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Chapter 2

On a Schur-like property for spaces

of measures and its consequences

This chapter is based on:

Sander C. Hille, Tomasz Szarek, Daniel T.H. Worm, Maria Ziemlańska. On a Schur-like

property for spaces of measures. Preprint available at https://arxiv.org/abs/1703.00677

Abstract:

A Banach space has the Schur property when every weakly convergent sequence converges

in norm. We prove a Schur-like property for measures: if a sequence of finite signed Borel

measures on a Polish space is such that it is bounded in total variation norm and such that

for each bounded Lipschitz function the sequence of integrals of this function with respect to

these measures converges, then the sequence converges in dual bounded Lipschitz norm or

Fortet-Mourier norm to a measure. Two main consequences result: the first is equivalence

of concepts of equicontinuity in the theory of Markov operators in probability theory and

the second concerns conditions for the coincidence of weak and norm topologies on sets

of measures that are bounded in total variation norm that satisfy additional properties.

Finally, we derive weak sequential completeness of the space of signed Borel measures on

Polish spaces from the Schur-like property.
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On a Schur like property for spaces of measures and its consequences

2.1 Introduction

The mathematical study of dynamical systems in discrete or continuous time on spaces of

probability measures has a long-lasting history in probability theory (as Markov operators

and Markov semigroups, see e.g. [MT09]) and the field of Iterated Function Systems

[BDEG88, LY94] in particular. In analysis there is a growing interest in solutions to

evolution equations in spaces of positive or signed measures, e.g. in the study of structured

population models [AI05, CCC13, CCGU12], crowd dynamics [PT11] or interacting particle

systems [EHM16]. Although an extensive body of functional analytic results have been

obtained within probability theory (e.g. see [Bil99, Bog07a, Dud66, LeC57]), there is still

need for further results, driven for example by the topic of evolution equations in space of

measures, in which there is no conservation of mass.

This chapter provides such functional analytic results in two directions: one concerning

properties of families of Markov operators on the space of finite signed Borel measures

M�S� on a Polish space S that satisfy equicontinuity conditions (Theorem 2.3.5). The

other provides conditions on subsets of M�S�, where S is a Polish space, such that weak

topology on M�S� coincides with the norm topology defined by the Fortet-Mourier or dual

bounded Lipschitz norm Y � Y�BL (Theorem 2.3.7 and similar results in Section 2.3.2).

Both are built on Theorem 2.3.1, which states that if a sequence of signed measures is

bounded in total variation norm and has the property that all real sequences are conver-

gent that result from pairing the given sequence of measures by means of integration to

each function in the space of bounded Lipschitz functions, BL�S�, then the sequence is

convergent for the Y �Y�BL-norm. This is a Schur-like property. Recall that a Banach space X

has the Schur property if every weakly convergent sequence in X is norm convergent (e.g.

[AJK06], Definition 2.3.4). For example, the sequence space `1 has the Schur property

(cf. [AJK06], Theorem 2.3.6). Although the dual space of �M�S�, Y � Y�BL� is isometri-

cally isomorphic to BL�S� (cf. [HW09b], Theorem 3.7), the (completion of the) space�M�S�, Y � Y�BL� is not a Schur space, generally (see Counterexample 2.3.2). The condition

of bounded total variation cannot be omitted.

Properties of the space of Borel probability measures on S for the weak topology induced

by pairing with Cb�S� have been widely studied in probability theory, e.g. consult [Bog07a]

for an overview. Dudley [Dud66] studied the pairing between signed measures and the space

of bounded Lipschitz functions, BL�S�, in further detail. Pachl investigated extensively

the related pairing with Ub�S�, the space of uniformly continuous and bounded functions

[Pac79, Pac13]. See also [Kal04]. Because of our interest in equicontinuous families of
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2.2. Preliminaries

Markov operators on the one hand, which is intimately tied to ‘test functions’ in the space

BL�S�, and to dynamical systems in spaces of measures equipped with the Y � Y�BL-norm,

or flat metric, on the other hand, we consider novel functional analytic properties of the

space of finite signed Borel measures M�S� for the BL�S�-weak topology in relation to

the Y � Y�BL-norm topology.

Equicontinuous families of Markov operators were introduced in relation to asymptotic

stability: the convergence of the law of stochastic Markov process to an invariant measure

(e.g. e-chains [MT09], e-property [CH14, KPS10, LS06, Sza10], Cesaro-e-property [Wor10],

Ch.7; see also [Jam64]). Hairer and Mattingly introduced the so-called asymptotic strong

Feller property for that purpose [HM06]. Theorem 2.3.5 rigorously connects two dual

viewpoints – concerning equicontinuity: Markov operators acting on measures (laws) and

Markov operators acting on functions (observables). In dynamical systems theory too,

there is special interest in ergodicity properties of maps with equicontinuity properties

(e.g. [LTY15]).

The structure of the chapter is as follows. After having introduced some notation and

concepts in Section 2.2 we provide in Section 2.3 the main results of the chapter. The

delicate and rather technical proof of the Schur-like property, Theorem 2.3.1, is provided

in Section 2.4. It uses a kind of geometric argument, inspired by the work of Szarek

(see [KPS10, LS06]), that enables a tightness argument essentially. Note that our ap-

proach yields a new, independent and self-contained proof of the Ub�S�-weak sequential

completeness of M�S� (cf. [Pac79], or [Pac13], Theorem 5.45) as corollary. Section 2.5

shows that the Schur-like property also implies – for Polish spaces – the well-known fact of

σ�M�S�,Cb�S��-weakly sequentially completeness of M�S�. It uses a type of argument

that is of independent interest.

2.2 Preliminaries

We start with some preliminary results on Lipschitz functions on a metric space �S, d�.
We denote the vector space of all real-valued Lipschitz functions by Lip�S�. The Lipschitz

constant of f > Lip�S� is

Sf SL �� sup�Sf�x� � f�y�S
d�x, y� � x, y > S, x x y¡ .
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On a Schur like property for spaces of measures and its consequences

BL�S� is the subspace of bounded functions in Lip�S�. It is a Banach space when equipped

with the bounded Lipschitz or Dudley norm

YfYBL �� YfYª � Sf SL.
The norm YfYFM �� max�YfYª, Sf SL�� is equivalent. BL�S� is partially ordered by pointwise

ordering.

The space M�S� embeds into BL�S�� by means of integration: µ( Iµ, where

Iµ�f� � `µ, fe �� S
S
f dµ.

The norms on BL�S�� dual to either Y � YBL or Y � YFM introduce equivalent norms on M�S�
through the map µ ( Iµ. These are called the bounded Lipschitz norm, or Dudley norm,

and Fortet-Mourier norm on M�S�, respectively. M�S� equipped with the norm topology

induced by either of these norms is denoted by M�S�BL. It is not complete generally. We

write Y � YTV for the total variation norm on M�S�:
YµYTV � SµS�S� � µ��S� � µ��S�,

where µ � µ� �µ� is the Jordan decomposition of µ. M��S� is the convex cone of positive

measures in M�S�. One has

YµYTV � YµY�BL � YµY�FM for all µ >M��S�. (2.1)

In general, for µ >M�S�, YµY�BL B YµY�FM B YµYTV.

A finite signed Borel measure µ is tight if for every ε A 0 there exists a compact set Kε ` S

such that SµS�S �Kε� @ ε. A family M `M�S� is tight or uniformly tight if for every ε A 0

there exists a compact set Kε ` S such that SµS�S � Kε� @ ε for all µ > M . According

to Prokhorov’s Theorem (see [Bog07a], Theorem 8.6.2), if �S, d� is a complete separable

metric space, a set of Borel probability measures M ` P�S� is tight if and only if it is

precompact in P�S�BL. Completeness of S is an essential condition for this theorem to

hold.

In a metric space �S, d�, if A ` S is nonempty, we write

Aε �� �x > S � d�x,A� B ε�
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2.3. Main results

for the closed ε-neighbourhood of A.

2.3 Main results

A fundamental result on the weak topology on signed measures induced by the pairing

with BL�S� is the following fundamental result that provides a ‘weak-implies-strong-

convergence’ property for this pairing on which we build our main results:

Theorem 2.3.1 (Schur-like property). Let �S, d� be a complete separable metric space. Let�µn� ` M�S� be such that supn YµnYTV @ ª. If for every f > BL�S� the sequence `µn, fe
converges, then there exists µ >M�S� such that Yµn � µY�BL � 0 as n�ª.

A self-contained, delicate proof of this result is deferred to Section 2.4. The condition that

the sequence of measures must be bounded in total variation norm cannot be omitted as

the following counterexample indicates.

Counterexample 2.3.2. Let S � �0,1� with the Euclidean metric. Let dµn �� n sin�2πnx�dx,

where dx is Lebesgue measure on S. Then YµnYTV is unbounded. Let g > BL�S� withSgSL B 1. According to Rademacher’s Theorem, g is differentiable Lebesgue almost every-

where. Since SgSL B 1, there exists f > Lª��0,1�� such that for all 0 B a @ b B 1,

S
b

a
f�x�dx � g�b� � g�a�.

This yields `µn, ge � 1

2π S
1

0
cos�2πnx�f�x�dx.

Since f > L2��0,1��, it follows from Bessel’s Inequality that

lim
n�ª

S
1

0
cos�2πnx�f�x�dx � 0.

So `µn, ge� 0 for all g > BL�S�. Now, let gn > BL�S� be the piecewise linear function that

satisfies gn�0� � 0 � gn�1�,

gn�1�4i
4n

� � 1
4n , gn�3�4i

4n
� � � 1

4n , for i > N, 0 B i B n � 1.

Then SgSL � 1 and YgnYª � 1
4n . An easy calculation shows that `µn, gne � 1

π2 for all n > N.

Therefore YµnY�BL cannot converge to zero as n�ª.

Theorem 2.3.1 has the following corollary. Here we denote by Ub�S� the Banach space of

47



On a Schur like property for spaces of measures and its consequences

uniformly continuous bounded functions on S, equipped with the Y � Yª-norm. This result

was originally obtained by Pachl [Pac79], see also [Pac13], Theorem 5.45.

Corollary 2.3.3. M�S� is Ub�S�-weakly sequentially complete.

Proof. Let �µn� `M�S� be such that `µn, fe is Cauchy for every f > Ub�S�. Then it follows

from the Uniform Boundedness Principle that the sequence �µn� is bounded in Ub�S��.
Consequently, supn YµnYTV � M @ ª. Theorem 2.3.1 implies that there exists µ > M�S�
such that `µn, fe � `µ, fe for every f > BL�S�. Since BL�S� is dense in Ub�S� ([Dud66],

Lemma 8) and YµnYTV BM for all n, the convergence result holds for every f > Ub�S�.
Remark 2.3.1. Theorem 2.3.1 is related to results on asymptotic proximity of sequences

of distributions, e.g. see [DR09], Theorem 4. In that setting µn � Pn �Qn, where Pn and

Qn are probability measures. These are asymptotically proximate (for the Y � Y�BL-norm;

other norms are considered as well) if YPn � QnY�BL � 0. So one knows in advance that`µn, fe � 0. That is, the limit measure µ exists: µ � 0. Combining such a result with

the Ub�S�-weak sequential completeness of M�S� implies Theorem 2.3.1. We present, in

Section 2.4, an independent proof using completely different methods, that results in both

the completeness result and a particular case of the mentioned asymptotic proximity result.

The limit measure is there obtained through a delicate tightness argument, essentially.

The statement of the particular case in which all measures are positive seems novel too:

Theorem 2.3.4. Let �S, d� be a complete separable metric space. Let �µn� ` M��S�
be such that for every f > BL�S�, `µn, fe converges. Then `µn, fe converges for every

f > Cb�S�. In particular, there exists µ >M��S� such that Yµn � µY�BL � 0.

Its proof is simpler compared to that of Theorem 2.3.1. In Section 2.4 we shall present

a self-contained proof of this result as well, based on a ‘set-geometric’ argument that is

(essentially) also used to prove Theorem 2.3.1.

As it turned out, the proof for signed measures cannot be reduced straightforwardly to the

result for positive measures. This is mainly caused by the complication, that for a sequence�µn� of signed measures such that `µn, fe that is convergent for every f > BL�S�, it need

not hold that `µ�n, fe and `µ�n, fe converge for every f > BL�S�. Take for example on S � R
with the usual Euclidean metric µn �� δn � δn� 1

n
. Then `µn, fe � 0 for every f > BL�R�.

However, µ�n � δn and µ�n � δn� 1
n
, so `µ�n, fe will not converge for every f > BL�R�. Thus,

an immediate reduction to positive measures is not possible.

The pairing of measures with bounded Lipschitz functions is precisely what is important
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2.3. Main results

for the study of Markov operators and semigroups that have particular equicontinuity

properties, as we shall discuss next.

2.3.1 Equicontinuous families of Markov operators

A Markov operator on (measures on) S is a map P �M��S��M��S� such that:

1. P �µ � ν� � Pµ � Pν and P �rµ� � rPµ for all µ, ν >M��S� and r C 0,

2. �Pµ��S� � µ�S� for all µ >M��S�.
In particular, a Markov operator leaves invariant the convex set P�S� of probability mea-

sures in M��S�. Let BM�S� be the vector space of bounded Borel measurable real-

valued functions on S. A Markov operator is called regular if there exists a linear map

U � BM�S�� BM�S�, the dual operator, such that

`Pµ, fe � `µ,Ufe for all µ >M��S�, f > BM�S�.
A regular Markov operator P is Feller if its dual operator maps Cb�S� into itself. Equiv-

alently, P is continuous for the Y � Y�BL-norm topology (cf. e.g. [HW09a] Lemma 3.3 and

[Wor10] Lemma 3.3.2).

Regular Markov operators on measures appear naturally e.g. in the theory of Iterated

Function Systems [BDEG88, LY94] and the study of deterministic flows by their lift to

measures [PT11, EHM15]. Dual Markov operators on Cb�S� (or a suitable linear subspace)

are encountered naturally in the study of stochastic differential equations [DPZ14, KPS10].

Which specific viewpoint in this duality is used, is often determined by technical consider-

ations and the mathematical problems that are considered.

Markov operators and semigroups with equicontinuity properties (called the ‘e-property’)

have convenient properties concerning existence, uniqueness and asymptotic stability of

invariant measures, see e.g. [HHS16, KPS10, Sza10, SW12, Wor10]. After having defined

these properties precisely below, we show by means of Theorem 2.3.1 that a dual viewpoint

exists for equicontinuity too, in Theorem 2.3.5. In subsequent work further consequences of

this result for the theory and application of equicontinuous families of Markov operators are

examined. Some results in this direction were also discussed in parts of [Wor10], Chapter

7.

Let T be a topological space and �S�, d�� a metric space. A family of functions E ` C�T,S��
is equicontinuous at t0 > T if for every ε A 0 there exists an open neighbourhood Uε of t0
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On a Schur like property for spaces of measures and its consequences

such that

d��f�t�, f�t0�� @ ε for all f > E , t > Uε.

E is equicontinuous if it is equicontinuous at every point of T .

Following Szarek et al. [KPS10, Sza10], a family �Pλ�λ>Λ of regular Markov operators has

the e-property if for each f > BL�S� the family �Uλf � λ > Λ� is equicontinuous in Cb�S�. In

particular one may consider the family of iterates of a single Markov operator P : �P n�n>N,

or Markov semigroups �Pt�t>R� , where each Pt is a regular Markov operator and P0 � I,

PtPs � Pt�s.

Our main result on equicontinuous families of Markov operators is

Theorem 2.3.5. Let �Pλ � λ > Λ� be a family of regular Markov operators on a complete

separable metric space �S, d�. Let Uλ be the dual Markov operator of Pλ. The following

statements are equivalent:

1. �Uλf � λ > Λ� is equicontinuous in Cb�S� for every f > BL�S�.

2. �Pλ � λ > Λ� is equicontinuous in C�M��S�BL,M��S�BL�,

3. �Pλ � λ > Λ� is equicontinuous in C�P�S�weak,P�S�BL�
Proof. (i) � (ii). Assume on the contrary that �Pλ � λ > λ� is not an equicontinuous family

of maps. Then there exists a point µ0 >M
��S� at which this family is not equicontinuous.

Hence there exists ε0 A 0 such that for every k > N there are λk > Λ and µk >M��S� such

that Yµk � µ0Y�BL @ 1
k and YPλkµk � Pλkµ0Y�BL C ε0 for all k > N. (2.2)

Because the measures µk are positive and the Y�Y�BL-norm metrizes the Cb�S�-weak topology

on M��S� (cf. [Dud66], Theorem 18), `µk, fe � `µ0, fe for every f > Cb�S�. According

to [Dud66], Theorem 7, this convergence is uniform on any equicontinuous and uniformly

bounded subset E of Cb�S�. By assumption, Mf �� �Uλkf � k > N� is such a family for

every f > BL�S�. Therefore

S `Pλkµk � Pλkµ0, fe S � S `µk � µ0, Uλkfe S� 0 (2.3)

as k �ª for every f > BL�S�. Since for positive measures µ one has YµYTV � YµY�BL, one

obtains TYµkYTV � Yµ0YTVT B Yµk � µ0Y�BL � 0.
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2.3. Main results

So m0 �� supkC1 YµkYTV @ª. Moreover,

YPλkµk � Pλkµ0YTV B YPλkµkYTV � YPλkµ0YTV B YµkYTV � Yµ0YTV Bm0 � Yµ0YTV.

Theorem 2.3.1 and (2.3) yields that YPλkµk �Pλkµ0Y�BL � 0 as k �ª. This contradicts the

second property in (2.2).

(ii) � (iii). Follows immediately by restriction of the Markov operators PΛ to P�S�.
(iii) � (i). Let f > BL�S� and x0 > S. Let ε A 0. Since �Pλ � λ > Λ� is equicontinuous at

δx0 there exists an open neighbourhood V of δx0 in P�S�weak such that

YPλδx0 � PλµY�BL @ ε~�1 � YfYBL� for all λ > Λ and µ > U0.

Since the map x( δx � S � P�S�weak is continuous, there exists an open neighbourhood V0

of x0 in S such that δx > V for all x > V0. Then

SUλf�x� �Uλf�x0�S � S `Pλδx � Pλδx0 , fe S B ε

1 � YfYBL

� YfYBL @ ε

for all x > V0 and λ > Λ.

A particular class of examples of Markov operators and semigroups is furnished by the lift

of a map or semigroup �φt�tC0 of measurable maps φt � S � S to measures on S by means

of push-forward:

P φ
t µ�E� �� µ�φ�1

t �E��
for every Borel set E of S and µ >M��S�. A consequence of Theorem 2.3.5 is:

Proposition 2.3.6. Let �S, d� be a complete separable metric space and let �φt�tC0 be a

semigroup of Borel measurable transformations of S. Then P φ
t is a regular Markov operator

for each t C 0. Moreover, �P φ
t �tC0 is equicontinuous in C�M��S�BL,M��S�BL� if and only

if �φt�tC0 is equicontinuous in C�S,S�.

Proof. The regularity of P φ
t is immediate, as Uφ

t f � f X φt.

‘�’: Let x0 > S and ε A 0. Define h�x� �� 2x~�2 � x� and put ε� �� h�ε�. By equicontinuity

of �P φ
t �tC0 at δx0 , there exists and open neighbourhood U of δx0 in M��S�BL such that

YP φ
t µ � P

φ
t δx0Y�BL @ ε�

for all t C 0 and µ > U . Because the map δ � x ( δx � S � M��S�BL is continuous,
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U0 �� δ�1�U� is open in S. It contains x0. Moreover,

YP φ
t δx � P

φ
t δx0Y�BL � Yδφt�x� � δφt�x0�Y�BL � h�d�φt�x�, φt�x0�� @ ε�

for all x > U0 and t C 0 (see [HW09b] Lemma 3.5). Because h is monotone increasing,

d�φt�x�, φt�x0�� @ ε for all x > U0, t C 0.

‘
’: This part involves Theorem 2.3.5. Let f > BL�S�. Let Ut be the dual operator of Pt.

Then for all x,x0 > S,

SUtf�x� �Utf�x0�S � Sf�φt�x�� � f�φt�x0��S B Sf SLd�φt�x�, φt�x0��,
from which the equicontinuity of �Utf � t C 0� follows. The result is obtained by applying

Theorem 2.3.5.

2.3.2 Coincidence of weak and norm topologies

A further consequence of Theorem 2.3.1 is

Theorem 2.3.7. Let �S, d� be a complete separable metric space and let M ` M�S� be

such that m �� supµ>M YµYTV @ª. If the restriction of the σ�M�S�,BL�S��-weak topology

to M is first countable, then this topology coincides with the restriction of the Y � Y�BL-norm

topology to M .

Proof. We have to show that for any Y �Y�BL-norm closed set C, C9M is closed in the restric-

tion of the σ�M�S�,BL�S��-weak topology to M . Since the latter is first countable, C9M

is relatively σ�M�S�,BL�S��-weak closed if and only if for every σ�M�S�,BL�S��-weakly

converging sequence µn � µ in M�S� with µn > C, one has µ > C (cf. [Kel55] Theorem

2.8, p. 72). Let �µn� be such a sequence. Because supµ>M YµYTV @ ª by assumption,

Theorem 2.3.1 implies that there exists µ� >M�S� such that Yµn � µ�Y�BL � 0. Since C is

relatively Y � Y�BL-norm closed in M , µ� > C. Moreover, `µ, fe � `µ�, fe for every f > BL�S�,
so µ � µ� > C.

The following technical result provides a tractable condition that ensures first countability

of the relative weak topology on the set M , as we shall show after having proven the result.

We need to introduce some notation. For λ A 0 and C ` S closed and nonempty, define

hλ,C�x� �� �1 � 1
λd�x,C���.
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Then hλ,C > BL�S�, Shλ,C SL � 1
λ , 0 B hλ,C B 1 and hλ,C � 1C pointwise as λ � 0. Moreover

hλ,C � 0 on S �Cλ. We can now state the result.

Lemma 2.3.8. Let M `M�S� be such that m �� supµ>M YµYTV @ ª. If for every µ > M

and every ε A 0 there exist K1, . . . ,Kn ` S compact such that for K � �ni�1Ki:

1. SµS�S �K� @ ε,
2. There exists 0 @ λ0 B ε such that for all 0 @ λ B λ0 there exists δ1, . . . , δn A 0 such that

the following statement holds:

If ν >M satisfies S `µ � ν, hλ,Kie S @ δi for all i � 1, . . . , n,

then SνS�S �Kλ� @ ε.
Then the relative σ�M�S�,BL�S��-weak topology on M is first countable.

Proof. We first define a countable family F of functions in B̄ �� �g > BL�S� � YgYª B 1�
that is dense in B̄ for the compact-open topology, i.e. the topology of uniform convergence

on compact subsets of S. Let D be a countable dense subset of S. The family of finite

subsets of D is countable. Let IQ �� Q 9 �0,1�. For a finite subset F ` D, λ > IQ � �0� and

function a � F � IQ define

fλF,a�x� �� �
y>F

�a�y��1 � 1
λd�x, y����.

Here - denotes the maximum, as before. Then fλF,a > BL�S�, SfλF,aSL B maxy>F
a�y�
λ B 1

λ .

Moreover, fλF,a vanishes outside F λ � �y>F B�y, λ�. For a finite subset F ` D the family

FF of all such functions fλF,a with a and λ as indicated is countable. So the union F� of all

sets FF over all finite F ` D is countable too. It is quickly verified that on any compact

subset K of S any positive h > B̄ can be uniformly approximated by f > F�. Consequently,

F � F� � F� ` BL�S� is countable and any h > B̄ can be approximated uniformly on

compact sets by means of f > F .

Now let µ >M and consider the open neighbourhood

Uµ�h, r� �� �ν >M � S `µ � ν, he S @ r�,
with r A 0 and h > BL�S�. Without loss of generality we can assume that YhYBL � 1. We
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shall prove that there exist f0, . . . , fn > F and q0, . . . , qn A 0 in Q such that

n

�
i�0

�ν >M � T`µ � ν, hieT @ qi� ` Uµ�h, r�. (2.4)

Then the relative weak topology on M is first countable.

Let ε > Q such that 0 @ ε B 1
6r and let Ki,K ` S be compact and 0 @ λ0 B ε as in the

conditions of the lemma. There exists f0 > F such that supx>K Sh�x� � f0�x�S B 1
4mε. Then

for any 0 @ λ B λ0, x >Kλ and x0 >K,

Sh�x� � f0�x�S B Sh�x� � h�x0�S � Sh�x0� � f0�x0�S � Sf0�x0� � f0�x�S
B �1 � Sf0SL�d�x,x0� � 1

4mε.

Hence

sup
x>Kλ

Sh�x� � f0�x�S B �1 � Sf0SL�λ � 1
4mε.

Let 0 @ λ�0 B λ0 be such that �1 � Sf0SL�λ�0 B 1
4mε. Now one has, using property (i ),

S `µ � ν, he S B S `µ � ν, h � f0e S � S `µ � ν, f0e S
B S

Kλ
Sh � f0SdSµ � νS � 2SµS�S �Kλ� � 2SνS�S �Kλ� � S `µ � ν, f0e S

B 1
2mε � 2m � 2ε � 2SνS�S �Kλ� � S `µ � ν, f0e S (2.5)

for all 0 @ λ B λ�0. Fix λ > Q with 0 @ λ B λ�0 and let δ1, . . . , δn be as in property (ii ).

The Hausdorff semidistance on closed and bounded subsets of S is given by

δ�C,C �� �� sup
x>C

d�x,C ��.
The Hausdorff distance is defined by

dH�C,C �� �� max�δ�C,C ��, δ�C �,C��.
The collection of finite subsets of D form a separable dense subset of the set of compact

subsets of S, K�S�, for dH . If F ` D is finite and K � > K�S�, then by the Birkhoff
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Inequalities

Shλ,K� � hλ,F S � T�1 � 1
λd�x,K ���� � �1 � 1

λd�x,F ���S
B T�1 � 1

λd�x,K ��� � �1 � 1
λd�x,F ��T

� 1
λ Sd�x,K �� � d�x,F �S B 1

λ � dH�K �, F �.
Let Fi ` D be finite such that dH�Ki, Fi� B 1

4mλδi. Then hλ,Fi � f
λ
Fi,1

> F . Put fi �� hλ,Fi .

Let qi > Q be such that 0 @ qi @
1
2δi. If ν >M is such that S `µ � ν, fie S @ qi for i � 1, . . . , n,

then S `µ � ν, hλ,Kie S B Yhλ,Ki � hλ,FiYª � Yµ � νYTV � S `µ � ν, fie S @ 1
2δi �

1
2δi � δi

According to condition (ii ) one has SνS�S�Kλ� @ ε. Put q0 � ε. Inequality (2.5) then yields

(2.4), as desired.

Because conditions (i ) and (ii ) in Lemma 2.3.8 are immediately satisfied when M is

uniformly tight, we obtain

Corollary 2.3.9. Let �S, d� be a complete separable metric space and let M `M�S� such

that supµ>M YµYTV @ª and M is uniformly tight. Then the σ�M�S�,BL�S��-weak topology

coincides with the Y � Y�BL-norm topology on M .

Remark 2.3.2. Gwiazda et al. [GLMC10] state at p. 2708 that the topology of narrow

convergence in M�S�, i.e. that of convergence of sequences of signed measures paired with

f > Cb�S�, is metrizable on tight subsets that are uniformly bounded in total variation

norm. In fact it can be metrized by the norm Y � Y�BL.

A second case, more involved, in which the conditions of Lemma 2.3.8 are satisfied, is:

Proposition 2.3.10. Let �S, d� be a complete separable metric space and let

M �� �µ >M�S� � YµYTV � ρ�, �ρ A 0�.
Then condition (i) and (ii) of Lemma 2.3.8 hold. In particular, the relative σ�M�S�,BL�S��-

weak topology and relative Y � Y�BL-norm topology on M coincide.

Proof. Take ε A 0, µ > M and let µ� and µ� be the positive and negative part of µ, i.e.

µ � µ� � µ�. Since µ� are disjoint and tight, by Ulam’s Lemma, there exist compact sets

K� ` S such that K� 9K� � g, µ��K�� � 0 and

µ��S� � µ��K�� @ ε~8 and µ��S� � µ��K�� @ ε~8. (2.6)
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In particular,

SµS�S � �K� 8K��� B µ��S �K�� � µ��S �K�� @ 1
8ε �

1
8ε @ ε,

so condition (i ) of Lemma 2.3.8 is satisfied for K �K� 8K�.

Because K� and K� are compact, there exists λ0 A 0 such that Kλ0
� 9 Kλ0

� � g. Then

Kλ
�
9Kλ

�
� g for all 0 @ λ B λ0. Without loss of generality we can assume that λ0 B ε. Fix

0 @ λ B λ0.

Let us assume for the moment that δ� A 0 have been selected. At the end we will then see

how to choose these, such that condition (ii ) will be satisfied. If ν >M satisfies

S `µ � ν, hλ,K�
e S @ δ� and S `µ � ν, hλ,K�

e S @ δ�, (2.7)

then `µ � ν�, hλ,K�
e B `µ � ν� � ν�, hλ,K�

e B S `µ � ν, hλ,K�
e S @ δ�.

Consequently, since 1K�
B hλ,K�

B 1Kλ
�

,

µ��K�� � µ��Kλ
�
� � ν��Kλ

�
� B `µ � ν�, hλ,K�

e @ δ�.
We obtain

ν��Kλ
�
� A µ��K�� � µ��Kλ

�
� � δ� C µ��K�� � µ��S �K�� � δ�

A µ��K�� � 1
8ε � δ�.

In a similar way, `�µ � ν�, hλ,K�
e B `ν � µ,hλ,K�

e @ δ�,
whence

ν��Kλ
�
� A µ��K�� � 1

8ε � δ�.

Therefore, using (2.6),

ν��Kλ
�
� � ν��Kλ

�
� A µ��K�� � µ��K�� � 1

4ε � �δ� � δ��
A µ��S� � µ��S� � 1

2ε � �δ� � δ�� � ρ � �δ� � δ� � 1
2ε�.

Note that in this last step the assumption that M is a total variation sphere is used in an
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essential manner. The last inequality implies that

SνS�S �Kλ� � SνS�S� � SνS�Kλ
�
� � SνS�Kλ

�
� B ρ � ν��Kλ

�
� � ν��Kλ

�
� @ δ� � δ� � 1

2ε.

Thus, if we take K1 �K�, K2 �K�, δ� � δ� � δi �
1
4ε, we see that condition (ii ) in Lemma

2.3.8 is satisfied. Theorem 2.3.7 then yields the final statement.

Remark 2.3.3. 1.) In [Pac13], Theorem 5.38 and Corollary 5.39 come close to Theorem

2.3.7. A technical condition seems to prevent deriving our new result on coincidence of

topologies from the results in [Pac13].

2.) The result stated in Proposition 2.3.10 can be found in [Pac13], Corollary 5.39. There,

a proof of this result is provided using completely different techniques. Concerning coin-

cidence of these topologies on total variation spheres, see some further notes in [Pac13],

indicating e.g. [GL81].

In view of Corollary 2.3.9 and Proposition 2.3.10 one might be tempted to conjecture that

the weak and norm topologies would coincide on sets of measures with uniformly bounded

total variation. This does not hold however, as the following counterexample illustrates.

Counterexample 2.3.11. Let �S, d� be the natural numbers N equipped with the restric-

tion of the Euclidean metric on R. Now, BL�N� is linearly isomorphic to `ª: the map

f ( �f�n��n>N is bijective and continuous. Hence it is a linear isomorphism by Banach’s

Isomorphism Theorem. Observe that Sf SL B 2YfYª. Since �N, d� is uniformly discrete, the

norms Y � Y�BL and Y � YTV on M�N� are equivalent (cf. [HW09b], proof of Theorem 3.11).

So M�N�BL is linearly isomorphic to `1 under the map µ( �µ��n���n>N. One has YµYTV �Y�µ�Y`1. Moreover, the duality between M�N� and BL�N� is precisely the duality between

`1 and `ª under the given isomorphisms. Consider now M �� ��µ� > `1 � Y�µ�Y`1 B 1�.

It represents a set of measures that is uniformly bounded in total variation norm. Let

S �� ��µ� > `1 � Y�µ�Y`1 � 1�. Then S is a Y � YTV-closed subset of M . The weak closure of S

equals M however (cf. [Con85], Section V.1, Ex. 10). Therefore, the Y � Y�BL (i.e. Y � YTV)

and weak topologies cannot coincide on M .

2.4 Proof of the Schur-like property

We provide a self-contained proof of the Schur-like property for spaces of measures, The-

orem 2.3.1, using a ‘set-geometric’ argument. See Remark 2.4.2 below for alternative

approaches.
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We first introduce various technical lemmas that enable our set-geometric argument. Then

we start with a complete proof of the particular case of positive measures, Theorem 2.3.1,

as it will aid the reader in getting introduced to the type of argument employed, based on

Lemma 2.4.3, and the complications that arise when proving the result for general signed

measures in the section that follows.

2.4.1 Technical lemmas

The following lemmas are needed in the proof of the fundamental result.

Lemma 2.4.1. Let A ` BL�S� be such that supf>A YfYBL @ ª. Then sup�A� exists in

BL�S� and S sup�A�SL B supf>A Sf SL. In particular, Y sup�A�YBL B 2 supf>A YfYBL.

Proof. Put L �� supf>A Sf SL and let g � sup�A�, i.e. g�x� �� sup�f�x� � f > A� for every

x > S. Let x, y > S. We may assume g�x� C g�y�. Let ε A 0. There exists f > A such that

g�x� @ f�x� � ε. By definition g�y� C f�y�. Hence

Sg�x� � g�y�S B g�x� � f�x� � f�x� � f�y� @ ε � Sf�x� � f�y�S B ε �Ld�x, y�.
Since ε is arbitrary, we obtain that Sg�x� � g�y�S B Ld�x, y�. Thus g > Lip�S� and SgSL B L.

Clearly, YgYª B supf>A YfYª @ª, so g > BL�S� and YgYBL B 2 supf>A YfYBL.

The support of f > C�S�, denoted by suppf , is the closure of the set of points where f is

nonzero. Lemma 2.4.1 implies the following

Lemma 2.4.2. Let �fk� ` BL�S� be such that supkC1 YfkYBL @ ª. Assume that their

supports are pairwise disjoint. Then the series f�x� �� Pª

k�1 fk�x� converges pointwise and

f > BL�S�. In particular,

YfYª B sup
kC1

YfkYª, Sf SL B 2 sup
kC1

SfkSL. (2.8)

Proof. Because the sets supp fk are pairwise disjoint, f�x� � fk�x� if x > supp fk. So the

positive part f� and negative part f� of f satisfy f� � Pª

k�1 f
�

k and it suffices to prove

the result for f C 0. In that case, f � supkC1 fk, and the first estimate in (2.8) follows

immediately. The second follows from Lemma 2.4.1.

Lemma 2.4.3. Let �S, d� be a complete separable metric space. Let µn >M��S�, n > N.

Assume that �µn � n C 1� is not tight. Then there exists ε A 0, an increasing sequence �nk�
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of positive integers and a sequence of compact sets �Knk� such that

µnk�Knk� C ε for all k C 1

and

dist�Knk ,Knm� �� min�d�x, y� Sx >Knk , y >Knm� A ε for all k xm.

This result was originally stated in [KPS10], Lemma 1, p. 1410, for a sequence �µn� of

probability Borel measures with a proof in [LS06] (proof of Theorem 3.1, p. 517-518), but

it is also valid for (positive) measures.

In addition to Lemma 2.4.3 the following observation is made:

Lemma 2.4.4. Let �µn� `M��S� be such that supn µn�S� @ª and let �En� be a sequence

of pairwise disjoint Borel measurable subsets of S. Then for every ε A 0 there exists a

strictly increasing subsequence �ni� of N such that for every i C 1,

µni ��
jxi

Enj� @ ε. (2.9)

Proof. Let us first prove that for every η A 0 there exists a strictly increasing subsequence�mi� such that

µm1 ��
iA1

Emi� @ η (2.10)

and

µmi�Em1� @ η for all i C 2. (2.11)

Fix η A 0. Set C �� supn µn�S� and let N C 1 be such that Nη A C. Since for every n C 1

we have PN
m�1 µn�Em� � µn ��Nm�1Em� B µn�S� B C @ Nη, there exists m > �1, . . . ,N� such

that

µn�Em� @ η. (2.12)

Thus there exists m1 > �1, . . . ,N� and an infinite set S such that condition (2.12) holds for

all n > S. Let us split S into N disjoint infinite subsets S1, . . . ,SN .

Since

�
n>Si

En 9 �
n>Sj

En � g for i, j > �1, . . . ,N�, i x j,
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we have

N

Q
i�1

µm1 ��
n>Si

En� � µm1 � N

�
i�1
�
n>Si

En� � µm1 ��
n>S

En� B µm1�S� B C @ Nη,

which, in turn, yields

µm1 ��
n>Sp

En� @ η

for some p > �1, . . . ,N�. Now let m2,m3, . . . be an increasing sequence of elements from

the set Sp.

By induction we shall define the sequences �mk
i � for k C 1 in the following way. First set

m1
i � mi for i � 1,2, . . ., where �mi� is an increasing sequence satisfying conditions (2.10)

and (2.11) with η � ε~2. Now if �mk�1
i � is given, by what we have already proven, we may

find its subsequence �mk
i �, mk

1 Am
k�1
1 , satisfying conditions (2.10) and (2.11) with η � ε~2k.

Now set ni ��mi
1 for i � 1,2, . . . and observe that

µni ��
jxi

Enj� �Q
j@i

µni�Enj� � µni ��
jAi

Enj� BQ
j@i

ε~2j � ε~2i @ ε.
The first term evaluation follows from (2.11), by the fact that ni is an element of the

sequences �mj
n� for j @ i. Similarly, the second term is evaluated by inequality (2.10).

2.4.2 Proof of Theorem 2.3.4

Proof. (Theorem 2.3.4). Let �µn� `M��S�. At the beginning we show that it is enough to

prove the claim for �µn� ` P�S�. In fact, from the assumption that limn�ª `µn, fe exists

for every f > BL�S�, in particular for f � 1, we obtain that limn�ª µn�S� also exists. Set

c � limn�ª µn�S� and observe that c @ ª, by the fact that supnC1 YµnYTV @ ª. If c � 0,

then we immediately see that µ � 0 fulfills the requirements of our theorem. On the other

hand, if c A 0, then, we can replace µn with µ̃n �� µn~µn�S�, which is a probability measure.

If the theorem is proven to hold for �µ̃n�, then it holds for the �µn� as well.

To prove the theorem it suffices to show that the family �µ̃n � n C 1� is tight, by the

following argument. By Prokhorov’s Theorem (see [Bog07a], Theorem 8.6.2) there exists

some measure µ� > P�S� and a subsequence �nm� such that µ̃nm � µ� weakly. Further, due

to the fact that limn�ª `µ̃n, fe exists for any f > BL�S�, we obtain that limn�ª `µ̃n, fe �`µ�, fe for f > BL�S�. This in turn, together with the tightness of �µ̃n � n C 1�, implies that

µ̃n � µ� Cb�S�-weakly, as n�ª. Indeed, the tightness allows restricting (approximately)
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to a compact subset K. The continuous bounded function on S, when restricted to K

can be approximated uniformly by a function in BL�K�, since BL�K� ` C�K� is Y � Yª-

dense. The Metric Tietze Extension Theorem (cf. [McS34]) allows to extend the function

in BL�K� to one in BL�S� without changing uniform norm and Lipschitz constant. The

claim then follows. The Cb-weak convergence of µ̃n to µ� is equivalent to Yµ̃n � µ�Y�BL � 0,

as n�ª, because the latter norm metrises Cb-weak convergence on M��S� (cf. [Dud66],

Theorem 6 and Theorem 8). For µ � cµ� we obtain that Yµn � µY�BL � 0, as n�ª.

To complete the proof, we have to prove the claim that the family �µn � n C 1� ` P�S�
is uniformly tight. Assume, contrary to our claim, that it is not tight. By Lemma 2.4.3,

passing to a subsequence if necessary, we may assume that there exists ε A 0 and a sequence

of compact sets �Kn� satisfying

µn�Kn� C ε for every n C 1 (2.13)

and

dist�Kn,Km� �� min�ρ�x, y� � x >Kn and y >Km� A ε for m x n. (2.14)

From Lemma 2.4.4, with En �� K
ε~3
n , it follows that there exists a subsequence �ni� such

that for every i C 1 we have

µni ��
jxi

K
ε~3
nj � @ ε~2. (2.15)

Note that dist�Kε~3
ni ,K

ε~3
nj � A ε~3 for i x j.

We define the function f �X � �0,1� by the formula

f�x� � ª

Q
i�1

fi�x�,
where fi are arbitrary Lipschitz functions with Lipschitz constant 3~ε satisfying

fiSKn2i
� 1 and 0 B fi B 1

K
ε~3
n2i

.

According to Lemma 2.4.2, f > BL�S� (with YfYª B 1 and Sf SL B 6~ε).
To finish the proof it is enough to observe that for every i C 1 we have

`µn2i
, fe � ª

Q
j�1

`µn2i
, fje C µn2i

�Kn2i
� �2.13�

C ε
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and `µn2i�1
, fe � ª

Q
j�1

`µn2i�1
, fje B ª

Q
j�1

µn2i�1
�Kε~3

n2j�Bµn2i�1
� �
jx2i�1

K
ε~3
nj � �2.15�

@ ε~2,
which contradicts the assumption that limn�ª `µn, fe exists for every f > BL�S�. Thus the

family �µn � n C 1� is tight and we are done.

Remark 2.4.1. 1.) An alternative proof is feasible, based upon the elaborate theory pre-

sented in [Pac13]. By taking f � 1, one finds that supn YµnYTV @ª. Since BL�S� is dense

in the space Ub�S� of uniformly continuous bounded functions on S for the supremum norm

(cf. [Dud66], Lemma 8), one finds that `µn, fe is Cauchy for every f > Ub�S�. According

to [Pac13], Theorem 5.45, there exists µ >M�S�� such that µn � µ, Ub�S�-weakly. Then

[Pac13] Theorem 5.36 yields that Yµn � µY�BL � 0.

2.) In the proof we show that if �µn� is a sequence of positive Borel measures such

that `µn, fe converges for every f > BL�S�, then �µn� is uniformly tight in M��S�. See

[Bog07a], Corollary 8.6.3, p. 204, for results in this direction when `µn, fe converges for

every f > Cb�S�. Under the additional condition that there exists µ� >M��S� such that`µn, fe � `µ�, fe for every f > Cb�S�, tightness results appeared already in e.g. [LeC57],

Theorem 4 for positive measures or [Bil99], Appendix III, Theorem 8 for probability mea-

sures.

2.4.3 Proof of Theorem 2.3.1

Proof. (Theorem 2.3.1). Let �µn� `M�S� be signed measures such that supn YµnYTV @ª.

Denote by µ�n and µ�n the positive and negative part of µn, n C 1, respectively. We consider

the following set

C �� ��β, �mn�, �νmn�, �ϑmn�� � β C 0, �mn� ` N – an increasing sequence,

νmn , ϑmn > P�S�, lim
n�ª

Yνmn � ϑmnY�BL � 0

and µ�mn C βνmn , µ
�

mn C βϑmn�.
We first observe that C x g, which follows from the fact that �0, �mn�, �νmn�, �ϑmn�� > C

for arbitrary �mn� and νmn , ϑmn > P�S� such that limn�ª Yνmn � ϑmnY�BL � 0. Moreover,

since c̄ �� supnC1 YµnYTV @ª, we obtain that 0 B β B c̄ for every β for which there are some�mn� and νmn , ϑmn such that �β, �mn�, �νmn�, �ϑmn�� > C. We can therefore introduce

α � sup�β � �β, �mn�, �νmn�, �ϑmn�� > C�.
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From the definition of α it follows that there exists a subsequence �mn� of positive integers

and an increasing sequence �αn� of nonnegative constants satisfying limn�ªαn � α and

µ�mn C αnνmn and µ�mn C αnϑmn ,

where νmn , ϑmn > P�S� are such that Yνmn � ϑmnY�BL � 0 as n�ª.

To finish the proof it is enough to show that both the sequences �µ�mn � αnνmn� and�µ�mn � αnϑmn� are tight. Indeed, then, by the Prokhorov Theorem ([Bog07a], Theorem

8.6.2) there exists a subsequence �mnk� of �mn� and two measures µ1 and µ2 such that the

sequences �µ�mnk � αnkνmnk � and �µ�mnk � αnkϑmnk � converge Cb�S�-weakly to the positive

measure µ1 and µ2, respectively. Hence also in Y � Y�BL-norm, according to Theorem 2.3.4.

Consequently, Yµmnk � �µ1 �µ2�Y�BL � 0 as k �ª, by the fact that Yνmnk � ϑmnk Y�BL � 0 as

k �ª. This will complete the proof of the theorem. Indeed, if we know that the sequence

(and also any subsequence) has a convergent subsequence (in the dual bounded Lipschitz

norm), then the sequence is also convergent due to the fact that the limit of all convergent

subsequences is the same, by the assumption that limn�ª `µn, fe exists for any f > BL�S�.
Assume now, contrary to our claim, that at least one of the families �µ�mn � αnνmn� or�µ�mn � αnϑmn�, say the first one, is not tight. By Lemma 2.4.3, passing to a subsequence

if necessary, we may assume that there exists ε A 0 and a sequence of compact sets �Kn�
satisfying

�µ�mn � αnνmn��Kn� C ε (2.16)

and

dist�Ki,Kj� C ε for i, j > N, i x j.

Set

µ̃n �� µ
�

mn � αnνmn and µ̂n �� µ
�

mn � αnϑmn .

Claim: For any 0 @ η B 1 there exist j, as large as we wish, and τj, χj > P�S� satisfying

µ̃j C �ε~2�τj, µ̂j C �ε~2�χj and Yτj � χjY�BL B η.

Consequently, there will exist a subsequence �mjn� such that

µ�mjn � αjnνmjn � µ̃jn C αjnνmjn � �ε~2�τjn ,
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µ�mjn C αjnϑmjn � �ε~2�χjn and Yτjn � χjnY�BL � 0 as n�ª.

Now, if we define probability measures %mjn , ςmjn as follows

%mjn �� �αjnνmjn � �ε~2�τjn��αjn � ε~2��1, ςmjn �� �αjnϑmjn � �ε~2�χjn��αjn � ε~2��1,

we will obtain

µ�mjn C �αjn � ε~2�%mjn , µ�mjn C �αjn � ε~2�ςmjn
and limn�ª Y%mjn � ςmjnY�BL � 0, which is impossible, because it contradicts the definition

of α, since limn�ª�αjn � ε~2� A α.

Let us prove the claim. Set ξn �� µ̃n � µ̂n for n C 1 and let C �� supnC1 ξn�S�. Observe that

C B supnC1 YµnYTV @ ª. Fix 0 @ η B 1 and let κ > �0, ε~6� be such that 6κ�1~ε � 2~ε2� @ η.

Lemma 2.4.4 yields an increasing sequence �jn� ` N such that

ξjn ��
lxn

K
ε~3
jl

� @ κ~4 (2.17)

and hence

µ̃jn ��
lxn

K
ε~3
jl

� @ κ~4 and µ̂jn ��
lxn

K
ε~3
jl

� @ κ~4
for all n � 1,2, . . ..

Choose N C 1 such that Nκ~4 A C and set W p
jn
�� K

pε~�3N�
jn

�K
�p�1�ε~�3N�
jn

for p � 1, . . . ,N .

Observe that W p
jn
9W q

jn
� g for p x q. Since PN

p�1 ξjn�W p
jn
� � ξjn��Np�1W

p
jn
� B C, n C 1, for

every n there exists pn > �1, . . . ,N� such that

ξjn �W pn
jn
� @ κ~4. (2.18)

Now we are in a position to define a sequence �fn� of functions from S to ��1,1�. The

construction is as follows. For n � 2k � 1 for k C 1, we set fn � 0. On the other hand, to

define functions fn for n � 2k we introduce the measures

µ̃�jn��� � µ̃jn �� 9K�pn�1�ε~�3N�
jn

�
and

µ̂�jn��� � µ̂jn �� 9K�pn�1�ε~�3N�
jn

� .
Further, there exists a Lipschitz function f̃n � K

�pn�1�ε~�3N�
jn

� ��1,1� with Sf̃nSL B 1 such

that aµ̃�jn � µ̂�jn , f̃nf C 1
2Yµ̃�jn � µ̂�jnY�BL. Let fn be a Lipschitz extension of the function f̃n to
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S such that fn�x� � f̃n�x� for x > K
�pn�1�ε~�3N�
jn

and fn�x� � 0 for x ¶ K
pnε~�3N�
jn

. We may

assume that SfnSL B 3N~ε. The existence of the extension function follows from McShane’s

formula (see [McS34]). Let f � Pª

k�1 f2n. Since dist�supp fi, supp fj� A ε~3 for i, j C 1, i x j,

f is a bounded Lipschitz function, by Lemma 2.4.2.

We show that `µmji , fe B κ~2 for i � 2k � 1. Indeed, for k sufficiently large we have

aµmj2k�1
, ff � ª

Q
n�1

aµmj2k�1
, f2nf B ª

Q
n�1

ξj2k�1
�Kε~3

j2n
� � αj2k�1

Yνmj2k�1
� ϑmj2k�1

Y�BL

B ξj2k�1
� �
lx2k�1

K
ε~3
jl

� � αj2k�1
Yνmj2k�1

� ϑmj2k�1
Y�BL

�2.17�
@ κ~4 � αj2k�1

Yνmj2k�1
� ϑmj2k�1

Y�BL @ κ~2,
by the properties of the measures νmj2k�1

, ϑmj2k�1
and the definition of the functions f2n.

Therefore

lim
i�ª

aµmji , ff � lim
k�ª

aµmj2k�1
, ff B κ~2,

because we assume that the limit of `µm, fe exists.

On the other hand, for i � 2k we have

aµmj2k , ff � ª

Q
n�1

aµmj2k , f2nf C � ª

Q
nxk

ξj2k �Kε~3
j2n

� � aµmj2k , f2n, f
C �

ª

Q
nxk

ξj2k �Kε~3
j2n

� � ξj2k �Wj
p2k
2k

� � aµ̃�j2k � µ̂�j2k , f̃2kf
C �κ~4 � κ~4 � 1

2
Yµ̃�j2k � µ̂�j2kY�BL,

by the fact that Yf2nYª B 1. Since limi�ª aµmji , ff B κ~2, by the estimation obtained for

i � 2k � 1 and the assumption that the limit exists, we have

�κ~4 � κ~4 � 1

2
Yµ̃�j2k � µ̂�j2kY�BL B 3κ~4

for k sufficiently large and consequently

Yµ̃�j2k � µ̂�j2kY�BL B 3κ

for all k sufficiently large. Thus

µ̂�j2k�S� C µ̃�j2k�S� � 3κ C ε � ε~2 � ε~2.
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Hence, for probability measures

ν̃j2k �� µ̃
�

j2k
~µ̃�j2k�S� and ν̂j2k �� µ̂

�

j2k
~µ̂�j2k�S�

we have for k sufficiently large

µ̃j2k C µ̃
�

j2k
C �ε~2�ν̃j2k and µ̂j2k C µ̂

�

j2k
C �ε~2�ν̂j2k .

Finally, observe that for k sufficiently large,

Yν̃j2k � ν̂j2kY�BL B Yµ̃�j2k~µ̃�j2k�S� � µ̂�j2k~µ̃�j2k�S�Y�BL � Yµ̂�j2kY�BLS1~µ̃�j2k�S� � 1~µ̂�j2k�S�S
B �1~µ̃�j2k�S��Yµ̃�j2k � µ̂�j2kY�BL � 1~�µ̃�j2k�S�µ̂�j2k�S��Sµ̃�j2k�S� � µ̂�j2k�S�S
B 6κ~ε � 12κ~ε2 @ η,

by the fact that µ̃�j2k�S�, µ̂�j2k�S� C ε~2 and Sµ̃�j2k�S� � µ̂�j2k�S�S B Yµ̃�j2k � µ̂�j2kY�BL B 3κ. This

completes the proof of the claim, hence the theorem.

Remark 2.4.2. It is possible to prove Theorem 2.3.1 by means of a reduction-to-`1-trick,

inspired by ideas in [Pac79, Pac13], cf. [Hil14]. Another proof is feasible, starting from

[Pac79], Theorem 3.2, see [Wor10]. However, here we prefer to present an independent,

‘set-geometric’ proof that is self-contained and founded on the well-established result for

the case of positive measures, Theorem 2.3.4.

2.5 Further consequence: an alternative proof for weak

sequential completeness

Theorem 2.3.1 allows – in the case of a Polish space – to give an alternative proof of

the well-known fact that M�S� is Cb�S�-weakly sequentially complete, that goes back to

Alexandrov [Ale43] and Varadarajan [Var61], see. e.g. [Dud66], Theorem 1 or [Bog07a],

Theorem 8.7.1 for a more general topological setting. We include our proof based on

Theorem 2.3.1 here, because it employs an argument for reduction to functions in BL�S�,
which by itself is an interesting result.

This reduction is based on the following observation. Let DS be the set of all metrics on

S that metrize the topology of S as a complete separable metric space. We need to stress

the dependence of the space BL�S� on the chosen metric on S. So for d > DS we write

BL�S, d� for the space of bounded Lipschitz functions on �S, d�. The key observation is,
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that

Cb�S� � �
d>DS

BL�S, d�. (2.19)

In fact, fix d0 > DS. If f > Cb�S�, then

df�x, y� �� d0�x, y� - Sf�x� � f�y�S
is a metric on S such that df > DS and f > BL�S, df�. Here - denotes the maximum.

The precise statement we consider is the following:

Theorem 2.5.1 (Weak sequential completeness). Let S be a Polish space. Let �µn� `

M�S� be such that `µn, fe converges for every f > Cb�S�. Then there exists µ� > M�S�
such that `µn, fe� `µ�, fe for every f > Cb�S�.

Proof. The norm of µn viewed as a continuous linear functional on Cb�S� is its total

variation norm. Hence, according to the Banach-Steinhaus Theorem, supnC1 YµnYTV @ ª.

For any d > DS, `µn, fe converges for every f > Cb�S�, so in particular for every f > BL�S, d�.
The sequence �µn� is bounded in total variation norm, so Theorem 2.3.1 implies there exists

µd
�
> M�S� such that `µn, fe � `µd

�
, fe for every f > BL�S, d�. We proceed to show that

the limit measure µd
�

is independent of d.

Let d� > DS. Put

d̄�x, y� �� d�x, y� - d��x, y�.
Then d̄ > DS and BL�S, d̄� contains both BL�S, d� and BL�S, d��. Let C ` S be closed.

There exist sequences �hn� and �h�n� in BL�S, d� and BL�S, d�� respectively, such that

hn � 1C and h�n � 1C pointwise. Both these sequences are in BL�S, d̄�, so

µd
�
�C� � lim

k�ª
aµd

�
, hkf � lim

k�ª
lim
n�ª

`µn, hke � lim
k�ª

aµd̄
�
, hkf � µd̄��C�.

A similar argument applies to µd
�

�
, using the sequence �h�n� in BL�S, d�� instead of �hn�.

So µd
�

and µd
�

�
(and µd̄

�
) agree on the π-system consisting of closed sets, which generate the

Borel σ-algebra. Hence these measures are equal on all Borel sets. That is, there exists

µ� > M�S� such that `µn, fe � `µ�, fe for every f > BL�S, d� for every d > DS. Thus for

every f > Cb�S� in view of (2.19).

67



On a Schur like property for spaces of measures and its consequences

68


