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Notation

Here we state some conventions regarding mathematical notation that we will use through-

out the thesis.

� N denotes the set of natural numbers�1,2,3,��, N0 �� N 8 �0�
� R� �� �x > R � x C 0�
� M�S� is the real vector space of finite signed measures on S

� M��S� is the cone of positive measures in M�S�
� P�S� is the set of probability measures in M��S�
� Y � YTV denotes the total variation norm on M�S�. YµYTV � µ��S� � µ��S�
� 1E is the indicator function of E ` S

� For a measurable function f � S � R and µ >M�S� we denote

`µ, fe � S
S
fdµ

� P �M�S��M�S� denotes Markov operator with a dual operator U

� B�x, r� denotes the open ball of radius r centered at x

� In a metric space �S, d�, if A ` S is nonempty, we denote by Aε �� �x > S � d�x,A� B ε�
the closed ε-neighbourhood of A

� If S is a topological space, Cb�S� is the Banach space of bounded continuous functions

from S to R, endowed with the supremum norm Y � Yª.

� `µ, fe �� RΩ fdµ
� Markov operator is a map P �M��S��M��S� such that:

(MO1) P is additive and R� homogeneous;

(MO2) YPµYTV � YµYTV for all µ >M��S�;
P extends to a positive bounded linear operator on �M�S�, Y � YTV � by Pµ �� Pµ� �

Pµ�.

� We say that Markov process is stationary if its moments do not depend on the time

shift.
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Motivation

The subject of this thesis, ’Approach to Markov Operators on Spaces of Measures by Means

of Equicontinuity’, combines an analytical and probabilistic approach to Markov operators.

The combination of both has yielded various novel results whose proofs are facilitated by the

use of analytical concepts like equicontinuity, measures of non-compactness and attractors

and probabilistic arguments.

Markov operators come naturally from Markov processes, hence stochastic processes whose

future values are determined by most recent values, without the necessity to take into

account the past.

We intentionally work with Markov operators on spaces of finite signed Borel measures on

the underlying Polish state space. Other researchers have looked at the setting of such

operators on continuous bounded functions or subspaces thereof (the ’dual picture’ from

our perspective) or spaces of integrable functions with respect to an invariant measure.

We start by motivating why we think the space of measures as a state space is a more

suitable setting then the spaces of integrable functions.

13



Motivation

Why work with measures as a state space?

There are two main reasons for working with a space of measures as a state space. Let us

start with the approach coming from deterministic systems.

A deterministic perspective

Let us show examples of deterministic models with randomness (in their initial conditions,

random interventions) which motivate us to use a space of measures as a state space. A

first example is that of sustainable harvesting. In Example 0.0.1 we introduce a fishery

model with randomness in the size of a catch. The same idea can be extended to other

types of harvesting, i.e. crop harvesting, where random interventions could be weather

conditions such as the amount of rainfall. We first describe the setting. The model and

use therein of a measure formulation is discussed afterwards.

Example 0.0.1. [Sustainable harvesting, [AHvG13, AHG12], Figure 0.0.1]

One of the problems of fisheries is determining the quota: That is, the amount of fish which

can be caught without extinction of the fish species. Fish population is not distributed homo-

geneously. Hence, the size of an intervention- the size of a single catch- can be considered

random within certain limits, as may be the time between successive harvesting events.

Between interventions the growth of the fish population may be modelled deterministically.

The main purpose of sustainable harvesting is to catch as much as possible, without causing

the extinction of the population with high probability.

Example 0.0.2 is another type of real life application. In this case one wants to determine

the amount of medicine, antibiotics in this case, necessary and sufficient to cure an illness.

The same idea can be applied to a broader class of medical treatments, but also to the

optimal use of pesticides, water, the use of artificial light in greenhouses etc.

Example 0.0.2. [Antibiotic treatment, Figure 0.0.2]

Another example of a deterministic process with random interventions is the antibiotic

treatment of bacterial infections. A common way of treating such infections is by giving

doses of antibiotics in the form of injections or orally at certain moments in time. These

medicines either kill the bacteria or prevent them from reproducing. We assume random-

ness in the amount of bacteria that are killed or influenced by a single dose of antibiotics.

In the time between doses the number of bacteria will increase. The growth of the colony

may be modelled deterministically. The main question is how to determine the right dose

of antibiotics such that the bacterial population goes extinct - almost surely. Too small a

14



Motivation

Figure 1: Sustainable harvesting: A marine ecosystem from which fish are harvested.
The interventions will interfere with the further growth of the population. The main ques-
tion is to quantify the impact of this sampling process on the population. Intensive fishery
reduces the fish population drastically. The catch size may be considered random (with
certain limits) as the fish population is not homogeneously distributed.

dose will not treat the illness and too big a dose can cause unwanted side effects to the

patient.

Main question

The main question in both examples is how to decide on the (maximal) size of interventions

and the time intervals between them so that we get to the required results?

We shall now show how the above real life examples can be formalized in a mathematical

model in the language of measures.

Mathematical description

Mathematically the above processes can be modelled as follows. The dynamics of popula-

tion growth can be modelled deterministically when numbers of individuals are sufficiently

large (e.g. bacteria colonies grow between antibiotic doses; fish populations grow between

fishing periods). Abstractly, this can be formalized using a deterministic dynamical sys-

tem: we have a state space S (nonempty). An element of the state space characterizes

the state of the population eg. the number of fish or bacteria in the population, or their

spatial distribution. Let

φt � x0 ( φt�x0�
15



Motivation

time

Figure 2: Antibiotic treatment. The question is how to determine the right dose of
medicine.

be the deterministic law that prescribes the state of the system at time t after it was in

state x0. The family of flow maps �φt�tC0 has a semigroup property, i.e. for all t, s C 0 and

x0 > S

φt�φs�x0�� � φt�s�x0�; φ0�x0� � x0. ���
At discrete points in time we have random interventions (e.g. the impact of a dose of

antibiotics in the population of bacteria or the size of a catch in a net). The position of

the system in state space immediately after the intervention is given by a probability law

which depends on the state of the system just before the intervention. Examples of such

models can be found in [LM99] and [HHS16]. In such models one way of analysis is as

follows.

The evolution of the system between interventions is given by the deterministic system�φt�tC0 on S, where S is a Polish space. The population size just before the intervention

will be x� � φ∆t�x�, where x > S is the state of the population just after the previous jump

and ∆t is the time between two interventions. For simplicity sake we can assume that

∆t is fixed, non-random. At each point x� > S one has a probability distribution Qx� on

S. Qx��E� is the probability that the system state will be in E ` S immediately after an

16



Motivation

intervention, when the state just before an intervention was x�.

If µ is the probability distribution for the state of the system immediately after an inter-

vention (or at t � 0), hence a measure, then the population state probability distribution

after the n-th intervention is given by:

�Pµ��A� �� S
S
Qφ∆t�x��A�dµ�x�.

Here, P is a Markov operator that is P :

� maps positive Borel measures to positive Borel measures;

� is additive and positively homogenous;

� conserves mass.

A specific, more elaborate case of such a model can be found in [AHG12].

Other interesting applications of the measure-theoretical framework in modelling can be

found in [EHM15], [EHM16]. These papers present applications to crowd dynamics. See

also [AI05] for measure-formulation in population dynamics. As we see, measures naturally

occur from these deterministic models.

Let us now go to the second type of models, probabilistic ones, which motivate the usage

of measure spaces.

A probabilistic perspective

Let �Xx
t �tC0 be a family of stochastic processes in continuous time on a Polish space S

with the Markov property. Here the superscript x indicates that �Xx
t �tC0 starts at t � 0 at

x almost surely. For f a continuous and bounded function on S, i.e. f > Cb�S� and µ a

Borel probability measure describing the distribution for the start position x of the process

define `Ptµ, fe �� S
S
E�f�Xx

t ��dµ�x�.
To f > Cb�S� one can associate a function Utf given by

Utf�x� �� E�f�Xx
t ��.

Under conditions on the processes (being Feller), Utf > Cb�S�, in which case one obtains a

semigroup of positive operators �Ut�tC0 on Cb�S�, such that Ut1 � 1. Then Pt is a Markov

operator and �Pt�tC0 a Markov semigroup. That is, the operators satisfy a semigroup

17



Motivation

f�X1�ω1�� f�X2�ω1�� � f�Xn�ω1�� �

CLT, SLLN
ÐÐÐÐÐÐ� `µ�, fe

f�X1�ω2�� f�X2�ω2�� � f�Xn�ω2�� �

�

f�X1�ωn�� f�X2�ωn�� � f�Xn�ωn�� �

� (CLT, SLLN) � � �

`Pµ0, fe `P 2µ0, fe � `Pnµ0, fe �

Asymptotic stability
ÐÐÐÐÐÐÐÐÐÐÐ� `µ�, fe

(1)

Figure 3: Sample trajectories

property similar to (*) This semigroup in Cb�S� is dual to �Pt�tC0:

`Ptµ, fe � `µ,Utfe
for all f > Cb�S�.
There is a vast mathematical literature on Markov processes and semigroups. The inter-

ested reader may start in e.g. [KP80, MT09, LM00].

Let us consider a process Xn on �Ω,F ,P�, Xn � Ω � S and let us consider its realiza-

tions/sample trajectories �f�Xn�ω���n>N, ω > Ω (see Figure 3). One of the fundamental

problems of classical probability theory is the question about the asymptotic behaviour of

the functional f�Xn� as n�ª, where f � S � R is a Borel measurable function, called an

observable, for S Polish.

One of the question is whether the Strong Law of Large Numbers (SLLN) holds, i.e.

whether time averages 1
n Pn

m�1 f�Xm� converge in some sense to a constant, say C�

f . If

this is the case, then another question concerns fluctuations around C�

f . Typically, if the

observable is not ’unusually large’, after proper rescaling fluctuations can be described by

a Gaussian random variable. Here we see the Central Limit Theorem (CLT), which

states that the random variable 1º
n Pn

m�0�f�Xm��C�

f � converges in law as n�ª to a finite

variance, centred normal variable. Put differently, roughly speaking, the time averages
1
n Pn

m�0 f�Xm�ω�� of a sample trajectory will converge to C�

f at a rate 1º
n
, as n�ª.

Central limit theorems proven for stationary Markov processes can be traced back to

1938 article [Doe38], in which Doeblin proved the central limit theorem for discrete time,

countable Markov chains. Nowadays a sufficient condition for geometric ergodicity of an

ergodic Markov chain is called the Doeblin condition, see [Lot86].

For stationary and ergodic Markov processes central limit theorems has been proven using

different techniques throughout the years in e.g. [GH04, Eag75, DM02, MW00, Wu07] for

18
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discrete cases and in e.g. [Bha82, Hol05] for the continuous cases.

For non-stationary Markov processes we can find Central Limit Theorem results in [KW12].

Though, additional assumptions of spectral gap in the Wasserstein metric are needed to

get the required results. In Chapter 5 we provide a new result of the validity of the Central

Limit Theorem for a class of non-stationary Markov processes.

Asymptotic stability

Let us recall the definition of asymptotic stability of a Markov operator P on measures.

First let us introduce the definition of weak convergence of measures. Following [Bog07a]

we say that a net �µα� of measures is weakly convergent to a measure µ if for every

continuous bounded real function f on S, one has

lim
α
S
S
f�x�µα�dx� � S

S
f�x�µ�dx�.

Weak convergence can be defined by a topology. The weak topology on the space of finite

signed Borel measures on S is the topology σ�M�S�,Cb�S��: the weakest locally convex

topology on M�S� such that the linear functions µ � RS fdµ are continuous, for every

f > Cb�S�. For more details see [Bog07a], Chapter 8.

Definition 0.0.3. A measure µ� is called invariant for the Markov operator P if Pµ� � µ�.

A Markov operator P is asymptotically stable if there exists an invariant measure µ� > P�S�
such that P nµ� µ� weakly as n�ª for every µ > P�S�.

Note that the invariant measure of an asymptotically stable Markov operator is necessarily

unique.

We can see that asymptotic stability examines the properties of the limit of `P nµ0, fe.
Natural questions one may ask is how can we examine properties of the process P by

analyzing properties of sample trajectories.

As we see in [LM99] or [HHSWS15, HS16, Hor06] asymptotic stability is the main tool for

proving Central Limit Theorems and the Strong Law of Large Numbers. The existence

of asymptotically stable, unique invariant measures for some classes of Markov processes,

including those which the state space need not be locally compact, was obtained in [DX11,

HM08, Sza08, KPS10]

19
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Issues with L1 as a state space

In the literature one can find multiple approaches to Markov semigroups. Many authors

use an L1 space as a state space. That is, an L1 space with respect to a suitable (invariant)

measure related to the Markov semigroup. Rudnicki in [Rud97] and [Rud00] works with

Markov operators on an L1space giving interesting examples of applications of Markov

operators to diffusion processes and population dynamics. Also Rudnicki, Pichor and

Tyran-Kamińska in [RPTK02] examine asymptotic properties of Markov operators and

semigroups on L1. In the book of Emelianov [Eme07] the L1 setting is described which

is motivated by applications to the probability theory and dynamical systems of Markov

semigroups. Also Lasota and Mackey in [LM94] describe applications of Markov semigroups

on L1 spaces to the theory of fractals.

On the other hand authors like Szarek in eg. [SW12], [Sza97], [SM03] and Komorowski,

Peszat, Szarek in [KPS10] work in spaces of measures instead of L1 space. Let us show

why we choose to work in this setting of measures too and what advantages it gives to

work in spaces of measures.

Let us show the example, based on [GLMC10], how the measure-approach mitigates one

issue, which is the inconsistency of the L1 norm with empirical data.

Example 0.0.4. (based on [DGMT98]) In observing populations in biology, social sciences

and life sciences one often encounters the following situation. Individuals are characterised

by states in a state space S. One splits these states into disjoint classes, e.g. age groups,

length intervals, weight, etc. [Web08]:

Sn � S �
N

�
n�1

Sn where N may be ª.

At specific times one observes - ideally - the total number of individuals with state in each

class. For simplicity of exposition, take S � R� and Shn �� Sn � �nh, �n � 1�h�. In modelling

a population, the population state is described by a density function F �x�. So, the number

of individuals with a state in a set E ` S is given by RE F �x�dm�x� where m is Lebesgue

measure on R�. Observations will be the total count of individuals in a class, i.e. values

ahn � S
Shn

F �x�dm�x�.
Hence, the observed data does not approximate the density function F itself, but the integral

of the density over state classes.

20
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Let us now see what happens if we make our classes (age, weight, height) smaller, i.e. h

becomes h� @ h. Then observations ah
�

n for the associate h� will give a better ’estimate’ for

F �x�.

Indeed, if F is continuous, then the Mean Value Theorem for Integrals implies that

F �x� � ahn
h

with n � n�h,x� such that x > �nh, �n � 1�h� for h sufficiently small. This is a pointwise

estimate. That means that the rate of convergence of
ah
n�x,h�

h � F �x� as h � 0 can (and will

typically) vary with x.

If one considers instead the estimation of F in L1�R��, then for a given size h A 0 of the

class, the set

Ahn,L1 �� �f > L1�R�� � f C 0,S�nh,�n�1�h� fdm � ahn 
consists of all distribution functions in L1�R�� that yield the observed numbers ahn in the

classes Shn.

The size of this set in L1�R�� can be characterized by its diameter. We have for f, g >

Ah
n,L1 that Yf � gYL1 B YfYL1 � YgYL1 B 2Pª

n�0 a
h
n. On the other hand, for any f > Ah

n,L1,

g � �2ahn
h � f on �nh, �n � 1�h�� > Ah

L1 and Yf � gYL1 � 2Pª

n�1 a
h
n. Hence,

diamAhn,L1
�� sup�Yf � gYL1 � f, g > AL1� � 2

ª

Q
n�0

ahn � 2S
S
F �x�dm.

Thus, diamAhn,L1
is independent of h. In other words, with the decreasing size of the classes,

the set of possible distributions that are constant with the observations does not shrink in

size. The L1-distance between functions f and g equals the total variation distance (see

Section 1.1) between the measures fdm and gdm.

Yf � gYL1�R�,dm� � Yfdm � gdmYTV .
The weak topology on measures, when restricted to the positive measures, is measurable,

i.e. by means of the so-called Dudley metric, derived from the dual bounded Lipschitz normY � Y�BL, see Section 1.1.
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According to [GLMC10] in the Dudley metric Y � Y�BL
diamY�Y�BL ��fdm � f > Ahn,L1�� B h � ª

Q
n�1

ahn � hS
R�

F �x�dm.
So, in the Dudley metric, the set of all distributions that are consistent with observations

does shrink to the actual distribution F �x�dm when the size of the classes decreases to zero.

This shows that considering L1 for equations describing processes based on empirical data

may not be an optimal choice.

Switching of dynamics

A common approach when it comes to constructing a new dynamical system from known

ones is by perturbation. One approach, commonly employed in the field of differential

equations, is adding new processes to the system at infinitesimal small time intervals.

That is, one adds what is often called ’reaction terms’ to the vector field that defines the

dynamics. Another approach is that of switching between dynamics.

Let us present a few examples of mixing perturbations and different types of dynamics.

Let A and B be n � n matrices and consider the linear system of ODEs in Rn:

dx

dt
�t� � Ax�t� �Bx�t�. (1)

The solution operator to (1) is given by the matrix expansion e�A�B�t. In the sense described

above, this ’model’ describes two systems defined individually by

dx

dt
� Ax,

dx

dt
� Bx

combined together through infinitesimal superposition.

Alternatively, one may consider switching between the dynamics defined by A and that by

B after time intervals ∆t. That is, the trajectory defined inductively by x0 > S,

xn �� � eA∆txn�1, if n is even

eB∆txn�1, if n is odd

and

x∆t�t, x0� �� � eA�t�∆t�xn, if t > �n∆t, �n � 1�∆t�, n is even

eB�t�∆t�xn, if t > �n∆t, �n � 1�∆t�, n is odd
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Example 0.0.5 (Lie product formula, see [LE70]). The Lie product formula, named after

Sophus Lie, is the simplest, most basic formula showing that switching scheme for matrices

A and B yields the same, that in the limit of infinitely fast switching

e�A�B�t � lim
n�ª

�eAtn eBtn �n .
That is, the trajectory of the switched system will converge to that defined by infinitesimal

superposition, in the limit of the infinitely fast switching.

Another example of switching different types of dynamics is Iterated Function Systems.

Example 0.0.6 (Iterated Function Systems). The iteration of a map Φ that maps the

state space S into itself yields a dynamical system on S in discrete time. If one has N

such maps Φi � S � S, i � 1,�,N , one may alternate the application of the various Φi.

This can be done probabilistically: with probability pi one chooses map Φi (without memory

of the map that has been applied in the previous step).

If the system is located at x0 > S, then the probability distribution for the location after the

application of one of the maps Φi is

N

Q
i�1

piδΦi�x0� > P�S�,
where δx� denotes the Dirac or point mass located at x�:

δx��E� � � 1, if x� > E

0, otherwise

Such a combination of a set of maps Φi and probabilities pi by which one applies these

maps constitutes the simplest example of an Iterated Function System (IFS).

Each of the maps Φi defines a (deterministic) Markov operator PΦi by means of push-

forward:

PΦiµ�E� �� µ�Φ�1
i �E��, µ >M�S�.

The Markov operator associated to the IFS (or the Markov chain associated to the IFS) is

P �

N

Q
i�1

piPΦi .

More complicated versions (in particular for analysis of their behaviour) include e.g. de-
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pendence of the map selection probabilities pi on states:

pi � pi�x0�.
Iterated Function Systems are an important tool in the study of fractals and generalized

fractals [LM00, LY94, HUT81, Bar12, LM94]

Example 0.0.7 (Piecewise Deterministic Markov Processes originated with [Dav84]).

Constructing a Piecewise Deterministic Markov Process (PDMP) is another way of getting

a new dynamical system. PDMPs are a family of Markov processes involving a determin-

istic motion perturbed by a random jump.

In Figure 4 we see a graphical presentation of an example of a PDMP. Motion starts at

some point X0 and then Xt is given by a deterministic flow φt�X0� until the first jump.

Jumps occur spontaneously, for example in a Poisson-like fashion, with a certain rate.

After a jump we land at Xt1 and motion restarts as before, that is, according to the fixed

deterministic dynamical system �φt�tC0 in S.

t

Y

X1

φt1
(Xt0

)
Xt3

Xt1
= φ∆t0

(Xt0
) + Y1

φ∆t2
(Xt1

)

Xt2
= φ∆t2

(Xt1
) + Y2

t1 t2 t3

Figure 4: Piecewise Deterministic Markov Process starting at t0 � 0 with value X0 > Y .
The motion until time t1, the time of the first jump, is given by φt�Xt0�. At time t1 we
have the first jump Y1. Hence, Xt1 � φ∆t0�X1� � Y1 and Xt2 becomes the ’new’ starting
point for the next deterministic evolution on the interval ∆t2 � t2 � t1.

24



Motivation

The more precise description of construction of PDMP can be found in [HADD84].

Many well-known examples fall into the framework of PDMP. In [HADD84] we can find

descriptions of multiple models, both theoretical and applied, where PDMPs play a crucial

role. Let us show one of these examples, the so called M/G/1 Queue (Example 0.0.8).

Example 0.0.8. [M/G/1 Queue, [HADD84]] Customers arrive at a single-served queue

according to a Poisson process with rate µ, and have independent identically distributed

(i.i.d.) service time requirements with distribution function F . The virtual waiting time

(VWT) is the time a customer arriving at time t would have to wait for service. This

decreases at a unit rate between arrivals- see Figure 5. The queue has two states, ”busy”

and ”empty”. Hence, when VWT reaches 0, we get transition from state 1 (”busy”), to

state 0 (”empty”).

t

V WT

Figure 5: M/G/1 Queue. A queue model, where arrivals are Markovian (modulated by a
Poisson process), service times have a General distribution and there is a single server.
VWT is the virtual waiting time

Example 0.0.9 (Random dynamical systems, [HCWS17]). In Figure 6 we show a more

complicated example of a PDMP �Ȳ �t��tC0 from [HCWS17]. The deterministic component

of the process evolves according to a finite number of semiflows, which are chosen with

certain probabilities at switching times τ1, τ2, . . . . Here we get additional randomness in

the position after jumps. Hence, we ”land” in an ε-neighbourhood of the state after the

jump.

Stability and ergodicity of PDMPs can be found in the work of Costa and Dufour [CD08,

CD09, CD10]. All these results concern PDMPs for which the state space S is locally

compact and Hausdorff. There are almost no results for PDMPs on Polish spaces, even
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Figure 6: [HCWS17] More general Piecewise Deterministic Markov Process. The determin-
istic component of the system evolves according to a finite collection of semiflows (randomly
switched with time). Randomness of post-jump location comes from a selected semiflow and
a random shift within an ε-neighbourhood.

though there are strong examples showing that choosing a Polish space to work on is the

right choice. In [GRTW11] we can find an analysis of PDMPs, on non-locally compact

state space. This setting we shall call infinite-dimensional, because the state space is (a

part of) an infinite dimensional Banach space. In [RTT16] the infinite-dimensional case of

PDMPs is applied to neuron models.

Switching systems-different approaches

Switching schemes like the Lie-Trotter research presented in Chapter 3 were motivated by

the idea of applying such schemes in the analysis of the long-term dynamics of complex

deterministic dynamical systems. It relates to so-called operator splitting techniques which

date back to the 1950s and found ample applications in Numerical Analysis. The classical

splitting methods are the Lie-Trotter splitting, the Strang splitting [DHZ01, Str68, FH07]

and the symmetrically weighted splitting method [Str63, CFH05]. The research in Chapter

3 was motivated to extend these approaches to the setting of Markov semigroups.

Originally splitting schemes applied to semigroups of strongly continuous linear opera-

tors, so-called C0-semigroups [EBNHM13, HP57] and there were attempts to extend it to

semigroups of non-linear operators with mixed success [CG12, KP84]. Our case of inter-

est is that of Markov semigroups. There are several issues when working with Markov

semigroups on spaces of measures. Although Markov semigroup are linear in the space of

measures, they need not be strongly continuous operator semigroups, for the Dudley norm
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for example: the operators Pt that constitute the semigroup need not be continuous on

the vector space of measures for the relevant topology, but only on the cone of positive

measures. See Chapter 3 for more details.

Our models of interest are described by Markov operators. The objective is to provide

conditions for convergence that are trackable in concrete models coming from applications.

The theory of strongly continuous semigroups does not apply to these cases. Hence, the

existing results for strongly continuous semigroups cannot be applied in our setting.

The connection between switching systems and their limit in the case of ’infinitely fast’

switching - if it exists - can be exploited in two ways:

1. The first way of approaching switched systems is the so-called ”divide and conquer”

method [HKLR10, HP18]. The idea is to start from a known complicated system

and split it into ’easier’ systems to get a solution. Examples of ’divide and conquer’

methods are:

� ’Classical’ Lie-Trotter [Tro59]

� Convergence Rates of the Splitting Scheme [CvN10, GLMC10]

2. The second approach is to start from a switched system which is difficult to analyse.

If we know that the limit of the system is close to the system itself we can analyse

the limit instead of the switched system. This works well if one is able to identify the

limit of the switched system. Here the natural question is what can we say about the

limit of the switching system. Can we identify the generator of the limit semigroup?

What can we say about the properties like continuity? Which properties are inherited

by the limit from switching semigroups?

Focus on equicontinuity

Let us show now how working with equicontinuous families of Markov operators can lead

to a generalization of existing concepts of contractive or non-expansive Markov operators.

A Markov operator P defined on a Polish state space S in a natural way defines by iterations

a dynamical system on the space of probability measures. Natural questions occurring in

the theory of dynamical systems are the ones describing the behaviour of the system.

Hence, we are looking for example for steady states, which in the space of measures would

be invariant measures, i.e. µ� > P�S� such that Pµ� � µ�.
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We say that a Markov operator P is strictly contractive for the metric d on P�S� if

d�Pµ,Pν� @ d�µ, ν� for every µ, ν > P�S�.
For strictly contractive Markov operators the natural tool to use is the Banach Fixed Point

Theorem, which yields the existence of a unique invariant measure µ�, provided �P�S�, d�
is complete. Moreover, this invariant measure is then automatically globally stable, as

d�P nµ,µ��� 0 as n�ª for every µ > P�X�.
However, Markov operators are in general not strictly contractive.

We say that a Markov operator P is non-expansive for the metric d on P�S� if

d�Pµ,Pν� B d�µ, ν� for every µ, ν > P�S�.
Szarek shows results of existence and uniqueness of invariant measures for non-expansive

Markov operators that are non-expansive in a Fortet-Mourier norm [Sza03] .

Definition 0.0.10 ([Sza03] restricted to P�S�). A Markov operator P is non-expansive

for Y � YFM,ρ, where ρ is some admissible metric in S, if

YPµ1 � Pµ2YFM,ρ B Yµ1 � µ2YFM,ρ for µ1, µ2 > P�S�,
where YνYFM,ρ � sup�S`f, νeS � f > C�S�, Sf�x�S B 1, Sf�x� � f�y�S B ρ�x, y��. (2)

Any metric ρ that metrizes the topology of S such that �S, ρ� is separable and complete is

called admissible. We will denote by D�S� the family of all admissible metrics on S. By

BL�S, ρ� we will denote the space of bounded Lipschitz functions, hence

BL�S, ρ� �� �f > C�S� � YfYª @ª, Sf SL @ª�.
Non-expansiveness is in principal dependent on a metric d, in particular on the choice of

metric ρ on the underlying state space S if d�µ, ν� � Yµ � νYFM,ρ. Markov operator may

be non-expansive according to Definition 0.0.10 for an admissible metric ρ, but not for

another admissible metric ρ�.

Let us now look at the family of iterates of Markov operator �P n � n > N�. For P non-

expansive this family is equicontinuous in the sense of the following definition.
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Definition 0.0.11. Let T be a topological space and �S, d� a metric space. We say that

the family of continuous maps E ` C�T,S� is equicontinuous at t0 > T if for every ε A 0

there exists an open neighbourhood Uε of t0 such that

d�f�t0�, f�t�� @ ε for all f > E , t > Uε.

E is equicontinuous if it is equicontinuous at every point t > T .

The equicontinuity of a family of iterates of a non-expansive Markov operator motivates

the investigation of the class of Markov operators for which the family of its iterates is

equicontinuous.

In the literature we can find a few concepts related to equicontinuity of families of Markov

operators. In 1964 Jamison [Jam64] described the asymptotic behaviour of iterates of

Markov operators on a compact metric space where he assumed equicontinuity of the

family of (dual) Markov operators. For such operators he got the following results:

Theorem 0.0.12. Let P be a regular Markov operator on a compact metric space X. Let

U be a dual operator for P . Let P be a Feller operator, i.e. U maps Cb�X� into itself.

Then the following conditions are equivalent:

(i) P has a unique invariant measure.

(ii) For every f > C�X� the sequence U �n�f �� 1
n Pn�1

k�0 U
kf converges uniformly to a con-

stant.

(iii) For every f > C�X� the sequence U �n�f �� 1
n Pn�1

k�0 U
kf converges pointwise to a con-

stant.

The equivalence of �i� and �ii� is Theorem 2.1 from [Jam64] and the equivalence of �ii�
and �iii� is Theorem 2.3 from [Jam64].

29



Motivation

List of chapters and related works

� Chapter 1 - Fundamental concepts and results

� Chapter 2 - On a Schur like property for spaces of measures and its consequences,

based on the work Sander C. Hille, Tomasz Szarek, Daniel T.H. Worm, Maria
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Fundamental concepts and results
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Fundamental concepts and results

1.1 Measures as functionals

Let us consider a measurable space �S,Σ�. We will denote S �� �S,Σ�. On S we consider

the space M�S� of finite signed measures. A typical example of a signed measure is

the difference of two probability measures. Every signed measure is a difference of two

nonnegative measures. Hence, for every µ > M�S� we have the equality µ � µ� � µ�.

The measures µ� and µ� are called positive and negative part of µ respectively. Such

decomposition is called the Jordan or Jordan-Hahn decomposition. Following [Bog07b],

there exist S� and S� such that for all A > A one has µ�A 9 S�� B 0 and µ�A 9 S�� C 0.

We define the total variation norm on M�S� by YµYTV �� SµS�S� � µ��S� � µ��S� �

supB>Σ,B`S µ�B��infB>Σ,B`S µ�B�. M�S� endowed with Y�YTV is a Banach lattice. However,

the topology given by Y � YTV norm is often too strong for applications. Let us show this in

the following example, following [Wor10].

Example 1.1.1. Let Φt � S � S be a family of measurable maps, t > R� such that Φt XΦs �

Φt�s and Φ0 � IdS. Each Φt induces a linear operator TΦ�t� on M�S� by

TΦ�t�µ �� µ XΦ�1
t .

We get the following properties of the family T �� �TΦ�t��tC0:

(+) T leaves the cone M��S� invariant

(+) TΦ�t�δx � δΦt�x�

(–) T is strongly continuous with respect to Y �YTV only if it is constant, as Yδx�δyYTV � 2

whenever x ~� y.

(–) In general t( Tφ�t�δt � δΦt�x� will not be strongly measurable as its range will not be

separable. This makes �M�S�, Y � YTV � not suitable to study a variation of constants

formula

µt � TΦ�t�µ0 � S
t

0
TΦ�t � s�F �µs�ds,

as the integral is hard to interpret.

Throughout the thesis we will assume that S is a Polish space. Hence, S is separable and

completely metrizable. Any metric d that metrizes the topology of S such that �S, d� is

separable and complete is called admissible. We will denote by D�S� the family of all

admissible metrics on S. We will consider Cb�S�, the Banach space of continuous bounded
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functions on S, with the supremum norm

YfYª � sup�Sf�x�S � x > S�.
Definition 1.1.2. A function f � S � R is (globally) Lipschitz if there exists L C 0 such

that Sf�x� � f�y�S B Ld�x, y� for all x, y > S. (1.1)

Let Lip�S, d� (or Lip�S� for shorter notation) denote the vector space of Lipschitz functions

on �S, d�. The Lipschitz constant of f > Lip�S� on �S, d� is

Sf SL �� sup�Sf�x� � f�y�S
d�x, y� � x x y, x, y > S¡ ,

which is the best(i.e.smallest) constant L that can be used in (1.1). Following Dudley

[Dud66], then BL�S, d� will denote the Banach space of all bounded Lipschitz functions f

on S with the bounded Lipschitz or Dudley norm

YfYBL,d � Sf SL,d � YfYª.
Proposition 1.1.3 ([Wor10], Proposition 2.2.7). BL�S, d� is complete with respect toY � YBL,d.
We will denote Y � YBL,d by Y � YBL if no ambiguity occurs.

We can equip the space M�S� with different equivalent norms. Zaharopol [Zah00], Lasota

and Szarek [LS06], Lasota and Yorke [LY94] use the Fortet-Mourier norm of the form

YµY�FM � sup�S
S
fdµ � f > BL�S, d�, YfYFM � max�YfYª, Sf SL� B 1�.

The name Fortet-Mourier can be misleading though, as in the original paper Fortet and

Mourier [[FM53], p.277] construct the bounded Lipschitz/Dudley norm Y � YBL,d, not the

Fortet-Mourier norm.

The norm Y � YFM is equivalent to Y � YBL,d and to all the norms of the formYfYBL�S,d,p� �� �Sf Sp � YfYpª� 1
p , 1 @ p @ª.

The space M�S� embeds into BL�S�� by means of integration µ( Iµ, where

Iµ�f� � `µ, fe �� S
S
f dµ.
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Each element in M�S� defines an element of the dual space BL�S, d�� with the norm

YµY�BL,d � sup�`µ, fe � f > BL�S, d�, YfYBL,d B 1�.
Let us recall few useful facts about the space �M�S�, Y � Y�BL,d�.
Lemma 1.1.4 ([Wor10], Lemma 2.3.6). For every x > S, δx is in �M�S�, Y � Y�BL,d� andYδxY�BL,d � 1. Moreover, for x, y > S,

Yδx � δyY�BL,d � 2d�x, y�
2 � d�x, y� B min�2, d�x, y��.

By M��S� we denote the convex cone of positive measures in M�S�. One has

YµYTV � YµY�BL � YµY�FM for all µ >M��S�.
In general, for µ >M�S�, YµY�BL B YµY�FM B YµYTV .

1.1.1 Some topologies on spaces of maps

Let us outline the main topologies we are interested in. To describe the topologies consider

topological spaces X and Y and a collection F of maps f � X � Y . Let us show different

ways to provide F with a topology.

� Topology of pointwise convergence [[Kel55], p.88] on F :

The topology of pointwise convergence is of importance as this is the smallest topol-

ogy for F for which each point ecolution δx, x > X is continuous on F , see [Kel55]

p.217. A net of function �fα�α>A converges to f if and only if fα�x�� f�x� for each

x >X. Note that the topology of X does not play a role in the results on the topology

of poinwise convergence on F .

� Compact open topology on F :

The other topology of interest, which does depend on the topology of X, is the

compact-open topology . Let F be a collection of continuous maps f �X � Y . Thus,

for fixed f the map X � Y � x ( f�x� is continuous. We look for a topology on

F such that the map F �X � Y � �f, x� ( f�x� is (jointly) continuous. Here the

compact open topology plays a role. Let us define

F�A,B� �� �f > F Sf�A� ` B�
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for A `X,B ` Y .

The sets F�K,U� such that K ` X compact and U ` Y open are a subbase for the

compact open topology. For more details see [Kel55]. In the main part of this thesis-

concerning Markov operators- equicontinuous functions of maps play a central role.

Equicontinuous families of maps

Let X be a topological space and �S, d� a metric space. Let F be a family of maps

f �X � S.

Definition 1.1.5. The family F of functions f � X � S is equicontinuous at x > X if for

every ε A 0 there exists an open neighbourhood Uε of x such that

d�f�x�, f�y�� @ ε for y > Uε, f > F .

Family F is equicontinuous if it is equicontinuous at every point of X.

Let us now recall Theorem 15, p.232 from [Kel55].

Theorem 1.1.6. If F is an equicontinuous family, then the topology of pointwise conver-

gence is jointly continuous. Therefore it coincides with the compact open topology.

1.1.2 Tight sets of measures

A finite signed Borel measure µ is called tight (see eg. Dudley [Dud66]) if for every ε A 0

there exists a compact set K ` S such that SµS�S �K� @ ε. The class of all tight measures

is denoted by Mt�S� .

A family M ` M�S� is uniformly tight (Abbrev. tight) if for every ε A 0 there exists a

compact set K ` S such that SµS�S �K� @ ε for all µ >M .

A sequence of measures �µn�n>N ` M�S� is weakly convergent to a measure µ > M�S� if

for every bounded continuous real function f on S one has

lim
n�ª

`µn, fe � `µ, fe.
A frequent problem is the following. Can one select a weakly convergent subsequence

(hence in the weak topology σ�M,Cb�X��) in a given sequence? It turns out that the

problem can be reduced to analyzing the uniform tightness of the family of measures.
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Hence (uniform) tightness of measures is a key to understanding the weak convergence of

sequences of measures.

Theorem 1.1.7. [Prokhorov Theorem, [Bog07a] Theorem 8.6.2] Let X be a complete

metric space and let M be a family of Borel measures on X. Then the following con-

ditions are equivalent:

(i) every sequence �µn� `M contains a weakly convergent subsequence;

(ii) the family M is uniformly tight and unifornly bounded in the total variation norm.

The above conditions are equivalent for any complete metric space X if M `Mt�S�.

Tightness of sets of measures is a tool used in analyzing the existence of invariant measures

for Markov operators, e.g. by Szarek in [Sza03]. By Proposition 5.1 in [Sza03] we get that

a continuous (in a weak topology) Markov operator which is tight admits an invariant

distribution.

1.2 Markov operators on spaces of measures and semi-

groups of Markov operators

Markov operators occur in diverse branches of pure and applied mathematics. They are

used in studying dynamical systems and dynamical systems with stochastic perturbations.

Semigroups of Markov operators are generated by e.g. stochastic differential equations

or deterministic partial differential equations. Transport equations, which are generating

Markov semigroups, appear in the theory of population dynamics [Hei86, Rud00, Rud97].

Such processes were also extensively studied in close connection to fractals and semifractals

[BD85, BEH89, DF99, LM94, LM00].

Markov operator P is defined as a map P �M��S��M��S� such that

(i) P is additive and R� homogenous: P �λ1µ1�λ2µ2� � λ1Pµ1�λ2Pµ2; for µi >M��S�,
λi C 0.

(ii) YPµYTV � YµYTV for all µ >M��S�.
Every Markov operator can be extended to the space of all signed measures. Namely, for

every µ > M�S�, we get a decomposition µ � µ1 � µ2, where µ1, µ2 > M��S�. We set

Pµ � Pµ1 � Pµ2.

The decomposition is not unique, but different decompositions vary by a positive measure,
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such that Pµ does not depend on the decomposition chosen.

A linear operator U � BM�S�� BM�S� is called dual to P if

`Pµ, fe � `µ,Ufe for all µ >M��S�, f > BM�S�.
If such an operator U exists, it is unique and we call the Markov operator P regular .

U is positive and satisfies U1 � 1. The Markov operator P is a Markov-Feller operator

if it is regular and the dual operator U maps the space of continuous bounded functions

Cb�S� into itself. A Markov semigroup �Pt�tC0 on S is a semigroup of Markov operators on

M��S�. The semigroup property entails that PtXPs � Pt�s and P0 � Id. Markov semigroup

is regular (or Feller) if all operators Pt are regular (or Feller). Then �Ut�tC0 is a semigroup

on BM�S� which is called a dual semigroup.

1.3 Convergence of sequences of measures

Dudley analyzed the relation between- in our terminology- weak and Y � Y�BL convergence

of measures. In Theorems 6, 7 and 11 [Dud66], Dudley showed the following for pseudo-

metric spaces slightly adapted to our terminology. Any metric space is a pseudo-metric

space.

Theorem 1.3.1. Let �S, d� be a pseudo-metric space, µn >Ms�S�:Then:

(i) if µn � µ weakly, then Yµn � µY�BL � 0;

(ii) Yµn �µY�BL � 0 implies µn � µ weakly for any sequence in MS�S� if and only if S is

uniformly discrete;

(iii) if S is a topological space, µn >M�

s �S� and µn converges to µ weakly, then µn � µ

uniformly on any equicontinuous and uniformly bounded class of functions on S;

(iv) if �S, d� is a metric space, µn, µ >M��S� and Yµn�µY�BL � 0 as n�ª, then µn � µ

weakly.

We provide conditions on subsets of (signed) mesures M�S� such that the weak topology

on M�S� coincides with the norm topology defined by the dual bounded Lipschitz normY � YBL or by Fortet-Mourier norm Y � Y�FM , see Theorem 2.3.5, Theorem 2.3.7 and similar

results in Section 2.3.2. These build on Theorem 2.3.1 which states that for a bounded

(in total variation norm) sequence of signed measures �µn� that converges weakly, that is`µn, fe is convergent for any f > BL�S, d�, �µn�n converges in Y � YBL,d norm.
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This is not precisely the Schur-property for �M�S�, Y �Y�BL�, but can be considered a Schur-

like property, further discussed in Chapter 2.

Let us recall definition (Definition 2.3.4., [NJKAKK06]) of the Schur property.

Definition 1.3.2. A Banach space X has the Schur property (or X is a Schur space) if

weak and norm sequential convergence coincide in X, i.e. a sequence �xn�n in X converges

to 0 weakly if and only if �xn�n converges to 0 in norm.

By the following example (for details see Example 2.5.4, Megginson [MBA98]) we can see

that the space l2 does not have the Schur property. In general, none of the spaces lp,

1 @ p @ª has the Schur’s property.

Example 1.3.3. Let �en� be the sequence of unit vectors in l2. Then x�en � 0 for each

x� in l�, and so the sequence �en� converges to 0 with respect to the weak topology. SinceYenY � 1 for each n, the sequence �en� cannot converge to 0 with respect to the norm

topology. The norm and weak topologies of l2 are therefore different, so it is possible for

the weak topology of a normed space to be a proper subtopology of the norm topology.

1.4 Lie-Trotter product formula

Chapter 3 of this thesis, the Lie-Trotter product formula for Markov operators, was moti-

vated by the need to deal with more and more complicated models of physical phenomena.

Citing [HKLR10] ”A strategy to deal with complicated problems is to “divide and con-

quer”. (In the context of equations of evolution type) a rather successful approach in

this spirit has been operator splitting.” Let us show the simplest example of an operator

splitting scheme (based on [HKLR10]). We want to solve the Cauchy problem

dU

dt
�A�U� � 0, U�0� � U0,

for an operator A. Formally we get the solution of the form

U�t� � etAU0.

Though, here the information about the operatorA is needed. IfA is of some ”complicated”

form, we need to find a way to be able to compute this solution in an optimal way. Assuming

we can write A as a sum A1 �A2 and solve problems

dU

dt
�A1�U� � 0, U�0� � U0
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1.4. Lie-Trotter product formula

and
dU

dt
�A2�U� � 0, U�0� � U0

separately with solutions

U�t� � etA1U0

and

U�t� � etA2U0,

we get an operator splitting of the simplest form:

U�tn�1� � e�∆tA2e�∆tA1U�tn�,
where tn �� n∆t.

If A1 and A2 would commute, we get e�tA1e�tA2 � e�tA. Hence, the method is exact. For

noncommuting operators we get the Lie-Trotter (or Lie-Trotter-Kato) formula of the form

U�t� � etAU0 � lim
∆t�0,t�n∆t

�e�∆tA2e�∆tA1�nU0.

The questions which one wants to answer is if the above limit exists and, if yes, does

it give the solution of an original problem. If the answers are positive, one can use the

approximating scheme to analyze the more difficult original problem. Various conditions

for convergence are stated and discussed in Chapter 3.

Hence, we see that operator splitting schemes can be a way to go when analyzing com-

plicated models. Let us now show why we are interested in product formula for Markov

operators. One way to construct a new dynamical system from a known one is by perturbing

the original problem. One of the examples of such constructions is an iterated function

system (IFS), which is analyzed in the theory of fractals [Bar88, BDEG88, LM94, MS03].

An IFS is an example of stochastic switching at fixed times between deterministic flows.

An IFS ��wi, pi�; i > I�� with probabilities is given by a family of continuous functions

wi � S � S, i > I, where �S, d� is a complete separable metric space with a family of contin-

uous functions pi � S � �0,1�, i > I s.t. Pi>I pi�x� � 1. Such IFS defines a Markov operator

P acting on measures by

Pµ�A� �Q
i>I
S
X
1�wi�x��pi�x�µ�dx� for µ >M�S�,A > B.

Such a Markov operator is also Feller, hence it seems natural to consider Markov-Feller

operators.
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The next example which motivates analyzing switching schemes for Markov semigroup, is

piecewise-deterministic Markov processes (PDMPs) where deterministic motion is punctu-

ated by random jumps occurring according to a suitable distribution. PDMSs have wide

applications e.g. to gene expression in the work of Hille, Horbacz and Szarek [HHS16]

and Mackey, Tyran-Kaminska and Yvines [MTKY13]. The analysis of such processes is

concentrated mostly on their long time behaviour. By analyzing Lie-Trotter formula in

such a setting we may be able to extend the analysis of piecewise-deterministic Markov

processes to switching between deterministic and stochastic models.

Intriguing example

Let us now consider an example of a convergent Lie-Trotter product formula for a right

translation semigroup and a multiplication semigroup for which no assumption on gener-

ators is made. This example is originally from Goldstein [Gol85], p.56, without detailed

proof though.

Let X �� L1�R� (complex-valued) and let us consider the right translation semigroup�S�t��tC0 and a multiplication semigroup �T �t��tC0 generated by B � Miq for q � R � R a

measurable and locally integrable function, where Miqf �� iq �f (on f in a smaller domain):

T �t�f�x� �� eitq�x�f�x�
S�t�f�x� �� f�x � t�

Further, define

U�t�f�x� �� e�i R t0 q�x�s�ds�f�x � t�.
For f >X we can compute products

�T � t
n
�S � t

n
��n f�x� � exp�i n�1

Q
k�0

q�x � kt~n�t~n� � f�x � t�, for t C 0, x > R.

We want to show that the product converges in Lebesgue-measure to U�t�f�x�.
First let us now proof the following lemma:

Lemma 1.4.1. For every g > L1
loc�R�, t A 0,

n�1

Q
j�0

g �� � tj
n
� t
n
� S

t

0
g�� � s�ds, as n�ª

in Lebesgue-measure, on every compact interval I.
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Proof. Let µ be a Lebesgue measure on R. We want to show that for all η A 0:

lim
n�ª

µ�x > I � Wn�1

Q
j�0

g �x � tj
n
� t
n
� S

t

0
g�x � s�dsW C η� � 0.

By Chebyshev inequality (see Bogachev [Bog07b], Theorem 2.5.3.) we get

µ �x > I � TPn�1
j�0 g �x � tj

n
� t
n � R t0 g�x � s�dsT C η� B 1

η RI TPn�1
j�0 g �x � tj

n
� t
n � R t0 g�x � s�dsTdx

Also

RI TPn�1
j�0 g �x � tj

n
� t
n � R t0 g�x � s�dsTdx � RI T tn Pn�1

j�0 g �x � tj
n
� � R t0 g�x � s�dsTdx �

� RI V tn Pn�1
j�0 �g �x � tj

n
� � n

t R
tj
n
t�j�1�
n

g�x � s�ds�Vdx �

� RI V tn Pn�1
j�0

n
t R

tj
n
t�j�1�
n

�g �x � tj
n
� � g�x � s�ds�Vdx B

B Pn�1
j�0 RI R

tj
n
t�j�1�
n

Tg �x � tj
n
� � g�x � s�Tdsdx

Let ε A 0. Take t0 > R, δ A 0 and let Î �� �0BsBt I � s. Then Î is compact with a nonempty

interior. There exists h > Cc�Î� such that

S
Î
Sg�x� � h�x�Sdx @

ε

3
.

Then

S
I
Sg�x � s� � h�x � s�Sdx B S

Î
Sg�y� � h�y�Sdy @ ε

3
, for all 0 B s B t

and for s0 and s in �0, t� sufficiently close,

RI Sg�x � s0� � g�x � s�Sdx B RI Sg�x � s0� � h�x � s0�Sdx � RI Sh�x � s0� � h�x � s�Sdx�
RI Sh�x � s� � g�x � s�Sdx B ε

as h is uniformly continuous on Î. So for s sufficiently close to s0 in �0, t�, RI Sg�x�s0��g�x�
s�Sdx can be made arbitrarily small. Using the above estimation we get for n sufficiently

large that:

µ �x > I � TPn�1
j�0 g �x � tj

n
� t
n � R t0 g�x � s�dsT C η� B

B 1
η Pn�1

j�0 RI R
tj
n
t�j�1�
n

Tg �x � tj
n
� � g�x � s�Tdsdx @

@ 1
η Pn�1

j�0 R
tj
n
t�j�1�
n
RI εds � ε

η Pn�1
j�0

t
n @ ε tη

So indeed, for every g > L1
loc�R� we get the convergence in measure.
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Now let us apply the continuous map exp�i�� � R � C. According to [Bog07b], Corollary

2.2.6, we get convergence in measure on a compact interval I of

En �� exp�i n

Q
j�1

g�� � tj
n
� t
n
�� exp�iS t

0
g�� � s�ds� �� E.

For f > Cc�R� and again using Corollary 2.2.6 (Bogachev [Bog07b], p.113) we get that

Enf � Ef in measure. Since SEnf S � Sf S > L1, by Dominated Convergence Theorem (cf.

[Bog07a], Theorem 2.8.5, p.132) we get convergence in L1-norm, so

YEnf �EfYL1 � 0 as n�ª.

As Cc�R� ` L1�R� is Y � YL1-dense, for f > L1�R� we can find f0 > Cc�R� such that

Yf � f0YL1 @ ε.

Then YEnf �EfYL1 B YEnf �Enf0YL1 � YEnf0 �Ef0YL1 � YEf0 �Enf0YL1 B

B Yf � f0YL1 � YEnf0 �Ef0YL1 � Yf � f0YL1 B 3ε

for a sufficiently large n.

So we get in L1�R� that

lim
n�ª

�T � t
n
�S � t

n
��n f � U�t�f.

The intriguing part of this example is the fact, that the Lie-Trotter product formula holds

for T and S, but these semigroups do not satisfy common conditions for convergence of

Lie-Trotter schemes (see Chapter 3). By Theorem 8.12 in [Gol85] if A is the generator

of S and B is a generator of T then, if A �B is a generator, then it is a generator of U .

However, it is possible that A �B need not be a generator; in fact, it can even happen that

D�A �B� � �0�.
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Chapter 2

On a Schur-like property for spaces

of measures and its consequences

This chapter is based on:

Sander C. Hille, Tomasz Szarek, Daniel T.H. Worm, Maria Ziemlańska. On a Schur-like

property for spaces of measures. Preprint available at https://arxiv.org/abs/1703.00677

Abstract:

A Banach space has the Schur property when every weakly convergent sequence converges

in norm. We prove a Schur-like property for measures: if a sequence of finite signed Borel

measures on a Polish space is such that it is bounded in total variation norm and such that

for each bounded Lipschitz function the sequence of integrals of this function with respect to

these measures converges, then the sequence converges in dual bounded Lipschitz norm or

Fortet-Mourier norm to a measure. Two main consequences result: the first is equivalence

of concepts of equicontinuity in the theory of Markov operators in probability theory and

the second concerns conditions for the coincidence of weak and norm topologies on sets

of measures that are bounded in total variation norm that satisfy additional properties.

Finally, we derive weak sequential completeness of the space of signed Borel measures on

Polish spaces from the Schur-like property.
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2.1 Introduction

The mathematical study of dynamical systems in discrete or continuous time on spaces of

probability measures has a long-lasting history in probability theory (as Markov operators

and Markov semigroups, see e.g. [MT09]) and the field of Iterated Function Systems

[BDEG88, LY94] in particular. In analysis there is a growing interest in solutions to

evolution equations in spaces of positive or signed measures, e.g. in the study of structured

population models [AI05, CCC13, CCGU12], crowd dynamics [PT11] or interacting particle

systems [EHM16]. Although an extensive body of functional analytic results have been

obtained within probability theory (e.g. see [Bil99, Bog07a, Dud66, LeC57]), there is still

need for further results, driven for example by the topic of evolution equations in space of

measures, in which there is no conservation of mass.

This chapter provides such functional analytic results in two directions: one concerning

properties of families of Markov operators on the space of finite signed Borel measures

M�S� on a Polish space S that satisfy equicontinuity conditions (Theorem 2.3.5). The

other provides conditions on subsets of M�S�, where S is a Polish space, such that weak

topology on M�S� coincides with the norm topology defined by the Fortet-Mourier or dual

bounded Lipschitz norm Y � Y�BL (Theorem 2.3.7 and similar results in Section 2.3.2).

Both are built on Theorem 2.3.1, which states that if a sequence of signed measures is

bounded in total variation norm and has the property that all real sequences are conver-

gent that result from pairing the given sequence of measures by means of integration to

each function in the space of bounded Lipschitz functions, BL�S�, then the sequence is

convergent for the Y �Y�BL-norm. This is a Schur-like property. Recall that a Banach space X

has the Schur property if every weakly convergent sequence in X is norm convergent (e.g.

[AJK06], Definition 2.3.4). For example, the sequence space `1 has the Schur property

(cf. [AJK06], Theorem 2.3.6). Although the dual space of �M�S�, Y � Y�BL� is isometri-

cally isomorphic to BL�S� (cf. [HW09b], Theorem 3.7), the (completion of the) space�M�S�, Y � Y�BL� is not a Schur space, generally (see Counterexample 2.3.2). The condition

of bounded total variation cannot be omitted.

Properties of the space of Borel probability measures on S for the weak topology induced

by pairing with Cb�S� have been widely studied in probability theory, e.g. consult [Bog07a]

for an overview. Dudley [Dud66] studied the pairing between signed measures and the space

of bounded Lipschitz functions, BL�S�, in further detail. Pachl investigated extensively

the related pairing with Ub�S�, the space of uniformly continuous and bounded functions

[Pac79, Pac13]. See also [Kal04]. Because of our interest in equicontinuous families of
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Markov operators on the one hand, which is intimately tied to ‘test functions’ in the space

BL�S�, and to dynamical systems in spaces of measures equipped with the Y � Y�BL-norm,

or flat metric, on the other hand, we consider novel functional analytic properties of the

space of finite signed Borel measures M�S� for the BL�S�-weak topology in relation to

the Y � Y�BL-norm topology.

Equicontinuous families of Markov operators were introduced in relation to asymptotic

stability: the convergence of the law of stochastic Markov process to an invariant measure

(e.g. e-chains [MT09], e-property [CH14, KPS10, LS06, Sza10], Cesaro-e-property [Wor10],

Ch.7; see also [Jam64]). Hairer and Mattingly introduced the so-called asymptotic strong

Feller property for that purpose [HM06]. Theorem 2.3.5 rigorously connects two dual

viewpoints – concerning equicontinuity: Markov operators acting on measures (laws) and

Markov operators acting on functions (observables). In dynamical systems theory too,

there is special interest in ergodicity properties of maps with equicontinuity properties

(e.g. [LTY15]).

The structure of the chapter is as follows. After having introduced some notation and

concepts in Section 2.2 we provide in Section 2.3 the main results of the chapter. The

delicate and rather technical proof of the Schur-like property, Theorem 2.3.1, is provided

in Section 2.4. It uses a kind of geometric argument, inspired by the work of Szarek

(see [KPS10, LS06]), that enables a tightness argument essentially. Note that our ap-

proach yields a new, independent and self-contained proof of the Ub�S�-weak sequential

completeness of M�S� (cf. [Pac79], or [Pac13], Theorem 5.45) as corollary. Section 2.5

shows that the Schur-like property also implies – for Polish spaces – the well-known fact of

σ�M�S�,Cb�S��-weakly sequentially completeness of M�S�. It uses a type of argument

that is of independent interest.

2.2 Preliminaries

We start with some preliminary results on Lipschitz functions on a metric space �S, d�.
We denote the vector space of all real-valued Lipschitz functions by Lip�S�. The Lipschitz

constant of f > Lip�S� is

Sf SL �� sup�Sf�x� � f�y�S
d�x, y� � x, y > S, x x y¡ .
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BL�S� is the subspace of bounded functions in Lip�S�. It is a Banach space when equipped

with the bounded Lipschitz or Dudley norm

YfYBL �� YfYª � Sf SL.
The norm YfYFM �� max�YfYª, Sf SL�� is equivalent. BL�S� is partially ordered by pointwise

ordering.

The space M�S� embeds into BL�S�� by means of integration: µ( Iµ, where

Iµ�f� � `µ, fe �� S
S
f dµ.

The norms on BL�S�� dual to either Y � YBL or Y � YFM introduce equivalent norms on M�S�
through the map µ ( Iµ. These are called the bounded Lipschitz norm, or Dudley norm,

and Fortet-Mourier norm on M�S�, respectively. M�S� equipped with the norm topology

induced by either of these norms is denoted by M�S�BL. It is not complete generally. We

write Y � YTV for the total variation norm on M�S�:
YµYTV � SµS�S� � µ��S� � µ��S�,

where µ � µ� �µ� is the Jordan decomposition of µ. M��S� is the convex cone of positive

measures in M�S�. One has

YµYTV � YµY�BL � YµY�FM for all µ >M��S�. (2.1)

In general, for µ >M�S�, YµY�BL B YµY�FM B YµYTV.

A finite signed Borel measure µ is tight if for every ε A 0 there exists a compact set Kε ` S

such that SµS�S �Kε� @ ε. A family M `M�S� is tight or uniformly tight if for every ε A 0

there exists a compact set Kε ` S such that SµS�S � Kε� @ ε for all µ > M . According

to Prokhorov’s Theorem (see [Bog07a], Theorem 8.6.2), if �S, d� is a complete separable

metric space, a set of Borel probability measures M ` P�S� is tight if and only if it is

precompact in P�S�BL. Completeness of S is an essential condition for this theorem to

hold.

In a metric space �S, d�, if A ` S is nonempty, we write

Aε �� �x > S � d�x,A� B ε�
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for the closed ε-neighbourhood of A.

2.3 Main results

A fundamental result on the weak topology on signed measures induced by the pairing

with BL�S� is the following fundamental result that provides a ‘weak-implies-strong-

convergence’ property for this pairing on which we build our main results:

Theorem 2.3.1 (Schur-like property). Let �S, d� be a complete separable metric space. Let�µn� ` M�S� be such that supn YµnYTV @ ª. If for every f > BL�S� the sequence `µn, fe
converges, then there exists µ >M�S� such that Yµn � µY�BL � 0 as n�ª.

A self-contained, delicate proof of this result is deferred to Section 2.4. The condition that

the sequence of measures must be bounded in total variation norm cannot be omitted as

the following counterexample indicates.

Counterexample 2.3.2. Let S � �0,1� with the Euclidean metric. Let dµn �� n sin�2πnx�dx,

where dx is Lebesgue measure on S. Then YµnYTV is unbounded. Let g > BL�S� withSgSL B 1. According to Rademacher’s Theorem, g is differentiable Lebesgue almost every-

where. Since SgSL B 1, there exists f > Lª��0,1�� such that for all 0 B a @ b B 1,

S
b

a
f�x�dx � g�b� � g�a�.

This yields `µn, ge � 1

2π S
1

0
cos�2πnx�f�x�dx.

Since f > L2��0,1��, it follows from Bessel’s Inequality that

lim
n�ª

S
1

0
cos�2πnx�f�x�dx � 0.

So `µn, ge� 0 for all g > BL�S�. Now, let gn > BL�S� be the piecewise linear function that

satisfies gn�0� � 0 � gn�1�,

gn�1�4i
4n

� � 1
4n , gn�3�4i

4n
� � � 1

4n , for i > N, 0 B i B n � 1.

Then SgSL � 1 and YgnYª � 1
4n . An easy calculation shows that `µn, gne � 1

π2 for all n > N.

Therefore YµnY�BL cannot converge to zero as n�ª.

Theorem 2.3.1 has the following corollary. Here we denote by Ub�S� the Banach space of

47



On a Schur like property for spaces of measures and its consequences

uniformly continuous bounded functions on S, equipped with the Y � Yª-norm. This result

was originally obtained by Pachl [Pac79], see also [Pac13], Theorem 5.45.

Corollary 2.3.3. M�S� is Ub�S�-weakly sequentially complete.

Proof. Let �µn� `M�S� be such that `µn, fe is Cauchy for every f > Ub�S�. Then it follows

from the Uniform Boundedness Principle that the sequence �µn� is bounded in Ub�S��.
Consequently, supn YµnYTV � M @ ª. Theorem 2.3.1 implies that there exists µ > M�S�
such that `µn, fe � `µ, fe for every f > BL�S�. Since BL�S� is dense in Ub�S� ([Dud66],

Lemma 8) and YµnYTV BM for all n, the convergence result holds for every f > Ub�S�.
Remark 2.3.1. Theorem 2.3.1 is related to results on asymptotic proximity of sequences

of distributions, e.g. see [DR09], Theorem 4. In that setting µn � Pn �Qn, where Pn and

Qn are probability measures. These are asymptotically proximate (for the Y � Y�BL-norm;

other norms are considered as well) if YPn � QnY�BL � 0. So one knows in advance that`µn, fe � 0. That is, the limit measure µ exists: µ � 0. Combining such a result with

the Ub�S�-weak sequential completeness of M�S� implies Theorem 2.3.1. We present, in

Section 2.4, an independent proof using completely different methods, that results in both

the completeness result and a particular case of the mentioned asymptotic proximity result.

The limit measure is there obtained through a delicate tightness argument, essentially.

The statement of the particular case in which all measures are positive seems novel too:

Theorem 2.3.4. Let �S, d� be a complete separable metric space. Let �µn� ` M��S�
be such that for every f > BL�S�, `µn, fe converges. Then `µn, fe converges for every

f > Cb�S�. In particular, there exists µ >M��S� such that Yµn � µY�BL � 0.

Its proof is simpler compared to that of Theorem 2.3.1. In Section 2.4 we shall present

a self-contained proof of this result as well, based on a ‘set-geometric’ argument that is

(essentially) also used to prove Theorem 2.3.1.

As it turned out, the proof for signed measures cannot be reduced straightforwardly to the

result for positive measures. This is mainly caused by the complication, that for a sequence�µn� of signed measures such that `µn, fe that is convergent for every f > BL�S�, it need

not hold that `µ�n, fe and `µ�n, fe converge for every f > BL�S�. Take for example on S � R
with the usual Euclidean metric µn �� δn � δn� 1

n
. Then `µn, fe � 0 for every f > BL�R�.

However, µ�n � δn and µ�n � δn� 1
n
, so `µ�n, fe will not converge for every f > BL�R�. Thus,

an immediate reduction to positive measures is not possible.

The pairing of measures with bounded Lipschitz functions is precisely what is important
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for the study of Markov operators and semigroups that have particular equicontinuity

properties, as we shall discuss next.

2.3.1 Equicontinuous families of Markov operators

A Markov operator on (measures on) S is a map P �M��S��M��S� such that:

1. P �µ � ν� � Pµ � Pν and P �rµ� � rPµ for all µ, ν >M��S� and r C 0,

2. �Pµ��S� � µ�S� for all µ >M��S�.
In particular, a Markov operator leaves invariant the convex set P�S� of probability mea-

sures in M��S�. Let BM�S� be the vector space of bounded Borel measurable real-

valued functions on S. A Markov operator is called regular if there exists a linear map

U � BM�S�� BM�S�, the dual operator, such that

`Pµ, fe � `µ,Ufe for all µ >M��S�, f > BM�S�.
A regular Markov operator P is Feller if its dual operator maps Cb�S� into itself. Equiv-

alently, P is continuous for the Y � Y�BL-norm topology (cf. e.g. [HW09a] Lemma 3.3 and

[Wor10] Lemma 3.3.2).

Regular Markov operators on measures appear naturally e.g. in the theory of Iterated

Function Systems [BDEG88, LY94] and the study of deterministic flows by their lift to

measures [PT11, EHM15]. Dual Markov operators on Cb�S� (or a suitable linear subspace)

are encountered naturally in the study of stochastic differential equations [DPZ14, KPS10].

Which specific viewpoint in this duality is used, is often determined by technical consider-

ations and the mathematical problems that are considered.

Markov operators and semigroups with equicontinuity properties (called the ‘e-property’)

have convenient properties concerning existence, uniqueness and asymptotic stability of

invariant measures, see e.g. [HHS16, KPS10, Sza10, SW12, Wor10]. After having defined

these properties precisely below, we show by means of Theorem 2.3.1 that a dual viewpoint

exists for equicontinuity too, in Theorem 2.3.5. In subsequent work further consequences of

this result for the theory and application of equicontinuous families of Markov operators are

examined. Some results in this direction were also discussed in parts of [Wor10], Chapter

7.

Let T be a topological space and �S�, d�� a metric space. A family of functions E ` C�T,S��
is equicontinuous at t0 > T if for every ε A 0 there exists an open neighbourhood Uε of t0
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such that

d��f�t�, f�t0�� @ ε for all f > E , t > Uε.

E is equicontinuous if it is equicontinuous at every point of T .

Following Szarek et al. [KPS10, Sza10], a family �Pλ�λ>Λ of regular Markov operators has

the e-property if for each f > BL�S� the family �Uλf � λ > Λ� is equicontinuous in Cb�S�. In

particular one may consider the family of iterates of a single Markov operator P : �P n�n>N,

or Markov semigroups �Pt�t>R� , where each Pt is a regular Markov operator and P0 � I,

PtPs � Pt�s.

Our main result on equicontinuous families of Markov operators is

Theorem 2.3.5. Let �Pλ � λ > Λ� be a family of regular Markov operators on a complete

separable metric space �S, d�. Let Uλ be the dual Markov operator of Pλ. The following

statements are equivalent:

1. �Uλf � λ > Λ� is equicontinuous in Cb�S� for every f > BL�S�.

2. �Pλ � λ > Λ� is equicontinuous in C�M��S�BL,M��S�BL�,

3. �Pλ � λ > Λ� is equicontinuous in C�P�S�weak,P�S�BL�
Proof. (i) � (ii). Assume on the contrary that �Pλ � λ > λ� is not an equicontinuous family

of maps. Then there exists a point µ0 >M
��S� at which this family is not equicontinuous.

Hence there exists ε0 A 0 such that for every k > N there are λk > Λ and µk >M��S� such

that Yµk � µ0Y�BL @ 1
k and YPλkµk � Pλkµ0Y�BL C ε0 for all k > N. (2.2)

Because the measures µk are positive and the Y�Y�BL-norm metrizes the Cb�S�-weak topology

on M��S� (cf. [Dud66], Theorem 18), `µk, fe � `µ0, fe for every f > Cb�S�. According

to [Dud66], Theorem 7, this convergence is uniform on any equicontinuous and uniformly

bounded subset E of Cb�S�. By assumption, Mf �� �Uλkf � k > N� is such a family for

every f > BL�S�. Therefore

S `Pλkµk � Pλkµ0, fe S � S `µk � µ0, Uλkfe S� 0 (2.3)

as k �ª for every f > BL�S�. Since for positive measures µ one has YµYTV � YµY�BL, one

obtains TYµkYTV � Yµ0YTVT B Yµk � µ0Y�BL � 0.
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So m0 �� supkC1 YµkYTV @ª. Moreover,

YPλkµk � Pλkµ0YTV B YPλkµkYTV � YPλkµ0YTV B YµkYTV � Yµ0YTV Bm0 � Yµ0YTV.

Theorem 2.3.1 and (2.3) yields that YPλkµk �Pλkµ0Y�BL � 0 as k �ª. This contradicts the

second property in (2.2).

(ii) � (iii). Follows immediately by restriction of the Markov operators PΛ to P�S�.
(iii) � (i). Let f > BL�S� and x0 > S. Let ε A 0. Since �Pλ � λ > Λ� is equicontinuous at

δx0 there exists an open neighbourhood V of δx0 in P�S�weak such that

YPλδx0 � PλµY�BL @ ε~�1 � YfYBL� for all λ > Λ and µ > U0.

Since the map x( δx � S � P�S�weak is continuous, there exists an open neighbourhood V0

of x0 in S such that δx > V for all x > V0. Then

SUλf�x� �Uλf�x0�S � S `Pλδx � Pλδx0 , fe S B ε

1 � YfYBL

� YfYBL @ ε

for all x > V0 and λ > Λ.

A particular class of examples of Markov operators and semigroups is furnished by the lift

of a map or semigroup �φt�tC0 of measurable maps φt � S � S to measures on S by means

of push-forward:

P φ
t µ�E� �� µ�φ�1

t �E��
for every Borel set E of S and µ >M��S�. A consequence of Theorem 2.3.5 is:

Proposition 2.3.6. Let �S, d� be a complete separable metric space and let �φt�tC0 be a

semigroup of Borel measurable transformations of S. Then P φ
t is a regular Markov operator

for each t C 0. Moreover, �P φ
t �tC0 is equicontinuous in C�M��S�BL,M��S�BL� if and only

if �φt�tC0 is equicontinuous in C�S,S�.

Proof. The regularity of P φ
t is immediate, as Uφ

t f � f X φt.

‘�’: Let x0 > S and ε A 0. Define h�x� �� 2x~�2 � x� and put ε� �� h�ε�. By equicontinuity

of �P φ
t �tC0 at δx0 , there exists and open neighbourhood U of δx0 in M��S�BL such that

YP φ
t µ � P

φ
t δx0Y�BL @ ε�

for all t C 0 and µ > U . Because the map δ � x ( δx � S � M��S�BL is continuous,
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U0 �� δ�1�U� is open in S. It contains x0. Moreover,

YP φ
t δx � P

φ
t δx0Y�BL � Yδφt�x� � δφt�x0�Y�BL � h�d�φt�x�, φt�x0�� @ ε�

for all x > U0 and t C 0 (see [HW09b] Lemma 3.5). Because h is monotone increasing,

d�φt�x�, φt�x0�� @ ε for all x > U0, t C 0.

‘
’: This part involves Theorem 2.3.5. Let f > BL�S�. Let Ut be the dual operator of Pt.

Then for all x,x0 > S,

SUtf�x� �Utf�x0�S � Sf�φt�x�� � f�φt�x0��S B Sf SLd�φt�x�, φt�x0��,
from which the equicontinuity of �Utf � t C 0� follows. The result is obtained by applying

Theorem 2.3.5.

2.3.2 Coincidence of weak and norm topologies

A further consequence of Theorem 2.3.1 is

Theorem 2.3.7. Let �S, d� be a complete separable metric space and let M ` M�S� be

such that m �� supµ>M YµYTV @ª. If the restriction of the σ�M�S�,BL�S��-weak topology

to M is first countable, then this topology coincides with the restriction of the Y � Y�BL-norm

topology to M .

Proof. We have to show that for any Y �Y�BL-norm closed set C, C9M is closed in the restric-

tion of the σ�M�S�,BL�S��-weak topology to M . Since the latter is first countable, C9M

is relatively σ�M�S�,BL�S��-weak closed if and only if for every σ�M�S�,BL�S��-weakly

converging sequence µn � µ in M�S� with µn > C, one has µ > C (cf. [Kel55] Theorem

2.8, p. 72). Let �µn� be such a sequence. Because supµ>M YµYTV @ ª by assumption,

Theorem 2.3.1 implies that there exists µ� >M�S� such that Yµn � µ�Y�BL � 0. Since C is

relatively Y � Y�BL-norm closed in M , µ� > C. Moreover, `µ, fe � `µ�, fe for every f > BL�S�,
so µ � µ� > C.

The following technical result provides a tractable condition that ensures first countability

of the relative weak topology on the set M , as we shall show after having proven the result.

We need to introduce some notation. For λ A 0 and C ` S closed and nonempty, define

hλ,C�x� �� �1 � 1
λd�x,C���.
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Then hλ,C > BL�S�, Shλ,C SL � 1
λ , 0 B hλ,C B 1 and hλ,C � 1C pointwise as λ � 0. Moreover

hλ,C � 0 on S �Cλ. We can now state the result.

Lemma 2.3.8. Let M `M�S� be such that m �� supµ>M YµYTV @ ª. If for every µ > M

and every ε A 0 there exist K1, . . . ,Kn ` S compact such that for K � �ni�1Ki:

1. SµS�S �K� @ ε,
2. There exists 0 @ λ0 B ε such that for all 0 @ λ B λ0 there exists δ1, . . . , δn A 0 such that

the following statement holds:

If ν >M satisfies S `µ � ν, hλ,Kie S @ δi for all i � 1, . . . , n,

then SνS�S �Kλ� @ ε.
Then the relative σ�M�S�,BL�S��-weak topology on M is first countable.

Proof. We first define a countable family F of functions in B̄ �� �g > BL�S� � YgYª B 1�
that is dense in B̄ for the compact-open topology, i.e. the topology of uniform convergence

on compact subsets of S. Let D be a countable dense subset of S. The family of finite

subsets of D is countable. Let IQ �� Q 9 �0,1�. For a finite subset F ` D, λ > IQ � �0� and

function a � F � IQ define

fλF,a�x� �� �
y>F

�a�y��1 � 1
λd�x, y����.

Here - denotes the maximum, as before. Then fλF,a > BL�S�, SfλF,aSL B maxy>F
a�y�
λ B 1

λ .

Moreover, fλF,a vanishes outside F λ � �y>F B�y, λ�. For a finite subset F ` D the family

FF of all such functions fλF,a with a and λ as indicated is countable. So the union F� of all

sets FF over all finite F ` D is countable too. It is quickly verified that on any compact

subset K of S any positive h > B̄ can be uniformly approximated by f > F�. Consequently,

F � F� � F� ` BL�S� is countable and any h > B̄ can be approximated uniformly on

compact sets by means of f > F .

Now let µ >M and consider the open neighbourhood

Uµ�h, r� �� �ν >M � S `µ � ν, he S @ r�,
with r A 0 and h > BL�S�. Without loss of generality we can assume that YhYBL � 1. We
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shall prove that there exist f0, . . . , fn > F and q0, . . . , qn A 0 in Q such that

n

�
i�0

�ν >M � T`µ � ν, hieT @ qi� ` Uµ�h, r�. (2.4)

Then the relative weak topology on M is first countable.

Let ε > Q such that 0 @ ε B 1
6r and let Ki,K ` S be compact and 0 @ λ0 B ε as in the

conditions of the lemma. There exists f0 > F such that supx>K Sh�x� � f0�x�S B 1
4mε. Then

for any 0 @ λ B λ0, x >Kλ and x0 >K,

Sh�x� � f0�x�S B Sh�x� � h�x0�S � Sh�x0� � f0�x0�S � Sf0�x0� � f0�x�S
B �1 � Sf0SL�d�x,x0� � 1

4mε.

Hence

sup
x>Kλ

Sh�x� � f0�x�S B �1 � Sf0SL�λ � 1
4mε.

Let 0 @ λ�0 B λ0 be such that �1 � Sf0SL�λ�0 B 1
4mε. Now one has, using property (i ),

S `µ � ν, he S B S `µ � ν, h � f0e S � S `µ � ν, f0e S
B S

Kλ
Sh � f0SdSµ � νS � 2SµS�S �Kλ� � 2SνS�S �Kλ� � S `µ � ν, f0e S

B 1
2mε � 2m � 2ε � 2SνS�S �Kλ� � S `µ � ν, f0e S (2.5)

for all 0 @ λ B λ�0. Fix λ > Q with 0 @ λ B λ�0 and let δ1, . . . , δn be as in property (ii ).

The Hausdorff semidistance on closed and bounded subsets of S is given by

δ�C,C �� �� sup
x>C

d�x,C ��.
The Hausdorff distance is defined by

dH�C,C �� �� max�δ�C,C ��, δ�C �,C��.
The collection of finite subsets of D form a separable dense subset of the set of compact

subsets of S, K�S�, for dH . If F ` D is finite and K � > K�S�, then by the Birkhoff
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Inequalities

Shλ,K� � hλ,F S � T�1 � 1
λd�x,K ���� � �1 � 1

λd�x,F ���S
B T�1 � 1

λd�x,K ��� � �1 � 1
λd�x,F ��T

� 1
λ Sd�x,K �� � d�x,F �S B 1

λ � dH�K �, F �.
Let Fi ` D be finite such that dH�Ki, Fi� B 1

4mλδi. Then hλ,Fi � f
λ
Fi,1

> F . Put fi �� hλ,Fi .

Let qi > Q be such that 0 @ qi @
1
2δi. If ν >M is such that S `µ � ν, fie S @ qi for i � 1, . . . , n,

then S `µ � ν, hλ,Kie S B Yhλ,Ki � hλ,FiYª � Yµ � νYTV � S `µ � ν, fie S @ 1
2δi �

1
2δi � δi

According to condition (ii ) one has SνS�S�Kλ� @ ε. Put q0 � ε. Inequality (2.5) then yields

(2.4), as desired.

Because conditions (i ) and (ii ) in Lemma 2.3.8 are immediately satisfied when M is

uniformly tight, we obtain

Corollary 2.3.9. Let �S, d� be a complete separable metric space and let M `M�S� such

that supµ>M YµYTV @ª and M is uniformly tight. Then the σ�M�S�,BL�S��-weak topology

coincides with the Y � Y�BL-norm topology on M .

Remark 2.3.2. Gwiazda et al. [GLMC10] state at p. 2708 that the topology of narrow

convergence in M�S�, i.e. that of convergence of sequences of signed measures paired with

f > Cb�S�, is metrizable on tight subsets that are uniformly bounded in total variation

norm. In fact it can be metrized by the norm Y � Y�BL.

A second case, more involved, in which the conditions of Lemma 2.3.8 are satisfied, is:

Proposition 2.3.10. Let �S, d� be a complete separable metric space and let

M �� �µ >M�S� � YµYTV � ρ�, �ρ A 0�.
Then condition (i) and (ii) of Lemma 2.3.8 hold. In particular, the relative σ�M�S�,BL�S��-

weak topology and relative Y � Y�BL-norm topology on M coincide.

Proof. Take ε A 0, µ > M and let µ� and µ� be the positive and negative part of µ, i.e.

µ � µ� � µ�. Since µ� are disjoint and tight, by Ulam’s Lemma, there exist compact sets

K� ` S such that K� 9K� � g, µ��K�� � 0 and

µ��S� � µ��K�� @ ε~8 and µ��S� � µ��K�� @ ε~8. (2.6)
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In particular,

SµS�S � �K� 8K��� B µ��S �K�� � µ��S �K�� @ 1
8ε �

1
8ε @ ε,

so condition (i ) of Lemma 2.3.8 is satisfied for K �K� 8K�.

Because K� and K� are compact, there exists λ0 A 0 such that Kλ0
� 9 Kλ0

� � g. Then

Kλ
�
9Kλ

�
� g for all 0 @ λ B λ0. Without loss of generality we can assume that λ0 B ε. Fix

0 @ λ B λ0.

Let us assume for the moment that δ� A 0 have been selected. At the end we will then see

how to choose these, such that condition (ii ) will be satisfied. If ν >M satisfies

S `µ � ν, hλ,K�
e S @ δ� and S `µ � ν, hλ,K�

e S @ δ�, (2.7)

then `µ � ν�, hλ,K�
e B `µ � ν� � ν�, hλ,K�

e B S `µ � ν, hλ,K�
e S @ δ�.

Consequently, since 1K�
B hλ,K�

B 1Kλ
�

,

µ��K�� � µ��Kλ
�
� � ν��Kλ

�
� B `µ � ν�, hλ,K�

e @ δ�.
We obtain

ν��Kλ
�
� A µ��K�� � µ��Kλ

�
� � δ� C µ��K�� � µ��S �K�� � δ�

A µ��K�� � 1
8ε � δ�.

In a similar way, `�µ � ν�, hλ,K�
e B `ν � µ,hλ,K�

e @ δ�,
whence

ν��Kλ
�
� A µ��K�� � 1

8ε � δ�.

Therefore, using (2.6),

ν��Kλ
�
� � ν��Kλ

�
� A µ��K�� � µ��K�� � 1

4ε � �δ� � δ��
A µ��S� � µ��S� � 1

2ε � �δ� � δ�� � ρ � �δ� � δ� � 1
2ε�.

Note that in this last step the assumption that M is a total variation sphere is used in an
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essential manner. The last inequality implies that

SνS�S �Kλ� � SνS�S� � SνS�Kλ
�
� � SνS�Kλ

�
� B ρ � ν��Kλ

�
� � ν��Kλ

�
� @ δ� � δ� � 1

2ε.

Thus, if we take K1 �K�, K2 �K�, δ� � δ� � δi �
1
4ε, we see that condition (ii ) in Lemma

2.3.8 is satisfied. Theorem 2.3.7 then yields the final statement.

Remark 2.3.3. 1.) In [Pac13], Theorem 5.38 and Corollary 5.39 come close to Theorem

2.3.7. A technical condition seems to prevent deriving our new result on coincidence of

topologies from the results in [Pac13].

2.) The result stated in Proposition 2.3.10 can be found in [Pac13], Corollary 5.39. There,

a proof of this result is provided using completely different techniques. Concerning coin-

cidence of these topologies on total variation spheres, see some further notes in [Pac13],

indicating e.g. [GL81].

In view of Corollary 2.3.9 and Proposition 2.3.10 one might be tempted to conjecture that

the weak and norm topologies would coincide on sets of measures with uniformly bounded

total variation. This does not hold however, as the following counterexample illustrates.

Counterexample 2.3.11. Let �S, d� be the natural numbers N equipped with the restric-

tion of the Euclidean metric on R. Now, BL�N� is linearly isomorphic to `ª: the map

f ( �f�n��n>N is bijective and continuous. Hence it is a linear isomorphism by Banach’s

Isomorphism Theorem. Observe that Sf SL B 2YfYª. Since �N, d� is uniformly discrete, the

norms Y � Y�BL and Y � YTV on M�N� are equivalent (cf. [HW09b], proof of Theorem 3.11).

So M�N�BL is linearly isomorphic to `1 under the map µ( �µ��n���n>N. One has YµYTV �Y�µ�Y`1. Moreover, the duality between M�N� and BL�N� is precisely the duality between

`1 and `ª under the given isomorphisms. Consider now M �� ��µ� > `1 � Y�µ�Y`1 B 1�.

It represents a set of measures that is uniformly bounded in total variation norm. Let

S �� ��µ� > `1 � Y�µ�Y`1 � 1�. Then S is a Y � YTV-closed subset of M . The weak closure of S

equals M however (cf. [Con85], Section V.1, Ex. 10). Therefore, the Y � Y�BL (i.e. Y � YTV)

and weak topologies cannot coincide on M .

2.4 Proof of the Schur-like property

We provide a self-contained proof of the Schur-like property for spaces of measures, The-

orem 2.3.1, using a ‘set-geometric’ argument. See Remark 2.4.2 below for alternative

approaches.
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We first introduce various technical lemmas that enable our set-geometric argument. Then

we start with a complete proof of the particular case of positive measures, Theorem 2.3.1,

as it will aid the reader in getting introduced to the type of argument employed, based on

Lemma 2.4.3, and the complications that arise when proving the result for general signed

measures in the section that follows.

2.4.1 Technical lemmas

The following lemmas are needed in the proof of the fundamental result.

Lemma 2.4.1. Let A ` BL�S� be such that supf>A YfYBL @ ª. Then sup�A� exists in

BL�S� and S sup�A�SL B supf>A Sf SL. In particular, Y sup�A�YBL B 2 supf>A YfYBL.

Proof. Put L �� supf>A Sf SL and let g � sup�A�, i.e. g�x� �� sup�f�x� � f > A� for every

x > S. Let x, y > S. We may assume g�x� C g�y�. Let ε A 0. There exists f > A such that

g�x� @ f�x� � ε. By definition g�y� C f�y�. Hence

Sg�x� � g�y�S B g�x� � f�x� � f�x� � f�y� @ ε � Sf�x� � f�y�S B ε �Ld�x, y�.
Since ε is arbitrary, we obtain that Sg�x� � g�y�S B Ld�x, y�. Thus g > Lip�S� and SgSL B L.

Clearly, YgYª B supf>A YfYª @ª, so g > BL�S� and YgYBL B 2 supf>A YfYBL.

The support of f > C�S�, denoted by suppf , is the closure of the set of points where f is

nonzero. Lemma 2.4.1 implies the following

Lemma 2.4.2. Let �fk� ` BL�S� be such that supkC1 YfkYBL @ ª. Assume that their

supports are pairwise disjoint. Then the series f�x� �� Pª

k�1 fk�x� converges pointwise and

f > BL�S�. In particular,

YfYª B sup
kC1

YfkYª, Sf SL B 2 sup
kC1

SfkSL. (2.8)

Proof. Because the sets supp fk are pairwise disjoint, f�x� � fk�x� if x > supp fk. So the

positive part f� and negative part f� of f satisfy f� � Pª

k�1 f
�

k and it suffices to prove

the result for f C 0. In that case, f � supkC1 fk, and the first estimate in (2.8) follows

immediately. The second follows from Lemma 2.4.1.

Lemma 2.4.3. Let �S, d� be a complete separable metric space. Let µn >M��S�, n > N.

Assume that �µn � n C 1� is not tight. Then there exists ε A 0, an increasing sequence �nk�
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of positive integers and a sequence of compact sets �Knk� such that

µnk�Knk� C ε for all k C 1

and

dist�Knk ,Knm� �� min�d�x, y� Sx >Knk , y >Knm� A ε for all k xm.

This result was originally stated in [KPS10], Lemma 1, p. 1410, for a sequence �µn� of

probability Borel measures with a proof in [LS06] (proof of Theorem 3.1, p. 517-518), but

it is also valid for (positive) measures.

In addition to Lemma 2.4.3 the following observation is made:

Lemma 2.4.4. Let �µn� `M��S� be such that supn µn�S� @ª and let �En� be a sequence

of pairwise disjoint Borel measurable subsets of S. Then for every ε A 0 there exists a

strictly increasing subsequence �ni� of N such that for every i C 1,

µni ��
jxi

Enj� @ ε. (2.9)

Proof. Let us first prove that for every η A 0 there exists a strictly increasing subsequence�mi� such that

µm1 ��
iA1

Emi� @ η (2.10)

and

µmi�Em1� @ η for all i C 2. (2.11)

Fix η A 0. Set C �� supn µn�S� and let N C 1 be such that Nη A C. Since for every n C 1

we have PN
m�1 µn�Em� � µn ��Nm�1Em� B µn�S� B C @ Nη, there exists m > �1, . . . ,N� such

that

µn�Em� @ η. (2.12)

Thus there exists m1 > �1, . . . ,N� and an infinite set S such that condition (2.12) holds for

all n > S. Let us split S into N disjoint infinite subsets S1, . . . ,SN .

Since

�
n>Si

En 9 �
n>Sj

En � g for i, j > �1, . . . ,N�, i x j,
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we have

N

Q
i�1

µm1 ��
n>Si

En� � µm1 � N

�
i�1
�
n>Si

En� � µm1 ��
n>S

En� B µm1�S� B C @ Nη,

which, in turn, yields

µm1 ��
n>Sp

En� @ η

for some p > �1, . . . ,N�. Now let m2,m3, . . . be an increasing sequence of elements from

the set Sp.

By induction we shall define the sequences �mk
i � for k C 1 in the following way. First set

m1
i � mi for i � 1,2, . . ., where �mi� is an increasing sequence satisfying conditions (2.10)

and (2.11) with η � ε~2. Now if �mk�1
i � is given, by what we have already proven, we may

find its subsequence �mk
i �, mk

1 Am
k�1
1 , satisfying conditions (2.10) and (2.11) with η � ε~2k.

Now set ni ��mi
1 for i � 1,2, . . . and observe that

µni ��
jxi

Enj� �Q
j@i

µni�Enj� � µni ��
jAi

Enj� BQ
j@i

ε~2j � ε~2i @ ε.
The first term evaluation follows from (2.11), by the fact that ni is an element of the

sequences �mj
n� for j @ i. Similarly, the second term is evaluated by inequality (2.10).

2.4.2 Proof of Theorem 2.3.4

Proof. (Theorem 2.3.4). Let �µn� `M��S�. At the beginning we show that it is enough to

prove the claim for �µn� ` P�S�. In fact, from the assumption that limn�ª `µn, fe exists

for every f > BL�S�, in particular for f � 1, we obtain that limn�ª µn�S� also exists. Set

c � limn�ª µn�S� and observe that c @ ª, by the fact that supnC1 YµnYTV @ ª. If c � 0,

then we immediately see that µ � 0 fulfills the requirements of our theorem. On the other

hand, if c A 0, then, we can replace µn with µ̃n �� µn~µn�S�, which is a probability measure.

If the theorem is proven to hold for �µ̃n�, then it holds for the �µn� as well.

To prove the theorem it suffices to show that the family �µ̃n � n C 1� is tight, by the

following argument. By Prokhorov’s Theorem (see [Bog07a], Theorem 8.6.2) there exists

some measure µ� > P�S� and a subsequence �nm� such that µ̃nm � µ� weakly. Further, due

to the fact that limn�ª `µ̃n, fe exists for any f > BL�S�, we obtain that limn�ª `µ̃n, fe �`µ�, fe for f > BL�S�. This in turn, together with the tightness of �µ̃n � n C 1�, implies that

µ̃n � µ� Cb�S�-weakly, as n�ª. Indeed, the tightness allows restricting (approximately)
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to a compact subset K. The continuous bounded function on S, when restricted to K

can be approximated uniformly by a function in BL�K�, since BL�K� ` C�K� is Y � Yª-

dense. The Metric Tietze Extension Theorem (cf. [McS34]) allows to extend the function

in BL�K� to one in BL�S� without changing uniform norm and Lipschitz constant. The

claim then follows. The Cb-weak convergence of µ̃n to µ� is equivalent to Yµ̃n � µ�Y�BL � 0,

as n�ª, because the latter norm metrises Cb-weak convergence on M��S� (cf. [Dud66],

Theorem 6 and Theorem 8). For µ � cµ� we obtain that Yµn � µY�BL � 0, as n�ª.

To complete the proof, we have to prove the claim that the family �µn � n C 1� ` P�S�
is uniformly tight. Assume, contrary to our claim, that it is not tight. By Lemma 2.4.3,

passing to a subsequence if necessary, we may assume that there exists ε A 0 and a sequence

of compact sets �Kn� satisfying

µn�Kn� C ε for every n C 1 (2.13)

and

dist�Kn,Km� �� min�ρ�x, y� � x >Kn and y >Km� A ε for m x n. (2.14)

From Lemma 2.4.4, with En �� K
ε~3
n , it follows that there exists a subsequence �ni� such

that for every i C 1 we have

µni ��
jxi

K
ε~3
nj � @ ε~2. (2.15)

Note that dist�Kε~3
ni ,K

ε~3
nj � A ε~3 for i x j.

We define the function f �X � �0,1� by the formula

f�x� � ª

Q
i�1

fi�x�,
where fi are arbitrary Lipschitz functions with Lipschitz constant 3~ε satisfying

fiSKn2i
� 1 and 0 B fi B 1

K
ε~3
n2i

.

According to Lemma 2.4.2, f > BL�S� (with YfYª B 1 and Sf SL B 6~ε).
To finish the proof it is enough to observe that for every i C 1 we have

`µn2i
, fe � ª

Q
j�1

`µn2i
, fje C µn2i

�Kn2i
� �2.13�

C ε
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and `µn2i�1
, fe � ª

Q
j�1

`µn2i�1
, fje B ª

Q
j�1

µn2i�1
�Kε~3

n2j�Bµn2i�1
� �
jx2i�1

K
ε~3
nj � �2.15�

@ ε~2,
which contradicts the assumption that limn�ª `µn, fe exists for every f > BL�S�. Thus the

family �µn � n C 1� is tight and we are done.

Remark 2.4.1. 1.) An alternative proof is feasible, based upon the elaborate theory pre-

sented in [Pac13]. By taking f � 1, one finds that supn YµnYTV @ª. Since BL�S� is dense

in the space Ub�S� of uniformly continuous bounded functions on S for the supremum norm

(cf. [Dud66], Lemma 8), one finds that `µn, fe is Cauchy for every f > Ub�S�. According

to [Pac13], Theorem 5.45, there exists µ >M�S�� such that µn � µ, Ub�S�-weakly. Then

[Pac13] Theorem 5.36 yields that Yµn � µY�BL � 0.

2.) In the proof we show that if �µn� is a sequence of positive Borel measures such

that `µn, fe converges for every f > BL�S�, then �µn� is uniformly tight in M��S�. See

[Bog07a], Corollary 8.6.3, p. 204, for results in this direction when `µn, fe converges for

every f > Cb�S�. Under the additional condition that there exists µ� >M��S� such that`µn, fe � `µ�, fe for every f > Cb�S�, tightness results appeared already in e.g. [LeC57],

Theorem 4 for positive measures or [Bil99], Appendix III, Theorem 8 for probability mea-

sures.

2.4.3 Proof of Theorem 2.3.1

Proof. (Theorem 2.3.1). Let �µn� `M�S� be signed measures such that supn YµnYTV @ª.

Denote by µ�n and µ�n the positive and negative part of µn, n C 1, respectively. We consider

the following set

C �� ��β, �mn�, �νmn�, �ϑmn�� � β C 0, �mn� ` N – an increasing sequence,

νmn , ϑmn > P�S�, lim
n�ª

Yνmn � ϑmnY�BL � 0

and µ�mn C βνmn , µ
�

mn C βϑmn�.
We first observe that C x g, which follows from the fact that �0, �mn�, �νmn�, �ϑmn�� > C

for arbitrary �mn� and νmn , ϑmn > P�S� such that limn�ª Yνmn � ϑmnY�BL � 0. Moreover,

since c̄ �� supnC1 YµnYTV @ª, we obtain that 0 B β B c̄ for every β for which there are some�mn� and νmn , ϑmn such that �β, �mn�, �νmn�, �ϑmn�� > C. We can therefore introduce

α � sup�β � �β, �mn�, �νmn�, �ϑmn�� > C�.
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From the definition of α it follows that there exists a subsequence �mn� of positive integers

and an increasing sequence �αn� of nonnegative constants satisfying limn�ªαn � α and

µ�mn C αnνmn and µ�mn C αnϑmn ,

where νmn , ϑmn > P�S� are such that Yνmn � ϑmnY�BL � 0 as n�ª.

To finish the proof it is enough to show that both the sequences �µ�mn � αnνmn� and�µ�mn � αnϑmn� are tight. Indeed, then, by the Prokhorov Theorem ([Bog07a], Theorem

8.6.2) there exists a subsequence �mnk� of �mn� and two measures µ1 and µ2 such that the

sequences �µ�mnk � αnkνmnk � and �µ�mnk � αnkϑmnk � converge Cb�S�-weakly to the positive

measure µ1 and µ2, respectively. Hence also in Y � Y�BL-norm, according to Theorem 2.3.4.

Consequently, Yµmnk � �µ1 �µ2�Y�BL � 0 as k �ª, by the fact that Yνmnk � ϑmnk Y�BL � 0 as

k �ª. This will complete the proof of the theorem. Indeed, if we know that the sequence

(and also any subsequence) has a convergent subsequence (in the dual bounded Lipschitz

norm), then the sequence is also convergent due to the fact that the limit of all convergent

subsequences is the same, by the assumption that limn�ª `µn, fe exists for any f > BL�S�.
Assume now, contrary to our claim, that at least one of the families �µ�mn � αnνmn� or�µ�mn � αnϑmn�, say the first one, is not tight. By Lemma 2.4.3, passing to a subsequence

if necessary, we may assume that there exists ε A 0 and a sequence of compact sets �Kn�
satisfying

�µ�mn � αnνmn��Kn� C ε (2.16)

and

dist�Ki,Kj� C ε for i, j > N, i x j.

Set

µ̃n �� µ
�

mn � αnνmn and µ̂n �� µ
�

mn � αnϑmn .

Claim: For any 0 @ η B 1 there exist j, as large as we wish, and τj, χj > P�S� satisfying

µ̃j C �ε~2�τj, µ̂j C �ε~2�χj and Yτj � χjY�BL B η.

Consequently, there will exist a subsequence �mjn� such that

µ�mjn � αjnνmjn � µ̃jn C αjnνmjn � �ε~2�τjn ,
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µ�mjn C αjnϑmjn � �ε~2�χjn and Yτjn � χjnY�BL � 0 as n�ª.

Now, if we define probability measures %mjn , ςmjn as follows

%mjn �� �αjnνmjn � �ε~2�τjn��αjn � ε~2��1, ςmjn �� �αjnϑmjn � �ε~2�χjn��αjn � ε~2��1,

we will obtain

µ�mjn C �αjn � ε~2�%mjn , µ�mjn C �αjn � ε~2�ςmjn
and limn�ª Y%mjn � ςmjnY�BL � 0, which is impossible, because it contradicts the definition

of α, since limn�ª�αjn � ε~2� A α.

Let us prove the claim. Set ξn �� µ̃n � µ̂n for n C 1 and let C �� supnC1 ξn�S�. Observe that

C B supnC1 YµnYTV @ ª. Fix 0 @ η B 1 and let κ > �0, ε~6� be such that 6κ�1~ε � 2~ε2� @ η.

Lemma 2.4.4 yields an increasing sequence �jn� ` N such that

ξjn ��
lxn

K
ε~3
jl

� @ κ~4 (2.17)

and hence

µ̃jn ��
lxn

K
ε~3
jl

� @ κ~4 and µ̂jn ��
lxn

K
ε~3
jl

� @ κ~4
for all n � 1,2, . . ..

Choose N C 1 such that Nκ~4 A C and set W p
jn
�� K

pε~�3N�
jn

�K
�p�1�ε~�3N�
jn

for p � 1, . . . ,N .

Observe that W p
jn
9W q

jn
� g for p x q. Since PN

p�1 ξjn�W p
jn
� � ξjn��Np�1W

p
jn
� B C, n C 1, for

every n there exists pn > �1, . . . ,N� such that

ξjn �W pn
jn
� @ κ~4. (2.18)

Now we are in a position to define a sequence �fn� of functions from S to ��1,1�. The

construction is as follows. For n � 2k � 1 for k C 1, we set fn � 0. On the other hand, to

define functions fn for n � 2k we introduce the measures

µ̃�jn��� � µ̃jn �� 9K�pn�1�ε~�3N�
jn

�
and

µ̂�jn��� � µ̂jn �� 9K�pn�1�ε~�3N�
jn

� .
Further, there exists a Lipschitz function f̃n � K

�pn�1�ε~�3N�
jn

� ��1,1� with Sf̃nSL B 1 such

that aµ̃�jn � µ̂�jn , f̃nf C 1
2Yµ̃�jn � µ̂�jnY�BL. Let fn be a Lipschitz extension of the function f̃n to
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S such that fn�x� � f̃n�x� for x > K
�pn�1�ε~�3N�
jn

and fn�x� � 0 for x ¶ K
pnε~�3N�
jn

. We may

assume that SfnSL B 3N~ε. The existence of the extension function follows from McShane’s

formula (see [McS34]). Let f � Pª

k�1 f2n. Since dist�supp fi, supp fj� A ε~3 for i, j C 1, i x j,

f is a bounded Lipschitz function, by Lemma 2.4.2.

We show that `µmji , fe B κ~2 for i � 2k � 1. Indeed, for k sufficiently large we have

aµmj2k�1
, ff � ª

Q
n�1

aµmj2k�1
, f2nf B ª

Q
n�1

ξj2k�1
�Kε~3

j2n
� � αj2k�1

Yνmj2k�1
� ϑmj2k�1

Y�BL

B ξj2k�1
� �
lx2k�1

K
ε~3
jl

� � αj2k�1
Yνmj2k�1

� ϑmj2k�1
Y�BL

�2.17�
@ κ~4 � αj2k�1

Yνmj2k�1
� ϑmj2k�1

Y�BL @ κ~2,
by the properties of the measures νmj2k�1

, ϑmj2k�1
and the definition of the functions f2n.

Therefore

lim
i�ª

aµmji , ff � lim
k�ª

aµmj2k�1
, ff B κ~2,

because we assume that the limit of `µm, fe exists.

On the other hand, for i � 2k we have

aµmj2k , ff � ª

Q
n�1

aµmj2k , f2nf C � ª

Q
nxk

ξj2k �Kε~3
j2n

� � aµmj2k , f2n, f
C �

ª

Q
nxk

ξj2k �Kε~3
j2n

� � ξj2k �Wj
p2k
2k

� � aµ̃�j2k � µ̂�j2k , f̃2kf
C �κ~4 � κ~4 � 1

2
Yµ̃�j2k � µ̂�j2kY�BL,

by the fact that Yf2nYª B 1. Since limi�ª aµmji , ff B κ~2, by the estimation obtained for

i � 2k � 1 and the assumption that the limit exists, we have

�κ~4 � κ~4 � 1

2
Yµ̃�j2k � µ̂�j2kY�BL B 3κ~4

for k sufficiently large and consequently

Yµ̃�j2k � µ̂�j2kY�BL B 3κ

for all k sufficiently large. Thus

µ̂�j2k�S� C µ̃�j2k�S� � 3κ C ε � ε~2 � ε~2.
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Hence, for probability measures

ν̃j2k �� µ̃
�

j2k
~µ̃�j2k�S� and ν̂j2k �� µ̂

�

j2k
~µ̂�j2k�S�

we have for k sufficiently large

µ̃j2k C µ̃
�

j2k
C �ε~2�ν̃j2k and µ̂j2k C µ̂

�

j2k
C �ε~2�ν̂j2k .

Finally, observe that for k sufficiently large,

Yν̃j2k � ν̂j2kY�BL B Yµ̃�j2k~µ̃�j2k�S� � µ̂�j2k~µ̃�j2k�S�Y�BL � Yµ̂�j2kY�BLS1~µ̃�j2k�S� � 1~µ̂�j2k�S�S
B �1~µ̃�j2k�S��Yµ̃�j2k � µ̂�j2kY�BL � 1~�µ̃�j2k�S�µ̂�j2k�S��Sµ̃�j2k�S� � µ̂�j2k�S�S
B 6κ~ε � 12κ~ε2 @ η,

by the fact that µ̃�j2k�S�, µ̂�j2k�S� C ε~2 and Sµ̃�j2k�S� � µ̂�j2k�S�S B Yµ̃�j2k � µ̂�j2kY�BL B 3κ. This

completes the proof of the claim, hence the theorem.

Remark 2.4.2. It is possible to prove Theorem 2.3.1 by means of a reduction-to-`1-trick,

inspired by ideas in [Pac79, Pac13], cf. [Hil14]. Another proof is feasible, starting from

[Pac79], Theorem 3.2, see [Wor10]. However, here we prefer to present an independent,

‘set-geometric’ proof that is self-contained and founded on the well-established result for

the case of positive measures, Theorem 2.3.4.

2.5 Further consequence: an alternative proof for weak

sequential completeness

Theorem 2.3.1 allows – in the case of a Polish space – to give an alternative proof of

the well-known fact that M�S� is Cb�S�-weakly sequentially complete, that goes back to

Alexandrov [Ale43] and Varadarajan [Var61], see. e.g. [Dud66], Theorem 1 or [Bog07a],

Theorem 8.7.1 for a more general topological setting. We include our proof based on

Theorem 2.3.1 here, because it employs an argument for reduction to functions in BL�S�,
which by itself is an interesting result.

This reduction is based on the following observation. Let DS be the set of all metrics on

S that metrize the topology of S as a complete separable metric space. We need to stress

the dependence of the space BL�S� on the chosen metric on S. So for d > DS we write

BL�S, d� for the space of bounded Lipschitz functions on �S, d�. The key observation is,
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that

Cb�S� � �
d>DS

BL�S, d�. (2.19)

In fact, fix d0 > DS. If f > Cb�S�, then

df�x, y� �� d0�x, y� - Sf�x� � f�y�S
is a metric on S such that df > DS and f > BL�S, df�. Here - denotes the maximum.

The precise statement we consider is the following:

Theorem 2.5.1 (Weak sequential completeness). Let S be a Polish space. Let �µn� `

M�S� be such that `µn, fe converges for every f > Cb�S�. Then there exists µ� > M�S�
such that `µn, fe� `µ�, fe for every f > Cb�S�.

Proof. The norm of µn viewed as a continuous linear functional on Cb�S� is its total

variation norm. Hence, according to the Banach-Steinhaus Theorem, supnC1 YµnYTV @ ª.

For any d > DS, `µn, fe converges for every f > Cb�S�, so in particular for every f > BL�S, d�.
The sequence �µn� is bounded in total variation norm, so Theorem 2.3.1 implies there exists

µd
�
> M�S� such that `µn, fe � `µd

�
, fe for every f > BL�S, d�. We proceed to show that

the limit measure µd
�

is independent of d.

Let d� > DS. Put

d̄�x, y� �� d�x, y� - d��x, y�.
Then d̄ > DS and BL�S, d̄� contains both BL�S, d� and BL�S, d��. Let C ` S be closed.

There exist sequences �hn� and �h�n� in BL�S, d� and BL�S, d�� respectively, such that

hn � 1C and h�n � 1C pointwise. Both these sequences are in BL�S, d̄�, so

µd
�
�C� � lim

k�ª
aµd

�
, hkf � lim

k�ª
lim
n�ª

`µn, hke � lim
k�ª

aµd̄
�
, hkf � µd̄��C�.

A similar argument applies to µd
�

�
, using the sequence �h�n� in BL�S, d�� instead of �hn�.

So µd
�

and µd
�

�
(and µd̄

�
) agree on the π-system consisting of closed sets, which generate the

Borel σ-algebra. Hence these measures are equal on all Borel sets. That is, there exists

µ� > M�S� such that `µn, fe � `µ�, fe for every f > BL�S, d� for every d > DS. Thus for

every f > Cb�S� in view of (2.19).
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Chapter 3

Lie-Trotter product formula for

locally equicontinuous and tight

Markov operators

This chapter is based on:

Sander C. Hille, Maria A. Ziemlanska. Lie-Trotter product formula for locally equicontin-

uous and tight Markov semigroup. Preprint available at https://arxiv.org/abs/1807.07728

Abstract:

In this chapter we prove a Lie-Trotter product formula for Markov semigroups in spaces

of measures. We relate our results to ”classical” results for strongly continuous linear

semigroups on Banach spaces or Lipschitz semigroups in metric spaces and show that

our approach is an extension of existing results. As Markov semigroups on measures are

usually neither strongly continuous nor bounded linear operators for the relevant norms, we

prove the convergence of the Lie-Trotter product formula assuming that the semigroups

are locally equicontinuous and tight. A crucial tool we use in the proof is a Schur-like

property for spaces of measures.
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3.1 Introduction

The main purpose of this chapter is to generalize the Lie-Trotter product formula for

strongly continuous linear semigroups in a Banach space to Markov semigroups on spaces

of measures. The Lie-Trotter formula asserts the existence and properties of the limit

lim
n�ª

�S1
t
n

S2
t
n

�n x �� Stx,

where �S1
t �tC0 and �S2

t �tC0 are strongly continuous semigroups of bounded linear operators.

It may equally be viewed as a statement considering the convergence of a switching scheme.

The key challenge is to overcome the difficulties that result from the observation that

’typically’ Markov semigroups do not consist of bounded linear operators (in a suitable

norm on the signed measures) nor need to be strongly continuous. Therefore, the available

results do not apply.

The Lie-Trotter product formula originated from Trotter [Tro59] in 1959 for strongly con-

tinuous semigroups, for which the closure of the sum of two generators was a generator of

a semigroup given by the limit of the Lie-Trotter scheme, and generalized i.a. by Chernoff

[Che74] in 1974. This approach does not seem to be general enough to be applicable in

various numerical schemes however. As shown by Kurtz and Pierre in [KP80], even if the

sum of two generators is again a generator of a strongly continuous semigroup, this semi-

group may not be given by the limit of Lie-Trotter product formula as it may not converge.

Consequently, the analysis of generators of semigroups can lead to non-convergent numer-

ical splitting schemes. Hence, a different approach is needed. The analysis of commutator

type conditions as in [KW01, CC04] avoids considering generators and their domains and

may be easier to verify.

Splitting schemes were applied and played a very important role in numerical analysis

and recently in the theory of stochastic differential equations to construct solutions of

differential equations, e.g. the work of Cox and Van Neerven [Cox12]. It was shown

by Carrillo, Gwiazda and Ulikowska in [CGU14] that properties of complicated models,

like structured population models, can be obtained by splitting the original model into

simpler ones and analyzing them separately, which also leads to switching schemes of a

Lie-Trotter form. Bátkai, Csomós and Farkas investigated Lie-Trotter product formulae for

abstract nonlinear evolution equations with a delay in [BCF17], a general product formula

for the solution of nonautonomous abstract delay equations in [BCFN12] and analyzed the

convergence of operator splitting procedures in [BCF13].

Our starting point are the conditions for convergence of the Lie-Trotter product formula
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formulated by Kühnemund and Wacker in [KW01]. This result appears to be a very use-

ful tool in proving the convergence of the Lie-Trotter scheme without the need to have

knowledge about generators of the semigroups involved. However, the semigroups con-

sidered by Kühnemund and Wacker are assumed to be strongly continuous. We extend

Kühnemund and Wacker’s case to semigroups of Markov operators on spaces of measures

and present weaker sufficient conditions for convergence of the switching scheme. Our

method of proof builds on [KW01], while the specific commutator condition that we em-

ploy (assumption 3) is motivated by [CC04].

The theory of Markov operators and Markov semigroups was studied by Lasota, Mackey,

Myjak and Szarek in the context of fractal theory [SM03, LM94], iterated function sys-

tems and stochastic differential equations [LS06]. Markov semigroups acting on spaces

of (separable) measures are usually not strongly continuous. The local equicontinuity (in

measures) and tightness assumptions we employ are less restrictive and follow from strong

continuity. The concept of equicontinuous families of Markov operators can be found in

e.g. Meyn and Tweedie [MT09]. Also, Worm in [Wor10] extends the results of Szarek to

families of equicontinuous Markov operators.

The outline of the chapter is as follows: in Section 3.2 we present the main results of

this chapter. Theorem 3.2.2 in Section 3.2 is the convergence theorem and is the most

important result in the chapter. The other important and non-trivial result is Theorem

3.2.1. Section 3.3 introduces Markov operators and Markov-Feller semigroups on a space of

signed Borel measuresM�S�, investigates their topological properties and the consequences

of equicontinuity and tightness of a family of Markov operators. In Section 3.4 we provide

the tools to prove Theorem 3.2.1, i.e. that a composition of equicontinuous and tight

families of Markov operators is again an equicontinuous and tight family. This result is

quite delicate and seems like it was not considered in the literature before. We also provide

a proof of the observation in Lemma 3.4.3 which says that a family of equicontinuous and

tight family of Markov operators on a precompact subset of positive measures is again

precompact. The proof of Theorem 3.2.1 can be found in Appendix 3.4.

In Section 3.5 we prove the convergence of the Lie-Trotter product formula for Markov

operators. We provide more general assumptions then those provided in the Kühnemund-

Wacker chapter (see [KW01]). As our semigroups are not strongly continuous and usually

not bounded, we use the concept of (local) equicontinuity (see e.g. Chapter 7 in [Wor10]).

This allows us to define a new admissible metric dE and a new Y �YBL,dE -norm dependent on

the operators and the original metric d on S. The crucial assumption is the Commutator

Condition Assumption 3.
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To prove the convergence of our scheme under Assumptions 1-4 we use a Schur-like prop-

erty for signed measures, see [HSWZ17], which allows us to prove weak convergence of the

formula and conclude the strong/norm convergence. In Section 3.5 we show crucial techni-

cal lemmas. The proofs of most lemmas from Section 3.5 can be found in the Appendices

3.8.1 - 3.8.2. In Section 3.5 several useful properties of the limit operators that result from

the converging Lie-Trotter formula are derived.

Section 3.7 shows that our approach is a generalization of Kühnemund-Wacker [Kuh01]

and Colombo-Corli [CC04] cases. We show that if we consider Markov semigoups coming

from lifts of deterministic operators, then the Kühnemund-Wacker and Colombo-Corli

assumptions imply our assumptions and their convergence results of the Lie-Trotter formula

or switching scheme follows from our main convergence result.

3.2 Main theorems

Let S be a Polish space, i.e. a separable completely metrizable topological space, see

[Wor10]. Any metric d that metrizes the topology of S such that �S, d� is separable and

complete is called admissible. Let d be an admissible metric on S. Following [Dud66], we

denote the vector space of all real-valued Lipschitz functions on �S, d� by Lip�S, d�. For

f > Lip�S, d� we denote the Lipschitz constant of f by

Sf SL,d �� sup�Sf�x� � f�y�S
d�x, y� � x, y > S,x ~� y¡

BL�S, d� is the subspace of bounded functions in Lip�S, d�. Equipped with the bounded

Lipschitz norm YfYBL,d �� YfYª � Sf SL,d
it is a Banach space, see [Dud66]. The vector space of finite signed Borel measures on S,

M�S�, embeds into the dual of �BL�S�, Y � YBL,d�, see [Dud66], thus introducing the dual

bounded Lipschitz norm Y � Y�BL,d on M�S�
YµY�BL,d �� sup�S`µ, feS � f > BL�S, d�, YfYBL,d � YfYª � Sf SL,d B 1� , (3.1)

for which the space becomes a normed space. It is not complete unless �S, d� is uniformly

discrete (see [Wor10], Corollary 2.3.14). The cone M��S� of positive measures in M�S�
is closed [Wor10, Dud66]. P�S� is the convex subset of M��S� of probability measures.

The topology on M�S� induced by Y � Y�BL,d is weaker then the norm topology associated
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with the total variation norm YµYTV �� µ��S� � µ��S�, where µ � µ� � µ� is the Jordan

decomposition of µ (see [Bog07b], p.176).

We define a Markov operator on S to be a map P �M��S��M��S� such that

(i) P is additive and R�-homogeneous;

(ii) YPµYTV � YµYTV for all µ >M��S�.
Let �Pλ�λ>Λ be a family of Markov operators.

Following Lasota and Szarek [LS06], and Worm [Wor10], we say that �Pλ�λ>Λ is equicon-

tinuous at µ >M��S� if for every ε A 0 there exists δ A 0 such that YPλµ � PλνY�BL,d @ ε for

every ν >M��S� such that Yµ � νY�BL,d @ δ and for every λ > Λ. �Pλ�λ>Λ is called equicon-

tinuous if it is equicontinuous at every µ >M��S�. We will examine properties of space of

bounded Lipschitz functions is Section 3.3.

Let Θ ` P�S�. Following [Bog07a] we call Θ uniformly tight if for every ε A 0 there exists

a compact set Kε ` S such that µ�Kε� C 1 � ε for all µ > Θ.

The following theorem is a crucial tool for proving convergence of the Lie-Trotter scheme

for Markov semigroups, and also an important and non-trivial result on its own. Proof of

Theorem 3.2.1 can be found in Section 3.4.

Theorem 3.2.1. Let �Pλ�λ>Λ, �Qγ�γ>Γ be equicontinuous families of Markov operators on�S, d�. Assume that �Qγ�γ>Γ is tight. Then the family �PλQγ � λ > Λ, γ > Γ� is equicontin-

uous on �S, d�. Moreover, if �Pλ�λ>Λ is tight, then the family �PλQγ � λ > Λ, γ > Γ� is tight

on �S, d�.

We now present assumptions under which we prove the convergence of the Lie-Trotter

scheme. Even though they may seem technical, they are motivated by existing examples of

convergence of Lie-Trotter schemes with weaker assumptions then those in [KW01, CC04]

(see Section 3.7).

Let �P 1
t �tC0 and �P 2

t �tC0 be Markov semigroups. Let δ A 0. Define

P
i�δ� �� �P i

t � t > �0, δ�� for i � 1,2,

F�δ� �� ��P 1
t
n

P 2
t
n

�n � n > N, t > �0, δ�� .
Let d be an admissible metric on S such that the following assumptions hold:

Assumption 1. There exists δ1 A 0 such that P1�δ1� and P2�δ1� are equicontinuous and

tight families of Markov operators on �S, d�.
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Assumption 2 (Stability condition). There exists δ2 A 0 such that F�δ2� is an equicon-

tinuous family of Markov operators on �S, d�.

Under Assumption 1, the operators P i
t ,0 B t B δ, are Feller: there exist U i

t � Cb�S�� Cb�S�
such that `P i

tµ, fe � `µ,U i
tfe for every f > Cn�S�, µ0 >M

��S�, 0 B t B δ.

Let f > BL�S, d� and consider

E�f� �� �U2
sU

1
s� �U2

t
n

U1
t
n

�n f � n > N, s, s�, t > �0, δ�� . (3.2)

By Theorem 7.2.2 in [Wor10] or Theorem 3.4.2 below, equicontinuity of the family �Pλ�λ>Λ
is equivalent to equicontinuity of the family �Uλf�λ>Λ for every f > BL�S, d�. Then, as we

will show in Lemma 3.5.4, E�f� is an equicontinuous family if δ B min�δ1, δ2�. It defines a

new admissible metric on S:

dE�f��x, y� �� d�x, y� - sup
g>E�f�

Sg�x� � g�y�S, for x, y > S. (3.3)

Assumption 3 (Commutator condition). There exists a dense convex subcone M0 of

M��S�BL,d that is invariant under �P i
t �tC0 for i � 1,2 and for every f > BL�S, d� there exists

δ3,f A 0 such that for the admissible metric dE�f� on S there exists ωf � �0, δ3,f � �M0 � R�

continuous, non-decreasing in the first variable, such that the Dini-type condition holds

S
δ3,f

0

ωf�s, µ0�
s

ds @ �ª for all µ0 >M0, and (3.4)

ZP 1
t P

2
t µ0 � P

2
t P

1
t µ0Z�BL,dE�f�

B tωf�t, µ0�
for every t > �0, δ3,f �, µ0 >M0.

Assumption 4 (Extended Commutator Condition). Assume that Assumption 3 holds

and, in addition, for every f > BL�S, d�, there exists δ4,f A 0 and for µ0 > M0 there exists

Cf�µ0� A 0 such that for every t > �0, δ4,f �,
ωf�t, Pµ0� B Cf�µ0�ωf�t, µ0�

for all P > P2�δ4,f� �F�δ4,f� �P1�δ4,f�.

Now we can formulate the main theorem of this chapter, which is the strong convergence

of the Lie-Trotter scheme. The proof of Theorem 3.2.2 can be found in Section 3.5.

Theorem 3.2.2. Let �P 1
t �tC0 and �P 2

t �tC0 be semigroups of Markov operators. Assume
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that Assumptions 1-4 hold. Then for every t C 0 there exists a unique Markov operator

Pt �M��S��M��S� such that for every µ >M��S�:

[�P 1
t
n

P 2
t
n

�n µ � Ptµ[�
BL,d

� 0 as n�ª (3.5)

If, additionally, a single δ3,f , δ4,f , Cf�µ0� and ωf��, f� can be chosen in (A3) and (A4) to

hold uniformly for f > BL�S, d�, YfYBL,d B 1, then convergence in (3.5) is uniform for t in

compact subsets of R�.

3.3 Preliminaries

3.3.1 Markov operators and semigroups

We start with some preliminary results on Markov operators on spaces of measures, see

[Wor10, EK86, LM00]. Let S be a Polish space, P �M��S��M��S� a Markov operator.

We extend P to a positive bounded linear operator on �M�S�, Y �YTV � by Pµ �� Pµ��Pµ�.

P is a bounded linear operatos on M�S� for Y�YTV . ’Typically’ it is not bounded for Y�Y�BL,d.

Denote by BM�S� the space of all bounded Borel measurable functions on S. Following

[HW09b], Definition 3.2 or [SM03] we will call a Markov operator P regular if there exists

U � BM�S�� BM�S� such that

`Pµ, fe � `µ,Ufe for all µ >M��S�, f > BM�S�.
Let �S,Σ� be a measurable space. According to [Wor10], Proposition 3.3.3, P is regular if

and only if

(i) x( Pδx�E� is measurable for every E > Σ and

(ii) Pµ�E� � RS Pδx�E�dµ�x� for all E > Σ.

We call the operator U � BM�S� � BM�S� the dual operator of P . The Markov operator

P is a Markov-Feller operator if it is regular and the dual U maps Cb�S� into itself. A

Markov semigroup �Pt�tC0 on S is a semigroup of Markov operators onM��S�. The Markov

semigroup is regular (or Feller) if all the operators Pt are regular (or Feller). Then �Ut�tC0

is a semigroup on BM�S�, which we call the dual semigroup.
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3.3.2 Topological preliminaries

Following [Kel55], p.230, a topological space X is a k-space if for any subset A of X holds

that if A intersects each closed compact set in a closed set, then A is closed. According to

[Eng77], Theorem 3.3.20 every first-countable Hausdorff space is a k-space. Every metric

space is first countable, hence also a k-space. In particular �M��S�, Y � Y�BL,d� is a k-space.

Let F be a family of continuous maps from a topological space X to a metric space �Y, dY �.
F is equicontinuous at point x > X if for every ε A 0 there exists an open neighbourhood

Uε of X in X such that

dY �f�x�, f�x��� @ ε for all x� > Uε,¦f > F .

A family F of maps is equicontinuous if and only if it is equicontinuous at every point.

A family F of maps from a metric space �X,dX� to a metric space �Y, dY � is uniformly

equicontinuous if for every ε A 0 there exists δε A 0 such that

dY �f�x�, f�x��� @ ε for all x,x� >X such that dX�x,x�� @ δε for all f > F .

Lemma 3.3.1. Let �K,d� be a compact metric space and �Y, dY � a metric space. An

equicontinuous family F ` C�K,Y � is uniformly equicontinuous.

Proof. Let ε A 0. For each x > K there exists an open ball Bx�δx�, δx A 0 such that

dY �f�f�, f�x��� @ ε for every x� > Bx�δx� and f > F . By compactness of K, it is covered by

finitely many balls, say Bxi�δxi~2�, i � 1,�, n. Let δ �� mini
δxi
2 . If x,x� > K are such that

d�x,x�� @ δ, then there exists xi0 such that x > Bxi0
�δxi0 ~2�. Necessarily,

d�x�, xi0� B d�x�, x� � d�x,xi0� @ δ � δxi0 ~2 @ δxi0 .

Thus, dY �f�x�, f�x��� @ ε, proving the uniform equicontinuity on K.

For a family of maps F on X and x >X we write F�x� �� �f�x� � f > F�. Following [Kel55]

we introduce the compact-open topology. Let X,Y be topological spaces. Let F denote

a non-empty set of functions from X to Y . For each subset K of X and each subset U

of Y , define W �K,U� to be the set of all members of F which carry K into U ; that is

W �K,U� �� �f � f�K� ` U�. The family of all sets of the form W �K,U�, for K a compact

subset of X and U open in Y , is a subbase for the compact-open topology for F . The

family of finite intersections of sets of the form W �K,U� is then a base for the compact

open topology. We write co-topology as abbreviation for compact-open topology. For two
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topological spaces T and T , C�T,T �� is the set of continuous maps from T to T �. The

following generalized Arzela-Ascoli type theorem is based on [Kel55], Theorem 7.18.

Theorem 3.3.2. Let C be the family of all continuous maps from a k-space X which is

either Hausdorff or regular to a metric space �Y, d�, and let C have the co-topology. Then

a subfamily F of C is compact if and only if:

(a) F is closed in C;

(b) the closure of F�x� in Y is compact for each x in X;

(c) F is equicontinuous on every compact subset of X.

Theorem 3.3.3. [Bargley and Young [RJ66], Theorem 4] Let X be a Hausdorff k-space

and Y a Hausdorff uniform space. Let F ` C�X,Y �. Then F is compact in the co-topology

if and only if

(a) F is closed;

(b) F�x� has compact closure for each x >X;

(c) F is equicontinuous.

This is a generalization of Theorem 8.2.10 in [Eng77]. This yields the conclusion that

for a closed family of continuous functions F such that F�x� is precompact for every x,

equicontinuity on compact sets is equivalent to continuity.

Moreover, Theorem 3.3.3 can be rephrased for a family F that is relatively compact in C,

meaning that its (compact-open) closure is compact:

Theorem 3.3.4. Let X be a Hausdorff k-space and Y a metric space. Let C � C�X,Y �,

equipped with the co-topology. A subset F of C is relatively compact iff:

(a) The closure of F�x� �� �f�x� � f > F� in Y is compact for every x >X.

(b) F is equicontinuous on every compact subset of X.

Statement (b) can be replaced by

(b’) F is equicontinuous on X.

Proof. Let F be the closure of F in C. Assume it is compact, then according to Theorem

3.3.2, the closure of F�x� in Y is compact for every x >X. Hence the closure of F�x�, which

is contained in the closure of F�x�, will be compact too. The family F is equicontinuous

on X for every compact subset of X, because it is a subset of F that has his property.

On the other hand, if F satisfies (a) and (b), or (b’), then F obviously satisfies condition
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(a) in Theorem 3.3.2. Now let f > F . Then there exists a net �fν� ` F such that fν � f .

Point evaluation at x is continuous for the co-topology, so fν�x�� f�x� in Y . Since fν�x�
is contained in a compact set in Y for every ν, f�x� will be contained in this compact set

too. So (b) holds in Theorem 3.3.2 for F . In a similar way one can show (c) in Theorem

3.3.2. Let K ` X be compact. The co-topology on C�X,Y � is identical to the topology

of uniform convergence on compact subsets ([Kel55], Theorem 7.11). So if f� > F and�fν� ` F is a net such that fν � f�, then fν SK � f�SK uniformly. If x0 > K, then for every

ε A 0 there exists an open neighbourhood U of x0 in K such that

dY �f�x�, f�x0�� @ 1
2ε for all f > F , x > U.

Consequently,

dY �f��x�, f��x0�� � lim
ν
dY �fν�x�, fν�x0�� B 1

2ε @ ε

for all x > U . So F is equicontinuous on K too. Theorem 3.3.2 then yields the compactness

of F in C, hence the relative compactness of F .

In [Wor10] and in [HSWZ17] we can find the following result, which will be crucial in the

proving norm convergence of the Lie-Trotter product formula.

Theorem 3.3.5. Let S be complete and separable. Let �µn�n>N ` Ms�S� and N C 0 be

such that `µn, fe converges as n�ª for every f > BL�S� �M�S��BL and

YµnYTV B N for every n > N.

Then there exists µ >M�S� such that Yµn � µY�BL � 0 as n�ª.

3.3.3 Tight Markov operators

Let us now introduce the concept of tightness of sets of measures and families of Markov

operators. According to [Bog07a], Theorem 7.1, all Borel measures on a Polish space are

Radon i.e. locally finite and inner regular. Also, by Definition 8.6.1 in [Bog07a] we say that

a family of Radon measures M on a topological space S is called uniformly tight if for every

ε A 0, there exists a compact set Kε such that SµS�S�Kε� @ ε for all µ >M. Moreover, we say

that a family �Pλ�λ>Λ of Markov operators is tight if for each µ >M��S�BL, �Pλµ � λ > Λ�
is uniformly tight. The following theorem, which is a rephrased version of Theorem 8.6.2

in [Bog07a], due to Prokhorov shows that in our case tightness of the Y � YTV -uniformly

bounded family is equivalent to precompactness of �Pλµ Sλ > Λ� in M��S�BL.
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Theorem 3.3.6 (Prokhorov theorem). Let S be a complete separable metric space and let

M be a family of finite Borel measures on S. The following conditions are equivalent:

(i) Every sequence �µn� `M contains a weakly convergent subsequence.

(ii) The family M is uniformly tight and uniformly bounded in total variation norm.

3.4 Equicontinuous families of Markov operators

Let S be a Polish space and consider a semigroup �Pt�tC0 of Markov operators. We will

examine the properties of equicontinuous families of Markov operators. An equicontinuous

family of Markov operators must consist of Y � Y�BL,d-continuous operators. These are Feller

([Wor10], Lemma 7.2.1). Due to Theorem 3.3.2, a closed subset F of the mappings from

M��S�BL to M��S�BL with the co-topology is compact if and only if F SK is equicontinuous

for each compact K `M��S� and the set �Ptµ � Pt > F� `M��S� has a compact closure

for every µ > M��S�. A continuous function on a compact metric space is uniformly

continuous. A similar statement holds for equicontinuous families.

Lemma 3.4.1. Let �Pλ�λ>Λ be a family of Markov operators on S. If �Pλ�λ>Λ is an equicon-

tinuous family on the compact set K `M��S�, then �Pλ�λ>Λ is uniformly equicontinuous

on K.

The following result, found in [HSWZ17] and based on [Wor10], Theorem 7.2.2, gives

equivalent conditions for a family of regular Markov operators to be equicontinuous:

Theorem 3.4.2. Let �Pλ�λ>Λ be a family of regular Markov operators on the complete

separable metric space �S, d�. Let Uλ be the dual operator of Pλ. Then the following

statements are equivalent:

(i) �Pλ�λ>Λ is an equicontinuous family;

(ii) �Uλf�λ>Λ is an equicontinuous family in Cb�S� for all f > BL�S, d�;

(iii) �Uλf Sf > B,λ > Λ� is an equicontinuous family for every bounded set B ` BL�S, d�.

In the next part of this section we show results which allow us to prove Theorem 3.2.1,

that is that the composition of an equicontinuous family of Markov operators with an

equicontinuous and tight family of Markov operators is equicontinuous. Additionally, if

both families are tight, the composition is also tight. One can find an example of equicon-

tinuous and tight families of Markov operators in [Sza03].

Let us first prove the following crucial observation.
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Lemma 3.4.3. Let �Pλ�λ>Λ be an equicontinuous and tight family of Markov operators

on �S, d� and let K ` M��S�BL be precompact. Then �Pλµ Sµ > K,λ > Λ� ` M��S�BL is

precompact.

Proof. As K is precompact, then K is compact in M��S�BL. So �PλSK� ` C�K,M��S�BL�
is equicontinuous and for each µ > K̄, �PλµSλ > Λ� is precompact, by tightness of the family�Pλ�λ>Λ. Hence, by Theorems 3.3.2 - 3.3.3, �PλSK� ` C�K,M��S�BL� is relatively compact

for the compact-open topology, which is the Y � Yª-norm topology in this case. Let us

consider the evaluation map

ev � C�K,M��S�BL� �K � M��S�BL�F,µ� ( F �µ�.
Theorem 5, [Kel55], p.223 yields that this map is jointly continuous if C�K,M��S�BL� is

equipped with the co-topology. So

K � � �F �µ� SF > Cl��PλSK � λ > Λ��, µ >K�
is compact in M��S�BL.

To prove Theorem 3.2.1, we will need the following result.

Proposition 3.4.4. Let �Pλ�λ>Λ be a tight family of regular Markov operator on S. If�Pλ�λ>Λ is equicontinuous for one admissible metric on S, then it is equicontinuous for any

admissible metric.

The key point in the proof of Proposition 3.4.4 is a series of results on characterisation of

compact sets in the space of continuous maps when equipped with the co-topology. These

can be stated in quite some generality, originating in [Kel55, Eng77, RJ66].

Proof. Let d be the admissible metric on S for which �Pλ� is equicontinuous in Cd ��

C�P�S�weak,P�S�BL,d�. Let d� be any other admissible metric on S. We must show that�Pλ� is an equicontinuous family in Cd� �� C�P�S�weak,P�S�BL,d��.
By assumption, �Pλµ � λ > Λ� is tight for every µ > P�S�. By Prokhorov’s Theorem (see

[Bog07a], Theorem 8.6.2), it is relatively compact in P�S�BL,d, because the Y � YBL,d-norm

topology coincides with the weak topology on M��S�. Because �Pλ� is equicontinuous

in Cd, Theorem 3.3.4 yields that �Pλ� is relatively compact in Cd, for the co-topology.

Since the topologies on P�S� defined by the norms Y � YBL,d� , d� admissible, all coincide

with the weak topology, �Pλ� is relatively compact in Cd� for any admissible metric d�.
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3.4. Equicontinuous families of Markov operators

Again the application of Theorem 3.3.4, but now in opposite direction, yields that �Pλ� is

equicontinuous in Cd� .

Proposition 3.4.5. Let �Pλ�λ>Λ be a family of Markov operators on �S, d�. If �Pλ�λ>Λ is

tight, then the following are equivalent:

(i) For every K `M�S��BL precompact, �PλSK�λ>Λ is equicontinuous on K.

(ii) �Pλ�λ>Λ is equicontinuous (on S).

To prove Proposition 3.4.5 we apply Theorem 3.3.2 and Theorem 3.3.3 to the k-space�M��S�BL, Y � Y�BL,d�.
Now we are in a position to prove Theorem 3.2.1.

Proof. (Theorem 3.2.1) Let �Pλ�λ>Λ and �Qγ�γ>Γ,with families of dual operators �Uλ�λ>Λ
and �Vγ�γ>Γ respectively, be equicontinuous. Let f > BL�S, d�. Then �Uλf Sλ > Λ� � E

is equicontinuous. Let dE be the associated admissible metric as defined in (3.3) with

E�f� replaced by E . Then E is contained in the unit ball BE of �BL�S, dE�, Y � YBL,dE�. As�Qγ�γ>Γ is an equicontinuous family for d, by Proposition 3.4.4 it is equicontinuous for any

admissible metric on S. Hence, it is equicontinuous for dE . Then, by Theorem 3.4.2 (iii)

F � �Vγg � g > BE , γ > Γ� is equicontinuous in Cb�S�.
In particular, as subset of F ,

�VγUλf � γ > Γ, λ > Λ� is equicontinuous in Cb�S�.
Hence, by Theorem 3.4.2, �PλQγ�λ>Λ,γ>Γ is equicontinuous for d. If �Pλ�λ>Λ is an equicon-

tinuous and tight family, then Lemma 3.4.3 implies that for any K `M��S�BL compact,

KQ �� �QγνSγ > Γ, ν > K� is precompact. Thus, �PλµSλ > Λ, µ > KQ� � �PλQγνSλ > Λ, γ >

Γ, ν >K� `M��S�BL is precompact. In particular, this holds for for K � �ν0�.

In the above proof of Theorem 3.2.1 we only need assumption, that the family �Qγ�γ>Γ is

tight. In case both �Pλ�λ>Λ and �Qγ�γ>Γ are tight, there is an alternative way of proving

Theorem 3.2.1 using Lemma 3.4.3.

As a consequence of Theorem 3.2.1 we get the following Corollary.

Corollary 3.4.6. The composition of a finite number of equicontinuous and tight families

of Markov operators is equicontinuous and tight.
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Lie-Trotter product formula for locally equicontinuous and tight Markov operators

3.5 Proof of convergence of Lie-Trotter product for-

mula

Throughout this section we assume that �P 1
t �tC0 and �P 2

t �tC0 are Markov-Feller semigroups

on S with dual semigroups �U1
t �tC0, �U2

t �tC0, respectively.

We start by examining some consequences of Assumptions 1 - 4 formulated in Section 3.2.

Introduce

F@�δ� �� ��P 1
t
n

P 2
t
n

�i � n > N, i B n � 1, t > �0, δ�  .
Lemma 3.5.1. The following statements hold:

(i) If Assumption 1 holds, then P1�δ� and P2�δ� are equicontinuous and tight for every

δ A 0.

(ii) If F�δ2� is equicontinuous then F@�δ2� is equicontinuous.

(iii) F@�δ2� is equicontinuous and tight iff F�δ2� is equicontinuous and tight.

Proof. (i) Is an immediate consequence of Theorem 3.2.1 and the semigroup property

of �P i
t �tC0.

(ii) Let t > �0, δ2� and i, n > N such that i B n � 1. Observe that �P 1
t
n

P 2
t
n

�i � �P 1
1
i
it
n

P 2
1
i
it
n

�i
with it

n > �0, δ2�. Hence F@�δ2� ` F�δ2�. A subset of an equicontinuous family of maps

is equicontinuous.

(iii) The following subsets of F@�δ2�,
F

1
@
�δ� �� �P 1

t
n

P 2
t
n

� n > N, t > �0, δ��
and

F
�

@
�δ� �� ��P 1

t
n

P 2
t
n

�n�1
� n > N, t > �0, δ� 

are equicontinuous and tight, because F@�δ2� is. Note that F ` F1
@
�δ2� � F�

@
�δ2�.

According to Theorem 3.2.1 the latter product is equicontinuous and tight. Hence

F is equicontinuous and tight. In part (ii) we observe that F@�δ2� ` F�δ2�, so

equicontinuity and tightness of F�δ2� implies that of F@�δ2�.
Lemma 3.5.2 (Eventual equicontinuity). If Assumptions 1 and 2 hold, then for each
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3.5. Proof of convergence of Lie-Trotter product formula

compact Γ ` R� there exists N � NΓ such that

F
N
Γ �� ��P 1

t
n

P 2
t
n

�n � n > N, n C N, t > Γ�
is equicontinuous.

Proof. Let N > N be such that t
N B min�δ1, δ2� �� δ for all t > Γ. For n C N we have, with

k �� n �N

�P 1
t
n

P 2
t
n

�n � �P 1
1
k
�
k�t
N�k

P 2
1
k
�
k�t
N�k

�k�N � �P 1
1
k
�
k�t
N�k

P 2
1
k
�
k�t
N�k

�k �P 1
t

N�k

P 2
�t

N�k

�N .
Since t

N�k > �0, δ� for k > N0 and P1�δ� and P2�δ� are equicontinuous and tight (by as-

sumption), the family ��P 1
t

N�k

P 2
�t

N�k

�N � k > N0, t > Γ¡ is equicontinuous and tight according

to Theorem 3.2.1. The family ��P 1
1
k
�
k�t
N�k

P 2
1
k
�
k�t
N�k

�k � k > N, t > Γ¡ ` F�δ2� is equicontinuous by

Assumption 2. Hence Theorem 3.2.1 yields equicontinuity of FN
Γ .

Lemma 3.5.3. If Assumptions 1 and 2 hold and, additionally, F�δ� is a tight family for

some δ � δ2 A 0, then F�δ� is equicontinuous and tight for any δ A 0.

Proof. Let δ2 A 0 such that Assumption 2 holds for δ2. Let

F�2δ2� �� ��P 1
t
n

P 2
t
n

�n � t > �0,2δ2�, n > N 
� ��P 1

t�

m

P 2
t�

m

�2m

� t� ��
t

2
> �0, δ2�,m > N¡´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Feven
m

8��P 1
t�

2m�1

P 2
t�

2m�1

�2m�1

� t� > �0, δ2�,m > N¡´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Fodd
m

Due to Theorem 3.2.1, F even
m �δ2� is an equicontinuous and tight family as a product of

equicontinuous and tight families.

Fodd
m �δ2� � ��P 1

tm
m

P 2
tm
m

�2m�1

� tm � t � m
2m�1 , t > �0, δ2�,m > N¡

` ��P 1
tm
m

P 2
tm
m

� �P 1
tm
m

P 2
tm
m

�m �P 1
tm
m

P 2
tm
m

�m � tm � t � m
2m�1 , t > �0, δ2�,m > N 

Hence, due to Theorem 3.2.1, Fodd
m �δ2� is an equicontinuous and tight family.
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Lie-Trotter product formula for locally equicontinuous and tight Markov operators

Lemma 3.5.4. Let f > BL�S, d� and δ � min�δ1, δ2�. If Assumptions 1 and 2 hold, then

E�f� defined by (3.2) is equicontinuous in Cb�S�.

Note that E�f� depends on the choice of f . Lemma 3.5.4 is a consequence of Assumptions

1 and 2 and Theorem 3.4.2.

Remark 3.5.5. Technically, one requires that particular subsets of E�f� are equicontinu-

ous. Namely, that

Ek�f� � �U2
lt
kn

U1
jt
kn

�U2
t
n

U1
t
n

�n f � n, j, l, i > N, j B kn, i B n � 1, l B kn, t > �0, δ2� 
is equicontinuous for every k. This seems to be quite too technical a condition.

Remark 3.5.6. The commutator condition that we propose in Assumption 3 is weaker than

the commutator conditions in [Kuh01], conditions �C� and �C�� in [CC04] and commutator

condition in Proposition 3.5 in [Col09].

For later reference, we present some properties of function t( ω�t� �� ωf�t, µ0�, that occurs

in Assumptions 3 and 4.

Lemma 3.5.7. Let ω � ωf��, µ0� � R� � R� be a continuous, nondecreasing function

such that Dini condition (3.4) in Assumption 3 holds. Then limt�0� ω�t� � 0 and for

any 0 @ a @ 1.

(a) Pª

n�1 ω�ant� @ª for all t A 0;

(b) limt�0Pª

n�1 ω�ant� � 0.

Proof. For (a) Suppose that inf0@t@1 ω�t� �m A 0. Then by 3.4 in Assumption 3 we get

S
1

0

ω�s�
s

ds C S
1

0

m

s
ds � �ª.

So m � 0. From the fact that R σ0 ω�t�
t dt @ �ª we have

ª A Pª

n�0 R a
nt

an�1t
ω�s�
s ds C Pª

n�0
ω�an�1t�
ant �ant � an�1t� �

� Pª

n�0 ω�an�1t� �1 � an�1t
ant � � �1 � a�Pª

n�1 ω�ant�
This proves �a�.
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3.5. Proof of convergence of Lie-Trotter product formula

For �b� let ε A 0. According to (a) there exists n0 > N such that

ª

Q
n�n0

ω�an� @ ε
2
.

Moreover, because limt�0� ω�t� � 0, there exists t0 B 1 such that ω�at0� @ ε
2n0

. Then for

every 0 @ t B t0 and n > N, 1 B n B n0, ω�ant� B ω�at0� B ε
2n0

. So

ª

Q
n�1

ω�ant� @ n0�1

Q
n�1

ω�ant� � ª

Q
n�n0

ω�ant� @ ε�n0 � 1�
2n0

�
ε

2
@ ε.

To show our main result we need technical lemmas which we present in this section. Proofs

of results from this section can be found in Appendix 3.8.1.

Lemma 3.5.8. The following identities hold: for fixed k > N, m �� kn and j Bm.

(a) P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

� Pj�1
l�0 P

2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�1�l�t

m

(b) P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k � Pk�1
j�1 P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�k�1�j

(c) �P 1
t
n

P 2
t
n

�n � �P 1
t
m

P 2
t
m

�m � �P 1
kt
m

P 2
kt
m

�n � �P 1
t
m

P 2
t
m

�n�k �
� Pn�1

i�0 �P 1
kt
m

P 2
kt
m

�i �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k��P 1
t
m

P 2
t
m

�k��n�1�i�
.

Combining Lemma 3.5.8 (a) - (c) we get the following Corollary.

Corollary 3.5.9. For any n > N, k > N and m �� kn one has

�P 1
t
n

P 2
t
n

�n � �P 1
t
m

P 2
t
m

�m �

� Pn�1
i�0 Pk�1

j�1 Pj�1
l�0 �P 1

kt
m

P 2
kt
m

�iP 1
jt
m

P 2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�l�t
m

�P 1
t
m

P 2
t
m

�k�n�i��j�1

Lemma 3.5.10. Let f > BL�S, d� and µ0 >M0. Assume that Assumptions 1 - 4 hold and

put δf � min�δ1, δ2, δ3,f , δ4,f�. Then for all t C 0 and n, k > N such that t
nk > �0, δf �:

Vc�P 1
t
n

P 2
t
n

�n µ0 � �P 1
t
kn

P 2
t
kn

�n�k µ0, fhV B Cf�µ0�k � 1

2
tωf � t

nk
,µ0� .

85
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We can now finally get to the proof of our main result, Theorem 3.2.2, i.e. the convergence

of the Lie-Trotter product formula for Markov operators. We need the lemma that yields

the convergence of the subsequence of the form d�P 1
t

2n
P 1

t
2n
�2n

µ0, fi for µ0 >M0 and for every

f > BL�S, d�. Then, using this result, we will show that the sequence c�P 1
t
n

P 1
t
n

�n µ0, fh also

converges for every f > BL�S, d�. From that we can extend from µ0 > M0 to µ >M��S�.
Recall that δf �� min�δ1, δ2, δ3,f , δ4,f�.
Remark 3.5.11. The ”weak” convergence in our setting is a convergence of a sequence of

measures paired with a bounded Lipschitz function. Hence it differs from the ”standard”

definition of weak convergence (see [Bog07a] Definition 8.1.1), where the sequence of mea-

sures is paired with continuous bounded functions. However, since BL�S, d� �M�S��BL (see

[HW09b], Theorem 3.7) our terminology is proper from a functional analytical perspective.

Lemma 3.5.12. Let �P 1
t �tC0 and �P 2

t �tC0 be Markov semigroups such that Assumptions

1 - 4 hold. Let µ0 > M0 and f > BL�S, d�. Then the sequence �rn�n>N where rn ��d�P 1
t

2n
P 1

t
2n
�2n

µ0, fi converges for every t C 0, uniformly for t in compact subsets of R�.

Proof. The case t � 0 is trivial. So fix t A 0. Let f > BL�S, d�. There exists N > N such

that t
2N

> �0, δf �. Let i, j > N, i A j C N . Then 2i � 2j � 2l with l � i � j @ i. Lemma 3.5.10

yields for any µ0 >M0, that

Wd��P 1
t

2i
P 2

t

2i
�2i

� �P 1
t

2j
P 2

t

2j
�2j�µ0, fiW

B

i�1

Q
l�j

Wd��P 1
t

2l
P 2

t

2l
�2l

� �P 1
t

2l�1
P 2

t

2l�1
�2l�1�µ0, fiW

BCf�µ0� t
2

i�1

Q
l�j

ωf � t

2l�1
, µ0� ,

(3.6)

with ωf as in Assumption 3. According to Lemma 3.5.7 (a), Pª

l�0 ωf � t
2l�1 , µ0� @ �ª. So for

every ε A 0 there exists N � > N,N � C N such that Pi�1
l�j ωf � t

2l�1 , µ0� @ ε for every i, j C N .

Also, by property b) in Lemma 3.5.7, ωf � t
2l�1 , µ0� can be made uniformly small, when t is in

a compact subset of R�. Hence the sequence �rn�n>N is Cauchy in R, hence convergent.

Observe that a measure µ > M��S� is uniquely defined by its values on f > BL�S, d�.
Lemma 3.5.12 and the Banach-Steinhaus Theorem (see [Bog07b], Theorem 4.4.3) allow us
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to define a positively homogeneous map Pt �M0 � BL�S, d�� by means of

`Ptµ0, fe �� lim
n�ª

c�P 1
t

2n
P 2

t
2n
�2n

µ0, fh .
However, according to Theorem 3.3.5, Ptµ0 >M

��S� for every µ0 >M0 and

�P 1
t

2n
P 2

t
2n
�2n

µ0 � Ptµ0 (3.7)

strongly, in Y � Y�BL,d-norm.

Proposition 3.5.13. Let �P 1
t �tC0 and �P 2

t �tC0 be Markov semigroups such that Assump-

tions 1 - 4 hold. If µ0 >M0, then for every f > BL�S, d� and for all t C 0, c�P 1
t
n

P 2
t
n

�n µ0, fh
converges to `Ptµ0, fe.
Proof. Let f > BL�S�, t C 0 and fix ε A 0. Put δf � min�δ1, δ2, δ3,f , δ4,f�. For any l > N,

using Lemma 3.5.10, one has

Vc�P 1
t
n

P 2
t
n

�n µ0 � Ptµ0, fhV B Wd�P 1
t
n

P 2
t
n

�n µ0 � �P 1
t

n2l

P 1
t

n2l

�n2l

µ, fiW
� Wd�P 1

t

n2l

P 1
t

n2l

�n2l

µ0 � �P 1
t

2l

P 1
t

2l

�2l

µ0, fiW
� Wd�P 1

t

2l

P 2
t

2l

�2l

µ0 � Ptµ0, fiW .
Pick N such that for n C N one has t

n > �0, δf �. Then

Vc�P 1
t
n

P 2
t
n

�n µ0 � Ptµ0, fhV B Pl�1
i�0 Wd�P 1

t

2in

P 2
t

2in

�2in

µ0 � �P 1
t

2i�1n

P 2
t

2i�1n

�2i�1n

µ0, fiW
�Cf�µ0�n�1

2 tωf � t
n2l
, µ0�

� Wd�P 1
t

2l

P 2
t

2l

�2l

µ0 � Ptµ0, fiW
B Pl�1

i�0Cf�µ0�1
2tωf � t

2in
, µ0� �Cf�µ0�n�1

2 tωf � t
n2l
, µ0�

� Wd�P 1
t

2l

P 2
t

2l

�2l

µ0 � Ptµ0, fiW
� 1

2Cf�µ0�t �Pl
i�0 ωf � t

2in
, µ0� � �n � 1�ωf � t

n2l
, µ0��

� Wd�P 1
t

2l

P 2
t

2l

�2l

µ0 � Ptµ0, fiW .
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According to Proposition 3.5.13 there exists N0 such that for any l C N0

Wd�P 1
t

2l
P 2

t

2l
�2l

µ0 � Ptµ0, fiW @ ε
3
.

Lemma 3.5.7 (b) yields N1 > N, N1 C N such that for every n C N1 and l > N,

l

Q
i�0

ωf � t

2in
,µ0� B ª

Q
i�0

ωf � t

2in
,µ0� @ �1 �

1

2
Cf�µ0�t��1 ε

3
.

Since ωf�s, µ0� � 0 as s � 0, for every n C N1, there exists ln C N0 such that

ωf � t

n2ln
, µ0� @ 1

n � 1
�1 �

1

2
tCf�µ0���1 ε

3
.

So by choosing l � ln in the above derivation, we get that

Ub�P 1
t
n

P 2
t
n

�n µ0 � Ptµ0, fgU @ ε for every n C N1.

The next lemma shows that once the convergence of c�P 1
t
n

P 2
t
n

�n µ0, fh is established for

µ0 >M0 then we have convergence for all µ >M��S�.
Lemma 3.5.14. Assume that Assumptions 1 - 4 hold. Then for every µ > M��S� and

t C 0, ��P 1
t
n

P 2
t
n

�n µ�
n>N

is a Cauchy sequence in µ >M��S� for Y � Y�BL,d.

Proof. Let µ > M��S�. Let ε A 0. By Assumption 2, F�δ� is an equicontinuous family.

Thus there exists δε A 0 such that

[�P 1
t
n

P 2
t
n

�n µ � �P 1
t
n

P 2
t
n

�n ν[�
BL,d

@ ε~3
for all ν >M��S� such that Yµ � νY�BL,d @ δε. As M0 `M

��S� dense, there exists µ0 >M0
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such that SSµ � µ0Y�BL,d @ δε. Then

\�P 1
t
n

P 2
t
n

�n µ � �P 1
t
m

P 2
t
m

�m µ\�
BL,d

B \�P 1
t
n

P 2
t
n

�n µ � �P 1
t
n

P 2
t
n

�n µ0\�
BL,d

� \�P 1
t
n

P 2
t
n

�n µ0 � �P 1
t
m

P 2
t
m

�m µ0\�
BL,d

� \�P 1
t
m

P 2
t
m

�m µ0 � �P 1
t
m

P 2
t
m

�m µ\�
BL,d

(3.8)

According to Proposition 3.5.13 and Theorem 3.3.5, there exists N > N such that for

n,m C N , [�P 1
t
n

P 2
t
n

�n µ0 � �P 1
t
m

P 2
t
m

�m µ0[�
BL,d

@ ε~3.
Hence for n,m C N , we obtain for (3.8) that

[�P 1
t
n

P 2
t
n

�n µ � �P 1
t
m

P 2
t
m

�m µ[�
BL,d

@
ε

3
�
ε

3
�
ε

3
� ε

which proves that ��P 1
t
n

P 2
t
n

�n µ�
n

is a Cauchy sequence.

Lemma 3.5.14 allows us to define for µ >M��S� and t > �0, δ�
P̄tµ �� lim

n�ª
�P 1

t
n

P 2
t
n

�n µ
as a limit in M��S�BL. Then P̄tµ0 � Ptµ0 for µ0 >M0, according to Proposition 3.5.13.

Thus, as a consequence of Lemma 3.5.14 we have proven the first part of Theorem 3.2.2.

Concerning the second part of the proof: the arguments in the proofs of the lemmas and

propositions that together finish the proof of Theorem 3.2.2, show upon inspection that in

case where stronger versions of Assumptions 3 and 4 hold, then immediately Y � Y�BL,d-norm

estimates can be obtained. That is, if in Assumptions 3 and 4 a single δ3,f , δ4,f . Cf�µ0�
and ωf��, µ0� can be chosen to hold uniformly for f in the unit ball of BL�S, d�, then

one obtains Theorem 3.2.2 (i.e. norm-convergence of the Lie-Trotter product) without the

need of Theorem 3.3.5. Then one easily checks that convergence is uniform in t in compact

subsets of R�. In fact for µ > M0 this result is captured in the preceding remarks. Let

Γ ` R� be compact. According to Lemma 3.5.2, FN
Γ is equicontinuous for N sufficiently

large. Then all estimates in the proof of Lemma 3.5.14 can be made uniformly in t > Γ.

Moreover, in the situation described above, the rate of convergence of the Lie-Trotter

product is controlled by properties of ω��, µ0�, according to the proof of Proposition 3.5.13.
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3.6 Properties of the limit

Let us now analyse the properties of the limit operator family �Pt�tC0 as obtained by the

Lie-Trotter product formula. First we show that Pt is a Feller operator, i.e. it is continuous

on M��S� for Y � Y�BL,d.

3.6.1 Feller property

Lemma 3.6.1. Let �P 1
t �tC0 and �P 2

t �tC0 be semigroups of regular Markov-Feller operators

that satisfy Assumptions 1 - 4. Let �µn�n>N `M��S� and µ� >M��S� be such that µn � µ�

in M��S�BL as n�ª. Then �P 1
t
n

P 2
t
n

�n µn � Ptµ� in M��S�BL for t > �0, δ2�.
Proof. Let ε A 0. From Assumption 2 (stability) we get that there exists δε A 0 such that

[�P 1
t
n

P 2
t
n

�n µ � �P 1
t
n

P 2
t
n

�n µ�[�
BL,d

@ ε~2
for every ν > M��S� such that Yµ � µ�Y�BL,d @ δε for all t > �0, δ2�. Since µn � µ�, there

exists N0 > N such that Yµn � µ�Y�BL,dE�f�
@ δε

for all n C N0. From Theorem 3.2.2 we know that there exists N1 > N such that for every

n C N1 [�P 1
t
n

P 2
t
n

�n µ� � Ptµ�[
BL,d

@ ε~2.
Then for n C N �� max�N0,N1�,

\�P 1
t
n

P 2
t
n

�n µn � Ptµ�\�
BL,d

B \�P 1
t
n

P 2
t
n

�n µn � �P 1
t
n

P 2
t
n

�n µ�\�
BL,d

� \�P 1
t
n

P 2
t
n

�n µ� � Ptµ�\�
BL,dE�f�

@ ε.

Proposition 3.6.2. If Assumptions 1 - 4 then for all k > N, t C 0

Pktµ � Pktµ for all µ >M��S�.
In particular, PtPsµ � Pt�sµ for all t, s C 0 such that t

s > Q.

Proof. Let µ >M��S�. Let ε A 0. Without loss of generality we can assume that t > �0, δ2�.
For k � 1 the statement is obviously true. Assume it has been proven for k. We now show
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it holds for k � 1 as well. As we know that the limit of the Lie-Trotter product exists

(Theorem 3.2.2), we can consider in the limit any subsequence. Take n � �k�1�m, m�ª:

P�k�1�tµ � lim
m�ª

�P 1
t
m

P 2
t
m

��k�1�m
µ � lim

m�ª
�P 1

t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ� .
Hence there exists N0 > N such that for all m A N0,

\P�k�1�tµ � �P 1
t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ�\�
BL,d

@
ε

3
.

Since by assumption �P 1
t
m

P 2
t
m

�km µ � Pktµ, Lemma 3.6.1 yields that there exists N1 C N0

such that for m C N1:

\�P 1
t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ� � �P 1
t
m

P 2
t
m

�m Pktµ\�
BL,d

@
ε

3
.

Also, by Theorem 3.2.2 we get N2 C N1 such that for every m C N2

[�P 1
t
m

P 2
t
m

�m Pktµ � Pk�1

t µ[�
BL,d

@
ε

3
.

Hence for m C N2,

[P�k�1�tµ � Pk�1

t µ[�
BL,d

B \P�k�1�tµ � �P 1
t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ�\�
BL,d

� \�P 1
t
m

P 2
t
m

�m ��P 1
t
m

P 2
t
m

�km µ� � �P 1
t
m

P 2
t
m

�m Pktµ\�
BL,d

� [�P 1
t
m

P 2
t
m

�m Pktµ � Pk�1

t µ[�
BL,d

@ ε.

If t, s A 0 are such that t
s > Q, then there exist m,r > N: rt �ms. Hence, by the first part,

Pt�sµ � P�m�r�� s
r
µ � P�m�r�

s
r

µ � Pms
r
Prs
r
µ � PtPsµ.

Proposition 3.6.3. Pt �M��S�BL �M��S�BL is continuous for all t C 0.

Proof. First we will get the result for t > �0, δ2�. Let µ >M��S� and ε A 0. By Assumption

2, there exists δε A 0 such that

[�P 1
t
n

P 2
t
n

�n µ � �P 1
t
n

P 2
t
n

�n ν[�
BL,d

@
ε

2
(3.9)
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for every ν > M��S� such that Yµ � νY�BL,d @ δε and all n > N, t > �0, δ2�. Then, by taking

the limit n�ª in (3.9), using Theorem 3.2.2,

ZPtµ � PtνZ�BL,d
B
ε

2
@ ε

for all µ, ν >M��S� such that Yµ � νY�BL,d @ δε. So Pt is continuous for all t > �0, δ2�. Now

we can use Proposition 3.6.2 to extend the result to all t C 0.

In the proof we actually show more, which we formulate as a corollary.

Corollary 3.6.4. The family P�δ� � �Pt � t > �0, δ�� is equicontinuous for every 0 @ δ B δ2.

3.6.2 Semigroup property

Let us now analyze the full semigroup property of the limit. Recall Proposition 3.6.2. The

extension to all pairs t, s > R� of the semigroup property is not obvious. We do not assume

any continuity of Markov semigroups. However, let us show the following:

Proposition 3.6.5. Assume that Assumptions 1-4 hold and additionally that t ( P i
tµ �

R� �M��S�BL are continuous for i � 1,2 and all µ > M��S�. Then �Pt�tC0 is strongly

continuous and it is a semigroup.

Proof. Put Qn
t �� �P 1

t
n

P 2
t
n

�n. If µ0 > M0, then by the strong continuity of the semigroup�P i
t �tC0 on M��S�, we obtain that Fn � R� � R � t ( `Qn

t µ0, fe is continuous for all

n > N. According to Lemma 3.5.12, F2N converges uniformly on compact subsets of R� to

t( `Pµ0, fe. Hence the latter function is continuous on R�.

Now, first take t� > �0, δ2� and �tk�k ` �0, δ2� such that �tk�k � t�. Let µ > M��S� and

ε A 0. Since the family P�δ2� is equicontinuous (Corollary 3.6.4), there exists δε A 0 such

that for all ν >M��S� with Yµ � νY�BL,d @ δε,

ZPtµ � PtνZ�BL,d
@

ε

3�1 � YfYBL,d� for all t > �0, δ2�.
M0 is dense in M��S�. So there exists ν0 >M0 such that Yµ � µ0Y�BL,d @ δε. Then

TaPt�µ � Ptkµ, ffT B ZPt�µ � Pt�µ0Z�BL,d
� YfYBL,d

� TaPt�µ0 � Ptkµ0, ffT � ZPtkµ0 � PtkµZ�BL,d
� YfYBL,d

@
ε

3
�
ε

3
�
ε

3
� ε,
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3.6. Properties of the limit

when k C N such that TaPt�µ0 � Ptkµ0, ffT @ ε
3 for all k C N . So, by Theorem 3.3.5, t ( Ptµ

is continuous on �0, δ2�.
Now we show that the continuity of t( Ptµ on �0,mδ2� implies continuity on �0, �m � 1�δ2�.
Let t� > �0, �m � 1�δ2� and tk > �0, �m � 1�δ2� such that tk � t�. According to Proposition

3.6.2,

Ptkµ � P tk
m�1

�Pmtk
m�1

µ� � P tk
m�1

�Pmtk
m�1

µ � Pmt�

m�1
µ� � P tk

m�1

� Pmt�

m�1
µ.

Because tk
m�1 > �0, δ0�, P�δ2� is equicontinuous and Pmtk

m�1

µ� Pmt�

m�1
µ by assumption, the first

term can be made arbitrarily small for sufficiently large k. The second term converges to

P t�

m�1
� Pmt�

m�1
µ, which equals Pt�µ by Proposition 3.6.2. So indeed, t ( Ptµ is continuous on�0, �m � 1�δ2�. We conclude that t ( Ptµ is continuous on R�. According to Proposition

3.6.2, PtPsµ � Pt�sµ for all t, s > R� such that t
s > Q. Because t ( Ptµ is continuous, the

semigroup property must hold for all t, s > R�.

We say that a Markov semigroup is stochastically continuous at 0 if limh�0Phµ � µ for

every µ >M��S�BL. Stochastic continuity at 0 implies right-continuity at every t0 C 0,

but not left-continuity. The next result shows together with equicontinuity, that stochastic

continuity at 0 implies strong continuity.

Proposition 3.6.6. Let �Pt�tC0 be a Markov-Feller semigroup. Assume that there exists

δ A 0 such that �Pt�t>�0,δ� is equicontinuous. If �Pt�tC0 is stochastically continuous at 0, then

it is strongly continuous.

Proof. �Pt�t>�0,δ� is equicontinuous and Pt� is Feller for all t� C 0. Consequently, �Pt�t>�t�,t��δ�
is an equicontinuous family for every t� > R�. Hence �Pt�t>�0,T � is equicontinuous for every

T > R�. So, if ε A 0, there exists an open neighbourhood U in M��S� of µ such that

YPtν � PtµY�BL @ ε

for every ν > U . Let t0 A 0. From the fact, that �Pt�tC0 is (strongly) stochastically contin-

uous at 0, there exists δ A 0 such that for every 0 @ h @ δ, Phµ > U . Then, from the fact

that YPt0µ � Pt0�hµY�BL � YPt0�hµ � Pt0�hPhµY�BL,

we get YPt0�hµ � Pt0µY�BL @ ε for all 0 @ h @ δ.
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So t( Ptµ is also left-continuous at every t0 A 0.

Corollary 3.6.7. If �Pt�tC0 is stochastically continuous and �Pt�t>�0,δ� is equicontinuous,

then �Pt�t>�0,T � is tight for every T A 0.

Remark 3.6.8. From Proposition 3.6.6 we can conclude that a Markov semigroup that is

stochastically continuous at 0 but not strongly continuous, cannot be equicontinuous.

3.6.3 Symmetry

We prove that, if the family P1�δ� is tight - as we assume in Assumption 1 - then the limit

does not depend on the order in which we start switching semigroups �P 1
t �tC0 and �P 2

t �tC0.

Now let us prove the following lemma.

Lemma 3.6.9. Let �P 1
t �t>T and �P 2

t �t>T be semigroups of regular Markov-Feller operators.

Let n > N, t > R�. Then

�P 1
t P

2
t �n � �P 2

t P
1
t �n � n�1

Q
i�0

�P 2
t P

1
t �n�i�1C1,2

t,t �P 1
t P

2
t �i (3.10)

�

n�1

Q
i�0

�P 1
t P

2
t �n�i�1C1,2

t,t �P 2
t P

1
t �i (3.11)

where Ci,j
s,t � P

i
sP

j
t � P

j
t P

i
s .

Proof. We prove (3.10) by induction. Let Ln denote the left-hand side in equality (3.10),

Rn the right-hand side. Obviously L1 � R1. Assume that Ln�1 � Rn�1. Then:

Ln � �P 1
s P

2
s �n � �P 2

s P
1
s �n �

� ��P 1
s P

2
s �n�1

� �P 2
s P

1
s �n�1�P 1

s P
2
s � �P 2

s P
1
s �n�1

P 1
s P

2
s � �P 2

s P
1
s �n �

� �Pn�2
i�0 �P 2

s P
1
s �n�i�2C1,2

s,s �P 1
s P

2
s �i�P 1

s P
2
s � �P 2

s P
1
s �n�1 �P 1

s P
2
s � P

2
s P

1
s � �

� Pn�2
i�0 �P 2

s P
1
s �n�i�2C1,2

s,s �P 1
s P

2
s �i�1 � �P 2

s P
1
s �n�1

C1,2
s,s �

� Pn�1
i�0 �P 2

s P
1
s �n�i�1C1,2

s,s �P 1
s P

2
s �i � Rn.

Next we prove that the limit of the switching scheme does not depend on the order of

switched semigroups in the product formula.

Proposition 3.6.10. Let �P 1
t �tC0 and �P 2

t �tC0 be semigroups of Markov operators for which

Assumptions 1 - 4 hold, and additionally that Assumption 2 holds for �P 1
t �tC0 and �P 2

t �tC0
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swapped. Let µ >M��S�. Then

lim
n�ª

�P 1
t
n

P 2
t
n

�n µ � lim
n�ª

�P 2
t
n

P 1
t
n

�n µ.
Proof. Let t > R�, µ0 >M0, f > BL�S, d� and fix ε A 0. There exists N > N such that t

N B δ,

where δ � min�δ3,f , δ4,f�. Since �P 1
t �tC0 and �P 2

t �tC0 are equicontinuous, they consist of

Feller operators necessarily. According to Lemma 3.6.9, for n C N

Vc�P 1
t
n

P 2
t
n

�n µ0 � �P 2
t
n

P 1
t
n

�n µ0, fhV � WdPn�1
i�0 �P 1

t
n

P 2
t
n

�n�i�1

C1,2
t
n
, t
n

�P 2
t
n

P 1
t
n

�i µ0, fiW
B Pn�1

i�0 WdC1,2
t
n
, t
n

�P 2
t
n

P 1
t
n

�i µ0, �U2
t
n

U1
t
n

�n�i�1

fiW
B Pn�1

i�0 ]C1,2
t
n
, t
n

�P 2
t
n

P 1
t
n

�i µ0]�
BL,dE�f�

� ]�U2
t
n

U1
t
n

�n�i�1

f]
BL,dE�f�

B Pn�1
i�0

t
nωf � t

n , �P 2
t
n

P 1
t
n

�i µ0�
B Cf�µ0�tωf � tn , µ0� ,

because �U2
t
n

U1
t
n

�n�i�1

f > E�f�.
As t is fixed and lims�0 ωf�s, µ0� � 0, we obtain for every f > BL�S, d� and µ0 >M0

limn�ª Vc�P 1
t
n

P 2
t
n

�n µ0 � �P 2
t
n

P 1
t
n

�n µ0, fhV � 0.

Then, by Theorem 3.3.5, it also converges in norm. Hence,

[�P 1
t
n

P 2
t
n

�n µ0 � �P 2
t
n

P 1
t
n

�n µ0[�
BL
� 0 as n�ª.

Define P̂tµ �� limn�ª �P 2
t
n

P 1
t
n

�n µ, for µ > M��S�. Since by assumption Assumption 2

holds with P 1
t and P 2

t swapped, Proposition 3.6.3 holds for P̂t as well: both Pt and P̂t
are continuous on M��S�. Since M0 is a dense subset of M��S�BL and Ptµ0 � P̂tµ0 for

µ0 >M0, we obtain Pt � P̂t on M��S�.
3.7 Relation to literature

We shall now show that Theorem 3.2.2 is a generalization of existing results. We start with

the approach of Kühnemund and Wacker [KW01] and show in detail that their result follows
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from Theorem 3.2.2. Then we provide proof that also the Proposition 3.5 in Colombo-

Guerra [Col09] follows from Theorem 3.2.2.

3.7.1 Kühnemund-Wacker

Kühnemund and Wacker [KW01] provided conditions for C0-semigroups that ensure con-

vergence of the Lie-Trotter product. Their setting is the following: Let �T �t��tC0, �S�t��tC0

be strongly continuous linear semigroups on a Banach space �E, Y � Y� that consists of

bounded linear operators. Let F ` E be a dense linear subspace, equipped with a normYS � YS, such that both �T �t��tC0 and �S�t��tC0 leave F invariant.

Assumption KW 1. �T �t��tC0 and �S�t��tC0 are exponentially bounded on �F, YS � YS�,

so there exist MT ,MS C 1, and ωT , ωS > R such that

YST �t�YS BMT e
ωT t, YSS�t�YS BMSe

ωSt

for all t C 0.

Assumption KW 2. �T �t��tC0 and �S�t��tC0 are locally Trotter stable on both �E, Y�Y�
and �F, YS � YS�. There exists δ A 0 and M δ

E,M
δ
F C 1 such that

Z�T � t
n
�S � t

n
��nZ BM δ

E

ZT�T � t
n
�S � t

n
��nZT BM δ

F

for all t > �0, δ� and n > N.

Assumption KW 3. (Commutator condition) There exists α A 1, δ� A 0 and M1 C 0 such

that YT �t�S�t�f � S�t�T �t�fY BM1t
αYSfYS

for all f > F , t > �0, δ�.
Theorem 3.7.1 (Kühnemund and Wacker, [KW01], Theorem 1). Let �T �t��tC0 and �S�t��tC0

be strongly continuous semigroups satisfying Assumptions KW1 - KW3. Then the Lie-

Trotter product formula holds, i.e.

Ptx �� lim
n�ª

�T � t
n
�S � t

n
��n x

exists in �E, Y � Y� for every x > X, and convergence is uniform for every t in compact

intervals in R�. Moreover, �P�t��tC0 is a strongly continuous semigroup in E.
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We shall now show that Theorem 3.7.1 follows from our result. Note that in Theorem 3.7.1

there is no assumption that �E, Y � Y� should be separable, while we assume that �S, d� is

separable. This issue can be overcome as follows. Fix x > E. Define T 1
t �� T �t�, T 2

t �� S�t�
and

Ex � ClE �spanR �T iNtN � T iN�1
tN�1

� � � T i1t1 � N > N, ik > �1,2�, k � 1,2,�,N�� .
Then Ex ` E is the smallest separable closed subspace that contains x and is both �T �t��tC0

and �S�t��tC0-invariant. Let S � Ex with metric d�y, y�� �� Yy�y�Y. Then �S, d� is separable

and complete.

Lifts

Let �P 1
t �tC0 be the lift of T �t� to M��S� and �P 2

t �tC0 be the lift of S�t� to M��S�. That

is, for µ >M��S�,
P 1
t µ �� S

S
δT �t�xµ�dx�, P 2

t µ �� S
S
δS�t�xµ�dx�, (3.12)

where the integrals are considered as Bochner integrals in M�S�BL, the closure of M�S�BL

in BL�S, d��. Since M��S� `M�S�BL is closed, P i
tµ >M��S�. So

P 1
t δx �� δT �t�x, P 2

t δx �� δS�t�x. (3.13)

We show that �P i
t �C0, i � 1,2, defined by (3.12) satisfy Assumptions 1 - 4.

First consider Assumption 1. We discuss �P 1
t �tC0 only; the argument for �P 2

t �tC0 is similar.

The map t ( P 1
t µ � R� �M��S�BL is continuous if and only if t ( `P 1

t µ, fe is continuous

for every f > Cb�S�. Clearly, `P 1
t µ, fe � RS`δT �t�x, feµ�dx� � RS f�T �t�x�µ�dx�. Using

the strong continuity of �T �t��tC0 and Lebesgue’s Dominated Convergence Theorem we

see that t ( `P 1
t µ, fe is indeed continuous on R�. Thus, �P 1

t µ � t > �0, δ�� is compact in

M��S�BL, that is: tight.

Let φ > BL�S, d� and x0 > S. Let U1
t be dual operators to P 1

t . Then:

SU1
t φ�x� �U1

t φ�x0�S � S`P 1
t δx � P

1
t δx0 , φeS

�´¸¶
def

S`δT �t�x � δT �t�x0
, φeS � Sφ�δT �t�x� � φ�δT �t�x0

�S B´¸¶
φ>BL�S,d�

SφSL � YT �t�x � T �t�x0Y
B SφSL � YT �t�Y � Yx � x0Y B´¸¶

KW1

SφSl �MT eωT t � Yx � x0Y
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So there exists δT such that �U1
t φ � t > �0, δT �� is equicontinuous in Cb�S�. Hence,�P 1

t � t > �0, δT �� forms an equicontinuous family, according to Theorem 3.4.2.

The stability condition in Assumption 2 can be shown as follows. Let φ > BL�S, d�, x0 > S.

V�U2
t
n

U1
t
n

�n φ�x� � �U2
t
n

U1
t
n

�n φ�x0�V � Vcδx � δx0 , �U2
t
n

U1
t
n

�n φhV
� Vc�P 1

t
n

P 2
t
n

�n δx � �P 1
t
n

P 2
t
n

�n δx0 , φhV
� Ubδ�T � t

n
�S� t

n
��nx � δ�T � t

n
�S� t

n
��nx0

, φgU
� Tφ �T � t

n
�S � t

n
��n x � φ �T � t

n
�S � t

n
��n x0T

B SφSL Z�T � t
n
�S � t

n
��n �x � x0�Z

B SφSL � Z�T � t
n
�S � t

n
��nZ � Yx � x0Y

B SφSL �M δ
E � Yx � x0Y

by Assumption KW3, for t > �0, δ�, n > N. Theorem 3.4.2 again implies equicontinuity of

F�δ�. Let φ > F ` E. We define

M0 �� spanR�
�δφ Sφ > F� `M��S�.

Then M0 is dense in M��S� and �P i
t �tC0-invariant, i � 1,2.

Moreover, define Sµ0SM0 �� S
F
YSφYSµ0�dφ�. (3.14)

So W NQ
k�1

akδφk W
M0

�

N

Q
k�1

akYSφkYS.
To check the commutator condition in Assumption 3, let f > BL�S, d� and µ0 > M0. We

define a new admissible metric dE�f� as in (3.3). Then for y, y� > Ex � S,

dE�f��y, y�� � Yy � y�Y - sup
g>E�f�

Sh�y� � h�y��S.
For h > E�f� there exist s, s� and t > �0, δ�, with δ � min�δ1, δ2�, such that

Sh�y� � h�y��S � Tf ��T � t
n
�S � t

n
��n T �s��S�s�y� � f ��T � t

n
�S � t

n
��n T �s��S�s�y��T

B Sf SL,d � Z�T � t
n
�S � t

n
��n T �s��S�s�Z � Yy � y�Y

BM � Sf SL,d � Yy � y�Y
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for some constant M A 0, according to Assumptions KW 1 - 2.

ZP 1
t P

2
t µ0 � P

2
t P

1
t µ0Z�BL,dE�f�

B S
S
ZP 1

t P
2
t δφ � P

2
t P

1
t δφZ�BL,dE�f�

µ0�dφ�
Let BE�f� be the unit ball in BL�S, dE�f�� for Y � YBL,dE�f� . By the Commutator Condition

KW 3 we get the following:

YP 1
t P

2
t δφ � P

2
t P

1
t δφY�BL,dE�f�

� supg>BE�f� Sg�T �t�S�t�φ� � g�S�t�T �t�φ�S
B supg>BE�f� SgSL,dE�f� � dE�f� �T �t�S�t�φ,S�t�T �t�φ�
B max�1, Sf SL,dM�YT �t�S�t�φ � S�t�T �t�φY
B max�1, Sf SL,dM�M1tαYSφYS.

Define

ωf�t, µ0� �� max�1, Sf SL,dM�M1t
α�1Sµ0SM0 .

Since α A 1, ωf � R� �M0 � R� is continuous, non-decreasing and for every δ A 0

S
δ

0

ωf�t, µ0�
t

dt � max�1, Sf SL,dM�Sµ0SM0M1S
δ

0
tα�2dt

� max�1, Sf SL,dM�M1
δα�1

α � 1
@ �ª.

Moreover, for µ0 >M0,

ZP 1
t P

2
t µ0 � P

2
t P

1
t µ0Z�BL,dE�f�

B S
S
ZP 1

t P
2
t δφ � P

2
t P

1
t δφZ�BL,dE�f�

µ0�dφ�
B max �1, Sf SL,dM�M1t

α�1S
S
YSφYSµ0�dφ�

� tωf�t, µ0�.
Hence, we get Assumption 3 for all µ0 >M0 and δ3,f � δ�.

Let us now check Assumption 4. First, for any φ > F ,

U�P 1
t
n

P 2
t
n

�n δφU
M0

� Uδ�T � t
n
�S� t

n
��nφU

M0

� TZ�T � t
n
�S � t

n
��n φZT BM δ

F YSφYS.
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For µ0 >M0 we get

V�P 1
t
n

P 2
t
n

�n µ0V
M0

� W�P 1
t
n

P 2
t
n

�n �Q
k

akδφk�W
M0

� WQ
k

akδ�T � t
n
�S� t

n
��nφk W

M0

� Q
k

ak Uδ�T � t
n
�S� t

n
��nφk UM0

B Q
k

akM δ
F SYφkYS

� M δ
F Sµ0SM0 .

Furthermore,

TP 1
t δφTM0

� TδT �t�φTM0
� YST �t�φYS BMT e

ωT tYSφYS BMT e
ωT δYSφYS

and similarly TP 2
t δφTM0

BMSe
ωSδYSφYS.

Then for 0 B t B δ SP 1
t µ0SM0

B MT eωT δ Sµ0SM0

and SP 2
t µ0SM0

B MSeωT δ Sµ0SM0 .

Thus, UP 2
s �P 1

t
n

P 2
t
n

�nP 1
t�µ0U

M0

BMTMSM
δ
F e

�ωT�ωs�δ � Sµ0SM0

and with Cf�µ0� ��MTMSM δ
F e

�ωT�ωs�δ (independent of f and µ0) and δ4,f � min�δ, δ��, we

see that Assumptions 1 - 4 hold.

Hence, we conclude that the Lie-Trotter formula holds for �P i
t �tC0, i � 1,2. Moreover, as

δ3,f , δ4,f , Cf�µ0� and ωf can be chosen uniformly for f in the unit ball in �BL�S, d�, Y�YBL,d�,
the convergence is uniform in f in compact subsets of R�. Furthermore, for every y > Ex,�P 1

t
n

P 2
t
n

�n δy � δ�T � t
n
�S� t

n
��ny � Ptδy in M��S�BL as n�ª.

The set of Dirac measures is closed in M��S�BL. To show this, let �δxn�n be a sequence of

Dirac measures such that δxn � µ for some µ >M��S�. Then �δxn�n is a Cauchy sequence,

and Yδxn � δxmY�BL,d � 2d�xn, xm�
2 � d�xn, xm�
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([HW09b] Lemma 2.5). Then also �xn�n>N ` S is a Cauchy sequence. As S is complete,�xn�n>N is convergent. Hence, there exists x� > S such that xn � x� as n�ª and

Yδxn � δx�Y�BL,d � 2d�xn, x��
2 � d�xn, x�� � 0 as n�ª.

Hence, Ptδy � δPxt y for a specific Pxt ` E (as in statement Theorem 3.7.1). Because the�P i
t �tC0, i � 1,2, are strongly continuous in this setting, �Pt�tC0 is a semigroup by Proposition

3.6.5. Therefore, �Pxt �tC0 is a strongly continuous semigroup on Ex. The operators Pt are

linear and continuous:

Let yn > Ex such that Yn � y in E. Then

YPxt yn � Pxt yY�BL,d �
2YδPtyn � δPtyY�BL,d

2 � YδPtyn � δPtyY�BL,d

�
2YPtδyn � PtδyY�BL,d

2 � YPtδyn � PtδyY�BL,d

� 0.

Moreover, E � �x>E Ex, and the semigroups �Pxt �tC0 and �Px�t �tC0 agree on Ex 9Ex� . This

allows us to define a strongly continuous semigroup �Pt�tC0 of bounded linear operators on

E that agrees with �Pxt �tC0 on Ex.

3.7.2 Colombo-Guerra

Colombo and Guerra in [Col09], generalizing Colombo and Corli [CC04], also established

conditions that ensure the convergence of the Lie-Trotter formula for linear semigroups

in a Banach space that do not involve the domains of their generators. Instead, like in

the results of Kühnemund and Wacker [KW01], they build on a commutator condition

(Assumption CG 3 stated below) that is weaker than that in [KW01]. It is this condition

that motivated our Assumption 3.

The situation in [Col09] is as follows. Let S1, S2 � R� � X ( X be strongly continuous

semigroups on a Banach space X. Assume that there exists a normed vector space Y

which is densely embedded in X and invariant under both semigroups such that:

Assumption CG 1. The two semigroups are locally Lipschitz in time in Y , i.e. there

exists a compact map K � Y � R such that for i � 1,2

ZS1
t u � S

i
t�uZX BK�u�St � t�S for all u > Y, t, t� > I.
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Assumption CG 2. The two semigroups are exponentially bounded on F and locally

Trotter stable on X and Y , i.e. there exists a constant H such that for all t > �0,1�,
n > N YS1

t YY � YS2
t YY � [�S1

t
n

S2
t
n

�n[
X
� [�S1

t
n

S2
t
n

�n[
Y
BH.

Assumption CG 3 (Commutator condition).

ZS1
t S

2
t u � S

2
t S

1
t uZX B tω�t�YuYY

is satisfied for all u > Y and t > �0, δ� with some δ A 0, and for a suitable ω � �0, δ� � R�

with R δ0 ω�τ�
τ dτ @ �ª.

Theorem 3.7.2. Under Assumptions CG1-CG3 there exists a global semigroup Q � �0,�ª��
X �X such that for all u > Y , there exists a constant Cu such that for t A 0

1

t
ZQ�t�u � S1

t S
2
t uZX B CuS

t

0

ω�ξ�
ξ

dξ.

In fact, [Col09] Proposition 3.5 also includes a statement of convergence of so-called Euler

polygonals to orbits of Q. The interested reader should consult [Col09] for further details

on this topic.

It is the construction in this case that allows us to conclude that Theorem 3.7.2 and

Theorem 3.2.2 are highly similar to the Kühnemund-Wacker case discussed in the previous

section. Therefore we state the main reasoning and give the immediate results.

Let u > X. We take S � Xu, where the latter is the smallest separable Banach space in X

that is invariant under �Sit�tC0, i � 1,2, equipped with the metric induced by the norm on

X. Let P 1
t and P 2

t be lifts of S1
t and S2

t to M��S�:
P i
t δu �� δSitu, P

i
tµ �� S

U

δSituµ�du�, i � 1,2.

Now we check if P 1
t and P 2

t satisfy Assumptions 1 - 4.

As in Section 3.7.1, because �S1
t �tC0 and �S2

t �tC0 are strongly continuous semigroups, �P 1
t �tC0

and �P 2
t �tC0 are tight. Moreover, if φ > BL�S, d� and v,w >Xu, and U1

t and U2
t are the dual

operators of P 1
t and P 2

t respectively, then:

SU1
t φ�v� �U1

t φ�w�S B SφSL �H � Yv �wYX
This yields the equicontinuity condition for U1

t . Similarly equicontinuity for U2
t is estab-
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lished. A similar computation yields Assumption 2:

U�U1
t
n

U2
t
n

�n φ�v� � �U1
t
n

U2
t
n

�n φ�w�U � Uφ ��S2
t
n

S1
t
n

�n v� � φ ��S2
t
n

S1
t
n

�nw�U
B SφSL � [�S2

t
n

S1
t
n

�n �v �w�[
X
B SφSL �H � Yv �wYX

To check the Commutator Condition in Assumption 3, let f > BL�S, d�, put M0 ��

span�δv Sv > Y 9Xu� and Sµ0SM0 as in (3.14). Then define

ωf�t, µ0� �� max�1, Sf SL,dM�ω�t�Sµ0SM0 .

Commutator Condition CG 3 yields

ZP 1
t P

2
t δu � P

2
t P

1
t δuZ�BL,dE�f�

B max�1, Sf SL,dM�tω�t�YuYY
as before, which established Assumption 3. Note that ωf can be chosen uniformly for f in

the unit ball of BL�S, d�.
Assumption 4 is obtained from the estimate

U�P 1
t
n

P 2
t
n

�n δuU
M0

�

RRRRRRRRRRRRδ�S1
t
n
S2
t
n
	nu

RRRRRRRRRRRRM0

� [�S2
t
n

S1
t
n

�n u[
X
BHYuYX ,

which yields

U�P 1
t
n

P 2
t
n

�n µ0U
M0

BH Sµ0SM0 .

and TP 1
t δφTM0

� TδS1
t u
T
M0

� YS1
t uYY BHYuYY , TP 2

t δφTM0
BHYuYY

which yields

TP 1
t µ0TM0

BH Sµ0SM0 and TP 2
t µ0TM0

BH Sµ0SM0 .

Thus, the Lie-Trotter formula holds for �P 1
t �tC0 and �P 2

t �tC0. A similar argument as in

Section 3.7.1 yields Theorem 3.7.2.
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3.8 Appendices

3.8.1 Proof of Lemma 3.5.8

(a) We will check it by induction on j. Let j � 1. Then the left hand side in the equation

3.5.8, (a) is of the form

L � P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

,

while the right hand side is

R � P0
l�0P

2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�1�1�l�t

m

� P 2
0t
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�1�1�0�t

m

� L.

Assume that (a) holds for j � 1:

P 1
t
m

P 2
�j�1�t
m

� P 2
�j�1�t
m

P 1
t
m

� Pj�2
l�0 P

2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�2�l�t

m

.

Then for j:

L � P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

� �P 1
t
m

P 2
�j�1�t
m

� P 2
�j�1�t
m

P 1
t
m

�P 2
t
m

� P 2
�j�1�t
m

P 1
t
m

P 2
t
m

� P 2
jt
m

P 1
t
m

� �Pj�2
l�0 P

2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�2�l�t

m

�P 2
t
m

� P 2
�j�1�t
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�
� Pj�2

l�0 P
2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�1�l�t

m

� P 2
�j�1�t
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�
� Pj�1

l�0 P
2
lt
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
�j�1�l�t

m

� R.

(b) We will check it by induction on k. Let k � 2.

L � P 1
2t
m

P 2
2t
m

� �P 1
t
m

P 2
t
m

�2

R � P1
j�1P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�2�1�j

� P 1
t
m

�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�P 2
t
m

� L.

Assume that for k � 1 we have:

P 1
�k�1�t
m

P 2
�k�1�t
m

� �P 1
t
m

P 2
t
m

�k�1

� Pk�2
j�1 P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�k�2�j

.
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Then for k we have:

L � P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k
� �P 1

�k�1�t
m

P 2
�k�1�t
m

� �P 1
t
m

P 2
t
m

�k�1	P 1
t
m

P 2
t
m

� P 1
�k�1�t
m

P 2
�k�1�t
m

P 1
t
m

P 2
t
m

� P 1
kt
m

P 2
kt
m

� �Pk�2
j�1 P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�k�2�j	P 1
t
m

P 2
t
m

�P 1
�k�1�t
m

�P 2
�k�1�t
m

P 1
t
m

� P 1
t
m

P 2
�k�1�t
m

�P 2
t
m

� Pk�1
j�1 P

1
tj
m

�P 1
t
m

P 2
jt
m

� P 2
jt
m

P 1
t
m

�P 2
t
m

�P 1
t
m

P 2
t
m

�k�1�j

� R.

(c) Let n � 1. Then

L � P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k
R � �P 1

kt
m

P 2
kt
m

�0 �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k	�P 1
t
m

P 2
t
m

�k��1�1�0�
� L

Now let’s assume that

�P 1
kt
m

P 2
kt
m

�n�1

� �P 1
t
m

P 2
t
m

��n�1��k
�

� Pn�2
i�0 �P 1

kt
m

P 2
kt
m

�i �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k	�P 1
t
m

P 2
t
m

�k��n�2�i�
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and let us check for n:

L � �P 1
kt
m

P 2
kt
m

�n � �P 1
t
m

P 2
t
m

�n�k
� ��P 1

kt
m

P 2
kt
m

�n�1

� �P 1
t
m

P 2
t
m

��n�1��k��P 1
t
m

P 2
t
m

�k � �P 1
kt
m

P 2
kt
m

�n�1 �P 1
t
m

P 2
t
m

�k
��P 1

kt
m

P 2
kt
m

�n
� �Pn�2

i�0 �P 1
kt
m

P 2
kt
m

�i �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k��P 1
t
m

P 2
t
m

�k��n�2�i���P 1
t
m

P 2
t
m

�k �
��P 1

kt
m

P 2
kt
m

�n�1 �P 1
t
m

P 2
t
m

�k � �P 1
kt
m

P 2
kt
m

�n
� Pn�2

i�0 �P 1
kt
m

P 2
kt
m

�i �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k��P 1
t
m

P 2
t
m

�k��n�1�i�
�

��P 1
kt
m

P 2
kt
m

�n�1 �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k	 �
� Pn�1

i�0 �P 1
kt
m

P 2
kt
m

�i �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k	�P 1
t
m

P 2
t
m

�k��n�1�i�
� R.

3.8.2 Proof of Lemma 3.5.10

Let n > N, k > N and m �� kn be such that t
nk > �0, δf �. Then by Lemma 3.5.8 (c) we get

Wd�P 1
kt
m

P 2
kt
m

�n µ0 � �P 1
t
m

P 2
t
m

�n�k µ0, fiW
� WdPn�1

i�0 �P 1
kt
m

P 2
kt
m

�i �P 1
kt
m

P 2
kt
m

� �P 1
t
m

P 2
t
m

�k��P 1
t
m

P 2
t
m

�k��n�1�i�
µ, fiW

B Pn�1
i�0 Wd�P 1

kt
m

P 2
kt
m

�i �P 1
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m

� �P 1
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m

P 2
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m

�k��P 1
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m

P 2
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m

�k��n�1�i�
µ, fiW � ����

by Lemma 3.5.8 (b)
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m

�i �Pk�1
j�1 P

1
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m
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m

� P 2
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�P 2
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m

�

� �P 1
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m

�k�1�j��P 1
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m

P 2
t
m

�k��n�1�i�
µ0, fiW

B Pn�1
i�0 Pk�1

j�1 Wd�P 1
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m

P 2
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m

�iP 1
tj
m

�P 1
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m

P 2
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m
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m

P 1
t
m

�P 2
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m

�

� �P 1
t
m

P 2
t
m

�k�n�i��1�j

µ0, fiW � �� � ��
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by Lemma 3.5.8 (a) we get

�� � �� � Pn�1
i�0 Pk�1

j�1 Wd�P 1
kt
m

P 2
kt
m

�iP 1
tj
m

�Pj�1
l�0 P

2
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m
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m

� P 2
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m

P 1
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m

�P 2
�j�1�l�t

m
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m

�

� �P 1
t
m

P 2
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m

�k�n�i��1�j

µ0, fiW
B Pn�1
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�iP 1
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� �P 1
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P 2
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�k�n�i��1�j

µ0, fiW
� Pn�1

i�0 Pk�1
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� P 2
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P 1
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�i fiW .
For every i, j, l > N we get

gni,j,l �� U
2
lt
m

U1
tj
m

�U2
kt
m

U1
kt
m

�i f > E�f�.
Let νni,j,l �� P

2
�j�l�t
m

�P 1
t
m

P 2
t
m

�k�n�i��1�j

µ. Then νni,j,l >M0. Note that Zgni,j,lZBL,dE�f�
B 1.

Using Assumption 4 we get:
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j�1 Pj�1
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m

� P 2
t
m
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m
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m
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m

�νni,j,l, gni,j,lhV
B Pn�1

i�0 Pk�1
j�1 Pj�1

l�0 \�P 1
t
m

P 2
t
m

� P 2
t
m

P 1
t
m

�νni,j,l\�
BL,dE��

� Zgni,j,lZBL,dE��

B Pn�1
i�0 Pk�1

j�1 Pj�1
l�0

t
mωf � t

m , P
2
�j�l�t
m

�P 1
t
m

P 2
t
m

�k�n�i��1�j

µ0�
B t
m Pn�1

i�0 Pk�1
j�1 Pj�1

l�0 C2�µ0�ωf � t
m , µ0�

B Cf�µ0� t
mωf � t

m , µ0�Pn�1
i�0 Pk�1

j�1 Pj�1
l�0 1

� Cf�µ0� t
mωf � t

m , µ0� n�k�1�k
2 .

So with m � nk we get the result.
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Chapter 4

Equicontinuous families of Markov

operators in view of asymptotic

stability

This chapter is based on:

Sander C. Hille, T. Szarek, Maria A. Ziemlanska. Equicontinuous families of Markov

operators in view of asymptotic stability. based on the work Sander C. Hille, T. Szarek,

Maria A. Ziemlanska. Equicontinuous families of Markov operators in view of asymptotic

stability. Comptes Rendus Mathematique, Volume 355, Number 12, Pages 1247-1251, 2017.

Abstract:

The relation between equicontinuity – the so-called e–property and stability of Markov

operators is studied. In particular, it is shown that any asymptotically stable Markov

operator with an invariant measure such that the interior of its support is non-empty

satisfies the e–property.
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4.1 Introduction

This chapter is centered around two concepts of equicontinuity for Markov operators de-

fined on probability measures on Polish spaces: the e-property and the Cesàro e-property.

Both appeared as a condition (among others) in the study of ergodicity of Markov op-

erators. In particular they are very useful in proving the existence of a unique invariant

measure and its asymptotic stability: at whatever probability measure one starts, the it-

erates under the Markov operator will weakly converge to the invariant measure. The

first concept appeared in [LS06, SW12] while the second was introduced in [Wor10] as a

theoretical generalisation of the first. It allowed the author to extend various results by

replacing the e-property condition by the apparently weaker Cesàro e-property condition.

Interest in equicontinuous families of Markov operators existed already before the intro-

duction of the e-property. Jamison [Jam64], working on compact metric state spaces, intro-

duced the concepts of (dual) Markov operators on the continuous functions that are ‘uni-

formly stable’ or ‘uniformly stable in mean’ to obtain a kind of asymptotic stability results

in this setting. Meyn and Tweedie [MT09] introduced the so-called ‘e-chains’ on locally

compact Hausdorff topological state spaces, for similar purposes. See also [Zah14] for re-

sults in a locally compact metric setting. The above mentioned concepts were used in prov-

ing ergodicity for some Markov chains (see [Ste94, Cza12, CH14, ESvR12, GL15, KPS10]).

It is worth mentioning here that similar concepts appear in the study of mean equicontinuous

dynamical systems mainly on compact spaces (see for instance [LTY15]). However it must

be stressed here that our space of Borel probability measures defined on some Polish space

is non-compact, typically, in the generality in which we consider the question.

While studying the e–property, the natural question arose whether any asymptotically

stable Markov operator satisfies this property. Proposition 6.4.2 in [MT09] asserts this

holds when the phase space is compact. In particular, the authors claimed that the stronger

e–chain property is satisfied. Unfortunately, the proof contains a gap and an example can

be constructed showing that some additional assumptions must be added for the claimed

result to hold.

Striving to repair the gap of the Meyn-Tweedie result mentioned above, we show that any

asymptotically stable Markov operator with an invariant measure such that the interior of

its support is nonempty satisfies the e–property.
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4.2 Some (counter) examples

Let �S, d� be a Polish space. By B�x, r� we denote the open ball in �S, d� of radius r,

centered at x > S. Further E, IntSE denote the closure of E ` S and the interior of E,

respectively. By Cb�S� we denote the vector space of all bounded real-valued continuous

functions on S and by BM�S� all bounded real-valued Borel measurable functions, both

equipped with the supremum norm Y � Yª. By BL�S� we denote the subspace of Cb�S� of

all bounded Lipschitz functions (for the metric d on S). For f > BL�S�, Sf SL denotes the

Lipschitz constant of f .

By M�S� we denote the family of all finite Borel measures on S and by P�S� the subfamily

of all probability measures in M�S�. For µ >M�S�, its support is the set

suppµ �� �x > S � µ�B�x, r�� A 0 for all r A 0�.
Recall the concept of Markov operators on measures, see Section 1.2. A measure µ� is

called invariant if Pµ� � µ�. A Markov operator P is asymptotically stable if there exists

a unique invariant measure µ� > P�S� such that P nµ � µ� weakly as n � ª for every

µ > P�S�.
A linear operator U � BM�S�� BM�S� is called dual to P if

`Pµ, fe � `µ,Ufe for all µ >M��S�, f > BM�S�.
If such operator U exists, it is unique and we call the Markov operator P regular . U is

positive and satisfies U1 � 1. The Markov operator P is a Markov-Feller operator if it is

regular and the dual operator U maps the space of continuous bounded functions Cb�S�
into itself.

A Feller operator P satisfies the e–property at z > S if for any f > BL�S� we have

lim
x�z

sup
nC0,n>N

SUnf�x� �Unf�z�S � 0, (4.1)

i.e. if the family of iterates �Unf � n > N� is equicontinuous at z > S. We say that a Feller

operator satisfies the e–property if it satisfies it at any z > S.

D. Worm slightly generalized the e–property introducing the Cesàro e–property (see [Wor10]).

Namely, a Feller operator P will satisfy the Cesàro e–property at z > S if for any f > BL�S�
111



Equicontinuous families of Markov operators in view of asymptotic stability

we have

lim
x�z

sup
nC0,n>N

W 1
n

n

Q
k�1

Ukf�x� � 1

n

n

Q
k�1

Ukf�z�W � 0. (4.2)

Analogously a Feller operator satisfies the Cesàro e–property if it satisfies this property at

any z > S.

Let us recall Proposition 6.4.2 in [MT09] that contains - informally - a gap in its proof

(slightly reformulated):

Proposition 4.2.1. Suppose that the Markov chain Φ has the Feller property, and that

there exists a unique probability measure π such that for every x

P n�x, ��� π weakly as n�ª

Then Φ is an e-chain.

The following example shows that Proposition 6.4.2 fails.

Example 4.2.2. Let S � �1~n � n C 1� 8 �0� and let T � S � S be given by the following

formula:

T �0� � T �1� � 0 and T �1~n� � 1~�n � 1� for n C 2.

The operator P � M�S� � M�S� given by the formula Pµ � T��µ� (the pushforward

measure) is asymptotically stable but it does not satisfy the e–property at 0.

For a Markov operator Jamison [Jam64] introduced the property of uniform stability in

mean when �Unf � n > N� is an equicontinuous family of functions in the space of real-valued

continuous function C�S� for every f > C�S�. Here S is a compact metric space. Since the

space of bounded Lipschitz functions is dense for the uniform norm in the space of bounded

uniformly continuous functions, this property coincides with the Cesàro e–property for

compact metric spaces. Now, if the Markov operator P on the compact metric space is

asymptotically stable, with the invariant measure µ� > P �S�, then 1
n Pn

k�1U
kf � `f, µ�e

pointwise, for every f > C�S�. According to Theorem 2.3 in [Jam64] this implies that P is

uniformly stable in mean, i.e. has the Cesàro e–property.

Example 4.2.3. Let �kn�nC1 be an increasing sequence of prime numbers. Set

S �� ��
kin�1�times³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
0, . . . ,0, i~kn,0, . . .� > lª � i > �0, . . . , kn�, n > N�.

The set S endowed with the lª-norm Y�Yª is a (noncompact) Polish space. Define T � S � S
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by the formula

T ��0, . . .�� � T ��
kknn �1�times³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
0, . . . ,0, 1,0, . . .�� � �0, . . . ,0, . . .� for n > N

and

T ��
kin�1�times³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
0, . . . ,0, i~kn,0, . . .�� � �

ki�1
n �1�times³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ
0, . . . ,0, �i � 1�~kn,0, . . .� for i > �1, . . . , kn � 1�, n > N.

The operator P � M�S� � M�S� given by the formula Pµ � T��µ� is asymptotically

stable but it does not satisfy the Cesàro e–property at 0. Indeed, if we take an arbitrary

continuous function f � S � R� such that f��0, . . . ,0, . . .�� � 0 and f�x� � 1 for x > S such

that YxYª C 1~2 we have

1

kn

kn

Q
i�1

U if��
kn�1³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ

0, . . . ,0,1~kn,0, . . .�� � 1

kn

kn

Q
i�1

U if��0, . . .�� C 1~2.
4.3 Main result

We are in a position to formulate the main result of this chapter. Recall that a metric d

is called admissible for the Polish space S if d metrizes the topology on S and the metric

space �S, d� is separable and complete.

Theorem 4.3.1. Let P be an asymptotically stable Feller operator and let µ� be its unique

invariant measure. If IntS�suppµ�� x g, then P satisfies the e–property for any admissible

metric d on S.

Its proof involves the following two lemmas:

Lemma 4.3.2. Let P be an asymptotically stable Feller operator and let µ� be its unique

invariant measure. Let U be dual to P . If IntS�suppµ�� x g, then for every admissible

metric d on S, f > Cb�S� and any ε A 0 there exists a ball B ` suppµ� such that

SUnf�x� �Unf�y�S B ε for any x, y > B, n > N. (4.3)

Proof. Fix f > Cb�S� and ε A 0. Let W be an open set in S such that W ` suppµ�. Set

Y �W and observe that the subspace Y is a complete metric space, hence a Baire space.
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Set

Yn �� �x > Y � SUmf�x� � `f, µ�eS B ε~2 for all m C n�
and observe that Yn is closed and

Y �
ª

�
n�1

Yn.

By the Baire Category Theorem there exist N > N such that IntY YN x g. Thus there exists

a set V ` YN open in the space Y and consequently, because of the construction of Y , an

open ball B � B�z, r0� for the admissible metric d in S such that B ` YN ` suppµ�. Since

SUnf�x� � `f, µ�eS B ε~2 for any x > B and n C N,

condition (4.3) is satisfied for all x, y > B,n C N . Since the Unf , n � 1,�,N are continuous

at z, there exists rε B r0 such that SUnf�z� � Unf�x�S B ε
2 for all x > B�z, rε�, n � 1,�,N .

Then condition (4.3) is satisfied for all x, y > B �� B�z, rε� and n > N.

Lemma 4.3.3. Let α C 0. If µ >M��S�, x0 > S and r A 0 are such that µ�B�x0, r�� A α,

then there exists 0 @ r B r such that µ��B�x0, r��� A α and µ�S�x0, r�� � 0.

Proof. For any increasing sequence �rn� ` �0, r� such that rn � r, µ�B�x0, rn��� µ�B�x0, r�� A
α. Hence there exists n0 > N such that: µ�B�x0, rn0�� A α.

Put r0 �� rn0 . Then r0 A 0 and µ�B�x0, r��� A α for all r� > �r0, r�. The map Ψ � �r0, r��S (
R � �r�, x� ( d�x,x0�

r� is separately continuous in r� and x, so it is jointly Borel measurable

([Bog07a], Theorem 7.14.5, p.129).

µ�B�x0, r��� � RS 1B�x0,r���y�dµ�y�
� RS 1�x� d�x,x0�

r�
@1��y�dµ�y�

� RS 1�0,1��Ψ�r�, y��dµ�y�. (4.4)

Since Ψ is jointly Borel measurable, �r�, y� ( 1�0,1��Ψ�r�, y�� is jointly Borel measurable.

By the Fubini-Tonelli Theorem (or [Bog07a], Lemma 7.6.4, p.93, or [Bog07b], Corollary

3.3.3, p.182), φ � r� ( µ�B�x0, r��� is Borel measurable on �r0, r�. In a similar manner, one

shows that ψ �� µ�B�x0, r�� is Borel measurable, where B�x0, r� �� �x > S � d�x,x0� B r�.

Put φ�r� �� φ�r��φ�r�. According to Lusin’s Theorem, there exists a compact subset K of�r0, r�, of strictly positive Lebesgue measure, such that φSK is continuous. Put S�x0, r�� ��
B�x0, r�� �B�x0, r�� � �x > S � d�x,x0� � r��.

Since Lebesgue measure is non-atomic, K must have at least denumerably many distinct
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points. Let �rn�n>N be a sequence in K that consists of distinct points. Since K is a

compact space, there is a subsequence �rnk�k>N that converges to an r� >K as k �ª.

We can construct a further subsequence from �rnk�k>N (denoted the same for convenience),

that is either strictly increasing, or strictly decreasing towards r�.

(1) rnk � r
�:

Define A1 �� B�x0, rn1�,Ak �� B�x0, rnk� �B�x0, rnk�1
�.

Then

B�x0, r
�� � ª

#
k�1

Ak < S�x0, rnk�.
So

µ�B�x0, r
��� � ª

Q
k�1

µ�Ak� � µ�S�x0, rnk�� @ª.
Hence, limk�ª µ�S�x0, rnk�� � 0. Because rnk >K and φSK is continuous, we get

µ�S�x0, r�� � lim
k�ª

µ�S�x0, rnk�� � 0.

(2) rnk � r
�:

Now define Ak �� B�x0, rnk� �B�x0, rnk�1
for k � 1,2,�. Then

B�x0, rn1� � ª

�
k�1

�Ak < S�x0, rnk�1
�� <B�x0, r��.

Hence, limk�ª µ�S�x0, rnk�� � 0, as above, yielding the conclusion that µ�S�x0, r��� �
0.

Since ∂B�x0, r�� ` S�x0, r�� we find µ�∂B�x0, r�� � 0.

We are now ready to prove Theorem 4.3.1.

Proof. (Theorem 4.3.1) Assume, contrary to our claim, that P does not satisfy the e–

property for some admissible metric d on S. Therefore there exist a function f > BL�S, d� `
Cb�S� and a point x0 > S such that

lim sup
x�x0

sup
nC0,n>N

SUnf�x� �Unf�x0�S A 0.
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Hence, there exists ε A 0 and δ0 A 0 such that for all 0 @ δ @ δ0,

sup
x>B�x0,δ�

sup
nC0,n>N

SUnf�x� �Unf�x0�S C 4ε.

Thus, one has a sequence �xk�k>N such that xk > �B�x0,
δ0
k �� and

sup
nC0,n>N

SUnf�xk� �Unf�x0�S C 3ε for all k > N.

Let Bf � B�z,2r� be an open ball contained in suppµ� such that

SUnf�x� �Unf�y�S B ε for all x, y > Bf , n > N, (4.5)

which exists according to Lemma 4.3.2. Since Bf ` suppµx, one has γ �� µ��Bf� A 0.

Choose α > �0, γ� Because P is asymptotically stable, by the Alexandrov Theorem (eg.

[EK86], Theorem 3.1) one has

lim inf
n�ª

P nµ�Bf� C µ��Bf� � γ A α for all µ > P�S�, (4.6)

FixN > N such that 2�1�α�NYfYª @ ε. Inductively we shall define measures νx0
i , µ

x0
i , ν

xk
i , µ

xk
i

and integers ni, i � 1,2,�,N in the following way:

Equation (4.6) allows us to choose n1 C 1 such that

P n1δx0�B�z, r�� A α. (4.7)

According to Lemma 4.3.3 it is possible to choose 0 @ r1 B r such that

P n1δx0�B�z, r1�� A α and P n1δx0�S�z, r1�� � 0.

Define

νx1 ��� � P n1δx�� 9B�z, r1��
P n1δx�B�z, r1�� . (4.8)

Because P n1δx0�S�z, r1�� � 0 and P is Feller, P n1δx�B�z, r1�� converges to P n1δx0�B�z, r1�� A
α A 0 if x � x0. So νx1 is a well-defined probability measure, concentrated on B�z, r1�, for

all x sufficiently close to x0, say if d�x,x0� @ d1, and P n1δx�B�z, r1�� A α for such x.

Define

µx1��� � 1

1 � α
�P n1δx��� � ανx1 ���� . (4.9)
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Then µx1 > P�S� for all x > S: d�x,x0� @ d1.

Since xk � x0, there exists N1 > N such that d�xk, x0� @ d1 for all k C N1. If U ` S is open,

then by Alexandrov’s Theorem,

lim inf
k�ª

P n1δxk�U 9B�z, r1�� C P n1δx0�U 9B�z, r��.
Consequently,

lim inf
k�ª

νxk1 �U� � lim inf
k�ª

P n1δxk�U 9B�z, r1��
P n1δxk�B�z, r1�� C

P n1δx0�U 9B�z, r1��
P n1δx0�B�z, r1�� � νx0

1 �U�.
Thus, νxk1 � νx0

1 weakly as k �ª. Then also µxk1 � µx0
1 .

Assume that we have defined νx0
i , µ

x0
i , ν

xk
i , µ

xk
i and ni for i � 1,2,�, l, for some l @ N such

that νxki � νx0
i , µ

xk
i � µx0

i weakly. Then, equation (4.6) allows to pick nl�1 > N such that

P nl�1µx0

l �B�z, r�� A α.
According to Lemma 4.3.3 one can select 0 @ rl�1 B r such that P nl�1µx0

l �B�z, rl�1�� A α

and P nl�1µxll �S�z, rl�1�� � 0. Define

νxkl�1 ��
P nl�1µxkl �� 9B�z, rl�1��
P nl�1µxkl �B�z, rl�1�� (4.10)

and

µxkl�1 ��
1

1 � α
�P nl�1µxkl � ανxkl�1�. (4.11)

Because µxkl � µx0

l weakly, and P nl�1µxkl �∂B�z, rl�1�� � 0.

P nl�1µxkl �B�z, rl�1��� P nl�1µx0

l �B�z, rl�1�� A α A 0 as k �ª. Thus, νxkl�1 is well defined for

k sufficiently large and νxkl�1 � νx0

l�1, weakly, by a similar argument as for νxk1 � νx0
1 . We

conclude from (4.11), that µxkl�1 � µx0

l�1 weakly too.

Moreover, the construction is such that we have

P n1�n2���nN δxk � αP
n2���nNνxki �α�1 �α�P n3���nNνxk2 ���α�1 �α�N�1νxkN � �1 �α�NµxkN

for k � 0 and all k > N sufficiently large. By construction, suppνxki ` B�z, r� ` B�z,2r� �
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Bf . So for all n > N, i � 1,2,�,N and k sufficiently large

S`P nνxki , fe � `P nνx0
i , feS � TRS Unf�x�νxki �dx� � RS Unf�y�νx0

i �dy�T
B RBf RBf SUnf�x� �Unf�y�Sνxki �dx�νx0

i �dy�
B ε.

Moreover, there exists N0 > N such that for all k C N0,

S`P nδxk � P
nδx0 , feS @ ε

for all 0 B n @ n1 � n2 �� � nN . For n C n1 � n2 �� � nN one has for k sufficiently large,

P nδxk � αP n�n1νxk1 � α�1 � α�P n�n1�n2νxk2 ���

�α�1 � α�N�1P n�n1���nNνxkN � �1 � α�NP n�n1���nNµxkN .

Therefore, for these n and k,

S`P nδxn , fe � `P nδx0 , feS B ε�α � α�1 � α� �� � α�1 � α�N�1� � 2�1 � α�NYfYª
B ε � ε � 2ε.

Thus, the construction of the �xk�k>N is such that for k sufficiently large

3ε B sup
nC0,n>N

SUnf�xk� �Unf�x0�S � sup
nC0

S`P nδxk , fe � `P nδx0 , feS B 2ε

which is impossible. This completes the proof.
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(communicated through Tomasz Szarek).
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Chapter 5

Central Limit Theorem for some

non-stationary Markov chains

This chapter is based on:

Jacek Gulgowski, Sander C. Hille, Tomasz Szarek, Maria A. Ziemlańska. Central Limit

Theorem for some non-stationary Markov chains. Studia Mathematica, Number 246 (2019),

Pages 109-131.

Abstract:

Using the classical Central Limit Theorem for stationary Markov chains proved by M. I.

Gordin and B. A. Lif̆sic in [GL78] we show that it also holds for non–stationary Markov

chains provided the transition probabilities satisfy the spectral gap property in the Kantorovich–

Rubinstein norm.
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5.1 Introduction

In this chapter we aim at showing that the Central Limit Theorem (CLT) obtained for

stationary Markov chains by Gordin and Lif̆sic in [GL78] (see also its extension due to M.

Maxwell and M. Woodroofe in [MW00]) may be extended to non–stationary ones provided

that their transition probabilities satisfy the Spectral Gap Property in the Kantorovich–

Rubinstein norm (see condition (A2) below). This condition implies that the iteration

of the Markov operator associated to these transition probabilities constitute an equicon-

tinuous family of continuous maps on probability measures, equipped with the Dudley

metric, see Chapter 1, Theorem 2.8.4. In this way we obtain the result stronger than

the almost sure result known in the literature as a quenched Central Limit Theorems (see

[Pel15, BI95]).

Recently the CLT was proved for various non–stationary Markov processes (see [KW12,

Kuk02]). For more details we refer readers to the book by T. Komorowski et al. [KLO12],

where a more detailed description of recent results on central limit theorems is provided.

Our result is in the same spirit as the main theorem in [KW12]. However some delicate

approximation allow us to obtain the CLT for initial distributions with 2-nd moment finite

instead of 2 � δ.

In this chapter we introduce notation that deviates from previous chapters, mainly be-

cause those used here are more common in the field of probability theory, while the topic

considered is specially targeted to an audience from this field.

Suppose that �X,ρ� is a Polish space. By B�X� we denote the family of all Borel sets in

X. Denote by Bb�X� the set of all bounded Borel measurable functions equipped with

the supremum norm and let Cb�X� be its subset consisting of all bounded continuous

functions.

By M1 and M we denote the spaces of all probability Borel measures and of all Borel

measures on X, respectively. Let π � X � B�X� � �0,1� be a transition probability on X

and let U � Bb�X� � Bb�X� be defined by Uf�x� � RX f�y�π�x,dy� for every f > Bb�X�.
The operator U is dual to the Markov operator P defined on M and given by the formula

Pµ��� � RX π�x, ��µ�dx� for µ >M, i.e.

S
X
f�x�Pµ�dx� � S

X
Uf�x�µ�dx� for any f > Bb�X� and µ >M.

In particular, we have Pδx��� � π�x, �� for x >X.

Suppose that �Xn� is anX–valued Markov chain given over some probability space �Ω,F , P �,
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whose transition probability is π. If the distribution of X0 is µ0, then the distribution of

Xn equals P nµ0, n C 1. By �Fn� we denote the natural filtration of the chain, i.e. the

increasing family of σ–algebras Fn �� σ�Xi � i B n�.
For any x >X and n C 1 we define the measure Pn

x on �Xn,B�Xn��, where

B�Xn� � σ��A1 �A2 �� �An � Ai > B�X�, i � 1, . . . , n��
by the formula

Pn
x�A1 �� �An�

� S
Xn
χA1���An�x1, . . . , xn�π�xn�1,dxn��π�x1,dx2�δx�dx1�

� S
Xn
χA1���An�x1, . . . , xn�Pδxn�1�dxn��Pδx1�dx2�Pδx�dx1�.

Here χA1���An denotes the characteristic function of A1���An. Obviously, the distribution

of the random vector �X1, . . . ,Xn� if X0 � x is given by Pn
x. On the other hand, if the

distribution of X0 equals µ0, then the distribution of the random vector �X1, . . . ,Xn� is

equal to Pn
µ0
��� � RX Pn

x���µ0�dx�.
By Px we will denote the probability measure on the Borel σ-algebra of the trajectory

space Xª associated with �Xn� with X0 � x. Further, Ex denotes the expected value with

respect to Px. Analogously, if X0 is distributed with µ0, then Pµ0��� � RX Px���µ0�dx�.
Similarly, we have then Eµ��� � RX Ex���µ�dx�.
5.2 Assumptions

Set

M
p
1 �� �µ >M1 � S

X
�ρ�x,x0��p µ�dx� @ª  for p C 1.

We equip the space M1
1 with the Kantorovich-Rubinstein distance

Yµ � νY �� sup VS
X
fdµ � S

X
fdνV for µ, ν >M1

1,

where the supremum is taken over all Lipschitz functions f � X � R with the Lipschitz

constant bounded by 1. If µ and ν are two Borel probability measures on some Polish

spaces W and Z respectively, then by C�µ, ν� we denote the set of all joint Borel probability

measures on W � Z whose marginals are µ and ν (the so–called coupling). If µ, ν > M1
1,

then according to the following Kantorovich-Rubinstein Theorem
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Theorem 5.2.1. [Kantorovich-Rubinstein Theorem [Bog07a], Theorem 8.10.45] The Kantorovich-

Rubinstein distance Yµ�νY between Radon probability measures µ, ν >M1
1 can be represented

in the form

Yµ � νY � inf
γ>C�µ,ν�SX�X

ρ�x, y�γ�dx,dy�.
Moreover, there exists a measure λ0 > C�µ, ν� at which the value Yµ � νY is attained.

This immediately implies

Yδx � δyY � ρ�x, y� for x, y >X.

Assumptions:

(A1) We assume that P leaves M1
1 invariant;

(A2) there exist C A 0 and 0 @ q @ 1 such that

YP nµ � P nνY B CqnYµ � νY (5.1)

for all µ, ν >M1
1 and n > N;

(A3) we assume that there exists µ >M2
1 such that

sup
nC1
S
X
�ρ�x,x0��2P nµ�dx� @ �ª for some (thus all) x0 >X. (5.2)

The following theorem is standard but we provide its proof for completeness of our pre-

sentation.

Proposition 5.2.1. If (A1) and (A2) hold, then P has a unique invariant measure

µ� >M1
1 and for any µ >M1

1 we have YP nµ�µ�Y� 0 as n�ª. Moreover, if (A3) holds,

then µ� >M2
1.

Proof. For any µ >M1
1�X� and any m,n > N, m C n one obtains from (5.1) that

YP nµ � PmµY B m�n�1

Q
k�0

YP n�kµ � P n�k�1µY B Cqn

1 � q
Yµ � PµY.

So �P nµ� is a Cauchy sequence in the Y � Y-complete space M1
1 ([Vil08], Theorem 6.18).

Hence it converges to some invariant measure µ� >M1
1�X�. Then again by (5.1) for any

122



5.3. Gordin–Lif̆sic results for stationary case

µ >M1
1�X�,

YP nµ � µ�Y � YP nµ � P nµ�Y B CqnYµ � µ�Y� 0 as n�ª.

So µ� must be unique. Now suppose that (A3) holds and let µ >M2
1 be such that (5.2) is

satisfied. Let x0 >X. For any K A 0, one has

sup
nC1
S
X
�ρ�x,x0� ,K�2P nµ�dx� B sup

nC1
S
X
ρ�x,x0�2P nµ�dx� ��M0 @ª.

Since x( �ρ�x,x0� ,K�2 is a Lipschitz function on X and YP nµ � µ�Y� 0, we have

S
X
�ρ�x,x0� ,K�2P nµ�dx�� S

X
�ρ�x,x0� ,K�2 µ��dx�.

So RX�ρ�x,x0� ,K�2 µ��dx� B M0 for every K. By the Monotone Convergence Theorem

we obtain that RX�ρ�x,x0��2 µ��dx� BM0 too.

5.3 Gordin–Lifs̆ic results for stationary case

We start with the following simple consequences of the Gordin and Lif̆sic result on the

CLT for stationary Markov chains:

Proposition 5.3.1. Let P be a Markov operator that satisfies (A1) - (A3) and let �Xn�
be a stationary Markov chain corresponding to P . Then for any bounded Lipschitz function

g � X � R such that RX gdµ� � 0, where µ� is the unique invariant distribution for P , the

limit

σ2
�� lim

n�ª
Eµ� �g�X0� � g�X1� �� � g�Xn�º

n
�2

exists and is finite. Moreover, if σ A 0, then

lim
n�ª

P �g�X0� � g�X1� �� � g�Xn�º
n

@ a� �
1º

2πσ2
S

a

�ª

e�
y2

2σ2 dy for all a > R.

Otherwise, if σ � 0, then the sequence

g�X0� � g�X1� �� � g�Xn�º
n

for n C 1

converges in distribution to 0.
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Proof. Let a bounded Lipschitz function g � X � R such that RX gdµ� � 0 be given. With

no loss of generality we may assume that the Lipschitz constant of g equals 1. From Gordin

and Lif̆sic [GL78] it follows that to finish the proof it is enough to show that

ª

Q
n�0

YUngYL2�X,µ�� @ª,

where U is dual to P . In fact, since RX U ig�x�µ��dx� � RX g�x�µ��dx� � 0 for all i C 0, we

have
ª

Q
n�1

YUngYL2�X,µ�� �
ª

Q
n�1

�S
X
�Ung�x��2µ��dx��1~2

�

ª

Q
n�1

�S
X
�Ung�x� � S

X
Ung�y�µ��dy��2µ��dx��1~2

B

ª

Q
n�1

�S
X
�S

X
SUng�x� �Ung�y�Sµ��dy��2

µ��dx��1~2

B

ª

Q
n�1

�S
X
�S

X
Cqnρ�x, y�µ��dy��2

µ��dx��1~2

B C
ª

Q
n�1

qn �S
X
�S

X
ρ�x, y�µ��dy��2

µ��dx��1~2

B C
ª

Q
n�1

qn �S
X
�ρ�x,x0� � S

X
ρ�x0, y�µ��dy��2

µ��dx��1~2

B C�1 � q��1 �2S
X
�ρ�x,x0��2µ��dx� � 2�S

X
ρ�x0, y�µ��dy��2�1~2

@ª,

by the fact that µ� >M2
1. The proof is complete.

5.4 Auxiliary lemmas

We start with a theorem on the existence of a suitable coupling for the trajectories of a

given Markov chain.

Theorem 5.4.1. Assume that a Markov operator P satisfies (A1) and (A2). Let l0 be a

positive integer such that Cql0 @ 1, where the constants C, q are given by (5.1). Then there

exists a constant κ A 0 such that for every integers l C l0 and m C 1 and every two points

x, y >X we have a measure Pml
x,y > C�Pml

x ,P
ml
y � satisfying

m

Q
i�1
S
Xlm

�Xlm
ρ�xil, yil�Pml

x,y�dx1, . . . ,dxml,dy1, . . . ,dyml� B κρ�x, y�. (5.3)
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Proof. Choose q̃ > �Cql0 ,1�. Fix l C l0. By induction on m for every two points x, y >X we

construct Pml
x,y > C�Pml

x ,P
ml
y � and prove that

S
Xlm

�Xlm
� m

Q
i�1

ρ�xil, yil��Pml
x,y�dx1, . . . ,dxml,dy1, . . . ,dyml� B m

Q
j�1

q̃jρ�x, y�. (5.4)

Then the hypothesis will hold with κ � q̃�1 � q̃��1. Fix x, y >X and let m � 1. Since

YP lδx � P
lδyY B Cql0ρ�x, y�,

by the Kantorovich–Rubinstein theorem there exists µ1
x,y > C�P lδx, P lδy� such that

YP lδx � P
lδyY B S

X�X
ρ�u, v�µ1

x,y�du,dv� B q̃ρ�x, y�.
From the proof of the Kantorovich–Rubinstein theorem it follows that the function X�X ?�x, y� � µ1

x,y > C�P lδx, P lδy� is measurable if the space C�P lδx, P lδy� is endowed with

some metric of weak topology (see Theorem 11.8.2 in [Dud02]). We may assume that the

measure µ1
x,y is absolutely continuous with respect to the product measure P lδxaP lδy. Let

gx,y �X �X � �0,�ª� be the Radon–Nikodem density, i.e.

gx,y�u, v� � dµ1
x,y

d�P lδx a P lδy��u, v� u, v >X.

Define

Pl
x,y�A�

� S
Xl
�S

Xl
χA�x1, . . . , xl, y1, . . . , yl�gx,y�xl, yl�π�xl�1,dxl�π�yl�1,dyl�

�π�x1,dx2�π�y1,dy2�δx�dx1�δy�dy1�.
Let A � �A1 �� �Al� �X l for some Borel sets A1, . . . ,Al `X. We have

Pl
x,y�A�

� S
Xl
χA1���Al�x1, . . . , xl� �S

Xl
gx,y�xl, yl�π�yl�1,dyl��π�y1,dy2�δy�dy1��

� π�xl�1,dxl��π�x1,dx2�δx�dx1�.
Moreover, the measure

S
Xl�1

χA1���Al�1
�x1, . . . , xl�1�π�xl�1, ���π�x1,dx2�δx�dx1�
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is absolutely continuous with respect to P lδx. Obviously,

S
Xl
gx,y�xl, yl�π�yl�1,dyl��π�y1,dy2�δy�dy1� � S

X
gx,y�xl, yl�P lδy�dyl�.

If we show that RX gx,y��, yl�P lδy�dyl� � 1, P lδx-a.s., then

Pl
x,y�A�

� S
Xl
χA1���Al�x1, . . . , xl�π�xl�1,dxl��π�x1,dx2�δx�dx1�

� Pl
x�A1 �� �Al�.

To do this set h�xl� �� RX gx,y�xl, yl�P lδy�dyl�. From the definition of the coupling measure

µ1
x,y for any Borel set B `X we have

P lδx�B� � µ1
x,y�B �X� � S

B
�S

X
gx,y�xl, yl�P lδy�dyl��P lδx�dxl�

� S
B
h�xl�P lδx�dxl�.

Since the above equality holds for an arbitrary Borel set B `X, we obtain that h�xl� � 1,

P lδx-a.s., and consequently Pl
x,y��A1���Al��X l� � Pl

x�A1���Al�. In the same way we

show that Pl
x,y�X l � �B1 ���Bl�� � Pl

y�B1 ���Bl� for Borel sets B1, . . . ,Bl `X. Hence

Pl
x,y > C�Pl

x,P
l
y�. Finally, we have

S
Xl

�Xl
ρ�xl, yl�Pl

x,y�dx1, . . .dxl,dy1, . . . ,dyl�
� S

Xl
�Xl

ρ�xl, yl�gx,y�xl, yl�π�xl�1,dxl�π�yl�1,dyl��π�x1,dx2�π�y1,dy2�δx�dx1�δy�dy1�
� S

X�X
ρ�xl, yl�gx,y�xl, yl�P lδx�dxl�P lδy�dyl� � S

X�X
ρ�xl, yl�µ1�dxl,dyl� B q̃ρ�x, y�

and the first step of the proof is finished.

Assume now that for j � 1, . . . ,m and arbitrary x, y >X there exists Pjl
x,y > C�Pjl

x ,P
jl
y � such

that condition (5.4) holds with m replaced by j.

Define the measure P
�m�1�l
x,y on X�m�1�l �X�m�1�l by the formula

P
�m�1�l
x,y �A� � S

X�m�1�l
�X�m�1�l

χA�x1, . . . , x�m�1�l, y1, . . . , y�m�1�l�
Pml
xl,yl

�dxl�1, . . . ,dx�m�1�l,dyl�1, . . . ,dy�m�1�l�Pl
x,y�dx1, . . . ,dxl,dy1, . . . ,dyl�
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for any Borel set A ` X�m�1�l �X�m�1�l. From the Markov property it easily follows that

P
�m�1�l
x,y > C�P�m�1�l

x ,P
�m�1�l
y �. We also have

S
X�m�1�l

�X�m�1�l

m�1

Q
j�1

ρ�xjl, yjl�P�m�1�l
x,y �dx1, . . . ,dx�m�1�l,dy1, . . . ,dy�m�1�l�

B S
Xl

�Xl
�S

Xml
�Xml

m�1

Q
j�2

ρ�xjl, yjl�Pml
xl,yl

�dxl�1, . . . ,dx�m�1�l,dyl�1, . . . ,dy�m�1�l��
Pl
x,y�dx1, . . . ,dxl,dy1, . . . ,dyl� � S

Xl
�Xl

ρ�xl, yl�Pl
x,y�dx1, . . .dxl,dy1, . . . ,dyl�

B

m

Q
j�1

q̃j S
Xl

�Xl
ρ�xl, yl�Pl

x,y�dx1, . . .dxl,dy1, . . . ,dyl� � q̃ρ�x, y�
B

m

Q
j�1

q̃j q̃ρ�x, y� � q̃ρ�x, y� � m�1

Q
j�1

q̃jρ�x, y�
by the inductive hypothesis for 1 and m. This completes the proof.

As a consequence of Proposition 5.3.1 and Theorem 5.4.1 we have the following:

Proposition 5.4.1. Let P be a Markov operator that satisfies (A1) - (A3) and let �Xn�
be a Markov chain corresponding to P . Let l0 be a positive integer such that Cql0 @ 1, where

the constants C, q are given by (5.1) and let l C l0 be given. Set Yn � Xnl for n C 0 and

assume that X0 � Y0 � x for x > X. Then for any bounded Lipschitz function g � X � R
such that RX gdµ� � 0, where µ� is the unique invariant distribution for P , the limit

σ̃2 � lim
n�ª

Eµ� �g�Y0� � g�Y1� � . . . � g�Yn�º
n

�2

exists and is finite. Moreover, if σ̃2 A 0, then the sequence of random vectors �Yn� satisfies

lim
n�ª

P �g�Y0� � g�Y1� � . . . � g�Yn�º
n

@ a� �
1º

2πσ2
S

a

�ª

e�
y2

2σ̃2 dy

for all a > R.

Proof. Without loss of generality we may assume that g � X � R is bounded by 1 and

its Lipschitz constant is also bounded by 1. By ϕxn, x > X, we denote the characteristic

function of the random variable

g�Y0� � g�Y1� � . . . � g�Yn�º
n

,
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where Y0 � x. When the distribution of Y0 is equal to µ� the characteristic function is

denoted by ϕµ�n . Obviously,

ϕµ�n �t� � S
X
ϕyn�t�µ��dy� for t > R.

Moreover, from Proposition 5.3.1 it follows that

lim
n�ª

ϕµ�n �t� � e� σ̃2t2

2 for t > R.

Theorem 5.4.1 allows us to evaluate the difference of characteristic functions ϕxn�t� and

ϕyn�t� for x, y >X and t > R. Fix x, y >X. We have

Sϕxn�t� � ϕyn�t�S � SS
Xln

exp�itg�x0� � g�xl� . . . � g�xnl�º
n

�Pnl
x �dx1,dx2, . . . ,dxnl�

� S
Xln

exp�itg�y0� � g�yl� . . . � g�ynl�º
n

�Pnl
y �dy1,dy2,�,dynl�S

B
StSº
n
S
Xln

�Xln
�ρ�x, y� � ρ�xl, xl� � � � � � ρ�xnl, ynl��Pnl

x,y�dx1, . . . ,dxnl,dy1, . . . ,dynl�
B

StSº
n
�1 � κ�ρ�x, y� for t > R,

where Pnl
x,y > C�Pnl

x ,P
nl
y � is given by Theorem 5.4.1. Consequently, for t > R we obtain

Sϕxn�t� � ϕµ�n �t�S � Sϕxn�t� � S
X
ϕyn�t�µ��dy�S

B lim
n�ª

StS�1 � κ�º
n

S
X
ρ�x, y�µ��dy�� 0 as n�ª.

Since limn�ªϕ
µ�
n �t� � e�t

2σ̃2~2, we obtain that limn�ªϕxn�t� � e�t
2σ̃2~2 and the proof is

complete.

For any Markov chain �Zn� with values in the space X and an arbitrary Lipschitz function

g �X � R we shall denote

Snm�g�Zi�� �� n

Q
i�m

g�Zi� for n Cm C 0.

The key point in proving the main theorem is the following lemma:

Lemma 5.4.2. Let P be a Markov operator that satisfies (A1) - (A2) and let �Xn� be a
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Markov chain corresponding to P . Assume that g �X � R is a bounded Lipschitz function.

Then there exists a constant M A 0 such that for any n > N the function

x� Ex �Sn0 �g�Xi��º
n

�2

has Lipschitz constant BM .

Proof. Again assume that g � X � R is a 1–Lipschitz function bounded by 1. Let l0 be a

positive integer such that Cql0 @ 1 with the constants C, q given by (5.1). We have

Ex �Sn0 �g�Xi��º
n

�2

�
1

n

n

Q
i�0

Ex�g�Xi��2
�

2

n

n�1

Q
i�0

Q
j�0@j�i@l0,jBn

Ex�g�Xi�g�Xj��
�

2

n

n

Q
i�0

Q
j�0Bj@l0, l0�j�iBn

Ex�g�Xi�� ki,jQ
m�1

g�Xml0�j�i���,
where ki,j are maximal positive integers such that ki,jl0 � j � i B n. We show that all three

terms are Lipschitzean with a Lipschitz constant independent of n. To do this fix x, y >X.

Since the function �g����2 is a B 2–Lipschitz function, by (5.1) we have

SEx�g�Xi��2
�Ey�g�Xi��2S B 2YP iδx � P

iδyY B 2Cρ�x, y� for i � 1, . . . , n

and the first term
1

n

n

Q
i�1

Ex�g�Xi��2

is a B 2C–Lipschitz function.

Further, for j A i we have

Ezg�Xi�g�Xj� � Ez�g�Xi�ESXig�Xj�� for all z >X,

where ESXig�Xj� �� E�g�Xj�SFi�. Since ESXig�Xj� � h�Xi�, where h is a bounded by 1 a

B C–Lipschitz function, we obtain that

SExg�Xi�g�Xj� �Eyg�Xi�g�Xj�S � SEx�g�Xi�h�Xi�� �Ey�g�Xi�h�Xi��S
B 2Cρ�x, y�

129



Central Limit Theorem for some non-stationary Markov chains

for i � 1, . . . , n and consequently the Lipschitz constant of the second term

2

n

n�1

Q
i�1

Q
j�0@j�i@l0,jBn

Exg�Xi�g�Xj�
is bounded from above by 4l0C.

Finally, we have

Ex
��g�Xi�� ki,jQ

m�1

g�Xml0�j�i���� � Ex
��g�Xi�ESXi� ki,jQ

m�1

g�Xml0�j���� .
Using Theorem 5.4.1 we show that the function

X ? z � Ez� ki,jQ
m�1

g�Xml0�j�� for all i, j C 0

has a Lipschitz constant B Cκqj, where κ is given by Theorem 5.4.1. Indeed, for any i, j C 0

we have

Ez� ki,jQ
m�1

g�Xml0�j�� � EzESXj� ki,jQ
m�1

g�Xml0�j��.
In turn, from Theorem 5.4.1 we obtain that the function

X ? u� r�u� � Eu� ki,jQ
m�1

g�Xml0��
has a Lipschitz constant B κ. Indeed, fix u, v >X. We have

Sr�u� � r�v�S � SEu� ki,jQ
m�1

g�xml0�� �Ev� ki,jQ
m�1

g�xml0��S
B SS�Xki,j l0�2

ki,j

Q
m�1

�g�xml0� � g�yml0��Pki,j l0
u,v �dx1, . . . ,dxki,j l0 ; dy1, . . . ,dyki,j l0�

B S�Xki,j l0�2

ki,j

Q
m�1

ρ�xml0 , yml0�Pki,j l0
u,v �dx1, . . . ,dxki,j l0 ; dy1, . . . ,dyki,j l0�

B κρ�u, v�,
by Theorem 5.4.1. Since

Ez� ki,jQ
m�1

g�Xml0�j�� � S
X
r�u�P jδz�du�,
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the function

X ? z � Ez� ki,jQ
m�1

g�Xml0�j��
has a Lipschitz constant B Cκqj, by (5.1). Moreover its supremum norm is bounded by

n. Since the Lipschitz constant of the function z � g�z�r�z� is bounded by n � Cκqj we

obtain that the function

X ? x� Ex
��g�Xi�� ki,jQ

m�1

g�Xml0�j�i����
has a Lipschitz constant B Cqi�n �Cκqj�. Thus the third term

2

n

n

Q
i�0

Q
j�0Bj@l0, l0�j�iBn

Ex�g�Xi�� ki,jQ
m�1

g�Xml0�j�i���
has Lipschitz constant bounded by

2

n

n

Q
i�0

l0�1

Q
j�0

Cqi�n �Cκqj� B 2C

n

n

Q
i�0

l0�n �Cκ�qi B 2l0C�1 �Cκ�
1 � q

.

Thus the function

x� Ex �Sn0 �g�Xi��º
n

�2

has Lipschitz constant BM , where

M � 2C � 4l0C �
2l0C�1 �Cκ�

1 � q
.

This completes the proof.

Lemma 5.4.3. Let P be a Markov operator that satisfies (A1) - (A3) and let �Xn� be a

Markov chain corresponding to P . Assume that g �X � R is a bounded Lipschitz function.

Let x >X and ε A 0. Then there exists K A 0 and N0 > N such that

EPnδx
<@@@@>�S

n
0 �g�Xi��º

m
�2

χ�K,�ª� �WSn0 �g�Xi��º
m

W�=AAAA? B ε (5.5)

for all m > N and n C N0.

Proof. Fix x > X and let ε A 0. Let g be given as above. Let l0 be a positive integer
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such that Cql0 @ 1, where the constants C, q are given by (5.1) and let l C l0 be given. Set

Yn �Xnl for n C 0. We first show that the hypothesis holds if we replace Xn with Yn. Set

Sm ��
g�Y0� � g�Y1� � . . . � g�Ym�º

m
for m C 0.

The Markov chain �Yn� corresponds to the operator P l and the assumptions of Lemma 5.4.2

are satisfied with P and �Xn� replaced by P l and �Yn�, respectively. Thus the functions

y � Ey�Sm�2 are Lipschitzean with the Lipschitz constant bounded by, say M̃ , independent

of m. The Markov operator P satisfies (A2), so that we may find N0 > N such that

SEPnδxS2
m �Eµ�S2

mS B M̃YP nδx � µ�Y B ε~�9l3� for n C N0 and m > N. (5.6)

Moreover, from Theorem 5.4.1 it follows that for any Lipschitz function Θ � R � R with

the Lipschitz constant M̂ A 0 such that we have for all m C 1

SEyΘ�Sm� �EzΘ�Sm�S B κM̂º
m
ρ�y, z� for y, z >X.

Consequently, for some N1 > N we have

SEPnδxΘ�Sm� �Eµ�Θ�Sm�S B ε~�9l3� for n C N1 and m > N. (5.7)

Let ϕK � R� R, K C 1 be a Lipschitz function such that

χ�0,K�1��y� B ϕK�y� B χ�0,K��y� for all x > R.

We are going to show that there exists K C 1 such that

Eµ��S2
m�1 � ϕK�SSmS�� @ ε~�9l3� for all m C 1.

By Proposition 5.3.1 we have

Eµ�S2
m � σ̃2 as m�ª

and

Eµ��S2
mϕK�SSmS��� 1º

2π
S
R
x2ϕK�SyS�e�y2~�2σ̃2�dy as m�ª.

In the case when σ̃ � 0 we set e�y
2~�2σ̃2� � 0.
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Since the integral on the right hand side converges to σ2 as K �ª, we obtain that there

exist constants m0 and k0 such that

Eµ��S2
m�1 � ϕK0�SSmS�� � Eµ�S2

m �Eµ��S2
mϕK0�SSmS�� @ ε~�9l3� for all m Cm0.

Enlarging K0 if necessary we obtain

Eµ��S2
m�1 � ϕK0�SSmS�� @ ε~�9l3� for all m C 1. (5.8)

Observe that the function y � Θ�y� given by the formula Θ�y� �� y2ϕK0�SyS� is a Lipschitz

function. Combining (5.6) - (5.8), we obtain that for n C max�N0,N1� we have

EPnδx�S2
mχ�K0,�ª��SSmS�� B EPnδxS2

m�1 � ϕK0�SSmS��
B SEPnδxS2

m �Eµ�S2
mS � SEPnδxΘ�Sm� �Eµ�Θ�Sm�S �Eµ��S2

m�1 � ϕK0�SSmS��
B ε~�9l3� � ε~�9l3� � ε~�9l3� � ε~�3l3�.

Having this we may show that (5.5) holds with K � lK0. Set mi � max�j � i � jl B m� for

i � 0, . . . , l � 1. We have

EPnδx��g�X0� � . . . � g�Xm�º
m

�2

χ�K,�ª� �Wg�X0� � . . . � g�Xm�º
m

W�	
B l2EPnδx� max

0BiBl�1
�g�Xi� � g�Xi�l� � . . . � g�Xi�mil�º

mi

�2

χ�K,�ª� �Wg�X0� � . . . � g�Xm�º
m

W�	
B l2EPnδx max

0BiBl�1
��g�Xi� � g�Xi�l� � . . . � g�Xi�mil�º

mi

�2

χ�K0,�ª� �Wg�Xi� � . . . � g�Xi�mil�º
mi

W�	
B l2EPnδx��g�X0� � g�Xl� � . . . � g�Xm0l�º

m1

�2

χ�K0,�ª� �Wg�X0� � g�Xl� � . . . � g�Xm0l�º
m0

W�	
� l2EPnδx��g�X1� � g�X1�l� � . . . � g�X1�m1l�º

m1

�2

χ�K0,�ª� �Wg�X1� � g�X1�l� � . . . � g�X1�m1l�º
m1

W�	
�� � l2EPnδx��g�Xl�1� � g�X2l�1� � . . . � g�Xl�1�ml�1l�º

ml�1

�2

� χ�K0,�ª� �Wg�Xl�1� � g�X2l�1� � . . . � g�Xl�1�ml�1l�º
ml�1

W�	 B l2lε~l3 � ε.
Since ε A 0 is arbitrary, the proof is complete.

We are now in a position to show the following:
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Proposition 5.4.2. Let P be a Markov operator that satisfies (A1) - (A3) and let �Xn�
be a Markov chain corresponding to P . Let l0 be a positive integer such that Cql0 @ 1,

where the constants C, q are given by (5.1) and let l C l0 be given. Assume that Yn � Xnl

for n C 0. If g �X � R is a bounded Lipschitz function, then

lim
m�ª

Ex �g�Y0� � g�Y1� � . . . � g�Ym�º
m

�2

� σ̃2,

where

σ̃2 � lim
m�ª

Eµ� �g�X0� � g�X1� � . . . � g�Xn�º
n

�2

.

Proof. First observe that for any k C 1 we haveRRRRRRRRRRREx �g�Y0� � g�Y1� � . . . � g�Yn�º
n

�2

�Ex �g�Yk� � g�Yk�1� � . . . � g�Yn�k�º
n

�2RRRRRRRRRRR� 0

as n�ª. Further we have

Ex �g�Yk� � g�Yk�1� � . . . � g�Yn�k�º
n

�2

� EPkδx �g�Y0� � g�Y1� � . . . � g�Yn�º
n

�2

,

by the Markov property. On the other hand, the Markov chain �Yn� corresponds to the

operator P l and the assumptions of Lemma 5.4.2 are satisfied with P and �Xn� replaced

with P l and �Yn�, respectively. Thus the functions

X ? x� Ex �g�Y0� � g�Y1� � . . . � g�Yn�º
n

�2

for n C 0

are Lipschitzean with the Lipschitz constant bounded by, say M̃ , independent of n. Con-

sequently, we obtainRRRRRRRRRRREPkδx �g�Y0� � g�Y1� � . . . � g�Yn�º
n

�2

�Eµ� �g�Y0� � g�Y1� � . . . � g�Yn�º
n

�2RRRRRRRRRRR
B M̃YP kδx � µ�Y B M̃CqkYδx � µ�Y.

Hence we finally have the desired convergence.
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5.5 The Central Limit Theorem

Now we are in a position to formulate and prove the main theorem of this paper.

Theorem 5.5.1. (Central Limit Theorem) Let P be a Markov operator that satisfies (A1)

- (A3) and let �Xn� be a Markov chain corresponding to P . Assume that X0 � x for x >X.

Then for any bounded Lipschitz function g � X � R such that RX gdµ� � 0, where µ� is the

unique invariant distribution for P , the sequence of random vectors �Xn� satisfies

lim
n�ª

P �g�X0� � g�X1� � . . . � g�Xn�º
n

@ a� �
1º

2πσ2
S

a

�ª

e�
y2

2σ2 dy for all a > R,

if

σ2 � lim
n�ª

Eµ� �g�X0� � g�X1� � . . . � g�Xn�º
n

�2

A 0.

Otherwise, if σ � 0, the sequence

g�X0� � g�X1� �� � g�Xn�º
n

for n C 1

converges in distribution to 0.

Proof. To prove the theorem we show that for any x >X

lim
n�ª

Ex exp �it�g�X0� � g�X1� � . . . � g�Xn�º
n

�	 � e�σ2t2~2 for t > R.

Without loss of generality we may assume that g is bounded by 1 and its Lipschitz constant

is also bounded by 1. We will make use of the following formula:

eia � 1 � ia � a2~2 �R�a�a2,

where SR�a�S B 1 and lima�0R�a� � R�0� � 0.

Fix x >X, t > R � �0� and ε A 0. Let k0 > N and η A 0 be such that

S�1 � σ2
0t

2~2k�k � e�σ2t2~2S @ ε for Sσ0 � σS @ η and k C k0.

Set D �� supnC1 RX RX ρ�u, z�P nδx�du�µ��dz� and observe that for any x0 we have according
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to Proposition 5.2.1

D B sup
nC1
S
X
ρ�u,x0�P nδx�du� � S

X
ρ�z, x0�µ��dz� @ �ª.

For given x, t, ε, by Lemma 5.4.3, we choose K A 0 and N0 > N such that

EPnδx
<@@@@>�g�X0� � . . . � g�Xm�º

m
�2

χ�K,�ª� �Wg�X0� � . . . � g�Xm�º
m

W�=AAAA? B ε~�2t2� (5.9)

for n C N0 and m > N.

Fix l C N0 such that

qlCDStS��1 � q��1
�M StS� @ ε and qlC @ 1, (5.10)

where the constants q,C are given by condition (5.1) and the constant M is given by

Lemma 5.4.2. Since

sup
m,nC1

EPnδx
<@@@@>�g�X0� � . . . � g�Xm�º

m
�2=AAAA? @ª

one may choose k C k0 such that

EPnδx��g�X0� � . . . � g�Xm�º
m

�2 WR� θtº
k

g�X0� � . . . � g�Xm�º
m

�W
� χ�0,K� �Wg�X0� � . . . � g�Xm�º

m
W�� B ε~�2t2� for all m,n C 1 and θ > �0,1�, (5.11)

by the fact that SR�a�S� 0 as a� 0 and Sσm � σS @ η for m C k, where

σ2
m � Eµ� �g�X0� � . . . � g�Xm�l�º

m
�2

� Eµ� �g�Xl� � . . . � g�Xm�º
m

�2

.

This can be done due to the fact that σm tends to σ as m� �ª. For positive integers u, v

and w, v C l, where l is such that condition (5.10) holds, we set

Iu,v,w � Ex exp �it�g�Xl� � . . . � g�Xw� � . . . � g�X�u�1�w�l� � . . . � g�Xuw�º
wv

�	
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and

Iw � Ex exp �it�g�X0� � . . . � g�Xw�º
w

�	 .
Note that limn�ª SIn � Im,m,�n~m�S � 0 for every m C 1. So let us consider in further detail

the terms Ij,k,m for given k, j B k and m C k. In the following we will use the notation

ESX�j�1�m
��� � E��SF�j�1�m�.

We have

Ij,k,m � Ex exp �it�g�Xl� � . . . � g�Xm� � . . . � g�X�j�1�m�l� � . . . � g�Xjm�º
km

�	
� Ex

�� exp it ��g�Xl� � . . . � g�Xm� � . . . � g�X�j�2�m�l� � . . . � g�X�j�1�m�º
km

�	
�ESX�j�1�m

exp it�g�X�j�1�m�l� � . . . � g�Xjm�º
km

���
� Ex

�� exp it ��g�Xl� � . . . � g�Xm� � . . . � g�X�j�2�m�l� � . . . � g�X�j�1�m�º
km

�	
��1 �

itº
km

ESX�j�1�m
�g�X�j�1�m�l� � . . . � g�Xjm�� � t2

2k
ESX�j�1�m

�g�X�j�1�m�l� � . . . � g�Xjm�º
m

�2

�
t2

k
ESX�j�1�m

<@@@@>�
g�X�j�1�m�l� � . . . � g�Xjm�º

m
�2

R� tº
km

�g�X�j�1�m�l� � . . . � g�Xjm���=AAAA?
��.

(5.12)

Since Eµ�g�Xi� � 0, by (A2) we obtain

SEu�g�Xl� � . . . � g�Xm��S � SEP lδu�g�X0� � . . . � g�Xm�l�� �Eµ��g�X0� � . . . � g�Xm�l��S
B

m

Q
i�l

SEP iδu�g�X0� �Eµ��g�X0�S B m

Q
i�l

YP iδx � µ�Y
B qlC�1 � q��1Yδu � µ�Y B qlC�1 � q��1S

X
ρ�u, z�µ��dz�

and hence we have

Ex W itº
km

ESX�j�1�m
�g�X�j�1�m�l� � . . . � g�Xjm��W B qlC�1 � q��1 StSº

km
Ex �S

X
ρ�X�j�1�m, z�µ��dz��

B qlC�1 � q��1 StSº
km
S
X
S
X
ρ�u, z�µ��dz�P �j�1�mδx�du� B qlCD�1 � q��1 StSº

km
.
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On the other hand, by Lemma 5.4.2 and (A2) we haveRRRRRRRRRRREu �g�Xl� � . . . � g�Xm�º
m

�2

�Eµ� �g�Xl� � . . . � g�Xm�º
m

�2RRRRRRRRRRR
�

RRRRRRRRRRREP lδu �g�X0� � . . . � g�Xm�l�º
m

�2

�Eµ� �g�X0� � . . . � g�Xm�l�º
m

�2RRRRRRRRRRR
B qlCM

m � l

m
Yδu � µ�Y B qlCM S

X
ρ�u, z�µ��dz�,

where M is given in Lemma 5.4.2 and consequently we obtain

Ex
RRRRRRRRRRRt

2

k
ESX�j�1�m

�g�X�j�1�m�l� � . . . � g�Xjm�º
m

�2

�
t2

k
Eµ� �g�Xl� � . . . � g�Xm�º

m
�2RRRRRRRRRRR

B qlM
t2

k
Ex �S

X
ρ�X�j�1�m, z�µ��dz�� B qlCM t2

k SX SX ρ�u, z�µ��dz�P �j�1�mδx�du�
B qlCMD

t2

k
.

Finally conditions (5.9) and (5.11) will allow us to evaluate the term

Ex
RRRRRRRRRRRt

2

k
ESX�j�1�m

<@@@@>�
g�X�j�1�m�l� � . . . � g�Xjm�º

m
�2

R� tº
km

�g�X�j�1�m�l� � . . . � g�Xjm���=AAAA?
RRRRRRRRRRR.

Indeed, we have

Ex
RRRRRRRRRRRt

2

k
ESX�j�1�m

<@@@@>�
g�X�j�1�m�l� � . . . � g�Xjm�º

m
�2

R� tº
km

�g�X�j�1�m�l� � . . . � g�Xjm���=AAAA?
RRRRRRRRRRR

B
t2

k
Ex

<@@@@>ESX�j�1�m

RRRRRRRRRRR�g�X�j�1�m�l� � . . . � g�Xjm�º
m

�2

R� tº
km

�g�X�j�1�m�l� � . . . � g�Xjm���RRRRRRRRRRR
=AAAA?

�
t2

k
Ex

<@@@@>
RRRRRRRRRRR�g�X�j�1�m�l� � . . . � g�Xjm�º

m
�2

R� tº
km

�g�X�j�1�m�l� � . . . � g�Xjm���RRRRRRRRRRR
=AAAA?
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�
t2

k
EP �j�1�m�lδx

<@@@@>�g�X0� � . . . � g�Xm�l�º
m

�2 W R� tº
km

�g�X0� � . . . � g�Xm�l���W =AAAA?
B
t2

k
EP �j�1�m�lδx

<@@@@>�g�X0� � . . . � g�Xm�l�º
m � l

�2

χ�K,�ª� �Wg�X0� � . . . � g�Xm�l�º
m � l

W�=AAAA?
�
t2

k
EP �j�1�m�lδx��g�X0� � . . . � g�Xm�l�º

m � l
�2 RRRRRRRRRRRRR

��
¾

m � l

m

tº
k

g�X0� � . . . � g�Xm�l�º
m � l

��
RRRRRRRRRRRR

� χ�0,K� �Wg�X0� � . . . � g�Xm�l�º
m � l

W�� by (5.9) and (5.11)
B

t2

k
ε~�2t2� � t2

k
ε~�2t2� � ε~k.

Now from (5.12) it follows that

SIj,k,m � Ij�1,k,m�1 � σ2
mt

2~2k�S B qlCD�1 � q��1 StSº
km

� qlCMD
t2

k
�
ε

k
B 2ε~k for j � 1, . . . , k,

by condition (5.10) and the fact that m C k. Iterating this formula k-times we obtain

SIk,k,m � �1 � σ2
mt

2~2k�kS B 2ε

and consequently

SIk,k,m � e�σ
2t2~2S B 3ε for all m sufficiently large.

Since ε A 0 was arbitrary, we obtain that limn�ª SIk,k,�n~k� � InS � 0, which completes the

proof.

5.6 Example

Let �X,ρ� be a Polish space and let �T,A� be a measurable space. Let ν � A � �0,ª� be

some measure on T . Let p � T �X � �0,ª� be a measurable function such that

S
T
p�t, x�ν�dt� � 1 for x >X.

We shall assume that p�t, �� � X � �0,ª� for t > T is a Lipschitzean function. Denote its

Lipschitz constant by k�t�.
Let πt � X � B�X� � �0,1�, t > T , be a transition probability and let Pt and Ut denote the

corresponding Markov operator and its dual, respectively. We shall consider the Markov

chain �Xn� on some space �Ω,F ,P� corresponding to the action of randomly chosen tran-
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sition probabilities with probability depending on position, i.e. the Markov chain �Xn�
given by the formula:

P�Xn�1 > �SXn � x� � π�x, �� � S
T
p�t, x�πt�x, ��ν�dt� for x >X and n C 1. (5.13)

This model generalizes some random dynamical systems studied in [HSl16].

If the distribution of X0 is equal to µ, then the distribution of Xn is given by P nµ, where

P �M�M is of the form

Pµ�A� � S
T
S
X
p�t, x�πt�x,A�µ�dx�ν�dt� for A > B�X�. (5.14)

Theorem 5.6.1. Assume that πt for t > T are transition probabilities and there exists q @ 1

such that for the Markov operators Pt corresponding to πt we have

YPtµ1 � Ptµ2Y B qYµ1 � µ2Y for µ1, µ2 >M
1
1.

Moreover, for some x0 >X and the operator Ut dual to Pt, t > T , we have

Ut�ρ��, x0��2�x� B a�ρ�x,x0��2
� b

for some a @ 1 and b A 0. Finally set

γ�t� �� sup
x>X
S
X
ρ�z, x0�πt�x,dz�

for some x0 >X and assume that

S
T
γ�t�k�t�ν�dt� @ 1 � q

and

S
T
p�t, x�γ�t�ν�dt� @ª for x >X.

Let �Xn� be a Markov chain given by (5.13). Assume that X0 � x for x > X. Then for

any bounded Lipschitz function g � X � R such that RX gdµ� � 0, where µ� is the unique

invariant distribution for P , the sequence of random vectors �Xn� satisfies

lim
n�ª

P �g�X0� � g�X1� � . . . � g�Xn�º
n

@ v� �
1º

2πσ2
S

v

�ª

e�
y2

2σ2 dy for v > R,
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if

σ2 � lim
n�ª

Eµ� �g�X0� � g�X1� � . . . � g�Xn�º
n

�2

A 0.

Otherwise, if σ � 0, the sequence

g�X0� � g�X1� �� � g�Xn�º
n

for n C 1

converges in distribution to 0.

Proof. From Theorem 5.5.1 it follows that to finish the proof it is enough to show that the

Markov operator P given by (5.14) satisfies conditions (A1) - (A3).

Observe that P is a Feller operator and its dual is of the form

Uf�x� � S
T
S
X
p�t, x�f�z�πt�x,dz�ν�dt� for f > Cb�X�. (5.15)

The operator U may be extended to an arbitrary positive unbounded function f and then

it is also given by formula (5.15). The operator U can be, in fact, extended to the space

of all Lipschitz functions. To show this, observe that for x0 >X we have

Uρ��, x0��x� � S
T
p�t, x�S

X
ρ�z, x0�πt�x,dz�ν�dt� B S

T
p�t, x�γ�t�ν�dt�

B S
T
Sp�t, x� � p�t, x0�Sγ�t�ν�dt� � S

T
p�t, x0�γ�t�ν�dt�

B S
T
k�t�γ�t�ν�dt� � S

T
p�t, x0�γ�t�ν�dt� @ª.

Therefore for any Lipschitz function f � X � R with Lipschitz constant L and x > X we

have SUf�x�S B U Sf S�x� B Sf�x0�S �LUρ��, x0��x� @ª,
by the fact that the Lipschitz constant of the function Sf S is bounded by L.

Set q̂ �� RT γ�t�k�t�ν�dt� � q @ 1 and let f � X � R be an arbitrary Lipschitz function with

Lipschitz constant bounded by 1 and such that f�x0� � 0. We show that then Uf is a
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Lipschitz function with Lipschitz constant bounded by q̂. Indeed, for any x, y >X we have

SUf�x� �Uf�y�S � VS
T
S
X
p�t, x�f�z�πt�x,dz�ν�dt� � S

T
S
X
p�t, y�f�z�πt�y,dz�ν�dt�V

B S
T
S
X
Sp�t, x� � p�t, y�SSf�z�Sπt�x,dz�ν�dt�

� S
T
p�t, y� VS

X
f�z�πt�x,dz� � S

X
f�z�πt�y,dz�Vν�dt�

B S
T
k�t� �S

X
ρ�z, x0�πt�x,dz��ν�dt� � ρ�x, y� � qS

T
p�t, y�ν�dt� � ρ�x, y�

B �S
T
k�t�γ�t�ν�dt� � q�ρ�x, y� � q̂ρ�x, y�.

To verify (A1) we compute

S
X
ρ�x,x0�Pµ�dx� � S

X
Uρ��, x0��x�µ�dx�

� S
X
�Uρ��, x0��x� �Uρ��, x0��x0��µ�dx� �Uρ��, x0��x0�

B q̂S
X
ρ�x,x0�µ�dx� �Uρ��, x0��x0� B S

X
ρ�x,x0�µ�dx� �Uρ��, x0��x0� @ª

for µ >M1
1.

Observe that for any µ1, µ2 >M
1
1 we have

Yµ1 � µ2Y � sup VS
X
f�x�µ1�dx� � S

X
f�x�µ2�dx�V ,

where the supremum is taken over all Lipschitz functions f �X � R with Lipschitz constant

bounded by 1 and such that f�x0� � 0. Indeed for any f � X � R with Lipschitz constant

bounded by 1, we have

VS
X
f�x�µ1�dx� � S

X
f�x�µ2�dx�V � VS

X
�f�x� � f�x0��µ1�dx� � S

X
�f�x� � f�x0�µ2�dx�V .

To show that (A2) holds fix µ1, µ2 >M
1
1. Then we have

YPµ1 � Pµ2Y � sup VS
X
f�x�Pµ1�dx� � S

X
f�x�Pµ2�dx�V

� q̂ sup VS
X
q̂�1Uf�x��µ1�dx� � S

X
q̂�1Uf�x�µ2�dx�V B q̂ sup VS

X
f�x�µ1�dx� � S

X
f�x�µ2�dx�V

� q̂Yµ1 � µ2Y
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Here the supremum is taken over all Lipschitz functions f �X � R with Lipschitz constant

bounded by 1 and such that f�x0� � 0, by the fact that q̂�1Uf is a Lipschitz function with

Lipschitz constant bounded by 1. Hence (A2) holds.

Finally, we show that (A3) holds with µ � δx0 . To do this it is enough to prove that

U�ρ��, x0��x��2 B a�ρ�x,x0��2
� b (5.16)

for some a @ 1 and b A 0. Indeed, iterating the above formula we have

Un�ρ��, x0��2�x� B an�ρ�x,x0��2
� b�1 � a��1 for n C 1 and x >X,

consequently,

sup
nC1
S
X
�ρ�x,x0��2P nδx0�dx�

B sup
nC1

�anS
X
�ρ�x,x0��2δx0�dx� � b�1 � a��1� � b�1 � a��1 @ª.

and (A3) will hold. To verify condition (5.16) we compute

U�ρ��, x0��x��2 � S
T
p�t, x0�S

X
�ρ�z, x0��2πt�x0,dz�ν�dt� � S

T
p�t, x0�Ut�ρ��, x0��2�x�ν�dt�

B S
T
p�t, x0��a�ρ�x,x0�2

� b�ν�dt� � a�ρ�x,x0�2
� b.

This completes the proof.
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M1
1, 121

M
p
1, 121

M�S�, 32

Mt, 35

asymptotically stable Markov operator, 19

Central Limit Theorem, 18

Cesàro e-property, 111

commutator condition, 96

compactness

weak sequential, 67

covergence

weak, 35

Doeblin condition, 18

dual semigroup, 37

Dudley norm, 46

e-property, 111

equicontinuous

family of functions, 35

Feller property, 90

Law of Large Numbers, 18

Lie-Trotter formula, 70

Lipschitz constant, 33, 45

Lipschitz functions, 45

M/G/1 Queue, 25

Markov operator, 17, 36

asymptotically stable, 19, 111

dual, 37, 111

Markov semigroup, 37

Markov-Feller operator, 37, 111

Markov-Feller semigroup, 37

measure

invariant, 19, 111

metrics

admissible, 28, 32

non-expansive Markov operator, 28

norm

dual bounded lipschitz, 34

Dudley/bounded lipschitz, 33

Fortet-Mourier, 33

total variation, 32

regular Markov operator, 37, 111

regular Markov semigroup, 37

Schur property, 38, 44

semigroup

exponentially bounded, 96

locally Lipschitz, 101

locally Trotter stable, 96

right continuous, 93

stochastically continuous, 93

strongly stochastically continuous, 93
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tight, 94

exponentially bounded, 102

semigroup property, 16

space

finite signed measures, 32

stationary Markov process, xi

strictly contractive Markov operator, 28

Theorem

Schur-like property, 47

theorem

Arzela-Ascoli, 77

central limit theorem, 123, 135

Prokhorov, 78

theorem: Kantorovich-Rubinstein, 122

tight

family (of measures), 35

Markov operator, 78

measure, 35

uniformly, 55

tight (uniformly) set of measures, 46

tight set of measures, 46

topology

compact open, 34

norm , 52

of pointwise convergence, 34, 35

weak, 52
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66:210–220, 1938.

[DPZ14] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite

Dimensions. Encyclopedia of Mathematics and its Applications. Cam-

bridge University Press, 2 edition, 2014.

[DR09] Y. Davydov and V. Rotar. On asymptotic proximity of distributions.

J. Theor. Probab, 22:82–99, 2009.

[Dud66] R.M. Dudley. Convergence of Baire measures. Studia Math, 27:251–

268, 1966.

[Dud02] R.M. Dudley. Real Analysis and Probability. Cambridge University

Press, 2002.

[DX11] Z. Dong and Y. Xie. Ergodicity of stochastic 2D Navier–Stokes equa-
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plications. Collect. Math, 55:171–217, 2004.

[Kel55] J.L. Kelley. General topology. Van Nostrand, 1955.

[KLO12] T. Komorowski, C. Landim, and S. Olla. Fluctuations in Markov

processes. Time symmetry and martingale approximation. Springer-

Verlag, Heidelberg, 2012.

[KP84] T. Kurtz and M. Pierre. A counterexample for the trotter prod-

uct formula. Journal of Differential Equations - J DIFFERENTIAL

EQUATIONS, 52:407–414, 05 1984.

[KP80] T.G. Kurtz, M. Pierre, A Counterexample for the Trotter Product

Formula. MRC technical summary report. Defense Technical Infor-

mation Center, 1980.

[KPS10] T. Komorowski, S. Peszat, and T. Szarek. On ergodicity of some

Markov operators. Ann. Prob, 38:1401–1443, 2010.

[Kuh01] F. Kuhnemund. Bi-continuous semigroups on spaces with two topolo-

gies: Theory and applications. 2001.

[Kuk02] S.B. Kuksin. Ergodic theorems for 2D statistical hydrodynamics.

Reviews in Mathematical Physics, 14:1–16, 2002.

155



Bibliography
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Samenvatting

Het onderwerp van dit proefschrift ‘Aanpak van Markov Operatoren op Ruimten van Maten

door Middel van Equicontinuiteit’, combineert een analytische en kanstheoretische aanpak

van Markov operatoren. Wij beschouwen Markov operatoren die afkomstig zijn van de-

terministische dynamische systems en ook stochastische processen die afkomen van een

kanstheoretische aanpak.

In de studie van Markov operatoren en Markov semigroepen zijn de centrale vragen het

begrijpen van het gedrag van de processen en van de semigroepen. Het is van bijzonder

belang om vast te stellen of er invariante maten bestaan, de eventuele uniciteit van deze en

inzicht krijgen in het lange termijn gedrag van het proces en het dynamisch systeem dat

gedefinieerd wordt door de geassocieerde Markov operator of semigroep. Onderzoek naar

deze vragen gaat terug tot het werk van Andrey Markov, die een Markov eigenschap voor

ketens beschreef. Een groot deel van de theory voor Markov ketens kan gevonden worden in

het boek van Meyn en Tweedie, die een grote bijdrage hebben geleverd aan de theory van

Markov ketens en die een bemerkenswaardige beschrijving hebben gegeven van ‘e-chains’.

Dit was motivatie voor veel onderzoekers om te werken met equicontinuiteitseigenschappen.

Deze theorie is toepasbaar wanneer de onderliggende toestandsruimte locaal compact is.

Als dat niet het geval is - in de algemeenheid van zogenaamde Poolse ruimten - is er theorie

in ontwikkeling. Lasota en Szarek, en in recente jaren Worm, generaliseerden theorie van

Markov operatoren en families van Markov operatoren naar deze situatie. De theorie

werd ontwikkeld door te beginnen met contractieve Markov operatoren in de artikelen van

Lasota, door niet-expansieve Markov operatoren in die van Szarek, en uiteindelijk door het

beschouwen van equicontinue families van Markov operatoren in die van Szarek, Hille en

Worm. Wij breiden resultaten van hen uit en schijnen nieuw licht op de reeds bestaande

resultaten door deze geldig te laten zijn onder meer algemene condities.

Een verband tussen zwakke en sterke (norm-) convergentie van rijen van getekende maten

is het eerste en fundamentele resutaat in dit proefschrift. Het cruciale onderdeel is de

uitbreiding van de resultaten die geldig zijn voor positieve eindige maten naar ruimten van

getekende maten. Dit is een heel algemeen middel dat niet alleen in de theorie van Markov

operatoren gebruikt kan worden, maar ook in algemene (geavanceerde) maattheorie. Met

behulp van dit resultaat, waarvoor wij een zelfstandig leesbaar en onafhankelijk bewijs

geven, leiden wij een inzichtelijke correspondentie af tussen de equicontinuiteitseigenschap

zoals die gëıntroduceerd is door Komorowski, Peszat en Szarek in [KPS10] (‘e-property’) en
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de gebruikelijke notie van een equicontinue familie van afbeeldingen, namelijk die gegeven

zijn door de de semigroep van Markov operatoren op maten. Met dit resultaat zijn wij in

staat om een Lie-Trotter productformule te bewijzen voor Markov semigroepen.

De kernideeën in de generalisatie van de Lie-Trotter productformule tot Markov semigroe-

pen is om realistische, verifieerbare, condities te geven en convergentie te bewijzen van de

productformule in de relevante normen. De nieuwe cruciale aannames laten sterke conti-

nuiteit van de semigroep en begrensheid van de individuele operatoren vallen, aangezien

Markov semigroepen op maten vaak noch sterk continu zijn, noch bestaan uit begrensde

operatoren op getekende maten ten aanzien van de Dudley of Fortet-Mourier norm. Ook

worden de eigenschappen van de limietsemigroep geanalyseerd die afkomt van de alter-

nerende semigroepen waarmee men begint. Dit geeft een extra mogelijkheid om gecom-

pliceerde problemen te benaderen, door hen op te slitsen in afwisselende ‘eenvoudiger’

problemen.

Het volgende deel van het proefschrift beschrijft de relatie tussen equicontinuiteit en sta-

biliteit van Markov operatoren. In het bijzonder wordt aangetoond, dat elke asymptotisch

stabiele Markov operator met een invariante maat die zo is dat het inwendige van diens

drager niet-leeg is, de e-eigenschap (‘e-property’) heeft. Deze resultaten zijn van belang

aangezien zij vergelijkbare resultaten uitbreiden die geldig zijn op compacte ruimten naar

de theorie van Poolse ruimten, waarin geen (locaal) compactheid wordt verondersteld.

Als laatste laten wij zien dat de Centrale Limietsteling (CLSt) geldt voor een klasse van

niet-stationaire Markov ketens op Poolse ruimten. Recente resultaten ten aanzien van

CLSt van Komorowski en medeauteurs voor niet-stationaire Markov processen laten het

belang van dit onderwerp zien. In het bijzonder in toepassingen maken de geldigheid van

de Wet van de Grote Aantallen en de Centrale Limietstelling het in principe mogelijk om

informatie over de ‘vorm’ van de invariante maat te verkrijgen door het simuleren van

(veel) individuele realisaties van de keten en dan het gemiddelde te nemen. De CLSt geeft

de snelheid van convergentie van deze procedure. De uitbreiding van het resultaat van

Gordin en Lifsic die wij bewijzen, is mogelijk vanwege de spectrale kloof van de Markov

operator ten aanzien van de Kantorovich-Rubinstein norm. Enige delicate benaderingen

staan ons toe een sterker resultaat af te leiden dan dat van Komorowski.
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The subject of this thesis, ‘Approach to Markov Operators on Spaces of Measures by

Means of Equicontinuity’, combines an analytical and probabilistic approach to Markov

operators. We look at Markov operators coming from deterministic dynamical systems and

also stochastic processes which come from a probabilistic approach.

In the study of Markov operators and Markov semigroups the central problems are to

understand the behaviour of the processes and semigroups. Of particular interest is to

identify the existence and uniqueness of invariant measures and long term behaviour of the

process and dynamical system defined by the associated Markov operator or semigroup.

Research on these questions dates back to the works of Andrey Markov, who described a

Markov property for chains. A big part of theory for Markov chains can be found in the

book by Meyn and Tweedie, who made a big contribution to the theory of Markov chains

and gave a noteworthy description of e-chains, which was the motivation to working with

equicontinuity properties for many authors. This theory is applicable when the underlying

state space is locally compact. If it is not - in the generality of so-called Polish spaces -

there is theory under development. Lasota and Szarek, and in recent years Worm gen-

eralized theory of Markov operators and families of Markov operators to this setting. In

subsequent years, the theory was being developed starting with contractive Markov oper-

ators in the works of Lasota, through non-expansive Markov operators in Szarek’s,, and

finally equicontinuous families of Markov operators in that of Szarek, Hille and Worm. We

extend their results and give a new light to the existing ones by providing less restrictive

conditions in cases.

A connection between weak and strong (norm) convergence of sequences of signed measures

is a starting point of the thesis. The crucial thing is the extension of the results from positive

measures to the spaces of signed measures. This is a very general tool which can be used

not only in a theory of Markov operators, but also in general (advanced) measure theory.

With the aid of this result, for which we give a self-contained proof, one gets an enlightening

correspondence between the equicontinuity property as defined by Komorowski, Peszat and

Szarek in [KPS10] (e-property) and the usual notion of an equicontinuous family of maps,

furnished by the semigroup defined by the Markov operator on measures. With this result,

we are able to prove a Lie-Trotter product formula for Markov semigroups.

The key ideas of the generalization of the Lie-Trotter product formula to Markov semi-

groups is to give realistic conditions and prove convergence in the relevant norms. The

crucial assumptions are to drop strong continuity and boundedness of the semigroup, as
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Markov semigroups are often neither strongly continuous nor consist of bounded operators

on signed measures in the appropriate Dudley or Fortet-Mourier norm on signed measures.

Also, the properties of the limit semigroups coming from the starting semigroups are being

analysed. This gives an additional tool for dealing with complicated problems by splitting

them into alternative ”easier” ones.

The next part of this thesis describes the relation between equicontinuity and stability of

Markov operators. In particular, it is shown that any asymptotically stable Markov oper-

ator with an invariant measure such that the interior of its support is non-empty, satisfies

the e-property. These results are of importance as they extend similar, existing results on

compact spaces to the theory of Polish spaces which does not assume compactness.

Finally, we show the Central Limit Theorem (CLT) for some non-stationary Markov chains

on Polish spaces. Recent CLT results by Komorowski and co-workers for non-stationary

Markov processes show the importance of the topic. In particular in applications, the valid-

ity of Law of Large Numbers and the CLT for non-stationary chains allows one in principle

to get information on the ‘shape’ of the invariant measure by means of simulating sample

trajectories of the chain and averaging. The CLT provides the rate of convergence of this

procedure. The extension of Gordin and Lifšic that we prove is possible by the aid of the

spectral gap property in the Kantorovich-Rubinstein norm. Some delicate approximation

allows us to also obtain a stronger result then Komorowski’s.
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Maria Aleksandra Ziemlańska was born in Gdańsk, Poland in 1985. After graduating from

high school in 2003, she studied Biotechnology at Gdańsk Technical University. In 2006
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