�k,−ω). (6)

Equations (3) and (6) are the central theoretical results
of our work, describing the impact of thin film magnetiza-
tion dynamics on the QI-spin relaxation. Particularly, Eq. (6)
highlights that all the correlators Cxx, Cxy, Cyx, and Cyy are
finite. This amounts to including both out-of-plane and in-
plane magnetization deviations arising from finite ellipticity
of magnons, thereby including the effect of both surface and
bulk magnetic charges. Our theory thus inherently captures
the chiral nature of magnon noise resulting from the combi-
nation of surface and bulk magnetic charges [cf. Figs. 1(b)
and 1(c)], and its impact on relaxation via Eq. (3). We
thus refer to our theory as chiral theory in the following.
Taking the limit where only the in-plane magnetization devia-
tions are included (equivalent to setting Cxx = Cxy = Cyx = 0)
and modeling the nonzero correlation (Cyy) by a Lorentzian,
Eqs. (3) and (6) reduce to the existing theoretical models
used in Refs. [13,14,17]. Since such models neglect surface
charges, the chiral nature of the magnon noise is neglected
and we refer to them as the achiral theory.

FIG. 2. Comparison of rates evaluated using Eq. (3) to the ex-
perimental measurements in hybrids of NV center: (a) Py (L =
30 nm, Ms = 800 emu/cc, Aex = 10−6 erg/cm, α = 0.015, θ = 36◦)
[13], (b) YIG (L = 20 nm, Ms = 124 emu/cc, Aex = 3.7 × 10−7

erg/cm, α = 0.0001, θ = 65◦) [14], and (c) Py (L = 20 nm, Ms =
800 emu/cc, Aex = 10−6 erg/cm, α = 0.015, θ = 54◦) [17]. The
shaded region corresponds to the bounds set by NV height range,
while the dashed lines correspond to the average NV height. The
experimental data in Fig. 2(a) is adapted from Ref. [13] under the
CC BY 4.0 license in Nature Communications (Springer Nature),
copyright 2015, Fig. 2(b) is adapted with permission from Ref. [14],
AAAS, and Fig. 2(c) is adapted from Ref. [17] with permission from
AIP Publishing, copyright 2020.

IV. QUANTITATIVE BENCHMARKING

We begin by benchmarking our chiral theory against recent
magnon-relaxometry experiments. Specifically, we consider
the hybrid of a NV center with (i) permalloy (Py) [13] [cf.
Fig. 2(a)], (ii) yttrium iron garnet (YIG) [14] [cf. Fig. 2(b)],
and (iii) Py, where, additionally, the NV center-thin film
distance was varied [17] [cf. Fig. 2(c)]. In the first two exper-
iments, both 
+ and 
− were measured as a function of Hext,
while the third experiment measured the combined rate 
+ +

−. To analyze these experiments, previous theoretical mod-
els used the achiral theory, which required arbitrary scaling
factors to quantitatively fit the data [14,17]. Here, we instead
apply the chiral theory (using parameters from the respective
experimental references mentioned in the caption of Fig. 2)
with no additional scaling factor. We highlight the influence
of NV center-thin film distance via the shaded region as it
was a prominent fit parameter in Refs. [13,14] in contrast to
other parameters that were measured independently [41]. As
the first central result of our work, we can see from Fig. 2 that
the theory is in good quantitative agreement with experiments,
validating the presented theoretical formalism [42].

V. CHIRAL-COUPLING-DEPENDENT RELAXATION

Having validated our theory against experiments, we next
turn to understand the specific role of chirality. We begin by
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FIG. 3. (a) Computed 
± as a function of ω± for Ms = 396 emu/cc and Hext = 1 mT using the achiral and chiral theory in the top and
bottom panels, respectively. The vertical dotted lines mark the NV-ESR frequencies at Hext = 1 mT. Normalized NV relaxation rate difference
�
 = 
− − 
+ evaluated as a function of Hext for different magnetic materials parameterized by Ms using the (b) achiral and (c) chiral theory.
The parameters used are L = 40 nm, �/(2π ) = 2.87 GHz, dNV = 40 nm, Aex = 8.47 × 10−7 erg/cm, α = 0.05, and θNV = θ = 54.75◦, in
accordance with the relaxometry measurements presented in the next section.

plotting the relaxation rates 
− and 
+ of a hypothetical QI
spin, whose transition frequencies ω

QI
± are scanned through

the magnon spectrum. As highlighted in the Introduction, due
to the chiral coupling between QI and thin film magnons,
ms = 0 → +1 and ms = 0 → −1 transitions are driven by
fields of unequal magnitude [cf. Figs. 1(b) and 1(c)]. Indeed,
we observe that the chiral theory consequently predicts 
− =

+ for ω

QI
− = ω

QI
+ [cf. Fig. 3(a), bottom panel]. On the other

hand, the achiral theory predicts 
− = 
+ for ω
QI
− = ω

QI
+ [cf.

Fig. 3(a), top panel].
While Fig. 3(a) highlights the key difference between the

chiral and achiral theory, the relaxometry experiments are
performed in the presence of an external magnetic field,
which by making ω

QI
+ and ω

QI
− different, does not allow to

directly measure the curve shown in Fig. 3(a). To look for
an experimental signature of the chiral-coupling-induced non
degenerate relaxation rates, we plot the (normalized) NV-ESR
transition rate difference �
 = 
− − 
+ as a function of
external field Hext and for different magnetic materials (as
parameterized by their saturation magnetization Ms) using the
chiral and achiral theory in Figs. 3(b) and 3(c). Within both
theories, for Ms below a critical value (referred to here as Mc

s ,
which is equal to ∼150 emu/cc for the geometrical parame-
ters of the NV-magnet hybrid as mentioned in the caption of
Fig. 3), �
 changes signs as Hext is increased. In contrast, for
Ms > Mc

s , only Eq. (3) predicts a sign change in �
 with Hext.
As explained next, the latter is an experimental signature of
chiral-coupling-induced nondegenerate relaxation rates high-
lighted in Fig. 3(a).

To understand the relaxation rate of NV-QI, we add to
Fig. 3(a) the location of NV-ESR transitions as dotted vertical
lines for Hext ≈ 0. We find that Mc

s corresponds to the value
of saturation magnetization above which the NVs ωNV

± tran-
sitions lie below ωmax± – the frequency location that would
maximize the rates 
± for NV-QI within the achiral theory
[43] [see Fig. 3(a), top panel]. As the field is increased, ωNV

−
(ωNV

+ ) decreases (increases) linearly [see below Eq. (1)], while
ωmax± shifts to a higher frequency as γ

√
Hext (Hext + Hd ) (as

per the shift of magnon bands given by the Kittel formula
[44]). Consequently, with increasing Hext (for the experimen-
tally relevant range of Hext � Hd ), 
− decreases faster than

+, corresponding to ωNV

− moving further below ωmax± when
compared to ωNV

+ . �
, therefore, decreases with increasing
Hext for Ms > Mc

s . The key point is that, since in the achiral
theory �
 = 0 for Hext = 0 [as ωNV

+ = ωNV
− for Hext = 0;

cf. Fig. 3(a)–top panel], �
 decreases from zero without a
sign change as Hext is increased. On the other hand, for the
chiral theory, �
 > 0 for Hext = 0, due to stronger coupling
of ms = 0 → −1 to the magnon-generated fields [cf. Fig. 3(a),
bottom panel], which, when combined with the decrease of
�
 with Hext, imprints the predicted sign change.

VI. EXPERIMENT

To check the above picture experimentally, we present
our relaxometry measurements performed on NV-nickel (Ni)
thin film hybrids designed with the material and geometrical

220403-4



SENSING CHIRAL MAGNETIC NOISE VIA QUANTUM … PHYSICAL REVIEW B 102, 220403(R) (2020)

FIG. 4. Chiral coupling reflected in the relaxation rate crossover
between 
+ and 
− as a function of Hext in a NV-Ni thin film hybrid.
Control measurements on a NV in the same diamond but in a region
without the Ni film (indicated by the stars) yield NV relaxation
rates below 0.003 μs−1. The measurement protocol is shown in the
inset. Parameters for theoretical plots are mentioned in the caption of
Fig. 3.

parameters needed to observe the sign change in �
 due
to chiral coupling-induced non-degenerate relaxations [45].
We used a diamond with individually addressable NV centers
implanted 10 nm below the surface, deposited a 30-nm SiO2

spacer, and evaporated 40 nm of Ni on top. The two rates were
determined by initializing the spin in each of its eigenstates
(using a laser pulse and microwave pulses on the appropriate
ESR transitions), waiting for a time τ that was swept, and
characterizing the spin-dependent photoluminescence during
a subsequent laser readout pulse (see Fig. 4 inset) [13]. Fig-
ure 4 shows a rate crossover between 
+ and 
− at ∼15 mT
which is a clear signature that can only be captured by the
presented chiral theory for evaluating the QI-spin relaxation
rates [cf. Figs. 3(b) and 3(c)]. A control measurement done in
absence of magnetic thin film showing rates lower by 2–3 or-
ders of magnitude (cf. Fig. 4) confirms that thermal magnons
dominate NV relaxation in the Ni-covered region.

VII. CONCLUSIONS AND OUTLOOK

In summary, we show that the magnetic-dipole transitions
hosted within typical spin>1/2 QIs couple disparately to
the chiral magnetic noise produced by thermally populated
magnons in nearby magnetic films. Via presenting an experi-
mentally benchmarked theory, we demonstrate that including
this, so far neglected, role of chirality is central for quan-
titatively and qualitatively understanding QI-relaxometry
experiments. Our results will thus assist the recently grow-
ing effort of utilizing QI relaxometry for understanding the
dynamical properties of magnetic films to advance magnonics
and quantum technologies utilizing magnets.

Our results can be extended to other phenomena generating
chiral magnetic noise at the QI. For example, thermally popu-
lated one-way propagating magnetic modes at the boundaries
of media with differing bulk band topology (as predicted by
the recent theoretical proposal of topological magnon insula-
tor [33,34]) provides a scenario where asymmetric magnon
spectrum generates chiral magnetic noise. Such chiral modes
also exist in electronic systems [30,31], where electrical
charge fluctuations in the mode would produce the chiral
magnetic noise. Combining the advantages offered by QI re-
laxometry (noninvasiveness, cryogenic to room temperature
operation, up to nm-spatial and GHz frequency resolution)
with the inherent chiral nature of QI sensors highlighted here,
may thus open avenues for probing the above-mentioned phe-
nomena of broad interest to the condensed-matter community.
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