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Motivation

The subject of this thesis, ’Approach to Markov Operators on Spaces of Measures by Means

of Equicontinuity’, combines an analytical and probabilistic approach to Markov operators.

The combination of both has yielded various novel results whose proofs are facilitated by the

use of analytical concepts like equicontinuity, measures of non-compactness and attractors

and probabilistic arguments.

Markov operators come naturally from Markov processes, hence stochastic processes whose

future values are determined by most recent values, without the necessity to take into

account the past.

We intentionally work with Markov operators on spaces of finite signed Borel measures on

the underlying Polish state space. Other researchers have looked at the setting of such

operators on continuous bounded functions or subspaces thereof (the ’dual picture’ from

our perspective) or spaces of integrable functions with respect to an invariant measure.

We start by motivating why we think the space of measures as a state space is a more

suitable setting then the spaces of integrable functions.
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Motivation

Why work with measures as a state space?

There are two main reasons for working with a space of measures as a state space. Let us

start with the approach coming from deterministic systems.

A deterministic perspective

Let us show examples of deterministic models with randomness (in their initial conditions,

random interventions) which motivate us to use a space of measures as a state space. A

first example is that of sustainable harvesting. In Example 0.0.1 we introduce a fishery

model with randomness in the size of a catch. The same idea can be extended to other

types of harvesting, i.e. crop harvesting, where random interventions could be weather

conditions such as the amount of rainfall. We first describe the setting. The model and

use therein of a measure formulation is discussed afterwards.

Example 0.0.1. [Sustainable harvesting, [AHvG13, AHG12], Figure 0.0.1]

One of the problems of fisheries is determining the quota: That is, the amount of fish which

can be caught without extinction of the fish species. Fish population is not distributed homo-

geneously. Hence, the size of an intervention- the size of a single catch- can be considered

random within certain limits, as may be the time between successive harvesting events.

Between interventions the growth of the fish population may be modelled deterministically.

The main purpose of sustainable harvesting is to catch as much as possible, without causing

the extinction of the population with high probability.

Example 0.0.2 is another type of real life application. In this case one wants to determine

the amount of medicine, antibiotics in this case, necessary and sufficient to cure an illness.

The same idea can be applied to a broader class of medical treatments, but also to the

optimal use of pesticides, water, the use of artificial light in greenhouses etc.

Example 0.0.2. [Antibiotic treatment, Figure 0.0.2]

Another example of a deterministic process with random interventions is the antibiotic

treatment of bacterial infections. A common way of treating such infections is by giving

doses of antibiotics in the form of injections or orally at certain moments in time. These

medicines either kill the bacteria or prevent them from reproducing. We assume random-

ness in the amount of bacteria that are killed or influenced by a single dose of antibiotics.

In the time between doses the number of bacteria will increase. The growth of the colony

may be modelled deterministically. The main question is how to determine the right dose

of antibiotics such that the bacterial population goes extinct - almost surely. Too small a
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Motivation

Figure 1: Sustainable harvesting: A marine ecosystem from which fish are harvested.
The interventions will interfere with the further growth of the population. The main ques-
tion is to quantify the impact of this sampling process on the population. Intensive fishery
reduces the fish population drastically. The catch size may be considered random (with
certain limits) as the fish population is not homogeneously distributed.

dose will not treat the illness and too big a dose can cause unwanted side effects to the

patient.

Main question

The main question in both examples is how to decide on the (maximal) size of interventions

and the time intervals between them so that we get to the required results?

We shall now show how the above real life examples can be formalized in a mathematical

model in the language of measures.

Mathematical description

Mathematically the above processes can be modelled as follows. The dynamics of popula-

tion growth can be modelled deterministically when numbers of individuals are sufficiently

large (e.g. bacteria colonies grow between antibiotic doses; fish populations grow between

fishing periods). Abstractly, this can be formalized using a deterministic dynamical sys-

tem: we have a state space S (nonempty). An element of the state space characterizes

the state of the population eg. the number of fish or bacteria in the population, or their

spatial distribution. Let

φt � x0 ( φt�x0�
15
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time

Figure 2: Antibiotic treatment. The question is how to determine the right dose of
medicine.

be the deterministic law that prescribes the state of the system at time t after it was in

state x0. The family of flow maps �φt�tC0 has a semigroup property, i.e. for all t, s C 0 and

x0 > S

φt�φs�x0�� � φt�s�x0�; φ0�x0� � x0. ���
At discrete points in time we have random interventions (e.g. the impact of a dose of

antibiotics in the population of bacteria or the size of a catch in a net). The position of

the system in state space immediately after the intervention is given by a probability law

which depends on the state of the system just before the intervention. Examples of such

models can be found in [LM99] and [HHS16]. In such models one way of analysis is as

follows.

The evolution of the system between interventions is given by the deterministic system�φt�tC0 on S, where S is a Polish space. The population size just before the intervention

will be x� � φ∆t�x�, where x > S is the state of the population just after the previous jump

and ∆t is the time between two interventions. For simplicity sake we can assume that

∆t is fixed, non-random. At each point x� > S one has a probability distribution Qx� on

S. Qx��E� is the probability that the system state will be in E ` S immediately after an
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intervention, when the state just before an intervention was x�.

If µ is the probability distribution for the state of the system immediately after an inter-

vention (or at t � 0), hence a measure, then the population state probability distribution

after the n-th intervention is given by:

�Pµ��A� �� S
S
Qφ∆t�x��A�dµ�x�.

Here, P is a Markov operator that is P :

� maps positive Borel measures to positive Borel measures;

� is additive and positively homogenous;

� conserves mass.

A specific, more elaborate case of such a model can be found in [AHG12].

Other interesting applications of the measure-theoretical framework in modelling can be

found in [EHM15], [EHM16]. These papers present applications to crowd dynamics. See

also [AI05] for measure-formulation in population dynamics. As we see, measures naturally

occur from these deterministic models.

Let us now go to the second type of models, probabilistic ones, which motivate the usage

of measure spaces.

A probabilistic perspective

Let �Xx
t �tC0 be a family of stochastic processes in continuous time on a Polish space S

with the Markov property. Here the superscript x indicates that �Xx
t �tC0 starts at t � 0 at

x almost surely. For f a continuous and bounded function on S, i.e. f > Cb�S� and µ a

Borel probability measure describing the distribution for the start position x of the process

define `Ptµ, fe �� S
S
E�f�Xx

t ��dµ�x�.
To f > Cb�S� one can associate a function Utf given by

Utf�x� �� E�f�Xx
t ��.

Under conditions on the processes (being Feller), Utf > Cb�S�, in which case one obtains a

semigroup of positive operators �Ut�tC0 on Cb�S�, such that Ut1 � 1. Then Pt is a Markov

operator and �Pt�tC0 a Markov semigroup. That is, the operators satisfy a semigroup
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f�X1�ω1�� f�X2�ω1�� � f�Xn�ω1�� �

CLT, SLLN
ÐÐÐÐÐÐ� `µ�, fe

f�X1�ω2�� f�X2�ω2�� � f�Xn�ω2�� �

�

f�X1�ωn�� f�X2�ωn�� � f�Xn�ωn�� �

� (CLT, SLLN) � � �

`Pµ0, fe `P 2µ0, fe � `Pnµ0, fe �

Asymptotic stability
ÐÐÐÐÐÐÐÐÐÐÐ� `µ�, fe

(1)

Figure 3: Sample trajectories

property similar to (*) This semigroup in Cb�S� is dual to �Pt�tC0:

`Ptµ, fe � `µ,Utfe
for all f > Cb�S�.
There is a vast mathematical literature on Markov processes and semigroups. The inter-

ested reader may start in e.g. [KP80, MT09, LM00].

Let us consider a process Xn on �Ω,F ,P�, Xn � Ω � S and let us consider its realiza-

tions/sample trajectories �f�Xn�ω���n>N, ω > Ω (see Figure 3). One of the fundamental

problems of classical probability theory is the question about the asymptotic behaviour of

the functional f�Xn� as n�ª, where f � S � R is a Borel measurable function, called an

observable, for S Polish.

One of the question is whether the Strong Law of Large Numbers (SLLN) holds, i.e.

whether time averages 1
n Pn

m�1 f�Xm� converge in some sense to a constant, say C�

f . If

this is the case, then another question concerns fluctuations around C�

f . Typically, if the

observable is not ’unusually large’, after proper rescaling fluctuations can be described by

a Gaussian random variable. Here we see the Central Limit Theorem (CLT), which

states that the random variable 1º
n Pn

m�0�f�Xm��C�

f � converges in law as n�ª to a finite

variance, centred normal variable. Put differently, roughly speaking, the time averages
1
n Pn

m�0 f�Xm�ω�� of a sample trajectory will converge to C�

f at a rate 1º
n
, as n�ª.

Central limit theorems proven for stationary Markov processes can be traced back to

1938 article [Doe38], in which Doeblin proved the central limit theorem for discrete time,

countable Markov chains. Nowadays a sufficient condition for geometric ergodicity of an

ergodic Markov chain is called the Doeblin condition, see [Lot86].

For stationary and ergodic Markov processes central limit theorems has been proven using

different techniques throughout the years in e.g. [GH04, Eag75, DM02, MW00, Wu07] for
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discrete cases and in e.g. [Bha82, Hol05] for the continuous cases.

For non-stationary Markov processes we can find Central Limit Theorem results in [KW12].

Though, additional assumptions of spectral gap in the Wasserstein metric are needed to

get the required results. In Chapter 5 we provide a new result of the validity of the Central

Limit Theorem for a class of non-stationary Markov processes.

Asymptotic stability

Let us recall the definition of asymptotic stability of a Markov operator P on measures.

First let us introduce the definition of weak convergence of measures. Following [Bog07a]

we say that a net �µα� of measures is weakly convergent to a measure µ if for every

continuous bounded real function f on S, one has

lim
α
S
S
f�x�µα�dx� � S

S
f�x�µ�dx�.

Weak convergence can be defined by a topology. The weak topology on the space of finite

signed Borel measures on S is the topology σ�M�S�,Cb�S��: the weakest locally convex

topology on M�S� such that the linear functions µ � RS fdµ are continuous, for every

f > Cb�S�. For more details see [Bog07a], Chapter 8.

Definition 0.0.3. A measure µ� is called invariant for the Markov operator P if Pµ� � µ�.

A Markov operator P is asymptotically stable if there exists an invariant measure µ� > P�S�
such that P nµ� µ� weakly as n�ª for every µ > P�S�.

Note that the invariant measure of an asymptotically stable Markov operator is necessarily

unique.

We can see that asymptotic stability examines the properties of the limit of `P nµ0, fe.
Natural questions one may ask is how can we examine properties of the process P by

analyzing properties of sample trajectories.

As we see in [LM99] or [HHSWS15, HS16, Hor06] asymptotic stability is the main tool for

proving Central Limit Theorems and the Strong Law of Large Numbers. The existence

of asymptotically stable, unique invariant measures for some classes of Markov processes,

including those which the state space need not be locally compact, was obtained in [DX11,

HM08, Sza08, KPS10]
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Issues with L1 as a state space

In the literature one can find multiple approaches to Markov semigroups. Many authors

use an L1 space as a state space. That is, an L1 space with respect to a suitable (invariant)

measure related to the Markov semigroup. Rudnicki in [Rud97] and [Rud00] works with

Markov operators on an L1space giving interesting examples of applications of Markov

operators to diffusion processes and population dynamics. Also Rudnicki, Pichor and

Tyran-Kamińska in [RPTK02] examine asymptotic properties of Markov operators and

semigroups on L1. In the book of Emelianov [Eme07] the L1 setting is described which

is motivated by applications to the probability theory and dynamical systems of Markov

semigroups. Also Lasota and Mackey in [LM94] describe applications of Markov semigroups

on L1 spaces to the theory of fractals.

On the other hand authors like Szarek in eg. [SW12], [Sza97], [SM03] and Komorowski,

Peszat, Szarek in [KPS10] work in spaces of measures instead of L1 space. Let us show

why we choose to work in this setting of measures too and what advantages it gives to

work in spaces of measures.

Let us show the example, based on [GLMC10], how the measure-approach mitigates one

issue, which is the inconsistency of the L1 norm with empirical data.

Example 0.0.4. (based on [DGMT98]) In observing populations in biology, social sciences

and life sciences one often encounters the following situation. Individuals are characterised

by states in a state space S. One splits these states into disjoint classes, e.g. age groups,

length intervals, weight, etc. [Web08]:

Sn � S �
N

�
n�1

Sn where N may be ª.

At specific times one observes - ideally - the total number of individuals with state in each

class. For simplicity of exposition, take S � R� and Shn �� Sn � �nh, �n � 1�h�. In modelling

a population, the population state is described by a density function F �x�. So, the number

of individuals with a state in a set E ` S is given by RE F �x�dm�x� where m is Lebesgue

measure on R�. Observations will be the total count of individuals in a class, i.e. values

ahn � S
Shn

F �x�dm�x�.
Hence, the observed data does not approximate the density function F itself, but the integral

of the density over state classes.
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Let us now see what happens if we make our classes (age, weight, height) smaller, i.e. h

becomes h� @ h. Then observations ah
�

n for the associate h� will give a better ’estimate’ for

F �x�.

Indeed, if F is continuous, then the Mean Value Theorem for Integrals implies that

F �x� � ahn
h

with n � n�h,x� such that x > �nh, �n � 1�h� for h sufficiently small. This is a pointwise

estimate. That means that the rate of convergence of
ah
n�x,h�

h � F �x� as h � 0 can (and will

typically) vary with x.

If one considers instead the estimation of F in L1�R��, then for a given size h A 0 of the

class, the set

Ahn,L1 �� �f > L1�R�� � f C 0,S�nh,�n�1�h� fdm � ahn 
consists of all distribution functions in L1�R�� that yield the observed numbers ahn in the

classes Shn.

The size of this set in L1�R�� can be characterized by its diameter. We have for f, g >

Ah
n,L1 that Yf � gYL1 B YfYL1 � YgYL1 B 2Pª

n�0 a
h
n. On the other hand, for any f > Ah

n,L1,

g � �2ahn
h � f on �nh, �n � 1�h�� > Ah

L1 and Yf � gYL1 � 2Pª

n�1 a
h
n. Hence,

diamAhn,L1
�� sup�Yf � gYL1 � f, g > AL1� � 2

ª

Q
n�0

ahn � 2S
S
F �x�dm.

Thus, diamAhn,L1
is independent of h. In other words, with the decreasing size of the classes,

the set of possible distributions that are constant with the observations does not shrink in

size. The L1-distance between functions f and g equals the total variation distance (see

Section 1.1) between the measures fdm and gdm.

Yf � gYL1�R�,dm� � Yfdm � gdmYTV .
The weak topology on measures, when restricted to the positive measures, is measurable,

i.e. by means of the so-called Dudley metric, derived from the dual bounded Lipschitz normY � Y�BL, see Section 1.1.
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According to [GLMC10] in the Dudley metric Y � Y�BL
diamY�Y�BL ��fdm � f > Ahn,L1�� B h � ª

Q
n�1

ahn � hS
R�

F �x�dm.
So, in the Dudley metric, the set of all distributions that are consistent with observations

does shrink to the actual distribution F �x�dm when the size of the classes decreases to zero.

This shows that considering L1 for equations describing processes based on empirical data

may not be an optimal choice.

Switching of dynamics

A common approach when it comes to constructing a new dynamical system from known

ones is by perturbation. One approach, commonly employed in the field of differential

equations, is adding new processes to the system at infinitesimal small time intervals.

That is, one adds what is often called ’reaction terms’ to the vector field that defines the

dynamics. Another approach is that of switching between dynamics.

Let us present a few examples of mixing perturbations and different types of dynamics.

Let A and B be n � n matrices and consider the linear system of ODEs in Rn:

dx

dt
�t� � Ax�t� �Bx�t�. (1)

The solution operator to (1) is given by the matrix expansion e�A�B�t. In the sense described

above, this ’model’ describes two systems defined individually by

dx

dt
� Ax,

dx

dt
� Bx

combined together through infinitesimal superposition.

Alternatively, one may consider switching between the dynamics defined by A and that by

B after time intervals ∆t. That is, the trajectory defined inductively by x0 > S,

xn �� � eA∆txn�1, if n is even

eB∆txn�1, if n is odd

and

x∆t�t, x0� �� � eA�t�∆t�xn, if t > �n∆t, �n � 1�∆t�, n is even

eB�t�∆t�xn, if t > �n∆t, �n � 1�∆t�, n is odd
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Example 0.0.5 (Lie product formula, see [LE70]). The Lie product formula, named after

Sophus Lie, is the simplest, most basic formula showing that switching scheme for matrices

A and B yields the same, that in the limit of infinitely fast switching

e�A�B�t � lim
n�ª

�eAtn eBtn �n .
That is, the trajectory of the switched system will converge to that defined by infinitesimal

superposition, in the limit of the infinitely fast switching.

Another example of switching different types of dynamics is Iterated Function Systems.

Example 0.0.6 (Iterated Function Systems). The iteration of a map Φ that maps the

state space S into itself yields a dynamical system on S in discrete time. If one has N

such maps Φi � S � S, i � 1,�,N , one may alternate the application of the various Φi.

This can be done probabilistically: with probability pi one chooses map Φi (without memory

of the map that has been applied in the previous step).

If the system is located at x0 > S, then the probability distribution for the location after the

application of one of the maps Φi is

N

Q
i�1

piδΦi�x0� > P�S�,
where δx� denotes the Dirac or point mass located at x�:

δx��E� � � 1, if x� > E

0, otherwise

Such a combination of a set of maps Φi and probabilities pi by which one applies these

maps constitutes the simplest example of an Iterated Function System (IFS).

Each of the maps Φi defines a (deterministic) Markov operator PΦi by means of push-

forward:

PΦiµ�E� �� µ�Φ�1
i �E��, µ >M�S�.

The Markov operator associated to the IFS (or the Markov chain associated to the IFS) is

P �

N

Q
i�1

piPΦi .

More complicated versions (in particular for analysis of their behaviour) include e.g. de-
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pendence of the map selection probabilities pi on states:

pi � pi�x0�.
Iterated Function Systems are an important tool in the study of fractals and generalized

fractals [LM00, LY94, HUT81, Bar12, LM94]

Example 0.0.7 (Piecewise Deterministic Markov Processes originated with [Dav84]).

Constructing a Piecewise Deterministic Markov Process (PDMP) is another way of getting

a new dynamical system. PDMPs are a family of Markov processes involving a determin-

istic motion perturbed by a random jump.

In Figure 4 we see a graphical presentation of an example of a PDMP. Motion starts at

some point X0 and then Xt is given by a deterministic flow φt�X0� until the first jump.

Jumps occur spontaneously, for example in a Poisson-like fashion, with a certain rate.

After a jump we land at Xt1 and motion restarts as before, that is, according to the fixed

deterministic dynamical system �φt�tC0 in S.

t

Y

X1

φt1
(Xt0

)
Xt3

Xt1
= φ∆t0

(Xt0
) + Y1

φ∆t2
(Xt1

)

Xt2
= φ∆t2

(Xt1
) + Y2

t1 t2 t3

Figure 4: Piecewise Deterministic Markov Process starting at t0 � 0 with value X0 > Y .
The motion until time t1, the time of the first jump, is given by φt�Xt0�. At time t1 we
have the first jump Y1. Hence, Xt1 � φ∆t0�X1� � Y1 and Xt2 becomes the ’new’ starting
point for the next deterministic evolution on the interval ∆t2 � t2 � t1.

24



Motivation

The more precise description of construction of PDMP can be found in [HADD84].

Many well-known examples fall into the framework of PDMP. In [HADD84] we can find

descriptions of multiple models, both theoretical and applied, where PDMPs play a crucial

role. Let us show one of these examples, the so called M/G/1 Queue (Example 0.0.8).

Example 0.0.8. [M/G/1 Queue, [HADD84]] Customers arrive at a single-served queue

according to a Poisson process with rate µ, and have independent identically distributed

(i.i.d.) service time requirements with distribution function F . The virtual waiting time

(VWT) is the time a customer arriving at time t would have to wait for service. This

decreases at a unit rate between arrivals- see Figure 5. The queue has two states, ”busy”

and ”empty”. Hence, when VWT reaches 0, we get transition from state 1 (”busy”), to

state 0 (”empty”).

t

V WT

Figure 5: M/G/1 Queue. A queue model, where arrivals are Markovian (modulated by a
Poisson process), service times have a General distribution and there is a single server.
VWT is the virtual waiting time

Example 0.0.9 (Random dynamical systems, [HCWS17]). In Figure 6 we show a more

complicated example of a PDMP �Ȳ �t��tC0 from [HCWS17]. The deterministic component

of the process evolves according to a finite number of semiflows, which are chosen with

certain probabilities at switching times τ1, τ2, . . . . Here we get additional randomness in

the position after jumps. Hence, we ”land” in an ε-neighbourhood of the state after the

jump.

Stability and ergodicity of PDMPs can be found in the work of Costa and Dufour [CD08,

CD09, CD10]. All these results concern PDMPs for which the state space S is locally

compact and Hausdorff. There are almost no results for PDMPs on Polish spaces, even
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Figure 6: [HCWS17] More general Piecewise Deterministic Markov Process. The determin-
istic component of the system evolves according to a finite collection of semiflows (randomly
switched with time). Randomness of post-jump location comes from a selected semiflow and
a random shift within an ε-neighbourhood.

though there are strong examples showing that choosing a Polish space to work on is the

right choice. In [GRTW11] we can find an analysis of PDMPs, on non-locally compact

state space. This setting we shall call infinite-dimensional, because the state space is (a

part of) an infinite dimensional Banach space. In [RTT16] the infinite-dimensional case of

PDMPs is applied to neuron models.

Switching systems-different approaches

Switching schemes like the Lie-Trotter research presented in Chapter 3 were motivated by

the idea of applying such schemes in the analysis of the long-term dynamics of complex

deterministic dynamical systems. It relates to so-called operator splitting techniques which

date back to the 1950s and found ample applications in Numerical Analysis. The classical

splitting methods are the Lie-Trotter splitting, the Strang splitting [DHZ01, Str68, FH07]

and the symmetrically weighted splitting method [Str63, CFH05]. The research in Chapter

3 was motivated to extend these approaches to the setting of Markov semigroups.

Originally splitting schemes applied to semigroups of strongly continuous linear opera-

tors, so-called C0-semigroups [EBNHM13, HP57] and there were attempts to extend it to

semigroups of non-linear operators with mixed success [CG12, KP84]. Our case of inter-

est is that of Markov semigroups. There are several issues when working with Markov

semigroups on spaces of measures. Although Markov semigroup are linear in the space of

measures, they need not be strongly continuous operator semigroups, for the Dudley norm
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for example: the operators Pt that constitute the semigroup need not be continuous on

the vector space of measures for the relevant topology, but only on the cone of positive

measures. See Chapter 3 for more details.

Our models of interest are described by Markov operators. The objective is to provide

conditions for convergence that are trackable in concrete models coming from applications.

The theory of strongly continuous semigroups does not apply to these cases. Hence, the

existing results for strongly continuous semigroups cannot be applied in our setting.

The connection between switching systems and their limit in the case of ’infinitely fast’

switching - if it exists - can be exploited in two ways:

1. The first way of approaching switched systems is the so-called ”divide and conquer”

method [HKLR10, HP18]. The idea is to start from a known complicated system

and split it into ’easier’ systems to get a solution. Examples of ’divide and conquer’

methods are:

� ’Classical’ Lie-Trotter [Tro59]

� Convergence Rates of the Splitting Scheme [CvN10, GLMC10]

2. The second approach is to start from a switched system which is difficult to analyse.

If we know that the limit of the system is close to the system itself we can analyse

the limit instead of the switched system. This works well if one is able to identify the

limit of the switched system. Here the natural question is what can we say about the

limit of the switching system. Can we identify the generator of the limit semigroup?

What can we say about the properties like continuity? Which properties are inherited

by the limit from switching semigroups?

Focus on equicontinuity

Let us show now how working with equicontinuous families of Markov operators can lead

to a generalization of existing concepts of contractive or non-expansive Markov operators.

A Markov operator P defined on a Polish state space S in a natural way defines by iterations

a dynamical system on the space of probability measures. Natural questions occurring in

the theory of dynamical systems are the ones describing the behaviour of the system.

Hence, we are looking for example for steady states, which in the space of measures would

be invariant measures, i.e. µ� > P�S� such that Pµ� � µ�.
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We say that a Markov operator P is strictly contractive for the metric d on P�S� if

d�Pµ,Pν� @ d�µ, ν� for every µ, ν > P�S�.
For strictly contractive Markov operators the natural tool to use is the Banach Fixed Point

Theorem, which yields the existence of a unique invariant measure µ�, provided �P�S�, d�
is complete. Moreover, this invariant measure is then automatically globally stable, as

d�P nµ,µ��� 0 as n�ª for every µ > P�X�.
However, Markov operators are in general not strictly contractive.

We say that a Markov operator P is non-expansive for the metric d on P�S� if

d�Pµ,Pν� B d�µ, ν� for every µ, ν > P�S�.
Szarek shows results of existence and uniqueness of invariant measures for non-expansive

Markov operators that are non-expansive in a Fortet-Mourier norm [Sza03] .

Definition 0.0.10 ([Sza03] restricted to P�S�). A Markov operator P is non-expansive

for Y � YFM,ρ, where ρ is some admissible metric in S, if

YPµ1 � Pµ2YFM,ρ B Yµ1 � µ2YFM,ρ for µ1, µ2 > P�S�,
where YνYFM,ρ � sup�S`f, νeS � f > C�S�, Sf�x�S B 1, Sf�x� � f�y�S B ρ�x, y��. (2)

Any metric ρ that metrizes the topology of S such that �S, ρ� is separable and complete is

called admissible. We will denote by D�S� the family of all admissible metrics on S. By

BL�S, ρ� we will denote the space of bounded Lipschitz functions, hence

BL�S, ρ� �� �f > C�S� � YfYª @ª, Sf SL @ª�.
Non-expansiveness is in principal dependent on a metric d, in particular on the choice of

metric ρ on the underlying state space S if d�µ, ν� � Yµ � νYFM,ρ. Markov operator may

be non-expansive according to Definition 0.0.10 for an admissible metric ρ, but not for

another admissible metric ρ�.

Let us now look at the family of iterates of Markov operator �P n � n > N�. For P non-

expansive this family is equicontinuous in the sense of the following definition.
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Definition 0.0.11. Let T be a topological space and �S, d� a metric space. We say that

the family of continuous maps E ` C�T,S� is equicontinuous at t0 > T if for every ε A 0

there exists an open neighbourhood Uε of t0 such that

d�f�t0�, f�t�� @ ε for all f > E , t > Uε.

E is equicontinuous if it is equicontinuous at every point t > T .

The equicontinuity of a family of iterates of a non-expansive Markov operator motivates

the investigation of the class of Markov operators for which the family of its iterates is

equicontinuous.

In the literature we can find a few concepts related to equicontinuity of families of Markov

operators. In 1964 Jamison [Jam64] described the asymptotic behaviour of iterates of

Markov operators on a compact metric space where he assumed equicontinuity of the

family of (dual) Markov operators. For such operators he got the following results:

Theorem 0.0.12. Let P be a regular Markov operator on a compact metric space X. Let

U be a dual operator for P . Let P be a Feller operator, i.e. U maps Cb�X� into itself.

Then the following conditions are equivalent:

(i) P has a unique invariant measure.

(ii) For every f > C�X� the sequence U �n�f �� 1
n Pn�1

k�0 U
kf converges uniformly to a con-

stant.

(iii) For every f > C�X� the sequence U �n�f �� 1
n Pn�1

k�0 U
kf converges pointwise to a con-

stant.

The equivalence of �i� and �ii� is Theorem 2.1 from [Jam64] and the equivalence of �ii�
and �iii� is Theorem 2.3 from [Jam64].
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