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Chapter 2

Vector lattices with a Hausdorff
uo-Lebesgue topology

Abstract

We investigate the construction of a Hausdorff uo-Lebesgue topology on a vector lattice from
a Hausdorff (o)-Lebesgue topology on an order dense ideal, and what the properties of the
topologies thus obtained are. When the vector lattice has an order dense ideal with a sepa-
rating order continuous dual, it is always possible to supply it with such a topology in this
fashion, and the restriction of this topology to a regular sublattice is then also a Hausdorff
uo-Lebesgue topology. A regular vector sublattice of L0(X ,Σ,µ) for a semi-finite measure µ
falls into this category, and the convergence of nets in its Hausdorff uo-Lebesgue topology
is then the convergence in measure on subsets of finite measure. When a vector lattice not
only has an order dense ideal with a separating order continuous dual, but also has the
countable sup property, we show that every net in a regular vector sublattice that converges
in its Hausdorff uo-Lebesgue topology always contains a sequence that is uo-convergent to
the same limit. This enables us to give satisfactory answers to various topological questions
about uo-convergence in this context.
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2.1 Introduction and overview

In this paper, we investigate the construction of a Hausdorff uo-Lebesgue topology on a
vector lattice from a Hausdorff (o)-Lebesgue topology1 on an order dense ideal, and what
the properties of the topologies thus obtained are.

After recalling the relevant notions and making the necessary preparations in Section 2.2,
the key construction is carried out in Theorem 2.3.1 in Section 2.3, below. The idea of
starting with a topology on an order dense ideal originates from [11] but, whereas the con-
struction in [11] to obtain a global topology is carried out using Riesz pseudo-norms, we
follow an approach using neighbourhood bases of zero that is inspired by [44]. Using such
neighbourhood bases, it is possible to perform the construction under minimal hypotheses
on the initial data, and thus understand how these hypotheses are reflected in the proper-
ties of the resulting global topology. The remainder of Section 2.3 is mainly concerned with
showing how the general theorem relates to existing results in the literature. Our working
with neighbourhood bases of zero enables us to explain certain ‘pathologies’ in the litera-
ture, where a topology of unbounded type is not Hausdorff, or not linear, from the general
theorem.

In Section 2.4, we move to the context where the initial ideal is actually order dense
and admits a Hausdorff o-Lebesgue topology. In that case, every regular vector sublattice of
the global vector lattice admits a Hausdorff uo-Lebesgue topology. The resulting overview
Theorem 2.4.9, below, mostly consists of a summary of results that are already in the litera-
ture, though not presented in this way. It is also recalled in that section that a regular vector
sublattice admits a Hausdorff uo-Lebesgue topology when the global vector lattice admits
one. Consequently, there is a going-up-going-down procedure: starting with a Hausdorff o-
Lebesgue topology on an order dense ideal, one obtains a Hausdorff uo-Lebesgue topology
on the global vector lattice, and then finally also one on every regular vector sublattice.

In view of the going-up-going-down construction, it is evidently desirable to have a class
of vector lattices that admit Hausdorff o-Lebesgue topologies because such data can serve
as ‘germs’ for Hausdorff uo-Lebesgue topologies. The vector lattices with separating order
continuous duals form such a class, and this is exploited in Section 2.5.

Section 2.6 is concerned with regular vector sublattices of L0(X ,Σ,µ) for a semi-finite
measure µ. Via an application of the going-up-going-down procedure, every regular vector
sublattice of L0(X ,Σ,µ) admits a Hausdorff uo-Lebesgue topology. We give a rigorous proof
of the fact that the convergence of nets in such a topology is the convergence in measure on
subsets of finite measure. For Lp(X ,Σ,µ), we also discuss how the (in fact) unique Hausdorff
uo-Lebesgue topology on these spaces can be described in various seemingly different ways
that are still equivalent. The relation between these topologies and minimal and smallest
Hausdorff locally solid linear topologies on these spaces is explained.

Section 2.7 is concerned with convergent sequences that can always be found ‘within’
nets that are convergent in a Hausdorff uo-Lebesgue topology on a vector lattice that has the
countable sup property and that has an order dense ideal with a separating order continuous

1In the literature, what we call a o-Lebesgue topology is simply called a Lebesgue topology. Now that uo-
Lebesgue topologies, with a completely analogous definition, have become objects of a more extensive study, it
seems consistent to also add a prefix to the original term.
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dual. The precise statement is in Theorem 2.7.6, below; this is one of the main theorems
in this paper. It is in the same spirit as the fact that a sequence that converges (globally)
in measure always contains a subsequence that converges almost everywhere to the same
limit.

Finally, in Section 2.8, we study topological aspects of uo-convergence. The relations be-
tween uo-convergence and various order topologies are not at all well understood, but when
the global vector lattice has the countable sup property, and also has an order dense ideal
with a separating order continuous dual, then a reasonably satisfactory picture emerges. In
Theorem 2.8.1 and Theorem 2.8.8, below, various topological closures and (sequential) ad-
herences are then seen to be equal. It is then also possible to give a necessary and sufficient
criterion for sequential uo-convergence to be topological; see Corollary 2.8.5, below.

We have tried to be as complete in the development of this part of the theory of uo-
convergence as we could, and also to relate to relevant existing results in the literature
whenever possible. Any omissions at this point are unintentional.

2.2 Preliminaries

In this section, we collect a number of definitions, notations, conventions and preparatory
results. We refer the reader to the textbooks [2], [5], [6], [7], [36], [37], [40], [50], and
[51] for general background information on vector lattices and Banach lattices.

2.2.1 Vector lattices, operators, and (unbounded) order convergence

All vector spaces are over the real numbers. Measures take their values in [0,∞] and
are not supposed to satisfy any condition unless otherwise specified. All vector lattices are
supposed to be Archimedean. The positive cone of a vector lattice E is denoted by E+.

Let E be a vector lattice, and let F be a vector sublattice of E. Then F is order dense in E
when, for every x ∈ E with x > 0, there exists a y ∈ F such that 0< y ≤ x; F is called super
order dense in E when, for every x ∈ E+, there exists a sequence (x)∞n=1 ⊆ F+ with xn ↑ x in
E. The vector sublattice F of E is order dense in E if and only if, for every x ∈ E+, we have
x = sup{ y ∈ F : 0≤ y ≤ x }; see [7, Theorem 1.34], for example.

A vector sublattice F of a vector lattice E is called majorising in E when, for every x ∈ E,
there exists a y ∈ F such that x ≤ y . In some sources, such as [11], F is then said to be full
in E.

A vector lattice E has the countable sup property when, for every non-empty subset S of
E that has a supremum in E, there exists an at most countable subset of S that has the same
supremum in E as S. In parts of the literature, such as in [36] and [51], E is then said to be
order separable.

Let E be a vector lattice, and let x ∈ E. We say that a net (xα)α∈A in E is order convergent
to x ∈ E (denoted by xα

o
−→ x) when there exists a net (yβ)β∈B in E such that yβ ↓ 0 and

with the property that, for every β0 ∈ B, there exists an α0 ∈ A such that |x − xα| ≤ yβ0

whenever α in A is such that α ≥ α0. Note that the index sets A and B need not be equal;
for a discussion of the difference between these two possible definitions we refer to [1], for
example.
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Let E and F be vector lattices. The order bounded operators from E into F will be denoted
by Lob(E, F), and the regular operators from E into F by Lr(E, F). When F is Dedekind
complete, we haveLob(E, F) =Lr(E, F), and this space is then a Dedekind complete vector
lattice; see [7, Theorem 1.18], for example. We write Es for Lob(E,R) =Lr(E,R).

A linear operator T : E → F between two vector lattices E and F is order continuous
when, for every net (xα)α∈A in E, the fact that xα

o
−→ 0 in E implies that T xα

o
−→ 0 in F .

When T is positive one can, equivalently, require that, for every net (xα)α∈A in E, the fact
that xα ↓ 0 in E imply that T xα ↓ 0 in F . An order continuous linear operator between two
vector lattices is automatically order bounded; see [7, Lemma 1.54], for example. The order
continuous linear operators from E into F will be denoted by Loc(E, F). In the literature,
the notation Ln(E, F) is often used. When F is Dedekind complete, Loc(E, F) is a band in
Lr(E, F); see [7, Theorem 1.57], for example. We write Esoc for Loc(E,R).

The following result is easily established using the Riesz-Kantorovich formulas and their
‘dual versions’; see [7, Theorems 1.18 and 1.23], for example. We shall be interested only
in the case where the lattice F in it is the real numbers and the band B is the zero band, but
the general case comes at no extra cost in the routine proof.

Proposition 2.2.1. Let E and F be vector lattices, where F is Dedekind complete, and let B be
a band in F.
(1) Let I be an ideal of E. Then the subset

{ T ∈ Lr(E, F) : T x ∈ B for all x ∈ I }

of Lr(E, F) is band in Lr(E, F). For every subset S of I that generates I , it is equal to

{ T ∈ Lr(E, F) : |T ||x | ∈ B for all x ∈ S }.

(2) Let I be an ideal of Lr(E, F). Then the subset

{ x ∈ E : T x ∈ B for all T ∈ I }

of E is an ideal of E. For every subset S of I that generates I , it is equal to

{ x ∈ E : |T ||x | ∈ B for all T ∈ S }.

It is a band in E when I ⊆Loc(E, F).

Let F be a vector sublattice of a vector lattice E. Then F is a regular vector sublattice of
E when the inclusion map from F into E is order continuous. Equivalently, for every net
(xα)α∈A in F , the fact that xα ↓ 0 in F should imply that xα ↓ 0 in E. It is immediate from
the latter criterion that ideals are regular vector sublattices. It is also true that order dense
vector sublattices are regular vector sublattices; see [6, Theorem 1.23], for example.

Let (xα)α∈A be a net in a vector lattice E, and let x ∈ E. We say that (xα) is unbounded
order convergent to x in E (denoted by xα

uo
−→ x) when |xα − x | ∧ y

o
−→ 0 in E for all y ∈
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E+. Order convergence implies unbounded order convergence to the same limit. For order
bounded nets, the two notions coincide. 2

We shall repeatedly refer to the following collection of results; see [28, Theorem 2.8,
Corollary 2.12, and Theorem 3.2].

Theorem 2.2.2. Let E be a vector lattice, and let F be a vector sublattice of E. Take a net
(xα)α∈A in F.
(1) Suppose that F is order dense and majorising in E. Then xα

o
−→ 0 in F if and only if xα

o
−→ 0

in E.
(2) Suppose that F is a regular vector sublattice of E and that (xα)α∈A is order bounded in F.

Then xα
o
−→ 0 in F if and only if xα

o
−→ 0 in E.

(3) The following are equivalent:
(a) F is a regular vector sublattice of E;
(b) for every net (xα)α∈A in F, the fact that xα

uo
−→ 0 in F implies that xα

uo
−→ 0 in E;

(c) for every net (xα)α∈A in F, xα
uo
−→ 0 in F if and only if xα

uo
−→ 0 in E.

In the sequel of this paper, we shall encounter restrictions of order continuous linear
functionals on vector lattices to vector sublattices. For this, we include the following result.
It is based on a theorem of Veksler’s. It contains quite a bit more than we shall actually
need, but we use the opportunity to present the results in it, and its fourth and fifth parts
in particular.

Theorem 2.2.3. Let E be a vector lattice, let F be a vector sublattice of E, and let G be a
Dedekind complete vector lattice. Take T ∈ Loc(E, G).
(1) Suppose that F is a regular vector sublattice of E. Then the restriction T |F : F → G of T

to F is order continuous.
(2) Suppose that F is a regular sublattice of E. WhenLoc(E, G) separates the points of E, then
Loc(F, G) separates the points of F.

(3) Suppose that F is an order dense vector sublattice of E. Then the restriction map T 7→ T |F
is a positive linear injection from Loc(E, G) into Loc(F, G).

Suppose that F is an order dense and majorising vector sublattice of E. Then:
(4) the restriction map T 7→ T |F is a lattice isomorphism between Loc(E, G) and Loc(F, G);
(5) Loc(E, G) separates the points of E if and only if Loc(F, G) separates the points of F.

Proof. Part (1) is clear, and then so is part (2).
It is evident from part(1) thatLoc(F, G) separates the points of F when Loc(E, G) sepa-

rates the points of E.
Suppose that F is an order dense (hence regular) vector sublattice of E and that T ∈

Loc(E, G) is such that T |F = 0. Take x ∈ E+. Then { y ∈ F : 0 ≤ y ≤ x } ↑ x in E. Since
T |F = 0, the order continuity of T on E then implies that T x = 0. Hence T = 0, and we
conclude that the restriction map T 7→ T |F is a positive linear injection from Loc(E, G) into
Loc(F, G).

2Although we shall not need this, it would be less than satisfactory not to mention here that the uo-
continuous dual of a vector lattice (defined in the obvious way) has a very concrete description, and is often
trivial. According to [27, Proposition 2.2], it is the linear span of the coordinate functionals corresponding to
atoms.
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Suppose that F is order dense and majorising in E.
Take S ∈ Loc(F, G). In that case, according to a result of Veksler’s (see [7, Theo-

rem 1.65]), each of S+ and S− can be extended to a positive order continuous operator
from E into G. Hence S itself can be extended to an order continuous operator Sext from E
into G. By what we have already observed in part (3), such an order continuous extension
is unique, and we conclude from this that the map S 7→ Sext is a positive linear injection
from Loc(F, G) into Loc(E, G). It is clear that the extension and restriction maps between
Loc(E, G) and Loc(F, G) are each other’s inverses. We conclude that the restriction map
T 7→ T |F is a bi-positive linear bijection between Loc(E, G) and Loc(F, G). Hence it is a
lattice isomorphism, as required.

One direction of the equivalence in part (5) is clear from part (2). For the converse
direction, suppose that Loc(F, G) separates the points of F . Take x ∈ E such that T x = 0
for all T ∈ Loc(E, G). Since Loc(E, G) is an ideal of Lr(E, F), Proposition 2.2.1 shows that
T |x | = 0 for all T ∈ Loc(E, G). Suppose that x 6= 0. Then there exists a y ∈ F such that
0< y ≤ |x |, and we have T y = 0 for all positive T ∈ Loc(E, G), hence for all T ∈ Loc(E, G).
In view of part (4), this is the same as saying that S y = 0 for all S ∈ Loc(F, G). Our
assumption yields that y = 0; this contradiction shows that we must have x = 0.

2.2.2 Topologies on vector lattices

When E is a vector space, a linear topology on E is a (not necessarily Hausdorff) topology
that provides E with the structure of a topological vector space. When E is a vector lattice, a
locally solid linear topology on E is a linear topology on E such that there exists a base of (not
necessarily open) neighbourhoods of 0 that are solid subsets of E. For the general theory
of locally solid linear topologies on vector lattices we refer to [6]. A locally solid linear
topology on E that is also a locally convex linear topology is a locally convex-solid linear
topology. In that case, there exists a base of neighbourhoods of 0 that consists of absorbing,
closed, convex, and solid subsets of E; see [6, p. 59].

When E is a vector lattice, a locally solid additive topology on E is a topology that provides
the additive group E with the structure of a (not necessarily Hausdorff) topological group,
such that there exists a base of (not necessarily open) neighbourhoods of 0 that are solid
subsets of E.

Let E be a vector lattice. We say that order convergence in E is topological when there
exists a (evidently unique) topology on E such that its convergent nets are precisely the
order convergent nets, with preservation of limits. It follows from the properties of order
convergence that such a topology is automatically a Hausdorff linear topology. Likewise,
unbounded order convergence in E is topological when there exists a topology on E such
that its convergent nets are precisely the nets that are unbounded order convergent, with
preservation of limits. Such a topology is again unique, and automatically a Hausdorff linear
topology.

A topology τ on a vector lattice E is an o-Lebesgue topology when it is a (not necessarily
Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A in E and x ∈ E, the
fact that xα

o
−→ x in E implies that xα

τ
−→ x . Equivalently, the fact that xα

o
−→ 0 in E should

imply that xα
τ
−→ 0. A vector lattice need not admit a Hausdorff o-Lebesgue topology. It can
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be shown, see [6, Example 3.2], that C([0,1]) does not even admit a Hausdorff locally solid
linear topology such that sequential order convergence implies topological convergence.

A topology τ on a vector lattice E is a uo-Lebesgue topology when it is a (not necessarily
Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A in E and x ∈ E,
the fact that xα

uo
−→ x in E implies that xα

τ
−→ x . Equivalently, the fact that xα

uo
−→ 0 in E

should imply that xα
τ
−→ 0. Since order convergence implies unbounded order convergence,

a uo-Lebesgue topology is an o-Lebesgue topology.
The following fundamental facts are from [11, Proposition 3.2, 3.4, and 6.2, and Corol-

lary 6.3] and [44, Theorems 5.5, 5.9, and 6.4].

Theorem 2.2.4 (Conradie and Taylor). Let E be a vector lattice. Then the following are
equivalent:
(1) E admits a Hausdorff o-Lebesgue topology;
(2) E admits a Hausdorff uo-Lebesgue topology;
(3) the partially ordered set of all Hausdorff locally solid linear topologies on E has a minimal

element.
When this is the case, the topologies in the parts (2) and (3) are both unique, they coincide,
and they are the smallest Hausdorff o-Lebesgue topology on E.

When E admits a Hausdorff uo-Lebesgue topology, we shall denote the unique such
topology by bτE . In [11], it is denoted by τm. For a given vector lattice, there may be several
ways to obtain a Hausdorff uo-Lebesgue topology on it. This can then give criteria for the
convergence of nets in the common resulting topology that are apparently equivalent, but
not always immediately obviously so. See Remark 2.6.4 for this, for example.

Remark 2.2.5. Some caution is necessary when consulting the literature on minimal Haus-
dorff locally solid linear topologies because in [6, Definition 7.64] such a topology is defined
as what would usually be called a smallest Hausdorff locally solid linear topologies. When
a vector lattice E admits a complete metrisable o-Lebesgue topology, such as a Banach lat-
tice with an order continuous norm, then it admits a smallest (in the usual sense of the
word) Hausdorff locally solid linear topology; see [6, Theorem 7.65]. Combining this with
Theorem 2.2.4, we see that E then admits a (necessarily unique) Hausdorff uo-Lebesgue
topology bτE , and that bτE is then not just the smallest Hausdorff o-Lebesgue topology, but
even the smallest Hausdorff locally solid linear topology on E.

2.3 Unbounded topologies generated by topologies on ideals

We shall now describe how topologies ‘of unbounded type’ on vector lattices can be ob-
tained from topologies on ideals. There are already several constructions in this vein and
accompanying results in the literature; see [11, 21, 32, 44], for example. In the following
result, we carry out such a construction in what appears to be the most general possible
context. Starting from a locally solid (not necessarily linear or Hausdorff) additive topology
on an ideal F of a vector lattice E—which need not be the restriction of a global locally
solid additive topology on E—and a non-empty subset of F , we define an ‘unbounded’ lo-
cally solid additive topology on E. We give necessary and sufficient conditions for this new
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topology on E to be Hausdorff, and also for it to be a linear topology. Various known results
in more special cases can then be understood from the general theorem, as will be discussed
in Examples 2.3.8 to 2.3.12, below.

The subset S figuring in this construction can be replaced by the ideal that it generates
without altering the result. Although it may conceptually be more natural to work with
ideals than with subsets, working with arbitrary subsets has the advantage of keeping an
eye on a small number of presumably relatively easily manageable ‘test elements’. It is for
this reason that we carry this along to later results; see also Remark 2.4.4, below. The
convenience of this approach will become apparent in the proof of Theorem 2.6.1.

Theorem 2.3.1. Let E be a vector lattice, let F be an ideal of E, and let τF be a (not necessarily
Hausdorff) locally solid additive topology on F. Take a non-empty subset S of F.

There exists a unique (possibly non-Hausdorff) additive topology uSτF on E such that, for

a net (xα)α∈A in E, xα
uSτF−−→ 0 in E if and only if |xα| ∧ |s|

τF−→ 0 in F for all s ∈ S.

Let IS ⊆ F be the ideal generated by S in E. For a net (xα)α∈A in E, xα
uSτF−−→ 0 in E if and

only if |xα| ∧ |y|
τF−→ 0 in F for all y ∈ IS .

Furthermore:
(1) the inclusion map from F into E is τF –uSτF -continuous;
(2) the topology uSτF on E is a locally solid additive topology;
(3) the following are equivalent:

(a) uSτF is a Hausdorff topology on E;
(b) τF is a Hausdorff topology on F and IS is order dense in E;

(4) the following are equivalent:
(i) for all x ∈ E and s ∈ S,

|εx | ∧ |s|
τF−→ 0 (2.1)

in F as ε→ 0 in R;
(ii) for all x ∈ E and y ∈ IS , |εx | ∧ |y|

τF−→ 0 in F as ε→ 0 in R;
(iii) uSτF is a (possibly non-Hausdorff) linear topology on E.

Proof. Suppose that τF is a (not necessarily Hausdorff) locally solid additive topology on F .
The uniqueness of uSτF is clear because the nets converging to 0 and then, by translation

invariance of the topology, to arbitrary points of E are prescribed.
We turn to the existence of such a topology uSτF . Take a neighbourhood base {Uλ}λ∈Λ

of zero in F for τF consisting of solid subsets of F . For y ∈ IS and λ ∈ Λ, set

Vλ,y := { x ∈ E : |x | ∧ |y| ∈ Uλ }. (2.2)

The Vλ,y are solid subsets of E since F is an ideal of E and the Uλ are solid subsets of F . Set

N0 := {Vλ,y : λ ∈ Λ, y ∈ IS }. (2.3)

We claim that N0 is a base of neighbourhoods of zero for a topology on E, which we shall
already denote by uSτF , that provides the additive group E with the structure of a topological
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group. Necessary and sufficient conditions on N0 for this can be found in [31, Theorem 3
on p.46]; we now verify these.

Take Vλ1,y1
, Vλ2,y2

∈ N0. There exists a λ3 ∈ Λ such that Uλ3
⊆ Uλ1

∩ Uλ2
. Take x ∈

Vλ3,|y1|∨|y2|. Then
|x | ∧ |y1| ≤ |x | ∧ (|y1| ∨ |y2|) ∈ Uλ3

⊆ Uλ1
.

Since F is an ideal of E and Uλ1
is a solid subset of F , this implies that |x | ∧ |y1| ∈ Uλ1

, so
that x ∈ Vλ1,y1

. Likewise, x ∈ Vλ2,y2
, and we see that Vλ3,|y1|∨|y2| ⊆ Vλ1,y1

∩ Vλ2,y2
.

It is evident that Vλ,y = −Vλ,y for all Vλ,y ∈ N0.
Take Vλ,y ∈ N0. There exists a µ ∈ Λ such that Uµ+Uµ ⊆ Uλ. Then, for all x1, x2 ∈ Vµ,y ,

we have
|x1 + x2| ∧ |y| ≤ |x1| ∧ |y|+ |x2| ∧ |y| ∈ Uµ + Uµ ⊆ Uλ.

Since F is an ideal of E and Uλ is a solid subset of F , this implies that |x1 + x2| ∧ |y| ∈ Uλ,
so that x1 + x2 ∈ Vλ,y . Hence Vµ,y + Vµ,y ⊆ Vλ,y .

An appeal to [31, p. 46, Theorem 3] now establishes our claim.

It is clear from the definition of uSτF that, for a net (xα)α∈A in E, xα
uSτF−−→ 0 in E if and

only if |xα| ∧ |y|
τF−→ 0 in F for all y ∈ IS .

Certainly, the fact that |xα| ∧ |y|
τF−→ 0 in F for all y ∈ IS implies that |xα| ∧ |s|

τF−→ 0 in

F for all s ∈ S. Conversely, suppose that (xα)α∈A is a net in E such that |xα| ∧ |s|
τF−→ 0 in

F for all s ∈ S. Take y ∈ IS . There exist s1, . . . , sn ∈ S and integers k1, . . . , kn ≥ 1 such that
|y| ≤

∑n
i=1 ki|si|. Hence |xα| ∧ |y| ≤

∑n
i=1 ki (|xα| ∧ |si|). Since τF is a locally solid additive

topology on F , this implies that |xα| ∧ |y|
τF−→ 0 in F .

We turn to the parts (1)–(4).
Since F is an ideal of E and the Uλ are solid subsets of F , we have Uλ ⊆ Vλ,y for all λ ∈ Λ

and y ∈ IS . This implies that the inclusion map from F into E is τF –uSτF -continuous.
The topology uSτF is a locally solid additive topology on E by construction.
Suppose that uSτF is a Hausdorff topology on E. Then so is the topology it induces on F ,

which is weaker than τF . Hence τF is a Hausdorff topology on F . Take x ∈ E with x > 0.
Then there exists a Vλ,y ∈ N0 with x /∈ Vλ,y . In particular, x∧|y| 6= 0. Hence 0< x∧|y| ≤ x .
Since x ∧ |y| ∈ IS , we see that IS is order dense in E.

Suppose, conversely, that τF is a Hausdorff topology on F and that IS is order dense in
E. Take x 6= 0 in E. There exists a y ∈ IS with 0 < y ≤ |x |. Pick Uλ0

∈ {Uλ}λ∈Λ such that
y /∈ Uλ0

. Then |x | ∧ |y| = y /∈ Uλ0
, so that x /∈ Vλ0,y . Hence

⋂

V∈N0
V = {0}. By [31, p. 48,

Theorem 4], uSτF is a Hausdorff additive topology on the topological group E.
We shall now verify the equivalence of the parts (i)–(iii) of (4).
We prove that (i) implies (ii). Take x ∈ E and y ∈ IS . There exist s1, . . . , sn ∈ S and

integers k1, . . . , kn ≥ 1 such that |y| ≤
∑n

i=1 ki|si|, and it follows from this that |εx | ∧ |y| ≤
∑n

i=1 ki (|εx | ∧ |si|) for all ε ∈ R. Since τF is a locally solid additive topology on F , it follows

that |εx | ∧ |y|
τF−→ 0 in F as ε→ 0 in R.

We prove that (ii) implies (iii). Fixλ ∈ Λ and y ∈ IS , and take x ∈ E. Since |εx |∧|y|
τF−→ 0

in F as ε→ 0 in R, there exists a δ > 0 such that |εx | ∧ |y| ∈ Uλ whenever |ε| ≤ δ. That is,
εx ∈ Vλ,y whenever |ε| ≤ δ. This implies that Vλ,y is absorbing. Furthermore, since Vλ,y is
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a solid subset of E, it is clear that εx ∈ Vλ,y whenever x ∈ Vλ,y and ε ∈ [−1,1]. Hence Vλ,y
is balanced. Then [5, Theorem 5.6] implies that uSτF is a linear topology on E.

We prove that (iii) implies (i). Take x ∈ E. Then εx
uSτF−−→ 0 in E as ε → 0 in R. By

construction, this implies (and is, in fact, equivalent to) the fact that |εx | ∧ |s|
τF−→ 0 in F for

all s ∈ S.
This concludes the proof of the equivalence of the three parts of (4). The proof of the

theorem is now complete.

Definition 2.3.2. The topology uSτF in Theorem 2.3.1 is called the unbounded topology on
E that is generated by τF via S.

Remark 2.3.3. It is clear from the two equivalent criteria in Theorem 2.3.1 for a net in
E to be uSτF -convergent to zero that uSτF = uIS

τF for every non-empty subset S of F .
Consequently, uS1

τF = uS2
τF whenever S1, S2 are non-empty subsets of F such that IS1

= IS2
.

Remark 2.3.4. In Theorem 2.3.1, suppose that the locally solid additive topology F is the
restriction τE |F of a locally solid additive topology on E. It is then easy to see that uS(τE |F ) =
uSτE for every non-empty subset S of F .

Remark 2.3.5. In Theorem 2.3.1, and also in the remainder of this paper, the topologies
of interest are characterised by their convergent nets. It should be noted, however, that in
equations (2.2) and (2.3) the proof of Theorem 2.3.1 provides an explicit neighbourhood
base of zero in E for uSτF , in terms of a neighbourhood base of zero in F for τF and the
ideal IS . Suppose, for example that τF is a (possibly non-Hausdorff) locally convex linear
topology on F that is generated by a family {ργ : γ ∈ Γ } of semi-norms on F , as will be the
case in Section 2.5. Then the collection of subsets of E of the form

{ x ∈ E : ρi(|x | ∧ |y|)< ε for ρ1, . . .ρn ∈ Γ },

where y ∈ IS , n≥ 1, and ε > 0 are arbitrary, is a neighbourhood base of zero in E for uSτF .

Our next result is concerned with iterating the construction in Theorem 2.3.1. It gener-
alises what is in [44, p. 997].

Proposition 2.3.6. Let E be a vector lattice, let F1 be an ideal of E, and let τF1
be a (not

necessarily Hausdorff) locally solid additive topology on F1. Take a non-empty subset S1 of F1,
and consider the unbounded topology uS1

τF1
on E that is generated by τF1

via S1. Let F2 be an
ideal of E, and let

�

uS1
τF1

�

|F2
denote the topology on F2 that is induced on F2 by uS1

τF1
. Then

�

uS1
τF1

�

|F2
is a locally solid additive topology on F2. Take a non-empty subset S2 of F2. Then

uS2

��

uS1
τF1

�

|F2

�

= uIS1
∩IS2
τF1

. In particular, when S is a non-empty subset of F1 ∩ F2, then

uS

��

uSτF1

�

|F2

�

= uSτF1
.

Proof. It is clear from Theorem 2.3.1 that
�

uS1
τF1

�

|F2
is a locally solid additive topology on

F2. Let (xα)α∈A be a net in E. Then we have the following chain of equivalent statements:

xα
uS2

��

uS1
τF1

�

|F2

�

−−−−−−−−−−→ 0 in E
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⇐⇒ |xα| ∧ |y2|

�

uS1
τF1

�

|F2
−−−−−−−→ 0 in F2 for all y2 ∈ IS2

⇐⇒ |xα| ∧ |y2|
uS1
τF1−−−−→ 0 in E for all y2 ∈ IS2

⇐⇒ |xα| ∧ |y2| ∧ |y1|
τF1−−→ 0 in F1 for all y1 ∈ IS1

and y2 ∈ IS2

⇐⇒ |xα| ∧ |y|
τF1−−→ 0 in F1 for all y ∈ IS1

∩ IS2

⇐⇒ xα
uIS1∩IS2

τF1
−−−−−−→ 0 in E.

Hence uS2

��

uS1
τF1

�

|F2

�

= uIS1
∩IS2
τF1

.

Remark 2.3.7. In Proposition 2.3.6, suppose that τF1
is a (not necessarily Hausdorff) locally

solid additive topology on F1 such that, for all x ∈ E and s ∈ S1, |εx | ∧ |s|
τF1−−→ 0 in F1 as

ε → 0 in R. It is then clear from Theorem 2.3.1 that uS1
τF1

,
�

uS1
τF1

�

|F2
, and uIS1

∩IS2
τF1

are
(possibly non-Hausdorff) locally solid linear topologies on E, F2, and E, respectively.

We shall now explain how Theorem 2.3.1 relates to various results already in the litera-
ture.

Example 2.3.8. When F = E and τE is a locally solid linear topology on F = E, the condition
in equation (2.1) is automatically satisfied for any non-empty subset S of F = E. According
to Theorem 2.3.1, uEτE is a locally solid linear topology on E that is Hausdorff if and only
if τE is Hausdorff; this is [44, Theorem 2.3]. Furthermore, when A is an ideal of E, uAτE is
a locally solid linear topology on E that is Hausdorff if and only if τE is Hausdorff and A is
order dense in E; this is [44, Propositions 9.3 and 9.4].

Example 2.3.9. Let E be a Banach lattice. In Theorem 2.3.1, we take F = E, for τF we
take the norm topology τE on F = E, and for S ⊆ F we take S = F = E. Then the condition
in equation (2.1) is satisfied. According to Theorem 2.3.1, uEτE is a Hausdorff locally solid

linear topology on E and, for a net (xα)α∈A in E, xα
uEτE−−→ 0 if and only if ‖|xα| ∧ |y|‖ → 0

for all y ∈ E. In [21], this type of convergence is called unbounded norm convergence, or
un-convergence for short. It was already observed in [21, Section 7] that it is topological; in
[32, p. 746], uFτF is then called the un-topology.

Example 2.3.10. Let E be a vector lattice, and let F be an ideal of E that is a normed vector
lattice. In Theorem 2.3.1, we take for τF the norm topology on F , and for S ⊆ F we take
S = F . According to Theorem 2.3.1, uFτF is a (possibly non-Hausdorff) additive topology

on E and, for a net (xα)α∈A in E, xα
uFτF−−→ 0 if and only if ‖|xα| ∧ |y|‖ → 0 for all y ∈ F .

This type of convergence is called un-convergence with respect to X in [32]. It was already
observed that it is topological in [32, p. 747], where uFτF is called the un-topology on E
induced by F .

In [32, Example 1.3], it is shown that uFτF can fail to be a Hausdorff topology on E.
Since τF is a Hausdorff topology on F , Theorem 2.3.1 shows that the pertinent ideal F in
[32, Example 1.3] must fail to be order dense in E; this is indeed easily seen to be the case.
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Theorem 2.3.1 implies that uFτF is Hausdorff if and only if F is order dense in F ; this is [32,
Proposition 1.4].

In [32, Example 1.5], it is shown that uFτF can fail to be a linear topology on E. Accord-
ing to Theorem 2.3.1, the condition in equation (2.1) must fail to be satisfied in the context
of [32, Example 1.5]; this is indeed easily seen to be the case. Theorem 2.3.1 shows that
uFτF always provides E with an additive topology; this was also noted in [32, p. 748] in
that particular context.

In [32, p. 748], the authors observe that uFτF is a locally solid linear topology on the
vector lattice E whenever E is a normed lattice and the norm on E extends that on F , and
also whenever the norm on F is order continuous. Both facts follow from Theorem 2.3.1
because equation (2.1) is then satisfied. This is clear when E is a normed lattice and the
norm on E extends that on F . Suppose that the norm on F is order continuous. Take x ∈ E
and y ∈ F . Then |εx | ∧ |y|

o
−→ 0 in E as ε → 0. Since the net |εx | ∧ |y| is order bounded

in the ideal F of E, which is a regular vector sublattice of E, Theorem 2.2.2 implies that

|εx | ∧ |y|
o
−→ 0 in F , and then |εx | ∧ |y|

τF−→ 0 as ε→ 0 by the order continuity of the norm
on F .

Example 2.3.11. For a vector lattice E, we let |σ|(E, Es) denote its absolute weak topology;
the definition of this locally solid linear topology will be recalled in Section 2.5. Taking E =
F = S in Theorem 2.3.1 yields the so-called unbounded absolute weak topology uE |σ|(E, Es)
on E. It is a locally solid additive topology on E that is Hausdorff if and only if Es separates
the points of E. When E is a Banach lattice, uE |σ|(E, Es) is a Hausdorff locally solid linear
topology on E. It is studied in [52].

Example 2.3.12. In [11, p. 290], a construction is given to obtain a locally solid linear
topology on a vector lattice E from a locally solid linear topology on an ideal F of E. This is
done using Riesz pseudo-norms, rather than by working with neighbourhood bases of zero
as we have done. The key ingredient is to start with a Riesz pseudo-norm p on F , take
an element u of F+, and introduce a map pu : E → R by setting pu(x) := p(|x | ∧ u) for
x ∈ E. It is then remarked that pu is a Riesz pseudo-norm on E. This need not always be the
case, however. By way of counter-example, take for E the vector lattice of all real-valued
functions on R, and for F the ideal of E consisting of all bounded functions on R. For p,
we take the supremum norm on F . For u ∈ F+, we choose the constant function 1. We
define x ∈ E by setting x(t) := t for t ∈ R. Then pu(λx) = ‖|λx | ∧ u‖ = 1 for all non-zero
λ ∈ R, whereas we should have that limλ→0 pu(λx) = 0. This implies that the topologies on
E that are thus constructed, although locally solid additive topologies, need not be linear
topologies. This ‘pathology’ is similar to that in [32, Example 1.5] that was mentioned
above; our example here is also quite similar to that in [32, Example 1.5]. Fortunately, in
the continuation of the argument in [11], p is taken to be a Riesz pseudo-norm on F that is
continuous with respect to a Hausdorff o-Lebesgue topology τF on F . In this context, pu is a
Riesz pseudo-norm on E. Indeed, since F , being an ideal of E, is a regular vector sublattice
of E, Theorem 2.2.2 easily yields that |λx |∧u

o
−→ 0 in F as λ→ 0. Since τF is an o-Lebesgue

topology on E, we have |λx |∧u
τF−→ 0 in F as λ→ 0, and then the continuity of p on F yields

that pu(λx)→ 0 as λ→ 0. Thus the construction in [11] proceeds correctly after all. The
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results of our systematic investigation with minimal hypotheses in Theorem 2.3.1, however,
are more comprehensive than those in [11].

2.4 Hausdorff uo-Lebesgue topologies: going up and going down

In this section, we investigate how, via a going-up-going-down construction, the existence
of a Hausdorff o-Lebesgue topology on an order dense ideal of a vector lattice E implies that
every regular vector sublattice of E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology.

We start by going up.

Proposition 2.4.1. Let E be a vector lattice, and let F be an ideal of E. Suppose that F admits
an o-Lebesgue topology τF . Choose a non-empty subset S of F. Then uSτF is a uo-Lebesgue
topology on E. It is a (necessarily unique) Hausdorff uo-Lebesgue topology on E if and only if
τF is a Hausdorff topology on F and the ideal IS that is generated by S is order dense in E.

Proof. We know from Theorem 2.3.1 that uSτF is a locally solid additive topology on E. In
order to see that it is a linear topology on E, we verify the condition in equation (2.1). Take
x in E and s in S. Then |εx | ∧ |s|

o
−→ 0 in E as ε→ 0 in R. Since F , being in ideal of E, is a

regular vector sublattice of E, Theorem 2.2.2 shows that |εx | ∧ |s|
o
−→ 0 in F . Since τF is an

o-Lebesgue topology on F , this implies that |εx | ∧ |s|
τF−→ 0 in F as ε→ 0 in R, as required.

To conclude the proof, suppose that (xα)α∈A is a net in E such that xα
uo
−→ 0 in E. Take s ∈

S. Then |xα|∧ |s|
o
−→ 0 in E. Again, since F is a regular vector sublattice of E, Theorem 2.2.2

shows that |xα| ∧ |s|
o
−→ 0 in F . Since τF is an o-Lebesgue topology on F , this implies that

|xα| ∧ |s|
τF−→ 0 in F . It now follows from Theorem 2.3.1 that xα

uSτF−−→ 0 in E, as required.
The uniqueness statement is clear from Theorem 2.2.4.

The combination of Theorem 2.3.1 and Proposition 2.4.1 immediately yields the follow-
ing.

Theorem 2.4.2. Let E be a vector lattice. Suppose that E has an order dense ideal F that
admits a Hausdorff o-Lebesgue topology. Then E admits a (necessarily unique) Hausdorff uo-
Lebesgue topology bτE . This topology bτE is equal to uSτF for every subset S of F such that the
ideal IS ⊆ F that is generated by S is order dense in E.

For a net (xα)α∈A in E, the following are equivalent:

(1) xα
bτE−→ 0 in E;

(2) |xα| ∧ |s|
τF−→ 0 in F for all s ∈ S;

(3) |xα| ∧ |y|
τF−→ 0 in F for all y ∈ F.

Remark 2.4.3. For the case in Theorem 2.4.2 where S = F and τF is the restriction of
a Hausdorff o-Lebesgue topology on E, it was already established in [44, Theorem 9.6]
that uFτF is a Hausdorff uo-Lebesgue topology on E. It is, therefore, of some importance
to point out that not every Hausdorff o-Lebesgue topology on an order dense ideal is the
restriction of a Hausdorff o-Lebesgue topology on the enveloping vector lattice. By way
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of example, consider the order dense ideal c0 of `∞. Since the supremum norm on c0 is
order continuous, the usual norm topology τc0

on c0 is a Hausdorff o-Lebesgue topology.
However, there does not even exist a possibly non-Hausdorff o-Lebesgue topology τ`∞ on
`∞ that extends τc0

. In order to see this, consider the sequence of standard unit vectors

(e)∞n=1 in `∞. We have en
o
−→ 0 in `∞ , which would imply that en

τ`∞−−→ 0 in `∞. Since τ`∞
extends τc0

, we would have that en → 0 in norm. This contradiction shows that such an
extension does not exist.

Although the terminology is not used as such, the fact that uFτF is a Hausdorff uo-Lebes-
gue topology on E is implicit in the construction in [11, p. 290].

Remark 2.4.4. We are not aware of a reference where it is noted, as in part (2), that con-
vergence of a net in the Hausdorff uo-Lebesgue topology on E can be established by using
a (presumably small and manageable) subset S of F instead of the full ideal F . This non-
trivial fact, which relies on the uniqueness of a Hausdorff uo-Lebesgue topology, appears to
be of some practical value.

In view of the uniqueness of a Hausdorff uo-Lebesgue topology (see Theorem 2.2.4), the
following is now clear from Theorem 2.4.2.

Corollary 2.4.5. Let E be a vector lattice, and suppose that E has order dense ideals F1 and
F2, each of which admits a Hausdorff o-Lebesgue topology. For i = 1,2, choose a Hausdorff o-
Lebesgue topology τFi

on Fi , and choose a non-empty subset Si of Fi such that the ideal ISi
⊆ Fi

that is generated by Si in E is order dense in E. Then uS1
τF1

and uS2
τF2

are both equal to the
(necessarily unique) uo-Lebesgue topology topology bτE on E.

Remark 2.4.6. The case in Corollary 2.4.5 where S1 = F1 and S2 = F2 is [11, Proposi-
tion 3.2].

The case where, for i = 1, 2, Si = Fi and τFi
is the restriction to Fi of a Hausdorff o-Lebes-

gue topology τi on E, is a part of [44, Theorem 9.6]. Note, however, that our underlying
proof in Proposition 2.4.1 that uSτF is a uo-Lebesgue topology is direct, whereas in the proof
of [44, Theorem 9.6] the identification of a Hausdorff uo-Lebesgue topology as a minimal
Hausdorff locally solid topology as in Theorem 2.2.4 is used.

Complementing the preceding going-up results, we cite the following going-down result;
see [44, Proposition 5.12].

Proposition 2.4.7 (Taylor). Suppose that the vector lattice E admits a (necessarily unique)
Hausdorff uo-Lebesgue topology bτE . Take a vector sublattice F of E. Then F is a regular vector
sublattice of E if and only if the restriction bτE |F of bτE to F is a (necessarily unique) Hausdorff
uo-Lebesgue topology on F.

A variation on this theme, with a wider range of topologies to use for testing the regu-
larity of a vector sublattice, is the following.

Proposition 2.4.8. Suppose that the vector lattice E admits a Hausdorff o-Lebesgue topology
τE . Take a vector sublattice F of E. Then F is a regular vector sublattice of E if and only if the
restriction τE |F of τE to F is a Hausdorff o-Lebesgue topology on F.
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Proof. Once one recalls that, by definition, order convergence of a net to 0 in the regu-
lar vector sublattice F of E implies order convergence of the net to 0 in E, the proof is a
straightforward minor adaptation of that of [44, Proposition 5.12].

We now have the following overview theorem concerning Hausdorff o-Lebesgue topolo-
gies and Hausdorff uo-Lebesgue topologies on a vector lattice and on its order dense ideals.
It is easily established by recalling that a uo-Lebesgue topology is an o-Lebesgue topology,
that an ideal is a regular vector sublattice, and by using Theorem 2.4.2, Proposition 2.4.7,
and Proposition 2.4.8.

Theorem 2.4.9. Let E be a vector lattice, and let F be an order dense ideal of E.
(1) Suppose that E admits a Hausdorff o-Lebesgue topology τE . Then the restricted topology

τE |F is a Hausdorff o-Lebesgue topology on E.
(2) Suppose that E admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτE . Then

the restricted topology bτE |F is a (necessarily unique) Hausdorff uo-Lebesgue topology on
F.

(3) The following are equivalent:
(a) F admits a Hausdorff o-Lebesgue topology;
(b) F admits a Hausdorff uo-Lebesgue topology;
(c) E admits a Hausdorff o-Lebesgue topology;
(d) E admits a Hausdorff uo-Lebesgue topology.

In that case, the unique uo-Lebesgue topology bτE on E equals uSτF for every Hausdorff
o-Lebesgue topology on F and every subset S of F such that the ideal IS ⊆ F is order dense
in E, and the following are equivalent:

(i) xα
bτE−→ 0 in E;

(ii) |xα| ∧ |s|
τF−→ 0 in F for all s ∈ S;

(iii) |xα| ∧ |y|
τF−→ 0 in F for all y ∈ F.

We conclude this section with a short discussion of Banach lattices with order continuous
norms. Evidently, the norm topologies on such Banach lattices are Hausdorff o-Lebesgue
topologies. As already noted in [44, p. 993], Theorem 2.4.2 allows one to identify the so-
called un-topologies (see [21, Section 7] and [32, p. 746]) on such lattices as the Hausdorff
uo-Lebesgue topologies that these spaces apparently admit. Consequently, we have the
following result. The case where S = E can be found in [44, p. 993].

Proposition 2.4.10. Let E be a Banach lattice with an order continuous norm and norm
topology τE . Then E admits a (necessarily unique) uo-Lebesgue topology.

Choose a subset S of E such that the ideal IS that is generated by S in E is order dense in
E. Then:
(1) uSτE is the uo-Lebesgue topology bτE of E;

(2) when (xα)α∈A is a net in E, then xα
bτE−→ 0 in E if and only if ‖|xα|∧ |s|‖ −→ 0 for all s ∈ S;

equivalently, if and only if ‖|xα| ∧ |y|‖ −→ 0 for all y ∈ E.

There is an alternative reason why Banach lattices with an order continuous norms admit
Hausdorff uo-Lebesgue topologies, and this results in an alternative description of these
topologies; see Corollary 2.5.4, below.
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Finally, suppose that E is a vector lattice that has order dense ideals F1 and F2 that are
Banach lattices with order continuous norm topologies τF1

and τF2
, respectively. Then it is

immediate from Corollary 2.4.5 that E admits a Hausdorff uo-Lebesgue topology bτE , and
that uF1

τF1
and uF2

τF2
are both equal to bτE . As discussed in Example 2.3.10, this can, using

the terminology in [32], be rephrased as stating that F1 and F2 induce the same un-topology
on E. We have thus retrieved [32, Theorem 2.6].

2.5 uo-Lebesgue topologies generated by absolute weak topolo-
gies on order dense ideals

In this section, we shall be concerned with vector lattices having order dense ideals with
separating order continuous duals as a source for Hausdorff uo-Lebesgue topologies on the
vector lattices themselves.

We start by recapitulating some facts from [6, p. 63–64]. Let E be a vector lattice, and
let A be a non-empty subset of the order dual Es of E. For ϕ ∈ A, define the lattice semi-
norm ρϕ : E→ [0,∞) by setting ρϕ(x) := |ϕ|(|x |) for x ∈ E. Then the locally convex-solid
linear topology on E that is generated by the family {ρϕ : ϕ ∈ A} is called the absolute
weak topology generated by A on E; it is denoted by |σ|(E, A). With IA denoting the ideal
generated by A in Es, we have |σ|(E, A) = |σ|(E, IA). Using Proposition 2.2.1, one easily
concludes that |σ|(E, A) is Hausdorff if and only if IA separates the points of E. Although
we shall not use it, let us still remark that it is not difficult to see that a net (xα)α∈A in E
is |σ|(E, A)-convergent to zero if and only if ϕ(xα) −→ 0 uniformly for ϕ in each fixed order
interval of IA. Thus absolute weak topologies are more natural than is perhaps apparent
from their definition.

The following is now clear.

Lemma 2.5.1. Let E be a vector lattice, and let A be a non-empty subset of Esoc. Let IA denote
the ideal that is generated by A in Esoc. Then |σ|(E, A) = |σ|(E, IA) is an o-Lebesgue topology
on E that is even locally convex-solid. It is a Hausdorff topology if and only if IA separates the

points of E. When (xα)α∈A is a net in E, then xα
|σ|(E,A)
−−−−→ 0 in E if and only if |ϕ| (|xα|)→ 0

for all ϕ ∈ A; equivalently, if and only if |ϕ| (|xα|)→ 0 for all ϕ ∈ IA.

Now that Lemma 2.5.1 provides a whole class of vector lattices admitting Hausdorff o-
Lebesgue topologies, we can use these as input for Theorem 2.4.2. Taking the convergence
statements in Lemma 2.5.1 into account, we arrive at the following.

Theorem 2.5.2. Let E be a vector lattice. Suppose that E has an order dense ideal F such
that Fsoc separates the points of F. Then E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology bτE .

Choose a subset A of Fsoc such that the ideal IA that is generated by A in Fsoc separates the
points of F, and choose a subset S of F such that the ideal IS ⊆ F that is generated by S is order
dense in E. Then:
(1) uS|σ|(F, A) and uF |σ|(F, IA) are both equal to bτE;
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(2) for a net (xα)α∈A in E, xα
bτE−→ 0 in E if and only if |ϕ| (|xα| ∧ |s|)→ 0 for all ϕ ∈ A and

s ∈ S; equivalently, if and only if |ϕ| (|xα| ∧ |y|)→ 0 for all ϕ ∈ Fsoc and y ∈ F.

For the sake of completeness, we recall that a regular vector sublattice of a vector lattice
E as in the theorem also has a (necessarily unique) Hausdorff uo-Lebesgue topology, and
that this topology is the restriction of bτE to the vector sublattice.

Remark 2.5.3. As noted in Remark 2.3.5, one can give an explicit neighbourhood base at
zero for the topology bτE in Theorem 2.5.2.

For Banach lattices with order continuous norms, the order/norm dual consists of order
continuous linear functionals only. Hence we have the following result, which should be
compared to Proposition 2.4.10 where the same Hausdorff uo-Lebesgue topology bτE is also
identified as the un-topology.

Corollary 2.5.4. A Banach lattice E with an order continuous norm admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτE , namely uE |σ|(E, E∗).

The following gives a necessary condition for convergence in a Hausdorff uo-Lebesgue
topology. It is essential in the proof of Theorem 2.7.6, below.

Proposition 2.5.5. Let E be a vector lattice that admits a (necessarily unique) Hausdorff uo-

Lebesgue topology bτE , and let (xα)α∈A be a net in E such that xα
bτE−→ 0 in E. Take an ideal F of

E such that Fsoc separates the points of F. Then |ϕ|(|xα| ∧ |y|) −→ 0 for all ϕ ∈ Fsoc and y ∈ F.

Proof. Take ϕ ∈ Fsoc and y ∈ F . Since bτE is a locally solid topology, we have |x |α ∧ |y|
bτE−→ 0

in E. It follows from Proposition 2.4.7 that F has a (necessarily unique) Hausdorff uo-Lebes-

gue topology bτF and that |x |α ∧ |y|
bτF−→ 0. Now we apply Theorem 2.5.2 with E = F to see

that |ϕ|((|xα| ∧ |y|)∧ |y|) −→ 0.

We shall now consider the order dual Es of a vector lattice E. For x ∈ E, we set

ϕx(ϕ) := ϕ(x)

for ϕ ∈ Es. Then ϕx ∈ (Es)
s
oc, and the map ϕ : E → Es is a lattice homomorphism; see

[6, p. 43]. Since ϕ(E) already separates the points of Es, we see that (Es)soc separates the
points of Es.

We can now apply Theorem 2.5.2 twice. In both cases, we replace E with Es, and we
choose Es for both F and S. In the first application, we choose (Es)soc for A; in the second,
we choose ϕ(E). The result is as follows.

Corollary 2.5.6. Let E be a vector lattice. Then the order dual Es of E admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτEs .

Moreover:
(1) uEs |σ|(Es, (Es)soc) and uEs |σ|(Es, E) are both equal to bτEs;

(2) when (ϕα)α∈A is a net in Es, then ϕα
bτEs−−→ 0 in E if and only if |ξ| (|ϕα| ∧ |ϕ|)→ 0 for

all ξ ∈ (Es)soc and ϕ ∈ Es; equivalently, if and only if (|ϕα| ∧ |ϕ|)(|x |)→ 0 for all x ∈ E
and ϕ ∈ Es.
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Remark 2.5.7.
(1) As in the case of Theorem 2.5.2, Remark 2.3.5 shows how to give an explicit neighbour-

hood base at zero for the topology bτEs in Corollary 2.5.6.
(2) By Proposition 2.4.7, every regular sublattice of the order dual of a vector lattice also

admits a (necessarily unique) Hausdorff Lebesgue topology that can be described in
two ways. For an ideal, one of these descriptions is already in [44, Example 5.8].

(3) Corollary 2.5.6 shows that, in particular, the norm/order dual E∗ of a Banach lattice ad-
mits a (necessarily unique) Hausdorff uo-Lebesgue topology bτE∗ , namely the so-called
unbounded absolute weak ∗-topology uE∗ |σ|(E∗, E). This was already observed in [44,
Lemma 6.6].

2.6 Regular vector sublattices of L0(X ,Σ,µ) for semi-finite mea-
sures

Let (X ,Σ,µ) be a measure space, and write L0(X ,Σ,µ) for the vector lattice of all real-
valued Σ-measurable functions on X , with identification of two functions when they agree
µ-almost everywhere. In this section we show that, for semi-finite µ, every regular sublattice
of L0(X ,Σ,µ) admits a (necessarily unique) Hausdorff uo-Lebesgue topology, and that a net
converges in this topology if and only if it converges in measure on subsets of finite measure;
see Theorem 2.6.3, below.

For some regular sublattices of L0(X ,Σ,µ), it is quite obvious that they admit a Hausdorff
uo-Lebesgue topology. Recall that the spaces Lp(X ,Σ,µ) for p such that 1 ≤ p <∞ have
order continuous norms for all measures µ; see [5, Theorem 13.7], for example. Hence their
norm topologies are Hausdorff o-Lebesgue topologies, and then their un-topologies are the
Hausdorff uo-Lebesgue topologies on these spaces. Alternatively, one can observe that their
order continuous duals separate their points, and then also identify the Hausdorff uo-Lebes-
gue topologies on these spaces as the unbounded absolute weak topologies. In a similar vein,
when µ is σ-finite, every ideal of L0(X ,Σ,µ) that can be supplied with a lattice norm has a
separating order continuous dual. This result of Lozanovsky’s (see [2, Theorem 5.25], for
example) then implies that such a normed function space admits a Hausdorff uo-Lebesgue
topology.

How about the spaces Lp(X ,Σ,µ) for 0 ≤ p < 1? There is no norm to work with,
and it may well be the case that their order continuous duals are even trivial. Indeed,
when µ is atomless, then, according to a results of Day’s, the order continuous dual of
Lp(X ,Σ,µ) is trivial for 0 < p < 1; see [5, Theorem 13.31], for example. According to [51,
Exercise 25.2], the order continuous dual of L0(X ,Σ,µ) is trivial for every σ-finite measure
with the property that, for any measurable subset A such that 0< µ(A)<∞ and for any α
such that 0< α < µ(A), there exists a measurable subset A′ of A such that µ(A′) = α. Taking
[49, Exercise 10.12 on p. 67] into account, we see that, in particular, the order continuous
dual of L0(X ,Σ,µ) is trivial for all atomless σ-finite measures.

In spite of the failure of the two obvious approaches, it is still possible to show that all
spaces Lp(X ,Σ,µ) for 0 ≤ p < 1 admit Hausdorff uo-Lebesgue topologies, provided that
the measure is semi-finite. For such µ, this is even true for all regular vector sublattices of
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L0(X ,Σ,µ). This can be seen via the going-up-going-down approach from Section 2.4, and
we shall now elaborate on this. We start with a few preliminary remarks.

Recall that a measure space (X ,Σ,µ) is said to be semi-finite if, for any A ∈ Σ with
µ(A) =∞, there exists a measurable subset A′ of A such that 0 < µ(A′) <∞. Every σ-
finite measure is semi-finite. For an arbitrary measure µ and an arbitrary p such that 1 ≤
p <∞, it is easy to see that the ideal Lp(X ,Σ,µ) of L0(X ,Σ,µ) is order dense in L0(X ,Σ,µ)
if and only if µ is semi-finite. In that case, the ideal that is generated in L0(X ,Σ,µ) by the
subset S := {1A : A ∈ Σ has finite measure } of Lp(X ,Σ,µ) is obviously also order dense in
L0(X ,Σ,µ).

Let (X ,Σ,µ) be a measure space. Take f ∈ L0(X ,Σ,µ). Then a net ( fα)α∈A in L0(X ,Σ,µ)
converges to f in measure on subsets of finite measure when, for all A∈ Σ such that µ(A)<∞

and for all ε > 0, µ({ x ∈ A : | fα(x)− f (x)| ≥ ε }) −→ 0. In that case, we write fα
µ∗

−→ f , using
as asterisk to distinguish this convergence from the perhaps more usual global convergence
in measure.

The following is the core result of this section. We recall that, as already mentioned, the
spaces Lp(X ,Σ,µ) have order continuous norms for all measures µ and for all p such that
1≤ p <∞, so that their norm topologies are Hausdorff o-Lebesgue topologies.

Theorem 2.6.1. Let E = L0(X ,Σ,µ), where µ is a semi-finite measure. Then G admits a
(necessarily unique) Hausdorff uo-Lebesgue topology bτE .

Take a net ( fα)α∈A in E. Then the following are equivalent for every p such that 1≤ p <∞:

(1) fα
bτE−→ 0;

(2)
∫

X
| fα|p ∧ 1A dµ= ‖ | fα| ∧ |1A| ‖p

p −→ 0

for every measurable subset A of X with finite measure;
(3)

∫

X
| fα|p ∧ | f |p dµ= ‖ | fα| ∧ | f | ‖p

p −→ 0

for every f ∈ Lp(X ,Σ,µ);

(4) fα
µ∗

−→ f .

Proof. We know from the semi-finiteness of µ that, for p such that 1 ≤ p ≤∞, Lp(X ,Σ,µ)
is an order dense ideal of L0(X ,Σ,µ). Since Lp(X ,Σ,µ) admits a Hausdorff o-Lebesgue
topology when 1 ≤ p <∞, Theorem 2.4.2 shows that L0(X ,Σ,µ) admits a (necessarily
unique) Hausdorff uo-Lebesgue topology, and also that the statements in the parts (1), (2),
and (3) of the present theorem are equivalent for all such p.

We show that part (3) implies part (4). Take a measurable subset A of X with finite
measure, and let ε > 0. Since ε1A ∈ Lp(X ,Σ,µ), we have, by assumption,

∫

X
| fα|p ∧ (εp1A)dµ −→ 0.
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Because
∫

X
| fα|p ∧ (εp1A)dµ≥

∫

{ x∈A:| fα(x)|≥ε }
εp dµ= εpµ ({ x ∈ A : | fα(x)| ≥ ε })

we conclude that µ({ x ∈ A : | fα(x)| ≥ ε }) −→ 0. Hence fα
µ∗

−→ 0.
We show that part (4) implies part (2). Take a measurable subset A of X with finite

measure, and take ε > 0. Choose a δ > 0 such that δpµ(A)< ε/2. Then
∫

X
| fα|p ∧ 1A dµ=

∫

{ x∈A:| fα(x)|p≥δp }
| fα|p ∧ 1A dµ+

∫

{ x∈A:| fα(x)|p<δp }
| fα|p ∧ 1A dµ

≤
∫

{ x∈A:| fα(x)|p≥δp }
1dµ+

∫

A
δp dµ

≤ µ ({ x ∈ A : | fα(x)| ≥ δ }) + ε/2.

By our assumption, there exists an α0 ∈A such that µ ({ x ∈ A : | fα(x)| ≥ δ }) < ε/2 for all
α≥ α0. Then

∫

X | fα|
p ∧ 1A dµ < ε for all α≥ α0. Hence

∫

X | fα| ∧ 1A dµ −→ 0.

Remark 2.6.2.
(1) We are not aware of a proof of Theorem 2.6.1 in the literature. It is stated in [11,

p. 292] that the parts (1) and (4) are equivalent, but there only a reference is given
to [24, 65K and 63L]. Since [24, 63L] relies on the solution of the non-trivial exercise
[24, Exercise 63M(j)] for which a solution is not provided, we thought it appropriate
to give an independent proof in the present paper.

(2) The equivalence of the parts (3) and (4) for finite measures and sequences was also
established by different methods in [45, Example 23]. Still earlier, this case was covered
in [21, Corollary 4.2], with a proof in the same spirit as our proof.

As an immediate consequence of Proposition 2.4.7 and Theorem 2.6.1, we obtain the
following result via our going-up-going-down approach.

Theorem 2.6.3. Let (X ,Σ,µ) be a measure space, where µ is a semi-finite measure. Take
a regular vector sublattice E of L0(X ,Σ,µ). Then E admits a (necessarily unique) Hausdorff
uo-Lebesgue topology bτE . This topology bτE on E is the restriction of the Hausdorff uo-Lebesgue
topology on L0(X ,Σ,µ). A net ( fα)α∈A in E converges to zero in bτE if and only if it satisfies one
of the three equivalent criteria in the parts (2), (3), and (4) of Theorem 2.6.1. In particular,
it is bτE-convergent to zero if and only if it converges to zero in measure on subsets of finite
measure.

Remark 2.6.4. Let p be such that 1 ≤ p <∞. For arbitrary measures, Proposition 2.4.10
and Corollary 2.5.4 both give a description of the convergent nets in the Hausdorff uo-Lebes-
gue topology on Lp(X ,Σ,µ). The former as the convergent nets in the un-topology, and the
latter as the convergent nets in the unbounded absolute weak topology, respectively. When
µ is semi-finite, Theorem 2.6.3 gives a third description as the convergence in measure on
subsets of finite measure.
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Also for p =∞, Theorem 2.6.3 shows that L∞(X ,Σ,µ) admits a (necessarily unique)
Hausdorff uo-Lebesgue topology whenever µ is semi-finite, and gives a description of its
convergent nets. When µ is a localisable measure, two more descriptions are possible. We
refer to [25, 211G] for the definition of localisable measures, and note that σ-finite mea-
sures are localisable, and that localisable measures are semi-finite. Indeed, for localisable
measures, L∞(X ,Σ,µ) is the order dual of L1(X ,Σ,µ); see [25, 243G(b)]. Hence Corol-
lary 2.5.6 shows once more that L∞(X ,Σ,µ) admits a Hausdorff uo-Lebesgue topology
when µ is localisable, and gives a second and third description of its convergent nets.

Remark 2.6.5. Let (X ,Σ,µ) be a measure space, where µ is a semi-finite measure.
Let p be such that 0 < p <∞. The combination of Theorem 2.6.3 and Remark 2.2.5

shows that the topology of convergence in measure on subsets of finite measure is the small-
est Hausdorff locally solid linear topology on Lp(X ,Σ,µ).3 For σ-finite measures, this can
already be found in [6, Theorem 7.74], where it is also established that the usual metric
topology is then the largest Hausdorff locally solid linear topology.

For p =∞, the combination of Theorem 2.6.3 and Theorem 2.2.4 shows that the topol-
ogy of convergence in measure on subsets of finite measure is the unique minimal Hausdorff
locally solid linear topology on L∞(X ,Σ,µ). It seems worthwhile to note that, when µ is, in
fact, σ-finite, and also non-atomic, [6, Theorem 7.75] shows that there is now no smallest
Hausdorff locally solid linear topology on L∞(X ,Σ,µ).

Remark 2.6.6. Let (xn)∞n=1 be a sequence in L0(X ,Σ,µ), where µ is a semi-finite measure.

Suppose that fn −→ 0 µ-almost everywhere. Then fn
µ∗

−→ 0. This is immediate from Ego-
roff’s theorem (see [23, Theorem 2.33], for example), but it can also be obtained (with
a long detour) in the context of uo-convergence and uo-Lebesgue topologies. Indeed, by
[28, Proposition 3.1], almost everywhere convergence of a sequence in L0(X ,Σ,µ) is, for
arbitrary measures, equivalent to uo-convergence in L0(X ,Σ,µ). Since, by definition, uo-
convergence implies convergence in a uo-Lebesgue topology (when this exists), an appeal
to Theorem 2.6.1 also yields the desired result.

2.7 uo-convergent sequences within bτE-convergent nets

Let E be a vector lattice that admits a (necessarily unique) Hausdorff uo-Lebesgue topology

bτE . When (xα)α∈A is a net in E such that xα
uo
−→ 0, then, by definition, xα

bτE−→ 0. The
present section is concerned with results that go in the opposite direction. The main result

3For this conclusion, we should note here that the usual metric topology on Lp(X ,Σ,µ) is a complete o-
Lebesgue topology for every measure µ and for every p such that 0 < p < ∞. This is commonly known
when 1 ≤ p <∞. When 0 < p < 1, then the completeness is asserted in [39, 1.47]. The fact that the metric
topology is an o-Lebesgue topology for such p follows from what is stated on [6, p. 211] in the context ofσ-finite
measures. This implies the result for general measures. Indeed, suppose that ( fα)α∈A is a net in Lp(X ,Σ,µ)
such that fα ↓ 0. Passing to a tail, we may suppose that the net is bounded above by an fα0

∈ Lp(X ,Σ,µ). The
support of this fα0

is σ-finite. Using the fact that the elements of Lp(X ,Σ,µ) that vanish off this support form
an ideal of Lp(X ,Σ,µ), it is then easily seen from the σ-finite case that the chosen tail of the net converges to
zero in the metric topology of Lp(X ,Σ,µ).
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is Theorem 2.7.6, below, which lies at the basis of topological considerations in Section 2.8,
but we start with a few more elementary results.

For an atomic vector lattice E, the situation is as easy as can be. Recall that, by [6,
Theorem 1.78], the atomic vector lattices are precisely the order dense vector sublattices
of RX for some set X . Combining [13, Proposition 1] and [44, Lemma 7.4], we have the
following.

Proposition 2.7.1 (Taylor). Let E be an atomic vector lattice. Then E admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτE , and this topology is locally convex-solid. For a
net in E, uo-convergence and bτE-convergence coincide, so that uo-convergence is topological.
When E is an order dense vector sublattice of RX for some set X , then a net in E is uo- and
bτE-convergent if and only if it is pointwise convergent.

For monotone nets, uo-convergence and bτE convergence still always coincide, according
to the following elementary lemma.

Lemma 2.7.2. Let E be a vector lattice, and suppose that τ is a Hausdorff locally solid linear
topology on E. Let (xα)α∈A be a monotone net in E and let x ∈ E. When xα

τ
−→ x in E, then

xα
uo
−→ x in E. When bτE is a (necessarily unique) Hausdorff uo-Lebesgue topology on E, then

xα
bτE−→ x in E if and only if xα

uo
−→ x in E.

Proof. We may suppose that xα ↓. Take y ∈ E. Then |xα− x | ∧ |y| ↓ and |x − xα| ∧ |y|
τ
−→ 0.

By [6, Theorem 2.21], we have |xα − x | ∧ |y| ↓ 0. Hence xα
uo
−→ x . The final statement is

clear.

For non-monotone nets in general vector lattices, it is not generally true that bτE-conver-
gence implies uo-convergence. This can already fail for sequences in Banach lattices with
order continuous norms. As an example, consider E = L1([0,1]). For n = 1,2, . . . and
k = 1, 2, . . . , n, let fnk be the characteristic function of [ k−1

n , k
n], and consider the sequence

f11, f21, f22, f31, f32, f33, f41, . . . . It converges to zero in measure, so Theorem 2.6.1 shows
that it is bτE-convergent to zero. On the other hand, [28, Proposition 3.1] shows that uo-
convergence of a sequence in L1([0,1]) is the same as almost everywhere convergence.
Hence the sequence is not uo-convergent to zero.

Still, something can be salvaged in the general case. As a motivating example, suppose
that (X ,Σ,µ) is a measure space. It is well known that a sequence in L0(X ,Σ,µ) that con-
verges (globally) in measure has a subsequence that converges to the same limit almost
everywhere; see [23, Theorem 2.30], for example. When µ is finite, then, in view of The-
orem 2.6.1 and [28, Proposition 3.1], this can be restated as saying that a bτE convergent
sequence in L0(X ,Σ,µ) has a subsequence that is uo-convergent to the same limit. We shall
now extend this formulation of the result to a more general context of nets and Hausdorff
uo-Lebesgue topologies on vector lattices; see Theorem 2.7.6, below. In Corollary 2.7.8,
below, we shall then obtain a stronger version of the motivating result for convergence in
measure and convergence almost everywhere, as a specialisation of the general result.

We start with three preparatory results. The first two appear to have some independent
interest.
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Proposition 2.7.3. Let E be a vector lattice with the countable sup property such that Esoc
separates the points of E. Take e ∈ E+, and let Ie denote the ideal that is generated in E by
e. Then (Ie)

s
oc separates the points of Ie. In fact, there even exists a ϕ ∈ (Ie)

s
oc that is strictly

positive on Ie.

Proof. It is immediate from Theorem 2.2.3 that (Ie)
s
oc separates the points of Ie. It follows

from Proposition 2.2.1 that the ideal of (Ie)
s
oc that is generated by a strictly positive ϕ in

(Ie)
s
oc would already separate the points of E. We turn to the existence of such a strictly

positive ϕ ∈ (Ie)
s
oc,

Suppose first that E is Dedekind complete. For ψ ∈
�

Esoc

�+
, we let

Nψ := { x ∈ E :ψ(|x |) = 0 }

denote its null ideal, and we let
Cψ := Nd

ψ

denote its carrier. Since ψ is order continuous, Nψ is a band in E.

Let B0 be the band that is generated by the subset {Cψ :ψ ∈
�

Esoc

�+ } of E. Then

Bd
0 =

⋂

ψ∈(Esoc)
+

Cd
ψ =

⋂

ψ∈(Esoc)
+

Ndd
ψ =

⋂

ψ∈(Esoc)
+

Nψ = {0},

where in the final step we have used Proposition 2.2.1 and the fact that Esoc separates the
points of E. We thus see that B0 = E.

For ψ ∈
�

Esoc

�+
, let PCψ denote the band projection from E onto Cψ. When ψ1,ψ2 ∈

�

Esoc

�+
and ψ1 ≤ψ2, then Cψ1

⊆ Cψ2
which, by [7, Theorem 1.46], is equivalent to PCψ1

≤

PCψ2
. Therefore, the net { PCψ :ψ ∈

�

Esoc

�+ } in Lr(E) is increasing. Set

P := sup { PCψ :ψ ∈
�

Esoc

�+ },

where the supremum is in Lr(E). From [36, Theorem 30.5] we know that P is a band
projection with B0 as its range space. Since B0 = E, it follows that P = I . This implies that
{ PCψe :ψ ∈

�

Esoc

�+ } ↑ e, and it follows from the fact that E has the countable sup property

that there exists a sequence (ψn)∞n=1 in
�

Esoc

�+
such that PCψn

e ↑ e in E.
Consider the ideal Ie of E. Since E is Dedekind complete it is uniformly complete, so

that Ie is a Banach lattice when supplied with its order unit norm ‖ · ‖e. Its order dual Ise
coincides with its norm dual E∗ and is then a Banach lattice. Choose strictly positive real
numbers α1,α2, . . . such that

∑∞
n=1αn‖ψn|Ie

‖<∞, and define ϕ ∈ Ise by setting

ϕ :=
∞
∑

n=1

αnψn|Ie
.

Since Ie, being an ideal of E, is a regular vector sublattice of E, each ψn|Ie
is order continu-

ous. On observing that, being a band, (Ie)
s
oc is an order closed and, therefore, norm closed
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subset of the Banach lattice E∗, we see that ϕ is order continuous on Ie. Obviously, ϕ is
positive.

Suppose that x ∈ Ie is positive and that ϕ(x) = 0. Then ψn(x) = 0 for all n ≥ 1. That
is, x ∈ Nψn

for all n≥ 1, so that PCψn
x = 0 for all n≥ 1.

Take λ ≥ 0 such that 0 ≤ x ≤ λe. Using [7, Theorem 2.49, Theorem 2.44, and Defini-
tion 2.41], we see that there exists an order continuous operator T on E that commutes with
all band projections on E and is such that T (λe) = x . Since PCΨn

(λe) ↑ λe in E, we have
T PCΨn

(λe) ↑ T (λe) = x in E. On the other hand, we know that T PCΨn
(λe) = PCΨn

T (λe) =
PCΨn

x = 0 for all n. We conclude that x = 0. Hence ϕ is strictly positive on Ie. This
completes the proof when E is Dedekind complete.

For general E, we note that its Dedekind completion Eδ also has the countable sup
property; see [36, Theorem 32.9 ]. Furthermore, Theorem 2.2.3 shows that

�

Eδ
�s

oc separates
the points of Eδ. Let Ie,δ denote the ideal that is generated by e in Eδ. By what has been
established above, there exists a ϕδ ∈

�

Ie,δ

�s
oc that is strictly positive on Ie,δ. Hence its

restriction ϕδ|Ie
to Ie is strictly positive on Ie. This restriction is also order continuous on

Ie. To see this, suppose that (xα)α∈A is a net in Ie and that xα
o
−→ 0 in Ie. Since Ie, being

an ideal of E, is a regular vector sublattice of E, and since E, being order dense in Eδ, is a
regular vector sublattice of Eδ, Ie is a regular vector sublattice of Eδ. Thus xα

o
−→ 0 in Eδ.

There exists an α0 ∈A such that the tail (xα)α∈A,α≥α0
is order bounded in Ie. Since this tail

is then evidently also order bounded in Ie,δ, Theorem 2.2.2 shows that xα
o
−→ 0 in Ie,δ for

α≥ α0. Then ϕδ|Ie
(xα) −→ 0 for α≥ α0 by the order continuity of ϕ on Ie,δ. Consequently,

ϕδ|Ie
(xα) −→ 0, as required.

Suppose that a vector lattice E has an order unit e and that (xα)α∈A is a net in E. Ac-
cording to [28, Corollary 3.5], the fact that |xα| ∧ e

o
−→ 0 is already enough to imply that

xα
uo
−→ 0. This is a special case of the following.

Proposition 2.7.4. Let E be a vector lattice, let S be a non-empty subset of E, and let BS
denote the band that is generated by S in E. Suppose that (xα)α∈A is a net in BS such that
|xα| ∧ |y|

o
−→ 0 in E for all y ∈ S. Then xα

uo
−→ 0 in E.

Proof. Suppose first that E is Dedekind complete.
Let IS denote the ideal that is generated by S in E. Take y ∈ IS . Then there exist

y1, . . . , yn ∈ S and r1, . . . , rn ≥ 1 such that |y| ≤
∑n

i=1 ri|yi|. This implies that |xα| ∧ |y| ≤
∑n

i=1 ri(|xα| ∧ |yi|), so that |xα| ∧ |y|
o
−→ 0 in E.

Take y ∈ BS . Then there exists a net (yβ)β∈B in IS such that 0 ≤ yβ ↑ |y| in E. For
α ∈A, set sα := supi≥α(|x i|∧ |y|), where the supremum is in E. Clearly, sα ↓ in E. We claim
that infα sα = 0 in E. To see this, take any β ∈ B. Then

inf
α

sα = inf
α

sup
i≥α
(|x i| ∧ |y|) = inf

α
sup
i≥α

�

|x i| ∧ |yβ + |y| − yβ |
�

≤ inf
α

sup
i≥α

�

|x i| ∧ |yβ |+ |x i| ∧ ||y| − yβ |
�

)



31

≤ inf
α

sup
i≥α

�

|x i| ∧ |yβ |+ ||y| − yβ |
�

= inf
α

sup
i≥α

�

|x i| ∧ |yβ |
�

+ ||y| − yβ |.

Since we have already established that |xα| ∧ |yβ |
o
−→ 0 in E, [28, Remark 2.2] shows that

infα supi≥α
�

|x i| ∧ |yβ |
�

= 0. Hence infα sα ≤ ||y| − yβ | for all β ∈ B. Since yβ ↑ |y| in E,
we see that infα sα = 0 in E, as claimed. Since obviously |xα| ∧ |y| ≤ sα for all α ∈ A, we
conclude that |xα| ∧ |y|

o
−→ 0 in E.

Because (xα)α∈A ⊆ BS , it is immediate that |xα| ∧ |y|
o
−→ 0 in E for all y ∈ Bd

S . Since

E = BS + Bd
S , we conclude that |xα| ∧ |y|

o
−→ 0 in E for all y ∈ E. This completes the proof

when E is Dedekind complete.
For a general vector lattice E, we let BS,δ be the band that is generated by S in Eδ. Then

BS ⊆ BS,δ. By what we have just established, xα
uo
−→ 0 in Eδ, and then Theorem 2.2.2 shows

that xα
uo
−→ 0 in E.

Proposition 2.7.5. Let E be a vector lattice, and let F be an order dense ideal of E. The
following are equivalent:
(1) E has the countable sup property;
(2) F has the countable sup property and F is super order dense in E.

Proof. Suppose that E has the countable sup property. Then F has the countable sup prop-
erty, as is then true for any ideal of E; see [51, Theorem 17.6]. Since F is order dense in E,
the fact that E has the countable sup property then implies that F is even super order dense
in E; see [36, Theorem 29.3].

Suppose that F has the countable sup property and that F is super order dense in E.
Then E has the countable sup property by [36, Theorem 29.4].

All preparations have now been made for the proof of the core result of this section.

Theorem 2.7.6. Let E be a vector lattice with the countable sup property, and suppose that E
has an order dense ideal F such that Fsoc separates the points of F. Let G be a regular vector
sublattice of E. Then G admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτG .

Let (xα)α∈A be a net in G and suppose that xα
bτG−→ x for some x ∈ G. Take a sequence

(α′n)
∞
n=1 of indices in A. Then there exists an increasing sequence α′1 = α1 ≤ α2 ≤ · · · of

indices in A such that αn ≥ α′n for all n≥ 1 and xαn

uo
−→ x in G. In particular, when a sequence

(xn)∞n=1 in G and x ∈ G are such that xn
bτG−→ x in G, then there exists a subsequence (xnk

)∞k=1

of (xn)∞n=1 such that xnk

uo
−→ x in G.

Proof. In view of Proposition 2.4.7 and Theorem 2.2.2, we may (and shall) suppose that
G = E.

We know from Theorem 2.5.2 that E admits a (necessarily unique) Hausdorff uo-Lebes-
gue topology bτE , The statement on subsequences is clear from the statement on nets, so we
need only establish the existence of the αn for n≥ 1. We may suppose that x = 0.
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Suppose first that E is Dedekind complete.
For y ∈ F+, we let I y ⊆ F denote the ideal that is generated by y in E. By Proposi-

tion 2.7.5, F inherits the countable sup property from E. Hence Proposition 2.7.3 applies to
the vector lattice F . We then see that (I y)∼oc separates the points of I y and that there even
exists a strictly positive order continuous linear functional on I y . We choose and fix such a
strictly positive ϕy ∈ (I y)∼oc for each y ∈ F+. From Proposition 2.5.5 we know that

ϕy(|xα| ∧ y)→ 0 (2.4)

for all y ∈ F+.
Set α1 := α′1. Since F is super order dense in E by Proposition 2.7.5, we can choose a

sequence {y1
m}
∞
m=1 in F+ such that 0≤ y1

m ↑m |xα1
|.

For n≥ 2, we shall now inductively construct an indice αn ∈A and a sequence {yn
m}
∞
m=1

in F+ such that, for all n≥ 2:
(a) αn ≥ α′n;
(b) αn ≥ αn−1;
(c) ϕy i

m

�

|xαn
| ∧ y i

m

�

< 2−n for i = 1, 2, . . . , n− 1 and m= 1,2, . . . , n;
(d) 0≤ yn

m ↑m |xαn
| in E.

We start with n = 2. The elements y1
m of F+ are already known for all m ≥ 1, and

ϕy1
m

�

|xα| ∧ y1
m

�

−→ 0 for all m ≥ 1 by equation (2.4). Therefore, we can choose an α2 ∈ A
such thatϕy1

m

�

|xα2
|∧ y1

m

�

< 2−2 for m= 1, 2. We can arrange that also α2 ≥ α′2 and α2 ≥ α1.
Finally, we choose a sequence (y2

m)
∞
m=1 in F such that 0 ≤ y2

m ↑m |xα2
|. This completes the

construction for n= 2.
Suppose that n≥ 2 and that we have already constructed α2, . . . ,αn ∈A and sequences

(y1
m)
∞
m=1, . . . , (yn

m)
∞
m=1 in F+ satisfying the four requirements above. The elements y i

m of F+

are already known for all i = 1,2, . . . , n and m ≥ 1, and ϕy i
m

�

|xα| ∧ y i
m

�

−→ 0 for all such i

and m by equation (2.4). Therefore, we can choose αn+1 ∈A such that ϕy i
m

�

|xαn+1
|∧ y i

m

�

<

2−(n+1) for all i = 1, 2, . . . , n and m = 1, 2, . . . , n+ 1. We can arrange that also αn+1 ≥ α′n+1
and αn+1 ≥ αn. Finally, we choose a sequence (yn+1

m )∞m=1 in F+ such that 0≤ yn+1
m ↑m |xαn+1

|
in E. This completes the construction for n+ 1.

Fix i, m ≥ 1. Since 0 ≤ |xα j
| ∧ y i

m ≤ y i
m for all j ≥ 1, we can define elements z j,m

n of

I y i
m

for n ≥ 1 by setting z i,m
n :=

∨∞
j=n

�

|xα j
| ∧ y i

m

�

. Here the supremum is in the ideal I y i
m

in E (which, although this is immaterial, happens to coincide with the supremum in E). It
is clear that zn ≥ 0 for n ≥ 1 and that z i,m

n ↓n; we shall show that z i,m
n ↓n 0 in I y i

m
. For

this, we start by noting that the inequality in (c) shows that ϕy i
m

�

|xα j
| ∧ y i

m

�

< 2− j for all
j ≥ max(i + 1, m). Therefore, for all n ≥ max(i + 1, m), we can use the order continuity of
ϕy i

m
on I y i

m
to see that

0≤ ϕy i
m
(z i,m

n )

= ϕy i
m

�

∞
∨

j=n

�

|xα j
| ∧ ym

i

�

�
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= ϕy i
m

�

sup
k≥n

�

k
∨

j=n

�

|xα j
| ∧ ym

i

�

��

= lim
k→∞
k≥n

ϕy i
m

�

k
∨

j=n

�

|xα j
| ∧ ym

i

�

�

≤ limsup
k→∞
k≥n

ϕy i
m

 

k
∑

j=n

�

|xα j
| ∧ ym

i

�

!

≤ limsup
k→∞
k≥n

k
∑

j=n

2− j

≤ 2−n+1.

We see from this that for the infimum infn≥1 z i,m
n in I y i

m
(which, although again immate-

rial, happens to coincide with the infimum in E) we have

0≤ ϕy i
m

�

inf
n≥1

z i,m
n

�

≤ 2−n+1

for all n ≥max(i + 1, m). Hence ϕy i
m

�

infn≥1 z i,m
n

�

= 0. Since ϕy i
m

is strictly positive on I y i
m
,

this implies that infn≥1 z i,m
n = 0 in I y i

m
, as we wanted to show.

The inequalities 0≤ |xαn
| ∧ y i

m ≤ z i,m
n for all n≥ 1 now show that |xαn

| ∧ y i
m

o
−→ 0 in I y i

m

as n→∞, and then also |xαn
| ∧ y i

m
o
−→ 0 in E as n→∞.

We have now shown that, for all i, m≥ 1, |xαn
| ∧ y i

m
o
−→ 0 in E as n→∞.

Let B denote the band that is generated by { y i
m : i, m≥ 1 } in E. In view of (d) above, it

is clear that the sequence (xαn
)∞n=1 is a sequence in B. We can now conclude from Proposi-

tion 2.7.4 that xαn

uo
−→ 0 in E. This concludes the proof when E is Dedekind complete.

For a general vector lattice E, we pass to the Dedekind completion Eδ of E. By [36,
Theorem 32.9], Eδ also has the countable sup property. We let Fδ denote the ideal that is
generated in Eδ by F . Then F is obviously majorising in Fδ. Since F is order dense in E and E
is order dense in Eδ, F is order dense in Eδ and then also in Fδ. We see from this that, as the
notation already suggests, Fδ is the Dedekind completion of F , but what we actually need
is that, by Theorem 2.2.3,

�

Fδ
�s

oc separates the points of Fδ. The fact that F is order dense
in Eδ implies that Fδ ⊇ F is order dense in Eδ. Hence Eδ also admits a (necessarily) unique

Hausdorff o-Lebesgue topology bτEδ . Moreover, Proposition 2.4.7 shows that xα
bτEδ−−→ 0 in

Eδ. By what has been established for the Dedekind complete case, there exist indices αn as
specified such that xαn

uo
−→ 0 in Eδ. By Theorem 2.2.2, xαn

uo
−→ 0 in E.

For comparison, we include the following; see [6, Theorem 4.19]. We recall that a
topology on a vector lattice E is a Fatou topology when it is a (not necessarily Hausdorff)
locally solid linear topology on E that has a base of neighbourhoods of zero consisting of
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solid and order closed sets. A Lebesgue topology is a Fatou topology; see [6, Lemma 4.1],
for example.

Theorem 2.7.7. Let E be a vector lattice with the countable sup property that is supplied with
a Hausdorff locally solid linear topology τ with the Fatou property. Suppose that (xα)α∈A is an
order bounded net in E and that xα

τ
−→ x for some x ∈ E. Then there exist indices α1 ≤ α2 ≤ · · ·

in A such that xαn

o
−→ x.

The hypotheses in Theorem 2.7.7 on the topology on the vector lattice are weaker than
those in Theorem 2.7.6, and its conclusion is stronger. The big difference is, however, that
the net in Theorem 2.7.7 is supposed to be order bounded, whereas there is no such restric-
tion in Theorem 2.7.6.

Theorem 2.7.7 also holds when, instead of requiring E to have the countable sup prop-
erty, it is required that there exist an at most countably infinite subset of E such that the
band that it generates equals the carrier of τ; see [33, Theorem 6.7]. We refer to [6, Def-
inition 4.15] for the definition of the carrier of a (not necessarily Hausdorff) locally solid
topology on a vector lattice.

For a fourth result with a similar flavour, in the context of metrisable Hausdorff locally
solid linear topologies on vector lattices that need not have the countable sup property, we
refer to [44, Corollary 9.9]. This generalises a similar result (see [32, Corollary 3.2]) for
Banach lattices.

We have the following consequence of Theorem 2.6.1 and Theorem 2.7.6.

Corollary 2.7.8. Let (X ,Σ,µ) be a measure space where µ is σ-finite. Suppose that ( fα)α∈A
is a net in L0(X ,Λ,µ) such that fα

µ∗

−→ 0. Take a sequence (α′n)
∞
n=1 of indices in A. Then there

exists an increasing sequence α′1 = α1 ≤ α2 ≤ · · · of indices in A such that αn ≥ α′n for all
n≥ 1 and fαn

−→ 0 almost everywhere. In particular, when a sequence ( fn)∞n=1 is a sequence in

L0(X ,Λ,µ) and fn
µ∗

−→ 0, then there exists a subsequence ( fnk
)∞k=1 of ( fn)∞n=1 such that fnk

−→ 0
almost everywhere.

Proof. It is known that L0(X ,Σ,µ) has the countable sup property for everyσ-finite measure
µ; see [6, Theorem 7.73] or [37, Lemma 2.6.1], for example.

The combination of Theorem 2.6.1 and Theorem 2.7.6 yields a sequence of indices αn as
specified such that fαn

uo
−→ 0. Since, for a general measure µ, uo-convergence of a sequence

in L0(X ,Σ,µ) is equivalent to its convergence almost everywhere (see [28, Proposition 3.1]),
the proof is complete.

Remark 2.7.9.
(1) In view of its proof, the natural condition on µ in Corollary 2.7.8 is that µ be semi-finite

and have the countable sup property. It is known, however, that this is equivalent to
requiring that µ be σ-finite; see [33, Proposition 6.5].

(2) For every measure µ, a sequence in L0(X ,Λ,µ) that converges (globally) in measure has
a subsequence that converges almost everywhere to the same limit; see [23, Theorem
2.30], for example. Corollary 2.7.8 does not imply this result for arbitrary measures,
but once the measure is known to be σ-finite, it does produce the desired subsequence,



35

and it even does so under the weaker hypothesis of convergence in measure on subsets
of finite measure.

(3) Even for finite measures, we are not aware of an existing result that, as in Corol-
lary 2.7.8, is concerned with nets that converge in measure.

Remark 2.7.10. The hypothesis in Theorem 2.7.6 that E have the countable sup property
cannot be relaxed to merely requiring that F have this property. As a counter-example,
consider the situation where F is a Banach lattice with an order continuous norm that is
an order dense ideal of a vector lattice E. Then Fsoc = F∗ separates the points of F , and it
is easy to see that F has the countable sup property; the latter also follows from a more
general result in [6, Theorem 4.26]. Since the norm topology on F is a Hausdorff o-Lebes-
gue topology on F , E has a (necessarily unique) Hausdorff uo-Lebesgue topology bτE . It
is the topology of un-convergence with respect to F . It is possible to find such F and E,
and a sequence in E that is bτE convergent to zero in E, yet has no subsequence that is
uo-convergent to zero in E; see [32, Example 9.6].

Theorem 2.7.6 can be specified to various situations. Here is one involving an un-
bounded absolute weak topology.

Corollary 2.7.11. Let E be a vector lattice with the countable sup property. Suppose that Esoc

separates the points of E. Let (xα)α∈A be a net in E, and suppose that xα
u|σ|(E,Esoc)−−−−−−→ x for some

x ∈ E. Then there exist indices α1 ≤ α2 · · · such that xαn

uo
−→ x.

We conclude this section by extending another classical result from measure theory to the
context of Hausdorff uo-Lebesgue topologies and uo-convergence. Suppose that (X ,Σ.µ) is a
measure space, where µ isσ-finite. Then a sequence in L0(X ,Σ,µ) is convergent in measure
on subsets of finite measure if and only if every subsequence has a further subsequence that
converges to the same limit almost everywhere; see [49, Exercise 18.14 on p. 132]. This is
a special case of the following.

Theorem 2.7.12. Let E be a vector lattice with the countable sup property, and suppose that E
has an order dense ideal F such that Fsoc separates the points of F. Let G be a regular sublattice
of E. Then G admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτG . For a sequence

(xn)∞n=1 ⊆ G, xn
bτG−→ 0 in G if and only if every subsequence (xnk

)∞k=1 of (xn)∞n=1 has a further

subsequence (xnki
)∞i=1 such that xnki

uo
−→ 0 in G.

Proof. In view of Proposition 2.4.7 and Theorem 2.2.2, we may (and shall) suppose that
G = E.

The forward implication is clear from Theorem 2.7.6. We now show the converse. When

it fails that xn
bτ
−→ 0 in E, then Theorem 2.5.2 shows that there exists an ϕ ∈ Fsoc, an y ∈ F ,

a subsequence (xnk
)∞k=1 of (xn)∞n=1 and an ε > 0 such that |ϕ|(|xnk

| ∧ |y|)> ε for all k. It is
then clear from the order continuity of ϕ that it is impossible to find a further subsequence
(xnki

)∞i=1 of (xnk
)∞k=1 such that xnki

uo
−→ 0 in E.

As another special case of Theorem 2.7.12, we see that a sequence in a Banach lattice
with an order continuous norm is un-convergent to zero if and only if every subsequence has
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a further subsequence that is uo-convergent to zero. We have thus retrieved [21, Theorem
4.4].

2.8 Topological aspects of (unbounded) order convergence

In this section, we consider topological issues that are related to (sequential) order conver-
gence and to (sequential) unbounded order convergence, with an emphasis on the latter.
Theorem 2.7.6 will be seen to be an important tool.

Let E be a vector lattice, and let A ⊆ E. We define the o-adherence of A as the set of all
order limits of nets in A, and denote it by ao(A). The σ-o-adherence of A is the set of all
order limits of sequences in A; it is denoted by aσo(A). 4 The uo-adherence auo(A) and the
σ-uo-adherence aσuo(A) of A are similarly defined. The subset A is o-closed when ao(A) =
A.5 The collection of all o-closed subsets of E is easily seen to be the collection of closed
sets of a topology that is called the o-topology on E. The closure of a subset A in the o-
topology is denoted by A

o
.6 We have ao(A) ⊆ A

o
, with equality if and only if ao(A) is o-

closed. Likewise, there are σ-o-closed subsets and a σ-o-topology, uo-closed subsets and
a uo-topology, and σ-uo-closed subsets and a σ-uo-topology, with similar notations and
statements about inclusions and equalities of sets. Evidently, a uo-closed subset is o-closed,
and a σ-uo-closed subset is σ-o-closed.

Order convergence in a vector lattice E is hardly ever topological; according to [13,
Theorem 1] or [43, Theorem 18.36], this is the case if and only if E is finite-dimensional. It
is not even true that the set map A 7→ ao(A) is always idempotent, i.e., that the o-adherence
of a set is always o-closed. It is known, for example, that in every σ-order complete Banach
lattice that does not have an order continuous norm, there even exists a vector sublattice
such that its o-adherence is not order closed; see [26, Theorem 2.7].

We know from Proposition 2.7.1 that uo-convergence in atomic vector lattices is topo-
logical. According to [43, Theorem 6.54], atomic vector lattices are, in fact, the only ones
for which this is the case.

It appears to be open whether the uo-adherence of a subset of a vector lattice is always
uo-closed. In [26, Problem 2.5], it is even asked whether the uo-adherence of a vector
sublattice is always o-closed, which is asking for a weaker conclusion for a much more
restrictive class of subsets.

Even though the topological aspects of uo-convergence are still not well understood in
general, there is a class of vector lattices where we have a reasonably complete picture. In
order to formulate this, we need some more notation. For a set X with a topology τ and
a subset A ⊆ X of X , we let aστ(A) denote the σ-τ-adherence of A, i.e., aστ(A) is the set
consisting of all τ-limits of sequences in A. When aστ(A) = A, A is said to be σ-τ-closed.

4In [36, p. 82], our σ-o-adherence is called the pseudo order closure. In [26], our o-adherence of a subset
A is called the order closure of A, and it is denoted by A

o
. These two terminologies, as well as the notation A

o
,

could suggest that taking the (pseudo) order closure is a (sequential) closure operation for a topology. Since this
is hardly ever the case, we prefer a terminology and notation that avoid this possible confusion. It is inspired
by [8, Definition 1.3.1].

5This definition is consistent with that in [26].
6There is no notation for the closure operation in the o-topology in [26].
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The σ-τ-closed subsets of X are the closed subsets of a topology on X that is called the σ-τ-
topology on X . We let A

τ
and A

σ-τ
denote the τ-closure and the σ-τ-closure of a subset A

of X , respectively. Then aστ(A) ⊆ A
σ-τ

, with equality if and only if aστ(A) is σ-τ-closed.

Theorem 2.8.1. Let E be a vector lattice with the countable sup property, and suppose that E
has an order dense ideal F such that Fsoc separates the points of F. Let G be a regular vector
sublattice of E. Then G admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτG . For
a subset A of G, the following seven subsets of G are all equal:

(1) aσbτG
(A) and A

σ-bτG ;

(2) aσuo(A) and A
σ-uo

;
(3) auo(A) and A

uo
;

(4) A
bτG .

In particular, the σ-bτG-topology, the σ-uo-topology, and the uo-topology on G all coincide
with bτG .

In Theorem 2.8.1, the topological closures and (σ-)adherences are to be taken with
respect to the topologies and convergences in G.

Proof. The existence and uniqueness of bτG are clear from Theorem 2.7.6. Using Theo-
rem 2.7.6 for the first inclusions, we have, for an arbitrary subset A of G,

A
bτG ⊆ aσuo(A) ⊆ auo(A) ⊆ A

bτG

and
aσbτG

(A) ⊆ aσuo(A) ⊆ aσbτG
(A).

This gives equality of aσbτG
(A), aσuo(A), auo(A), and A

bτG . Since the set map A 7→ A
bτG is

idempotent, so is A 7→ aσbτG
(A). Hence aσbτG

(A) is σ-bτG-closed, so that it coincides with the

σ-τ-closure A
σ-bτG of A. A similar argument works for A

σ-uo
and A

uo
.

Remark 2.8.2. Taking G = E in Theorem 2.8.1, the equality of A
bτG and aσuo(A) implies that,

for a σ-finite measure µ, a subset of L0(X ,Σ,µ) is closed in the topology of convergence in
measure on subsets of finite measure if and only if it contains the almost every limits of
sequences in it. This is [25, 245L(b)].

In the context of Theorem 2.8.1, it is also possible to give a necessary and sufficient
condition for sequential uo-convergence to be topological; see Corollary 2.8.5, below. The
proof of the following preparatory lemma is an abstraction of the argument in [38].

Lemma 2.8.3. Let E be a vector lattice that is supplied with a topology τ. Suppose that τ has
the following properties:
(1) for every sequence (xn)∞n=1 in E and for every x ∈ E, the fact that xn

τ
−→ x implies that

there exists a subsequence (xnk
)∞k=1 of (xn)∞n=1 such that xnk

uo
−→ x as k→∞.

(2) there exists a sequence (xn)∞n=1 in E and an x ∈ E such that xn
τ
−→ x but xn

uo9 x;
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Then there does not exist a topology τ′ on E such that, for every sequence (xn)∞n=1 in E and for

every x ∈ E, xn
uo
−→ x if and only if xn

τ′

−→ x.

Proof. Suppose that there were such a topology τ′. Take a sequence (xn)∞n=1 in E and

an x ∈ E such that xn
τ
−→ x but xn

uo9 x . Then also xn
τ′9 x , so that there exists a τ′-

neighbourhood V of x and a subsequence (xnk
)∞k=1 of (xn)∞n=1 such that xnk

6∈ V for all

k ≥ 1. Since also xnk

τ
−→ x as k→∞, there exists a subsequence (xnki

)∞i=1 of (xnk
)∞k=1 such

that xnki

uo
−→ x as i→∞. Hence also xnki

τ′

−→ x as i→∞. But this is impossible, since the
entire sequence (xnki

)∞i=1 stays outside V .

The following is a direct consequence of Lemma 2.8.3. The topology τ in it could be a
uo-Lebesgue topology, but for the result to hold it need not even be a linear topology, nor
need the topology τ′ be.

Proposition 2.8.4. Let E be a vector lattice that is supplied with a topology τ. Suppose that
τ has the following properties:
(1) for every sequence (xn)∞n=1 in E and for every x ∈ E, the fact that xn

uo
−→ x implies that

xn
τ
−→ x;

(2) for every sequence (xn)∞n=1 in E and for every x ∈ E, the fact that xn
τ
−→ x implies that

there exists a subsequence (xnk
)∞k=1 of (xn)∞n=1 such that xnk

uo
−→ x as k→∞.

Then the following are equivalent;
(1) there exists a topology τ′ on E such that, for every sequence (xn)∞n=1 in E and for every

x ∈ E, xn
uo
−→ x if and only if xn

τ′

−→ x;
(2) for every sequence (xn)∞n=1 in E and for every x ∈ E, the fact that xn

τ
−→ x implies that

xn
uo
−→ x.

In that case, one can take τ for τ′.

In the appropriate context, the combination of Theorem 2.7.6 and Proposition 2.8.4
yields the following necessary and sufficient condition for sequential uo-convergence to be
topological. Note that there are no assumptions at all on the topology τ in its first part.

Corollary 2.8.5. Let E be a vector lattice with the countable sup property, and suppose that E
has an order dense ideal F such that Fsoc separates the points of F. Let G be a regular vector
sublattice of E. Then G admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτG , and
the following are equivalent:
(1) there exists a topology τ on G such that, for every sequence (xn)∞n=1 in G and for every

x ∈ G, xn
uo
−→ x in G if and only if xn

τ
−→ x;

(2) for every sequence (xn)∞n=1 in G and for every x ∈ G, the fact that xn
bτG−→ x in G implies

that xn
uo
−→ x in G.

In that case, one can take bτG for τ.

The proof of the following result closely follows the one in [38], where it is shown that
sequential almost everywhere convergence in L∞([0, 1]) is not topological.
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Corollary 2.8.6. Let (X ,Σ,µ) be a measure space, where µ is σ-finite. Suppose that there
exists an A ∈ Σ with the property that, for every k ≥ 1, there exist finitely many mutually
disjoint Ak,1, . . . , Ak,Nk

∈ Σ such that 0< µ(Ak,1), . . . ,µ(Ak,Nk
)< 1/k and A=

⋃Nk
l=1 Ak,l .

Take a regular vector sublattice G of L0(X ,Σ,µ) that contains the characteristic functions
1Ak,l

of all sets Ak,l for k = 1, 2, . . . and l = 1, . . . , Nk. Then there does not exist a topology τ

on G such that, for every sequence (xn)∞n=1 in G and for every x ∈ G, xn
uo
−→ x in G if and only

if xn
τ
−→ x.

Proof. We are in the situation of Corollary 2.8.5, where bτG-convergence is convergence in
measure on subsets of finite measure by Theorem 2.6.1, and sequential uo-convergence is
almost everywhere convergence by [28, Proposition 3.1]. Consider the following sequence
in G:

A1,1, . . . , A1,N1
, A2,1, . . . , A2,N2

, A3,1, . . . , A3,N3
, . . . .

This sequence clearly converges to zero on subsets of finite measure, but it converges no-
where to zero on the subset A of strictly positive measure. Hence the property in part (2) of
Corollary 2.8.5 does not hold, and then neither does the property in its part (1).

Remark 2.8.7. Corollary 2.8.6 provides us with a large class of examples of vector lattices
where sequential uo-convergence is not topological—so that uo-convergence is certainly
not topological—but where, according to Theorem 2.8.1, the set maps A 7→ aσuo(A) and
A 7→ auo(A) are both still idempotent, so that aσuo(A) is σ-uo-closed and auo(A) is uo-closed
for every subset A of G. For all p such that 0 ≤ p ≤ ∞, the space Lp([0,1]) is such an
example.

We conclude with a strengthened version of [26, Theorem 2.2]. The improvement lies
in the removal of the hypothesis that E be Banach lattice, and by adding eight more equal,
but not obviously equal, sets to the three equal sets in the original result.

Theorem 2.8.8. Let E be a vector lattice with the countable sup property, and suppose that
Esoc separates the points of E. Then E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology bτE . Take an ideal I of Esoc that separates the points of E, and take a vector sublattice
F of E. Then the following eleven vector sublattices of E are all equal:

(1) aσbτE
(F) and F

σ-bτE ;
(2) aσuo(F) and F

σ-uo
;

(3) auo(F) and F
uo

;

(4) F
bτE , F

|σ|(E,I)
, and F

σ(E,I)
;

(5) (ao(ao(F))) and F
o
.

The equality of auo(F), ao(ao(F)), and F
σ(E,I)

can already be found in [26, Theorem 2.2],
where it also noted that these sets coincide with the smallest order closed vector sublattice
of E containing F .

Proof. The equality of the first seven subsets is clear from Theorem 2.8.1. Since we know

from Theorem 2.5.2 that bτE = uE |σ|(E, I), it follows from [44, Proposition 2.12] that F
bτE =
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F
|σ|(E,I)

. Furthermore, from Kaplan’s theorem (see [6, Theorem 2.33], for example) we
know that E, when supplied with the Hausdorff locally convex |σ|(E, I)-topology, has the
same topological dual as when it is supplied with the Hausdorff locally convex σ(E, I)-
topology. By the convexity of F , we have F

|σ|(E,I)
= F

σ(E,I)
. This argument was already

used in [26, Proof of Lemma 2.1].
We turn to the two sets in part (4). It was established in [26, Lemma 2.1] that auo(F) ⊆

ao(ao(F)); this is, in fact, valid for vector sublattices of general vector lattices. It was also

observed there that, obviously, the fact that I ⊆ Esoc implies that F
σ(E,I)

is o-closed. Using
also that we already know that auo(F) = F

uo
, we therefore have the following chain of

inclusions:
F

uo
= auo(F) ⊆ ao(ao(F)) ⊆ F

o ⊆ F
σ(E,I)

.

Since we also already know that F
uo
= F

σ(E,I)
, the proof is complete.


