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Chapter 3

Lie-Trotter product formula for

locally equicontinuous and tight

Markov operators

This chapter is based on:

Sander C. Hille, Maria A. Ziemlanska. Lie-Trotter product formula for locally equicontin-

uous and tight Markov semigroup. Preprint available at https://arxiv.org/abs/1807.07728

Abstract:

In this chapter we prove a Lie-Trotter product formula for Markov semigroups in spaces

of measures. We relate our results to ”classical” results for strongly continuous linear

semigroups on Banach spaces or Lipschitz semigroups in metric spaces and show that

our approach is an extension of existing results. As Markov semigroups on measures are

usually neither strongly continuous nor bounded linear operators for the relevant norms, we

prove the convergence of the Lie-Trotter product formula assuming that the semigroups

are locally equicontinuous and tight. A crucial tool we use in the proof is a Schur-like

property for spaces of measures.
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Lie-Trotter product formula for locally equicontinuous and tight Markov operators

3.1 Introduction

The main purpose of this chapter is to generalize the Lie-Trotter product formula for

strongly continuous linear semigroups in a Banach space to Markov semigroups on spaces

of measures. The Lie-Trotter formula asserts the existence and properties of the limit

lim
n�ª

�S1
t
n

S2
t
n

�n x �� Stx,

where �S1
t �tC0 and �S2

t �tC0 are strongly continuous semigroups of bounded linear operators.

It may equally be viewed as a statement considering the convergence of a switching scheme.

The key challenge is to overcome the difficulties that result from the observation that

’typically’ Markov semigroups do not consist of bounded linear operators (in a suitable

norm on the signed measures) nor need to be strongly continuous. Therefore, the available

results do not apply.

The Lie-Trotter product formula originated from Trotter [Tro59] in 1959 for strongly con-

tinuous semigroups, for which the closure of the sum of two generators was a generator of

a semigroup given by the limit of the Lie-Trotter scheme, and generalized i.a. by Chernoff

[Che74] in 1974. This approach does not seem to be general enough to be applicable in

various numerical schemes however. As shown by Kurtz and Pierre in [KP80], even if the

sum of two generators is again a generator of a strongly continuous semigroup, this semi-

group may not be given by the limit of Lie-Trotter product formula as it may not converge.

Consequently, the analysis of generators of semigroups can lead to non-convergent numer-

ical splitting schemes. Hence, a different approach is needed. The analysis of commutator

type conditions as in [KW01, CC04] avoids considering generators and their domains and

may be easier to verify.

Splitting schemes were applied and played a very important role in numerical analysis

and recently in the theory of stochastic differential equations to construct solutions of

differential equations, e.g. the work of Cox and Van Neerven [Cox12]. It was shown

by Carrillo, Gwiazda and Ulikowska in [CGU14] that properties of complicated models,

like structured population models, can be obtained by splitting the original model into

simpler ones and analyzing them separately, which also leads to switching schemes of a

Lie-Trotter form. Bátkai, Csomós and Farkas investigated Lie-Trotter product formulae for

abstract nonlinear evolution equations with a delay in [BCF17], a general product formula

for the solution of nonautonomous abstract delay equations in [BCFN12] and analyzed the

convergence of operator splitting procedures in [BCF13].

Our starting point are the conditions for convergence of the Lie-Trotter product formula
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3.1. Introduction

formulated by Kühnemund and Wacker in [KW01]. This result appears to be a very use-

ful tool in proving the convergence of the Lie-Trotter scheme without the need to have

knowledge about generators of the semigroups involved. However, the semigroups con-

sidered by Kühnemund and Wacker are assumed to be strongly continuous. We extend

Kühnemund and Wacker’s case to semigroups of Markov operators on spaces of measures

and present weaker sufficient conditions for convergence of the switching scheme. Our

method of proof builds on [KW01], while the specific commutator condition that we em-

ploy (assumption 3) is motivated by [CC04].

The theory of Markov operators and Markov semigroups was studied by Lasota, Mackey,

Myjak and Szarek in the context of fractal theory [SM03, LM94], iterated function sys-

tems and stochastic differential equations [LS06]. Markov semigroups acting on spaces

of (separable) measures are usually not strongly continuous. The local equicontinuity (in

measures) and tightness assumptions we employ are less restrictive and follow from strong

continuity. The concept of equicontinuous families of Markov operators can be found in

e.g. Meyn and Tweedie [MT09]. Also, Worm in [Wor10] extends the results of Szarek to

families of equicontinuous Markov operators.

The outline of the chapter is as follows: in Section 3.2 we present the main results of

this chapter. Theorem 3.2.2 in Section 3.2 is the convergence theorem and is the most

important result in the chapter. The other important and non-trivial result is Theorem

3.2.1. Section 3.3 introduces Markov operators and Markov-Feller semigroups on a space of

signed Borel measuresM�S�, investigates their topological properties and the consequences

of equicontinuity and tightness of a family of Markov operators. In Section 3.4 we provide

the tools to prove Theorem 3.2.1, i.e. that a composition of equicontinuous and tight

families of Markov operators is again an equicontinuous and tight family. This result is

quite delicate and seems like it was not considered in the literature before. We also provide

a proof of the observation in Lemma 3.4.3 which says that a family of equicontinuous and

tight family of Markov operators on a precompact subset of positive measures is again

precompact. The proof of Theorem 3.2.1 can be found in Appendix 3.4.

In Section 3.5 we prove the convergence of the Lie-Trotter product formula for Markov

operators. We provide more general assumptions then those provided in the Kühnemund-

Wacker chapter (see [KW01]). As our semigroups are not strongly continuous and usually

not bounded, we use the concept of (local) equicontinuity (see e.g. Chapter 7 in [Wor10]).

This allows us to define a new admissible metric dE and a new Y �YBL,dE -norm dependent on

the operators and the original metric d on S. The crucial assumption is the Commutator

Condition Assumption 3.
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Lie-Trotter product formula for locally equicontinuous and tight Markov operators

To prove the convergence of our scheme under Assumptions 1-4 we use a Schur-like prop-

erty for signed measures, see [HSWZ17], which allows us to prove weak convergence of the

formula and conclude the strong/norm convergence. In Section 3.5 we show crucial techni-

cal lemmas. The proofs of most lemmas from Section 3.5 can be found in the Appendices

3.8.1 - 3.8.2. In Section 3.5 several useful properties of the limit operators that result from

the converging Lie-Trotter formula are derived.

Section 3.7 shows that our approach is a generalization of Kühnemund-Wacker [Kuh01]

and Colombo-Corli [CC04] cases. We show that if we consider Markov semigoups coming

from lifts of deterministic operators, then the Kühnemund-Wacker and Colombo-Corli

assumptions imply our assumptions and their convergence results of the Lie-Trotter formula

or switching scheme follows from our main convergence result.

3.2 Main theorems

Let S be a Polish space, i.e. a separable completely metrizable topological space, see

[Wor10]. Any metric d that metrizes the topology of S such that �S, d� is separable and

complete is called admissible. Let d be an admissible metric on S. Following [Dud66], we

denote the vector space of all real-valued Lipschitz functions on �S, d� by Lip�S, d�. For

f > Lip�S, d� we denote the Lipschitz constant of f by

Sf SL,d �� sup�Sf�x� � f�y�S
d�x, y� � x, y > S,x ~� y¡

BL�S, d� is the subspace of bounded functions in Lip�S, d�. Equipped with the bounded

Lipschitz norm YfYBL,d �� YfYª � Sf SL,d
it is a Banach space, see [Dud66]. The vector space of finite signed Borel measures on S,

M�S�, embeds into the dual of �BL�S�, Y � YBL,d�, see [Dud66], thus introducing the dual

bounded Lipschitz norm Y � Y�BL,d on M�S�
YµY�BL,d �� sup�S`µ, feS � f > BL�S, d�, YfYBL,d � YfYª � Sf SL,d B 1� , (3.1)

for which the space becomes a normed space. It is not complete unless �S, d� is uniformly

discrete (see [Wor10], Corollary 2.3.14). The cone M��S� of positive measures in M�S�
is closed [Wor10, Dud66]. P�S� is the convex subset of M��S� of probability measures.

The topology on M�S� induced by Y � Y�BL,d is weaker then the norm topology associated
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3.2. Main theorems

with the total variation norm YµYTV �� µ��S� � µ��S�, where µ � µ� � µ� is the Jordan

decomposition of µ (see [Bog07b], p.176).

We define a Markov operator on S to be a map P �M��S��M��S� such that

(i) P is additive and R�-homogeneous;

(ii) YPµYTV � YµYTV for all µ >M��S�.
Let �Pλ�λ>Λ be a family of Markov operators.

Following Lasota and Szarek [LS06], and Worm [Wor10], we say that �Pλ�λ>Λ is equicon-

tinuous at µ >M��S� if for every ε A 0 there exists δ A 0 such that YPλµ � PλνY�BL,d @ ε for

every ν >M��S� such that Yµ � νY�BL,d @ δ and for every λ > Λ. �Pλ�λ>Λ is called equicon-

tinuous if it is equicontinuous at every µ >M��S�. We will examine properties of space of

bounded Lipschitz functions is Section 3.3.

Let Θ ` P�S�. Following [Bog07a] we call Θ uniformly tight if for every ε A 0 there exists

a compact set Kε ` S such that µ�Kε� C 1 � ε for all µ > Θ.

The following theorem is a crucial tool for proving convergence of the Lie-Trotter scheme

for Markov semigroups, and also an important and non-trivial result on its own. Proof of

Theorem 3.2.1 can be found in Section 3.4.

Theorem 3.2.1. Let �Pλ�λ>Λ, �Qγ�γ>Γ be equicontinuous families of Markov operators on�S, d�. Assume that �Qγ�γ>Γ is tight. Then the family �PλQγ � λ > Λ, γ > Γ� is equicontin-

uous on �S, d�. Moreover, if �Pλ�λ>Λ is tight, then the family �PλQγ � λ > Λ, γ > Γ� is tight

on �S, d�.

We now present assumptions under which we prove the convergence of the Lie-Trotter

scheme. Even though they may seem technical, they are motivated by existing examples of

convergence of Lie-Trotter schemes with weaker assumptions then those in [KW01, CC04]

(see Section 3.7).

Let �P 1
t �tC0 and �P 2

t �tC0 be Markov semigroups. Let δ A 0. Define

P
i�δ� �� �P i

t � t > �0, δ�� for i � 1,2,

F�δ� �� ��P 1
t
n

P 2
t
n

�n � n > N, t > �0, δ�� .
Let d be an admissible metric on S such that the following assumptions hold:

Assumption 1. There exists δ1 A 0 such that P1�δ1� and P2�δ1� are equicontinuous and

tight families of Markov operators on �S, d�.

73



Lie-Trotter product formula for locally equicontinuous and tight Markov operators

Assumption 2 (Stability condition). There exists δ2 A 0 such that F�δ2� is an equicon-

tinuous family of Markov operators on �S, d�.

Under Assumption 1, the operators P i
t ,0 B t B δ, are Feller: there exist U i

t � Cb�S�� Cb�S�
such that `P i

tµ, fe � `µ,U i
tfe for every f > Cn�S�, µ0 >M

��S�, 0 B t B δ.

Let f > BL�S, d� and consider

E�f� �� �U2
sU

1
s� �U2

t
n

U1
t
n

�n f � n > N, s, s�, t > �0, δ�� . (3.2)

By Theorem 7.2.2 in [Wor10] or Theorem 3.4.2 below, equicontinuity of the family �Pλ�λ>Λ
is equivalent to equicontinuity of the family �Uλf�λ>Λ for every f > BL�S, d�. Then, as we

will show in Lemma 3.5.4, E�f� is an equicontinuous family if δ B min�δ1, δ2�. It defines a

new admissible metric on S:

dE�f��x, y� �� d�x, y� - sup
g>E�f�

Sg�x� � g�y�S, for x, y > S. (3.3)

Assumption 3 (Commutator condition). There exists a dense convex subcone M0 of

M��S�BL,d that is invariant under �P i
t �tC0 for i � 1,2 and for every f > BL�S, d� there exists

δ3,f A 0 such that for the admissible metric dE�f� on S there exists ωf � �0, δ3,f � �M0 � R�

continuous, non-decreasing in the first variable, such that the Dini-type condition holds

S
δ3,f

0

ωf�s, µ0�
s

ds @ �ª for all µ0 >M0, and (3.4)

ZP 1
t P

2
t µ0 � P

2
t P

1
t µ0Z�BL,dE�f�

B tωf�t, µ0�
for every t > �0, δ3,f �, µ0 >M0.

Assumption 4 (Extended Commutator Condition). Assume that Assumption 3 holds

and, in addition, for every f > BL�S, d�, there exists δ4,f A 0 and for µ0 > M0 there exists

Cf�µ0� A 0 such that for every t > �0, δ4,f �,
ωf�t, Pµ0� B Cf�µ0�ωf�t, µ0�

for all P > P2�δ4,f� �F�δ4,f� �P1�δ4,f�.

Now we can formulate the main theorem of this chapter, which is the strong convergence

of the Lie-Trotter scheme. The proof of Theorem 3.2.2 can be found in Section 3.5.

Theorem 3.2.2. Let �P 1
t �tC0 and �P 2

t �tC0 be semigroups of Markov operators. Assume
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3.3. Preliminaries

that Assumptions 1-4 hold. Then for every t C 0 there exists a unique Markov operator

Pt �M��S��M��S� such that for every µ >M��S�:

[�P 1
t
n

P 2
t
n

�n µ � Ptµ[�
BL,d

� 0 as n�ª (3.5)

If, additionally, a single δ3,f , δ4,f , Cf�µ0� and ωf��, f� can be chosen in (A3) and (A4) to

hold uniformly for f > BL�S, d�, YfYBL,d B 1, then convergence in (3.5) is uniform for t in

compact subsets of R�.

3.3 Preliminaries

3.3.1 Markov operators and semigroups

We start with some preliminary results on Markov operators on spaces of measures, see

[Wor10, EK86, LM00]. Let S be a Polish space, P �M��S��M��S� a Markov operator.

We extend P to a positive bounded linear operator on �M�S�, Y �YTV � by Pµ �� Pµ��Pµ�.

P is a bounded linear operatos on M�S� for Y�YTV . ’Typically’ it is not bounded for Y�Y�BL,d.

Denote by BM�S� the space of all bounded Borel measurable functions on S. Following

[HW09b], Definition 3.2 or [SM03] we will call a Markov operator P regular if there exists

U � BM�S�� BM�S� such that

`Pµ, fe � `µ,Ufe for all µ >M��S�, f > BM�S�.
Let �S,Σ� be a measurable space. According to [Wor10], Proposition 3.3.3, P is regular if

and only if

(i) x( Pδx�E� is measurable for every E > Σ and

(ii) Pµ�E� � RS Pδx�E�dµ�x� for all E > Σ.

We call the operator U � BM�S� � BM�S� the dual operator of P . The Markov operator

P is a Markov-Feller operator if it is regular and the dual U maps Cb�S� into itself. A

Markov semigroup �Pt�tC0 on S is a semigroup of Markov operators onM��S�. The Markov

semigroup is regular (or Feller) if all the operators Pt are regular (or Feller). Then �Ut�tC0

is a semigroup on BM�S�, which we call the dual semigroup.
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Lie-Trotter product formula for locally equicontinuous and tight Markov operators

3.3.2 Topological preliminaries

Following [Kel55], p.230, a topological space X is a k-space if for any subset A of X holds

that if A intersects each closed compact set in a closed set, then A is closed. According to

[Eng77], Theorem 3.3.20 every first-countable Hausdorff space is a k-space. Every metric

space is first countable, hence also a k-space. In particular �M��S�, Y � Y�BL,d� is a k-space.

Let F be a family of continuous maps from a topological space X to a metric space �Y, dY �.
F is equicontinuous at point x > X if for every ε A 0 there exists an open neighbourhood

Uε of X in X such that

dY �f�x�, f�x��� @ ε for all x� > Uε,¦f > F .

A family F of maps is equicontinuous if and only if it is equicontinuous at every point.

A family F of maps from a metric space �X,dX� to a metric space �Y, dY � is uniformly

equicontinuous if for every ε A 0 there exists δε A 0 such that

dY �f�x�, f�x��� @ ε for all x,x� >X such that dX�x,x�� @ δε for all f > F .

Lemma 3.3.1. Let �K,d� be a compact metric space and �Y, dY � a metric space. An

equicontinuous family F ` C�K,Y � is uniformly equicontinuous.

Proof. Let ε A 0. For each x > K there exists an open ball Bx�δx�, δx A 0 such that

dY �f�f�, f�x��� @ ε for every x� > Bx�δx� and f > F . By compactness of K, it is covered by

finitely many balls, say Bxi�δxi~2�, i � 1,�, n. Let δ �� mini
δxi
2 . If x,x� > K are such that

d�x,x�� @ δ, then there exists xi0 such that x > Bxi0
�δxi0 ~2�. Necessarily,

d�x�, xi0� B d�x�, x� � d�x,xi0� @ δ � δxi0 ~2 @ δxi0 .

Thus, dY �f�x�, f�x��� @ ε, proving the uniform equicontinuity on K.

For a family of maps F on X and x >X we write F�x� �� �f�x� � f > F�. Following [Kel55]

we introduce the compact-open topology. Let X,Y be topological spaces. Let F denote

a non-empty set of functions from X to Y . For each subset K of X and each subset U

of Y , define W �K,U� to be the set of all members of F which carry K into U ; that is

W �K,U� �� �f � f�K� ` U�. The family of all sets of the form W �K,U�, for K a compact

subset of X and U open in Y , is a subbase for the compact-open topology for F . The

family of finite intersections of sets of the form W �K,U� is then a base for the compact

open topology. We write co-topology as abbreviation for compact-open topology. For two
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3.3. Preliminaries

topological spaces T and T , C�T,T �� is the set of continuous maps from T to T �. The

following generalized Arzela-Ascoli type theorem is based on [Kel55], Theorem 7.18.

Theorem 3.3.2. Let C be the family of all continuous maps from a k-space X which is

either Hausdorff or regular to a metric space �Y, d�, and let C have the co-topology. Then

a subfamily F of C is compact if and only if:

(a) F is closed in C;

(b) the closure of F�x� in Y is compact for each x in X;

(c) F is equicontinuous on every compact subset of X.

Theorem 3.3.3. [Bargley and Young [RJ66], Theorem 4] Let X be a Hausdorff k-space

and Y a Hausdorff uniform space. Let F ` C�X,Y �. Then F is compact in the co-topology

if and only if

(a) F is closed;

(b) F�x� has compact closure for each x >X;

(c) F is equicontinuous.

This is a generalization of Theorem 8.2.10 in [Eng77]. This yields the conclusion that

for a closed family of continuous functions F such that F�x� is precompact for every x,

equicontinuity on compact sets is equivalent to continuity.

Moreover, Theorem 3.3.3 can be rephrased for a family F that is relatively compact in C,

meaning that its (compact-open) closure is compact:

Theorem 3.3.4. Let X be a Hausdorff k-space and Y a metric space. Let C � C�X,Y �,

equipped with the co-topology. A subset F of C is relatively compact iff:

(a) The closure of F�x� �� �f�x� � f > F� in Y is compact for every x >X.

(b) F is equicontinuous on every compact subset of X.

Statement (b) can be replaced by

(b’) F is equicontinuous on X.

Proof. Let F be the closure of F in C. Assume it is compact, then according to Theorem

3.3.2, the closure of F�x� in Y is compact for every x >X. Hence the closure of F�x�, which

is contained in the closure of F�x�, will be compact too. The family F is equicontinuous

on X for every compact subset of X, because it is a subset of F that has his property.

On the other hand, if F satisfies (a) and (b), or (b’), then F obviously satisfies condition
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Lie-Trotter product formula for locally equicontinuous and tight Markov operators

(a) in Theorem 3.3.2. Now let f > F . Then there exists a net �fν� ` F such that fν � f .

Point evaluation at x is continuous for the co-topology, so fν�x�� f�x� in Y . Since fν�x�
is contained in a compact set in Y for every ν, f�x� will be contained in this compact set

too. So (b) holds in Theorem 3.3.2 for F . In a similar way one can show (c) in Theorem

3.3.2. Let K ` X be compact. The co-topology on C�X,Y � is identical to the topology

of uniform convergence on compact subsets ([Kel55], Theorem 7.11). So if f� > F and�fν� ` F is a net such that fν � f�, then fν SK � f�SK uniformly. If x0 > K, then for every

ε A 0 there exists an open neighbourhood U of x0 in K such that

dY �f�x�, f�x0�� @ 1
2ε for all f > F , x > U.

Consequently,

dY �f��x�, f��x0�� � lim
ν
dY �fν�x�, fν�x0�� B 1

2ε @ ε

for all x > U . So F is equicontinuous on K too. Theorem 3.3.2 then yields the compactness

of F in C, hence the relative compactness of F .

In [Wor10] and in [HSWZ17] we can find the following result, which will be crucial in the

proving norm convergence of the Lie-Trotter product formula.

Theorem 3.3.5. Let S be complete and separable. Let �µn�n>N ` Ms�S� and N C 0 be

such that `µn, fe converges as n�ª for every f > BL�S� �M�S��BL and

YµnYTV B N for every n > N.

Then there exists µ >M�S� such that Yµn � µY�BL � 0 as n�ª.

3.3.3 Tight Markov operators

Let us now introduce the concept of tightness of sets of measures and families of Markov

operators. According to [Bog07a], Theorem 7.1, all Borel measures on a Polish space are

Radon i.e. locally finite and inner regular. Also, by Definition 8.6.1 in [Bog07a] we say that

a family of Radon measures M on a topological space S is called uniformly tight if for every

ε A 0, there exists a compact set Kε such that SµS�S�Kε� @ ε for all µ >M. Moreover, we say

that a family �Pλ�λ>Λ of Markov operators is tight if for each µ >M��S�BL, �Pλµ � λ > Λ�
is uniformly tight. The following theorem, which is a rephrased version of Theorem 8.6.2

in [Bog07a], due to Prokhorov shows that in our case tightness of the Y � YTV -uniformly

bounded family is equivalent to precompactness of �Pλµ Sλ > Λ� in M��S�BL.
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3.4. Equicontinuous families of Markov operators

Theorem 3.3.6 (Prokhorov theorem). Let S be a complete separable metric space and let

M be a family of finite Borel measures on S. The following conditions are equivalent:

(i) Every sequence �µn� `M contains a weakly convergent subsequence.

(ii) The family M is uniformly tight and uniformly bounded in total variation norm.

3.4 Equicontinuous families of Markov operators

Let S be a Polish space and consider a semigroup �Pt�tC0 of Markov operators. We will

examine the properties of equicontinuous families of Markov operators. An equicontinuous

family of Markov operators must consist of Y � Y�BL,d-continuous operators. These are Feller

([Wor10], Lemma 7.2.1). Due to Theorem 3.3.2, a closed subset F of the mappings from

M��S�BL to M��S�BL with the co-topology is compact if and only if F SK is equicontinuous

for each compact K `M��S� and the set �Ptµ � Pt > F� `M��S� has a compact closure

for every µ > M��S�. A continuous function on a compact metric space is uniformly

continuous. A similar statement holds for equicontinuous families.

Lemma 3.4.1. Let �Pλ�λ>Λ be a family of Markov operators on S. If �Pλ�λ>Λ is an equicon-

tinuous family on the compact set K `M��S�, then �Pλ�λ>Λ is uniformly equicontinuous

on K.

The following result, found in [HSWZ17] and based on [Wor10], Theorem 7.2.2, gives

equivalent conditions for a family of regular Markov operators to be equicontinuous:

Theorem 3.4.2. Let �Pλ�λ>Λ be a family of regular Markov operators on the complete

separable metric space �S, d�. Let Uλ be the dual operator of Pλ. Then the following

statements are equivalent:

(i) �Pλ�λ>Λ is an equicontinuous family;

(ii) �Uλf�λ>Λ is an equicontinuous family in Cb�S� for all f > BL�S, d�;

(iii) �Uλf Sf > B,λ > Λ� is an equicontinuous family for every bounded set B ` BL�S, d�.

In the next part of this section we show results which allow us to prove Theorem 3.2.1,

that is that the composition of an equicontinuous family of Markov operators with an

equicontinuous and tight family of Markov operators is equicontinuous. Additionally, if

both families are tight, the composition is also tight. One can find an example of equicon-

tinuous and tight families of Markov operators in [Sza03].

Let us first prove the following crucial observation.
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Lemma 3.4.3. Let �Pλ�λ>Λ be an equicontinuous and tight family of Markov operators

on �S, d� and let K ` M��S�BL be precompact. Then �Pλµ Sµ > K,λ > Λ� ` M��S�BL is

precompact.

Proof. As K is precompact, then K is compact in M��S�BL. So �PλSK� ` C�K,M��S�BL�
is equicontinuous and for each µ > K̄, �PλµSλ > Λ� is precompact, by tightness of the family�Pλ�λ>Λ. Hence, by Theorems 3.3.2 - 3.3.3, �PλSK� ` C�K,M��S�BL� is relatively compact

for the compact-open topology, which is the Y � Yª-norm topology in this case. Let us

consider the evaluation map

ev � C�K,M��S�BL� �K � M��S�BL�F,µ� ( F �µ�.
Theorem 5, [Kel55], p.223 yields that this map is jointly continuous if C�K,M��S�BL� is

equipped with the co-topology. So

K � � �F �µ� SF > Cl��PλSK � λ > Λ��, µ >K�
is compact in M��S�BL.

To prove Theorem 3.2.1, we will need the following result.

Proposition 3.4.4. Let �Pλ�λ>Λ be a tight family of regular Markov operator on S. If�Pλ�λ>Λ is equicontinuous for one admissible metric on S, then it is equicontinuous for any

admissible metric.

The key point in the proof of Proposition 3.4.4 is a series of results on characterisation of

compact sets in the space of continuous maps when equipped with the co-topology. These

can be stated in quite some generality, originating in [Kel55, Eng77, RJ66].

Proof. Let d be the admissible metric on S for which �Pλ� is equicontinuous in Cd ��

C�P�S�weak,P�S�BL,d�. Let d� be any other admissible metric on S. We must show that�Pλ� is an equicontinuous family in Cd� �� C�P�S�weak,P�S�BL,d��.
By assumption, �Pλµ � λ > Λ� is tight for every µ > P�S�. By Prokhorov’s Theorem (see

[Bog07a], Theorem 8.6.2), it is relatively compact in P�S�BL,d, because the Y � YBL,d-norm

topology coincides with the weak topology on M��S�. Because �Pλ� is equicontinuous

in Cd, Theorem 3.3.4 yields that �Pλ� is relatively compact in Cd, for the co-topology.

Since the topologies on P�S� defined by the norms Y � YBL,d� , d� admissible, all coincide

with the weak topology, �Pλ� is relatively compact in Cd� for any admissible metric d�.
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Again the application of Theorem 3.3.4, but now in opposite direction, yields that �Pλ� is

equicontinuous in Cd� .

Proposition 3.4.5. Let �Pλ�λ>Λ be a family of Markov operators on �S, d�. If �Pλ�λ>Λ is

tight, then the following are equivalent:

(i) For every K `M�S��BL precompact, �PλSK�λ>Λ is equicontinuous on K.

(ii) �Pλ�λ>Λ is equicontinuous (on S).

To prove Proposition 3.4.5 we apply Theorem 3.3.2 and Theorem 3.3.3 to the k-space�M��S�BL, Y � Y�BL,d�.
Now we are in a position to prove Theorem 3.2.1.

Proof. (Theorem 3.2.1) Let �Pλ�λ>Λ and �Qγ�γ>Γ,with families of dual operators �Uλ�λ>Λ
and �Vγ�γ>Γ respectively, be equicontinuous. Let f > BL�S, d�. Then �Uλf Sλ > Λ� � E

is equicontinuous. Let dE be the associated admissible metric as defined in (3.3) with

E�f� replaced by E . Then E is contained in the unit ball BE of �BL�S, dE�, Y � YBL,dE�. As�Qγ�γ>Γ is an equicontinuous family for d, by Proposition 3.4.4 it is equicontinuous for any

admissible metric on S. Hence, it is equicontinuous for dE . Then, by Theorem 3.4.2 (iii)

F � �Vγg � g > BE , γ > Γ� is equicontinuous in Cb�S�.
In particular, as subset of F ,

�VγUλf � γ > Γ, λ > Λ� is equicontinuous in Cb�S�.
Hence, by Theorem 3.4.2, �PλQγ�λ>Λ,γ>Γ is equicontinuous for d. If �Pλ�λ>Λ is an equicon-

tinuous and tight family, then Lemma 3.4.3 implies that for any K `M��S�BL compact,

KQ �� �QγνSγ > Γ, ν > K� is precompact. Thus, �PλµSλ > Λ, µ > KQ� � �PλQγνSλ > Λ, γ >

Γ, ν >K� `M��S�BL is precompact. In particular, this holds for for K � �ν0�.

In the above proof of Theorem 3.2.1 we only need assumption, that the family �Qγ�γ>Γ is

tight. In case both �Pλ�λ>Λ and �Qγ�γ>Γ are tight, there is an alternative way of proving

Theorem 3.2.1 using Lemma 3.4.3.

As a consequence of Theorem 3.2.1 we get the following Corollary.

Corollary 3.4.6. The composition of a finite number of equicontinuous and tight families

of Markov operators is equicontinuous and tight.
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Lie-Trotter product formula for locally equicontinuous and tight Markov operators

3.5 Proof of convergence of Lie-Trotter product for-

mula

Throughout this section we assume that �P 1
t �tC0 and �P 2

t �tC0 are Markov-Feller semigroups

on S with dual semigroups �U1
t �tC0, �U2

t �tC0, respectively.

We start by examining some consequences of Assumptions 1 - 4 formulated in Section 3.2.

Introduce

F@�δ� �� ��P 1
t
n

P 2
t
n

�i � n > N, i B n � 1, t > �0, δ�  .
Lemma 3.5.1. The following statements hold:

(i) If Assumption 1 holds, then P1�δ� and P2�δ� are equicontinuous and tight for every

δ A 0.

(ii) If F�δ2� is equicontinuous then F@�δ2� is equicontinuous.

(iii) F@�δ2� is equicontinuous and tight iff F�δ2� is equicontinuous and tight.

Proof. (i) Is an immediate consequence of Theorem 3.2.1 and the semigroup property

of �P i
t �tC0.

(ii) Let t > �0, δ2� and i, n > N such that i B n � 1. Observe that �P 1
t
n

P 2
t
n

�i � �P 1
1
i
it
n

P 2
1
i
it
n

�i
with it

n > �0, δ2�. Hence F@�δ2� ` F�δ2�. A subset of an equicontinuous family of maps

is equicontinuous.

(iii) The following subsets of F@�δ2�,
F

1
@
�δ� �� �P 1

t
n

P 2
t
n

� n > N, t > �0, δ��
and

F
�

@
�δ� �� ��P 1

t
n

P 2
t
n

�n�1
� n > N, t > �0, δ� 

are equicontinuous and tight, because F@�δ2� is. Note that F ` F1
@
�δ2� � F�

@
�δ2�.

According to Theorem 3.2.1 the latter product is equicontinuous and tight. Hence

F is equicontinuous and tight. In part (ii) we observe that F@�δ2� ` F�δ2�, so

equicontinuity and tightness of F�δ2� implies that of F@�δ2�.
Lemma 3.5.2 (Eventual equicontinuity). If Assumptions 1 and 2 hold, then for each
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compact Γ ` R� there exists N � NΓ such that

F
N
Γ �� ��P 1

t
n

P 2
t
n

�n � n > N, n C N, t > Γ�
is equicontinuous.

Proof. Let N > N be such that t
N B min�δ1, δ2� �� δ for all t > Γ. For n C N we have, with

k �� n �N

�P 1
t
n

P 2
t
n

�n � �P 1
1
k
�
k�t
N�k

P 2
1
k
�
k�t
N�k

�k�N � �P 1
1
k
�
k�t
N�k

P 2
1
k
�
k�t
N�k

�k �P 1
t

N�k

P 2
�t

N�k

�N .
Since t

N�k > �0, δ� for k > N0 and P1�δ� and P2�δ� are equicontinuous and tight (by as-

sumption), the family ��P 1
t

N�k

P 2
�t

N�k

�N � k > N0, t > Γ¡ is equicontinuous and tight according

to Theorem 3.2.1. The family ��P 1
1
k
�
k�t
N�k

P 2
1
k
�
k�t
N�k

�k � k > N, t > Γ¡ ` F�δ2� is equicontinuous by

Assumption 2. Hence Theorem 3.2.1 yields equicontinuity of FN
Γ .

Lemma 3.5.3. If Assumptions 1 and 2 hold and, additionally, F�δ� is a tight family for

some δ � δ2 A 0, then F�δ� is equicontinuous and tight for any δ A 0.

Proof. Let δ2 A 0 such that Assumption 2 holds for δ2. Let

F�2δ2� �� ��P 1
t
n

P 2
t
n

�n � t > �0,2δ2�, n > N 
� ��P 1

t�

m

P 2
t�

m

�2m

� t� ��
t

2
> �0, δ2�,m > N¡´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Feven
m

8��P 1
t�

2m�1

P 2
t�

2m�1

�2m�1

� t� > �0, δ2�,m > N¡´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fodd
m

Due to Theorem 3.2.1, F even
m �δ2� is an equicontinuous and tight family as a product of

equicontinuous and tight families.

Fodd
m �δ2� � ��P 1

tm
m

P 2
tm
m

�2m�1

� tm � t � m
2m�1 , t > �0, δ2�,m > N¡

` ��P 1
tm
m

P 2
tm
m

� �P 1
tm
m

P 2
tm
m

�m �P 1
tm
m

P 2
tm
m

�m � tm � t � m
2m�1 , t > �0, δ2�,m > N 

Hence, due to Theorem 3.2.1, Fodd
m �δ2� is an equicontinuous and tight family.
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Lemma 3.5.4. Let f > BL�S, d� and δ � min�δ1, δ2�. If Assumptions 1 and 2 hold, then

E�f� defined by (3.2) is equicontinuous in Cb�S�.

Note that E�f� depends on the choice of f . Lemma 3.5.4 is a consequence of Assumptions

1 and 2 and Theorem 3.4.2.

Remark 3.5.5. Technically, one requires that particular subsets of E�f� are equicontinu-

ous. Namely, that

Ek�f� � �U2
lt
kn

U1
jt
kn

�U2
t
n

U1
t
n

�n f � n, j, l, i > N, j B kn, i B n � 1, l B kn, t > �0, δ2� 
is equicontinuous for every k. This seems to be quite too technical a condition.

Remark 3.5.6. The commutator condition that we propose in Assumption 3 is weaker than

the commutator conditions in [Kuh01], conditions �C� and �C�� in [CC04] and commutator

condition in Proposition 3.5 in [Col09].

For later reference, we present some properties of function t( ω�t� �� ωf�t, µ0�, that occurs

in Assumptions 3 and 4.

Lemma 3.5.7. Let ω � ωf��, µ0� � R� � R� be a continuous, nondecreasing function

such that Dini condition (3.4) in Assumption 3 holds. Then limt�0� ω�t� � 0 and for

any 0 @ a @ 1.

(a) Pª

n�1 ω�ant� @ª for all t A 0;

(b) limt�0Pª

n�1 ω�ant� � 0.

Proof. For (a) Suppose that inf0@t@1 ω�t� �m A 0. Then by 3.4 in Assumption 3 we get

S
1

0

ω�s�
s

ds C S
1

0

m

s
ds � �ª.

So m � 0. From the fact that R σ0 ω�t�
t dt @ �ª we have

ª A Pª

n�0 R a
nt

an�1t
ω�s�
s ds C Pª

n�0
ω�an�1t�
ant �ant � an�1t� �

� Pª

n�0 ω�an�1t� �1 � an�1t
ant � � �1 � a�Pª

n�1 ω�ant�
This proves �a�.
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For �b� let ε A 0. According to (a) there exists n0 > N such that

ª

Q
n�n0

ω�an� @ ε
2
.

Moreover, because limt�0� ω�t� � 0, there exists t0 B 1 such that ω�at0� @ ε
2n0

. Then for

every 0 @ t B t0 and n > N, 1 B n B n0, ω�ant� B ω�at0� B ε
2n0

. So

ª

Q
n�1

ω�ant� @ n0�1

Q
n�1

ω�ant� � ª

Q
n�n0

ω�ant� @ ε�n0 � 1�
2n0

�
ε

2
@ ε.

To show our main result we need technical lemmas which we present in this section. Proofs

of results from this section can be found in Appendix 3.8.1.

Lemma 3.5.8. The following identities hold: for fixed k > N, m �� kn and j Bm.

(a) P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

� Pj�1
l�0 P

2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�1�l�t

m

(b) P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k � Pk�1
j�1 P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�k�1�j

(c) �P 1
t
n

P 2
t
n

�n � �P 1
t
m

P 2
t
m

�m � �P 1
kt
m

P 2
kt
m

�n � �P 1
t
m

P 2
t
m

�n�k �
� Pn�1

i�0 �P 1
kt
m

P 2
kt
m

�i �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k��P 1
t
m

P 2
t
m

�k��n�1�i�
.

Combining Lemma 3.5.8 (a) - (c) we get the following Corollary.

Corollary 3.5.9. For any n > N, k > N and m �� kn one has

�P 1
t
n

P 2
t
n

�n � �P 1
t
m

P 2
t
m

�m �

� Pn�1
i�0 Pk�1

j�1 Pj�1
l�0 �P 1

kt
m

P 2
kt
m

�iP 1
jt
m

P 2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�l�t
m

�P 1
t
m

P 2
t
m

�k�n�i��j�1

Lemma 3.5.10. Let f > BL�S, d� and µ0 >M0. Assume that Assumptions 1 - 4 hold and

put δf � min�δ1, δ2, δ3,f , δ4,f�. Then for all t C 0 and n, k > N such that t
nk > �0, δf �:

Vc�P 1
t
n

P 2
t
n

�n µ0 � �P 1
t
kn

P 2
t
kn

�n�k µ0, fhV B Cf�µ0�k � 1

2
tωf � t

nk
,µ0� .
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We can now finally get to the proof of our main result, Theorem 3.2.2, i.e. the convergence

of the Lie-Trotter product formula for Markov operators. We need the lemma that yields

the convergence of the subsequence of the form d�P 1
t

2n
P 1

t
2n
�2n

µ0, fi for µ0 >M0 and for every

f > BL�S, d�. Then, using this result, we will show that the sequence c�P 1
t
n

P 1
t
n

�n µ0, fh also

converges for every f > BL�S, d�. From that we can extend from µ0 > M0 to µ >M��S�.
Recall that δf �� min�δ1, δ2, δ3,f , δ4,f�.
Remark 3.5.11. The ”weak” convergence in our setting is a convergence of a sequence of

measures paired with a bounded Lipschitz function. Hence it differs from the ”standard”

definition of weak convergence (see [Bog07a] Definition 8.1.1), where the sequence of mea-

sures is paired with continuous bounded functions. However, since BL�S, d� �M�S��BL (see

[HW09b], Theorem 3.7) our terminology is proper from a functional analytical perspective.

Lemma 3.5.12. Let �P 1
t �tC0 and �P 2

t �tC0 be Markov semigroups such that Assumptions

1 - 4 hold. Let µ0 > M0 and f > BL�S, d�. Then the sequence �rn�n>N where rn ��d�P 1
t

2n
P 1

t
2n
�2n

µ0, fi converges for every t C 0, uniformly for t in compact subsets of R�.

Proof. The case t � 0 is trivial. So fix t A 0. Let f > BL�S, d�. There exists N > N such

that t
2N

> �0, δf �. Let i, j > N, i A j C N . Then 2i � 2j � 2l with l � i � j @ i. Lemma 3.5.10

yields for any µ0 >M0, that

Wd��P 1
t

2i
P 2

t

2i
�2i

� �P 1
t

2j
P 2

t

2j
�2j�µ0, fiW

B

i�1

Q
l�j

Wd��P 1
t

2l
P 2

t

2l
�2l

� �P 1
t

2l�1
P 2

t

2l�1
�2l�1�µ0, fiW

BCf�µ0� t
2

i�1

Q
l�j

ωf � t

2l�1
, µ0� ,

(3.6)

with ωf as in Assumption 3. According to Lemma 3.5.7 (a), Pª

l�0 ωf � t
2l�1 , µ0� @ �ª. So for

every ε A 0 there exists N � > N,N � C N such that Pi�1
l�j ωf � t

2l�1 , µ0� @ ε for every i, j C N .

Also, by property b) in Lemma 3.5.7, ωf � t
2l�1 , µ0� can be made uniformly small, when t is in

a compact subset of R�. Hence the sequence �rn�n>N is Cauchy in R, hence convergent.

Observe that a measure µ > M��S� is uniquely defined by its values on f > BL�S, d�.
Lemma 3.5.12 and the Banach-Steinhaus Theorem (see [Bog07b], Theorem 4.4.3) allow us
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to define a positively homogeneous map Pt �M0 � BL�S, d�� by means of

`Ptµ0, fe �� lim
n�ª

c�P 1
t

2n
P 2

t
2n
�2n

µ0, fh .
However, according to Theorem 3.3.5, Ptµ0 >M

��S� for every µ0 >M0 and

�P 1
t

2n
P 2

t
2n
�2n

µ0 � Ptµ0 (3.7)

strongly, in Y � Y�BL,d-norm.

Proposition 3.5.13. Let �P 1
t �tC0 and �P 2

t �tC0 be Markov semigroups such that Assump-

tions 1 - 4 hold. If µ0 >M0, then for every f > BL�S, d� and for all t C 0, c�P 1
t
n

P 2
t
n

�n µ0, fh
converges to `Ptµ0, fe.
Proof. Let f > BL�S�, t C 0 and fix ε A 0. Put δf � min�δ1, δ2, δ3,f , δ4,f�. For any l > N,

using Lemma 3.5.10, one has

Vc�P 1
t
n

P 2
t
n

�n µ0 � Ptµ0, fhV B Wd�P 1
t
n

P 2
t
n

�n µ0 � �P 1
t

n2l

P 1
t

n2l

�n2l

µ, fiW
� Wd�P 1

t

n2l

P 1
t

n2l

�n2l

µ0 � �P 1
t

2l

P 1
t

2l

�2l

µ0, fiW
� Wd�P 1

t

2l

P 2
t

2l

�2l

µ0 � Ptµ0, fiW .
Pick N such that for n C N one has t

n > �0, δf �. Then

Vc�P 1
t
n

P 2
t
n

�n µ0 � Ptµ0, fhV B Pl�1
i�0 Wd�P 1

t

2in

P 2
t

2in

�2in

µ0 � �P 1
t

2i�1n

P 2
t

2i�1n

�2i�1n

µ0, fiW
�Cf�µ0�n�1

2 tωf � t
n2l
, µ0�

� Wd�P 1
t

2l

P 2
t

2l

�2l

µ0 � Ptµ0, fiW
B Pl�1

i�0Cf�µ0�1
2tωf � t

2in
, µ0� �Cf�µ0�n�1

2 tωf � t
n2l
, µ0�

� Wd�P 1
t

2l

P 2
t

2l

�2l

µ0 � Ptµ0, fiW
� 1

2Cf�µ0�t �Pl
i�0 ωf � t

2in
, µ0� � �n � 1�ωf � t

n2l
, µ0��

� Wd�P 1
t

2l

P 2
t

2l

�2l

µ0 � Ptµ0, fiW .
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According to Proposition 3.5.13 there exists N0 such that for any l C N0

Wd�P 1
t

2l
P 2

t

2l
�2l

µ0 � Ptµ0, fiW @ ε
3
.

Lemma 3.5.7 (b) yields N1 > N, N1 C N such that for every n C N1 and l > N,

l

Q
i�0

ωf � t

2in
,µ0� B ª

Q
i�0

ωf � t

2in
,µ0� @ �1 �

1

2
Cf�µ0�t��1 ε

3
.

Since ωf�s, µ0� � 0 as s � 0, for every n C N1, there exists ln C N0 such that

ωf � t

n2ln
, µ0� @ 1

n � 1
�1 �

1

2
tCf�µ0���1 ε

3
.

So by choosing l � ln in the above derivation, we get that

Ub�P 1
t
n

P 2
t
n

�n µ0 � Ptµ0, fgU @ ε for every n C N1.

The next lemma shows that once the convergence of c�P 1
t
n

P 2
t
n

�n µ0, fh is established for

µ0 >M0 then we have convergence for all µ >M��S�.
Lemma 3.5.14. Assume that Assumptions 1 - 4 hold. Then for every µ > M��S� and

t C 0, ��P 1
t
n

P 2
t
n

�n µ�
n>N

is a Cauchy sequence in µ >M��S� for Y � Y�BL,d.

Proof. Let µ > M��S�. Let ε A 0. By Assumption 2, F�δ� is an equicontinuous family.

Thus there exists δε A 0 such that

[�P 1
t
n

P 2
t
n

�n µ � �P 1
t
n

P 2
t
n

�n ν[�
BL,d

@ ε~3
for all ν >M��S� such that Yµ � νY�BL,d @ δε. As M0 `M

��S� dense, there exists µ0 >M0

88



3.5. Proof of convergence of Lie-Trotter product formula

such that SSµ � µ0Y�BL,d @ δε. Then

\�P 1
t
n

P 2
t
n

�n µ � �P 1
t
m

P 2
t
m

�m µ\�
BL,d

B \�P 1
t
n

P 2
t
n

�n µ � �P 1
t
n

P 2
t
n

�n µ0\�
BL,d

� \�P 1
t
n

P 2
t
n

�n µ0 � �P 1
t
m

P 2
t
m

�m µ0\�
BL,d

� \�P 1
t
m

P 2
t
m

�m µ0 � �P 1
t
m

P 2
t
m

�m µ\�
BL,d

(3.8)

According to Proposition 3.5.13 and Theorem 3.3.5, there exists N > N such that for

n,m C N , [�P 1
t
n

P 2
t
n

�n µ0 � �P 1
t
m

P 2
t
m

�m µ0[�
BL,d

@ ε~3.
Hence for n,m C N , we obtain for (3.8) that

[�P 1
t
n

P 2
t
n

�n µ � �P 1
t
m

P 2
t
m

�m µ[�
BL,d

@
ε

3
�
ε

3
�
ε

3
� ε

which proves that ��P 1
t
n

P 2
t
n

�n µ�
n

is a Cauchy sequence.

Lemma 3.5.14 allows us to define for µ >M��S� and t > �0, δ�
P̄tµ �� lim

n�ª
�P 1

t
n

P 2
t
n

�n µ
as a limit in M��S�BL. Then P̄tµ0 � Ptµ0 for µ0 >M0, according to Proposition 3.5.13.

Thus, as a consequence of Lemma 3.5.14 we have proven the first part of Theorem 3.2.2.

Concerning the second part of the proof: the arguments in the proofs of the lemmas and

propositions that together finish the proof of Theorem 3.2.2, show upon inspection that in

case where stronger versions of Assumptions 3 and 4 hold, then immediately Y � Y�BL,d-norm

estimates can be obtained. That is, if in Assumptions 3 and 4 a single δ3,f , δ4,f . Cf�µ0�
and ωf��, µ0� can be chosen to hold uniformly for f in the unit ball of BL�S, d�, then

one obtains Theorem 3.2.2 (i.e. norm-convergence of the Lie-Trotter product) without the

need of Theorem 3.3.5. Then one easily checks that convergence is uniform in t in compact

subsets of R�. In fact for µ > M0 this result is captured in the preceding remarks. Let

Γ ` R� be compact. According to Lemma 3.5.2, FN
Γ is equicontinuous for N sufficiently

large. Then all estimates in the proof of Lemma 3.5.14 can be made uniformly in t > Γ.

Moreover, in the situation described above, the rate of convergence of the Lie-Trotter

product is controlled by properties of ω��, µ0�, according to the proof of Proposition 3.5.13.
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3.6 Properties of the limit

Let us now analyse the properties of the limit operator family �Pt�tC0 as obtained by the

Lie-Trotter product formula. First we show that Pt is a Feller operator, i.e. it is continuous

on M��S� for Y � Y�BL,d.

3.6.1 Feller property

Lemma 3.6.1. Let �P 1
t �tC0 and �P 2

t �tC0 be semigroups of regular Markov-Feller operators

that satisfy Assumptions 1 - 4. Let �µn�n>N `M��S� and µ� >M��S� be such that µn � µ�

in M��S�BL as n�ª. Then �P 1
t
n

P 2
t
n

�n µn � Ptµ� in M��S�BL for t > �0, δ2�.
Proof. Let ε A 0. From Assumption 2 (stability) we get that there exists δε A 0 such that

[�P 1
t
n

P 2
t
n

�n µ � �P 1
t
n

P 2
t
n

�n µ�[�
BL,d

@ ε~2
for every ν > M��S� such that Yµ � µ�Y�BL,d @ δε for all t > �0, δ2�. Since µn � µ�, there

exists N0 > N such that Yµn � µ�Y�BL,dE�f�
@ δε

for all n C N0. From Theorem 3.2.2 we know that there exists N1 > N such that for every

n C N1 [�P 1
t
n

P 2
t
n

�n µ� � Ptµ�[
BL,d

@ ε~2.
Then for n C N �� max�N0,N1�,

\�P 1
t
n

P 2
t
n

�n µn � Ptµ�\�
BL,d

B \�P 1
t
n

P 2
t
n

�n µn � �P 1
t
n

P 2
t
n

�n µ�\�
BL,d

� \�P 1
t
n

P 2
t
n

�n µ� � Ptµ�\�
BL,dE�f�

@ ε.

Proposition 3.6.2. If Assumptions 1 - 4 then for all k > N, t C 0

Pktµ � Pktµ for all µ >M��S�.
In particular, PtPsµ � Pt�sµ for all t, s C 0 such that t

s > Q.

Proof. Let µ >M��S�. Let ε A 0. Without loss of generality we can assume that t > �0, δ2�.
For k � 1 the statement is obviously true. Assume it has been proven for k. We now show
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it holds for k � 1 as well. As we know that the limit of the Lie-Trotter product exists

(Theorem 3.2.2), we can consider in the limit any subsequence. Take n � �k�1�m, m�ª:

P�k�1�tµ � lim
m�ª

�P 1
t
m

P 2
t
m

��k�1�m
µ � lim

m�ª
�P 1

t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ� .
Hence there exists N0 > N such that for all m A N0,

\P�k�1�tµ � �P 1
t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ�\�
BL,d

@
ε

3
.

Since by assumption �P 1
t
m

P 2
t
m

�km µ � Pktµ, Lemma 3.6.1 yields that there exists N1 C N0

such that for m C N1:

\�P 1
t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ� � �P 1
t
m

P 2
t
m

�m Pktµ\�
BL,d

@
ε

3
.

Also, by Theorem 3.2.2 we get N2 C N1 such that for every m C N2

[�P 1
t
m

P 2
t
m

�m Pktµ � Pk�1

t µ[�
BL,d

@
ε

3
.

Hence for m C N2,

[P�k�1�tµ � Pk�1

t µ[�
BL,d

B \P�k�1�tµ � �P 1
t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ�\�
BL,d

� \�P 1
t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ� � �P 1
t
m

P 2
t
m

�m Pktµ\�
BL,d

� [�P 1
t
m

P 2
t
m

�m Pktµ � Pk�1

t µ[�
BL,d

@ ε.

If t, s A 0 are such that t
s > Q, then there exist m,r > N: rt �ms. Hence, by the first part,

Pt�sµ � P�m�r�� s
r
µ � P�m�r�

s
r

µ � Pms
r
Prs
r
µ � PtPsµ.

Proposition 3.6.3. Pt �M��S�BL �M��S�BL is continuous for all t C 0.

Proof. First we will get the result for t > �0, δ2�. Let µ >M��S� and ε A 0. By Assumption

2, there exists δε A 0 such that

[�P 1
t
n

P 2
t
n

�n µ � �P 1
t
n

P 2
t
n

�n ν[�
BL,d

@
ε

2
(3.9)
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for every ν > M��S� such that Yµ � νY�BL,d @ δε and all n > N, t > �0, δ2�. Then, by taking

the limit n�ª in (3.9), using Theorem 3.2.2,

ZPtµ � PtνZ�BL,d
B
ε

2
@ ε

for all µ, ν >M��S� such that Yµ � νY�BL,d @ δε. So Pt is continuous for all t > �0, δ2�. Now

we can use Proposition 3.6.2 to extend the result to all t C 0.

In the proof we actually show more, which we formulate as a corollary.

Corollary 3.6.4. The family P�δ� � �Pt � t > �0, δ�� is equicontinuous for every 0 @ δ B δ2.

3.6.2 Semigroup property

Let us now analyze the full semigroup property of the limit. Recall Proposition 3.6.2. The

extension to all pairs t, s > R� of the semigroup property is not obvious. We do not assume

any continuity of Markov semigroups. However, let us show the following:

Proposition 3.6.5. Assume that Assumptions 1-4 hold and additionally that t ( P i
tµ �

R� �M��S�BL are continuous for i � 1,2 and all µ > M��S�. Then �Pt�tC0 is strongly

continuous and it is a semigroup.

Proof. Put Qn
t �� �P 1

t
n

P 2
t
n

�n. If µ0 > M0, then by the strong continuity of the semigroup�P i
t �tC0 on M��S�, we obtain that Fn � R� � R � t ( `Qn

t µ0, fe is continuous for all

n > N. According to Lemma 3.5.12, F2N converges uniformly on compact subsets of R� to

t( `Pµ0, fe. Hence the latter function is continuous on R�.

Now, first take t� > �0, δ2� and �tk�k ` �0, δ2� such that �tk�k � t�. Let µ > M��S� and

ε A 0. Since the family P�δ2� is equicontinuous (Corollary 3.6.4), there exists δε A 0 such

that for all ν >M��S� with Yµ � νY�BL,d @ δε,

ZPtµ � PtνZ�BL,d
@

ε

3�1 � YfYBL,d� for all t > �0, δ2�.
M0 is dense in M��S�. So there exists ν0 >M0 such that Yµ � µ0Y�BL,d @ δε. Then

TaPt�µ � Ptkµ, ffT B ZPt�µ � Pt�µ0Z�BL,d
� YfYBL,d

� TaPt�µ0 � Ptkµ0, ffT � ZPtkµ0 � PtkµZ�BL,d
� YfYBL,d

@
ε

3
�
ε

3
�
ε

3
� ε,
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when k C N such that TaPt�µ0 � Ptkµ0, ffT @ ε
3 for all k C N . So, by Theorem 3.3.5, t ( Ptµ

is continuous on �0, δ2�.
Now we show that the continuity of t( Ptµ on �0,mδ2� implies continuity on �0, �m � 1�δ2�.
Let t� > �0, �m � 1�δ2� and tk > �0, �m � 1�δ2� such that tk � t�. According to Proposition

3.6.2,

Ptkµ � P tk
m�1

�Pmtk
m�1

µ� � P tk
m�1

�Pmtk
m�1

µ � Pmt�

m�1
µ� � P tk

m�1

� Pmt�

m�1
µ.

Because tk
m�1 > �0, δ0�, P�δ2� is equicontinuous and Pmtk

m�1

µ� Pmt�

m�1
µ by assumption, the first

term can be made arbitrarily small for sufficiently large k. The second term converges to

P t�

m�1
� Pmt�

m�1
µ, which equals Pt�µ by Proposition 3.6.2. So indeed, t ( Ptµ is continuous on�0, �m � 1�δ2�. We conclude that t ( Ptµ is continuous on R�. According to Proposition

3.6.2, PtPsµ � Pt�sµ for all t, s > R� such that t
s > Q. Because t ( Ptµ is continuous, the

semigroup property must hold for all t, s > R�.

We say that a Markov semigroup is stochastically continuous at 0 if limh�0Phµ � µ for

every µ >M��S�BL. Stochastic continuity at 0 implies right-continuity at every t0 C 0,

but not left-continuity. The next result shows together with equicontinuity, that stochastic

continuity at 0 implies strong continuity.

Proposition 3.6.6. Let �Pt�tC0 be a Markov-Feller semigroup. Assume that there exists

δ A 0 such that �Pt�t>�0,δ� is equicontinuous. If �Pt�tC0 is stochastically continuous at 0, then

it is strongly continuous.

Proof. �Pt�t>�0,δ� is equicontinuous and Pt� is Feller for all t� C 0. Consequently, �Pt�t>�t�,t��δ�
is an equicontinuous family for every t� > R�. Hence �Pt�t>�0,T � is equicontinuous for every

T > R�. So, if ε A 0, there exists an open neighbourhood U in M��S� of µ such that

YPtν � PtµY�BL @ ε

for every ν > U . Let t0 A 0. From the fact, that �Pt�tC0 is (strongly) stochastically contin-

uous at 0, there exists δ A 0 such that for every 0 @ h @ δ, Phµ > U . Then, from the fact

that YPt0µ � Pt0�hµY�BL � YPt0�hµ � Pt0�hPhµY�BL,

we get YPt0�hµ � Pt0µY�BL @ ε for all 0 @ h @ δ.
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So t( Ptµ is also left-continuous at every t0 A 0.

Corollary 3.6.7. If �Pt�tC0 is stochastically continuous and �Pt�t>�0,δ� is equicontinuous,

then �Pt�t>�0,T � is tight for every T A 0.

Remark 3.6.8. From Proposition 3.6.6 we can conclude that a Markov semigroup that is

stochastically continuous at 0 but not strongly continuous, cannot be equicontinuous.

3.6.3 Symmetry

We prove that, if the family P1�δ� is tight - as we assume in Assumption 1 - then the limit

does not depend on the order in which we start switching semigroups �P 1
t �tC0 and �P 2

t �tC0.

Now let us prove the following lemma.

Lemma 3.6.9. Let �P 1
t �t>T and �P 2

t �t>T be semigroups of regular Markov-Feller operators.

Let n > N, t > R�. Then

�P 1
t P

2
t �n � �P 2

t P
1
t �n � n�1

Q
i�0

�P 2
t P

1
t �n�i�1C1,2

t,t �P 1
t P

2
t �i (3.10)

�

n�1

Q
i�0

�P 1
t P

2
t �n�i�1C1,2

t,t �P 2
t P

1
t �i (3.11)

where Ci,j
s,t � P

i
sP

j
t � P

j
t P

i
s .

Proof. We prove (3.10) by induction. Let Ln denote the left-hand side in equality (3.10),

Rn the right-hand side. Obviously L1 � R1. Assume that Ln�1 � Rn�1. Then:

Ln � �P 1
s P

2
s �n � �P 2

s P
1
s �n �

� ��P 1
s P

2
s �n�1

� �P 2
s P

1
s �n�1�P 1

s P
2
s � �P 2

s P
1
s �n�1

P 1
s P

2
s � �P 2

s P
1
s �n �

� �Pn�2
i�0 �P 2

s P
1
s �n�i�2C1,2

s,s �P 1
s P

2
s �i�P 1

s P
2
s � �P 2

s P
1
s �n�1 �P 1

s P
2
s � P

2
s P

1
s � �

� Pn�2
i�0 �P 2

s P
1
s �n�i�2C1,2

s,s �P 1
s P

2
s �i�1 � �P 2

s P
1
s �n�1

C1,2
s,s �

� Pn�1
i�0 �P 2

s P
1
s �n�i�1C1,2

s,s �P 1
s P

2
s �i � Rn.

Next we prove that the limit of the switching scheme does not depend on the order of

switched semigroups in the product formula.

Proposition 3.6.10. Let �P 1
t �tC0 and �P 2

t �tC0 be semigroups of Markov operators for which

Assumptions 1 - 4 hold, and additionally that Assumption 2 holds for �P 1
t �tC0 and �P 2

t �tC0
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swapped. Let µ >M��S�. Then

lim
n�ª

�P 1
t
n

P 2
t
n

�n µ � lim
n�ª

�P 2
t
n

P 1
t
n

�n µ.
Proof. Let t > R�, µ0 >M0, f > BL�S, d� and fix ε A 0. There exists N > N such that t

N B δ,

where δ � min�δ3,f , δ4,f�. Since �P 1
t �tC0 and �P 2

t �tC0 are equicontinuous, they consist of

Feller operators necessarily. According to Lemma 3.6.9, for n C N

Vc�P 1
t
n

P 2
t
n

�n µ0 � �P 2
t
n

P 1
t
n

�n µ0, fhV � WdPn�1
i�0 �P 1

t
n

P 2
t
n

�n�i�1

C1,2
t
n
, t
n

�P 2
t
n

P 1
t
n

�i µ0, fiW
B Pn�1

i�0 WdC1,2
t
n
, t
n

�P 2
t
n

P 1
t
n

�i µ0, �U2
t
n

U1
t
n

�n�i�1

fiW
B Pn�1

i�0 ]C1,2
t
n
, t
n

�P 2
t
n

P 1
t
n

�i µ0]�
BL,dE�f�

� ]�U2
t
n

U1
t
n

�n�i�1

f]
BL,dE�f�

B Pn�1
i�0

t
nωf � t

n , �P 2
t
n

P 1
t
n

�i µ0�
B Cf�µ0�tωf � tn , µ0� ,

because �U2
t
n

U1
t
n

�n�i�1

f > E�f�.
As t is fixed and lims�0 ωf�s, µ0� � 0, we obtain for every f > BL�S, d� and µ0 >M0

limn�ª Vc�P 1
t
n

P 2
t
n

�n µ0 � �P 2
t
n

P 1
t
n

�n µ0, fhV � 0.

Then, by Theorem 3.3.5, it also converges in norm. Hence,

[�P 1
t
n

P 2
t
n

�n µ0 � �P 2
t
n

P 1
t
n

�n µ0[�
BL
� 0 as n�ª.

Define P̂tµ �� limn�ª �P 2
t
n

P 1
t
n

�n µ, for µ > M��S�. Since by assumption Assumption 2

holds with P 1
t and P 2

t swapped, Proposition 3.6.3 holds for P̂t as well: both Pt and P̂t
are continuous on M��S�. Since M0 is a dense subset of M��S�BL and Ptµ0 � P̂tµ0 for

µ0 >M0, we obtain Pt � P̂t on M��S�.
3.7 Relation to literature

We shall now show that Theorem 3.2.2 is a generalization of existing results. We start with

the approach of Kühnemund and Wacker [KW01] and show in detail that their result follows
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from Theorem 3.2.2. Then we provide proof that also the Proposition 3.5 in Colombo-

Guerra [Col09] follows from Theorem 3.2.2.

3.7.1 Kühnemund-Wacker

Kühnemund and Wacker [KW01] provided conditions for C0-semigroups that ensure con-

vergence of the Lie-Trotter product. Their setting is the following: Let �T �t��tC0, �S�t��tC0

be strongly continuous linear semigroups on a Banach space �E, Y � Y� that consists of

bounded linear operators. Let F ` E be a dense linear subspace, equipped with a normYS � YS, such that both �T �t��tC0 and �S�t��tC0 leave F invariant.

Assumption KW 1. �T �t��tC0 and �S�t��tC0 are exponentially bounded on �F, YS � YS�,

so there exist MT ,MS C 1, and ωT , ωS > R such that

YST �t�YS BMT e
ωT t, YSS�t�YS BMSe

ωSt

for all t C 0.

Assumption KW 2. �T �t��tC0 and �S�t��tC0 are locally Trotter stable on both �E, Y�Y�
and �F, YS � YS�. There exists δ A 0 and M δ

E,M
δ
F C 1 such that

Z�T � t
n
�S � t

n
��nZ BM δ

E

ZT�T � t
n
�S � t

n
��nZT BM δ

F

for all t > �0, δ� and n > N.

Assumption KW 3. (Commutator condition) There exists α A 1, δ� A 0 and M1 C 0 such

that YT �t�S�t�f � S�t�T �t�fY BM1t
αYSfYS

for all f > F , t > �0, δ�.
Theorem 3.7.1 (Kühnemund and Wacker, [KW01], Theorem 1). Let �T �t��tC0 and �S�t��tC0

be strongly continuous semigroups satisfying Assumptions KW1 - KW3. Then the Lie-

Trotter product formula holds, i.e.

Ptx �� lim
n�ª

�T � t
n
�S � t

n
��n x

exists in �E, Y � Y� for every x > X, and convergence is uniform for every t in compact

intervals in R�. Moreover, �P�t��tC0 is a strongly continuous semigroup in E.
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We shall now show that Theorem 3.7.1 follows from our result. Note that in Theorem 3.7.1

there is no assumption that �E, Y � Y� should be separable, while we assume that �S, d� is

separable. This issue can be overcome as follows. Fix x > E. Define T 1
t �� T �t�, T 2

t �� S�t�
and

Ex � ClE �spanR �T iNtN � T iN�1
tN�1

� � � T i1t1 � N > N, ik > �1,2�, k � 1,2,�,N�� .
Then Ex ` E is the smallest separable closed subspace that contains x and is both �T �t��tC0

and �S�t��tC0-invariant. Let S � Ex with metric d�y, y�� �� Yy�y�Y. Then �S, d� is separable

and complete.

Lifts

Let �P 1
t �tC0 be the lift of T �t� to M��S� and �P 2

t �tC0 be the lift of S�t� to M��S�. That

is, for µ >M��S�,
P 1
t µ �� S

S
δT �t�xµ�dx�, P 2

t µ �� S
S
δS�t�xµ�dx�, (3.12)

where the integrals are considered as Bochner integrals in M�S�BL, the closure of M�S�BL

in BL�S, d��. Since M��S� `M�S�BL is closed, P i
tµ >M��S�. So

P 1
t δx �� δT �t�x, P 2

t δx �� δS�t�x. (3.13)

We show that �P i
t �C0, i � 1,2, defined by (3.12) satisfy Assumptions 1 - 4.

First consider Assumption 1. We discuss �P 1
t �tC0 only; the argument for �P 2

t �tC0 is similar.

The map t ( P 1
t µ � R� �M��S�BL is continuous if and only if t ( `P 1

t µ, fe is continuous

for every f > Cb�S�. Clearly, `P 1
t µ, fe � RS`δT �t�x, feµ�dx� � RS f�T �t�x�µ�dx�. Using

the strong continuity of �T �t��tC0 and Lebesgue’s Dominated Convergence Theorem we

see that t ( `P 1
t µ, fe is indeed continuous on R�. Thus, �P 1

t µ � t > �0, δ�� is compact in

M��S�BL, that is: tight.

Let φ > BL�S, d� and x0 > S. Let U1
t be dual operators to P 1

t . Then:

SU1
t φ�x� �U1

t φ�x0�S � S`P 1
t δx � P

1
t δx0 , φeS

�´¸¶
def

S`δT �t�x � δT �t�x0
, φeS � Sφ�δT �t�x� � φ�δT �t�x0

�S B´¸¶
φ>BL�S,d�

SφSL � YT �t�x � T �t�x0Y
B SφSL � YT �t�Y � Yx � x0Y B´¸¶

KW1

SφSl �MT eωT t � Yx � x0Y
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So there exists δT such that �U1
t φ � t > �0, δT �� is equicontinuous in Cb�S�. Hence,�P 1

t � t > �0, δT �� forms an equicontinuous family, according to Theorem 3.4.2.

The stability condition in Assumption 2 can be shown as follows. Let φ > BL�S, d�, x0 > S.

V�U2
t
n

U1
t
n

�n φ�x� � �U2
t
n

U1
t
n

�n φ�x0�V � Vcδx � δx0 , �U2
t
n

U1
t
n

�n φhV
� Vc�P 1

t
n

P 2
t
n

�n δx � �P 1
t
n

P 2
t
n

�n δx0 , φhV
� Ubδ�T � t

n
�S� t

n
��nx � δ�T � t

n
�S� t

n
��nx0

, φgU
� Tφ �T � t

n
�S � t

n
��n x � φ �T � t

n
�S � t

n
��n x0T

B SφSL Z�T � t
n
�S � t

n
��n �x � x0�Z

B SφSL � Z�T � t
n
�S � t

n
��nZ � Yx � x0Y

B SφSL �M δ
E � Yx � x0Y

by Assumption KW3, for t > �0, δ�, n > N. Theorem 3.4.2 again implies equicontinuity of

F�δ�. Let φ > F ` E. We define

M0 �� spanR�
�δφ Sφ > F� `M��S�.

Then M0 is dense in M��S� and �P i
t �tC0-invariant, i � 1,2.

Moreover, define Sµ0SM0 �� S
F
YSφYSµ0�dφ�. (3.14)

So W NQ
k�1

akδφk W
M0

�

N

Q
k�1

akYSφkYS.
To check the commutator condition in Assumption 3, let f > BL�S, d� and µ0 > M0. We

define a new admissible metric dE�f� as in (3.3). Then for y, y� > Ex � S,

dE�f��y, y�� � Yy � y�Y - sup
g>E�f�

Sh�y� � h�y��S.
For h > E�f� there exist s, s� and t > �0, δ�, with δ � min�δ1, δ2�, such that

Sh�y� � h�y��S � Tf ��T � t
n
�S � t

n
��n T �s��S�s�y� � f ��T � t

n
�S � t

n
��n T �s��S�s�y��T

B Sf SL,d � Z�T � t
n
�S � t

n
��n T �s��S�s�Z � Yy � y�Y

BM � Sf SL,d � Yy � y�Y
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for some constant M A 0, according to Assumptions KW 1 - 2.

ZP 1
t P

2
t µ0 � P

2
t P

1
t µ0Z�BL,dE�f�

B S
S
ZP 1

t P
2
t δφ � P

2
t P

1
t δφZ�BL,dE�f�

µ0�dφ�
Let BE�f� be the unit ball in BL�S, dE�f�� for Y � YBL,dE�f� . By the Commutator Condition

KW 3 we get the following:

YP 1
t P

2
t δφ � P

2
t P

1
t δφY�BL,dE�f�

� supg>BE�f� Sg�T �t�S�t�φ� � g�S�t�T �t�φ�S
B supg>BE�f� SgSL,dE�f� � dE�f� �T �t�S�t�φ,S�t�T �t�φ�
B max�1, Sf SL,dM�YT �t�S�t�φ � S�t�T �t�φY
B max�1, Sf SL,dM�M1tαYSφYS.

Define

ωf�t, µ0� �� max�1, Sf SL,dM�M1t
α�1Sµ0SM0 .

Since α A 1, ωf � R� �M0 � R� is continuous, non-decreasing and for every δ A 0

S
δ

0

ωf�t, µ0�
t

dt � max�1, Sf SL,dM�Sµ0SM0M1S
δ

0
tα�2dt

� max�1, Sf SL,dM�M1
δα�1

α � 1
@ �ª.

Moreover, for µ0 >M0,

ZP 1
t P

2
t µ0 � P

2
t P

1
t µ0Z�BL,dE�f�

B S
S
ZP 1

t P
2
t δφ � P

2
t P

1
t δφZ�BL,dE�f�

µ0�dφ�
B max �1, Sf SL,dM�M1t

α�1S
S
YSφYSµ0�dφ�

� tωf�t, µ0�.
Hence, we get Assumption 3 for all µ0 >M0 and δ3,f � δ�.

Let us now check Assumption 4. First, for any φ > F ,

U�P 1
t
n

P 2
t
n

�n δφU
M0

� Uδ�T � t
n
�S� t

n
��nφU

M0

� TZ�T � t
n
�S � t

n
��n φZT BM δ

F YSφYS.
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For µ0 >M0 we get

V�P 1
t
n

P 2
t
n

�n µ0V
M0

� W�P 1
t
n

P 2
t
n

�n �Q
k

akδφk�W
M0

� WQ
k

akδ�T � t
n
�S� t

n
��nφk W

M0

� Q
k

ak Uδ�T � t
n
�S� t

n
��nφk UM0

B Q
k

akM δ
F SYφkYS

� M δ
F Sµ0SM0 .

Furthermore,

TP 1
t δφTM0

� TδT �t�φTM0
� YST �t�φYS BMT e

ωT tYSφYS BMT e
ωT δYSφYS

and similarly TP 2
t δφTM0

BMSe
ωSδYSφYS.

Then for 0 B t B δ SP 1
t µ0SM0

B MT eωT δ Sµ0SM0

and SP 2
t µ0SM0

B MSeωT δ Sµ0SM0 .

Thus, UP 2
s �P 1

t
n

P 2
t
n

�nP 1
t�µ0U

M0

BMTMSM
δ
F e

�ωT�ωs�δ � Sµ0SM0

and with Cf�µ0� ��MTMSM δ
F e

�ωT�ωs�δ (independent of f and µ0) and δ4,f � min�δ, δ��, we

see that Assumptions 1 - 4 hold.

Hence, we conclude that the Lie-Trotter formula holds for �P i
t �tC0, i � 1,2. Moreover, as

δ3,f , δ4,f , Cf�µ0� and ωf can be chosen uniformly for f in the unit ball in �BL�S, d�, Y�YBL,d�,
the convergence is uniform in f in compact subsets of R�. Furthermore, for every y > Ex,�P 1

t
n

P 2
t
n

�n δy � δ�T � t
n
�S� t

n
��ny � Ptδy in M��S�BL as n�ª.

The set of Dirac measures is closed in M��S�BL. To show this, let �δxn�n be a sequence of

Dirac measures such that δxn � µ for some µ >M��S�. Then �δxn�n is a Cauchy sequence,

and Yδxn � δxmY�BL,d � 2d�xn, xm�
2 � d�xn, xm�
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([HW09b] Lemma 2.5). Then also �xn�n>N ` S is a Cauchy sequence. As S is complete,�xn�n>N is convergent. Hence, there exists x� > S such that xn � x� as n�ª and

Yδxn � δx�Y�BL,d � 2d�xn, x��
2 � d�xn, x�� � 0 as n�ª.

Hence, Ptδy � δPxt y for a specific Pxt ` E (as in statement Theorem 3.7.1). Because the�P i
t �tC0, i � 1,2, are strongly continuous in this setting, �Pt�tC0 is a semigroup by Proposition

3.6.5. Therefore, �Pxt �tC0 is a strongly continuous semigroup on Ex. The operators Pt are

linear and continuous:

Let yn > Ex such that Yn � y in E. Then

YPxt yn � Pxt yY�BL,d �
2YδPtyn � δPtyY�BL,d

2 � YδPtyn � δPtyY�BL,d

�
2YPtδyn � PtδyY�BL,d

2 � YPtδyn � PtδyY�BL,d

� 0.

Moreover, E � �x>E Ex, and the semigroups �Pxt �tC0 and �Px�t �tC0 agree on Ex 9Ex� . This

allows us to define a strongly continuous semigroup �Pt�tC0 of bounded linear operators on

E that agrees with �Pxt �tC0 on Ex.

3.7.2 Colombo-Guerra

Colombo and Guerra in [Col09], generalizing Colombo and Corli [CC04], also established

conditions that ensure the convergence of the Lie-Trotter formula for linear semigroups

in a Banach space that do not involve the domains of their generators. Instead, like in

the results of Kühnemund and Wacker [KW01], they build on a commutator condition

(Assumption CG 3 stated below) that is weaker than that in [KW01]. It is this condition

that motivated our Assumption 3.

The situation in [Col09] is as follows. Let S1, S2 � R� � X ( X be strongly continuous

semigroups on a Banach space X. Assume that there exists a normed vector space Y

which is densely embedded in X and invariant under both semigroups such that:

Assumption CG 1. The two semigroups are locally Lipschitz in time in Y , i.e. there

exists a compact map K � Y � R such that for i � 1,2

ZS1
t u � S

i
t�uZX BK�u�St � t�S for all u > Y, t, t� > I.

101



Lie-Trotter product formula for locally equicontinuous and tight Markov operators

Assumption CG 2. The two semigroups are exponentially bounded on F and locally

Trotter stable on X and Y , i.e. there exists a constant H such that for all t > �0,1�,
n > N YS1

t YY � YS2
t YY � [�S1

t
n

S2
t
n

�n[
X
� [�S1

t
n

S2
t
n

�n[
Y
BH.

Assumption CG 3 (Commutator condition).

ZS1
t S

2
t u � S

2
t S

1
t uZX B tω�t�YuYY

is satisfied for all u > Y and t > �0, δ� with some δ A 0, and for a suitable ω � �0, δ� � R�

with R δ0 ω�τ�
τ dτ @ �ª.

Theorem 3.7.2. Under Assumptions CG1-CG3 there exists a global semigroup Q � �0,�ª��
X �X such that for all u > Y , there exists a constant Cu such that for t A 0

1

t
ZQ�t�u � S1

t S
2
t uZX B CuS

t

0

ω�ξ�
ξ

dξ.

In fact, [Col09] Proposition 3.5 also includes a statement of convergence of so-called Euler

polygonals to orbits of Q. The interested reader should consult [Col09] for further details

on this topic.

It is the construction in this case that allows us to conclude that Theorem 3.7.2 and

Theorem 3.2.2 are highly similar to the Kühnemund-Wacker case discussed in the previous

section. Therefore we state the main reasoning and give the immediate results.

Let u > X. We take S � Xu, where the latter is the smallest separable Banach space in X

that is invariant under �Sit�tC0, i � 1,2, equipped with the metric induced by the norm on

X. Let P 1
t and P 2

t be lifts of S1
t and S2

t to M��S�:
P i
t δu �� δSitu, P

i
tµ �� S

U

δSituµ�du�, i � 1,2.

Now we check if P 1
t and P 2

t satisfy Assumptions 1 - 4.

As in Section 3.7.1, because �S1
t �tC0 and �S2

t �tC0 are strongly continuous semigroups, �P 1
t �tC0

and �P 2
t �tC0 are tight. Moreover, if φ > BL�S, d� and v,w >Xu, and U1

t and U2
t are the dual

operators of P 1
t and P 2

t respectively, then:

SU1
t φ�v� �U1

t φ�w�S B SφSL �H � Yv �wYX
This yields the equicontinuity condition for U1

t . Similarly equicontinuity for U2
t is estab-
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lished. A similar computation yields Assumption 2:

U�U1
t
n

U2
t
n

�n φ�v� � �U1
t
n

U2
t
n

�n φ�w�U � Uφ ��S2
t
n

S1
t
n

�n v� � φ ��S2
t
n

S1
t
n

�nw�U
B SφSL � [�S2

t
n

S1
t
n

�n �v �w�[
X
B SφSL �H � Yv �wYX

To check the Commutator Condition in Assumption 3, let f > BL�S, d�, put M0 ��

span�δv Sv > Y 9Xu� and Sµ0SM0 as in (3.14). Then define

ωf�t, µ0� �� max�1, Sf SL,dM�ω�t�Sµ0SM0 .

Commutator Condition CG 3 yields

ZP 1
t P

2
t δu � P

2
t P

1
t δuZ�BL,dE�f�

B max�1, Sf SL,dM�tω�t�YuYY
as before, which established Assumption 3. Note that ωf can be chosen uniformly for f in

the unit ball of BL�S, d�.
Assumption 4 is obtained from the estimate

U�P 1
t
n

P 2
t
n

�n δuU
M0

�

RRRRRRRRRRRRδ�S1
t
n
S2
t
n
	nu

RRRRRRRRRRRRM0

� [�S2
t
n

S1
t
n

�n u[
X
BHYuYX ,

which yields

U�P 1
t
n

P 2
t
n

�n µ0U
M0

BH Sµ0SM0 .

and TP 1
t δφTM0

� TδS1
t u
T
M0

� YS1
t uYY BHYuYY , TP 2

t δφTM0
BHYuYY

which yields

TP 1
t µ0TM0

BH Sµ0SM0 and TP 2
t µ0TM0

BH Sµ0SM0 .

Thus, the Lie-Trotter formula holds for �P 1
t �tC0 and �P 2

t �tC0. A similar argument as in

Section 3.7.1 yields Theorem 3.7.2.
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3.8 Appendices

3.8.1 Proof of Lemma 3.5.8

(a) We will check it by induction on j. Let j � 1. Then the left hand side in the equation

3.5.8, (a) is of the form

L � P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

,

while the right hand side is

R � P0
l�0P

2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�1�1�l�t

m

� P 2
0t
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�1�1�0�t

m

� L.

Assume that (a) holds for j � 1:

P 1
t
m

P 2
�j�1�t
m

� P 2
�j�1�t
m

P 1
t
m

� Pj�2
l�0 P

2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�2�l�t

m

.

Then for j:

L � P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

� �P 1
t
m

P 2
�j�1�t
m

� P 2
�j�1�t
m

P 1
t
m

�P 2
t
m

� P 2
�j�1�t
m

P 1
t
m

P 2
t
m

� P 2
jt
m

P 1
t
m

� �Pj�2
l�0 P

2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�2�l�t

m

�P 2
t
m

� P 2
�j�1�t
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�
� Pj�2

l�0 P
2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�1�l�t

m

� P 2
�j�1�t
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�
� Pj�1

l�0 P
2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�1�l�t

m

� R.

(b) We will check it by induction on k. Let k � 2.

L � P 1
2t
m

P 2
2t
m

� �P 1
t
m

P 2
t
m

�2

R � P1
j�1P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�2�1�j

� P 1
t
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
t
m

� L.

Assume that for k � 1 we have:

P 1
�k�1�t
m

P 2
�k�1�t
m

� �P 1
t
m

P 2
t
m

�k�1

� Pk�2
j�1 P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�k�2�j

.
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Then for k we have:

L � P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k
� �P 1

�k�1�t
m

P 2
�k�1�t
m

� �P 1
t
m

P 2
t
m

�k�1	P 1
t
m

P 2
t
m

� P 1
�k�1�t
m

P 2
�k�1�t
m

P 1
t
m

P 2
t
m

� P 1
kt
m

P 2
kt
m

� �Pk�2
j�1 P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�k�2�j	P 1
t
m

P 2
t
m

�P 1
�k�1�t
m

�P 2
�k�1�t
m

P 1
t
m

� P 1
t
m

P 2
�k�1�t
m

�P 2
t
m

� Pk�1
j�1 P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�k�1�j

� R.

(c) Let n � 1. Then

L � P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k
R � �P 1

kt
m

P 2
kt
m

�0 �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k	�P 1
t
m

P 2
t
m

�k��1�1�0�
� L

Now let’s assume that

�P 1
kt
m

P 2
kt
m

�n�1

� �P 1
t
m

P 2
t
m

��n�1��k
�

� Pn�2
i�0 �P 1

kt
m

P 2
kt
m

�i �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k	�P 1
t
m

P 2
t
m

�k��n�2�i�
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and let us check for n:

L � �P 1
kt
m

P 2
kt
m

�n � �P 1
t
m

P 2
t
m

�n�k
� ��P 1

kt
m

P 2
kt
m

�n�1

� �P 1
t
m

P 2
t
m

��n�1��k��P 1
t
m

P 2
t
m

�k � �P 1
kt
m
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3.8.2 Proof of Lemma 3.5.10
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by Lemma 3.5.8 (a) we get
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For every i, j, l > N we get
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So with m � nk we get the result.
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