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Chapter 4

Equicontinuous families of Markov

operators in view of asymptotic

stability

This chapter is based on:

Sander C. Hille, T. Szarek, Maria A. Ziemlanska. Equicontinuous families of Markov

operators in view of asymptotic stability. based on the work Sander C. Hille, T. Szarek,

Maria A. Ziemlanska. Equicontinuous families of Markov operators in view of asymptotic

stability. Comptes Rendus Mathematique, Volume 355, Number 12, Pages 1247-1251, 2017.

Abstract:

The relation between equicontinuity – the so-called e–property and stability of Markov

operators is studied. In particular, it is shown that any asymptotically stable Markov

operator with an invariant measure such that the interior of its support is non-empty

satisfies the e–property.
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Equicontinuous families of Markov operators in view of asymptotic stability

4.1 Introduction

This chapter is centered around two concepts of equicontinuity for Markov operators de-

fined on probability measures on Polish spaces: the e-property and the Cesàro e-property.

Both appeared as a condition (among others) in the study of ergodicity of Markov op-

erators. In particular they are very useful in proving the existence of a unique invariant

measure and its asymptotic stability: at whatever probability measure one starts, the it-

erates under the Markov operator will weakly converge to the invariant measure. The

first concept appeared in [LS06, SW12] while the second was introduced in [Wor10] as a

theoretical generalisation of the first. It allowed the author to extend various results by

replacing the e-property condition by the apparently weaker Cesàro e-property condition.

Interest in equicontinuous families of Markov operators existed already before the intro-

duction of the e-property. Jamison [Jam64], working on compact metric state spaces, intro-

duced the concepts of (dual) Markov operators on the continuous functions that are ‘uni-

formly stable’ or ‘uniformly stable in mean’ to obtain a kind of asymptotic stability results

in this setting. Meyn and Tweedie [MT09] introduced the so-called ‘e-chains’ on locally

compact Hausdorff topological state spaces, for similar purposes. See also [Zah14] for re-

sults in a locally compact metric setting. The above mentioned concepts were used in prov-

ing ergodicity for some Markov chains (see [Ste94, Cza12, CH14, ESvR12, GL15, KPS10]).

It is worth mentioning here that similar concepts appear in the study of mean equicontinuous

dynamical systems mainly on compact spaces (see for instance [LTY15]). However it must

be stressed here that our space of Borel probability measures defined on some Polish space

is non-compact, typically, in the generality in which we consider the question.

While studying the e–property, the natural question arose whether any asymptotically

stable Markov operator satisfies this property. Proposition 6.4.2 in [MT09] asserts this

holds when the phase space is compact. In particular, the authors claimed that the stronger

e–chain property is satisfied. Unfortunately, the proof contains a gap and an example can

be constructed showing that some additional assumptions must be added for the claimed

result to hold.

Striving to repair the gap of the Meyn-Tweedie result mentioned above, we show that any

asymptotically stable Markov operator with an invariant measure such that the interior of

its support is nonempty satisfies the e–property.
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4.2 Some (counter) examples

Let �S, d� be a Polish space. By B�x, r� we denote the open ball in �S, d� of radius r,

centered at x > S. Further E, IntSE denote the closure of E ` S and the interior of E,

respectively. By Cb�S� we denote the vector space of all bounded real-valued continuous

functions on S and by BM�S� all bounded real-valued Borel measurable functions, both

equipped with the supremum norm Y � Yª. By BL�S� we denote the subspace of Cb�S� of

all bounded Lipschitz functions (for the metric d on S). For f > BL�S�, Sf SL denotes the

Lipschitz constant of f .

By M�S� we denote the family of all finite Borel measures on S and by P�S� the subfamily

of all probability measures in M�S�. For µ >M�S�, its support is the set

suppµ �� �x > S � µ�B�x, r�� A 0 for all r A 0�.
Recall the concept of Markov operators on measures, see Section 1.2. A measure µ� is

called invariant if Pµ� � µ�. A Markov operator P is asymptotically stable if there exists

a unique invariant measure µ� > P�S� such that P nµ � µ� weakly as n � ª for every

µ > P�S�.
A linear operator U � BM�S�� BM�S� is called dual to P if

`Pµ, fe � `µ,Ufe for all µ >M��S�, f > BM�S�.
If such operator U exists, it is unique and we call the Markov operator P regular . U is

positive and satisfies U1 � 1. The Markov operator P is a Markov-Feller operator if it is

regular and the dual operator U maps the space of continuous bounded functions Cb�S�
into itself.

A Feller operator P satisfies the e–property at z > S if for any f > BL�S� we have

lim
x�z

sup
nC0,n>N

SUnf�x� �Unf�z�S � 0, (4.1)

i.e. if the family of iterates �Unf � n > N� is equicontinuous at z > S. We say that a Feller

operator satisfies the e–property if it satisfies it at any z > S.

D. Worm slightly generalized the e–property introducing the Cesàro e–property (see [Wor10]).

Namely, a Feller operator P will satisfy the Cesàro e–property at z > S if for any f > BL�S�
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we have

lim
x�z

sup
nC0,n>N

W 1
n

n

Q
k�1

Ukf�x� � 1

n

n

Q
k�1

Ukf�z�W � 0. (4.2)

Analogously a Feller operator satisfies the Cesàro e–property if it satisfies this property at

any z > S.

Let us recall Proposition 6.4.2 in [MT09] that contains - informally - a gap in its proof

(slightly reformulated):

Proposition 4.2.1. Suppose that the Markov chain Φ has the Feller property, and that

there exists a unique probability measure π such that for every x

P n�x, ��� π weakly as n�ª

Then Φ is an e-chain.

The following example shows that Proposition 6.4.2 fails.

Example 4.2.2. Let S � �1~n � n C 1� 8 �0� and let T � S � S be given by the following

formula:

T �0� � T �1� � 0 and T �1~n� � 1~�n � 1� for n C 2.

The operator P � M�S� � M�S� given by the formula Pµ � T��µ� (the pushforward

measure) is asymptotically stable but it does not satisfy the e–property at 0.

For a Markov operator Jamison [Jam64] introduced the property of uniform stability in

mean when �Unf � n > N� is an equicontinuous family of functions in the space of real-valued

continuous function C�S� for every f > C�S�. Here S is a compact metric space. Since the

space of bounded Lipschitz functions is dense for the uniform norm in the space of bounded

uniformly continuous functions, this property coincides with the Cesàro e–property for

compact metric spaces. Now, if the Markov operator P on the compact metric space is

asymptotically stable, with the invariant measure µ� > P �S�, then 1
n Pn

k�1U
kf � `f, µ�e

pointwise, for every f > C�S�. According to Theorem 2.3 in [Jam64] this implies that P is

uniformly stable in mean, i.e. has the Cesàro e–property.

Example 4.2.3. Let �kn�nC1 be an increasing sequence of prime numbers. Set

S �� ��
kin�1�times³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
0, . . . ,0, i~kn,0, . . .� > lª � i > �0, . . . , kn�, n > N�.

The set S endowed with the lª-norm Y�Yª is a (noncompact) Polish space. Define T � S � S
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by the formula

T ��0, . . .�� � T ��
kknn �1�times³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
0, . . . ,0, 1,0, . . .�� � �0, . . . ,0, . . .� for n > N

and

T ��
kin�1�times³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
0, . . . ,0, i~kn,0, . . .�� � �

ki�1
n �1�times³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
0, . . . ,0, �i � 1�~kn,0, . . .� for i > �1, . . . , kn � 1�, n > N.

The operator P � M�S� � M�S� given by the formula Pµ � T��µ� is asymptotically

stable but it does not satisfy the Cesàro e–property at 0. Indeed, if we take an arbitrary

continuous function f � S � R� such that f��0, . . . ,0, . . .�� � 0 and f�x� � 1 for x > S such

that YxYª C 1~2 we have

1

kn

kn

Q
i�1

U if��
kn�1³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ

0, . . . ,0,1~kn,0, . . .�� � 1

kn

kn

Q
i�1

U if��0, . . .�� C 1~2.
4.3 Main result

We are in a position to formulate the main result of this chapter. Recall that a metric d

is called admissible for the Polish space S if d metrizes the topology on S and the metric

space �S, d� is separable and complete.

Theorem 4.3.1. Let P be an asymptotically stable Feller operator and let µ� be its unique

invariant measure. If IntS�suppµ�� x g, then P satisfies the e–property for any admissible

metric d on S.

Its proof involves the following two lemmas:

Lemma 4.3.2. Let P be an asymptotically stable Feller operator and let µ� be its unique

invariant measure. Let U be dual to P . If IntS�suppµ�� x g, then for every admissible

metric d on S, f > Cb�S� and any ε A 0 there exists a ball B ` suppµ� such that

SUnf�x� �Unf�y�S B ε for any x, y > B, n > N. (4.3)

Proof. Fix f > Cb�S� and ε A 0. Let W be an open set in S such that W ` suppµ�. Set

Y �W and observe that the subspace Y is a complete metric space, hence a Baire space.
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Set

Yn �� �x > Y � SUmf�x� � `f, µ�eS B ε~2 for all m C n�
and observe that Yn is closed and

Y �
ª

�
n�1

Yn.

By the Baire Category Theorem there exist N > N such that IntY YN x g. Thus there exists

a set V ` YN open in the space Y and consequently, because of the construction of Y , an

open ball B � B�z, r0� for the admissible metric d in S such that B ` YN ` suppµ�. Since

SUnf�x� � `f, µ�eS B ε~2 for any x > B and n C N,

condition (4.3) is satisfied for all x, y > B,n C N . Since the Unf , n � 1,�,N are continuous

at z, there exists rε B r0 such that SUnf�z� � Unf�x�S B ε
2 for all x > B�z, rε�, n � 1,�,N .

Then condition (4.3) is satisfied for all x, y > B �� B�z, rε� and n > N.

Lemma 4.3.3. Let α C 0. If µ >M��S�, x0 > S and r A 0 are such that µ�B�x0, r�� A α,

then there exists 0 @ r B r such that µ��B�x0, r��� A α and µ�S�x0, r�� � 0.

Proof. For any increasing sequence �rn� ` �0, r� such that rn � r, µ�B�x0, rn��� µ�B�x0, r�� A
α. Hence there exists n0 > N such that: µ�B�x0, rn0�� A α.

Put r0 �� rn0 . Then r0 A 0 and µ�B�x0, r��� A α for all r� > �r0, r�. The map Ψ � �r0, r��S (
R � �r�, x� ( d�x,x0�

r� is separately continuous in r� and x, so it is jointly Borel measurable

([Bog07a], Theorem 7.14.5, p.129).

µ�B�x0, r��� � RS 1B�x0,r���y�dµ�y�
� RS 1�x� d�x,x0�

r�
@1��y�dµ�y�

� RS 1�0,1��Ψ�r�, y��dµ�y�. (4.4)

Since Ψ is jointly Borel measurable, �r�, y� ( 1�0,1��Ψ�r�, y�� is jointly Borel measurable.

By the Fubini-Tonelli Theorem (or [Bog07a], Lemma 7.6.4, p.93, or [Bog07b], Corollary

3.3.3, p.182), φ � r� ( µ�B�x0, r��� is Borel measurable on �r0, r�. In a similar manner, one

shows that ψ �� µ�B�x0, r�� is Borel measurable, where B�x0, r� �� �x > S � d�x,x0� B r�.

Put φ�r� �� φ�r��φ�r�. According to Lusin’s Theorem, there exists a compact subset K of�r0, r�, of strictly positive Lebesgue measure, such that φSK is continuous. Put S�x0, r�� ��
B�x0, r�� �B�x0, r�� � �x > S � d�x,x0� � r��.

Since Lebesgue measure is non-atomic, K must have at least denumerably many distinct
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points. Let �rn�n>N be a sequence in K that consists of distinct points. Since K is a

compact space, there is a subsequence �rnk�k>N that converges to an r� >K as k �ª.

We can construct a further subsequence from �rnk�k>N (denoted the same for convenience),

that is either strictly increasing, or strictly decreasing towards r�.

(1) rnk � r
�:

Define A1 �� B�x0, rn1�,Ak �� B�x0, rnk� �B�x0, rnk�1
�.

Then

B�x0, r
�� � ª

#
k�1

Ak < S�x0, rnk�.
So

µ�B�x0, r
��� � ª

Q
k�1

µ�Ak� � µ�S�x0, rnk�� @ª.
Hence, limk�ª µ�S�x0, rnk�� � 0. Because rnk >K and φSK is continuous, we get

µ�S�x0, r�� � lim
k�ª

µ�S�x0, rnk�� � 0.

(2) rnk � r
�:

Now define Ak �� B�x0, rnk� �B�x0, rnk�1
for k � 1,2,�. Then

B�x0, rn1� � ª

�
k�1

�Ak < S�x0, rnk�1
�� <B�x0, r��.

Hence, limk�ª µ�S�x0, rnk�� � 0, as above, yielding the conclusion that µ�S�x0, r��� �
0.

Since ∂B�x0, r�� ` S�x0, r�� we find µ�∂B�x0, r�� � 0.

We are now ready to prove Theorem 4.3.1.

Proof. (Theorem 4.3.1) Assume, contrary to our claim, that P does not satisfy the e–

property for some admissible metric d on S. Therefore there exist a function f > BL�S, d� `
Cb�S� and a point x0 > S such that

lim sup
x�x0

sup
nC0,n>N

SUnf�x� �Unf�x0�S A 0.
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Hence, there exists ε A 0 and δ0 A 0 such that for all 0 @ δ @ δ0,

sup
x>B�x0,δ�

sup
nC0,n>N

SUnf�x� �Unf�x0�S C 4ε.

Thus, one has a sequence �xk�k>N such that xk > �B�x0,
δ0
k �� and

sup
nC0,n>N

SUnf�xk� �Unf�x0�S C 3ε for all k > N.

Let Bf � B�z,2r� be an open ball contained in suppµ� such that

SUnf�x� �Unf�y�S B ε for all x, y > Bf , n > N, (4.5)

which exists according to Lemma 4.3.2. Since Bf ` suppµx, one has γ �� µ��Bf� A 0.

Choose α > �0, γ� Because P is asymptotically stable, by the Alexandrov Theorem (eg.

[EK86], Theorem 3.1) one has

lim inf
n�ª

P nµ�Bf� C µ��Bf� � γ A α for all µ > P�S�, (4.6)

FixN > N such that 2�1�α�NYfYª @ ε. Inductively we shall define measures νx0
i , µ

x0
i , ν

xk
i , µ

xk
i

and integers ni, i � 1,2,�,N in the following way:

Equation (4.6) allows us to choose n1 C 1 such that

P n1δx0�B�z, r�� A α. (4.7)

According to Lemma 4.3.3 it is possible to choose 0 @ r1 B r such that

P n1δx0�B�z, r1�� A α and P n1δx0�S�z, r1�� � 0.

Define

νx1 ��� � P n1δx�� 9B�z, r1��
P n1δx�B�z, r1�� . (4.8)

Because P n1δx0�S�z, r1�� � 0 and P is Feller, P n1δx�B�z, r1�� converges to P n1δx0�B�z, r1�� A
α A 0 if x � x0. So νx1 is a well-defined probability measure, concentrated on B�z, r1�, for

all x sufficiently close to x0, say if d�x,x0� @ d1, and P n1δx�B�z, r1�� A α for such x.

Define

µx1��� � 1

1 � α
�P n1δx��� � ανx1 ���� . (4.9)
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4.3. Main result

Then µx1 > P�S� for all x > S: d�x,x0� @ d1.

Since xk � x0, there exists N1 > N such that d�xk, x0� @ d1 for all k C N1. If U ` S is open,

then by Alexandrov’s Theorem,

lim inf
k�ª

P n1δxk�U 9B�z, r1�� C P n1δx0�U 9B�z, r��.
Consequently,

lim inf
k�ª

νxk1 �U� � lim inf
k�ª

P n1δxk�U 9B�z, r1��
P n1δxk�B�z, r1�� C

P n1δx0�U 9B�z, r1��
P n1δx0�B�z, r1�� � νx0

1 �U�.
Thus, νxk1 � νx0

1 weakly as k �ª. Then also µxk1 � µx0
1 .

Assume that we have defined νx0
i , µ

x0
i , ν

xk
i , µ

xk
i and ni for i � 1,2,�, l, for some l @ N such

that νxki � νx0
i , µ

xk
i � µx0

i weakly. Then, equation (4.6) allows to pick nl�1 > N such that

P nl�1µx0

l �B�z, r�� A α.
According to Lemma 4.3.3 one can select 0 @ rl�1 B r such that P nl�1µx0

l �B�z, rl�1�� A α

and P nl�1µxll �S�z, rl�1�� � 0. Define

νxkl�1 ��
P nl�1µxkl �� 9B�z, rl�1��
P nl�1µxkl �B�z, rl�1�� (4.10)

and

µxkl�1 ��
1

1 � α
�P nl�1µxkl � ανxkl�1�. (4.11)

Because µxkl � µx0

l weakly, and P nl�1µxkl �∂B�z, rl�1�� � 0.

P nl�1µxkl �B�z, rl�1��� P nl�1µx0

l �B�z, rl�1�� A α A 0 as k �ª. Thus, νxkl�1 is well defined for

k sufficiently large and νxkl�1 � νx0

l�1, weakly, by a similar argument as for νxk1 � νx0
1 . We

conclude from (4.11), that µxkl�1 � µx0

l�1 weakly too.

Moreover, the construction is such that we have

P n1�n2���nN δxk � αP
n2���nNνxki �α�1 �α�P n3���nNνxk2 ���α�1 �α�N�1νxkN � �1 �α�NµxkN

for k � 0 and all k > N sufficiently large. By construction, suppνxki ` B�z, r� ` B�z,2r� �
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Bf . So for all n > N, i � 1,2,�,N and k sufficiently large

S`P nνxki , fe � `P nνx0
i , feS � TRS Unf�x�νxki �dx� � RS Unf�y�νx0

i �dy�T
B RBf RBf SUnf�x� �Unf�y�Sνxki �dx�νx0

i �dy�
B ε.

Moreover, there exists N0 > N such that for all k C N0,

S`P nδxk � P
nδx0 , feS @ ε

for all 0 B n @ n1 � n2 �� � nN . For n C n1 � n2 �� � nN one has for k sufficiently large,

P nδxk � αP n�n1νxk1 � α�1 � α�P n�n1�n2νxk2 ���

�α�1 � α�N�1P n�n1���nNνxkN � �1 � α�NP n�n1���nNµxkN .

Therefore, for these n and k,

S`P nδxn , fe � `P nδx0 , feS B ε�α � α�1 � α� �� � α�1 � α�N�1� � 2�1 � α�NYfYª
B ε � ε � 2ε.

Thus, the construction of the �xk�k>N is such that for k sufficiently large

3ε B sup
nC0,n>N

SUnf�xk� �Unf�x0�S � sup
nC0

S`P nδxk , fe � `P nδx0 , feS B 2ε

which is impossible. This completes the proof.
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