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Abstract
In the noisy intermediate-scale quantum (NISQ) era, solving the electronic structure problem
from chemistry is considered as the ‘killer application’ for near-term quantum devices. In spite of
the success of variational hybrid quantum/classical algorithms in providing accurate energy
profiles for small molecules, careful considerations are still required for the description of
complicated features of potential energy surfaces. Because the current quantum resources are very
limited, it is common to focus on a restricted part of the Hilbert space (determined by the set of
active orbitals). While physically motivated, this approximation can severely impact the
description of these complicated features. A perfect example is that of conical intersections (i.e. a
singular point of degeneracy between electronic states), which are of primary importance to
understand many prominent reactions. Designing active spaces so that the improved accuracy
from a quantum computer is not rendered useless is key to finding useful applications of these
promising devices within the field of chemistry. To answer this issue, we introduce a NISQ-friendly
method called ‘state-averaged orbital-optimized variational quantum eigensolver’ which combines
two algorithms: (1) a state-averaged orbital-optimizer, and (2) a state-averaged VQE. To
demonstrate the success of the method, we classically simulate it on a minimal Schiff base model
(namely the formaldimine molecule CH2NH) relevant also for the photoisomerization in
rhodopsin—a crucial step in the process of vision mediated by the presence of a conical
intersection. We show that merging both algorithms fulfil the necessary condition to describe the
molecule’s conical intersection, i.e. the ability to treat degenerate (or quasi-degenerate) states on
the same footing.

1. Introduction

Quantum computing promises to solve problems that are beyond the capacities of classical devices.
Technological advances in quantum computers occur rapidly [1–8], and it is now of primary importance to
develop quantum algorithms dedicated to specific tasks of high industrial and societal impact. The
electronic structure problem in chemistry is considered as one of the killer applications of quantum
computers [9–14], and it remains an open question whether these applications will be achieved in the noisy
intermediate-scale quantum (NISQ) era [15]. While quantum phase estimation algorithms [16–18] can in
principle solve the electronic structure problem in its entirety, they have received limited focus in the NISQ
era due to their apparent longer circuit depth requirements. Instead, variational hybrid quantum/classical
algorithms require much shallower circuits at the cost of additional measurements, with as a spearhead the
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variational quantum eigensolver (VQE) [7, 19, 20]. Those NISQ-friendly algorithms are hoped to solve
quantum chemical problems of moderate-large size in the near future.

While computing the ground state of a molecule gives information about the equilibrium geometries
and transition states (essential to determine the energy barrier of a chemical reaction), several chemical
reactions also depend on excited states (see for instance reference [21] and references therein). To date, most
variational quantum algorithms have been specifically designed to prepare ground states [1, 22–37] while
excited state calculations have received less attention until only recently [23, 38–49]. It should be noted that
some excited states can also be obtained as the lowest energy solutions of a given set of symmetries [50–55].

The landscape of ground- and excited-state potential energy surfaces (PES) can be quite complicated,
making even qualitative numerical description challenging. As atomic nuclei move, ground- and
excited-state energies may tend towards each other, leading to either avoided crossings or true inversions in
the ordering of the electronic states. These inversions are referred to as conical intersections and are
ubiquitous in photochemistry and photobiology [56, 57]. Their presence mediates important reactions, for
instance the photoisomerisation of the chromophore of the visual photoreceptor rhodopsin, ensuing
absorption of light. Photoisomerisation is a crucial step in the process of vision [58–62]. Conical
intersections also find their importance in photosynthesis [63], photostabilization of DNA [64–67] and
excitation-energy transfer [68] such as in supramolecular light-harvesting antennae [69]. Despite their
indisputable importance, their description remains a challenge in the chemistry community [56, 57, 70].
Diagonalization of the electronic Hamiltonian matrix being intractable on classical devices, it is of common
use to reduce the Hilbert space size by considering only a subspace of (so-called active) orbitals of the full
problem. However, such a truncated Hilbert space is not guaranteed to be accurate enough to represent a
conical intersection anymore. A possible solution is provided by state-averaged orbital-optimization, which
consists in modifying the truncated Hilbert space (without modifying its size) to hopefully recover the
conical intersection. On classical computers, this orbital-optimization is part of the so-called state-averaged
complete active space self-consistent field (SA-CASSCF) method [71, 72], known for its democratic
treatment of multiple (possibly degenerate) eigenstates.

For quantum computers in the NISQ era, the concept of active space also represents an important issue.
Indeed, the limitations of quantum resources (e.g. maximum number of qubits) constrain algorithms to
focus on small-sized active spaces, thus preventing any calculation on large systems. Designing Hilbert
spaces so that the improved accuracy from a quantum computer is not rendered useless by the active space
approximation itself is key to finding useful applications of these promising devices within the field of
chemistry. In this context, getting access to complicated chemical features such as avoided crossing or
conical intersections can appear as a real challenge for near-term quantum computers.

Motivated by this issue, we introduce in this paper a NISQ-friendly variational hybrid quantum/classical
algorithm inspired by the SA-CASSCF method, so-called state-averaged orbital-optimized VQE
(SA-OO-VQE). The ability of SA-OO-VQE to capture a conical intersection is demonstrated on a minimal
Schiff base model of the rhodopsin chromophore, i.e. the formaldimine molecule.

The paper is organized as follows. After a brief description of the electronic structure problem in
section 2.1, the concept of conical intersection is introduced in section 2.2. A particular attention is paid to
the efficiency of classical algorithms to represent this characteristic in chemistry (section 2.3), as shown on
the formaldimine molecule in section 2.4. Then, the SA-OO-VQE hybrid quantum/classical algorithm is
detailed in section 3, where each building blocks of the algorithm is described separately. Following a brief
introduction on quantum variational algorithms in section 3.1, we detail how SA-OO-VQE mimics its
classical analog SA-CASSCF by combining a state-averaged VQE (section 3.2.1) with a state-averaged
orbital-optimization procedure (section 3.2.2). The importance of choosing a flexible wavefunction ansatz
such as the generalized unitary coupled cluster (with double excitations only) is discussed in section 3.2.3.
Following the computational details in section 4, we demonstrate the efficiency of our method on the
formaldimine molecule in section 5. Finally, conclusions and perspectives are given in section 6.

2. Theory

2.1. Electronic structure problem
In quantum chemistry, the Born–Oppenheimer approximation assumes that molecular structure and
dynamics can be treated in two parts: considering first the atomic nuclei, and then the motion of the
electrons around them. Atomic nuclei, being many times heavier than their electronic counterparts, are
often treated as classical point particles with definite position RA and momentum PA (with A the index of
the nucleus). As classical particles have no zero-point energy, the ground state of the nuclei is motionless,
i.e. PA = 0. By contrast, the light electrons behave as fundamentally quantum particles, and form a
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collective many-body wavefunction Ψ(r), where r = (r1, r2, . . . , rNe ) is the 3Ne-dimensional global position
vector of the Ne electrons. This wavefunction evolves by the Schrödinger equation with the fixed nuclei
providing a background potential field. The quantum operator describing this dynamics is the so-called
electronic structure Hamiltonian (in atomic units)

Ĥ = −1

2

Ne∑
i=1

∇ri +
1

2

Ne∑
i�=j

1

rij
−

Ne∑
i=1

Na∑
A=1

ZA

riA
, (1)

where rij = |ri − rj|, riA = |ri − RA| and ZA are respectively the distance between electrons i and j, the
distance between electron i and nuclei A, and the atomic number of atom A. In this context, solving the
electronic structure problem means solving the time-independent Schrödinger equation

Ĥ|Ψ�〉 = E�|Ψ�〉 (2)

which yields a set of electronic eigenstates |Ψ�〉 ≡ Ψ�(r) with corresponding energies E�. These eigenstates
and energies depend on the atomic positions themselves—E� = E�(R) and |Ψ�〉 = |Ψ�(R)〉, where R is the
3Na-dimensional position vector of the Na nuclei. (Note the change of notation: Ψ�(r) is a single number
from evaluating the function Ψ� at the fixed electronic co-ordinates r, while |Ψ�(R)〉 is an entire function
defined by a fixed set of nuclear co-ordinates R). In practice, it is convenient to work in a finite basis of No

orthonormal molecular orbitals (MO) {φp(r)}. The latter are usually solutions to the mean-field
single-particle problem, determined by the Hartree–Fock (HF) method [72]. In this basis, the spin-free
Hamiltonian reads

Ĥ(R) =
No∑
pq

hpq(R)Êpq +
1

2

No∑
pqrs

gpqrs(R)̂epqrs, (3)

where (we drop the dependence on R for convenience),

hpq =

∫
φ∗

p(r1)

(
−1

2
∇r1 −

Na∑
A=1

ZA

r1A

)
φq(r1)dr1 (4)

and

gpqrs =

∫∫
φ∗

p(r1)φ∗
r (r2)

1

r12
φq(r1)φs(r2)dr1 dr2 (5)

are the one- and two-electron integrals, and Êpq =
∑

σ â†pσâqσ and êpqrs =
∑

σ,τ â†pσ â†rτ âsτ âqσ are the one- and
two-body spin-free operators. Inverting the problem, the set {E�(R)} (now basis-dependent) may be
considered as a set of potential energy manifolds for the classical motion of the nuclei.

2.2. Conical intersections in nature
A naive study of quantum mechanics would suggest that the two lowest PESs of a molecule E0(R) and E1(R)
would never cross. Perturbation theory suggests that such a crossing point or degeneracy would be prone to
any disturbance: if E0(R) = E1(R), we would expect a perturbation V to induce a gap E1(R) − E0(R) ∼ |V|.
However, some degeneracies are more robust than others. Consider the effective block Hamiltonian
obtained by projecting the full Hamiltonian Ĥ(R) in equation (3) onto the two lowest states decoupled
from other states,

Ĥ =

[
H00 H01

H10 H11

]
, (6)

where HIJ = 〈ΨI |Ĥ|ΨJ〉. An extensive discussion about the necessary conditions for this effective
Hamiltonian to depict a conical intersection is provided in reference [70]. For simplicity, suppose that, in
the absence of a perturbation, this low-energy effective Hamiltonian around a degeneracy at R0 takes the
form

Ĥ = h0(R)I + hX(R − R0) · RXX + hZ(R − R0) · RZZ, (7)

where I is the 2 × 2 identity matrix, X and Z are the two real Pauli matrices, and RX and RZ are two
arbitrary 3Na-dimensional vectors. This amounts to H00 = h0(R) + hZ(R − R0) · RZ, H01 = H10 =

hX(R − R0) · RX and H11 = h0(R) − hZ(R − R0) · RZ. Such a degeneracy is known as a conical intersection,
as the energy surfaces form a cone in the RX and RZ directions (modulo the background shift h0(R)):

E±(R) = h0(R) ±
√

hX|(R − R0) · RX|2 + hZ |(R − R0) · RZ|2. (8)

This conical intersection necessarily connects the two surfaces E+(R) and E−(R); a continuous path along
one surface passing through R0 will invert the bands. Note that a (real-valued) perturbation will shift the
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degeneracy to some R′
0, rather than breaking it (although a gap at R = R0 is still induced) [70]. A proof is

provided in appendix A.
In photochemistry, this degeneracy allows for non-radiative relaxation from an electronic excited state.

Consider a photoinduced chemical reaction, triggered by the absorption of a photon that promotes the
electrons of the molecule from the ground state to an excited state. As there is a priori no reason to expect
that local minima of the ground state are also local minima of the excited state, the wavepacket will evolve
in time, driven by atomic forces. Through its evolution, it may decay to a lower state thanks to different
phenomena [21], finally reaching a new ground-state minima which may be in a drastically different
nuclear geometry than the initial one. One such phenomena is called internal conversion, i.e. a
non-radiative transition induced by the coupling between electronic and nuclear (vibrational) degrees of
freedom (so-called vibronic coupling). Internal conversion is mediated by a degenerate point with double
cone topography, so-called conical intersection [73–76], as described in the example above. Such an
internal nuclear rearrangement is critical e.g. for sight, where the (cis to trans) isomerization of the retinal
protonated Schiff base (RPSB) chromophore—in the visual receptor rhodopsin in the retina—is the key
photochemical event following the absorption of a photon [77]. Conical intersections are also of
fundamental interest, as the (fundamentally quantum) behaviour of the nuclear motion along the degrees
of freedom (RX and RZ in the above example) is no longer well-described by the Born–Oppenheimer
approximation. In other words, vibronic couplings diverge at the conical intersection. These quantum
dynamics are critically important to consider when modelling e.g. photoinduced electron transfer processes
relevant in solar energy conversion [78]. Also for the reverse process [79], emission rather than harvesting
of light, (intersystem) crossings [80] of PES play a crucial role and require balanced treatments of all
involved surfaces and their conical intersections.

2.3. Predicting conical intersections numerically
The accurate description of the PESs of a molecular system is essential to understand complex phenomena
in excited-state dynamics [81, 82]. While vertical transitions and excited-state PES around equilibrium
geometries are usually well described by standard chemistry methods such as linear response
time-dependent density-functional theory (TDDFT) [83–86], this is much more challenging when states
are degenerate or closely degenerate. Indeed, conical intersections between the ground and first-excited state
are ill-defined in linear response TDDFT [70], in addition to other deficiencies regarding doubly excited
[87] and charge transfer states [88]. In order to correctly describe a conical intersection, the crossing states
have to be treated on the same footing, i.e. they have to result from a same high level theory. In this context,
the full configuration interaction (FCI) approach, which consists in diagonalizing the entire electronic
structure Hamiltonian in the full MO basis, would be the ideal method to describe the electronic spectrum.
Unfortunately, FCI scales exponentially with the system size. Instead, it is common to employ the frozen
core approximation, i.e. to assume that some core orbitals are always occupied by electrons, and some
virtual orbitals are never occupied. These orbitals may be ‘frozen’, leaving us to solve the problem using
only the remaining ‘active’ spin-orbitals. This method is typically known as complete active space
configuration interaction (CASCI) approximation. In contrast to FCI, the active space selection is
user-dependent and is not invariant with respect to orbital rotations. As a consequence, it is usual to
variationally optimize the orbitals with respect to the ground-state CASCI energy, thus leading to the
so-called state-specific complete active space self-consistent field method (CASSCF). These three methods
are ordered both in terms of their complexity cost T and their accuracy in finding the ground-state energy
E0 —we have TFCI � TCASSCF � TCASCI, and E0 � EFCI

0 � ECASSCF
0 � ECASCI

0 . Finding an appropriate level of
theory for a given problem requires finding the best tradeoff in this cost-accuracy balance.

Regardless of the level of theory chosen, finding the exact solution of the electronic structure problem is
a difficult task. Solving a single active space of m spatial orbitals containing n electrons, denoted by
CASCI(m, n), requires finding the ground state eigenvalue of a

(
2m
n

)
×

(
2m
n

)
matrix. (The equivalent

CASSCF (m, n) problem takes a similar amount of time, multiplied by the number of iterations needed to

find the optimal single-particle basis rotation.) On a classical computer, this takes O(
(

2m
n

)3
) ∼ O(en) time.

This becomes impractical beyond n ∼ 20 [89], though many approximations have been developed over the
last century (see references [90–93] and references therein). Quantum computers promise a route beyond
this boundary, as they can find eigenvalues of an (m, n) active space to error ε in time polynomial in n and ε

[94, 95]. This has generated a huge flurry of experimental [1–8] and theoretical [9, 13, 14, 96] activity. As a
promise, fault-tolerant quantum computer could open up areas of chemistry to accurate computational
study that were previously inaccessible. However, a quantum computer only improves the solution of a
chemistry problem within the active space; it targets ECASCI

0 (or ECASSCF
0 when orbital-optimization is

considered), and not the true ground state energy E0. Designing relevant active spaces is key to finding
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useful applications of quantum devices within the field of chemistry, and is an active field of research [26,
29, 47, 97–105].

Conical intersections require careful consideration in active space approximations. Although the conical
intersection might be qualitatively described by FCI, this is not guaranteed anymore when a truncated
active space is considered (see appendix A). Switching to state-specific CASSCF, using the orbitals optimized
with respect to the ground-state energy will by construction lower the ground state, but might have the
opposite effect on the excited state. Thus, the gap between the two states will increase and the description of
the conical intersection can become worse. One could think of optimizing the orbitals for the two states
separately. In this case, two separate sets of state-specific orbitals are obtained. However, the two states
expressed in those two different orbital sets are not guaranteed to be orthogonal anymore. Furthermore,
when the states are closely degenerate (as around conical intersections or avoided crossings), optimizing the
orbitals with respect to the excited state energy becomes impossible in practice. Indeed, the (optimized)
excited state and the ground state will inevitably (and indefinitely) swap during the optimization process,
thus preventing convergence of the orbitals. This practical problem is known as root flipping. Finally, active
spaces can also be designed differently, for instance by downfolding electronic Hamiltonians into
low-dimensional active spaces. However, those downfolded Hamiltonians are state-specific [97], and thus
not appropriate for an equal footing treatment of ground and excited states.

In quantum chemistry, the standard method to describe conical intersections is given by the so-called
state-averaged (SA)-CASSCF method. In this approach, the orbitals are variationally optimized with respect
to the energy average of the states involved in the conical intersection [72]. In this sense, SA-CASSCF is a
democratic method (i.e. it treats on an equal footing the optimization of all the states simultaneously)
ensuring a coherent representation of an eventual degeneracy within a given active space, which strongly
contrasts with the state-specific CASSCF approach. While the SA-CASSCF ground state might end up
higher in energy than with state-specific CASSCF, results obtained from the former are most of the time
more relevant as we are interested in energy difference in quantum chemistry. Note that to go beyond the
SA-CASSCF calculation, one can use second order perturbation theory (CASPT2) [106], or similarly the
N-electron valence second order perturbation theory (NEVPT2) [107] to recover the missing dynamical
correlation (see also reference [70] and references therein).

2.4. Example: photoisomerization of formaldimine
As an illustrative example of the previous discussion, we consider the formaldimine molecule (CH2NH)
which exhibits a conical intersection between its ground and first-excited PESs [108]. The
photoisomerization of formaldimine can be considered as an illustrative minimal model of the more
complex RPSB molecule whose photoisomerisation (cis to trans) plays a key role in the visual cycle process
[77, 109]. The description of the conical intersection can be reduced to a two-dimensional problem by

varying the bending angle α = ̂H − N − C and the dihedral angle φ ≡ ̂H − C − N − H, while all other
coordinates are kept frozen (see (a) in figure 1). It involves two states. The first one is dominated by a
closed-shell configuration composed of the π-bonding orbital between the nitrogen and carbon 2px

orbitals, and a lone pair in the nitrogen 2py orbital denoted by n. This corresponds to the HF determinant.
The second state is dominated by an open-shell configuration called a nπ∗ state, composed of one electron
in the nitrogen lone pair orbital n, two electrons in the π-bonding orbital and one electron in the
corresponding π∗-antibonding orbital [108]. This corresponds to the HOMO–LUMO excited configuration
(HOMO and LUMO stand for highest occupied molecular orbital and lowest unoccupied molecular orbital,
respectively). An active space comprising those orbitals should be sufficient to qualitatively capture the
conical intersection, i.e. four electrons in three spatial-orbitals (4, 3). Note that one could even get rid of the
π-bonding orbital, thus reducing the active space to two electrons in two spatial-orbitals (2, 2), and still
capture a conical intersection. This could be used for an experiment on a real quantum device, as only four
qubits are required. However, we decided to keep the π-bonding orbital in the active space due to its
non-negligible quantitative contribution, thus leading to a (noiseless) classical simulation of a six qubits
device.

As readily seen in figure 1(b), realizing a CASCI (4, 3) calculation in the canonical (HF) MO basis is not
sufficient to capture the conical intersection. The latter is however well described within SA-CASSCF (4, 3)
(figure 1(c)), which demonstrates the importance of working in the state-averaged orbital-optimized basis.
As a proof of the existence of the conical intersection (see also references [108]), we considered a very large
active space comprising all the electrons of the system (i.e. n = 16) in 16 orbitals, in the canonical MO
basis. Results are shown in figure 2. For clarity, in this figure we only show the intersection plan of the 2D
PES for φ = 90◦ which contains the conical intersection. By construction, the ground- and excited-state
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Figure 1. Two-dimensional ground- and excited-state PES of formaldimine as a function of the dihedral and bending angles φ
and α. (a) Structure of the formaldimine molecule. (b) CASCI (4, 3) energies in the cc-pVDZ basis. (c) SA-CASSCF (4, 3)
energies in the cc-pVDZ basis (orbital optimisation realized over the first 20 MOs of the system).

CASCI (16, 16) energies are lower than the CASCI (4, 3) ones, which we recall does not capture the conical
intersection, as also shown in figure 1. Interestingly, in contrast to CASCI (4, 3), the CASCI (16, 16) results
feature the conical intersection around α = 112◦. This is already a numerical proof that the frozen core
approximation does not guarantee the protection of the conical intersection (see appendix A for a
mathematical proof). To recover the conical intersection, one has to either increase the size of the active
space, like in CASCI (16, 16), or to switch to a more appropriate basis. By optimizing the orbitals with
respect to the ground-state energy, we end up with the state-specific CASSCF (4, 3) result in figure 2. As
expected, the ground-state energy is lower than the CASCI (4, 3) energy by construction. However, it
remains higher than the CASCI (16, 16) one. What should be highlighted here is that while the ground-state
energy is indeed getting better through the use of state-specific orbitals, this is at the expense of the
description of the excited state. As a consequence, the energy difference between the ground and first
excited state deteriorates by using state-specific CASSCF, thus impacting directly the description of the
conical intersection.
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Figure 2. One-dimensional PES of formaldimine as a function of the bending angle α with a fixed dihedral angle φ = 90◦.
Ground-state (full lines) and excited-state (dashed lines) energies are computed with CASCI (16, 16) (blue), CASCI (4, 3) (red)
and state-specific CASSCF (4, 3) (black) in the cc-pVDZ basis.

3. Methods

3.1. Variational quantum algorithms
The electronic structure problem may be solved on a quantum computer by mapping the fermionic modes
onto qubits. This may be achieved by a number of non-local transformations, most of which mapping N
spin-orbitals (not spatial orbitals) of an active space onto N qubits (see references [11, 12] for reference).
The transformed qubit Hamiltonian Ĥq has the same eigenvalue structure as the effective frozen core
Hamiltonian ĤFC, constructed with respect to a given active space (see appendix B for an introduction of
the frozen core approximation). By virtue of the variational principle, all states within the N-qubit Hilbert
space have energy E � EFC

0 , where EFC
0 is the ground-state energy of ĤFC. A VQE [19, 20] exploits this fact

by generating a set of states |Ψ(�θ)〉 dependent on some conditional control parameters �θ. These parameters
are used to tune quantum gates within a quantum circuit encoding an ‘ansatz’. For a fixed choice of
parameters �θ, the energy of the generated state |Ψ(�θ)〉 under the Hamiltonian Ĥq may be estimated by
partial state tomography [33, 110], which may be achieved by as simple methods as single qubit rotation
and readout. Traditionally, the energy E(�θ) = 〈Ψ(�θ)|Ĥq|Ψ(�θ)〉 is used as a cost function in a (classical)
optimization routine. When E(�θ) is minimized, one hopes that the resulting state |Ψ(�θ)〉 is a good
approximation for the ground state of Ĥq, and correspondingly that E(�θ) ∼ EFC

0 . Various methods exist to
extend this scheme to find higher-energy eigenstates [38–49]. However, the accuracy of the eigenenergies of
Ĥq to the original problem is strictly limited by the active space, as we target ĤFC and not the original
Hamiltonian Ĥ. Note that in the following, we will intentionally drop the notation Ĥq when speaking about
VQE to only use ĤFC for simplification.

3.2. State-averaged orbital-optimized VQE
With the current resources restriction affecting NISQ devices, VQE can only be employed to solve the
electronic structure problem within very small-sized active spaces. In this context, trying to reproduce
complex chemical features such as formaldimine’s conical intersection becomes a real challenge. Indeed, as
explained previously, VQE is energetically bounded by its classical analog CASCI which is known to
drastically fail when applied to a small active space (see CASCI (4, 3) in figure 2). If one desires to solve
such a problem on near term quantum devices, it is of primary importance to develop new approaches
which give coherent results while working within small-sized active spaces.

To this end, we introduce a method specially dedicated to capture (near-)degeneracies on a NISQ device:
the so-called SA-OO-VQE. Following the fundamental ideas that make the strength of the classical
SA-CASSCF method, SA-OO-VQE provides a democratic treatment of the eigenstates of a system inside and
outside the active-space. To this end, the SA-OO-VQE method is composed of two interdependent
sub-algorithms working in a ‘state-averaged’ manner. The latter are respectively called state-averaged VQE
(SA-VQE) and state-averaged orbital-optimizer (SA-OO).

In the following, we introduce how these two sub-algorithms work together in practice (as a visual
support, figure 3 represents the general structure of the SA-OO-VQE method and provides a summary of
the information exchanged between the two sub-algorithms). Motivated by the formaldimine problem, a
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Figure 3. Schematic of the SA-OO-VQE method. To produce an equal footing treatment of several states, two state-averaged
algorithms are used in cycle: an hybrid quantum–classical SA-VQE algorithm (left-hand side), and a purely classical
SA-orbital-optimization algorithm (right-hand side). In practice, the SA-VQE method employs a unique quantum circuit to
determine multiple low lying eigenstates of a given Hamiltonian via a minimization of their state-averaged energy. The resulting
optimal correlated states are then transmitted to the SA-OO algorithm. This second algorithm implements an optimal MO
rotation over the whole Hamiltonian Ĥ to pursue the minimization of the state averaged energy. The optimally rotated
Hamiltonian is then sent back to the first SA-VQE algorithm, which closes the global loop of the SA-OO-VQE algorithm.

two-states example will be considered in the following to illustrate the different steps of the method.
SA-OO-VQE can however be straightforwardly generalized to any number of states, as well as to the
particular case of a single state (thus leading to ‘state-specific’-OO-VQE [26, 29]).

3.2.1. 1st algorithm: state-averaged VQE
The first algorithm acting in the SA-OO-VQE method is the SA-VQE approach, also called subspace-search
VQE (SS-VQE) in reference [40], which consists in finding two (or more) low-lying eigenstates of a given
Hamiltonian. To proceed, one starts by building the frozen core Hamiltonian ĤFC. Then, we define a set of
two (or more) orthonormal initial states |ΦA〉 and |ΦB〉 (with 〈ΦA|ΦB〉 = 0) to be transformed into two
correlated states via the implementation of a same unitary operator Û(�θ),

|ΨA(�θ)〉 = Û(�θ)|ΦA〉 and |ΨB(�θ)〉 = Û(�θ)|ΦB〉. (9)

The use of a same unitary Û(�θ) where the parameters �θ are optimized for both states simultaneously has
multiple advantages. First, a single circuit is used to determine eigenstates which is a great asset for the
NISQ era. Second, all target states are treated on an equal footing, thus avoiding biases that would naturally
appear when using different levels of theory for each state. In appendix F, we discuss on the ability of
several methods to treat different states on an equal footing. Finally, the orthonormality property of the
initial states is transferred to the final correlated states, so that 〈ΨA(�θ)|ΨB(�θ)〉 = 〈ΦA|ΦB〉 = 0. The two
correlated states are then used as ansatze to approximate the two low-lying eigenstates of ĤFC. To this end,
the parameters �θ of the VQE circuit are optimized to minimize the state-averaged energy

ESA−VQE(�θ) = wA〈ΨA(�θ)|ĤFC|ΨA(�θ)〉+ wB〈ΨB(�θ)|ĤFC|ΨB(�θ)〉, (10)

where the weights wA and wB (with wA + wB = 1 and wA � wB) define the weighted contribution of each
correlated state to the cost function. This ensemble energy is governed by the Rayleigh–Ritz variational
principle [111] ensuring that the lower energy bound reachable is given by the ensemble energy of the exact
two low lying eigenstates of ĤFC (denoted by |Ψ0〉 and |Ψ1〉),

ESA = wA〈Ψ0|ĤFC|Ψ0〉+ wB〈Ψ1|ĤFC|Ψ1〉

� ESA−VQE(�θ). (11)

In the particular case of an equi-ensemble (i.e. wA = wB), it is easy to show that the state-averaged energy is
invariant with respect to any rotation of the states |Ψ0〉 and |Ψ1〉. Indeed, by replacing |Ψ0〉 and |Ψ1〉 by
|Ψ−(ϕ)〉 = cosϕ|Ψ0〉 − sinϕ|Ψ1〉 and |Ψ+(ϕ)〉 = sinϕ|Ψ0〉+ cosϕ|Ψ1〉, one gets an ensemble energy
ESA(ϕ) � ESA(0) where the equality is always fulfilled (for any rotation angle ϕ) if and only if wA = wB

[111]. Hence, taking an equi-ensemble only ensures that the subspace spanned by |ΨA(�θ)〉 and |ΨB(�θ)〉 best
approximates the subspace spanned by |Ψ0〉 and |Ψ1〉, instead of approximating each individual states
directly. To extract the expected individual states and energies from the equi-ensemble, additional
treatments are required such as additional maximizations [40] or classical diagonalization [45].
Alternatively, one can just take wA > wB to impose a constraint in the ordering of the states [40], which
may complicate the optimization considerably [49]. We refer to this alternative as the fully-weighted
SS-VQE, described in section 2.3 of reference [40].
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In this work, we considered the equi-ensemble formalism. While there is no guarantee to capture the
correct individual states after a single minimization of the state-average energy [equation (10)], this remains
possible by choosing appropriate initial states and wavefunction ansatz. Indeed, in section 5 we show that
the correct individual energies are obtained with errors even below chemical accuracy. Furthermore, as no
ordering is specified, the PES of the final states (|ΨA〉 and |ΨB〉) can cross: |ΨA〉 and |ΨB〉 can respectively
be the ground and excited state for a given set of nuclear coordinates R, and reverse order for another set R′.
This interesting feature is not without significance and will be discussed further in section 5.

Nevertheless, in general one has to ensure the correct capture of the eigenstates. For this, one possibility
is to complement the cost function in equation (10) by the state-averaged variance [49]

ΔSA(�θ) = wAΔA(�θ) + wBΔB(�θ), (12)

where
Δk(�θ) = 〈Ψk(�θ)|(ĤFC)2|Ψk(�θ)〉 − 〈Ψk(�θ)|ĤFC|Ψk(�θ)〉2 (13)

is the energy variance of Hamiltonian ĤFC with wavefunction |Ψk(�θ)〉. In practice, the measurement of the
energy variance on a quantum computer can be realized via the averaging of a quantum covariance matrix
depending on the output states and the elements of the Hamiltonian Ĥ (expressed in qubit form). For more
information about this method, we refer the interested reader to reference [49] (and references within).

3.2.2. 2nd algorithm: state-averaged orbital-optimization
Once the SA-VQE sub-algorithm reaches convergence, the next step consists in using a classical SA-OO
procedure. Directly inspired by the SA-CASSCF method, the goal of the SA-OO algorithm is to pursue the
minimization of the state-averaged energy of |ΨA(�θ)〉 and |ΨB(�θ)〉 via the implementation of an optimal
rotation of the system’s MOs. To do so, throughout the whole SA-OO process, one considers that the shape
of the correlated states never changes (i.e. the �θ parameters are frozen). Then, one introduces an unitary
operator UOO(�κ) such as

ÛOO(�κ) = e−κ̂ with κ̂ =

MOs∑
p>q

κpq(Êpq − Êqp), (14)

where p, q denote any arbitrary spatial orbitals. This operator is used to transform the system’s MOs. Such a
transformation acts simultaneously inside and outside the active space [72]. In practice, a restricted set of
MOs is considered, including all doubly occupied MOs, all active space MOs and a few low virtuals. Using
the ÛOO(�κ) operator, the MO basis transformation is applied to the full second quantized Hamiltonian of
the system,

Ĥ(�κ) = Û†
OO(�κ) Ĥ ÛOO(�κ). (15)

This transformation parametrizes the system’s Hamiltonian which becomes explicitly dependent on the MO
basis, through rotation �κ (see appendix D for details about this transformation). The resulting transformed
Hamiltonian Ĥ(�κ) still shares the same spectrum as the original operator Ĥ since we use a unitary
transformation. However, this is not the case for the associated frozen core Hamiltonian ĤFC(�κ) which has
a different spectrum compared to the original frozen core Hamiltonian ĤFC (in the non-optimized MO
basis). The energy of the correlated states computed in the active space will therefore change with the
parameters �κ. Using this new definition of the frozen core Hamiltonian, the state-averaged energy of the
two correlated states now reads (for fixed parameters �θ)

ESA−OO(�κ) = wA〈ΨA(�θ)|ĤFC(�κ)|ΨA(�θ)〉+ wB〈ΨB(�θ)|ĤFC(�κ)|ΨB(�θ)〉. (16)

By minimizing equation (16) with respect to the parameters �κ, one obtains a variationally optimized MO
basis designed to treat both correlated states on an equal footing.

Throughout this work, this optimization is carried out by using a state-averaged version of the classical
Newton–Raphson method [112] (see appendix C for technical details). In practice, this algorithm requires
the knowledge of the two converged correlated states |ΨA(�θ)〉 and |ΨB(�θ)〉 obtained from the SA-VQE
algorithm. More precisely, it requires their respective one- and two-electron reduced density matrices,
which are measured from the VQE circuit anyhow to compute the energy. Hence, no additional
measurements are required. These matrices are used in the analytical formula for the so-called orbital
gradient and Hessian which represent fundamental ingredients of the orbital-optimisation process
[71, 72, 113]. Note that this approach based on reduced density matrices contrasts with regular VQE
gradients which require additional measurements [114, 115].

To close the loop of the SA-OO-VQE algorithm, the (now orbital-optimized) frozen core Hamiltonian
ĤFC(�κ) is sent back to the SA-VQE algorithm which will determine the two low-lying states again. Such a
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loop between the SA-VQE and the SA-OO algorithms is carried out until reaching a global convergence of
the state-averaged energy (in addition to the state-averaged variance if used).

3.2.3. Generalized unitary coupled cluster with double-excitation operators

In VQE-type algorithms, like SA-VQE, one has to choose a specific (and usually approximate) wavefunction
ansatz. One promising (and now traditional) ansatz considered for quantum chemistry applications within
VQE is the unitary coupled cluster ansatz with single- and double-excitation operators (UCCSD) [20]:

U(�θ) = eT̂(�θ)−T̂†(�θ), (17)

T̂ ≡ T̂SD =

virt.∑
a

occ.∑
i

θai â†aâi +

virt.∑
a>b

occ.∑
i>j

θabij â†aâ†bâiâj, (18)

where i, j and a, b denote occupied and virtual spin-orbitals (in reference to the HF slater determinant)
within the active space, respectively. However, it might be of interest to consider generalizations of
equation (18) [23, 42, 52]. In this work, we use a UCC ansatz based on a generalized spin-free form of
double-excitation operator

T̂ =

active∑
t,v,w,u

θtuvw

∑
σ,τ=↑,↓

â†tσ â†vτ âwτ âuσ , (19)

where t, u, v,w denote any active spatial orbital. Comparing equation (19) to equation (18), there are three
key alterations using a generalized spin-free double-excitation operator. First, all single excitations can be
removed in equation (19) as these are already included in the unitary operator ÛOO(�κ) [equation (14)] as
part of the SA-OO algorithm, which effectively encodes all single excitations in the active space. This allows
savings of quantum resources by performing the single-excitations classically instead of within the quantum
circuit. Second, the traditional UCCSD ansatz only considers excitations from occupied to unoccupied
spin-orbitals, and are usually defined according to one specific slater determinant (the HF determinant).
However, different initial states are considered in the SA-OO-VQE method. As a direct consequence,
operators such as in equation (18) are not flexible enough to simultaneously generate multiple correlated
states. For this task, generalized excitation operators are more suitable as the latter remain intrinsically
state-agnostic. Finally, equation (19) is chosen to match the spin-free form of the two-body operator
present in the electronic Hamiltonian in equation (3). This further reduces the number of independent
cluster parameters θ to optimize (four chains of creation-annihilation operators share the same parameters
and the symmetry θtuvw = θvwtu can be exploited).

In appendix E, we discuss how we implemented this ansatz in practice to produce the results presented
in our study. Notably, we introduce step-by-step every manipulations realized to make the ansatz tractable
in our simulations (i.e. using restrictions to reduce the number of parameters to optimize and invoking
symmetries). We also provide additional information about the resulting quantum circuit (such as the
ordering of the unitaries and the total number of quantum gates).

4. Computational details

The simulation of the SA-OO-VQE algorithm is realized using the python quantum computing packages
OpenFermion [116] and Cirq[117] []. In practice, SA-VQE parameters �θ are always initialized to zero and
optimized using the gradient-free sequential least squares programming method (SLSQP) from the python
Scipy package. For each call of SA-VQE, the SLSQP method is run with a maximum number of 400
iterations and a precision threshold of 10−4 Ha (i.e. we set the optimizer parameter ‘ftol’ to 10−4 as
implemented in the scipy package). This low expectation on the performance of SA-VQE is rendered
possible in SA-OO-VQE thanks to alternating repetitions of SA-VQE and SA-OO algorithms. The threshold
for the global convergence of SA-OO-VQE is also set to 10−4 Ha. The two initial orthonormal states
considered are the HF slater determinant |ΦA〉 = |HF〉, and its HOMO–LUMO excited version
|ΦB〉 = ÊLH|HF〉 = (1/

√
2)

∑
σ â†L,σ âH,σ|HF〉 (with ‘L’ and ‘H’ referring to the LUMO and HOMO spatial

orbitals, respectively). Concerning the SA-OO algorithm, a homemade state-averaged Netwon–Raphson
code has been developed based on references [71, 72, 112].

Turning to the geometry of formaldimine, the N–CH2 part of the molecule is frozen and constrained in
a same plane (see green plane in figure 1(a)). The interatomic distances are dN–C = 1.498 Å and

dC–H = 1.067 Å and the internuclear angles are ̂N − C − H = 118.36• The second H atom is symmetric to
the first one with respect to the N–C axis. The two remaining degrees of freedom characterize the

out-of-plane bending angle α ≡ ̂H − N − C and the dihedral angle φ ≡ ̂H − N − C − H.
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Figure 4. Evolution of the state-averaged energy optimization during the different steps of the SA-OO-VQE algorithm. (a) For
φ = 90◦ and α = 122.7◦, and (b) for φ = 90◦ and α = 106◦. For both cases, white strips delimit SA-VQE phases whereas grey
stripes delimit SA-OO phases. A global cycle of SA-OO-VQE is then given by two consecutive stripes (white then grey). The
upper panels represent the energy error comparing SA-OO-VQE to reference SA-CASSCF.

In the following, the cc-pVDZ basis is used and an active space of four electrons in three orbitals (4, 3) is
considered, unless stated otherwise. The SA-OO procedure is always realized over the first 20 spatial-orbitals
of the system (for SA-OO-VQE and SA-CASSCF) composed of the six frozen occupied, the three active and
the first eleven virtual orbitals. CASCI and SA-CASSCF calculations are realized with the quantum
chemistry code Psi4 [118].

5. Results

We now present the results obtained with SA-OO-VQE for formaldimine’s ground- and excited-state
spectra around the conical intersection.
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5.1. Convergence of the SA-OO-VQE method
We start by illustrating how SA-OO-VQE converges towards the minimal state-averaged energy for a given
geometry of the molecule (φ = 90◦ and α = 122.7◦). The different energy values produced by the
algorithm after each step of optimization are given in figure 4(a) (where E0 and E1 stand for the ground-
and first excited-state energies, EA and EB are the associated energies of |ΨA〉 and |ΨB〉, and ESA is the
state-averaged energy). SA-VQE phases are represented by white stripes while SA-OO phases are represented
with grey stripes. One SA-OO-VQE cycle is then given by two consecutive white and grey stripes, repeated
until global convergence of the state-averaged energy is reached. We compare the convergence of
SA-OO-VQE to the SA-CASSCF reference energies (horizontal dashed lines), which form a natural lower
bound on the performance of the method. As readily seen in figure 4(a), alternating between the SA-VQE
and the SA-OO algorithms progressively lowers the energies, requiring five SA-OO-VQE cycles to reach
global convergence, and only two cycles to reach chemical accuracy compared to the SA-CASSCF reference.
Similar convergence was also observed across all simulated formaldimine geometries, with all SA-OO-VQE
simulations converging within a maximum of 10 cycles to within chemical accuracy (1.6 mHa) of the
SA-CASSCF reference. This fast convergence on the whole one-dimension PES is a consequence of the
equi-ensemble theory. Indeed, each state can naturally evolve towards the final state which they have the
strongest overlap with, without having to obey any a priori ordering (see section 3.2.1). This is depicted in
figure 4(b) where the energies EA and EB cross each other in the first cycle of SA-OO-VQE, which is by
construction not favoured by setting wA > wB. The importance of such a feature will be discussed in the
following.

5.2. Description of the conical intersection
Let us now investigate the ability of SA-OO-VQE to reproduce the conical intersection of the formaldimine
molecule. We focus on the calculation of the one-dimensional PES of the system as function of the bending
angle α with a fixed dihedral angle φ = 90◦ (figure 5). In the absence of orbital optimization (i.e. when the
SA-VQE algorithm acts alone), the energies are in very good agreement with the classical CASCI calculation
[figure 5(a)]. However, no conical intersection is present in the energy profiles thus demonstrating a
qualitative failure of the frozen core approximation in the canonical MO basis (see sections 2.3 and 2.4). To
reproduce the conical intersection, the SA-OO algorithm is required. In figure 5(b), we plot the energies
obtained following global convergence of the full SA-OO-VQE method. We see excellent qualitative and
quantitative agreements between SA-OO-VQE and its classical analog SA-CASSCF. Crucially, both methods
are able to capture the presence of a conical intersection around α = 118.5◦. Furthermore, we measure all
over the PES an individual energy error between SA-OO-VQE and SA-CASSCF that is always below
chemical accuracy (see upper panel of figure 5(b)).

Another important quantity in photochemistry is the excitation energy—the energy difference between
the ground and the first excited states. We compare the estimated excitation energies from SA-CASSCF and
SA-OO-VQE in figure 6. Here again, SA-OO-VQE matches SA-CASSCF perfectly. Nevertheless, even
though the SA-CASSCF reference is reproduced with errors always below chemical accuracy, we recall that
the latter will still deviate from the exact energy as defined by the FCI value. As FCI is intractable for the
formaldimine in the cc-pVDZ basis, we instead consider CASCI (16, 16), expected to be very close to the
FCI value. We see that SA-CASSCF (or SA-OO-VQE) and CASCI (16, 16) agree qualitatively on the
existence of a conical intersection, but differ quantitatively: the location of the conical intersection is shifted
by 6.5◦. This is not a failure of the SA-OO-VQE algorithm itself, but rather that the small active space is
insufficient to capture the full dynamic correlation present in the FCI space. This can be solved by enlarging
the active space, or potentially by perturbative approaches such as considered in reference [98]. However, in
many cases the qualitative agreement is sufficient, and the correct reproduction of the conical intersection at
all is vindication of the SA-OO-VQE method.

5.3. Diabatic versus adiabatic representation
One interesting feature of our SA-OO-VQE implementation is that the converged states |ΨA〉 and |ΨB〉
cross each other at the conical intersection point, as shown by the triangles and crosses markers in
figure 5(b). As discussed in section 3.2.1 (see also reference [49]), this is only possible when considering the
equi-weighted version of SA-VQE, as the fully-weighted version of SS-VQE with condition wA > wB will
force an a-priori (energy based) ordering of the states |ΨA(�θ)〉 and |ΨB(�θ)〉 [40].

In contrast to the fully-weighted SS-VQE (or SA-CASSCF) method which generate adiabatic states, our
states |ΨA(�θ)〉 and |ΨB(�θ)〉 keep their nature along the whole PES. This can be rationalized by looking at the
decomposition of the wavefunction in the basis of slater determinants (i.e. the configuration interaction
coefficients). Consider the converged SA-OO-VQE wavefunctions |ΨA(�̃κ)〉 and |ΨB(�̃κ)〉, where �̃κ denote the
converged SA-OO basis. The dominant configuration in |ΨA(�̃κ)〉 is |ΦA(�̃κ)〉—the HF slater determinant

12



Quantum Sci. Technol. 6 (2021) 024004 S Yalouz et al

Figure 5. One-dimensional PES of formaldimine as a function of the bending angle α with a fixed dihedral angle φ = 90◦.
Triangles and crosses markers represent the energy of the final states |ΨA〉 and |ΨB〉 associated to the initial states |ΦA〉 = |HF〉
and |ΦB〉 = ÊLH|HF〉, respectively. (a) Comparison of CASCI vs SA-VQE. (b) Lower panel: comparison of SA-CASSCF vs
SA-OO-VQE. Upper panel: energy error of SA-OO-VQE compared to SA-CASSCF.

expressed in the SA-OO basis. The dominant configuration in |ΨB(�̃κ)〉 is |ΦB(�̃κ)〉)—the singly-excited HF
slater determinant expressed in the SA-OO basis. These respective dominating configurations contribute to
more than 93% for |ΨA(�̃κ)〉 (|〈ΦA(�̃κ)|ΨA(�̃κ)〉|2 > 0.93) and 88% for |ΨB(�̃κ)〉 (|〈ΦB(�̃κ)|ΨB(�̃κ)〉|2 > 0.88)
along the whole PES, while their contribution on the other state is negligible (〈ΦA(�̃κ)|ΨB(�̃κ)〉 and
〈ΦB(�̃κ)|ΨA(�̃κ)〉 ∼ 0). Hence, it is expected that the SA-OO-VQE states |ΨA(�κ)〉 and |ΨB(�κ)〉 will always be
associated to |ΦA(�κ)〉 and |ΦB(�κ)〉, respectively, which are the initial states of the SA-VQE algorithm. As the
ground and first-excited state of the frozen-core Hamiltonian in the SA-OO basis exhibit a conical
intersection (in contrast to the canonical MO basis), |ΨA(�κ)〉 and |ΨB(�κ)〉 correspond to the ground and
first-excited states for α > 118.5◦ and conversely for α < 118.5◦, respectively. This change of ordering in
the energies of |ΨA(�κ)〉 and |ΨB(�κ)〉 in figure 5(b) is reflected by the crossing in the energy curves in
figure 4(b) and is made possible by using an equi-ensemble.

These observations are not without significance, and suggest that SA-OO-VQE can lead to a diabatic
representation of the states, in contrast to SA-CASSCF or fully-weighted SS-VQE. In multistate quantum
dynamics simulations, considering diabatic states is crucial to enforce smoothness of physical properties and
to reduce the magnitude of non-adiabatic couplings, which explode around conical intersections or avoided
crossings, signalling a break down of the Born–Oppenheimer approximation [81, 119]. However, switching
to a diabatic representation is not straightforward [120]. Hence, representing diabatic states like in
figure 5(b) with SA-OO-VQE will allow the calculation of, for instance, smooth ground- and excited-state
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Figure 6. Lower panel: comparison of the energy difference obtained with SA-CASSCF, SA-OO-VQE and a reference CI
calculation with a very large active space CASCI (16, 16). Upper panel: energy error comparing SA-OO-VQE excitation energies
to reference SA-CASSCF.

energy gradient to perform quantum dynamics around challenging PES featuring conical intersections or
avoided crossings.

This diabatic representation in SA-OO-VQE needs to be assessed for more challenging systems, where
more states could be required together with more complicated initial states. A rigorous way of capturing the
expected individual states in an equi-ensemble formalism is provided by adding the state-averaged variance
to the cost function in equation (12). We implemented and tested this augmented cost-function on the
formaldimine, but did not see any noticeable improvement compared to using the state-averaged energy
alone, as in our case the latter was sufficient to capture the correct eigenstates. As an alternative approach
(not employed in this work), one can also use the fully-weighted SS-VQE method (starting with wA > wB)
together with the equi-ensemble SA-OO. As already mentioned in this work and in reference [49], taking
wA > wB imposes an ordering of the states based on their energy (i.e. EA < EB), which might not be ideal
and may complicate the optimization process. When combining this method with the equi-ensemble
SA-OO, the ordering constraint during the SA-OO cycle is relaxed and the energy ordering is allowed to
swap freely (just as in figure 4(b)). If this swapping leads to EA > EB, one can simply change the ordering of
the weights for the next fully-weighted SS-VQE cycle (i.e. with wA < wB), potentially leading to a much
easier optimization.

5.4. State fidelity
As a final study, we estimate the similarity of the converged correlated states generated with SA-OO-VQE
(|ΨA〉 or |ΨB〉) compared to SA-CASSCF reference wavefunctions (|Ψ0〉 and |Ψ1〉) by measuring the fidelity

F(Ψref|Ψ) = |〈Ψref|Ψ〉|2. (20)

The estimation of the state fidelity involves the evaluation of the overlap between two wavefunctions
expressed in two different optimized MO basis (the one from SA-OO-VQE and the other one from
SA-CASSCF). In practice, this calculation is non-trivial and requires manipulating projections of the MOs
from the two different basis [121–123] (generally non-orthogonal to each other, as shown in appendix G).

The state-fidelity over the one dimensional PES of formaldimine is shown in figure 7. The correlated
states obtained with the SA-OO-VQE method exhibit a very high fidelity with an average of ∼ 99.85% and
a lower bound of ∼ 99.75%, thus demonstrating an excellent correspondence to SA-CASSCF
wavefunctions. Interestingly, |ΨB〉 shows a slightly lower fidelity compared to |ΨA〉. This could be attributed
to the difference in the overlap between the initial states and the final one (|〈ΦA(�̃κ)|ΨA(�̃κ)〉|2 > 0.93 and
|〈ΦB(�̃κ)|ΨB(�̃κ)〉|2 > 0.88), suggesting that the exact eigenstate |ΨB〉 is more difficult to prepare. This high
fidelity together with the accurate energy representation and the diabatic representation of the states clearly
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Figure 7. Estimation of the state-fidelity F between SA-OO-VQE and SA-CASSCF wavefunctions. Depending on the
convergence of the SA-OO-VQE states, different lines and symbols are used. Colours are used for a same SA-CASSCF reference
state: black for the ground-state and red for the first excited state. Symbols are used for a same converged SA-OO-VQE state:
crosses for |ΨA〉 and triangles for |ΨB〉.

encourages the use of SA-OO-VQE wavefunctions as a good starting point for realizing more complicated
studies such as, for example, excited state dynamics.

6. Conclusions

In this work, we implemented a variational hybrid quantum/classical algorithm able to capture non-trivial
spectral features such as conical intersections. We showed the importance of treating several states on an
equal footing, as this is a necessary condition to correctly describe closely degenerate states such as in
avoided crossings or conical intersections, which are prominent in photochemistry. Our method remains
appropriate in the NISQ era, where quantum resources are limited, as it does not increase the circuit depth
of each call of VQE. Instead, it only requires a careful choice of orbital-optimization, i.e. the state-averaged
orbital-optimization, together with a quantum solver able to treat all states on an equal footing, such as
SA-VQE [40]. We called this method the SA-OO-VQE. As this orbital-optimization is performed classically,
the only additional cost on a quantum computer is given by the number of updates of the frozen core
Hamiltonian to be solved by SA-VQE, which happens to be smaller than 8 in our simulation (for a
convergence criteria of 10−4 hartree on the state-averaged energy). As a proof of concept, the performance
of SA-OO-VQE was simulated classically and successfully applied to the description of the conical
intersection in the formaldimine molecule, a minimal model for a photoisomerization process similar to
that occurring in the rhodopsine chromophore. The latter is known to participate in the process of vision,
through a photoisomerization reaction mediated by the presence of a conical intersection. Therefore, we
expect our algorithm to provide accurate PES for both the ground and excited states, especially for
challenging cases in photochemistry applications such as presented in this work. It should be noted that the
orbital-optimization procedure (requiring repeated two-electron integral transformations to obtain an
updated Hamiltonian) can be costly when applied to large active space and basis sets. As quantum
computers promise to increase in size and in accuracy, this could be a potential bottleneck of the algorithm.
However, state-averaged orbital-optimization can also be performed differently, as demonstrated for
instance in reference [124] on large active spaces. The procedure described in reference [124] alleviates the
need of updating the frozen core Hamiltonian at each step, such that a single SA-VQE step would be
performed on a quantum computer.

This work highlights important perspectives for near-term quantum computers. Combined with our
approach, extending the calculation of atomic forces [46, 125–128] to excited states will pave the way
towards excited-state quantum dynamics beyond what is currently tractable on a classical device. Having a
control on the excited state dynamics can have important implications in energy conversion and catalysis
[129]. This is a clear direction for future research, as it can be used to unravel photochemical processes that
are hard to describe with classical methods for which the size of the active spaces becomes prohibitive. This
encompasses industrially relevant applications such as the development as OLED devices with improved
phosphorescent emitters [130] as well as fundamental questions on how nature has evolved protection
mechanisms to prevent damages caused by absorption of too many [131] or too energetic [132] photons.
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Appendix A. Protection of conical intersections

Adding a real-valued perturbation V = V(R) to a system with a conical intersection will not break the
degeneracy, but will instead shift it to a new point R (as long as equation (7) remains valid). We may write
V(R) in a general form

V(R) = V0(R)I + VX(R)X + VZ(R)Z, (A1)

and then the conical intersection will re-appear around any points R where the following two conditions are
satisfied

VX(R) + hX(R − R0) · RX = 0 (A2)

VZ(R) + hZ(R − R0) · RZ = 0. (A3)

A solution to these equations exists as long as RX and RZ are linearly independent and VX and VZ are
continuous. To lowest order in R, we may write

VX(R) ∼ VX(R0) +∇RVX(R0) · (R − R0) (A4)

VZ(R) ∼ VZ(R0) +∇RVZ(R0) · (R − R0), (A5)

which may be substituted into equations (A2) and (A3) to obtain

(R − R0) · (hXRX +∇RVX(R0)) = −VX(R0) (A6)

(R − R0) · (hZRZ +∇RVZ(R0)) = −VZ(R0). (A7)

Then, if we define

h′
XR′

X = hXRX +∇RVX(R0) (A8)

h′
ZR′

Z = hZRZ +∇RVZ(R0), (A9)

we recover the form of equation (7) with hX → h′
X, hZ → h′

Z, RX → R′
X, RZ → R′

Z, and

R0 → R0 −
VX(R0)

h′
X|R′

X|
R′

X −
(

VZ(R0)

h′
Z |R′

Z |
+

VX(R0)

h′
X|R′

X|
R′

X · R′
Z

)

× |R′
Z|2|R′

X|2
|R′

Z|2|R′
X|2 − |RZ · RX|2

(
R′

Z − R′
Z · R′

X

|R′
X|2

R′
X

)
. (A10)

Although conical intersections cannot be lifted by a perturbation, they may be lifted by projection.
Consider a three-level system spanned by eigenstates |Ψ0(R)〉, |Ψ1(R)〉, and |Ψ2(R)〉, with eigenenergies
E0(R), E1(R), and E2(R). Suppose now that there exists a conical intersection between E0(R) and E1(R) at
R = R0, but E2(R) > E1(R) � E0(R) everywhere. The following linear combination of eigenstates

|Φ(R)〉 = a1|Ψ1(R)〉+ a2|Ψ2(R)〉 (A11)

will have energy
EΦ(R) = |a1|2E1(R) + |a2|2E2(R). (A12)

If we project our three-level system into the subspace spanned only by |Φ(R)〉 and |Ψ0〉, the resulting
Hamiltonian has eigenenergies E0(R) and EΦ(R), which are by our assumption never equal for any R. As the
active space Hamiltonian ĤFC is generated by projecting the full Hamiltonian Ĥ onto the active space, this
gives a mechanism for such a process breaking the conical intersection. Unless carefully treated (e.g. by the
methods in this text), this represents a qualitative failure of the frozen core approximation.
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Appendix B. Frozen core Hamiltonian

We describe how to build the frozen core Hamiltonian in practice. We start from the original shape of the
second quantized electronic Hamiltonian

Ĥ =

No∑
pq

hpqÊpq +
1

2

No∑
pqrs

gpqrsêpqrs. (B1)

Applying the frozen core approximation to this Hamiltonian consists in assuming the existence of a set of
frozen orbitals (always occupied), another set of active orbitals (belonging to an active space), and a set of
virtual orbitals (always unoccupied). Based on this partitioning, every slater determinant |Φ〉 used to
describe properties of the system will always take the form

|Φ〉 = |ΦfrozenΦactive〉, (B2)

where the left contribution Φfrozen represents a part of the determinant encoding the frozen orbitals of the
system (always occupied) whereas ΦAS is a part encoding the occupancy of the remaining electrons in the
active orbitals of the system. In this context, if one considers that every correlated electronic wavefunction is
always expanding in terms of slater determinants following equation (B2), one can demonstrate by
projections onto equation (B1) that the system Hamiltonian takes an effective form

〈Φ|Ĥ|Φ〉 ≡ 〈Φactive|ĤFC|Φactive〉, (B3)

with ĤFC the so-called ‘frozen core Hamiltonian’ defined as follows,

ĤFC = Ĥactive + EMF
frozen + V̂. (B4)

Here, ĤAS is the Hamiltonian encoding the one- and two-body terms only acting in the active space,

Ĥactive =
active∑

tu

htuÊtu +
active∑
tuvw

gtuvw êtuvw , (B5)

where t, u, v,w denote active space orbitals. The second term EMF
frozen is a scalar representing the

mean-field-like energy obtained from the frozen orbitals,

EMF
frozen = 2

frozen∑
i

hii +

frozen∑
ij

(2giijj − gijji), (B6)

and the third term

V̂ =

active∑
tu

VtuÊtu, with Vtu =

frozen∑
i

(2gtuii − gtiiu) (B7)

represents an effective one body potential which encodes the interaction of the frozen electrons with the
active space electrons. To summarize, the main effect of the frozen core approximation [equation (B4)] is
first to introduce an energetic shift [equation (B6)], and second to augment the one body term of the
Hamiltonian operator [equation (B5)] (that only lives in the active space) with an additional effective one
body operator [equation (B7)].

Appendix C. Orbital optimization with Newton–Raphson

We give here some additional details about the SA-OO algorithm in section 3.2.2, based on the classical
Netwon–Raphson approach. For simplicity, let us first focus on the case of a single correlated state noted
|Ψ〉 for which we want to optimize the orbitals. The parametrized energy of the state thus reads

EΨ(�κ) = 〈Ψ| eκ̂Ĥ e−κ̂|Ψ〉. (C1)

Using a second-order Baker–Campbell–Hausdorff development of e−κ̂Ĥ eκ̂, equation (C1) becomes

EΨ(�κ) � 〈Ψ|Ĥ|Ψ〉+ 〈Ψ|[κ̂, Ĥ]|Ψ〉+ 1

2
〈Ψ|

[
κ̂, [κ̂, Ĥ]

]
|Ψ〉. (C2)
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In parallel, we also develop EΨ(�κ) using a second-order Taylor expansion with respect to the �κ parameters.
In matrix form, this expansion reads

EΨ(�κ) � EΨ(0) + G†κ+
1

2
κ†Hκ, (C3)

where G and H are the column MO-gradient vector and the MO-hessian matrix of the energy, and κ is a
vector encoding the parameters �κ. From equations (C2) and (C3), we obtain the MO-gradient and
MO-Hessian elements

Gpq = 〈Ψ|[Ê−
pq, Ĥ]|Ψ〉

Hpq,rs =
1

2
(1 + S(rs)

(pq))〈Ψ|
[

Ê−
pq, [Ê−

rs , Ĥ]
]
|Ψ〉,

(C4)

where Ê−
pq = Êpq − Êqp and S(rs)

(pq) is an operator that permutes the two couples of indices (pq) and (rs). In
practice, G and H can be expressed analytically in terms of the one- and two-electron reduced density
matrices, and one- and two-electron integrals (see references [71, 72, 113]). Once G and H are built, a
Newton–Raphson step is computed as follows:

Δκ = −H−1G, (C5)

and used to update the value of the rotation parameters

κ← κ+Δκ. (C6)

The new parameters are used to transform the MO coefficient matrix C [equation (D4)] and by extension
the system Hamiltonian in equation (D7) (via a redefinition of the one- and two-electron integrals of the
system, see equations (D5) and (D6)]. In practice, the initial conditions considered in the optimisation
process are usually located far away from the minimum targeted. Hence, the convergence of the algorithm is
not necessarily guaranteed, mainly because the Hessian matrix used to drive the step in equation (C5) can
be either non-positive or singular. To solve the issue, a more complicated definition of the
Newton–Raphson step can be employed, using for example the so-called ‘augmented Hessian’ approach:

H ← H + ν1, (C7)

with ν a positive number used to ensure the positive-definiteness of the matrix, and 1 the identity matrix.
Naturally, the value of ν has to be wisely chosen and many different techniques can be employed to this end
(see for instance references [72, 112]). Using this definition to compute the step in equation (C5) ensures
convergence of the Newton–Raphson algorithm to a local minimum.

The above description was for a single state. Let us discuss how to optimize MO for a group of NS

correlated states {Ψk}k=1,...,NS . In this case, a same number of individual Hessians HΨk
and gradients GΨk

have to be computed. One then builds a state-averaged version of these matrices as follows:

HSA =

NS∑
k

wkHΨk
, and GSA =

NS∑
k

wkGΨk
, (C8)

where HSA and GSA are respectively the state-averaged Hessian and gradient of the ensemble {Ψk}k=1,...,NS .
The weights wk (with

∑NS
k wk = 1) encode the contribution of each state into the orbital-optimization

process. Using these state-averaged matrices, a Newton–Raphson step like in equation (C5) is built
and the system’s MOs can be optimized in a democratic way with respect to all states considered in the
ensemble.

To close this discussion, we mention two potential numerical bottlenecks that can arise when using
orbital optimization. The first one is the repetitive transformations used to build two-electron integrals in
new optimised MO basis. Such a transformation is known to scale as N5 (see reference [133]), when not
employing approximations such as density fitting (see reference [134]). The second bottleneck is related to
the explicit construction of the orbital Hessian during each Newton–Raphson step. This is a very active
research problem in quantum chemistry for which many new approaches and methods are being developed
currently (see for example references [89, 135, 136]).

Appendix D. Hamiltonian transformation

We describe how the full second-quantized Hamiltonian transformation is realized in practice during the
orbital-optimization process. Let us start with the C matrix encoding the MO coefficients of the system,
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φp(r) =
∑
μ

Clpχμ(r), (D1)

where φp(r) is a generic MO expressed as a linear combination of atomic orbitals χν(r). Considering the
initial MO basis {φp}, we build a unitary operator

UOO = e−K with K = skew(κ), (D2)

where K is a skew-symmetric matrix shaped by the column vector κ containing the rotational parameters.
This operator is used to change the original MO basis into a new one {φ′

q} with

φ′
q(r) =

∑
p

φp(r)(UOO)pq. (D3)

To realize this transformation and obtain a C matrix encoding the new MO basis, one applies UOO on the
right of C and then update the latter such that

C ← CUOO. (D4)

The new MO coefficients matrix C is then used to transform the one- and two-electron integrals in the new
MO basis. To do so, one starts from the one- and two-electron integrals expressed in the atomic orbital
basis, respectively hμν and gμνγδ, and implements the following two- and four-indexes transformations:

hnew
pq =

∑
μ,ν

hμνCμpCνq, (D5)

and
gnew

pqrs =
∑
μ,ν,γ,δ

gμνγδCμpCνqCγrCδs. (D6)

The Hamiltonian of the system expressed in the new MO basis then reads

Ĥ =

NMO∑
pq

hnew
pq Ênew

pq +
1

2

NMO∑
pqrs

gnew
pqrs ênew

pqrs. (D7)

Appendix E. Numerical implementation of the generalized spin-free
double-excitation ansatz

We detail here our practical implementation of the generalized spin-free double excitation ansatz. Starting
from the original definition of the excitation operator

T̂(�θ) =
active∑

t,v,w,u

θtuvw

∑
σ,τ=↑,↓

â†tσ â†vτ âwτ âuσ , (E1)

the scaling of the total number of independent variational parameters θ to optimize with SA-VQE is N4

(with N the number of active space MOs). In practice, this scaling could represent a bottleneck for the
energy optimization realized with the SA-VQE sub-algorithm (especially when multiple calls of SA-VQE are
required to reach global convergence of the SA-OO-VQE method). To reduce the number of parameters
and favour a faster convergence, we simplify equation (E1) by imposing two conditions. First, we considered
the indices restriction t � v � w � u over the active space MOs (in addition to discarding terms where
t = v = w = u). In practice, this reduces the total number of parameters from 81 to 12 for the three MO
active-space considered in our simulations. Second, we invoke the symmetry property θtuvw = θvwtu to
recover part of the variational parameters that were discarded with the previous restriction on the indices.
This is inspired by the properties êpqrs = êrspq of the spin-free two-body term of the Hamiltonian
[equation (3)] (see reference [72]). Within the above conditions, the excitation operator simplifies as

T̂(�θ) =
active∑

t�v�w�u
not(t=v=w=u)

θtuvw(1 + S(vw)
(tu) )

∑
σ,τ=↑,↓

â†tσ â†vτ âwτ âuσ , (E2)

where S(vw)
(tu) is an operator that permutes the couples of indices (tu) and (vw). Based on this simplified

version of the excitation operator, we built up a quantum circuit implementing the unitary
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Algorithm 1. Ansatz encoding.

1: N = 3 �Number of active MOs
2: foru = 1 : Ndo
3: fort = 1 : Ndo
4: forw = 1 : Ndo
5: forv = 1 : Ndo
6: ifnot(t = u = v = w)then
7: if (t � v � w � u) then
8: Setσ =↑, τ =↑
9: Encodeeθtuvw (̂a†tσ â†vτ âwτ âuσ−h.c.)

10: Setσ =↓, τ =↑
11: Encodeeθtuvw (̂a

†
tσ â

†
vτ âwτ âuσ−h.c.)

12: Setσ =↑, τ =↓
13: Encodeeθtuvw (̂a†tσ â†vτ âwτ âuσ−h.c.)

14: Setσ =↓, τ =↓
15: Encodeeθtuvw (̂a†tσ â†vτ âwτ âuσ−h.c.)

16: Swap the indices:t ↔ v,u ↔ w
17: Encode the same exponentials
18: (with the same parameter θtuvw)

Û(�θ) = eT̂(�θ)−T̂(�θ)† . To proceed, we chose to apply a single Trotter step to split up the original unitary into
products of exponentials as follows:

Û(�θ) = eT̂(�θ)−T̂(�θ)†

≈
∏

t�v�w�u
not(t=v=w=u)

∏
σ,τ=↑,↓

eθtuvw (̂a†tσ â†vτ âwτ âuσ−h.c.)

∏
σ,τ=↑,↓

eθtuvw (̂a†vσ â†tτ âuτ âwσ−h.c.),

(E3)

where ‘h.c.’ stands for ‘hermitian conjugate’. Then, we encode each of the operators into a quantum circuit
with an order described by the following pseudo-code:(algorithm 1)

In practice, every time we have to encode a fermionic exponential in the quantum circuit, we apply the
Jordan–Wigner transformation to the associated difference of chain of fermionic operators. We then obtain
a series of exponentiated Pauli-strings we translate into circuit form using pretty common implementation
techniques (namely, chains of CNOT gates and single gate rotations, as described in reference [137]).
Within this scheme, the total number of quantum gates in our six-qubits quantum circuit is estimated at
3904 gates (2080 single-qubit gates and 1824 two-qubit gates).

Appendix F. Variational quantum algorithms for excited states

While variational quantum algorithms were originally designed to extract the ground state of a given
Hamiltonian, several extensions to excited states have been recently developed. We provide here a brief
discussion on these methods and their capability to describe several states on an equal footing.

In section 2, we insisted on the importance of a democratic description of the states involved in the
conical intersection. This democratisation can be achieved by performing a single minimization for all
states sharing the same ansatz, as in multistate-contracted VQE (MC-VQE) [45, 46], fully-weighted
subspace-search VQE (SS-VQE) [40] and variance-VQE [49]. The other versions described in the SS-VQE
paper require additional minimizations or maximizations to extract the excited states one by one, thus
potentially breaking the democratic treatment of the states as the optimization landscape might be more
complex from one state to another.

Other methods to extract excited states can be grouped in three types.
First, methods which consists in expanding about the reference ground state to form a linear (or

beyond) subspace. The optimal solutions within this subspace are approximations to the excited states and
are obtained by solving a generalized eigenvalue equation on a classical computer. These methods include
quantum subspace expansion [3, 38] and the quantum equation-of-motion coupled-cluster [39]. Although
the excited states are treated on the same footing, the ground state is favoured by construction. Hence, an
accurate description of a conical intersection between the ground and first excited state is unlikely, as in
linear response TDDFT [70]. Similar conclusions also hold for the quantum Lanczos algorithm described in
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reference [48]. Note that other methods imply to solve generalized eigenvalue equations on a classical
computer but without favouring any state and are therefore democratic, for instance in the quantum filter
diagonalization method [138, 139].

Second, variational algorithms based on penalization of the Hamiltonian. In order to get the kth excited
state, these methods penalize the Hamiltonian by the (orthogonal) ground and (k − 1)th excited states
[41–44]. This procedure is sequential, which may lead to error accumulation [42]. As each state is
determined by a separate minimization, these methods are by construction ‘state-specific’. Hence, although
in principle exact, the latter are not expected to coherently treat a conical intersection, except maybe for
relatively simple cases.

Third, methods based on phase estimation (like for instance the witness-assisted variational eigenspectra
solver [140]) are democratic, as phase estimation is the quantum algorithm equivalent to matrix
diagonalization. However, for NISQ devices these approaches remain ill-adapted due to their very high
computational cost.

Appendix G. Overlap of wavefunctions expressed in different MO basis

We describe how to compute the non-trivial overlap between two many-electron wavefunctions expressed
in two different MO basis. Let us consider two distinct correlated wavefunctions |Ψ〉 and |Ψ̃〉 which form a
linear combination of slater determinants

|Ψ〉 =
∑

I

dI |ΦI〉 and |Ψ̃〉 =
∑

J

d̃J |Φ̃J〉, (G1)

where {|ΦI〉} and {|Φ̃J〉} represent two (sometimes different) sets of slater determinant expressed in two
different MO basis {|φp〉} and {|φ̃q〉}. Our goal here is to compute

〈Ψ|Ψ̃〉 =
∑

I

∑
J

d∗
I d̃J〈ΦI |Φ̃J〉. (G2)

To proceed, the overlap 〈ΦI |Φ̃J〉 between two slater determinants needs to be estimated. This calculation is
non-trivial as the two determinants considered are expressed in different (and usually non-orthogonal) MO
basis which generally leads to 〈ΦI |Φ̃J〉 �= δIJ . Based on the spin-orbital occupancy defining the slater
determinants,

|ΦI〉 = |φ1 . . . φNe | and |Φ̃J〉 = |φ̃1 . . . φ̃Ne |, (G3)

their overlap can be computed as follows (see references [121, 122] for a proof):

〈ΦI |Φ̃J〉 =

∣∣∣∣∣∣∣
〈φ1|φ̃1〉 . . . 〈φ1|φ̃Ne〉

...
. . .

...
〈φNe |φ̃1〉 . . . 〈φNe |φ̃Ne〉

∣∣∣∣∣∣∣ . (G4)

In other words, the overlap of two slater determinants expressed in two different MO basis is given by the
determinant of the matrix containing all mutual spin-orbital overlaps. Here, a generic spin-orbital overlap
〈φp|φ̃q〉 is defined as

〈φp|φ̃q〉 =
∫

φ∗
p(x)φ̃q(x)dx, (G5)

where x ≡ (r,σ) denotes both spatial and spin coordinates of the spin-orbitals. Note that when a same
MO basis is used, many simplifications occur leading to 〈φp|φ̃q〉 = δpq and to the trivial result
〈ΦI |Φ̃J〉 = δIJ .
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