
Topologies and convergence structures on vector lattices of operators
Deng, Y.

Citation
Deng, Y. (2021, February 2). Topologies and convergence structures on vector lattices of
operators. Retrieved from https://hdl.handle.net/1887/3135024
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3135024
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3135024


 
Cover Page 

 
 

 
 
 

 
 
 

The handle https://hdl.handle.net/1887/3135024 holds various files of this Leiden 
University dissertation. 
 
Author: Deng, Y. 
Title: Topologies and convergence structures on vector lattices of operators 
Issue Date: 2021-02-02 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3135024
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 3

Convergence structures and locally
solid topologies on vector lattices of
operators

Abstract

For vector lattices E and F , where F is Dedekind complete and supplied with a locally solid
topology, we introduce the corresponding locally solid absolute strong operator topology on
the order bounded operators Lob(E, F) from E into F . Using this, it follows that Lob(E, F)
admits a Hausdorff uo-Lebesgue topology whenever F does.
For each of order convergence, unbounded order convergence, and—when applicable—con-
vergence in the Hausdorff uo-Lebesgue topology, there are both a uniform and a strong
convergence structure on Lob(E, F). Of the six conceivable inclusions within these three
pairs, only one is generally valid. On the orthomorphisms of a Dedekind complete vector
lattice, however, five are generally valid, and the sixth is valid for order bounded nets.
The latter condition is redundant in the case of sequences of orthomorphisms on a Banach
lattice, as a consequence of a uniform order boundedness principle for orthomorphisms that
we establish.
We also show that, in contrast to general order bounded operators, the orthomorphisms
preserve not only order convergence of nets, but unbounded order convergence and—when
applicable—convergence in the Hausdorff uo-Lebesgue topology as well.
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3.1 Introduction and overview

Let X be a non-empty set. A convergence structure on X is a non-empty collection C of pairs
((xα)α∈A, x), where (xα)α∈A is a net in X and x ∈ X , such that:
(1) when ((xα)α∈A, x) ∈ C , then also ((yβ)β∈B, x) ∈ C for every subnet (yβ)β∈B of
(xα)α∈A;

(2) when a net (xα)α∈A in X is constant with value x , then ((xα)α∈A, x) ∈ C .
One can easily vary on this definition. For example, one can allow only sequences. There
does not appear to be a consensus in the literature about the notion of a convergence struc-
ture; [8] uses filters, for example. Ours is sufficient for our merely descriptive purposes, and
close in spirit to what may be the first occurrence of such a definition in [22] for sequences.
Although we shall not pursue this in the present paper, let us still mention that the inclusion
of the subnet criterion in the definition makes it possible to introduce an associated topology
on X in a natural way. Indeed, define a subset of S of X to be C -closed when x ∈ S for all
pairs ((xα)α∈A, x) ∈ C such that (xα)α∈A ⊆ S. Then the collection of the complements of
the C -closed subsets of X is a topology on X .

The convergent nets in a topological space, together with their limits, are the archetyp-
ical example of a convergence structure. In the context of vector lattices, there are other
ones that are rarely of a topological nature. For example, the order convergence nets with
their order limits form a convergence structure, and likewise there is a convergence struc-
ture for unbounded order convergence. Taken together with the (topological) structure for
convergence in a Hausdorff uo-Lebesgue topology, when this exists, there are three natural
and related convergence structures on a vector lattice to consider.

Suppose that E and F are vector lattices, where F is Dedekind complete. The above
then yields three convergence structures on the vector lattice Lob(E, F) of order bounded
operators from E into F , but there are also three others that are derived from those in F .
For example, one can consider all pairs ((Tα)α∈A, T ), where (Tα)α∈A is a net in Lob(E, F)
and T ∈ Lob(E), such that (Tαx)α∈A is order convergent to T x in F for all x ∈ E. These
pairs also form a convergence structure on Lob(E, F). Likewise, the pointwise unbounded
order convergence in F and—when applicable—the pointwise convergence in a Hausdorff
uo-Lebesgue topology on F yield convergence structures on Lob(E, F). Motivated by the
terminology for operators between Banach spaces, we shall speak of uniform and strong
convergence structures on Lob(E)—with the obvious meanings.

The present paper is primarily concerned with the possible inclusions between the uni-
form and strong convergence structure for each of order convergence, unbounded order
convergence, and—when applicable—convergence in a Hausdorff uo-Lebesgue topology.
We consider these inclusions for Lob(E, F), but also for the orthomorphisms Orth(E) on a
Dedekind complete vector lattice. This special interest in Orth(E) stems from representation
theory. When a group acts as order automorphisms on a Dedekind complete vector lattice E,
then the Boolean lattice of all invariant bands in E can be retrieved from the commutant of
the group action in Orth(E). This commutant, therefore, plays the role of the von Neumann
algebra which is the commutant of a unitary action of a group on a Hilbert space. It has
been known long since that more than one topology on a von Neumann algebras is needed
to understand it and its role in representation theory on Hilbert spaces, and the same holds
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true for the convergence structures as related to these commutants in an ordered context.
Using these convergence structures, it is, for example, possible to obtain ordered versions
of von Neumann’s bicommutant theorem. We shall report separately on this. Apart from
its intrinsic interest, the material on Orth(E) in the present paper is an ingredient for these
next steps.

This paper is organised as follows.

Section 3.2 contains the basic notations, definitions, conventions, and references to ear-
lier results.

In Section 3.3, we show how, given a vector lattice E, a Dedekind complete vector lattice
F , and a (not necessarily Hausdorff) locally solid linear topology τF on F , a locally solid
linear topology can be introduced onLob(E, F) that deserves to be called the absolute strong
operator topology that is generated by τF . This is a preparation for Section 3.4, where we
show that regular vector sublattices of Lob(E, F) admit a Hausdorff uo-Lebesgue topology
when F admits one.

For each of order convergence, unbounded order convergence, and—when applica-
ble—convergence in a Hausdorff uo-Lebesgue topology, there are two conceivable impli-
cations between uniform and strong convergence of a net of order bounded operators. In
Section 3.5, we show that only one of these six is generally valid. Section 3.9 will make it
clear that the five failures are, perhaps, not as ‘only to be expected’ as one might think at
first sight.

In Section 3.6, we review some material concerning orthomorphism and establish a few
auxiliary result for use in the present paper and in future ones. It is shown here that a De-
dekind complete vector lattice and its orthomorphisms have the same universal completion.

Section 3.7 briefly digresses from the main line of the paper. It is shown that ortho-
morphisms preserve not only the order convergence of nets, but also the unbounded order
convergence and—when applicable—the convergence in a Hausdorff uo-Lebesgue topology.
None of this is true for arbitrary order bounded operators.

In Section 3.8, we return to the main line, and we specialise the results in Sections 3.3
and 3.4 to the orthomorphisms. When restricted to Orth(E), the absolute strong operator
topologies from Section 3.3 are simply strong operator topologies.

Section 3.9 on orthomorphisms is the companion of Section 3.5, but the results are quite
in contrast. For each of order convergence, unbounded order convergence, and—when
applicable—convergence in a Hausdorff uo-Lebesgue topology, both implications between
uniform and strong convergence of a net of orthomorphisms are valid, with an order bound-
edness condition on the net being necessary only for order convergence. For sequences of
orthomorphisms on Banach lattices, this order boundedness condition is redundant as a
consequence of a uniform order boundedness principle for orthomorphisms that is also es-
tablished in this section.

3.2 Preliminaries

In this section, we collect a number of definitions, notations, conventions and earlier results.
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All vector spaces are over the real numbers; all vector lattices are supposed to be Archi-
medean. We write E+ for the positive cone of a vector lattice E. For a non-empty subset S of
E, we let IS and BS denote the ideal of E and the band in E, respectively, that are generated
by S; we write S∨ for { s1 ∨ · · · ∨ sn : s1, . . . , sn ∈ S }.

Let E be a vector lattice, and let x ∈ E. We say that a net (xα)α∈A in E is order convergent
to x ∈ E (denoted by xα

o
−→ x) when there exists a net (yβ)β∈B in E such that yβ ↓ 0 and

with the property that, for every β0 ∈ B, there exists an α0 ∈ A such that |x − xα| ≤ yβ0

whenever α in A is such that α≥ α0. We explicitly include this definition to make clear that
the index sets A and B need not be equal.

Let (xα)α∈A be a net in a vector lattice E, and let x ∈ E. We say that (xα) is unbounded
order convergent to x in E (denoted by xα

uo
−→ x) when |xα − x | ∧ y

o
−→ 0 in E for all y ∈

E+. Order convergence implies unbounded order convergence to the same limit. For order
bounded nets, the two notions coincide.

Let E and F be vector lattices. The order bounded operators from E into F will be
denoted by Lob(E, F). We write Es for Lob(E,R). A linear operator T : E → F between
two vector lattices E and F is order continuous when, for every net (xα)α∈A in E, the fact
that xα

o
−→ 0 in E implies that T xα

o
−→ 0 in F . An order continuous linear operator between

two vector lattices is automatically order bounded; see [7, Lemma 1.54], for example. The
order continuous linear operators from E into F will be denoted by Loc(E, F). We write Esoc
for Loc(E,R).

Let F be a vector sublattice of a vector lattice E. Then F is a regular vector sublattice
of E when the inclusion map from F into E is order continuous. Ideals are regular vector
sublattices. For a net in a regular vector sublattice F of E, its uo-convergence in F and in E
are equivalent; see [28, Theorem 3.2].

When E is a vector space, a linear topology on E is a (not necessarily Hausdorff) topology
that provides E with the structure of a topological vector space. When E is a vector lattice,
a locally solid linear topology on E is a linear topology on E such that there exists a base
of (not necessarily open) neighbourhoods of 0 that are solid subsets of E. For the general
theory of locally solid linear topologies on vector lattices we refer to [6]. When E is a vector
lattice, a locally solid additive topology on E is a topology that provides the additive group E
with the structure of a (not necessarily Hausdorff) topological group, such that there exists
a base of (not necessarily open) neighbourhoods of 0 that are solid subsets of E.

A topology τ on a vector lattice E is an o-Lebesgue topology when it is a (not necessarily
Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A in E, the fact that
xα

o
−→ 0 in E implies that xα

τ
−→ 0. A vector lattice need not admit a Hausdorff o-Lebes-

gue topology. A topology τ on a vector lattice E is a uo-Lebesgue topology when it is a (not
necessarily Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A in E,
the fact that xα

uo
−→ 0 in E implies that xα

τ
−→ 0. Since order convergence implies unbounded

order convergence, a uo-Lebesgue topology is an o-Lebesgue topology. A vector lattice E
need not admit a Hausdorff uo-Lebesgue topology, but when it does, then this topology is
unique (see [11, Propositions 3.2, 3.4, and 6.2] or [44, Theorems 5.5 and 5.9]) and we
denote it by bτE .
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Let E be a vector lattice, let F be an ideal of E, and suppose that τF is a (not necessarily
Hausdorff) locally solid linear topology on F . Take a non-empty subset S of F . Then there
exists a unique (possibly non-Hausdorff) locally solid linear topology uSτF on E such that,

for a net (xα)α∈A in E, xα
uSτF−−→ 0 if and only if |xα| ∧ |s|

τF−→ 0 for all s ∈ S; see [20,
Theorem 3.1] for this, which extends earlier results in this vein in, e.g., [11] and [44].
This topology uSτF is called the unbounded topology on E that is generated by τF via S.
Suppose that E admits a Hausdorff uo-Lebesgue topology bτE . The uniqueness of such a
topology then implies that uEbτE = bτE . In the sequel we shall use this result from [11] and
[44] a few times.

Finally, the characteristic function of a set S will be denoted by χS , and the identity
operator on a vector space will be denoted by I .

3.3 Absolute strong operator topologies on Lob(E, F)

Let E and F be vector lattices, where F is Dedekind complete. In this section, we start
by showing how topologies can be introduced on vector sublattices of Lob(E, F) that can
be regarded as absolute strong operator topologies; see Corollary 3.3.5 and Remark 3.3.7,
below. Once this is known to be possible, it is easy to relate this to o-Lebesgue topologies
and uo-Lebesgue topologies on regular vector sublattices ofLob(E, F). In particular, we shall
see that every regular vector sublattice ofLob(E, F) admits a (necessarily unique) Hausdorff
uo-Lebesgue topology when F admits a Hausdorff o-Lebesgue topology; see Corollary 3.4.5,
below.

When restricted to the orthomorphisms on a Dedekind complete vector lattice, the pic-
ture simplifies; see Section 3.8. In particular, the restrictions of absolute strong operator
topologies are then simply strong operator topologies.

The construction in the proof of the following result is an adaptation of that in the proof
of [20, Theorem 3.1]. The latter construction is carried out under minimal hypotheses
and uses neighbourhood bases at zero as in [44, proof of Theorem 2.3] rather than Riesz
pseudo-norms. Such an approach enables one to also understand various ‘pathologies’ in the
literature from one central result; see [20, Example 3.10]. It is for this reason of maximum
flexibility that we also choose such a neighbourhood approach here.

Theorem 3.3.1. Let E and F be vector lattices, where F is Dedekind complete, and let τF be a
(not necessarily Hausdorff) locally solid additive topology on F. Take a non-empty subset S of
E. There exists a unique (possibly non-Hausdorff) additive topology ASOTSτF on Lob(E, F)

such that, for a net (Tα)α∈A inLob(E, F), Tα
ASOTSτF−−−−−→ 0 if and only if |Tα||s|

τF−→ 0 for all s ∈ S.

Let IS be the ideal of E that is generated by S. For a net (Tα)α∈A inLob(E, F), Tα
ASOTSτF−−−−−→ 0

if and only if |Tα||x |
τF−→ 0 for all x ∈ IS; and also if and only if |Tα|x

τF−→ 0 for all x ∈ IS .
Furthermore:

(1) for every x ∈ IS , the map T 7→ T x is an ASOTSτF –τF continuous map from Lob(E, F)
into F;

(2) the topology ASOTSτF on Lob(E, F) is a locally solid additive topology;
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(3) whenτF is a Hausdorff topology on F, the following are equivalent for an additive subgroup
G of Lob(E, F):
(a) the restriction ASOTSτF |G of ASOTSτF to G is a Hausdorff topology on G ;
(b) IS separates the points of G .

(4) the following are equivalent for a linear subspace V of Lob(E, F):
(a) for all T ∈ V and s ∈ S, |εT ||s|

τF−→ as ε→ 0 in R;
(b) the restriction ASOTSτF |V of ASOTSτF to V is a (possibly non-Hausdorff) linear

topology on V .

Proof. Suppose that τF is a (not necessarily Hausdorff) locally solid additive topology on F .
It is clear from the required translation invariance of ASOTSτF that it is unique, since

the nets that are ASOTSτF -convergent to zero are prescribed.
For its existence, we take a τF -neighbourhood base {Uλ}λ∈Λ of zero in F that consists of

solid subsets of F . For x ∈ IS and λ ∈ Λ, we set

Vλ,x := { T ∈ Lob(E, F) : |T ||x | ∈ Uλ }.

The Vλ,y are solid subsets of Lob(E, F) since the Uλ are solid subsets of F .
Set

N0 := {Vλ,x : λ ∈ Λ, x ∈ IS }.

We shall now verify thatN0 satisfies the necessary and sufficient conditions in [31, Theo-
rem 3 on p. 46] to be a base of neighbourhoods of zero for an additive topology onLob(E, F).

Take Vλ1,x1
, Vλ2,x2

∈ N0. There exists a λ3 ∈ Λ such that Uλ3
⊆ Uλ1

∩ Uλ2
, and it is easy

to verify that then Vλ3,|x1|∨|x2| ⊆ Vλ1,x1
∩ Vλ2,x2

. Hence N0 is a filter base.
It is clear that Vλ,x = −Vλ,x .
Take Vλ,x ∈ N0. There exists a µ ∈ Λ such that Uµ + Uµ ⊆ Uλ, and it is easy to see that

then Vµ,x + Vµ,x ⊆ Vλ,x .
An appeal to [31, Theorem 3 on p. 46] now yields that N0 is a base of neighbourhoods

of zero for an additive topology onLob(E, F) that we shall denote by ASOTSτF . It is a direct

consequence of its definition that, for a net (Tα)α∈A in Lob(E, F), Tα
ASOTSτF−−−−−→ 0 if and only

if |Tα||x |
τF−→ 0 for all x ∈ IS . Using the fact that τF is a locally solid additive topology on F ,

it is routine to verify that the latter condition is equivalent to the condition that |T |x
τF−→ 0

for all x ∈ IS , as well as to the condition that |Tα||s|
τF−→ 0 for all s ∈ S.

We turn to the statements in the parts (1)–(4).

For part (1), suppose that (Tα)α∈A is a net in Lob(E, F) such that Tα
ASOTSτF−−−−−→ 0. Then

|Tα||x |
τF−→ 0 for all x ∈ IS . Since |Tαx | ≤ |Tα||x |, the fact that τF is locally solid implies that

then also Tαx
τF−→ 0 for all x ∈ IS .

Since the topology ASOTSτF is a locally solid additive topology on Lob(E, F) by con-
struction, part (2) is clear.

For part (3), we recall from [31, p. 48, Theorem 4] that an additive topology on a group
is Hausdorff if and only if the intersection of the elements of a neighbourhood base of zero
is trivial. Using this for F in the second step, and invoking [20, Proposition 2.1] in the third,
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we see that
⋂

λ∈Λ,x∈IS

�

Vλ,x ∩G
�

= { T ∈ Lob(E, F) : |T ||x | ∈
⋂

λ∈Λ
Uλ for all x ∈ IS } ∩G

= { T ∈ Lob(E, F) : |T ||x |= 0 for all x ∈ IS } ∩G .

= { T ∈ Lob(E, F) : T x = 0 for all x ∈ IS } ∩G
= { T ∈ G : T x = 0 for all x ∈ IS }.

Another appeal to [31, p. 48, Theorem 4] then completes the proof of part (3).
We prove that part (4a) implies part (4b). It is clear that ASOTSτF |V is an additive

topology on V . From what we have already established, we know that the assumption

implies that also |εT ||x |
τF−→ 0 as ε → 0 in R for all T ∈ V and x ∈ IS . Fix λ ∈ Λ and

x ∈ IS , and take T ∈ V . Since |εT ||x |
τF−→ 0 as ε → 0 in R, there exists a δ > 0 such that

|εT ||x | ∈ Uλ whenever |ε| < δ. That is, εT ∈ Vλ,x ∩ V whenever |ε| < δ. Hence Vλ,x ∩ V
is an absorbing subset of V . Furthermore, since Vλ,x is a solid subset of Lob(E, F), it is
clear that εT ∈ Vλ,x ∩ V whenever T ∈ Vλ,x ∩ V and ε ∈ [−1,1]. We conclude from [5,
Theorem 5.6] that ASOTSτF |V is a linear topology on V .

We prove that part (4b) implies part (4a). Take T ∈ V . Then εT
ASOTSτF |V−−−−−−→ 0 as ε→ 0 in

R. By construction, this implies that (and is, in fact, equivalent to) the fact that |εT ||s|
τF−→ 0

for all s ∈ S.

Remark 3.3.2. It is clear from the convergence criteria for nets that the topologies ASOTS1
τF

and ASOTS2
τF are equal when IS1

= IS2
. One could, therefore, work with ideals from

the very start, but it seems worthwhile to keep track of a smaller set of presumably more
manageable ‘test vectors’. See also the comments preceding Theorem 3.4.3, below.

Remark 3.3.3. Suppose that (Tα)α∈A is a net inLob(E, F) such that Tα
ASOTSτF−−−−−→ 0. It is easy

to see that then |Tα|x
τF−→ 0 uniformly on every order bounded subset of IS , so that then also

Tαx
τF−→ 0 uniformly on every order bounded subset of IS . When τF is a Fatou topology

on F (in particular: when τF is an o-Lebesgue topology on F ; see [6, Lemma 4.2]), then,

conversely, the fact that Tαx
τF−→ 0 uniformly on every order bounded subset of IS implies

that Tα
ASOTSτF−−−−−→ 0. This follows readily from the Riesz-Kantorovich formula for the modulus

of an operator.

Definition 3.3.4. The topology ASOTSτF in Theorem 3.3.1 is called the absolute strong
operator topology that is generated by τF via S. We shall comment on this nomenclature in
Remark 3.3.7, below.

The following result, which can also be obtained using Riesz pseudo-norms, is clear from
Theorem 3.3.1.

Corollary 3.3.5. Let E and F be vector lattices, where F is Dedekind complete, and let τF be
a (not necessarily Hausdorff) locally solid linear topology on F. Take a vector sublattice E of
Lob(E, F) and a non-empty subset S of E.
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There exists a unique additive topology ASOTSτF on E such that, for a net (Tα)α∈A in E ,

Tα
ASOTSτF−−−−−→ 0 if and only if |Tα||s|

τF−→ 0 for all s ∈ S.

Let IS be the ideal of E that is generated by S. For a net (Tα)α∈A in E , Tα
ASOTSτF−−−−−→ 0 if and

only if |Tα||x |
τF−→ 0 for all x ∈ IS; and also if and only if |Tα|x

τF−→ 0 for all x ∈ IS .
Furthermore:

(1) for every x ∈ IS , the map T 7→ T x is an ASOTSτF –τF continuous map from E into F;
(2) the additive topology ASOTSτF on the group E is, in fact, a locally solid linear topology on

the vector lattice E . When τF is a Hausdorff topology on F, then ASOTSτF is a Hausdorff
topology on E if and only if IS separates the points of E .

Remark 3.3.6. Although in the sequel of this paper we shall mainly be interested in the
nets that are convergent in a given topology, let us still remark that is possible to describe an
explicit ASOTSτF -neighbourhood base of zero in E . Take a τF -neighbourhood base {Uλ}λ∈Λ
of zero in F that consists of solid subsets of F . For λ ∈ Λ and x ∈ IS , set

Vλ,x := { T ∈ E : |T ||x | ∈ Uλ }.

Then {Vλ,x : λ ∈ Λ, x ∈ IS } is an ASOTSτF -neighbourhood base of zero in E .

Remark 3.3.7. It is not difficult to see that ASOTSτF is the weakest locally solid linear
topology τE on E such that, for every x ∈ IS , the map T → T x is a τE–τF continuous map
from E into F . It is also the weakest linear topology τ′E on E such that, for every x ∈ IS , the
map T → |T |x is a τ′E–τF continuous map from E into F . The latter characterisation is our
motivation for the name ‘absolute strong operator topology’.

Take F = R and S = E. Then ASOTEτR is what is commonly known as the absolute
weak∗-topology on Es. There is an unfortunate class of ‘weak’ and ‘strong’ here that appears
to be unavoidable.

Remark 3.3.8. For comparison with Remark 3.3.7, and in order to make clear the role of the
local solidness of the topologies in the present section, we mention the following, which is
an easy consequence of [5, Theorem 5.6], for example. Let E and F be vector spaces, where
F is supplied with a (not necessarily) Hausdorff linear topology τF . Take a linear subspace
E of the vector space of all linear maps from E into F , and take a non-empty subset S of E.
Then there exists a unique (not necessarily Hausdorff) linear topology SOTSτF on E such

that, for a net (Tα)α∈A in E , Tα
SOTSτF−−−−→ 0 if and only if Tαs

τF−→ 0 for all s ∈ S. The subsets
of E of the form

⋂n
i=1{ T ∈ E : Tsi ∈ Vλi

}, where the si run over S and the Vλi
run over a

balanced τF -neighbourhood base {Vλ : λ ∈ Λ } of zero in F , are an SOTSτF -neighbourhood
base of zero in E . When τF is Hausdorff, then SOTSτF is Hausdorff if and only if S separates
the points of E . This strong operator topology SOTSτF on E that is generated by τF via S,
is the weakest linear topology τE on E such that, for every s ∈ S, the map T 7→ T x is
τE–τF -continuous.
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3.4 o-Lebesgue topologies and uo-Lebesgue topologies on vec-
tor lattices of operators

In order to arrive at results concerning o-Lebesgue topologies and uo-Lebesgue topologies
on regular vector sublattices of operators, we need a preparatory result for which we are not
aware of a reference. Given its elementary nature, we refrain from any claim to originality.
It will re-appear at several places in the sequel.

Lemma 3.4.1. Let E and F be vector lattices, where F is Dedekind complete, and let E be a
regular vector sublattice of Lob(E, F). Suppose that (Tα)α∈A is net in E such that Tα

o
−→ 0 in

E . Then Tαx
o
−→ 0 for all x ∈ E.

Proof. By the regularity of E , we also have that Tα
o
−→ 0 in Lob(E, F). Hence there exists a

net (Sβ)β∈B inLob(E, F) such that Sβ ↓ 0 inLob(E, F) and with the property that, for every
β0 ∈ B, there exists an α0 ∈A such that |Tα| ≤ Sβ0

for all α ∈A such that α≥ α0. We know
from [7, Theorem 1.18], for example, that Sβ x ↓ 0 for all x ∈ E+. Since |Tαx | ≤ |Tα|x for

x ∈ E+, it then follows easily that Tαx
o
−→ 0 for all x ∈ E+. Hence Tαx

o
−→ 0 for all x ∈ E.

We can now show that the o-Lebesgue property of a locally solid linear topology on
the Dedekind complete codomain is inherited by the associated absolute strong operator
topology on a regular vector sublattice of operators.

Proposition 3.4.2. Let E and F be vector lattices, where F is Dedekind complete. Suppose that
F admits an o-Lebesgue topology τF . Take a regular vector sublattice E ofLob(E, F) and a non-
empty subset S of E. Then ASOTSτF is an o-Lebesgue topology on E . When τF is a Hausdorff
topology on F, then ASOTSτF is a Hausdorff topology on E if and only if IS separates the points
of E .

Proof. In view of Corollary 3.3.5, we merely need to show that, for a net (Tα)α∈A in E ,

the fact that Tα
o
−→ 0 in E implies that Tα

ASOTSτF−−−−−→ 0. Take s ∈ S. Since also |Tα|
o
−→ 0 in E ,

Lemma 3.4.1 implies that |Tα||s|
o
−→ 0 in F . Using that τF is an o-Lebesgue topology on F , we

find that |Tα||s|
τF−→ 0. Since this holds for all s ∈ S, Corollary 3.3.5 shows that Tα

ASOTSτF−−−−−→ 0
in E .

We conclude by showing that every regular vector sublattice ofLob(E, F) admits a (nec-
essarily unique) Hausdorff uo-Lebesgue topology when the Dedekind complete codomain F
admits a Hausdorff o-Lebesgue topology. It is the unbounded topology that is associated to
(in general multiple) absolute strong operator topologies on the vector sublattice. Our most
precise result in this direction is the following. The convergence criterion in part (2) is a
‘minimal one’ that is convenient when one wants to show that a net is convergent, whereas
the criteria in part (3) exploits the known convergence of a net to its maximum.

Theorem 3.4.3. Let E and F be vector lattices, where F is Dedekind complete. Suppose that F
admits an o-Lebesgue topology τF . Take a regular vector sublattice E ofLob(E, F), a non-empty
subset S of E , and a non-empty subset S of E.



50

Then uS ASOTSτF is a uo-Lebesgue topology on E .
We let IS denote the ideal of E that is generated by S, and IS the ideal of E that is generated

by S . For a net (Tα)α∈A in E , the following are equivalent:

(1) Tα
uS ASOTSτF−−−−−−−→ 0;

(2) (|Tα| ∧ |T |)|s|
τF−→ 0 for all T ∈ S and s ∈ S;

(3) (|Tα| ∧ |T |)x
τF−→ 0 for all T ∈ IS and x ∈ IS .

Suppose that τF is actually a Hausdorff o-Lebesgue topology on F. Then the following are
equivalent:
(1) uS ASOTSτF is a (necessarily unique) Hausdorff uo-Lebesgue topology on E ;
(2) IS separates the points of E and IS is order dense in E .

In that case, the Hausdorff uo-Lebesgue topology uS ASOTSτF on E is the restriction of the
(necessarily unique) Hausdorff uo-Lebesgue topology on Lob(E, F), i.e., of uLob(E,F)ASOTEτF ,
and the criteria in (1), (2), and (3) are also equivalent to:

(4) (|Tα| ∧ |T |)x
τF−→ 0 for all T ∈ Lob(E, F) and x ∈ E.

Proof. It is clear from Proposition 3.4.2 and [20, Proposition 4.1] that uS ASOTSτF is a uo-
Lebesgue topology on E . The two convergence criteria for nets follow from the combination
of those in [20, Theorem 3.1] and in Corollary 3.3.5.

According to [20, Proposition 4.1], uS ASOTSτF is a Hausdorff topology on E if and
only if ASOTSτF is a Hausdorff topology on E and IS is order dense in E . An appeal to
Proposition 3.4.2 then completes the proof of the necessary and sufficient conditions for
uS ASOTSτF to be Hausdorff.

Suppose that τF is actually also Hausdorff, that IS separates the points of E , and that IS
is order dense in E . From what we have already established, it is clear that uLob(E,F)ASOTEτF
is a (necessarily unique) Hausdorff uo-Lebesgue topology on Lob(E, F). Since the restric-
tion of a Hausdorff uo-Lebesgue topology on a vector lattice to a regular vector sublat-
tice is a (necessarily unique) Hausdorff uo-Lebesgue topology on the vector sublattice (see
[44, Proposition 5.12]), the criterion in part (4) follows from that in part (3) applied to
uLob(E,F)ASOTEτF .

Remark 3.4.4. Take a τF -neighbourhood base {Uλ}λ∈Λ of zero in F that consists of solid
subsets of F . For λ ∈ Λ, eT ∈ IS , and x ∈ IS , set

Vλ,eT ,x := { T ∈ E : (|T | ∧ |eT |)|x | ∈ Uλ }.

As a consequence of the constructions of unbounded and absolute strong operator topolo-
gies, {Vλ,eT ,x : λ ∈ Λ, T ∈ IS , x ∈ IS } is then a uS ASOTSτF -neighbourhood base of zero in
E .

The following is a less precise consequence of Theorem 3.4.3 that will be sufficient in
many situations.

Corollary 3.4.5. Let E and F be vector lattices, where F is Dedekind complete. Suppose that
F admits a Hausdorff o-Lebesgue topology τF .
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Take a regular vector sublattice E of Lob(E, F). Then E admits a (necessarily unique)
Hausdorff uo-Lebesgue topology bτE . This topology equals uEASOTEτF , and is also equal to the
restriction to E of the Hausdorff uo-Lebesgue topology uLob(E,F)ASOTEτF on Lob(E, F).

For a net (Tα)α∈A in E , the following are equivalent:

(1) Tα
bτE−→ 0;

(2) (|Tα| ∧ |T |)x
τF−→ 0 for all T ∈ E and x ∈ E;

(3) (|Tα| ∧ |T |)x
τF−→ 0 for all T ∈ Lob(E, F) and x ∈ E.

Remark 3.4.6. There can, sometimes, be other ways to see that a given regular vector
sublattice ofLob(E, F) admits a Hausdorff uo-Lebesgue topology. For example, suppose that
Fsoc separates the points of F . For x ∈ E and ϕ ∈ Fsoc, the map T 7→ ϕ(T x) defines an order
continuous linear functional onLoc(E, F), and it is then clear that the order continuous dual
of Loc(E, F) separates the points of Loc(E, F). Hence Loc(E, F) can also be supplied with a
Hausdorff uo-Lebesgue topology as in [20, Theorem 5.2] which, in view of its uniqueness,
coincides with the one as supplied by Corollary 3.4.5.

3.5 Comparing uniform and strong convergence structures on
Lob(E, F)

Suppose that E and F are vector lattices, where F is Dedekind complete. As explained in
Section 3.1, there exist a uniform and a strong convergence structure onLob(E, F) for each
of order convergence, unbounded order convergence, and—when applicable—convergence
in the Hausdorff uo-Lebesgue topology. In this section, we investigate what the relation is
between the members of each of these three pairs. We shall show that only one of the six
conceivable implications is valid in general, and that the others are not even generally valid
for uniformly bounded sequences of order continuous operators on Banach lattices. Whilst
the failures of such general implications may, perhaps, not come as too big a surprise, the
positive results for orthomorphisms (see Theorems 3.9.4, 3.9.7, 3.9.9, and 3.9.12, below)
may serve to indicate that they are less evident than one would think at first sight.

For monotone nets in Lob(E, F), however, the following result shows that then even all
four (or six) convergence structures on Lob(E, F) are equal.

Proposition 3.5.1. Let E and F be vector lattices, where F is Dedekind complete, and let
(Tα)α∈A be a monotone net in Lob(E, F). The following are equivalent:
(1) Tα

o
−→ 0 in Lob(E, F);

(2) Tα
uo
−→ 0 in Lob(E, F);

(3) Tαx
o
−→ 0 in F for all x ∈ E;

(4) Tαx
uo
−→ 0 in F for all x ∈ E.

Suppose that, in addition, F admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτF ,
so that Lob(E, F) also admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτLob(E,F)
by Corollary 3.4.5. Then (1)–(4) are also equivalent to:

(5) Tα
bτLob(E,F)
−−−−−→ 0;
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(6) Tαx
bτF−→ 0 for all x ∈ E.

Proof. We may suppose that Tα ↓ 0 and that x ∈ E+. For order bounded nets in a vector
lattice, order convergence and unbounded order convergence are equivalent. Passing to
an order bounded tail of (Tα)α∈A, we thus see that the parts (1) and (2) are equivalent.
Similarly, the parts (3) and (4) are equivalent. The equivalence of the parts (1) and (3) is
well known; see [6, Theorem 1.67], for example.

Suppose that F admits a Hausdorff uo-Lebesgue topology bτF . In that case, it follows from
[20, Lemma 7.2] that the parts (2) and (5) are equivalent, as are the parts (4) and (6).

When (Tα)α∈A is a not necessarily monotone net in Lob(E, F) such that Tα
o
−→ 0, then

Lemma 3.4.1 shows that Tαx
o
−→ 0 in F for all x ∈ E. We shall now give five examples

to show that each of the remaining five conceivable implications between a corresponding
uniform and strong convergence structures on Lob(E, F) is not generally valid. In each of
these examples, we can even take E = F to be a Banach lattice, and for the net (Tα)α∈A we
can even take a uniformly bounded sequence (Tn)∞n=1 of order continuous operators on E.

Example 3.5.2. We give an example of a uniformly bounded sequence (Tn)∞n=1 of positive
order continuous operators on a Dedekind complete Banach lattice E with a strong order unit,
such that Tn x

o
−→ 0 in E for all x ∈ E but Tn

o
−/−→ 0 in Lob(E) because the sequence is not even

order bounded in Lob(E).
We choose `∞(N) for E = F . For n ≥ 1, we set Tn := Sn, where S is the right shift

operator on E. The Tn are evidently positive and of norm one. A moment’s thought shows
that they are order continuous. Furthermore, it is easy to see that Tn x

o
−→ 0 in E for all

x ∈ E. We shall now show that { Tn : n ≥ 1 } is not order bounded in Lob(E). For this, we
start by establishing that the Tn are mutually disjoint. Let (ei)∞i=1 be the standard sequence
of unit vectors in E. Take m 6= n and i ≥ 1. Since ei is an atom, the Riesz-Kantorovich
formula for the infimum of two operators shows that

0≤ (Tm ∧ Tn)ei = inf{ tem+i + (1− t)en+i : 0≤ t ≤ 1 } ≤ inf{em+i , en+i}= 0.

Hence (Tm ∧ Tn) vanishes on the span of the ei . Since this span is order dense in E, and
since Tn ∧ Tm ∈ Loc(E), it follows that Tn ∧ Tm = 0.

We can now show that (Tn)∞n=1 is not order bounded in Lob(E). Indeed, suppose that
T ∈ Lob(E) is a upper bound for all Tn. Set e :=

∨∞
i=1 ei . Then, for all N ≥ 1,

Te ≥
� N
∨

n=1

Tn

�

e =

� N
∑

n=1

Tn

�

e ≥ NeN+1.

This shows that Te cannot be an element of `∞. We conclude from this contradiction that
(Tn)∞n=1 is not order bounded in Lob(E).

Example 3.5.3. We give an example of a uniformly bounded sequence (Tn)∞n=1 of positive
order continuous operators on a Dedekind complete Banach lattice E with a strong order unit,
such that Tn

uo
−→ 0 in Lob(E) but Tn x

uo
−/−→ 0 for some x ∈ E.
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We choose `∞(Z) for E = F . For n ≥ 1, we set Tn := Sn, where S is the right shift
operator on E. Just as in Example 3.5.2, the Tn are positive order continuous operators
on E of norm one that are mutually disjoint. Since disjoint sequences in vector lattices are
unbounded order convergent to zero (see [28, Corollary 3.6]), we have Tn

uo
−→ 0 in Lob(E).

On the other hand, if we let e be the two-sided sequence that is constant 1, then Tne = e for
all n≥ 1. Hence (Tne)∞n=1 is not unbounded order convergent to zero in E.

For our next example, we require a preparatory lemma.

Lemma 3.5.4. Let µ be the Lebesgue measure on the Borel σ-algebraB of [0,1], and let 1≤
p ≤∞. Take a Borel subset S of [0,1], and define the positive operator TS : Lp([0,1],B ,µ)→
Lp([0,1],B ,µ) by setting

TS( f ) :=

∫

S
f dµ ·χS

for f ∈ Lp([0,1],B ,µ). Then TS ∧ I = 0.

Proof. Take an n ≥ 1, and choose disjoint a partition [0, 1] =
⋃n

i=1 Ai of [0, 1] into Borel
sets Ai of measure 1/n. Let e denote the constant function 1. Then

(TS ∧ I)e =
n
∑

i=1

(TS ∧ I)χAi

≤
n
∑

i=1

(TSχAi
)∧χAi

≤
n
∑

i=1

(µ(Ai)χS)∧χAi

≤
n
∑

i=1

µ(Ai)χAi

=
1
n

e.

Since n is arbitrary, we see that (TS ∧ I)e = 0. Because 0 ≤ TS ∧ I ≤ I , TS ∧ I is order
continuous. From the fact that the positive order continuous operator TS ∧ I vanishes on
the weak order unit e of Lp([0, 1],B ,µ), we conclude that TS ∧ I = 0.

Example 3.5.5. We give an example of a uniformly bounded sequence (Tn)∞n=1 of order con-
tinuous operators on a separable reflexive Banach lattice E with a weak order unit, such that

Tn x
uo
−→ 0 in E for all x ∈ E but Tn

uo
−/−→ 0 in Lob(E) because even Tn

bτLob(E)−−/−−→ 0 in Lob(E).
Let µ be the Lebesgue measure on the Borel σ-algebraB of [0,1], and let 1 ≤ p ≤∞.

For E we choose Lp([0, 1],B ,µ), so that E is reflexive for 1 < p <∞. For n ≥ 1, we let
Bn be the sub-σ-algebra of B that is generated by the intervals Sn,i := [(i − 1)/2n, i/2n]
for i = 1, . . . , 2n, and we let En : E → E be the corresponding conditional expectation.
By [9, Theorem 10.1.5], En is a positive norm one projection. A moment’s thought shows
that every open subset of [0,1] is the union of the countably infinitely many Sn,i that are
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contained in it, so that it follows from [9, Theorem 10.2.3] that En f → f almost everywhere
as n→∞. By [28, Proposition 3.1], we can now conclude that En f

uo
−→ f for all f ∈ E.

On the other hand, it is not true that En

bτLob(E)−−−−→ I . To see this, we note that, by [9,
Example 10.1.2], every En is a linear combination of operators as in Lemma 3.5.4. Hence
En ⊥ I for all n. Since bτLob(E) is a locally solid linear topology, a possible bτLob(E)-limit of the
En is also disjoint from I , hence cannot be I itself.

On setting Tn := En − I for n≥ 1, we have obtained a sequence of operators as desired.

Example 3.5.6. We give an example of a uniformly bounded sequence (Tn)∞n=1 of positive
order continuous operators on a Dedekind complete Banach lattice E with a strong order unit

that admits a Hausdorff uo-Lebesgue topology, such that Tn

bτLob(E)−−−−→ 0 in Lob(E) but Tn x
bτE−/−→ 0

in E for some x ∈ E.
We choose E, the Tn ∈ Lob(E), and e ∈ E as in Example 3.5.3. There are several ways

to see that E admits a Hausdorff uo-Lebesgue topology. This follows most easily from the
fact that E is atomic (see [44, Lemma 7.4]) and also from [20, Theorem 6.3] in the context
of measure spaces. By Corollary 3.4.5, Lob(E) then also admits such a topology. Since we

already know from Example 3.5.3 that Tn
uo
−→ 0, we also have that Tn

bτLob(E)−−−−→ 0. On the other
hand, the fact that Tne = e for n≥ 1 evidently shows that (Tne)∞n=1 is not bτE-convergent to
zero in E.

Example 3.5.7. We note that Example 3.5.5 also gives an example of a uniformly bounded
sequence (Tn)∞n=1 of order continuous operators on a separable reflexive Banach lattice E with

a weak order unit that admits a Hausdorff uo-Lebesgue topology, such that Tn x
bτE−→ 0 in E for

all x ∈ E but Tn

bτLob(E)−−/−−→ 0 in Lob(E).

3.6 Orthomorphisms

In this section, we review some material concerning orthomorphism and establish a few
auxiliary result for use in the present paper and in future ones.

Let E be a vector lattice. We recall from [7, Definition 2.41] that an operator on E is called
an orthomorphism when it is a band preserving order bounded operator. An orthomorphism
is evidently disjointness preserving, it is order continuous (see [7, Theorem 2.44]), and
its kernel is a band (see [7, Theorem 2.48]). We denote by Orth(E) the collection of all
orthomorphism on E. Even when E is not Dedekind complete, the supremum and infimum
of two orthomorphisms S and T in E always exists in Lob(E). In fact, we have

[S ∨ T] (x) = S(x)∨ T (x)

[S ∧ T] (x) = S(x)∧ T (x)
(3.1)

for x ∈ E+ and
|T x |= |T ||x |= |T (|x |)| (3.2)
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for x ∈ E; see [7, Theorems 2.43 and 2.40]. Consequently, Orth(E) is a unital vector lat-
tice algebra for every vector lattice E. Even more is true: according to [7, Theorem 2.59],
Orth(E) is an (obviously Archimedean) f -algebra for every vector lattice E, so it is commu-
tative by [7, Theorem 2.56]. Furthermore, for every vector lattice E, when T ∈ Orth(E)
and T : E → E is injective and surjective, then the linear map T−1 : E → E is again an
orthomorphism. We refer to [37, Theorem 3.1.10] for a proof of this result of Huijsmans’
and de Pagter’s.

It follows easily from equation (3.1) that, for every vector lattice E, the identity operator
is a weak order unit of Orth(E). When E is Dedekind complete, Orth(E) is the band in
Lob(E) that is generated by the identity operator on E; see [7, Theorem 2.45].

Let E be a vector lattice, let T ∈ Lob(E), and let λ ≥ 0. Using [7, Theorem 2.40], it is
not difficult to see that the following are equivalent:
(1) −λI ≤ T ≤ λI ;
(2) |T | exists in Lob(E), and |T | ≤ λI ;
(3) |T x | ≤ λ|x | for all x ∈ E.
The set of all such T is a unital subalgebra Z (E) of Orth(E) consisting of ideal preserving
order bounded operators on E. It is called the ideal centre of E.

Let E be a vector lattice, and define the stabiliser of E, denoted by S (E), as the set of
linear operators on E that are ideal preserving. It is not required that these operators be
order bounded, but this is nevertheless always the case. In fact, S (E) is a unital subalgebra
of Orth(E) for every vector lattice E (see [47, Proposition 2.6]), so that we have the chain

Z (E) ⊆ S (E) ⊆ Orth(E)

of unital algebras for every vector lattice E. For every Banach lattice E, we have

Z (E) = S (E) = Orth(E);

see [47, Corollary 4.2], so that the identity operator on E is then even an order unit of
Orth(E).

For every Banach lattice E, Orth(E) is a unital Banach subalgebra of the bounded linear
operators on E in the operator norm. This follows easily from the facts that bands are closed
and that a band preserving operator on a Banach lattice is automatically order bounded; see
[7, Theorem 4.76].

Let E be a Banach lattice. Since the identity operator is an order unit of Orth(E), we can
introduce the order unit norm ‖ · ‖I with respect to I on Orth(E) by setting

‖T‖I := inf{λ≥ 0 : |T | ≤ λI }

for T ∈ Orth(E). Then ‖T‖= ‖T‖I for all T ∈ Orth(E); see [47, Proposition 4.1]. Since we
already know that Orth(E) is complete in the operator norm, it follows that Orth(E), when
supplied with ‖ · ‖= ‖ · ‖I , is a unital Banach lattice algebra that is also an AM-space. When E
is a Dedekind complete Banach lattice, then evidently ‖T‖= ‖T‖I = ‖|T |‖I = ‖ |T | ‖= ‖T‖r
for T ∈ Orth(E). Hence Orth(E) is then also a unital Banach lattice subalgebra of the Banach
lattice algebra of all order bounded operators on E in the regular norm.
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Let E be Banach lattice. It is clear from the above that (Orth(E),‖ · ‖) = (Orth(E),‖ · ‖I)
is a unital Banach f -algebra in which its identity element is also a (positive) order unit. The
following result is, therefore, applicable withA = Orth(E) and e = I . It shows, in particular,
that Orth(E) is isometrically Banach lattice algebra isomorphic to a C(K)-space. Both its
statement and its proof improve on the ones in [15, Proposition 2.6], [41, Proposition 1.4],
and [30].

Theorem 3.6.1. Let A be a unital f -algebra such that its identity element e is also a (posi-
tive) order unit, and such that it is complete in the submultiplicative order unit norm ‖ · ‖e on

A . Let B be a (not necessarily unital) associative subalgebra of A . Then B‖ · ‖e is a Banach
f -subalgebra ofA . When e ∈B , then there exist a compact Hausdorff space K, uniquely deter-
mined up to homeomorphism, and an isometric surjective Banach lattice algebra isomorphism

ψ :B‖ · ‖e → C(K).

Proof. Since (A ,‖ · ‖I) is an AM-space with order unit e, there exist a compact Hausdorff
space K ′ and an isometric surjective lattice homomorphism ψ′ : A → C(K ′) such that
ψ′(e) = 1; see [37, Theorem 2.1.3] for this result of Kakutani’s, for example. Via this
isomorphism, the f -algebra multiplication on C(K ′) provides the vector lattice A with a
multiplication that makes A into an f -algebra with e as its positive multiplicative identity
element. Such a multiplication is, however, unique; see [7, Theorem 2.58]. Hence ψ′ also
preserves multiplication, and we conclude that ψ′ : A → C(K ′) is an isometric surjective
Banach lattice algebra isomorphism.

We now turn to B . It is clear that B‖ · ‖e is Banach subalgebra of A . After moving to

the C(K ′)-model forA that we have obtained, [23, Lemma 4.48] shows thatB‖ · ‖e is also

a vector sublattice of A . Hence B‖ · ‖e is a Banach f -subalgebra of A . When e ∈ B‖ · ‖e ,
we can then apply the first part of the proof to B , and obtain a compact Hausdorff space

K and an isometric surjective Banach lattice algebra isomorphism ψ :B‖ · ‖e → C(K). The
Banach-Stone theorem (see [12, Theorem VI.2.1], for example) implies that K is uniquely
determined up to homeomorphism.

We now proceed to show that E and Orth(E) have isomorphic universal completions.
We start with a preparatory lemma.

Proposition 3.6.2. Let E be a Dedekind complete vector lattice, and let x ∈ E. Let Ix be the
principal ideal of E that is generated by x, let Bx be the principal band in E that is generated
by x, let Px : E → Bx be the corresponding order projection, and let IPx

be the principal ideal
of Lob(E) that is generated by Px . For T ∈ IPx

, set ψx(T ) := T |x |. Then ψx(T ) ∈ Ix , and:
(1) the map ψx : IPx

→ Ix is a surjective vector lattice isomorphism such that ψx(Px) = |x |;
(2) IPx

= PxZ (E).

Proof. Take T ∈ IPx
. There exists a λ ≥ 0 such that |T | ≤ λPx , and this implies that

|T y| ≤ λPx |y| for all y ∈ E. This shows that T |x | ∈ Ix , so that ψx maps IPx
into Ix ; it

also shows that T (Bd
x) = {0}. Suppose that T |x | = 0. Since the kernel of T is a band in E,

this implies that T vanishes on Bx . We already know that it vanishes on Bd
x . Hence T = 0,

and we conclude that ψx is injective. We show that ψx is surjective. Let y ∈ Ix . Take a
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λ > 0 such that 0 ≤ |y/λ| ≤ |x |. An inspection of the proof of [7, Theorem 2.49] shows
that there exists a T ∈ Z (E) with T |x | = y/λ. Since λT Px ∈ IPx

and (λT Px)|x | = y , we
see that ψx is surjective. Finally, it is clear from equation (3.1) that ψx is a vector lattice
homomorphism. This completes the proof of part (1).

We turn to part (2). It is clear that IPx
⊇ PxZ (E). Take T ∈ IPx

⊆ Z (E). Then also
Px T ∈ IPx

. Since ψx(T ) = ψx(Px T ), the injectivity of ψx on IPx
implies that T = Px T ∈

PxZ (E).

The first part of Proposition 3.6.2 is used in the proof of our next result.

Proposition 3.6.3. Let E be a Dedekind complete vector lattice. Then there exist an order
dense ideal I of E and an order dense ideal I of Orth(E) such that I and I are isomorphic
vector lattices.

Proof. Choose a maximal disjoint system { xα : α ∈ A } in E. For each α ∈ A, let Ixα ,
Bxα , Pxα : E → Bxα , IPxα

, and the vector lattice isomorphism ψxα : IPxα
→ Ixα be as in

Proposition 3.6.2.
Since the xα are mutually disjoint, it is clear that the ideal

∑

α∈A Ixα of E is, in fact, an
internal direct sum

⊕

α∈A Ixα . Since the disjoint system is maximal,
⊕

α∈A Ixα is an order
dense ideal of E.

It follows easily from equation (3.1) that the Pxα are also mutually disjoint. They even
form a maximal disjoint system in Orth(E). To see this, suppose that T ∈ Orth(E) is such
that |T | ∧ Pxα = 0 for all α ∈A. Then (|T |xα)∧ xα = (|T | ∧ Pxα)xα = 0 for all α ∈A. Since
|T | is band preserving, this implies that |T |xα = 0 for all α ∈A. The fact that the kernel of
|T | is a band in E then yields that |T | = 0. Just as for E, we now conclude that the ideal
∑

α∈AIPxα
of Orth(E) is an internal direct sum

⊕

α∈AIPxα
that is order dense in Orth(E).

Since
⊕

α∈Aψxα :
⊕

α∈AIPxα
→
⊕

α∈A Ixα is a vector lattice isomorphism by Proposi-
tion 3.6.2, the proof is complete.

It is generally true that a vector lattice and an order dense vector sublattice of it have iso-
morphic universal completions; see [6, Theorems 7.21 and 7.23]. Proposition 3.6.3 there-
fore implies the following.

Corollary 3.6.4. Let E be a Dedekind complete vector lattice. Then the universal completions
of E and of Orth(E) are isomorphic vector lattices.

The previous result enables us to relate the countable sup property of E to that of
Orth(E). We recall that vector lattice E has the countable sup property when, for every
non-empty subset S of E that has a supremum in E, there exists an at most countable subset
of S that has the same supremum in E as S. In parts of the literature, such as in [36] and
[51], E is then said to be order separable. We also recall that a subset of a vector lattice is
said to be an order basis when the band that it generates is the whole vector lattice.

Proposition 3.6.5. Let E be a Dedekind complete vector lattice. The following are equivalent:
(1) Orth(E) has the countable sup property;
(2) E has the countable sup property and an at most countably infinite order basis.
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Proof. It is proved in [33, Theorem 6.2] that, for an arbitrary vector lattice F , Fu has the
countable sup property if and only if F has the countable sup property as well as an at most
countably infinite order basis. Since Orth(E) has a weak order unit I , we see that Orth(E)u

has the countable sup property if and only if Orth(E) has the countable sup property. On
the other hand, since Orth(E)u and Eu are isomorphic by Corollary 3.6.4, an application of
this same result to E shows that Orth(E)u has the countable sup property if and only if E
has the countable sup property and an at most countably infinite order basis.

We conclude by giving some estimates for orthomorphisms in Proposition 3.6.7 that
will be used in the sequel. As a preparation, we need the following extension of [7, Exer-
cise 1.3.7].

Lemma 3.6.6. Let E be a vector lattice with the principal projection property. Take x , y ∈ E.
For λ ∈ R, let Pλ denote the order projection in E onto the band generated by (x −λy)+. Then
λPλ y ≤ Pλx. When x , y ∈ E+ and λ≥ 0, then x ≤ λy + Pλx.

Proof. The first inequality follows from the fact that

0≤ Pλ(x −λy)+ = Pλ(x −λy) = Pλx −λPλ y.

For the second inequality, we note that x −λy ≤ (x −λy)+ = Pλ(x −λy)+ for all x , y , and
λ. When x , y ∈ E+ and λ≥ 0, then (x −λy)+ ≤ x+ = x , so that

x ≤ λy + Pλ(x −λy)+ ≤ λy + Pλx .

Proposition 3.6.7. Let E be a Dedekind complete vector lattice, and let T∈Orth(E)+. For λ >
0, let Pλ be the order projection in Orth(E) onto the band generated by (T −λI)+ in Orth(E).
There exists a unique order projection Pλ in E such that Pλ(S) = PλS for all S ∈ Orth(E).
Furthermore:
(1) λPλ ≤ PλT ≤ T;
(2) T ≤ λI + PλT;
(3) (PλT x)∧ y ≤ 1

λT y for all x , y ∈ E+.

Proof. Since 0≤ Pλ ≤ IOrth(E), it follows from [6, Theorem 2.62] that there exists a unique
Pλ ∈ Orth(E) with 0 ≤ Pλ ≤ I such that Pλ(S) = PλS for all S ∈ Orth(E). The fact that Pλ
is idempotent implies that Pλ is also idempotent. Hence Pλ is an order projection.

The inequalities in the parts (1) and (2) are then a consequence of those in Lemma 3.6.6.
For part (3), we note that (PλT x) ∧ y is in the image of the projection Pλ. Since order
projections are vector lattice homomorphisms, we have, using part (1) in the final step, that

(PλT x)∧ y = Pλ((PλT x)∧ y) = (P2
λT x)∧ Pλ y ≤ Pλ y ≤

1
λ

T y.
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3.7 Continuity properties of orthomorphisms

Orthomorphisms preserve order convergence of nets. In this short section, we show that
they also preserve unbounded order convergence and, when applicable, convergence in the
(necessarily unique) Hausdorff uo-Lebesgue topology.

Before doing so, let us note that this is in contrast to the case of general order bounded
operators. Surely, there exist order bounded operators that are not order continuous. For
the remaining two convergence structures, we consider `1 with its standard basis (en)∞n=1. It

follows from [28, Corollary 3.6] that en
uo
−→ 0. There are several ways to see that `1 admits

a (necessarily unique) Hausdorff uo-Lebesgue topology bτ`1
. This follows from the fact that

its norm is order continuous (see [44, p. 993]), from the fact that it is atomic (see [44,
Lemma 7.4]), and from a result in the context of measure spaces (see [20, Theorem 6.2]).

The latter two results also show that en

bτ`1−→ 0 which is, of course, also a consequence of the
fact that en

uo
−→ 0. Define T : `1→ `1 by setting T x :=

�∑∞
n=1 xn

�

e1 for x =
∑∞

n=1 xnen ∈ `1.
Since Ten = e1 for all n≥ 1, the order continuous positive operator T on `1 preserves neither
uo-convergence nor bτ`1

-convergence of sequences in `1.

Proposition 3.7.1. Let E be a Dedekind complete vector lattice, and let T ∈ Orth(E). Suppose
that (xα)α∈A is a net in E such that xα

uo
−→ 0 in E. Then T xα

uo
−→ 0 in E.

Proof. Using equation (3.2), one easily sees that we may suppose that T and the xα are
positive. For n≥ 1, we let Pn be the order projection in Orth(E) onto the band generated by
(T −nI)+ in Orth(E). According to Proposition 3.6.7, there exists a unique order projection
Pn in E such that Pn(S) = PnS for all S ∈ Orth(E). Take e ∈ E+. By applying part (2) of
Proposition 3.6.7 in the first step and its part (3) in the third, we see that, for α ∈ A and
n≥ 1,

(T xα)∧ e ≤ (nxα + PnT xα)∧ e

≤ n(xα ∧ e) + PnT xα ∧ e

≤ n(xα ∧ e) +
1
n

Te.

(3.3)

This implies that, for n≥ 1,

0≤ inf
α

sup
β≥α

�

(T xβ)∧ e
�

≤ n inf
α

sup
β≥α

�

xβ ∧ e
�

+
1
n

Te.

Since xα ∧ e
o
−→ 0 in E, it now follows from [28, Remark 2.2] that

0≤ inf
α

sup
β≥α

�

(T xβ)∧ e
�

≤
1
n

Te

for all n≥ 1. Hence infα supβ≥α
�

(T xβ)∧ e
�

= 0, and we conclude that (T xα)∧ e
o
−→ 0 in E.

Since e ∈ E+ was arbitrary, the proof is complete.
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For the case of a Hausdorff uo-Lebesgue topology, we need the following preparatory
result that has some independent interest. Lemma 3.9.11 is of the same flavour.

Proposition 3.7.2. Let E be a Dedekind complete vector lattice that admits a (not necessarily
Hausdorff) locally solid linear topology τE , and let T ∈ Orth(E). Suppose that (xα)α∈A is a

net in E such that xα
τE−→ 0 in E. Then T xα

uEτE−−→ 0 in E.

Proof. As in the proof of Proposition 3.7.1, we may suppose that T and the xα are positive.
For n≥ 1, we let Pn be the order projection in Orth(E) onto the band generated by (T−nI)+

in Orth(E) again, so that again there exists a unique order projection Pn in E such that
Pn(S) = PnS for all S ∈ Orth(E). Fix e ∈ E+. Take a solid τE-neighbourhood U of 0 in
E, and choose a τE-neighbourhood V of 0 such that V + V ⊆ U . Take an n0 ≥ 1 such

that Te/n0 ∈ V . As xα
τE−→ 0, there exists an α0 ∈ A such that n0 xα ∈ V for all α ≥ α0.

Continuing the chain of inequalities in equation (3.3) for n0 for one more step, we see that,
for all α≥ α0,

(T xα)∧ e ≤ n0(xα ∧ e) +
1
n0

Te

≤ n0 xα +
1
n0

Te

∈ V + V ⊆ U

(3.4)

The solidness of V then implies that (T xα) ∧ e ∈ U for all α ≥ α0. Since U and e were

arbitrary, we conclude that Tαx
uEτE−−→ 0.

Since the unbounded topology uEbτE that is generated by a Hausdorff uo-Lebesgue topol-
ogy bτE equals bτE again, the following is now clear.

Corollary 3.7.3. Let E be a Dedekind complete vector lattice that admits a (necessarily unique)
Hausdorff uo-Lebesgue topology bτE , and let T ∈ Orth(E). Suppose that (xα)α∈A is a net in E

such that xα
bτE−→ 0 in E. Then T xα

bτE−→ 0 in E.

3.8 Topologies on Orth(E)

Let E be a Dedekind complete vector lattice, and suppose that τE is a (not necessarily Haus-
dorff) locally solid additive topology on E. Take a non-empty subset S of E. According
to Theorem 3.3.1, there exists a unique additive topology ASOTSτE on Lob(E) such that,

for a net (Tα)α∈A in Lob(E), Tα
ASOTSτE−−−−−→ 0 if and only if |Tα||s|

τE−→ 0 for all s ∈ S. When
(Tα)α∈A ⊆ Orth(E), equation (3.2) and the local solidness of τE imply that this convergence

criterion is also equivalent to the one that Tαs
τF−→ 0 for all s ∈ S. Hence on subsets of Orth(E),

an absolute strong operator topology that is generated by a locally solid additive topology on
E coincides with the corresponding strong operator topology. In order to remind ourselves of
the connection with the topology on the enveloping vector lattice Lob(E) of Orth(E), we
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shall keep writing ASOTSτF when considering the restriction of this topology to subsets of
Orth(E), rather than switch to, e.g., SOTSτF .

The above observation can be used in several results in Section 3.3. For the ease of
reference, we include the following consequence of Corollary 3.3.5.

Corollary 3.8.1. Let E be a Dedekind complete vector lattice, and let τE be a (not necessarily
Hausdorff) locally solid linear topology on E. Take a vector sublattice E of Orth(E) and a
non-empty subset S of E.

There exists a unique locally solid linear topology ASOTSτE on E such that, for a net

(Tα)α∈A in E , Tα
ASOTSτE−−−−−→ 0 if and only if Tαs

τE−→ 0 for all s ∈ S.

Let IS be the ideal of E that is generated by S. For a net (Tα)α∈A in E , Tα
ASOTSτE−−−−−→ 0 if and

only if Tαx
τE−→ 0 for all x ∈ IS .

When τE is a Hausdorff topology on F, then ASOTSτE is a Hausdorff topology on E if and
only if IS separates the points of E .

According to the next result, there is an intimate relation between the existence of Haus-
dorff o-Lebesgue topologies and uo-Lebesgue topologies on E and on Orth(E).

Proposition 3.8.2. Let E be a Dedekind complete vector lattice. The following are equivalent:
(1) E admits a Hausdorff o-Lebesgue topology;
(2) Orth(E) admits a Hausdorff o-Lebesgue topology;
(3) E admits a (necessarily unique) Hausdorff uo-Lebesgue topology;
(4) Orth(E) admits a (necessarily unique) Hausdorff uo-Lebesgue topology.

Proof. As E and Orth(E) are Dedekind complete, they are not just order dense vector sublat-
tices of their universal completions but even order dense ideals; see [7, p.126–127]. Since
these universal completions are isomorphic vector lattices by Corollary 3.6.4, the proposi-
tion follows from a double application of [20, Theorem 4.9.(3)].

For a Dedekind complete vector lattice E, Orth(E), being a band in Lob(E), is a regular
vector sublattice of Lob(E). A regular vector sublattice E of Orth(E) is, therefore, also
a regular vector sublattice of Lob(E), and Proposition 3.4.2 then shows how o-Lebesgue
topologies on E can be obtained from an o-Lebesgue topology on E as (absolute) strong
operator topologies. In particular, this makes the fact that part (1) of Proposition 3.8.2
implies its part (2) more concrete. The fact that part (1) implies part (2) is made more
concrete as a special case of the following consequence of Theorem 3.4.3.

Theorem 3.8.3. Let E be a Dedekind complete vector lattice. Suppose that E admits an o-
Lebesgue topology τE . Take a regular vector sublattice E of Orth(E), a non-empty subset S of
E , and a non-empty subset S of E.

Then uS ASOTSτE is a uo-Lebesgue topology on E .
We let IS denote the ideal of E that is generated by S, and IS the ideal of E that is generated

by S . For a net (Tα)α∈A in E , the following are equivalent:

(1) Tα
uS ASOTSτE−−−−−−−→ 0;

(2) |Tαs| ∧ |Ts|
τE−→ 0 for all T ∈ S and s ∈ S;
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(3) |Tαx | ∧ |T x |
τE−→ 0 for all T ∈ IS and x ∈ IS .

Suppose that τE is actually a Hausdorff o-Lebesgue topology bτE on E. Then the following
are equivalent:
(1) uS ASOTSbτE is a (necessarily unique) Hausdorff uo-Lebesgue topology on E ;
(2) IS separates the points of E and IS is order dense in E .

In that case, the Hausdorff uo-Lebesgue topology uS ASOTSτE on E is the restriction of the
(necessarily unique) Hausdorff uo-Lebesgue topology on Lob(E, F), i.e., of uLob(E,F)ASOTEτE ,
and the criteria in (1), (2), and (3) are also equivalent to:

(4) (|Tα| ∧ |T |)x
bτE−→ 0 for all T ∈ Lob(E) and x ∈ E.

3.9 Comparing uniform and strong convergence structures on
Orth(E)

Let E and F be vector lattices, where F is Dedekind complete, and let (Tα)α∈A be a net
in Lob(E, F). In Section 3.5, we studied the relation between uniform and strong con-
vergence of (Tα)α∈A for order convergence, unbounded order convergence, and—when
applicable—convergence in a Hausdorff uo-Lebesgue topology. In the present section, we
consider the case where (Tα)α∈A is actually contained in Orth(E). As we shall see, the rela-
tion between uniform and strong convergence is now much more symmetrical than in the
general case of Section 3.5; see Theorem 3.9.4 (and Theorem 3.9.7), Theorem 3.9.9, and
Theorem 3.9.12, below.

These positive results might, perhaps, lead one to wonder whether some of the three
uniform convergence structures under consideration might actually even be identical for
the orthomorphisms. This, however, is not the case. There even exist sequences of positive
orthomorphisms on separable reflexive Banach lattices with weak order units showing that
the two ‘reverse’ implications in question are not generally valid. For this, we consider E :=
Lp([0,1]) for 1< p <∞. In that case, Orth(E) can canonically be identified with L∞([0,1])
as an f -algebra; see [7, Example 2.67], for example. The uo-convergence of a net in the
regular vector sublattice L∞([0, 1]) of L0([0,1]) coincides with that in L0([0, 1]) which,
according to [28, Proposition 3.1], is simply convergence almost everywhere in the case
of sequences. According to [20, Theorem 6.3], the convergence of a net in the Hausdorff
uo-Lebesgue topology of L∞([0, 1]) is equal to the convergence in measure. For n ≥ 1, set
fn := nχ[0,1/n]. Then fn

uo
−→ 0 in L∞([0,1]), but it is not true that fn

o
−→ 0 in L∞([0,1])

since the fn are not even order bounded in L∞([0,1]). Using χ[(k−1)2−n,k2−n] for n ≥ 1 and
k = 1, . . . , 2n, one easily finds a sequence that is convergent to zero in measure, but that is
not convergent in any point of [0, 1].

We now start with uniform and strong order convergence for nets of orthomorphisms.
For this, we need a few preparatory results. The first one is on general order continuous
operators.

Lemma 3.9.1. Let E be a Dedekind complete vector lattice, let (Tα)α∈A be a decreasing net in
Loc(E)

+, and let F be an order dense vector sublattice of E. The following are equivalent:
(1) Tαx

o
−→ 0 in E for all x ∈ F;
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(2) Tαx
o
−→ 0 in E for all x ∈ E.

Proof. We need to show only that part (1) implies part (2). Suppose that Tαx
o
−→ 0 in E for

all x ∈ F . By passing to a tail, we may suppose that there exists a T ∈ Loc(E)
+ such that

Tα ≤ T for α ∈A. Take x ∈ E+. Since (Tαx)α∈A is directed downwards and E is Dedekind
complete, there exists a y ∈ E+ such that Tαx ↓ y in E. The order denseness of F in E
implies that there exists a net (xβ)β∈B ⊆ F+ with xβ ↑ x in E. For each α ∈ A and β ∈ B,
we have

y ≤ Tαx = Tα(x − xβ) + Tαxβ
≤ T (x − xβ) + Tαxβ .

For each fixed β ∈ B, the assumption then implies that

y ≤ T (x − xβ) + inf
α

Tαxβ = T (x − xβ).

The order continuity of T then shows that

0≤ y ≤ inf
β

T (x − xβ) = 0,

and so y = 0. We conclude that Tαx ↓ 0 in E for every x ∈ E+, and the statement in part (2)
follows.

Proposition 3.9.2. Let E be a Dedekind complete vector lattice, let (Tα)α∈A be a decreasing
net in Orth(E)+, and let S be a non-empty subset of E. The following are equivalent:
(1) Tαs

o
−→ 0 in E for all s ∈ S;

(2) Tαx
o
−→ 0 in E for all x ∈ BS .

In particular, if E has a positive weak order unit e, then Tαx
o
−→ 0 in E for all x ∈ E if and only

if Tαe ↓ 0 in E.

Proof. We need to show only that part (1) implies part (2). Take y ∈ I+S . There exist
s1, . . . , sn ∈ S and λ1, . . . ,λn ≥ 0 such that 0 ≤ y ≤

∑n
i=1λi|si|. Hence 0 ≤ Tα y ≤

∑n
i=1λi Tα|si| =

∑n
i=1λi|Tαsi| for α ∈ A, and the assumption then implies that Tα y ↓ 0

in E. Since orthomorphisms preserve bands, we have Tα y ∈ BS for all α, and the fact that
BS is an ideal of E now shows that Tα y ↓ 0 in BS . It follows that Tα y

o
−→ 0 in BS for all

y ∈ IS . Since the restriction of each Tα to the regular vector sublattice BS of E is again
order continuous, and since IS is an order dense vector sublattice of the vector lattice BS ,
Lemma 3.9.1 implies that Tα y

o
−→ 0 in BS for all y ∈ BS . The fact that BS is a regular vector

sublattice of E then yields that Tα y
o
−→ 0 in E for all y ∈ BS .

Lemma 3.9.3. Let E be a Dedekind complete vector lattice, and let S be a subset of Orth(E)
that is bounded above in Lob(E). Then, for x ∈ E+,

�

∨

T∈S
T

�

x =
∨

T∈S
T x .
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Proof. Using [6, Theorem 1.67.(b)] in the second step, we see that, for x ∈ E+,
�

∨

T∈S
T

�

x =

�

∨

T∨∈S ∨
T∨
�

x =
∨

T∨∈S ∨
T∨x .

By equation (3.1), this equals
∨

y∨∈(S x)∨
y∨ =

∨

y∈S x
y =

∨

T∈S
T x .

We can now establish our main result regarding uniform and strong order convergence
for nets of orthomorphisms.

Theorem 3.9.4. Let E be a Dedekind complete vector lattice, and let (Tα)α∈A be a net in
Orth(E) that is order bounded in Lob(E). Let S be a non-empty subset of E with BS = E. The
following are equivalent:
(1) Tα

o
−→ 0 in Orth(E);

(2) Tα
o
−→ 0 in Lob(E);

(3) Tαs
o
−→ 0 in E for all s ∈ S;

(4) Tαx
o
−→ 0 in E for all x ∈ E.

In particular, when E has a weak order unit e, then Tα
o
−→ 0 in Lob(E) if and only if Tαe

o
−→ 0

in E.

Before proceeding with the proof, we remark that, since Orth(E) is a projection band in
Lob(E), the order boundedness of the net could equivalently have been required in Orth(E).

Proof. Since the net (Tα)α∈A is supposed to be order bounded in the regular vector sub-
lattice Orth(E), the equivalence of the parts (1) and (2) follows from [28, Corollary 2.12].
Lemma 3.4.1 shows that part (2) implies part (4), and evidently part (4) implies part (3).
The proof will be completed by showing that part (3) implies part (1). Suppose that Tαs

o
−→ 0

in E for all s ∈ S or, equivalently, that |Tα||s| = |Tαs|
o
−→ 0 in E for all s ∈ S. For α ∈ A, set

eTα :=
∨

β≥α|Tβ | in Lob(E). Since Lemma 3.9.3 shows that eTα|s| =
∨

β≥α|Tβ ||s| for α ∈ A
and s ∈ S, we see that eTα|s| ↓ 0 in E for all s ∈ S. Proposition 3.9.2 then yields that eTαx

o
−→ 0

for all x ∈ B|S| = E. Using that eTα ↓, it follows that eTα ↓ 0 in Lob(E). Since |Tα| ≤ eTα for

α ∈A, we see that |Tα|
o
−→ 0 in Lob(E), as required.

In view of Lemma 3.4.1, the most substantial part of Theorem 3.9.4 is the fact that the
parts (3) and (4) imply the parts (1) and (2). For this to hold in general, the assumption
that (Tα)α∈A be order bounded is actually necessary. To see this, let Γ be an uncountable
set that is supplied with the counting measure, and consider E := `p(Γ ) for 1≤ p ≤∞. Set

A := { (n, S) : n≥ 1, S ⊂ Γ is at most countably infinite }
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and, for (n1, S1), (n2, S2) ∈ A, say that (n1, S2) ≤ (n2, S2) when n1 ≤ n2 and S1 ⊆ S2. For
(n, S) ∈A, define T(n,S) ∈ Z (E) = Orth(E) by setting

T(n,S)x := nχΓ\S x

for all x : Γ → R in E. Take an x ∈ E. Then the net (T(n,S)x)(n,S)∈A has a tail that is

identically zero, namely (T(n,S)x)(n,S)≥(1,supp x) . Hence T(n,S)x
o
−→ 0 in E for all x ∈ E. We

claim that (T(n,S))(n,S)∈A is not order convergent in Orth(E), and not even in Lob(E). For
this, it is sufficient to show that it does not have any tail that is order bounded in Lob(E).
Suppose, to the contrary, that there exist an n0 ≥ 1, an at most countably infinite subset S0
of Γ , and a T ∈ Lob(E) such that T(n,A) ≤ T for all (n, A) ∈ A with n ≥ n0 and A ⊇ A0. As
Γ is uncountable, we can choose an x0 ∈ Γ \ A0; we let ex0

denote the corresponding atom
in E. Then, in particular, T(n,A0)ex0

≤ Tex0
for all n ≥ n0. Hence Tex0

≥ nex0
for all n ≥ n0,

which is impossible.
We now consider uniform and strong order convergence in the case where E is a Dede-

kind complete Banach lattice. In that case, a version of Theorem 3.9.4 can be obtained for
sequences where the order boundedness of the sequence need to be a part of the hypotheses
because it is automatic; see Theorem 3.9.7, below. Our results are based on the following
ordered version of the uniform boundedness principle for orthomorphisms.

Proposition 3.9.5. Let E be a Dedekind complete Banach lattice, and let { Tα : α ∈ A } be a
non-empty subset of Orth(E). The following are equivalent:
(1) { Tα : α ∈A } is an order bounded subset of Lob(E);
(2) for each x ∈ E, { Tαx : α ∈A } is an order bounded subset of E.

As in Theorem 3.9.4, the order boundedness of the net could equivalently have been
stated in Orth(E).

Proof. It is trivial that part (1) implies part (2). We give two proofs for the fact that part (2)
implies part (1).

The first proof is as follows. The fact that |Tα||x | = |Tαx | implies that we may suppose
that the Tα are positive. Suppose, to the contrary, that { Tα : α ∈A } is not an order bounded
subset of Lob(E). Using that Orth(E) = Z (E), it is easy to see that, for every n ≥ 1, there
exists an αn ∈ A such that (Tαn

− 2n I)+ > 0. For n ≥ 1, we let Bn be the band generated
by (Tαn

− 2n I)+ in Orth(E), and we let Pn be the corresponding non-zero order projection
onto Bn. According to Proposition 3.6.7, there exists a unique order projection Pn in E such
that PnS = PnS for all S ∈ Orth(E). Furthermore, Tαn

≥ 2nPn. As Pn 6= 0, we can choose an
xn ∈ E+ such that ‖Pn xn‖ = 1/2n. Since

∨m
n=1 Pn xn ≤

∑∞
n=1 Pn xn for all m ≥ 1, we can set

e :=
∨∞

n=1 Pn xn ∈ E+. By assumption, we can choose an upper bound x of { Tαn
e : n ≥ 1 }

in E+. Then
x ≥ Tαn

e ≥ 2nPne ≥ 2nPn(Pn xn) = 2nPn xn

for n≥ 1. Again by assumption, we can choose an upper bound y of { Tαn
x : n≥ 1 } in E+,

and then
y ≥ Tαn

x ≥ 2nPn x ≥ 2nPn(2
nPn xn) = 4nPn xn
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for n ≥ 1. This implies that ‖y‖ ≥ 4n‖Pn xn‖ = 2n for all n. This contradiction completes
the first proof.

The second proof, which uses somewhat ‘heavier’ auxiliary results, is as follows. The fact
that the Tα are pointwise order bounded implies that they are pointwise norm bounded.
Hence, by the uniform boundedness principle, the Tα are bounded in the uniform norm on
the bounded operators on E. Since they are in Orth(E) = Z (E), where (see Section 3.6)
the operator norm agrees with the order unit norm with respect to the strong order unit I
of Z (E), the Tα are also order bounded in Z (E).

As a side result, we note the following consequence of Proposition 3.9.5. It is an ordered
analogue of the familiar result for a sequence of bounded operators on a Banach space.

Corollary 3.9.6. Let E be a Dedekind complete Banach lattice, and let (Tn)∞n=1 be a sequence
in Orth(E). Suppose that the sequence (Tn x)∞n=1 is order convergent in E for all x ∈ E. Then
{ Tn : n≥ 1 } is an order bounded subset of Lob(E). For x ∈ E, define T : E→ E by setting

T x := o – lim
n→∞

Tn x .

Then T ∈ Orth(E).

Proof. It is clear that T is linear. Since order convergent sequences are order bounded,
Proposition 3.9.5 shows that there exist an S ∈ Orth(E) such that |Tn| ≤ |S| for n ≥ 1. As
Orth(E) = Z (E), there exists a λ ≥ 0 such that |Tn| ≤ λI for n ≥ 1. Using equation (3.2),
one then easily sees that |T x | ≤ λ|x | for x ∈ E. Hence T ∈ Z (E) = Orth(E).

Using Theorem 3.9.4 and the order boundedness statement in Corollary 3.9.6, the fol-
lowing is easily established. As announced above, there is no order boundedness in the
hypotheses.

Theorem 3.9.7. Let E be a Dedekind complete Banach lattice, and let (Tn)∞n=1 be a sequence
in Orth(E). Let S be a non-empty subset of E such that IS = E. The following are equivalent:
(1) Tn

o
−→ 0 in Orth(E);

(2) Tn
o
−→ 0 in Lob(E);

(3) Tns
o
−→ 0 in E for all s ∈ S;

(4) Tn x
o
−→ 0 in E for all x ∈ E.

In particular, when E has a strong order unit e, then Tn
o
−→ 0 in Orth(E) if and only if Tne

o
−→ 0

in E.

Remark 3.9.8. In Theorem 3.9.7, the condition that IS = E cannot be relaxed to BS = E.
To see this, we choose E := c0 and set e :=

∨

n≥1 ei/i
2, where (ei)∞i=1 is the standard unit

basis of E. It is clear that Be = E. For n ≥ 1, there exists a unique Tn ∈ Orth(E) such that,
for i ≥ 1, Tnei = nei when i = n, and Tnei = 0 when i 6= n. It is clear that Tne

o
−→ 0 in

E. However, a consideration of Tn(
∨

i≥1 ei/i) for n≥ 1 shows that (Tn)∞n=1 fails to be order
bounded in Orth(E), hence cannot be order convergent in Orth(E).
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We continue our comparison of uniform and strong convergence structures on the or-
thomorphisms by considering unbounded order convergence. In that case, the result is as
follows.

Theorem 3.9.9. Let E be a Dedekind complete vector lattice, and let (Tα)α∈A be a net in
Orth(E). Let S be a non-empty subset of E such that BS = E. The following are equivalent:
(1) Tα

uo
−→ 0 in Orth E;

(2) Tα
uo
−→ 0 in Lob(E);

(3) Tαs
uo
−→ 0 in E for all s ∈ S;

(4) Tαx
uo
−→ 0 in E for all x ∈ E.

In particular, when E has a weak order unit e, then Tα
uo
−→ 0 in Orth(E) if and only if Tαe

uo
−→ 0

in E.

Proof. Since Orth(E) is a regular vector sublattice ofLob(E), the equivalence of the parts (1)
and (2) is clear from [28, Theorem 3.2]

We prove that part (2) implies part (4). Suppose that Tα
uo
−→ 0 in Lob(E), so that, in

particular, |Tα|∧ I
o
−→ 0 inLob(E). Take x ∈ E. Using equation (3.1) in the second step, and

Lemma 3.4.1 in the third, we have

(|Tα||x |)∧ |x |= (|Tα||x |)∧ (I |x |) = (|Tα| ∧ I)|x |
o
−→ 0.

Since the net (|Tα||x |)α∈A is contained in the band B|x |, it now follows from [20, Proposi-

tion 7.4] that |Tα||x |
uo
−→ 0 in E. As |Tα||x |= |Tαx |, we conclude that Tαx

uo
−→ 0 in E.

It is clear that part (4) implies part (3).
We prove that part (3) implies part (2). Suppose that Tαs

uo
−→ 0 in E for all s ∈ S, so that

also |Tα||s|= |Tαs|
uo
−→ 0 in E for s ∈ S. Using equation (3.1) again, we have

(|Tα| ∧ I)|s|= (|Tα||s|)∧ |s|
o
−→ 0

in E for all x ∈ S. In view of the order boundedness of (|Tα| ∧ I)α∈A, Theorem 3.9.4 then
yields that |Tα| ∧ I

o
−→ 0 in Lob(E). As I is a weak order unit of Orth(E), [29, Lemma 3.2]

(or the more general [20, Proposition 7.4]) shows that Tα
uo
−→ 0 in Lob(E).

We now consider uniform and strong convergence of nets of orthomorphisms for the
Hausdorff uo-Lebesgue topology. Let E be a Dedekind complete vector lattice. Suppose
that E admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτE . We recall from
Theorem 3.8.3 that Orth(E) then also admits a (necessarily unique) Hausdorff uo-Lebes-
gue topology bτOrth(E), and that this topology equals uOrth(E)ASOTEbτE . Furthermore, for a

net (Tα)α∈A in Orth(E), we have that Tα
bτOrth(E)
−−−−→ 0 if and only if |Tαx | ∧ |T x |

bτE−→ 0 for all
T ∈ Orth(E) and x ∈ E.

We need two preparatory results.
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Lemma 3.9.10. Let E be a vector lattice that admits a (necessarily unique) Hausdorff uo-
Lebesgue topology bτE . Suppose that E has a positive weak order unit e. Let (xα)α∈A be a net

in E. Then xα
bτE−→ 0 in E if and only if |xα| ∧ e

bτE−→ 0 in E.

Proof. We need to show only the “if”-part. Suppose that |xα| ∧ e
bτE−→ 0 in E. For each x ∈ E,

there exists a net (yβ)β∈B in Ie such that yβ
o
−→ x , and then certainly yβ

bτE−→ x . Hence

Ie
bτE = E. An appeal to [44, Proposition 9.8] then shows that xα

uE bτE−−→ 0. Since uEbτE = bτE ,
we are done.

Our second preparatory result is in the same vein as Proposition 3.7.2.

Lemma 3.9.11. Let E be a vector lattice with the principal projection property that admits a
(not necessarily Hausdorff) o-Lebesgue topology τE , and let (Tα)α∈A be a net in Orth(E). Let
S be a non-empty subset of E such that BS = E. Suppose that Tαs

τE−→ 0 for all s ∈ S. Then

Tαx
uEτE−−→ 0 for all x ∈ E.

Proof. Using equation (3.2), it follows easily that Tαx
τE−→ 0 for all x ∈ IS . Take an x ∈ E,

and let U be a solid τE-neighbourhood U of 0. Choose a τE-neighbourhood V of 0 such
that V + V ⊆ U . There exists a net (xβ)β∈B in IS such that xβ

o
−→ x in E, and then we can

choose a β0 ∈ B such that |x − xβ0
| ∈ V . As |Tα||xβ0

|= |Tαxβ0
|
τE−→ 0, there exists an α0 ∈A

such that |Tα||xβ0
| ∈ V for all α≥ α0. For all α≥ α0, we then have

0≤ (|Tαx |)∧ |x |= (|Tα| ∧ I)|x |
≤ (|Tα| ∧ I)|xβ0

|+ (|Tα| ∧ I)|x − xβ0
|

≤ |Tα||xβ0
|+ |x − xβ0

|

∈ V + V ⊆ U .

As U is solid, we see that (|Tαx |)∧ |x | ∈ U for α ≥ α0, and we conclude that (|Tαx |)∧
|x |

τE−→ 0. Since |Tαx | ∈ B|x | for α ∈ A, it then follows from [44, Proposition 9.8] that

|Tαx | ∧ |y|
τE−→ 0 in E for all y ∈ B|x |. As B|x | is a projection band in E, this holds, in fact, for

all y ∈ E.

Theorem 3.9.12. Let E be a Dedekind complete vector lattice. Suppose that E admits a (nec-
essarily unique) Hausdorff uo-Lebesgue topology bτE , so that Orth(E) and Lob(E) also admit
(necessarily unique) Hausdorff uo-Lebesgue topologies bτOrth(E) and bτLob(E), respectively. Let
(Tα)α∈A be a net in Orth(E). Let S be a non-empty subset S of E such that BS = E. The
following are equivalent:

(1) Tα
bτOrth(E)
−−−−→ 0 in Orth(E);

(2) Tα
bτLob(E)−−−−→ 0 in Lob(E);

(3) Tαs
bτE−→ 0 in E for all s ∈ S;

(4) Tαx
bτE−→ 0 in E for all x ∈ E.
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In particular, when E has a weak order unit e, then Tα
bτOrth(E)
−−−−→ 0 in Orth(E) if and only if

Tαe
bτE−→ 0 in E.

Proof. The equivalence of the parts (1) and (2) follows from the final part of Theorem 3.4.3.

We prove that part (1) implies part (4). Suppose that Tα
bτOrth(E)
−−−−→ 0 in Orth(E). Take an

x ∈ E. Then certainly |Tαx | ∧ |x | = |Tαx | ∧ |I x |
bτE−→ 0. The net (Tαx)α∈A is contained in

the band B|x |. Since, by [44, Proposition 5.12], the regular vector sublattice B|x | of E also
admits a (necessarily unique) Hausdorff uo-Lebesgue topology (namely, the restriction of

bτE to B|x |), it then follows from Lemma 3.9.10 that Tαx
bτE−→ 0 in E.

We prove that part (4) implies part (1). Suppose that Tαx
bτE−→ 0 for all x ∈ E. Since bτE

is locally solid, we then also have |Tαx | ∧ |T x |
bτE−→ 0 for all T ∈ Orth(E) and x ∈ E. Hence

Tα
bτOrth(E)
−−−−→ 0 in Orth(E).
It is clear that part (4) implies part (3).
Since uEbτE = bτE , Lemma 3.9.11 shows that part (3) implies part (4).




