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mathématiques Blaise Pascal, 23:171–217, 01 2016.

[HHSWS15] S. Hille, K. Horbacz, T. Szarek, and H. Wojewodka-Sciazko. Limit

theorems for some Markov operators. 06 2015.

[Hil14] S.C. Hille. Dynamical systems in spaces of measures. Lecture Notes of
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Schur-like property for spaces of measures. arXiv, 2017.

[HSZ17] S.C. Hille, T.Szarek, and M.A. Ziemlańska. Equicontinuous families
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plications. Collect. Math, 55:171–217, 2004.

[Kel55] J.L. Kelley. General topology. Van Nostrand, 1955.

[KLO12] T. Komorowski, C. Landim, and S. Olla. Fluctuations in Markov

processes. Time symmetry and martingale approximation. Springer-

Verlag, Heidelberg, 2012.

[KP84] T. Kurtz and M. Pierre. A counterexample for the trotter prod-

uct formula. Journal of Differential Equations - J DIFFERENTIAL

EQUATIONS, 52:407–414, 05 1984.

[KP80] T.G. Kurtz, M. Pierre, A Counterexample for the Trotter Product

Formula. MRC technical summary report. Defense Technical Infor-

mation Center, 1980.

[KPS10] T. Komorowski, S. Peszat, and T. Szarek. On ergodicity of some

Markov operators. Ann. Prob, 38:1401–1443, 2010.

[Kuh01] F. Kuhnemund. Bi-continuous semigroups on spaces with two topolo-

gies: Theory and applications. 2001.

[Kuk02] S.B. Kuksin. Ergodic theorems for 2D statistical hydrodynamics.

Reviews in Mathematical Physics, 14:1–16, 2002.

155



Bibliography
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