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Chapter 1

Introduction

The classical von Neumann bicommutant theorem, which was first established by von Neu-
mann in [46], is fundamental to the theories of von Neumann algebras and of C∗-algebras
and their representations. It states that if A is a unital C∗-subalgebra of the bounded opera-
torsB(H) on a Hilbert space H, then the bicommutant of A inB(H) is equal to closure of
A in the weak (or strong) operator topology. It is natural to ask whether there are analogues
of the bicommutant theorem for other spaces than Hilbert spaces.

A result for a general class of spaces does not appear to be known, but several interesting
cases have been considered. For example, in [16] de Pagter and Ricker were able to show
that, for a large class of measure spaces, the bicommutant theorem holds for closed unital
subalgebras of the algebra of multiplications by bounded measurable functions on their
Lp-spaces for finite p. In [17], the same authors extended their results to a large class of
Banach function spaces, namely the fully symmetric Banach function spaces with an order
continuous norm.

The existing literature on analogues of von Neumann’s theorem appears to be focused
on Banach spaces and their bounded operators, also when the Banach spaces under consid-
eration have the additional structure of Banach lattices. What happens for Banach lattices
when one takes the ordering into account and adapts the notion of the bicommutant ac-
cordingly? For example, suppose that E is a Banach lattice with an order continuous norm,
and thatA is a unital subalgebra of the order bounded operators on E that is closed in the
regular norm. IfA satisfies an appropriate and sufficiently lenient condition, can one then
describe the bicommutant of A in the order bounded operators on E in a manner that is
reminiscent of von Neumann’s theorem? One can ask a similar question in a more alge-
braic context, where E is merely supposed to be a Dedekind complete vector lattice. Apart
from their intrinsic interest, such results can—as the representation theory of C∗-algebras
shows—expected to be relevant for representation theory in Banach lattices and in vector
lattices.

The research in this thesis originates from this perspective, with an emphasis on the
algebraic context.

The first things that catches the eye when considering a possible bicommutant theorem
for vector lattices is that there is no obvious analogue of the weak operator topology. On
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the other hand, it has become increasingly clear in recent years that so-called Hausdorff
uo-Lebesgue topologies exist on many vector lattices, and that these appear to be of special
relevance. Perhaps such topologies (or related ones) on vector lattices of order bounded
operators can take over the role of the weak operator topologies. Furthermore, a topological
closure is a special case of an adherence with respect to a convergence structure. The latter
abound for vector lattices of order bounded operators and they, too, are natural candidates
to be needed in the picture.

Hence there certainly appear to be possibilities to find alternatives for the weak operator
topology. Quite unfortunately, there is no theory of Hausdorff uo-Lebesgue topologies on
vector lattices of order bounded operators at all that goes beyond that for general vector
lattices, nor is there of the natural convergence structures that exist on them. As soon as
one starts contemplating more advanced issues for these vector lattices of order bounded
operators, such as a possible bicommutant theorem, one runs aground because of the lack
of answers to basic questions. There are no ‘tools to work with’. When trying to answer
these questions, then, more often than not, it turns out that, even though basic in nature,
such questions need by no means be easily answered. Thus attempts at a sufficiently general
bicommutant theorem for vector lattices quickly come to a standstill. It is also this lack of
tools that is one of the reasons that the development of a theory of Banach lattice algebras
(of operators) that does even only remotely resemble that of C∗-algebras (of operators) is
currently out of reach.

This thesis aims at at least partially remedying this by providing basic, but non-trivial,
results that are necessary for the development of a more advanced theory of vector lattice
algebras of order bounded operators on vector lattices and on Banach lattices, and possibly
of vector lattice algebras and Banach lattice algebras in general. It is worth mentioning that,
building on the results in this thesis, analogues of von Neumann’s theorem in the context
of vector lattices and Banach lattices have already been obtained that go beyond the first
explorations in [18]. These will be published at a later date.

We shall now briefly outline the contents of this thesis.
In Chapter 2, the construction of a Hausdorff uo-Lebesgue topology on a vector lattice is

investigated, starting from a Hausdorff o-Lebesgue topology on an order dense ideal. The
approach in [44] already unifies many results on Hausdorff uo-Lebesgue topologies in the
literature and the material in this chapter takes the general theory still one step further.
This chapter also contains a generalisation of the classical relations between convergence
in measure and convergence almost everywhere to the context of Hausdorff uo-Lebesgue
topologies and unbounded order convergence.

In Chapter 3, it is shown how, given a vector lattice E and a Dedekind complete vec-
tor lattice F that is supplied with a locally solid topology, a corresponding absolute strong
topology on the order bounded operators Lob(E, F) from E into F can be introduced. It is
seen from this that Lob(E, F) admits a Hausdorff uo-Lebesgue topology whenever F does.
In a Dedekind complete vector lattice E, for each of order convergence, unbounded order
convergence, and—when applicable—convergence in a Hausdorff uo-Lebesgue topology,
the relationship is investigated between the uniform convergence structure and the corre-
sponding strong convergence structure on the order bounded operators Lob(E) on E. Par-
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ticular attention is paid to the orthomorphisms on E, where the relations between these six
convergence structures are especially convenient, and which are continuous with respect to
the three convergence structures on E under consideration.

Whereas Chapter 3 is concerned with vector lattices of order bounded operators, the
emphasis in Chapter 4 is on vector lattice algebras of order bounded operators on a Dedekind
complete vector lattice. Building on the results in Chapter 3, the continuity of the left
and right multiplications of such vector lattice algebras with respect to the six convergence
structures is investigated. This is then used to study the simultaneous continuity of the
multiplication, the results of which then enable one to give sufficient conditions for the
adherences of vector lattice algebras to be vector lattice algebras again. Results are included
to show that the conditions for the results are sharp in the sense that, for example, a result
is no longer true for a vector lattice subalgebra of the order continuous operators when
it is stated for a vector lattice subalgebra of the orthomorphisms. The chapter concludes
with a section—with special attention for the orthomophisms—on the equality of various
adherences of vector sublattices with respect to the convergence structures considered in
this chapter.

The Chapters 2-4 can be read independently. They are based on the following three
submitted papers:

• Chapter 2: Y. Deng and M. de Jeu. Vector lattices with a Hausdorff uo-Lebesgue
topology. Online at http://arxiv.org/pdf/2005.14636.pdf.

• Chapter 3: Y. Deng and M. de Jeu. Convergence structures and locally solid topologies
on vector lattices of operators. Online at http://arxiv.org/pdf/2008.05379.pdf.

• Chapter 4: Y. Deng and M. de Jeu. Convergence structures and Hausdorff uo-Lebesgue
topologies on vector lattice algebras of operators. Onlineat http://arxiv.org/pdf/2011.
03768.pdf.





Chapter 2

Vector lattices with a Hausdorff
uo-Lebesgue topology

Abstract

We investigate the construction of a Hausdorff uo-Lebesgue topology on a vector lattice from
a Hausdorff (o)-Lebesgue topology on an order dense ideal, and what the properties of the
topologies thus obtained are. When the vector lattice has an order dense ideal with a sepa-
rating order continuous dual, it is always possible to supply it with such a topology in this
fashion, and the restriction of this topology to a regular sublattice is then also a Hausdorff
uo-Lebesgue topology. A regular vector sublattice of L0(X ,Σ,µ) for a semi-finite measure µ
falls into this category, and the convergence of nets in its Hausdorff uo-Lebesgue topology
is then the convergence in measure on subsets of finite measure. When a vector lattice not
only has an order dense ideal with a separating order continuous dual, but also has the
countable sup property, we show that every net in a regular vector sublattice that converges
in its Hausdorff uo-Lebesgue topology always contains a sequence that is uo-convergent to
the same limit. This enables us to give satisfactory answers to various topological questions
about uo-convergence in this context.
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2.1 Introduction and overview

In this paper, we investigate the construction of a Hausdorff uo-Lebesgue topology on a
vector lattice from a Hausdorff (o)-Lebesgue topology1 on an order dense ideal, and what
the properties of the topologies thus obtained are.

After recalling the relevant notions and making the necessary preparations in Section 2.2,
the key construction is carried out in Theorem 2.3.1 in Section 2.3, below. The idea of
starting with a topology on an order dense ideal originates from [11] but, whereas the con-
struction in [11] to obtain a global topology is carried out using Riesz pseudo-norms, we
follow an approach using neighbourhood bases of zero that is inspired by [44]. Using such
neighbourhood bases, it is possible to perform the construction under minimal hypotheses
on the initial data, and thus understand how these hypotheses are reflected in the proper-
ties of the resulting global topology. The remainder of Section 2.3 is mainly concerned with
showing how the general theorem relates to existing results in the literature. Our working
with neighbourhood bases of zero enables us to explain certain ‘pathologies’ in the litera-
ture, where a topology of unbounded type is not Hausdorff, or not linear, from the general
theorem.

In Section 2.4, we move to the context where the initial ideal is actually order dense
and admits a Hausdorff o-Lebesgue topology. In that case, every regular vector sublattice of
the global vector lattice admits a Hausdorff uo-Lebesgue topology. The resulting overview
Theorem 2.4.9, below, mostly consists of a summary of results that are already in the litera-
ture, though not presented in this way. It is also recalled in that section that a regular vector
sublattice admits a Hausdorff uo-Lebesgue topology when the global vector lattice admits
one. Consequently, there is a going-up-going-down procedure: starting with a Hausdorff o-
Lebesgue topology on an order dense ideal, one obtains a Hausdorff uo-Lebesgue topology
on the global vector lattice, and then finally also one on every regular vector sublattice.

In view of the going-up-going-down construction, it is evidently desirable to have a class
of vector lattices that admit Hausdorff o-Lebesgue topologies because such data can serve
as ‘germs’ for Hausdorff uo-Lebesgue topologies. The vector lattices with separating order
continuous duals form such a class, and this is exploited in Section 2.5.

Section 2.6 is concerned with regular vector sublattices of L0(X ,Σ,µ) for a semi-finite
measure µ. Via an application of the going-up-going-down procedure, every regular vector
sublattice of L0(X ,Σ,µ) admits a Hausdorff uo-Lebesgue topology. We give a rigorous proof
of the fact that the convergence of nets in such a topology is the convergence in measure on
subsets of finite measure. For Lp(X ,Σ,µ), we also discuss how the (in fact) unique Hausdorff
uo-Lebesgue topology on these spaces can be described in various seemingly different ways
that are still equivalent. The relation between these topologies and minimal and smallest
Hausdorff locally solid linear topologies on these spaces is explained.

Section 2.7 is concerned with convergent sequences that can always be found ‘within’
nets that are convergent in a Hausdorff uo-Lebesgue topology on a vector lattice that has the
countable sup property and that has an order dense ideal with a separating order continuous

1In the literature, what we call a o-Lebesgue topology is simply called a Lebesgue topology. Now that uo-
Lebesgue topologies, with a completely analogous definition, have become objects of a more extensive study, it
seems consistent to also add a prefix to the original term.
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dual. The precise statement is in Theorem 2.7.6, below; this is one of the main theorems
in this paper. It is in the same spirit as the fact that a sequence that converges (globally)
in measure always contains a subsequence that converges almost everywhere to the same
limit.

Finally, in Section 2.8, we study topological aspects of uo-convergence. The relations be-
tween uo-convergence and various order topologies are not at all well understood, but when
the global vector lattice has the countable sup property, and also has an order dense ideal
with a separating order continuous dual, then a reasonably satisfactory picture emerges. In
Theorem 2.8.1 and Theorem 2.8.8, below, various topological closures and (sequential) ad-
herences are then seen to be equal. It is then also possible to give a necessary and sufficient
criterion for sequential uo-convergence to be topological; see Corollary 2.8.5, below.

We have tried to be as complete in the development of this part of the theory of uo-
convergence as we could, and also to relate to relevant existing results in the literature
whenever possible. Any omissions at this point are unintentional.

2.2 Preliminaries

In this section, we collect a number of definitions, notations, conventions and preparatory
results. We refer the reader to the textbooks [2], [5], [6], [7], [36], [37], [40], [50], and
[51] for general background information on vector lattices and Banach lattices.

2.2.1 Vector lattices, operators, and (unbounded) order convergence

All vector spaces are over the real numbers. Measures take their values in [0,∞] and
are not supposed to satisfy any condition unless otherwise specified. All vector lattices are
supposed to be Archimedean. The positive cone of a vector lattice E is denoted by E+.

Let E be a vector lattice, and let F be a vector sublattice of E. Then F is order dense in E
when, for every x ∈ E with x > 0, there exists a y ∈ F such that 0< y ≤ x; F is called super
order dense in E when, for every x ∈ E+, there exists a sequence (x)∞n=1 ⊆ F+ with xn ↑ x in
E. The vector sublattice F of E is order dense in E if and only if, for every x ∈ E+, we have
x = sup{ y ∈ F : 0≤ y ≤ x }; see [7, Theorem 1.34], for example.

A vector sublattice F of a vector lattice E is called majorising in E when, for every x ∈ E,
there exists a y ∈ F such that x ≤ y . In some sources, such as [11], F is then said to be full
in E.

A vector lattice E has the countable sup property when, for every non-empty subset S of
E that has a supremum in E, there exists an at most countable subset of S that has the same
supremum in E as S. In parts of the literature, such as in [36] and [51], E is then said to be
order separable.

Let E be a vector lattice, and let x ∈ E. We say that a net (xα)α∈A in E is order convergent
to x ∈ E (denoted by xα

o
−→ x) when there exists a net (yβ)β∈B in E such that yβ ↓ 0 and

with the property that, for every β0 ∈ B, there exists an α0 ∈ A such that |x − xα| ≤ yβ0

whenever α in A is such that α ≥ α0. Note that the index sets A and B need not be equal;
for a discussion of the difference between these two possible definitions we refer to [1], for
example.
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Let E and F be vector lattices. The order bounded operators from E into F will be denoted
by Lob(E, F), and the regular operators from E into F by Lr(E, F). When F is Dedekind
complete, we haveLob(E, F) =Lr(E, F), and this space is then a Dedekind complete vector
lattice; see [7, Theorem 1.18], for example. We write Es for Lob(E,R) =Lr(E,R).

A linear operator T : E → F between two vector lattices E and F is order continuous
when, for every net (xα)α∈A in E, the fact that xα

o
−→ 0 in E implies that T xα

o
−→ 0 in F .

When T is positive one can, equivalently, require that, for every net (xα)α∈A in E, the fact
that xα ↓ 0 in E imply that T xα ↓ 0 in F . An order continuous linear operator between two
vector lattices is automatically order bounded; see [7, Lemma 1.54], for example. The order
continuous linear operators from E into F will be denoted by Loc(E, F). In the literature,
the notation Ln(E, F) is often used. When F is Dedekind complete, Loc(E, F) is a band in
Lr(E, F); see [7, Theorem 1.57], for example. We write Esoc for Loc(E,R).

The following result is easily established using the Riesz-Kantorovich formulas and their
‘dual versions’; see [7, Theorems 1.18 and 1.23], for example. We shall be interested only
in the case where the lattice F in it is the real numbers and the band B is the zero band, but
the general case comes at no extra cost in the routine proof.

Proposition 2.2.1. Let E and F be vector lattices, where F is Dedekind complete, and let B be
a band in F.
(1) Let I be an ideal of E. Then the subset

{ T ∈ Lr(E, F) : T x ∈ B for all x ∈ I }

of Lr(E, F) is band in Lr(E, F). For every subset S of I that generates I , it is equal to

{ T ∈ Lr(E, F) : |T ||x | ∈ B for all x ∈ S }.

(2) Let I be an ideal of Lr(E, F). Then the subset

{ x ∈ E : T x ∈ B for all T ∈ I }

of E is an ideal of E. For every subset S of I that generates I , it is equal to

{ x ∈ E : |T ||x | ∈ B for all T ∈ S }.

It is a band in E when I ⊆Loc(E, F).

Let F be a vector sublattice of a vector lattice E. Then F is a regular vector sublattice of
E when the inclusion map from F into E is order continuous. Equivalently, for every net
(xα)α∈A in F , the fact that xα ↓ 0 in F should imply that xα ↓ 0 in E. It is immediate from
the latter criterion that ideals are regular vector sublattices. It is also true that order dense
vector sublattices are regular vector sublattices; see [6, Theorem 1.23], for example.

Let (xα)α∈A be a net in a vector lattice E, and let x ∈ E. We say that (xα) is unbounded
order convergent to x in E (denoted by xα

uo
−→ x) when |xα − x | ∧ y

o
−→ 0 in E for all y ∈
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E+. Order convergence implies unbounded order convergence to the same limit. For order
bounded nets, the two notions coincide. 2

We shall repeatedly refer to the following collection of results; see [28, Theorem 2.8,
Corollary 2.12, and Theorem 3.2].

Theorem 2.2.2. Let E be a vector lattice, and let F be a vector sublattice of E. Take a net
(xα)α∈A in F.
(1) Suppose that F is order dense and majorising in E. Then xα

o
−→ 0 in F if and only if xα

o
−→ 0

in E.
(2) Suppose that F is a regular vector sublattice of E and that (xα)α∈A is order bounded in F.

Then xα
o
−→ 0 in F if and only if xα

o
−→ 0 in E.

(3) The following are equivalent:
(a) F is a regular vector sublattice of E;
(b) for every net (xα)α∈A in F, the fact that xα

uo
−→ 0 in F implies that xα

uo
−→ 0 in E;

(c) for every net (xα)α∈A in F, xα
uo
−→ 0 in F if and only if xα

uo
−→ 0 in E.

In the sequel of this paper, we shall encounter restrictions of order continuous linear
functionals on vector lattices to vector sublattices. For this, we include the following result.
It is based on a theorem of Veksler’s. It contains quite a bit more than we shall actually
need, but we use the opportunity to present the results in it, and its fourth and fifth parts
in particular.

Theorem 2.2.3. Let E be a vector lattice, let F be a vector sublattice of E, and let G be a
Dedekind complete vector lattice. Take T ∈ Loc(E, G).
(1) Suppose that F is a regular vector sublattice of E. Then the restriction T |F : F → G of T

to F is order continuous.
(2) Suppose that F is a regular sublattice of E. WhenLoc(E, G) separates the points of E, then
Loc(F, G) separates the points of F.

(3) Suppose that F is an order dense vector sublattice of E. Then the restriction map T 7→ T |F
is a positive linear injection from Loc(E, G) into Loc(F, G).

Suppose that F is an order dense and majorising vector sublattice of E. Then:
(4) the restriction map T 7→ T |F is a lattice isomorphism between Loc(E, G) and Loc(F, G);
(5) Loc(E, G) separates the points of E if and only if Loc(F, G) separates the points of F.

Proof. Part (1) is clear, and then so is part (2).
It is evident from part(1) thatLoc(F, G) separates the points of F when Loc(E, G) sepa-

rates the points of E.
Suppose that F is an order dense (hence regular) vector sublattice of E and that T ∈

Loc(E, G) is such that T |F = 0. Take x ∈ E+. Then { y ∈ F : 0 ≤ y ≤ x } ↑ x in E. Since
T |F = 0, the order continuity of T on E then implies that T x = 0. Hence T = 0, and we
conclude that the restriction map T 7→ T |F is a positive linear injection from Loc(E, G) into
Loc(F, G).

2Although we shall not need this, it would be less than satisfactory not to mention here that the uo-
continuous dual of a vector lattice (defined in the obvious way) has a very concrete description, and is often
trivial. According to [27, Proposition 2.2], it is the linear span of the coordinate functionals corresponding to
atoms.
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Suppose that F is order dense and majorising in E.
Take S ∈ Loc(F, G). In that case, according to a result of Veksler’s (see [7, Theo-

rem 1.65]), each of S+ and S− can be extended to a positive order continuous operator
from E into G. Hence S itself can be extended to an order continuous operator Sext from E
into G. By what we have already observed in part (3), such an order continuous extension
is unique, and we conclude from this that the map S 7→ Sext is a positive linear injection
from Loc(F, G) into Loc(E, G). It is clear that the extension and restriction maps between
Loc(E, G) and Loc(F, G) are each other’s inverses. We conclude that the restriction map
T 7→ T |F is a bi-positive linear bijection between Loc(E, G) and Loc(F, G). Hence it is a
lattice isomorphism, as required.

One direction of the equivalence in part (5) is clear from part (2). For the converse
direction, suppose that Loc(F, G) separates the points of F . Take x ∈ E such that T x = 0
for all T ∈ Loc(E, G). Since Loc(E, G) is an ideal of Lr(E, F), Proposition 2.2.1 shows that
T |x | = 0 for all T ∈ Loc(E, G). Suppose that x 6= 0. Then there exists a y ∈ F such that
0< y ≤ |x |, and we have T y = 0 for all positive T ∈ Loc(E, G), hence for all T ∈ Loc(E, G).
In view of part (4), this is the same as saying that S y = 0 for all S ∈ Loc(F, G). Our
assumption yields that y = 0; this contradiction shows that we must have x = 0.

2.2.2 Topologies on vector lattices

When E is a vector space, a linear topology on E is a (not necessarily Hausdorff) topology
that provides E with the structure of a topological vector space. When E is a vector lattice, a
locally solid linear topology on E is a linear topology on E such that there exists a base of (not
necessarily open) neighbourhoods of 0 that are solid subsets of E. For the general theory
of locally solid linear topologies on vector lattices we refer to [6]. A locally solid linear
topology on E that is also a locally convex linear topology is a locally convex-solid linear
topology. In that case, there exists a base of neighbourhoods of 0 that consists of absorbing,
closed, convex, and solid subsets of E; see [6, p. 59].

When E is a vector lattice, a locally solid additive topology on E is a topology that provides
the additive group E with the structure of a (not necessarily Hausdorff) topological group,
such that there exists a base of (not necessarily open) neighbourhoods of 0 that are solid
subsets of E.

Let E be a vector lattice. We say that order convergence in E is topological when there
exists a (evidently unique) topology on E such that its convergent nets are precisely the
order convergent nets, with preservation of limits. It follows from the properties of order
convergence that such a topology is automatically a Hausdorff linear topology. Likewise,
unbounded order convergence in E is topological when there exists a topology on E such
that its convergent nets are precisely the nets that are unbounded order convergent, with
preservation of limits. Such a topology is again unique, and automatically a Hausdorff linear
topology.

A topology τ on a vector lattice E is an o-Lebesgue topology when it is a (not necessarily
Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A in E and x ∈ E, the
fact that xα

o
−→ x in E implies that xα

τ
−→ x . Equivalently, the fact that xα

o
−→ 0 in E should

imply that xα
τ
−→ 0. A vector lattice need not admit a Hausdorff o-Lebesgue topology. It can
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be shown, see [6, Example 3.2], that C([0,1]) does not even admit a Hausdorff locally solid
linear topology such that sequential order convergence implies topological convergence.

A topology τ on a vector lattice E is a uo-Lebesgue topology when it is a (not necessarily
Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A in E and x ∈ E,
the fact that xα

uo
−→ x in E implies that xα

τ
−→ x . Equivalently, the fact that xα

uo
−→ 0 in E

should imply that xα
τ
−→ 0. Since order convergence implies unbounded order convergence,

a uo-Lebesgue topology is an o-Lebesgue topology.
The following fundamental facts are from [11, Proposition 3.2, 3.4, and 6.2, and Corol-

lary 6.3] and [44, Theorems 5.5, 5.9, and 6.4].

Theorem 2.2.4 (Conradie and Taylor). Let E be a vector lattice. Then the following are
equivalent:
(1) E admits a Hausdorff o-Lebesgue topology;
(2) E admits a Hausdorff uo-Lebesgue topology;
(3) the partially ordered set of all Hausdorff locally solid linear topologies on E has a minimal

element.
When this is the case, the topologies in the parts (2) and (3) are both unique, they coincide,
and they are the smallest Hausdorff o-Lebesgue topology on E.

When E admits a Hausdorff uo-Lebesgue topology, we shall denote the unique such
topology by bτE . In [11], it is denoted by τm. For a given vector lattice, there may be several
ways to obtain a Hausdorff uo-Lebesgue topology on it. This can then give criteria for the
convergence of nets in the common resulting topology that are apparently equivalent, but
not always immediately obviously so. See Remark 2.6.4 for this, for example.

Remark 2.2.5. Some caution is necessary when consulting the literature on minimal Haus-
dorff locally solid linear topologies because in [6, Definition 7.64] such a topology is defined
as what would usually be called a smallest Hausdorff locally solid linear topologies. When
a vector lattice E admits a complete metrisable o-Lebesgue topology, such as a Banach lat-
tice with an order continuous norm, then it admits a smallest (in the usual sense of the
word) Hausdorff locally solid linear topology; see [6, Theorem 7.65]. Combining this with
Theorem 2.2.4, we see that E then admits a (necessarily unique) Hausdorff uo-Lebesgue
topology bτE , and that bτE is then not just the smallest Hausdorff o-Lebesgue topology, but
even the smallest Hausdorff locally solid linear topology on E.

2.3 Unbounded topologies generated by topologies on ideals

We shall now describe how topologies ‘of unbounded type’ on vector lattices can be ob-
tained from topologies on ideals. There are already several constructions in this vein and
accompanying results in the literature; see [11, 21, 32, 44], for example. In the following
result, we carry out such a construction in what appears to be the most general possible
context. Starting from a locally solid (not necessarily linear or Hausdorff) additive topology
on an ideal F of a vector lattice E—which need not be the restriction of a global locally
solid additive topology on E—and a non-empty subset of F , we define an ‘unbounded’ lo-
cally solid additive topology on E. We give necessary and sufficient conditions for this new
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topology on E to be Hausdorff, and also for it to be a linear topology. Various known results
in more special cases can then be understood from the general theorem, as will be discussed
in Examples 2.3.8 to 2.3.12, below.

The subset S figuring in this construction can be replaced by the ideal that it generates
without altering the result. Although it may conceptually be more natural to work with
ideals than with subsets, working with arbitrary subsets has the advantage of keeping an
eye on a small number of presumably relatively easily manageable ‘test elements’. It is for
this reason that we carry this along to later results; see also Remark 2.4.4, below. The
convenience of this approach will become apparent in the proof of Theorem 2.6.1.

Theorem 2.3.1. Let E be a vector lattice, let F be an ideal of E, and let τF be a (not necessarily
Hausdorff) locally solid additive topology on F. Take a non-empty subset S of F.

There exists a unique (possibly non-Hausdorff) additive topology uSτF on E such that, for

a net (xα)α∈A in E, xα
uSτF−−→ 0 in E if and only if |xα| ∧ |s|

τF−→ 0 in F for all s ∈ S.

Let IS ⊆ F be the ideal generated by S in E. For a net (xα)α∈A in E, xα
uSτF−−→ 0 in E if and

only if |xα| ∧ |y|
τF−→ 0 in F for all y ∈ IS .

Furthermore:
(1) the inclusion map from F into E is τF –uSτF -continuous;
(2) the topology uSτF on E is a locally solid additive topology;
(3) the following are equivalent:

(a) uSτF is a Hausdorff topology on E;
(b) τF is a Hausdorff topology on F and IS is order dense in E;

(4) the following are equivalent:
(i) for all x ∈ E and s ∈ S,

|εx | ∧ |s|
τF−→ 0 (2.1)

in F as ε→ 0 in R;
(ii) for all x ∈ E and y ∈ IS , |εx | ∧ |y|

τF−→ 0 in F as ε→ 0 in R;
(iii) uSτF is a (possibly non-Hausdorff) linear topology on E.

Proof. Suppose that τF is a (not necessarily Hausdorff) locally solid additive topology on F .
The uniqueness of uSτF is clear because the nets converging to 0 and then, by translation

invariance of the topology, to arbitrary points of E are prescribed.
We turn to the existence of such a topology uSτF . Take a neighbourhood base {Uλ}λ∈Λ

of zero in F for τF consisting of solid subsets of F . For y ∈ IS and λ ∈ Λ, set

Vλ,y := { x ∈ E : |x | ∧ |y| ∈ Uλ }. (2.2)

The Vλ,y are solid subsets of E since F is an ideal of E and the Uλ are solid subsets of F . Set

N0 := {Vλ,y : λ ∈ Λ, y ∈ IS }. (2.3)

We claim that N0 is a base of neighbourhoods of zero for a topology on E, which we shall
already denote by uSτF , that provides the additive group E with the structure of a topological
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group. Necessary and sufficient conditions on N0 for this can be found in [31, Theorem 3
on p.46]; we now verify these.

Take Vλ1,y1
, Vλ2,y2

∈ N0. There exists a λ3 ∈ Λ such that Uλ3
⊆ Uλ1

∩ Uλ2
. Take x ∈

Vλ3,|y1|∨|y2|. Then
|x | ∧ |y1| ≤ |x | ∧ (|y1| ∨ |y2|) ∈ Uλ3

⊆ Uλ1
.

Since F is an ideal of E and Uλ1
is a solid subset of F , this implies that |x | ∧ |y1| ∈ Uλ1

, so
that x ∈ Vλ1,y1

. Likewise, x ∈ Vλ2,y2
, and we see that Vλ3,|y1|∨|y2| ⊆ Vλ1,y1

∩ Vλ2,y2
.

It is evident that Vλ,y = −Vλ,y for all Vλ,y ∈ N0.
Take Vλ,y ∈ N0. There exists a µ ∈ Λ such that Uµ+Uµ ⊆ Uλ. Then, for all x1, x2 ∈ Vµ,y ,

we have
|x1 + x2| ∧ |y| ≤ |x1| ∧ |y|+ |x2| ∧ |y| ∈ Uµ + Uµ ⊆ Uλ.

Since F is an ideal of E and Uλ is a solid subset of F , this implies that |x1 + x2| ∧ |y| ∈ Uλ,
so that x1 + x2 ∈ Vλ,y . Hence Vµ,y + Vµ,y ⊆ Vλ,y .

An appeal to [31, p. 46, Theorem 3] now establishes our claim.

It is clear from the definition of uSτF that, for a net (xα)α∈A in E, xα
uSτF−−→ 0 in E if and

only if |xα| ∧ |y|
τF−→ 0 in F for all y ∈ IS .

Certainly, the fact that |xα| ∧ |y|
τF−→ 0 in F for all y ∈ IS implies that |xα| ∧ |s|

τF−→ 0 in

F for all s ∈ S. Conversely, suppose that (xα)α∈A is a net in E such that |xα| ∧ |s|
τF−→ 0 in

F for all s ∈ S. Take y ∈ IS . There exist s1, . . . , sn ∈ S and integers k1, . . . , kn ≥ 1 such that
|y| ≤

∑n
i=1 ki|si|. Hence |xα| ∧ |y| ≤

∑n
i=1 ki (|xα| ∧ |si|). Since τF is a locally solid additive

topology on F , this implies that |xα| ∧ |y|
τF−→ 0 in F .

We turn to the parts (1)–(4).
Since F is an ideal of E and the Uλ are solid subsets of F , we have Uλ ⊆ Vλ,y for all λ ∈ Λ

and y ∈ IS . This implies that the inclusion map from F into E is τF –uSτF -continuous.
The topology uSτF is a locally solid additive topology on E by construction.
Suppose that uSτF is a Hausdorff topology on E. Then so is the topology it induces on F ,

which is weaker than τF . Hence τF is a Hausdorff topology on F . Take x ∈ E with x > 0.
Then there exists a Vλ,y ∈ N0 with x /∈ Vλ,y . In particular, x∧|y| 6= 0. Hence 0< x∧|y| ≤ x .
Since x ∧ |y| ∈ IS , we see that IS is order dense in E.

Suppose, conversely, that τF is a Hausdorff topology on F and that IS is order dense in
E. Take x 6= 0 in E. There exists a y ∈ IS with 0 < y ≤ |x |. Pick Uλ0

∈ {Uλ}λ∈Λ such that
y /∈ Uλ0

. Then |x | ∧ |y| = y /∈ Uλ0
, so that x /∈ Vλ0,y . Hence

⋂

V∈N0
V = {0}. By [31, p. 48,

Theorem 4], uSτF is a Hausdorff additive topology on the topological group E.
We shall now verify the equivalence of the parts (i)–(iii) of (4).
We prove that (i) implies (ii). Take x ∈ E and y ∈ IS . There exist s1, . . . , sn ∈ S and

integers k1, . . . , kn ≥ 1 such that |y| ≤
∑n

i=1 ki|si|, and it follows from this that |εx | ∧ |y| ≤
∑n

i=1 ki (|εx | ∧ |si|) for all ε ∈ R. Since τF is a locally solid additive topology on F , it follows

that |εx | ∧ |y|
τF−→ 0 in F as ε→ 0 in R.

We prove that (ii) implies (iii). Fixλ ∈ Λ and y ∈ IS , and take x ∈ E. Since |εx |∧|y|
τF−→ 0

in F as ε→ 0 in R, there exists a δ > 0 such that |εx | ∧ |y| ∈ Uλ whenever |ε| ≤ δ. That is,
εx ∈ Vλ,y whenever |ε| ≤ δ. This implies that Vλ,y is absorbing. Furthermore, since Vλ,y is
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a solid subset of E, it is clear that εx ∈ Vλ,y whenever x ∈ Vλ,y and ε ∈ [−1,1]. Hence Vλ,y
is balanced. Then [5, Theorem 5.6] implies that uSτF is a linear topology on E.

We prove that (iii) implies (i). Take x ∈ E. Then εx
uSτF−−→ 0 in E as ε → 0 in R. By

construction, this implies (and is, in fact, equivalent to) the fact that |εx | ∧ |s|
τF−→ 0 in F for

all s ∈ S.
This concludes the proof of the equivalence of the three parts of (4). The proof of the

theorem is now complete.

Definition 2.3.2. The topology uSτF in Theorem 2.3.1 is called the unbounded topology on
E that is generated by τF via S.

Remark 2.3.3. It is clear from the two equivalent criteria in Theorem 2.3.1 for a net in
E to be uSτF -convergent to zero that uSτF = uIS

τF for every non-empty subset S of F .
Consequently, uS1

τF = uS2
τF whenever S1, S2 are non-empty subsets of F such that IS1

= IS2
.

Remark 2.3.4. In Theorem 2.3.1, suppose that the locally solid additive topology F is the
restriction τE |F of a locally solid additive topology on E. It is then easy to see that uS(τE |F ) =
uSτE for every non-empty subset S of F .

Remark 2.3.5. In Theorem 2.3.1, and also in the remainder of this paper, the topologies
of interest are characterised by their convergent nets. It should be noted, however, that in
equations (2.2) and (2.3) the proof of Theorem 2.3.1 provides an explicit neighbourhood
base of zero in E for uSτF , in terms of a neighbourhood base of zero in F for τF and the
ideal IS . Suppose, for example that τF is a (possibly non-Hausdorff) locally convex linear
topology on F that is generated by a family {ργ : γ ∈ Γ } of semi-norms on F , as will be the
case in Section 2.5. Then the collection of subsets of E of the form

{ x ∈ E : ρi(|x | ∧ |y|)< ε for ρ1, . . .ρn ∈ Γ },

where y ∈ IS , n≥ 1, and ε > 0 are arbitrary, is a neighbourhood base of zero in E for uSτF .

Our next result is concerned with iterating the construction in Theorem 2.3.1. It gener-
alises what is in [44, p. 997].

Proposition 2.3.6. Let E be a vector lattice, let F1 be an ideal of E, and let τF1
be a (not

necessarily Hausdorff) locally solid additive topology on F1. Take a non-empty subset S1 of F1,
and consider the unbounded topology uS1

τF1
on E that is generated by τF1

via S1. Let F2 be an
ideal of E, and let

�

uS1
τF1

�

|F2
denote the topology on F2 that is induced on F2 by uS1

τF1
. Then

�

uS1
τF1

�

|F2
is a locally solid additive topology on F2. Take a non-empty subset S2 of F2. Then

uS2

��

uS1
τF1

�

|F2

�

= uIS1
∩IS2
τF1

. In particular, when S is a non-empty subset of F1 ∩ F2, then

uS

��

uSτF1

�

|F2

�

= uSτF1
.

Proof. It is clear from Theorem 2.3.1 that
�

uS1
τF1

�

|F2
is a locally solid additive topology on

F2. Let (xα)α∈A be a net in E. Then we have the following chain of equivalent statements:

xα
uS2

��

uS1
τF1

�

|F2

�

−−−−−−−−−−→ 0 in E



17

⇐⇒ |xα| ∧ |y2|

�

uS1
τF1

�

|F2
−−−−−−−→ 0 in F2 for all y2 ∈ IS2

⇐⇒ |xα| ∧ |y2|
uS1
τF1−−−−→ 0 in E for all y2 ∈ IS2

⇐⇒ |xα| ∧ |y2| ∧ |y1|
τF1−−→ 0 in F1 for all y1 ∈ IS1

and y2 ∈ IS2

⇐⇒ |xα| ∧ |y|
τF1−−→ 0 in F1 for all y ∈ IS1

∩ IS2

⇐⇒ xα
uIS1∩IS2

τF1
−−−−−−→ 0 in E.

Hence uS2

��

uS1
τF1

�

|F2

�

= uIS1
∩IS2
τF1

.

Remark 2.3.7. In Proposition 2.3.6, suppose that τF1
is a (not necessarily Hausdorff) locally

solid additive topology on F1 such that, for all x ∈ E and s ∈ S1, |εx | ∧ |s|
τF1−−→ 0 in F1 as

ε → 0 in R. It is then clear from Theorem 2.3.1 that uS1
τF1

,
�

uS1
τF1

�

|F2
, and uIS1

∩IS2
τF1

are
(possibly non-Hausdorff) locally solid linear topologies on E, F2, and E, respectively.

We shall now explain how Theorem 2.3.1 relates to various results already in the litera-
ture.

Example 2.3.8. When F = E and τE is a locally solid linear topology on F = E, the condition
in equation (2.1) is automatically satisfied for any non-empty subset S of F = E. According
to Theorem 2.3.1, uEτE is a locally solid linear topology on E that is Hausdorff if and only
if τE is Hausdorff; this is [44, Theorem 2.3]. Furthermore, when A is an ideal of E, uAτE is
a locally solid linear topology on E that is Hausdorff if and only if τE is Hausdorff and A is
order dense in E; this is [44, Propositions 9.3 and 9.4].

Example 2.3.9. Let E be a Banach lattice. In Theorem 2.3.1, we take F = E, for τF we
take the norm topology τE on F = E, and for S ⊆ F we take S = F = E. Then the condition
in equation (2.1) is satisfied. According to Theorem 2.3.1, uEτE is a Hausdorff locally solid

linear topology on E and, for a net (xα)α∈A in E, xα
uEτE−−→ 0 if and only if ‖|xα| ∧ |y|‖ → 0

for all y ∈ E. In [21], this type of convergence is called unbounded norm convergence, or
un-convergence for short. It was already observed in [21, Section 7] that it is topological; in
[32, p. 746], uFτF is then called the un-topology.

Example 2.3.10. Let E be a vector lattice, and let F be an ideal of E that is a normed vector
lattice. In Theorem 2.3.1, we take for τF the norm topology on F , and for S ⊆ F we take
S = F . According to Theorem 2.3.1, uFτF is a (possibly non-Hausdorff) additive topology

on E and, for a net (xα)α∈A in E, xα
uFτF−−→ 0 if and only if ‖|xα| ∧ |y|‖ → 0 for all y ∈ F .

This type of convergence is called un-convergence with respect to X in [32]. It was already
observed that it is topological in [32, p. 747], where uFτF is called the un-topology on E
induced by F .

In [32, Example 1.3], it is shown that uFτF can fail to be a Hausdorff topology on E.
Since τF is a Hausdorff topology on F , Theorem 2.3.1 shows that the pertinent ideal F in
[32, Example 1.3] must fail to be order dense in E; this is indeed easily seen to be the case.
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Theorem 2.3.1 implies that uFτF is Hausdorff if and only if F is order dense in F ; this is [32,
Proposition 1.4].

In [32, Example 1.5], it is shown that uFτF can fail to be a linear topology on E. Accord-
ing to Theorem 2.3.1, the condition in equation (2.1) must fail to be satisfied in the context
of [32, Example 1.5]; this is indeed easily seen to be the case. Theorem 2.3.1 shows that
uFτF always provides E with an additive topology; this was also noted in [32, p. 748] in
that particular context.

In [32, p. 748], the authors observe that uFτF is a locally solid linear topology on the
vector lattice E whenever E is a normed lattice and the norm on E extends that on F , and
also whenever the norm on F is order continuous. Both facts follow from Theorem 2.3.1
because equation (2.1) is then satisfied. This is clear when E is a normed lattice and the
norm on E extends that on F . Suppose that the norm on F is order continuous. Take x ∈ E
and y ∈ F . Then |εx | ∧ |y|

o
−→ 0 in E as ε → 0. Since the net |εx | ∧ |y| is order bounded

in the ideal F of E, which is a regular vector sublattice of E, Theorem 2.2.2 implies that

|εx | ∧ |y|
o
−→ 0 in F , and then |εx | ∧ |y|

τF−→ 0 as ε→ 0 by the order continuity of the norm
on F .

Example 2.3.11. For a vector lattice E, we let |σ|(E, Es) denote its absolute weak topology;
the definition of this locally solid linear topology will be recalled in Section 2.5. Taking E =
F = S in Theorem 2.3.1 yields the so-called unbounded absolute weak topology uE |σ|(E, Es)
on E. It is a locally solid additive topology on E that is Hausdorff if and only if Es separates
the points of E. When E is a Banach lattice, uE |σ|(E, Es) is a Hausdorff locally solid linear
topology on E. It is studied in [52].

Example 2.3.12. In [11, p. 290], a construction is given to obtain a locally solid linear
topology on a vector lattice E from a locally solid linear topology on an ideal F of E. This is
done using Riesz pseudo-norms, rather than by working with neighbourhood bases of zero
as we have done. The key ingredient is to start with a Riesz pseudo-norm p on F , take
an element u of F+, and introduce a map pu : E → R by setting pu(x) := p(|x | ∧ u) for
x ∈ E. It is then remarked that pu is a Riesz pseudo-norm on E. This need not always be the
case, however. By way of counter-example, take for E the vector lattice of all real-valued
functions on R, and for F the ideal of E consisting of all bounded functions on R. For p,
we take the supremum norm on F . For u ∈ F+, we choose the constant function 1. We
define x ∈ E by setting x(t) := t for t ∈ R. Then pu(λx) = ‖|λx | ∧ u‖ = 1 for all non-zero
λ ∈ R, whereas we should have that limλ→0 pu(λx) = 0. This implies that the topologies on
E that are thus constructed, although locally solid additive topologies, need not be linear
topologies. This ‘pathology’ is similar to that in [32, Example 1.5] that was mentioned
above; our example here is also quite similar to that in [32, Example 1.5]. Fortunately, in
the continuation of the argument in [11], p is taken to be a Riesz pseudo-norm on F that is
continuous with respect to a Hausdorff o-Lebesgue topology τF on F . In this context, pu is a
Riesz pseudo-norm on E. Indeed, since F , being an ideal of E, is a regular vector sublattice
of E, Theorem 2.2.2 easily yields that |λx |∧u

o
−→ 0 in F as λ→ 0. Since τF is an o-Lebesgue

topology on E, we have |λx |∧u
τF−→ 0 in F as λ→ 0, and then the continuity of p on F yields

that pu(λx)→ 0 as λ→ 0. Thus the construction in [11] proceeds correctly after all. The
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results of our systematic investigation with minimal hypotheses in Theorem 2.3.1, however,
are more comprehensive than those in [11].

2.4 Hausdorff uo-Lebesgue topologies: going up and going down

In this section, we investigate how, via a going-up-going-down construction, the existence
of a Hausdorff o-Lebesgue topology on an order dense ideal of a vector lattice E implies that
every regular vector sublattice of E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology.

We start by going up.

Proposition 2.4.1. Let E be a vector lattice, and let F be an ideal of E. Suppose that F admits
an o-Lebesgue topology τF . Choose a non-empty subset S of F. Then uSτF is a uo-Lebesgue
topology on E. It is a (necessarily unique) Hausdorff uo-Lebesgue topology on E if and only if
τF is a Hausdorff topology on F and the ideal IS that is generated by S is order dense in E.

Proof. We know from Theorem 2.3.1 that uSτF is a locally solid additive topology on E. In
order to see that it is a linear topology on E, we verify the condition in equation (2.1). Take
x in E and s in S. Then |εx | ∧ |s|

o
−→ 0 in E as ε→ 0 in R. Since F , being in ideal of E, is a

regular vector sublattice of E, Theorem 2.2.2 shows that |εx | ∧ |s|
o
−→ 0 in F . Since τF is an

o-Lebesgue topology on F , this implies that |εx | ∧ |s|
τF−→ 0 in F as ε→ 0 in R, as required.

To conclude the proof, suppose that (xα)α∈A is a net in E such that xα
uo
−→ 0 in E. Take s ∈

S. Then |xα|∧ |s|
o
−→ 0 in E. Again, since F is a regular vector sublattice of E, Theorem 2.2.2

shows that |xα| ∧ |s|
o
−→ 0 in F . Since τF is an o-Lebesgue topology on F , this implies that

|xα| ∧ |s|
τF−→ 0 in F . It now follows from Theorem 2.3.1 that xα

uSτF−−→ 0 in E, as required.
The uniqueness statement is clear from Theorem 2.2.4.

The combination of Theorem 2.3.1 and Proposition 2.4.1 immediately yields the follow-
ing.

Theorem 2.4.2. Let E be a vector lattice. Suppose that E has an order dense ideal F that
admits a Hausdorff o-Lebesgue topology. Then E admits a (necessarily unique) Hausdorff uo-
Lebesgue topology bτE . This topology bτE is equal to uSτF for every subset S of F such that the
ideal IS ⊆ F that is generated by S is order dense in E.

For a net (xα)α∈A in E, the following are equivalent:

(1) xα
bτE−→ 0 in E;

(2) |xα| ∧ |s|
τF−→ 0 in F for all s ∈ S;

(3) |xα| ∧ |y|
τF−→ 0 in F for all y ∈ F.

Remark 2.4.3. For the case in Theorem 2.4.2 where S = F and τF is the restriction of
a Hausdorff o-Lebesgue topology on E, it was already established in [44, Theorem 9.6]
that uFτF is a Hausdorff uo-Lebesgue topology on E. It is, therefore, of some importance
to point out that not every Hausdorff o-Lebesgue topology on an order dense ideal is the
restriction of a Hausdorff o-Lebesgue topology on the enveloping vector lattice. By way
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of example, consider the order dense ideal c0 of `∞. Since the supremum norm on c0 is
order continuous, the usual norm topology τc0

on c0 is a Hausdorff o-Lebesgue topology.
However, there does not even exist a possibly non-Hausdorff o-Lebesgue topology τ`∞ on
`∞ that extends τc0

. In order to see this, consider the sequence of standard unit vectors

(e)∞n=1 in `∞. We have en
o
−→ 0 in `∞ , which would imply that en

τ`∞−−→ 0 in `∞. Since τ`∞
extends τc0

, we would have that en → 0 in norm. This contradiction shows that such an
extension does not exist.

Although the terminology is not used as such, the fact that uFτF is a Hausdorff uo-Lebes-
gue topology on E is implicit in the construction in [11, p. 290].

Remark 2.4.4. We are not aware of a reference where it is noted, as in part (2), that con-
vergence of a net in the Hausdorff uo-Lebesgue topology on E can be established by using
a (presumably small and manageable) subset S of F instead of the full ideal F . This non-
trivial fact, which relies on the uniqueness of a Hausdorff uo-Lebesgue topology, appears to
be of some practical value.

In view of the uniqueness of a Hausdorff uo-Lebesgue topology (see Theorem 2.2.4), the
following is now clear from Theorem 2.4.2.

Corollary 2.4.5. Let E be a vector lattice, and suppose that E has order dense ideals F1 and
F2, each of which admits a Hausdorff o-Lebesgue topology. For i = 1,2, choose a Hausdorff o-
Lebesgue topology τFi

on Fi , and choose a non-empty subset Si of Fi such that the ideal ISi
⊆ Fi

that is generated by Si in E is order dense in E. Then uS1
τF1

and uS2
τF2

are both equal to the
(necessarily unique) uo-Lebesgue topology topology bτE on E.

Remark 2.4.6. The case in Corollary 2.4.5 where S1 = F1 and S2 = F2 is [11, Proposi-
tion 3.2].

The case where, for i = 1, 2, Si = Fi and τFi
is the restriction to Fi of a Hausdorff o-Lebes-

gue topology τi on E, is a part of [44, Theorem 9.6]. Note, however, that our underlying
proof in Proposition 2.4.1 that uSτF is a uo-Lebesgue topology is direct, whereas in the proof
of [44, Theorem 9.6] the identification of a Hausdorff uo-Lebesgue topology as a minimal
Hausdorff locally solid topology as in Theorem 2.2.4 is used.

Complementing the preceding going-up results, we cite the following going-down result;
see [44, Proposition 5.12].

Proposition 2.4.7 (Taylor). Suppose that the vector lattice E admits a (necessarily unique)
Hausdorff uo-Lebesgue topology bτE . Take a vector sublattice F of E. Then F is a regular vector
sublattice of E if and only if the restriction bτE |F of bτE to F is a (necessarily unique) Hausdorff
uo-Lebesgue topology on F.

A variation on this theme, with a wider range of topologies to use for testing the regu-
larity of a vector sublattice, is the following.

Proposition 2.4.8. Suppose that the vector lattice E admits a Hausdorff o-Lebesgue topology
τE . Take a vector sublattice F of E. Then F is a regular vector sublattice of E if and only if the
restriction τE |F of τE to F is a Hausdorff o-Lebesgue topology on F.
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Proof. Once one recalls that, by definition, order convergence of a net to 0 in the regu-
lar vector sublattice F of E implies order convergence of the net to 0 in E, the proof is a
straightforward minor adaptation of that of [44, Proposition 5.12].

We now have the following overview theorem concerning Hausdorff o-Lebesgue topolo-
gies and Hausdorff uo-Lebesgue topologies on a vector lattice and on its order dense ideals.
It is easily established by recalling that a uo-Lebesgue topology is an o-Lebesgue topology,
that an ideal is a regular vector sublattice, and by using Theorem 2.4.2, Proposition 2.4.7,
and Proposition 2.4.8.

Theorem 2.4.9. Let E be a vector lattice, and let F be an order dense ideal of E.
(1) Suppose that E admits a Hausdorff o-Lebesgue topology τE . Then the restricted topology

τE |F is a Hausdorff o-Lebesgue topology on E.
(2) Suppose that E admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτE . Then

the restricted topology bτE |F is a (necessarily unique) Hausdorff uo-Lebesgue topology on
F.

(3) The following are equivalent:
(a) F admits a Hausdorff o-Lebesgue topology;
(b) F admits a Hausdorff uo-Lebesgue topology;
(c) E admits a Hausdorff o-Lebesgue topology;
(d) E admits a Hausdorff uo-Lebesgue topology.

In that case, the unique uo-Lebesgue topology bτE on E equals uSτF for every Hausdorff
o-Lebesgue topology on F and every subset S of F such that the ideal IS ⊆ F is order dense
in E, and the following are equivalent:

(i) xα
bτE−→ 0 in E;

(ii) |xα| ∧ |s|
τF−→ 0 in F for all s ∈ S;

(iii) |xα| ∧ |y|
τF−→ 0 in F for all y ∈ F.

We conclude this section with a short discussion of Banach lattices with order continuous
norms. Evidently, the norm topologies on such Banach lattices are Hausdorff o-Lebesgue
topologies. As already noted in [44, p. 993], Theorem 2.4.2 allows one to identify the so-
called un-topologies (see [21, Section 7] and [32, p. 746]) on such lattices as the Hausdorff
uo-Lebesgue topologies that these spaces apparently admit. Consequently, we have the
following result. The case where S = E can be found in [44, p. 993].

Proposition 2.4.10. Let E be a Banach lattice with an order continuous norm and norm
topology τE . Then E admits a (necessarily unique) uo-Lebesgue topology.

Choose a subset S of E such that the ideal IS that is generated by S in E is order dense in
E. Then:
(1) uSτE is the uo-Lebesgue topology bτE of E;

(2) when (xα)α∈A is a net in E, then xα
bτE−→ 0 in E if and only if ‖|xα|∧ |s|‖ −→ 0 for all s ∈ S;

equivalently, if and only if ‖|xα| ∧ |y|‖ −→ 0 for all y ∈ E.

There is an alternative reason why Banach lattices with an order continuous norms admit
Hausdorff uo-Lebesgue topologies, and this results in an alternative description of these
topologies; see Corollary 2.5.4, below.
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Finally, suppose that E is a vector lattice that has order dense ideals F1 and F2 that are
Banach lattices with order continuous norm topologies τF1

and τF2
, respectively. Then it is

immediate from Corollary 2.4.5 that E admits a Hausdorff uo-Lebesgue topology bτE , and
that uF1

τF1
and uF2

τF2
are both equal to bτE . As discussed in Example 2.3.10, this can, using

the terminology in [32], be rephrased as stating that F1 and F2 induce the same un-topology
on E. We have thus retrieved [32, Theorem 2.6].

2.5 uo-Lebesgue topologies generated by absolute weak topolo-
gies on order dense ideals

In this section, we shall be concerned with vector lattices having order dense ideals with
separating order continuous duals as a source for Hausdorff uo-Lebesgue topologies on the
vector lattices themselves.

We start by recapitulating some facts from [6, p. 63–64]. Let E be a vector lattice, and
let A be a non-empty subset of the order dual Es of E. For ϕ ∈ A, define the lattice semi-
norm ρϕ : E→ [0,∞) by setting ρϕ(x) := |ϕ|(|x |) for x ∈ E. Then the locally convex-solid
linear topology on E that is generated by the family {ρϕ : ϕ ∈ A} is called the absolute
weak topology generated by A on E; it is denoted by |σ|(E, A). With IA denoting the ideal
generated by A in Es, we have |σ|(E, A) = |σ|(E, IA). Using Proposition 2.2.1, one easily
concludes that |σ|(E, A) is Hausdorff if and only if IA separates the points of E. Although
we shall not use it, let us still remark that it is not difficult to see that a net (xα)α∈A in E
is |σ|(E, A)-convergent to zero if and only if ϕ(xα) −→ 0 uniformly for ϕ in each fixed order
interval of IA. Thus absolute weak topologies are more natural than is perhaps apparent
from their definition.

The following is now clear.

Lemma 2.5.1. Let E be a vector lattice, and let A be a non-empty subset of Esoc. Let IA denote
the ideal that is generated by A in Esoc. Then |σ|(E, A) = |σ|(E, IA) is an o-Lebesgue topology
on E that is even locally convex-solid. It is a Hausdorff topology if and only if IA separates the

points of E. When (xα)α∈A is a net in E, then xα
|σ|(E,A)
−−−−→ 0 in E if and only if |ϕ| (|xα|)→ 0

for all ϕ ∈ A; equivalently, if and only if |ϕ| (|xα|)→ 0 for all ϕ ∈ IA.

Now that Lemma 2.5.1 provides a whole class of vector lattices admitting Hausdorff o-
Lebesgue topologies, we can use these as input for Theorem 2.4.2. Taking the convergence
statements in Lemma 2.5.1 into account, we arrive at the following.

Theorem 2.5.2. Let E be a vector lattice. Suppose that E has an order dense ideal F such
that Fsoc separates the points of F. Then E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology bτE .

Choose a subset A of Fsoc such that the ideal IA that is generated by A in Fsoc separates the
points of F, and choose a subset S of F such that the ideal IS ⊆ F that is generated by S is order
dense in E. Then:
(1) uS|σ|(F, A) and uF |σ|(F, IA) are both equal to bτE;
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(2) for a net (xα)α∈A in E, xα
bτE−→ 0 in E if and only if |ϕ| (|xα| ∧ |s|)→ 0 for all ϕ ∈ A and

s ∈ S; equivalently, if and only if |ϕ| (|xα| ∧ |y|)→ 0 for all ϕ ∈ Fsoc and y ∈ F.

For the sake of completeness, we recall that a regular vector sublattice of a vector lattice
E as in the theorem also has a (necessarily unique) Hausdorff uo-Lebesgue topology, and
that this topology is the restriction of bτE to the vector sublattice.

Remark 2.5.3. As noted in Remark 2.3.5, one can give an explicit neighbourhood base at
zero for the topology bτE in Theorem 2.5.2.

For Banach lattices with order continuous norms, the order/norm dual consists of order
continuous linear functionals only. Hence we have the following result, which should be
compared to Proposition 2.4.10 where the same Hausdorff uo-Lebesgue topology bτE is also
identified as the un-topology.

Corollary 2.5.4. A Banach lattice E with an order continuous norm admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτE , namely uE |σ|(E, E∗).

The following gives a necessary condition for convergence in a Hausdorff uo-Lebesgue
topology. It is essential in the proof of Theorem 2.7.6, below.

Proposition 2.5.5. Let E be a vector lattice that admits a (necessarily unique) Hausdorff uo-

Lebesgue topology bτE , and let (xα)α∈A be a net in E such that xα
bτE−→ 0 in E. Take an ideal F of

E such that Fsoc separates the points of F. Then |ϕ|(|xα| ∧ |y|) −→ 0 for all ϕ ∈ Fsoc and y ∈ F.

Proof. Take ϕ ∈ Fsoc and y ∈ F . Since bτE is a locally solid topology, we have |x |α ∧ |y|
bτE−→ 0

in E. It follows from Proposition 2.4.7 that F has a (necessarily unique) Hausdorff uo-Lebes-

gue topology bτF and that |x |α ∧ |y|
bτF−→ 0. Now we apply Theorem 2.5.2 with E = F to see

that |ϕ|((|xα| ∧ |y|)∧ |y|) −→ 0.

We shall now consider the order dual Es of a vector lattice E. For x ∈ E, we set

ϕx(ϕ) := ϕ(x)

for ϕ ∈ Es. Then ϕx ∈ (Es)
s
oc, and the map ϕ : E → Es is a lattice homomorphism; see

[6, p. 43]. Since ϕ(E) already separates the points of Es, we see that (Es)soc separates the
points of Es.

We can now apply Theorem 2.5.2 twice. In both cases, we replace E with Es, and we
choose Es for both F and S. In the first application, we choose (Es)soc for A; in the second,
we choose ϕ(E). The result is as follows.

Corollary 2.5.6. Let E be a vector lattice. Then the order dual Es of E admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτEs .

Moreover:
(1) uEs |σ|(Es, (Es)soc) and uEs |σ|(Es, E) are both equal to bτEs;

(2) when (ϕα)α∈A is a net in Es, then ϕα
bτEs−−→ 0 in E if and only if |ξ| (|ϕα| ∧ |ϕ|)→ 0 for

all ξ ∈ (Es)soc and ϕ ∈ Es; equivalently, if and only if (|ϕα| ∧ |ϕ|)(|x |)→ 0 for all x ∈ E
and ϕ ∈ Es.



24

Remark 2.5.7.
(1) As in the case of Theorem 2.5.2, Remark 2.3.5 shows how to give an explicit neighbour-

hood base at zero for the topology bτEs in Corollary 2.5.6.
(2) By Proposition 2.4.7, every regular sublattice of the order dual of a vector lattice also

admits a (necessarily unique) Hausdorff Lebesgue topology that can be described in
two ways. For an ideal, one of these descriptions is already in [44, Example 5.8].

(3) Corollary 2.5.6 shows that, in particular, the norm/order dual E∗ of a Banach lattice ad-
mits a (necessarily unique) Hausdorff uo-Lebesgue topology bτE∗ , namely the so-called
unbounded absolute weak ∗-topology uE∗ |σ|(E∗, E). This was already observed in [44,
Lemma 6.6].

2.6 Regular vector sublattices of L0(X ,Σ,µ) for semi-finite mea-
sures

Let (X ,Σ,µ) be a measure space, and write L0(X ,Σ,µ) for the vector lattice of all real-
valued Σ-measurable functions on X , with identification of two functions when they agree
µ-almost everywhere. In this section we show that, for semi-finite µ, every regular sublattice
of L0(X ,Σ,µ) admits a (necessarily unique) Hausdorff uo-Lebesgue topology, and that a net
converges in this topology if and only if it converges in measure on subsets of finite measure;
see Theorem 2.6.3, below.

For some regular sublattices of L0(X ,Σ,µ), it is quite obvious that they admit a Hausdorff
uo-Lebesgue topology. Recall that the spaces Lp(X ,Σ,µ) for p such that 1 ≤ p <∞ have
order continuous norms for all measures µ; see [5, Theorem 13.7], for example. Hence their
norm topologies are Hausdorff o-Lebesgue topologies, and then their un-topologies are the
Hausdorff uo-Lebesgue topologies on these spaces. Alternatively, one can observe that their
order continuous duals separate their points, and then also identify the Hausdorff uo-Lebes-
gue topologies on these spaces as the unbounded absolute weak topologies. In a similar vein,
when µ is σ-finite, every ideal of L0(X ,Σ,µ) that can be supplied with a lattice norm has a
separating order continuous dual. This result of Lozanovsky’s (see [2, Theorem 5.25], for
example) then implies that such a normed function space admits a Hausdorff uo-Lebesgue
topology.

How about the spaces Lp(X ,Σ,µ) for 0 ≤ p < 1? There is no norm to work with,
and it may well be the case that their order continuous duals are even trivial. Indeed,
when µ is atomless, then, according to a results of Day’s, the order continuous dual of
Lp(X ,Σ,µ) is trivial for 0 < p < 1; see [5, Theorem 13.31], for example. According to [51,
Exercise 25.2], the order continuous dual of L0(X ,Σ,µ) is trivial for every σ-finite measure
with the property that, for any measurable subset A such that 0< µ(A)<∞ and for any α
such that 0< α < µ(A), there exists a measurable subset A′ of A such that µ(A′) = α. Taking
[49, Exercise 10.12 on p. 67] into account, we see that, in particular, the order continuous
dual of L0(X ,Σ,µ) is trivial for all atomless σ-finite measures.

In spite of the failure of the two obvious approaches, it is still possible to show that all
spaces Lp(X ,Σ,µ) for 0 ≤ p < 1 admit Hausdorff uo-Lebesgue topologies, provided that
the measure is semi-finite. For such µ, this is even true for all regular vector sublattices of
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L0(X ,Σ,µ). This can be seen via the going-up-going-down approach from Section 2.4, and
we shall now elaborate on this. We start with a few preliminary remarks.

Recall that a measure space (X ,Σ,µ) is said to be semi-finite if, for any A ∈ Σ with
µ(A) =∞, there exists a measurable subset A′ of A such that 0 < µ(A′) <∞. Every σ-
finite measure is semi-finite. For an arbitrary measure µ and an arbitrary p such that 1 ≤
p <∞, it is easy to see that the ideal Lp(X ,Σ,µ) of L0(X ,Σ,µ) is order dense in L0(X ,Σ,µ)
if and only if µ is semi-finite. In that case, the ideal that is generated in L0(X ,Σ,µ) by the
subset S := {1A : A ∈ Σ has finite measure } of Lp(X ,Σ,µ) is obviously also order dense in
L0(X ,Σ,µ).

Let (X ,Σ,µ) be a measure space. Take f ∈ L0(X ,Σ,µ). Then a net ( fα)α∈A in L0(X ,Σ,µ)
converges to f in measure on subsets of finite measure when, for all A∈ Σ such that µ(A)<∞

and for all ε > 0, µ({ x ∈ A : | fα(x)− f (x)| ≥ ε }) −→ 0. In that case, we write fα
µ∗

−→ f , using
as asterisk to distinguish this convergence from the perhaps more usual global convergence
in measure.

The following is the core result of this section. We recall that, as already mentioned, the
spaces Lp(X ,Σ,µ) have order continuous norms for all measures µ and for all p such that
1≤ p <∞, so that their norm topologies are Hausdorff o-Lebesgue topologies.

Theorem 2.6.1. Let E = L0(X ,Σ,µ), where µ is a semi-finite measure. Then G admits a
(necessarily unique) Hausdorff uo-Lebesgue topology bτE .

Take a net ( fα)α∈A in E. Then the following are equivalent for every p such that 1≤ p <∞:

(1) fα
bτE−→ 0;

(2)
∫

X
| fα|p ∧ 1A dµ= ‖ | fα| ∧ |1A| ‖p

p −→ 0

for every measurable subset A of X with finite measure;
(3)

∫

X
| fα|p ∧ | f |p dµ= ‖ | fα| ∧ | f | ‖p

p −→ 0

for every f ∈ Lp(X ,Σ,µ);

(4) fα
µ∗

−→ f .

Proof. We know from the semi-finiteness of µ that, for p such that 1 ≤ p ≤∞, Lp(X ,Σ,µ)
is an order dense ideal of L0(X ,Σ,µ). Since Lp(X ,Σ,µ) admits a Hausdorff o-Lebesgue
topology when 1 ≤ p <∞, Theorem 2.4.2 shows that L0(X ,Σ,µ) admits a (necessarily
unique) Hausdorff uo-Lebesgue topology, and also that the statements in the parts (1), (2),
and (3) of the present theorem are equivalent for all such p.

We show that part (3) implies part (4). Take a measurable subset A of X with finite
measure, and let ε > 0. Since ε1A ∈ Lp(X ,Σ,µ), we have, by assumption,

∫

X
| fα|p ∧ (εp1A)dµ −→ 0.
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Because
∫

X
| fα|p ∧ (εp1A)dµ≥

∫

{ x∈A:| fα(x)|≥ε }
εp dµ= εpµ ({ x ∈ A : | fα(x)| ≥ ε })

we conclude that µ({ x ∈ A : | fα(x)| ≥ ε }) −→ 0. Hence fα
µ∗

−→ 0.
We show that part (4) implies part (2). Take a measurable subset A of X with finite

measure, and take ε > 0. Choose a δ > 0 such that δpµ(A)< ε/2. Then
∫

X
| fα|p ∧ 1A dµ=

∫

{ x∈A:| fα(x)|p≥δp }
| fα|p ∧ 1A dµ+

∫

{ x∈A:| fα(x)|p<δp }
| fα|p ∧ 1A dµ

≤
∫

{ x∈A:| fα(x)|p≥δp }
1dµ+

∫

A
δp dµ

≤ µ ({ x ∈ A : | fα(x)| ≥ δ }) + ε/2.

By our assumption, there exists an α0 ∈A such that µ ({ x ∈ A : | fα(x)| ≥ δ }) < ε/2 for all
α≥ α0. Then

∫

X | fα|
p ∧ 1A dµ < ε for all α≥ α0. Hence

∫

X | fα| ∧ 1A dµ −→ 0.

Remark 2.6.2.
(1) We are not aware of a proof of Theorem 2.6.1 in the literature. It is stated in [11,

p. 292] that the parts (1) and (4) are equivalent, but there only a reference is given
to [24, 65K and 63L]. Since [24, 63L] relies on the solution of the non-trivial exercise
[24, Exercise 63M(j)] for which a solution is not provided, we thought it appropriate
to give an independent proof in the present paper.

(2) The equivalence of the parts (3) and (4) for finite measures and sequences was also
established by different methods in [45, Example 23]. Still earlier, this case was covered
in [21, Corollary 4.2], with a proof in the same spirit as our proof.

As an immediate consequence of Proposition 2.4.7 and Theorem 2.6.1, we obtain the
following result via our going-up-going-down approach.

Theorem 2.6.3. Let (X ,Σ,µ) be a measure space, where µ is a semi-finite measure. Take
a regular vector sublattice E of L0(X ,Σ,µ). Then E admits a (necessarily unique) Hausdorff
uo-Lebesgue topology bτE . This topology bτE on E is the restriction of the Hausdorff uo-Lebesgue
topology on L0(X ,Σ,µ). A net ( fα)α∈A in E converges to zero in bτE if and only if it satisfies one
of the three equivalent criteria in the parts (2), (3), and (4) of Theorem 2.6.1. In particular,
it is bτE-convergent to zero if and only if it converges to zero in measure on subsets of finite
measure.

Remark 2.6.4. Let p be such that 1 ≤ p <∞. For arbitrary measures, Proposition 2.4.10
and Corollary 2.5.4 both give a description of the convergent nets in the Hausdorff uo-Lebes-
gue topology on Lp(X ,Σ,µ). The former as the convergent nets in the un-topology, and the
latter as the convergent nets in the unbounded absolute weak topology, respectively. When
µ is semi-finite, Theorem 2.6.3 gives a third description as the convergence in measure on
subsets of finite measure.
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Also for p =∞, Theorem 2.6.3 shows that L∞(X ,Σ,µ) admits a (necessarily unique)
Hausdorff uo-Lebesgue topology whenever µ is semi-finite, and gives a description of its
convergent nets. When µ is a localisable measure, two more descriptions are possible. We
refer to [25, 211G] for the definition of localisable measures, and note that σ-finite mea-
sures are localisable, and that localisable measures are semi-finite. Indeed, for localisable
measures, L∞(X ,Σ,µ) is the order dual of L1(X ,Σ,µ); see [25, 243G(b)]. Hence Corol-
lary 2.5.6 shows once more that L∞(X ,Σ,µ) admits a Hausdorff uo-Lebesgue topology
when µ is localisable, and gives a second and third description of its convergent nets.

Remark 2.6.5. Let (X ,Σ,µ) be a measure space, where µ is a semi-finite measure.
Let p be such that 0 < p <∞. The combination of Theorem 2.6.3 and Remark 2.2.5

shows that the topology of convergence in measure on subsets of finite measure is the small-
est Hausdorff locally solid linear topology on Lp(X ,Σ,µ).3 For σ-finite measures, this can
already be found in [6, Theorem 7.74], where it is also established that the usual metric
topology is then the largest Hausdorff locally solid linear topology.

For p =∞, the combination of Theorem 2.6.3 and Theorem 2.2.4 shows that the topol-
ogy of convergence in measure on subsets of finite measure is the unique minimal Hausdorff
locally solid linear topology on L∞(X ,Σ,µ). It seems worthwhile to note that, when µ is, in
fact, σ-finite, and also non-atomic, [6, Theorem 7.75] shows that there is now no smallest
Hausdorff locally solid linear topology on L∞(X ,Σ,µ).

Remark 2.6.6. Let (xn)∞n=1 be a sequence in L0(X ,Σ,µ), where µ is a semi-finite measure.

Suppose that fn −→ 0 µ-almost everywhere. Then fn
µ∗

−→ 0. This is immediate from Ego-
roff’s theorem (see [23, Theorem 2.33], for example), but it can also be obtained (with
a long detour) in the context of uo-convergence and uo-Lebesgue topologies. Indeed, by
[28, Proposition 3.1], almost everywhere convergence of a sequence in L0(X ,Σ,µ) is, for
arbitrary measures, equivalent to uo-convergence in L0(X ,Σ,µ). Since, by definition, uo-
convergence implies convergence in a uo-Lebesgue topology (when this exists), an appeal
to Theorem 2.6.1 also yields the desired result.

2.7 uo-convergent sequences within bτE-convergent nets

Let E be a vector lattice that admits a (necessarily unique) Hausdorff uo-Lebesgue topology

bτE . When (xα)α∈A is a net in E such that xα
uo
−→ 0, then, by definition, xα

bτE−→ 0. The
present section is concerned with results that go in the opposite direction. The main result

3For this conclusion, we should note here that the usual metric topology on Lp(X ,Σ,µ) is a complete o-
Lebesgue topology for every measure µ and for every p such that 0 < p < ∞. This is commonly known
when 1 ≤ p <∞. When 0 < p < 1, then the completeness is asserted in [39, 1.47]. The fact that the metric
topology is an o-Lebesgue topology for such p follows from what is stated on [6, p. 211] in the context ofσ-finite
measures. This implies the result for general measures. Indeed, suppose that ( fα)α∈A is a net in Lp(X ,Σ,µ)
such that fα ↓ 0. Passing to a tail, we may suppose that the net is bounded above by an fα0

∈ Lp(X ,Σ,µ). The
support of this fα0

is σ-finite. Using the fact that the elements of Lp(X ,Σ,µ) that vanish off this support form
an ideal of Lp(X ,Σ,µ), it is then easily seen from the σ-finite case that the chosen tail of the net converges to
zero in the metric topology of Lp(X ,Σ,µ).
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is Theorem 2.7.6, below, which lies at the basis of topological considerations in Section 2.8,
but we start with a few more elementary results.

For an atomic vector lattice E, the situation is as easy as can be. Recall that, by [6,
Theorem 1.78], the atomic vector lattices are precisely the order dense vector sublattices
of RX for some set X . Combining [13, Proposition 1] and [44, Lemma 7.4], we have the
following.

Proposition 2.7.1 (Taylor). Let E be an atomic vector lattice. Then E admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτE , and this topology is locally convex-solid. For a
net in E, uo-convergence and bτE-convergence coincide, so that uo-convergence is topological.
When E is an order dense vector sublattice of RX for some set X , then a net in E is uo- and
bτE-convergent if and only if it is pointwise convergent.

For monotone nets, uo-convergence and bτE convergence still always coincide, according
to the following elementary lemma.

Lemma 2.7.2. Let E be a vector lattice, and suppose that τ is a Hausdorff locally solid linear
topology on E. Let (xα)α∈A be a monotone net in E and let x ∈ E. When xα

τ
−→ x in E, then

xα
uo
−→ x in E. When bτE is a (necessarily unique) Hausdorff uo-Lebesgue topology on E, then

xα
bτE−→ x in E if and only if xα

uo
−→ x in E.

Proof. We may suppose that xα ↓. Take y ∈ E. Then |xα− x | ∧ |y| ↓ and |x − xα| ∧ |y|
τ
−→ 0.

By [6, Theorem 2.21], we have |xα − x | ∧ |y| ↓ 0. Hence xα
uo
−→ x . The final statement is

clear.

For non-monotone nets in general vector lattices, it is not generally true that bτE-conver-
gence implies uo-convergence. This can already fail for sequences in Banach lattices with
order continuous norms. As an example, consider E = L1([0,1]). For n = 1,2, . . . and
k = 1, 2, . . . , n, let fnk be the characteristic function of [ k−1

n , k
n], and consider the sequence

f11, f21, f22, f31, f32, f33, f41, . . . . It converges to zero in measure, so Theorem 2.6.1 shows
that it is bτE-convergent to zero. On the other hand, [28, Proposition 3.1] shows that uo-
convergence of a sequence in L1([0,1]) is the same as almost everywhere convergence.
Hence the sequence is not uo-convergent to zero.

Still, something can be salvaged in the general case. As a motivating example, suppose
that (X ,Σ,µ) is a measure space. It is well known that a sequence in L0(X ,Σ,µ) that con-
verges (globally) in measure has a subsequence that converges to the same limit almost
everywhere; see [23, Theorem 2.30], for example. When µ is finite, then, in view of The-
orem 2.6.1 and [28, Proposition 3.1], this can be restated as saying that a bτE convergent
sequence in L0(X ,Σ,µ) has a subsequence that is uo-convergent to the same limit. We shall
now extend this formulation of the result to a more general context of nets and Hausdorff
uo-Lebesgue topologies on vector lattices; see Theorem 2.7.6, below. In Corollary 2.7.8,
below, we shall then obtain a stronger version of the motivating result for convergence in
measure and convergence almost everywhere, as a specialisation of the general result.

We start with three preparatory results. The first two appear to have some independent
interest.
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Proposition 2.7.3. Let E be a vector lattice with the countable sup property such that Esoc
separates the points of E. Take e ∈ E+, and let Ie denote the ideal that is generated in E by
e. Then (Ie)

s
oc separates the points of Ie. In fact, there even exists a ϕ ∈ (Ie)

s
oc that is strictly

positive on Ie.

Proof. It is immediate from Theorem 2.2.3 that (Ie)
s
oc separates the points of Ie. It follows

from Proposition 2.2.1 that the ideal of (Ie)
s
oc that is generated by a strictly positive ϕ in

(Ie)
s
oc would already separate the points of E. We turn to the existence of such a strictly

positive ϕ ∈ (Ie)
s
oc,

Suppose first that E is Dedekind complete. For ψ ∈
�

Esoc

�+
, we let

Nψ := { x ∈ E :ψ(|x |) = 0 }

denote its null ideal, and we let
Cψ := Nd

ψ

denote its carrier. Since ψ is order continuous, Nψ is a band in E.

Let B0 be the band that is generated by the subset {Cψ :ψ ∈
�

Esoc

�+ } of E. Then

Bd
0 =

⋂

ψ∈(Esoc)
+

Cd
ψ =

⋂

ψ∈(Esoc)
+

Ndd
ψ =

⋂

ψ∈(Esoc)
+

Nψ = {0},

where in the final step we have used Proposition 2.2.1 and the fact that Esoc separates the
points of E. We thus see that B0 = E.

For ψ ∈
�

Esoc

�+
, let PCψ denote the band projection from E onto Cψ. When ψ1,ψ2 ∈

�

Esoc

�+
and ψ1 ≤ψ2, then Cψ1

⊆ Cψ2
which, by [7, Theorem 1.46], is equivalent to PCψ1

≤

PCψ2
. Therefore, the net { PCψ :ψ ∈

�

Esoc

�+ } in Lr(E) is increasing. Set

P := sup { PCψ :ψ ∈
�

Esoc

�+ },

where the supremum is in Lr(E). From [36, Theorem 30.5] we know that P is a band
projection with B0 as its range space. Since B0 = E, it follows that P = I . This implies that
{ PCψe :ψ ∈

�

Esoc

�+ } ↑ e, and it follows from the fact that E has the countable sup property

that there exists a sequence (ψn)∞n=1 in
�

Esoc

�+
such that PCψn

e ↑ e in E.
Consider the ideal Ie of E. Since E is Dedekind complete it is uniformly complete, so

that Ie is a Banach lattice when supplied with its order unit norm ‖ · ‖e. Its order dual Ise
coincides with its norm dual E∗ and is then a Banach lattice. Choose strictly positive real
numbers α1,α2, . . . such that

∑∞
n=1αn‖ψn|Ie

‖<∞, and define ϕ ∈ Ise by setting

ϕ :=
∞
∑

n=1

αnψn|Ie
.

Since Ie, being an ideal of E, is a regular vector sublattice of E, each ψn|Ie
is order continu-

ous. On observing that, being a band, (Ie)
s
oc is an order closed and, therefore, norm closed
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subset of the Banach lattice E∗, we see that ϕ is order continuous on Ie. Obviously, ϕ is
positive.

Suppose that x ∈ Ie is positive and that ϕ(x) = 0. Then ψn(x) = 0 for all n ≥ 1. That
is, x ∈ Nψn

for all n≥ 1, so that PCψn
x = 0 for all n≥ 1.

Take λ ≥ 0 such that 0 ≤ x ≤ λe. Using [7, Theorem 2.49, Theorem 2.44, and Defini-
tion 2.41], we see that there exists an order continuous operator T on E that commutes with
all band projections on E and is such that T (λe) = x . Since PCΨn

(λe) ↑ λe in E, we have
T PCΨn

(λe) ↑ T (λe) = x in E. On the other hand, we know that T PCΨn
(λe) = PCΨn

T (λe) =
PCΨn

x = 0 for all n. We conclude that x = 0. Hence ϕ is strictly positive on Ie. This
completes the proof when E is Dedekind complete.

For general E, we note that its Dedekind completion Eδ also has the countable sup
property; see [36, Theorem 32.9 ]. Furthermore, Theorem 2.2.3 shows that

�

Eδ
�s

oc separates
the points of Eδ. Let Ie,δ denote the ideal that is generated by e in Eδ. By what has been
established above, there exists a ϕδ ∈

�

Ie,δ

�s
oc that is strictly positive on Ie,δ. Hence its

restriction ϕδ|Ie
to Ie is strictly positive on Ie. This restriction is also order continuous on

Ie. To see this, suppose that (xα)α∈A is a net in Ie and that xα
o
−→ 0 in Ie. Since Ie, being

an ideal of E, is a regular vector sublattice of E, and since E, being order dense in Eδ, is a
regular vector sublattice of Eδ, Ie is a regular vector sublattice of Eδ. Thus xα

o
−→ 0 in Eδ.

There exists an α0 ∈A such that the tail (xα)α∈A,α≥α0
is order bounded in Ie. Since this tail

is then evidently also order bounded in Ie,δ, Theorem 2.2.2 shows that xα
o
−→ 0 in Ie,δ for

α≥ α0. Then ϕδ|Ie
(xα) −→ 0 for α≥ α0 by the order continuity of ϕ on Ie,δ. Consequently,

ϕδ|Ie
(xα) −→ 0, as required.

Suppose that a vector lattice E has an order unit e and that (xα)α∈A is a net in E. Ac-
cording to [28, Corollary 3.5], the fact that |xα| ∧ e

o
−→ 0 is already enough to imply that

xα
uo
−→ 0. This is a special case of the following.

Proposition 2.7.4. Let E be a vector lattice, let S be a non-empty subset of E, and let BS
denote the band that is generated by S in E. Suppose that (xα)α∈A is a net in BS such that
|xα| ∧ |y|

o
−→ 0 in E for all y ∈ S. Then xα

uo
−→ 0 in E.

Proof. Suppose first that E is Dedekind complete.
Let IS denote the ideal that is generated by S in E. Take y ∈ IS . Then there exist

y1, . . . , yn ∈ S and r1, . . . , rn ≥ 1 such that |y| ≤
∑n

i=1 ri|yi|. This implies that |xα| ∧ |y| ≤
∑n

i=1 ri(|xα| ∧ |yi|), so that |xα| ∧ |y|
o
−→ 0 in E.

Take y ∈ BS . Then there exists a net (yβ)β∈B in IS such that 0 ≤ yβ ↑ |y| in E. For
α ∈A, set sα := supi≥α(|x i|∧ |y|), where the supremum is in E. Clearly, sα ↓ in E. We claim
that infα sα = 0 in E. To see this, take any β ∈ B. Then

inf
α

sα = inf
α

sup
i≥α
(|x i| ∧ |y|) = inf

α
sup
i≥α

�

|x i| ∧ |yβ + |y| − yβ |
�

≤ inf
α

sup
i≥α

�

|x i| ∧ |yβ |+ |x i| ∧ ||y| − yβ |
�

)
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≤ inf
α

sup
i≥α

�

|x i| ∧ |yβ |+ ||y| − yβ |
�

= inf
α

sup
i≥α

�

|x i| ∧ |yβ |
�

+ ||y| − yβ |.

Since we have already established that |xα| ∧ |yβ |
o
−→ 0 in E, [28, Remark 2.2] shows that

infα supi≥α
�

|x i| ∧ |yβ |
�

= 0. Hence infα sα ≤ ||y| − yβ | for all β ∈ B. Since yβ ↑ |y| in E,
we see that infα sα = 0 in E, as claimed. Since obviously |xα| ∧ |y| ≤ sα for all α ∈ A, we
conclude that |xα| ∧ |y|

o
−→ 0 in E.

Because (xα)α∈A ⊆ BS , it is immediate that |xα| ∧ |y|
o
−→ 0 in E for all y ∈ Bd

S . Since

E = BS + Bd
S , we conclude that |xα| ∧ |y|

o
−→ 0 in E for all y ∈ E. This completes the proof

when E is Dedekind complete.
For a general vector lattice E, we let BS,δ be the band that is generated by S in Eδ. Then

BS ⊆ BS,δ. By what we have just established, xα
uo
−→ 0 in Eδ, and then Theorem 2.2.2 shows

that xα
uo
−→ 0 in E.

Proposition 2.7.5. Let E be a vector lattice, and let F be an order dense ideal of E. The
following are equivalent:
(1) E has the countable sup property;
(2) F has the countable sup property and F is super order dense in E.

Proof. Suppose that E has the countable sup property. Then F has the countable sup prop-
erty, as is then true for any ideal of E; see [51, Theorem 17.6]. Since F is order dense in E,
the fact that E has the countable sup property then implies that F is even super order dense
in E; see [36, Theorem 29.3].

Suppose that F has the countable sup property and that F is super order dense in E.
Then E has the countable sup property by [36, Theorem 29.4].

All preparations have now been made for the proof of the core result of this section.

Theorem 2.7.6. Let E be a vector lattice with the countable sup property, and suppose that E
has an order dense ideal F such that Fsoc separates the points of F. Let G be a regular vector
sublattice of E. Then G admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτG .

Let (xα)α∈A be a net in G and suppose that xα
bτG−→ x for some x ∈ G. Take a sequence

(α′n)
∞
n=1 of indices in A. Then there exists an increasing sequence α′1 = α1 ≤ α2 ≤ · · · of

indices in A such that αn ≥ α′n for all n≥ 1 and xαn

uo
−→ x in G. In particular, when a sequence

(xn)∞n=1 in G and x ∈ G are such that xn
bτG−→ x in G, then there exists a subsequence (xnk

)∞k=1

of (xn)∞n=1 such that xnk

uo
−→ x in G.

Proof. In view of Proposition 2.4.7 and Theorem 2.2.2, we may (and shall) suppose that
G = E.

We know from Theorem 2.5.2 that E admits a (necessarily unique) Hausdorff uo-Lebes-
gue topology bτE , The statement on subsequences is clear from the statement on nets, so we
need only establish the existence of the αn for n≥ 1. We may suppose that x = 0.
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Suppose first that E is Dedekind complete.
For y ∈ F+, we let I y ⊆ F denote the ideal that is generated by y in E. By Proposi-

tion 2.7.5, F inherits the countable sup property from E. Hence Proposition 2.7.3 applies to
the vector lattice F . We then see that (I y)∼oc separates the points of I y and that there even
exists a strictly positive order continuous linear functional on I y . We choose and fix such a
strictly positive ϕy ∈ (I y)∼oc for each y ∈ F+. From Proposition 2.5.5 we know that

ϕy(|xα| ∧ y)→ 0 (2.4)

for all y ∈ F+.
Set α1 := α′1. Since F is super order dense in E by Proposition 2.7.5, we can choose a

sequence {y1
m}
∞
m=1 in F+ such that 0≤ y1

m ↑m |xα1
|.

For n≥ 2, we shall now inductively construct an indice αn ∈A and a sequence {yn
m}
∞
m=1

in F+ such that, for all n≥ 2:
(a) αn ≥ α′n;
(b) αn ≥ αn−1;
(c) ϕy i

m

�

|xαn
| ∧ y i

m

�

< 2−n for i = 1, 2, . . . , n− 1 and m= 1,2, . . . , n;
(d) 0≤ yn

m ↑m |xαn
| in E.

We start with n = 2. The elements y1
m of F+ are already known for all m ≥ 1, and

ϕy1
m

�

|xα| ∧ y1
m

�

−→ 0 for all m ≥ 1 by equation (2.4). Therefore, we can choose an α2 ∈ A
such thatϕy1

m

�

|xα2
|∧ y1

m

�

< 2−2 for m= 1, 2. We can arrange that also α2 ≥ α′2 and α2 ≥ α1.
Finally, we choose a sequence (y2

m)
∞
m=1 in F such that 0 ≤ y2

m ↑m |xα2
|. This completes the

construction for n= 2.
Suppose that n≥ 2 and that we have already constructed α2, . . . ,αn ∈A and sequences

(y1
m)
∞
m=1, . . . , (yn

m)
∞
m=1 in F+ satisfying the four requirements above. The elements y i

m of F+

are already known for all i = 1,2, . . . , n and m ≥ 1, and ϕy i
m

�

|xα| ∧ y i
m

�

−→ 0 for all such i

and m by equation (2.4). Therefore, we can choose αn+1 ∈A such that ϕy i
m

�

|xαn+1
|∧ y i

m

�

<

2−(n+1) for all i = 1, 2, . . . , n and m = 1, 2, . . . , n+ 1. We can arrange that also αn+1 ≥ α′n+1
and αn+1 ≥ αn. Finally, we choose a sequence (yn+1

m )∞m=1 in F+ such that 0≤ yn+1
m ↑m |xαn+1

|
in E. This completes the construction for n+ 1.

Fix i, m ≥ 1. Since 0 ≤ |xα j
| ∧ y i

m ≤ y i
m for all j ≥ 1, we can define elements z j,m

n of

I y i
m

for n ≥ 1 by setting z i,m
n :=

∨∞
j=n

�

|xα j
| ∧ y i

m

�

. Here the supremum is in the ideal I y i
m

in E (which, although this is immaterial, happens to coincide with the supremum in E). It
is clear that zn ≥ 0 for n ≥ 1 and that z i,m

n ↓n; we shall show that z i,m
n ↓n 0 in I y i

m
. For

this, we start by noting that the inequality in (c) shows that ϕy i
m

�

|xα j
| ∧ y i

m

�

< 2− j for all
j ≥ max(i + 1, m). Therefore, for all n ≥ max(i + 1, m), we can use the order continuity of
ϕy i

m
on I y i

m
to see that

0≤ ϕy i
m
(z i,m

n )

= ϕy i
m

�

∞
∨

j=n

�

|xα j
| ∧ ym

i

�

�
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= ϕy i
m

�

sup
k≥n

�

k
∨

j=n

�

|xα j
| ∧ ym

i

�

��

= lim
k→∞
k≥n

ϕy i
m

�

k
∨

j=n

�

|xα j
| ∧ ym

i

�

�

≤ limsup
k→∞
k≥n

ϕy i
m

 

k
∑

j=n

�

|xα j
| ∧ ym

i

�

!

≤ limsup
k→∞
k≥n

k
∑

j=n

2− j

≤ 2−n+1.

We see from this that for the infimum infn≥1 z i,m
n in I y i

m
(which, although again immate-

rial, happens to coincide with the infimum in E) we have

0≤ ϕy i
m

�

inf
n≥1

z i,m
n

�

≤ 2−n+1

for all n ≥max(i + 1, m). Hence ϕy i
m

�

infn≥1 z i,m
n

�

= 0. Since ϕy i
m

is strictly positive on I y i
m
,

this implies that infn≥1 z i,m
n = 0 in I y i

m
, as we wanted to show.

The inequalities 0≤ |xαn
| ∧ y i

m ≤ z i,m
n for all n≥ 1 now show that |xαn

| ∧ y i
m

o
−→ 0 in I y i

m

as n→∞, and then also |xαn
| ∧ y i

m
o
−→ 0 in E as n→∞.

We have now shown that, for all i, m≥ 1, |xαn
| ∧ y i

m
o
−→ 0 in E as n→∞.

Let B denote the band that is generated by { y i
m : i, m≥ 1 } in E. In view of (d) above, it

is clear that the sequence (xαn
)∞n=1 is a sequence in B. We can now conclude from Proposi-

tion 2.7.4 that xαn

uo
−→ 0 in E. This concludes the proof when E is Dedekind complete.

For a general vector lattice E, we pass to the Dedekind completion Eδ of E. By [36,
Theorem 32.9], Eδ also has the countable sup property. We let Fδ denote the ideal that is
generated in Eδ by F . Then F is obviously majorising in Fδ. Since F is order dense in E and E
is order dense in Eδ, F is order dense in Eδ and then also in Fδ. We see from this that, as the
notation already suggests, Fδ is the Dedekind completion of F , but what we actually need
is that, by Theorem 2.2.3,

�

Fδ
�s

oc separates the points of Fδ. The fact that F is order dense
in Eδ implies that Fδ ⊇ F is order dense in Eδ. Hence Eδ also admits a (necessarily) unique

Hausdorff o-Lebesgue topology bτEδ . Moreover, Proposition 2.4.7 shows that xα
bτEδ−−→ 0 in

Eδ. By what has been established for the Dedekind complete case, there exist indices αn as
specified such that xαn

uo
−→ 0 in Eδ. By Theorem 2.2.2, xαn

uo
−→ 0 in E.

For comparison, we include the following; see [6, Theorem 4.19]. We recall that a
topology on a vector lattice E is a Fatou topology when it is a (not necessarily Hausdorff)
locally solid linear topology on E that has a base of neighbourhoods of zero consisting of
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solid and order closed sets. A Lebesgue topology is a Fatou topology; see [6, Lemma 4.1],
for example.

Theorem 2.7.7. Let E be a vector lattice with the countable sup property that is supplied with
a Hausdorff locally solid linear topology τ with the Fatou property. Suppose that (xα)α∈A is an
order bounded net in E and that xα

τ
−→ x for some x ∈ E. Then there exist indices α1 ≤ α2 ≤ · · ·

in A such that xαn

o
−→ x.

The hypotheses in Theorem 2.7.7 on the topology on the vector lattice are weaker than
those in Theorem 2.7.6, and its conclusion is stronger. The big difference is, however, that
the net in Theorem 2.7.7 is supposed to be order bounded, whereas there is no such restric-
tion in Theorem 2.7.6.

Theorem 2.7.7 also holds when, instead of requiring E to have the countable sup prop-
erty, it is required that there exist an at most countably infinite subset of E such that the
band that it generates equals the carrier of τ; see [33, Theorem 6.7]. We refer to [6, Def-
inition 4.15] for the definition of the carrier of a (not necessarily Hausdorff) locally solid
topology on a vector lattice.

For a fourth result with a similar flavour, in the context of metrisable Hausdorff locally
solid linear topologies on vector lattices that need not have the countable sup property, we
refer to [44, Corollary 9.9]. This generalises a similar result (see [32, Corollary 3.2]) for
Banach lattices.

We have the following consequence of Theorem 2.6.1 and Theorem 2.7.6.

Corollary 2.7.8. Let (X ,Σ,µ) be a measure space where µ is σ-finite. Suppose that ( fα)α∈A
is a net in L0(X ,Λ,µ) such that fα

µ∗

−→ 0. Take a sequence (α′n)
∞
n=1 of indices in A. Then there

exists an increasing sequence α′1 = α1 ≤ α2 ≤ · · · of indices in A such that αn ≥ α′n for all
n≥ 1 and fαn

−→ 0 almost everywhere. In particular, when a sequence ( fn)∞n=1 is a sequence in

L0(X ,Λ,µ) and fn
µ∗

−→ 0, then there exists a subsequence ( fnk
)∞k=1 of ( fn)∞n=1 such that fnk

−→ 0
almost everywhere.

Proof. It is known that L0(X ,Σ,µ) has the countable sup property for everyσ-finite measure
µ; see [6, Theorem 7.73] or [37, Lemma 2.6.1], for example.

The combination of Theorem 2.6.1 and Theorem 2.7.6 yields a sequence of indices αn as
specified such that fαn

uo
−→ 0. Since, for a general measure µ, uo-convergence of a sequence

in L0(X ,Σ,µ) is equivalent to its convergence almost everywhere (see [28, Proposition 3.1]),
the proof is complete.

Remark 2.7.9.
(1) In view of its proof, the natural condition on µ in Corollary 2.7.8 is that µ be semi-finite

and have the countable sup property. It is known, however, that this is equivalent to
requiring that µ be σ-finite; see [33, Proposition 6.5].

(2) For every measure µ, a sequence in L0(X ,Λ,µ) that converges (globally) in measure has
a subsequence that converges almost everywhere to the same limit; see [23, Theorem
2.30], for example. Corollary 2.7.8 does not imply this result for arbitrary measures,
but once the measure is known to be σ-finite, it does produce the desired subsequence,
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and it even does so under the weaker hypothesis of convergence in measure on subsets
of finite measure.

(3) Even for finite measures, we are not aware of an existing result that, as in Corol-
lary 2.7.8, is concerned with nets that converge in measure.

Remark 2.7.10. The hypothesis in Theorem 2.7.6 that E have the countable sup property
cannot be relaxed to merely requiring that F have this property. As a counter-example,
consider the situation where F is a Banach lattice with an order continuous norm that is
an order dense ideal of a vector lattice E. Then Fsoc = F∗ separates the points of F , and it
is easy to see that F has the countable sup property; the latter also follows from a more
general result in [6, Theorem 4.26]. Since the norm topology on F is a Hausdorff o-Lebes-
gue topology on F , E has a (necessarily unique) Hausdorff uo-Lebesgue topology bτE . It
is the topology of un-convergence with respect to F . It is possible to find such F and E,
and a sequence in E that is bτE convergent to zero in E, yet has no subsequence that is
uo-convergent to zero in E; see [32, Example 9.6].

Theorem 2.7.6 can be specified to various situations. Here is one involving an un-
bounded absolute weak topology.

Corollary 2.7.11. Let E be a vector lattice with the countable sup property. Suppose that Esoc

separates the points of E. Let (xα)α∈A be a net in E, and suppose that xα
u|σ|(E,Esoc)−−−−−−→ x for some

x ∈ E. Then there exist indices α1 ≤ α2 · · · such that xαn

uo
−→ x.

We conclude this section by extending another classical result from measure theory to the
context of Hausdorff uo-Lebesgue topologies and uo-convergence. Suppose that (X ,Σ.µ) is a
measure space, where µ isσ-finite. Then a sequence in L0(X ,Σ,µ) is convergent in measure
on subsets of finite measure if and only if every subsequence has a further subsequence that
converges to the same limit almost everywhere; see [49, Exercise 18.14 on p. 132]. This is
a special case of the following.

Theorem 2.7.12. Let E be a vector lattice with the countable sup property, and suppose that E
has an order dense ideal F such that Fsoc separates the points of F. Let G be a regular sublattice
of E. Then G admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτG . For a sequence

(xn)∞n=1 ⊆ G, xn
bτG−→ 0 in G if and only if every subsequence (xnk

)∞k=1 of (xn)∞n=1 has a further

subsequence (xnki
)∞i=1 such that xnki

uo
−→ 0 in G.

Proof. In view of Proposition 2.4.7 and Theorem 2.2.2, we may (and shall) suppose that
G = E.

The forward implication is clear from Theorem 2.7.6. We now show the converse. When

it fails that xn
bτ
−→ 0 in E, then Theorem 2.5.2 shows that there exists an ϕ ∈ Fsoc, an y ∈ F ,

a subsequence (xnk
)∞k=1 of (xn)∞n=1 and an ε > 0 such that |ϕ|(|xnk

| ∧ |y|)> ε for all k. It is
then clear from the order continuity of ϕ that it is impossible to find a further subsequence
(xnki

)∞i=1 of (xnk
)∞k=1 such that xnki

uo
−→ 0 in E.

As another special case of Theorem 2.7.12, we see that a sequence in a Banach lattice
with an order continuous norm is un-convergent to zero if and only if every subsequence has
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a further subsequence that is uo-convergent to zero. We have thus retrieved [21, Theorem
4.4].

2.8 Topological aspects of (unbounded) order convergence

In this section, we consider topological issues that are related to (sequential) order conver-
gence and to (sequential) unbounded order convergence, with an emphasis on the latter.
Theorem 2.7.6 will be seen to be an important tool.

Let E be a vector lattice, and let A ⊆ E. We define the o-adherence of A as the set of all
order limits of nets in A, and denote it by ao(A). The σ-o-adherence of A is the set of all
order limits of sequences in A; it is denoted by aσo(A). 4 The uo-adherence auo(A) and the
σ-uo-adherence aσuo(A) of A are similarly defined. The subset A is o-closed when ao(A) =
A.5 The collection of all o-closed subsets of E is easily seen to be the collection of closed
sets of a topology that is called the o-topology on E. The closure of a subset A in the o-
topology is denoted by A

o
.6 We have ao(A) ⊆ A

o
, with equality if and only if ao(A) is o-

closed. Likewise, there are σ-o-closed subsets and a σ-o-topology, uo-closed subsets and
a uo-topology, and σ-uo-closed subsets and a σ-uo-topology, with similar notations and
statements about inclusions and equalities of sets. Evidently, a uo-closed subset is o-closed,
and a σ-uo-closed subset is σ-o-closed.

Order convergence in a vector lattice E is hardly ever topological; according to [13,
Theorem 1] or [43, Theorem 18.36], this is the case if and only if E is finite-dimensional. It
is not even true that the set map A 7→ ao(A) is always idempotent, i.e., that the o-adherence
of a set is always o-closed. It is known, for example, that in every σ-order complete Banach
lattice that does not have an order continuous norm, there even exists a vector sublattice
such that its o-adherence is not order closed; see [26, Theorem 2.7].

We know from Proposition 2.7.1 that uo-convergence in atomic vector lattices is topo-
logical. According to [43, Theorem 6.54], atomic vector lattices are, in fact, the only ones
for which this is the case.

It appears to be open whether the uo-adherence of a subset of a vector lattice is always
uo-closed. In [26, Problem 2.5], it is even asked whether the uo-adherence of a vector
sublattice is always o-closed, which is asking for a weaker conclusion for a much more
restrictive class of subsets.

Even though the topological aspects of uo-convergence are still not well understood in
general, there is a class of vector lattices where we have a reasonably complete picture. In
order to formulate this, we need some more notation. For a set X with a topology τ and
a subset A ⊆ X of X , we let aστ(A) denote the σ-τ-adherence of A, i.e., aστ(A) is the set
consisting of all τ-limits of sequences in A. When aστ(A) = A, A is said to be σ-τ-closed.

4In [36, p. 82], our σ-o-adherence is called the pseudo order closure. In [26], our o-adherence of a subset
A is called the order closure of A, and it is denoted by A

o
. These two terminologies, as well as the notation A

o
,

could suggest that taking the (pseudo) order closure is a (sequential) closure operation for a topology. Since this
is hardly ever the case, we prefer a terminology and notation that avoid this possible confusion. It is inspired
by [8, Definition 1.3.1].

5This definition is consistent with that in [26].
6There is no notation for the closure operation in the o-topology in [26].



37

The σ-τ-closed subsets of X are the closed subsets of a topology on X that is called the σ-τ-
topology on X . We let A

τ
and A

σ-τ
denote the τ-closure and the σ-τ-closure of a subset A

of X , respectively. Then aστ(A) ⊆ A
σ-τ

, with equality if and only if aστ(A) is σ-τ-closed.

Theorem 2.8.1. Let E be a vector lattice with the countable sup property, and suppose that E
has an order dense ideal F such that Fsoc separates the points of F. Let G be a regular vector
sublattice of E. Then G admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτG . For
a subset A of G, the following seven subsets of G are all equal:

(1) aσbτG
(A) and A

σ-bτG ;

(2) aσuo(A) and A
σ-uo

;
(3) auo(A) and A

uo
;

(4) A
bτG .

In particular, the σ-bτG-topology, the σ-uo-topology, and the uo-topology on G all coincide
with bτG .

In Theorem 2.8.1, the topological closures and (σ-)adherences are to be taken with
respect to the topologies and convergences in G.

Proof. The existence and uniqueness of bτG are clear from Theorem 2.7.6. Using Theo-
rem 2.7.6 for the first inclusions, we have, for an arbitrary subset A of G,

A
bτG ⊆ aσuo(A) ⊆ auo(A) ⊆ A

bτG

and
aσbτG

(A) ⊆ aσuo(A) ⊆ aσbτG
(A).

This gives equality of aσbτG
(A), aσuo(A), auo(A), and A

bτG . Since the set map A 7→ A
bτG is

idempotent, so is A 7→ aσbτG
(A). Hence aσbτG

(A) is σ-bτG-closed, so that it coincides with the

σ-τ-closure A
σ-bτG of A. A similar argument works for A

σ-uo
and A

uo
.

Remark 2.8.2. Taking G = E in Theorem 2.8.1, the equality of A
bτG and aσuo(A) implies that,

for a σ-finite measure µ, a subset of L0(X ,Σ,µ) is closed in the topology of convergence in
measure on subsets of finite measure if and only if it contains the almost every limits of
sequences in it. This is [25, 245L(b)].

In the context of Theorem 2.8.1, it is also possible to give a necessary and sufficient
condition for sequential uo-convergence to be topological; see Corollary 2.8.5, below. The
proof of the following preparatory lemma is an abstraction of the argument in [38].

Lemma 2.8.3. Let E be a vector lattice that is supplied with a topology τ. Suppose that τ has
the following properties:
(1) for every sequence (xn)∞n=1 in E and for every x ∈ E, the fact that xn

τ
−→ x implies that

there exists a subsequence (xnk
)∞k=1 of (xn)∞n=1 such that xnk

uo
−→ x as k→∞.

(2) there exists a sequence (xn)∞n=1 in E and an x ∈ E such that xn
τ
−→ x but xn

uo9 x;
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Then there does not exist a topology τ′ on E such that, for every sequence (xn)∞n=1 in E and for

every x ∈ E, xn
uo
−→ x if and only if xn

τ′

−→ x.

Proof. Suppose that there were such a topology τ′. Take a sequence (xn)∞n=1 in E and

an x ∈ E such that xn
τ
−→ x but xn

uo9 x . Then also xn
τ′9 x , so that there exists a τ′-

neighbourhood V of x and a subsequence (xnk
)∞k=1 of (xn)∞n=1 such that xnk

6∈ V for all

k ≥ 1. Since also xnk

τ
−→ x as k→∞, there exists a subsequence (xnki

)∞i=1 of (xnk
)∞k=1 such

that xnki

uo
−→ x as i→∞. Hence also xnki

τ′

−→ x as i→∞. But this is impossible, since the
entire sequence (xnki

)∞i=1 stays outside V .

The following is a direct consequence of Lemma 2.8.3. The topology τ in it could be a
uo-Lebesgue topology, but for the result to hold it need not even be a linear topology, nor
need the topology τ′ be.

Proposition 2.8.4. Let E be a vector lattice that is supplied with a topology τ. Suppose that
τ has the following properties:
(1) for every sequence (xn)∞n=1 in E and for every x ∈ E, the fact that xn

uo
−→ x implies that

xn
τ
−→ x;

(2) for every sequence (xn)∞n=1 in E and for every x ∈ E, the fact that xn
τ
−→ x implies that

there exists a subsequence (xnk
)∞k=1 of (xn)∞n=1 such that xnk

uo
−→ x as k→∞.

Then the following are equivalent;
(1) there exists a topology τ′ on E such that, for every sequence (xn)∞n=1 in E and for every

x ∈ E, xn
uo
−→ x if and only if xn

τ′

−→ x;
(2) for every sequence (xn)∞n=1 in E and for every x ∈ E, the fact that xn

τ
−→ x implies that

xn
uo
−→ x.

In that case, one can take τ for τ′.

In the appropriate context, the combination of Theorem 2.7.6 and Proposition 2.8.4
yields the following necessary and sufficient condition for sequential uo-convergence to be
topological. Note that there are no assumptions at all on the topology τ in its first part.

Corollary 2.8.5. Let E be a vector lattice with the countable sup property, and suppose that E
has an order dense ideal F such that Fsoc separates the points of F. Let G be a regular vector
sublattice of E. Then G admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτG , and
the following are equivalent:
(1) there exists a topology τ on G such that, for every sequence (xn)∞n=1 in G and for every

x ∈ G, xn
uo
−→ x in G if and only if xn

τ
−→ x;

(2) for every sequence (xn)∞n=1 in G and for every x ∈ G, the fact that xn
bτG−→ x in G implies

that xn
uo
−→ x in G.

In that case, one can take bτG for τ.

The proof of the following result closely follows the one in [38], where it is shown that
sequential almost everywhere convergence in L∞([0, 1]) is not topological.
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Corollary 2.8.6. Let (X ,Σ,µ) be a measure space, where µ is σ-finite. Suppose that there
exists an A ∈ Σ with the property that, for every k ≥ 1, there exist finitely many mutually
disjoint Ak,1, . . . , Ak,Nk

∈ Σ such that 0< µ(Ak,1), . . . ,µ(Ak,Nk
)< 1/k and A=

⋃Nk
l=1 Ak,l .

Take a regular vector sublattice G of L0(X ,Σ,µ) that contains the characteristic functions
1Ak,l

of all sets Ak,l for k = 1, 2, . . . and l = 1, . . . , Nk. Then there does not exist a topology τ

on G such that, for every sequence (xn)∞n=1 in G and for every x ∈ G, xn
uo
−→ x in G if and only

if xn
τ
−→ x.

Proof. We are in the situation of Corollary 2.8.5, where bτG-convergence is convergence in
measure on subsets of finite measure by Theorem 2.6.1, and sequential uo-convergence is
almost everywhere convergence by [28, Proposition 3.1]. Consider the following sequence
in G:

A1,1, . . . , A1,N1
, A2,1, . . . , A2,N2

, A3,1, . . . , A3,N3
, . . . .

This sequence clearly converges to zero on subsets of finite measure, but it converges no-
where to zero on the subset A of strictly positive measure. Hence the property in part (2) of
Corollary 2.8.5 does not hold, and then neither does the property in its part (1).

Remark 2.8.7. Corollary 2.8.6 provides us with a large class of examples of vector lattices
where sequential uo-convergence is not topological—so that uo-convergence is certainly
not topological—but where, according to Theorem 2.8.1, the set maps A 7→ aσuo(A) and
A 7→ auo(A) are both still idempotent, so that aσuo(A) is σ-uo-closed and auo(A) is uo-closed
for every subset A of G. For all p such that 0 ≤ p ≤ ∞, the space Lp([0,1]) is such an
example.

We conclude with a strengthened version of [26, Theorem 2.2]. The improvement lies
in the removal of the hypothesis that E be Banach lattice, and by adding eight more equal,
but not obviously equal, sets to the three equal sets in the original result.

Theorem 2.8.8. Let E be a vector lattice with the countable sup property, and suppose that
Esoc separates the points of E. Then E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology bτE . Take an ideal I of Esoc that separates the points of E, and take a vector sublattice
F of E. Then the following eleven vector sublattices of E are all equal:

(1) aσbτE
(F) and F

σ-bτE ;
(2) aσuo(F) and F

σ-uo
;

(3) auo(F) and F
uo

;

(4) F
bτE , F

|σ|(E,I)
, and F

σ(E,I)
;

(5) (ao(ao(F))) and F
o
.

The equality of auo(F), ao(ao(F)), and F
σ(E,I)

can already be found in [26, Theorem 2.2],
where it also noted that these sets coincide with the smallest order closed vector sublattice
of E containing F .

Proof. The equality of the first seven subsets is clear from Theorem 2.8.1. Since we know

from Theorem 2.5.2 that bτE = uE |σ|(E, I), it follows from [44, Proposition 2.12] that F
bτE =
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F
|σ|(E,I)

. Furthermore, from Kaplan’s theorem (see [6, Theorem 2.33], for example) we
know that E, when supplied with the Hausdorff locally convex |σ|(E, I)-topology, has the
same topological dual as when it is supplied with the Hausdorff locally convex σ(E, I)-
topology. By the convexity of F , we have F

|σ|(E,I)
= F

σ(E,I)
. This argument was already

used in [26, Proof of Lemma 2.1].
We turn to the two sets in part (4). It was established in [26, Lemma 2.1] that auo(F) ⊆

ao(ao(F)); this is, in fact, valid for vector sublattices of general vector lattices. It was also

observed there that, obviously, the fact that I ⊆ Esoc implies that F
σ(E,I)

is o-closed. Using
also that we already know that auo(F) = F

uo
, we therefore have the following chain of

inclusions:
F

uo
= auo(F) ⊆ ao(ao(F)) ⊆ F

o ⊆ F
σ(E,I)

.

Since we also already know that F
uo
= F

σ(E,I)
, the proof is complete.



Chapter 3

Convergence structures and locally
solid topologies on vector lattices of
operators

Abstract

For vector lattices E and F , where F is Dedekind complete and supplied with a locally solid
topology, we introduce the corresponding locally solid absolute strong operator topology on
the order bounded operators Lob(E, F) from E into F . Using this, it follows that Lob(E, F)
admits a Hausdorff uo-Lebesgue topology whenever F does.
For each of order convergence, unbounded order convergence, and—when applicable—con-
vergence in the Hausdorff uo-Lebesgue topology, there are both a uniform and a strong
convergence structure on Lob(E, F). Of the six conceivable inclusions within these three
pairs, only one is generally valid. On the orthomorphisms of a Dedekind complete vector
lattice, however, five are generally valid, and the sixth is valid for order bounded nets.
The latter condition is redundant in the case of sequences of orthomorphisms on a Banach
lattice, as a consequence of a uniform order boundedness principle for orthomorphisms that
we establish.
We also show that, in contrast to general order bounded operators, the orthomorphisms
preserve not only order convergence of nets, but unbounded order convergence and—when
applicable—convergence in the Hausdorff uo-Lebesgue topology as well.

41
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3.1 Introduction and overview

Let X be a non-empty set. A convergence structure on X is a non-empty collection C of pairs
((xα)α∈A, x), where (xα)α∈A is a net in X and x ∈ X , such that:
(1) when ((xα)α∈A, x) ∈ C , then also ((yβ)β∈B, x) ∈ C for every subnet (yβ)β∈B of
(xα)α∈A;

(2) when a net (xα)α∈A in X is constant with value x , then ((xα)α∈A, x) ∈ C .
One can easily vary on this definition. For example, one can allow only sequences. There
does not appear to be a consensus in the literature about the notion of a convergence struc-
ture; [8] uses filters, for example. Ours is sufficient for our merely descriptive purposes, and
close in spirit to what may be the first occurrence of such a definition in [22] for sequences.
Although we shall not pursue this in the present paper, let us still mention that the inclusion
of the subnet criterion in the definition makes it possible to introduce an associated topology
on X in a natural way. Indeed, define a subset of S of X to be C -closed when x ∈ S for all
pairs ((xα)α∈A, x) ∈ C such that (xα)α∈A ⊆ S. Then the collection of the complements of
the C -closed subsets of X is a topology on X .

The convergent nets in a topological space, together with their limits, are the archetyp-
ical example of a convergence structure. In the context of vector lattices, there are other
ones that are rarely of a topological nature. For example, the order convergence nets with
their order limits form a convergence structure, and likewise there is a convergence struc-
ture for unbounded order convergence. Taken together with the (topological) structure for
convergence in a Hausdorff uo-Lebesgue topology, when this exists, there are three natural
and related convergence structures on a vector lattice to consider.

Suppose that E and F are vector lattices, where F is Dedekind complete. The above
then yields three convergence structures on the vector lattice Lob(E, F) of order bounded
operators from E into F , but there are also three others that are derived from those in F .
For example, one can consider all pairs ((Tα)α∈A, T ), where (Tα)α∈A is a net in Lob(E, F)
and T ∈ Lob(E), such that (Tαx)α∈A is order convergent to T x in F for all x ∈ E. These
pairs also form a convergence structure on Lob(E, F). Likewise, the pointwise unbounded
order convergence in F and—when applicable—the pointwise convergence in a Hausdorff
uo-Lebesgue topology on F yield convergence structures on Lob(E, F). Motivated by the
terminology for operators between Banach spaces, we shall speak of uniform and strong
convergence structures on Lob(E)—with the obvious meanings.

The present paper is primarily concerned with the possible inclusions between the uni-
form and strong convergence structure for each of order convergence, unbounded order
convergence, and—when applicable—convergence in a Hausdorff uo-Lebesgue topology.
We consider these inclusions for Lob(E, F), but also for the orthomorphisms Orth(E) on a
Dedekind complete vector lattice. This special interest in Orth(E) stems from representation
theory. When a group acts as order automorphisms on a Dedekind complete vector lattice E,
then the Boolean lattice of all invariant bands in E can be retrieved from the commutant of
the group action in Orth(E). This commutant, therefore, plays the role of the von Neumann
algebra which is the commutant of a unitary action of a group on a Hilbert space. It has
been known long since that more than one topology on a von Neumann algebras is needed
to understand it and its role in representation theory on Hilbert spaces, and the same holds
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true for the convergence structures as related to these commutants in an ordered context.
Using these convergence structures, it is, for example, possible to obtain ordered versions
of von Neumann’s bicommutant theorem. We shall report separately on this. Apart from
its intrinsic interest, the material on Orth(E) in the present paper is an ingredient for these
next steps.

This paper is organised as follows.

Section 3.2 contains the basic notations, definitions, conventions, and references to ear-
lier results.

In Section 3.3, we show how, given a vector lattice E, a Dedekind complete vector lattice
F , and a (not necessarily Hausdorff) locally solid linear topology τF on F , a locally solid
linear topology can be introduced onLob(E, F) that deserves to be called the absolute strong
operator topology that is generated by τF . This is a preparation for Section 3.4, where we
show that regular vector sublattices of Lob(E, F) admit a Hausdorff uo-Lebesgue topology
when F admits one.

For each of order convergence, unbounded order convergence, and—when applica-
ble—convergence in a Hausdorff uo-Lebesgue topology, there are two conceivable impli-
cations between uniform and strong convergence of a net of order bounded operators. In
Section 3.5, we show that only one of these six is generally valid. Section 3.9 will make it
clear that the five failures are, perhaps, not as ‘only to be expected’ as one might think at
first sight.

In Section 3.6, we review some material concerning orthomorphism and establish a few
auxiliary result for use in the present paper and in future ones. It is shown here that a De-
dekind complete vector lattice and its orthomorphisms have the same universal completion.

Section 3.7 briefly digresses from the main line of the paper. It is shown that ortho-
morphisms preserve not only the order convergence of nets, but also the unbounded order
convergence and—when applicable—the convergence in a Hausdorff uo-Lebesgue topology.
None of this is true for arbitrary order bounded operators.

In Section 3.8, we return to the main line, and we specialise the results in Sections 3.3
and 3.4 to the orthomorphisms. When restricted to Orth(E), the absolute strong operator
topologies from Section 3.3 are simply strong operator topologies.

Section 3.9 on orthomorphisms is the companion of Section 3.5, but the results are quite
in contrast. For each of order convergence, unbounded order convergence, and—when
applicable—convergence in a Hausdorff uo-Lebesgue topology, both implications between
uniform and strong convergence of a net of orthomorphisms are valid, with an order bound-
edness condition on the net being necessary only for order convergence. For sequences of
orthomorphisms on Banach lattices, this order boundedness condition is redundant as a
consequence of a uniform order boundedness principle for orthomorphisms that is also es-
tablished in this section.

3.2 Preliminaries

In this section, we collect a number of definitions, notations, conventions and earlier results.
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All vector spaces are over the real numbers; all vector lattices are supposed to be Archi-
medean. We write E+ for the positive cone of a vector lattice E. For a non-empty subset S of
E, we let IS and BS denote the ideal of E and the band in E, respectively, that are generated
by S; we write S∨ for { s1 ∨ · · · ∨ sn : s1, . . . , sn ∈ S }.

Let E be a vector lattice, and let x ∈ E. We say that a net (xα)α∈A in E is order convergent
to x ∈ E (denoted by xα

o
−→ x) when there exists a net (yβ)β∈B in E such that yβ ↓ 0 and

with the property that, for every β0 ∈ B, there exists an α0 ∈ A such that |x − xα| ≤ yβ0

whenever α in A is such that α≥ α0. We explicitly include this definition to make clear that
the index sets A and B need not be equal.

Let (xα)α∈A be a net in a vector lattice E, and let x ∈ E. We say that (xα) is unbounded
order convergent to x in E (denoted by xα

uo
−→ x) when |xα − x | ∧ y

o
−→ 0 in E for all y ∈

E+. Order convergence implies unbounded order convergence to the same limit. For order
bounded nets, the two notions coincide.

Let E and F be vector lattices. The order bounded operators from E into F will be
denoted by Lob(E, F). We write Es for Lob(E,R). A linear operator T : E → F between
two vector lattices E and F is order continuous when, for every net (xα)α∈A in E, the fact
that xα

o
−→ 0 in E implies that T xα

o
−→ 0 in F . An order continuous linear operator between

two vector lattices is automatically order bounded; see [7, Lemma 1.54], for example. The
order continuous linear operators from E into F will be denoted by Loc(E, F). We write Esoc
for Loc(E,R).

Let F be a vector sublattice of a vector lattice E. Then F is a regular vector sublattice
of E when the inclusion map from F into E is order continuous. Ideals are regular vector
sublattices. For a net in a regular vector sublattice F of E, its uo-convergence in F and in E
are equivalent; see [28, Theorem 3.2].

When E is a vector space, a linear topology on E is a (not necessarily Hausdorff) topology
that provides E with the structure of a topological vector space. When E is a vector lattice,
a locally solid linear topology on E is a linear topology on E such that there exists a base
of (not necessarily open) neighbourhoods of 0 that are solid subsets of E. For the general
theory of locally solid linear topologies on vector lattices we refer to [6]. When E is a vector
lattice, a locally solid additive topology on E is a topology that provides the additive group E
with the structure of a (not necessarily Hausdorff) topological group, such that there exists
a base of (not necessarily open) neighbourhoods of 0 that are solid subsets of E.

A topology τ on a vector lattice E is an o-Lebesgue topology when it is a (not necessarily
Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A in E, the fact that
xα

o
−→ 0 in E implies that xα

τ
−→ 0. A vector lattice need not admit a Hausdorff o-Lebes-

gue topology. A topology τ on a vector lattice E is a uo-Lebesgue topology when it is a (not
necessarily Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A in E,
the fact that xα

uo
−→ 0 in E implies that xα

τ
−→ 0. Since order convergence implies unbounded

order convergence, a uo-Lebesgue topology is an o-Lebesgue topology. A vector lattice E
need not admit a Hausdorff uo-Lebesgue topology, but when it does, then this topology is
unique (see [11, Propositions 3.2, 3.4, and 6.2] or [44, Theorems 5.5 and 5.9]) and we
denote it by bτE .
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Let E be a vector lattice, let F be an ideal of E, and suppose that τF is a (not necessarily
Hausdorff) locally solid linear topology on F . Take a non-empty subset S of F . Then there
exists a unique (possibly non-Hausdorff) locally solid linear topology uSτF on E such that,

for a net (xα)α∈A in E, xα
uSτF−−→ 0 if and only if |xα| ∧ |s|

τF−→ 0 for all s ∈ S; see [20,
Theorem 3.1] for this, which extends earlier results in this vein in, e.g., [11] and [44].
This topology uSτF is called the unbounded topology on E that is generated by τF via S.
Suppose that E admits a Hausdorff uo-Lebesgue topology bτE . The uniqueness of such a
topology then implies that uEbτE = bτE . In the sequel we shall use this result from [11] and
[44] a few times.

Finally, the characteristic function of a set S will be denoted by χS , and the identity
operator on a vector space will be denoted by I .

3.3 Absolute strong operator topologies on Lob(E, F)

Let E and F be vector lattices, where F is Dedekind complete. In this section, we start
by showing how topologies can be introduced on vector sublattices of Lob(E, F) that can
be regarded as absolute strong operator topologies; see Corollary 3.3.5 and Remark 3.3.7,
below. Once this is known to be possible, it is easy to relate this to o-Lebesgue topologies
and uo-Lebesgue topologies on regular vector sublattices ofLob(E, F). In particular, we shall
see that every regular vector sublattice ofLob(E, F) admits a (necessarily unique) Hausdorff
uo-Lebesgue topology when F admits a Hausdorff o-Lebesgue topology; see Corollary 3.4.5,
below.

When restricted to the orthomorphisms on a Dedekind complete vector lattice, the pic-
ture simplifies; see Section 3.8. In particular, the restrictions of absolute strong operator
topologies are then simply strong operator topologies.

The construction in the proof of the following result is an adaptation of that in the proof
of [20, Theorem 3.1]. The latter construction is carried out under minimal hypotheses
and uses neighbourhood bases at zero as in [44, proof of Theorem 2.3] rather than Riesz
pseudo-norms. Such an approach enables one to also understand various ‘pathologies’ in the
literature from one central result; see [20, Example 3.10]. It is for this reason of maximum
flexibility that we also choose such a neighbourhood approach here.

Theorem 3.3.1. Let E and F be vector lattices, where F is Dedekind complete, and let τF be a
(not necessarily Hausdorff) locally solid additive topology on F. Take a non-empty subset S of
E. There exists a unique (possibly non-Hausdorff) additive topology ASOTSτF on Lob(E, F)

such that, for a net (Tα)α∈A inLob(E, F), Tα
ASOTSτF−−−−−→ 0 if and only if |Tα||s|

τF−→ 0 for all s ∈ S.

Let IS be the ideal of E that is generated by S. For a net (Tα)α∈A inLob(E, F), Tα
ASOTSτF−−−−−→ 0

if and only if |Tα||x |
τF−→ 0 for all x ∈ IS; and also if and only if |Tα|x

τF−→ 0 for all x ∈ IS .
Furthermore:

(1) for every x ∈ IS , the map T 7→ T x is an ASOTSτF –τF continuous map from Lob(E, F)
into F;

(2) the topology ASOTSτF on Lob(E, F) is a locally solid additive topology;
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(3) whenτF is a Hausdorff topology on F, the following are equivalent for an additive subgroup
G of Lob(E, F):
(a) the restriction ASOTSτF |G of ASOTSτF to G is a Hausdorff topology on G ;
(b) IS separates the points of G .

(4) the following are equivalent for a linear subspace V of Lob(E, F):
(a) for all T ∈ V and s ∈ S, |εT ||s|

τF−→ as ε→ 0 in R;
(b) the restriction ASOTSτF |V of ASOTSτF to V is a (possibly non-Hausdorff) linear

topology on V .

Proof. Suppose that τF is a (not necessarily Hausdorff) locally solid additive topology on F .
It is clear from the required translation invariance of ASOTSτF that it is unique, since

the nets that are ASOTSτF -convergent to zero are prescribed.
For its existence, we take a τF -neighbourhood base {Uλ}λ∈Λ of zero in F that consists of

solid subsets of F . For x ∈ IS and λ ∈ Λ, we set

Vλ,x := { T ∈ Lob(E, F) : |T ||x | ∈ Uλ }.

The Vλ,y are solid subsets of Lob(E, F) since the Uλ are solid subsets of F .
Set

N0 := {Vλ,x : λ ∈ Λ, x ∈ IS }.

We shall now verify thatN0 satisfies the necessary and sufficient conditions in [31, Theo-
rem 3 on p. 46] to be a base of neighbourhoods of zero for an additive topology onLob(E, F).

Take Vλ1,x1
, Vλ2,x2

∈ N0. There exists a λ3 ∈ Λ such that Uλ3
⊆ Uλ1

∩ Uλ2
, and it is easy

to verify that then Vλ3,|x1|∨|x2| ⊆ Vλ1,x1
∩ Vλ2,x2

. Hence N0 is a filter base.
It is clear that Vλ,x = −Vλ,x .
Take Vλ,x ∈ N0. There exists a µ ∈ Λ such that Uµ + Uµ ⊆ Uλ, and it is easy to see that

then Vµ,x + Vµ,x ⊆ Vλ,x .
An appeal to [31, Theorem 3 on p. 46] now yields that N0 is a base of neighbourhoods

of zero for an additive topology onLob(E, F) that we shall denote by ASOTSτF . It is a direct

consequence of its definition that, for a net (Tα)α∈A in Lob(E, F), Tα
ASOTSτF−−−−−→ 0 if and only

if |Tα||x |
τF−→ 0 for all x ∈ IS . Using the fact that τF is a locally solid additive topology on F ,

it is routine to verify that the latter condition is equivalent to the condition that |T |x
τF−→ 0

for all x ∈ IS , as well as to the condition that |Tα||s|
τF−→ 0 for all s ∈ S.

We turn to the statements in the parts (1)–(4).

For part (1), suppose that (Tα)α∈A is a net in Lob(E, F) such that Tα
ASOTSτF−−−−−→ 0. Then

|Tα||x |
τF−→ 0 for all x ∈ IS . Since |Tαx | ≤ |Tα||x |, the fact that τF is locally solid implies that

then also Tαx
τF−→ 0 for all x ∈ IS .

Since the topology ASOTSτF is a locally solid additive topology on Lob(E, F) by con-
struction, part (2) is clear.

For part (3), we recall from [31, p. 48, Theorem 4] that an additive topology on a group
is Hausdorff if and only if the intersection of the elements of a neighbourhood base of zero
is trivial. Using this for F in the second step, and invoking [20, Proposition 2.1] in the third,
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we see that
⋂

λ∈Λ,x∈IS

�

Vλ,x ∩G
�

= { T ∈ Lob(E, F) : |T ||x | ∈
⋂

λ∈Λ
Uλ for all x ∈ IS } ∩G

= { T ∈ Lob(E, F) : |T ||x |= 0 for all x ∈ IS } ∩G .

= { T ∈ Lob(E, F) : T x = 0 for all x ∈ IS } ∩G
= { T ∈ G : T x = 0 for all x ∈ IS }.

Another appeal to [31, p. 48, Theorem 4] then completes the proof of part (3).
We prove that part (4a) implies part (4b). It is clear that ASOTSτF |V is an additive

topology on V . From what we have already established, we know that the assumption

implies that also |εT ||x |
τF−→ 0 as ε → 0 in R for all T ∈ V and x ∈ IS . Fix λ ∈ Λ and

x ∈ IS , and take T ∈ V . Since |εT ||x |
τF−→ 0 as ε → 0 in R, there exists a δ > 0 such that

|εT ||x | ∈ Uλ whenever |ε| < δ. That is, εT ∈ Vλ,x ∩ V whenever |ε| < δ. Hence Vλ,x ∩ V
is an absorbing subset of V . Furthermore, since Vλ,x is a solid subset of Lob(E, F), it is
clear that εT ∈ Vλ,x ∩ V whenever T ∈ Vλ,x ∩ V and ε ∈ [−1,1]. We conclude from [5,
Theorem 5.6] that ASOTSτF |V is a linear topology on V .

We prove that part (4b) implies part (4a). Take T ∈ V . Then εT
ASOTSτF |V−−−−−−→ 0 as ε→ 0 in

R. By construction, this implies that (and is, in fact, equivalent to) the fact that |εT ||s|
τF−→ 0

for all s ∈ S.

Remark 3.3.2. It is clear from the convergence criteria for nets that the topologies ASOTS1
τF

and ASOTS2
τF are equal when IS1

= IS2
. One could, therefore, work with ideals from

the very start, but it seems worthwhile to keep track of a smaller set of presumably more
manageable ‘test vectors’. See also the comments preceding Theorem 3.4.3, below.

Remark 3.3.3. Suppose that (Tα)α∈A is a net inLob(E, F) such that Tα
ASOTSτF−−−−−→ 0. It is easy

to see that then |Tα|x
τF−→ 0 uniformly on every order bounded subset of IS , so that then also

Tαx
τF−→ 0 uniformly on every order bounded subset of IS . When τF is a Fatou topology

on F (in particular: when τF is an o-Lebesgue topology on F ; see [6, Lemma 4.2]), then,

conversely, the fact that Tαx
τF−→ 0 uniformly on every order bounded subset of IS implies

that Tα
ASOTSτF−−−−−→ 0. This follows readily from the Riesz-Kantorovich formula for the modulus

of an operator.

Definition 3.3.4. The topology ASOTSτF in Theorem 3.3.1 is called the absolute strong
operator topology that is generated by τF via S. We shall comment on this nomenclature in
Remark 3.3.7, below.

The following result, which can also be obtained using Riesz pseudo-norms, is clear from
Theorem 3.3.1.

Corollary 3.3.5. Let E and F be vector lattices, where F is Dedekind complete, and let τF be
a (not necessarily Hausdorff) locally solid linear topology on F. Take a vector sublattice E of
Lob(E, F) and a non-empty subset S of E.
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There exists a unique additive topology ASOTSτF on E such that, for a net (Tα)α∈A in E ,

Tα
ASOTSτF−−−−−→ 0 if and only if |Tα||s|

τF−→ 0 for all s ∈ S.

Let IS be the ideal of E that is generated by S. For a net (Tα)α∈A in E , Tα
ASOTSτF−−−−−→ 0 if and

only if |Tα||x |
τF−→ 0 for all x ∈ IS; and also if and only if |Tα|x

τF−→ 0 for all x ∈ IS .
Furthermore:

(1) for every x ∈ IS , the map T 7→ T x is an ASOTSτF –τF continuous map from E into F;
(2) the additive topology ASOTSτF on the group E is, in fact, a locally solid linear topology on

the vector lattice E . When τF is a Hausdorff topology on F, then ASOTSτF is a Hausdorff
topology on E if and only if IS separates the points of E .

Remark 3.3.6. Although in the sequel of this paper we shall mainly be interested in the
nets that are convergent in a given topology, let us still remark that is possible to describe an
explicit ASOTSτF -neighbourhood base of zero in E . Take a τF -neighbourhood base {Uλ}λ∈Λ
of zero in F that consists of solid subsets of F . For λ ∈ Λ and x ∈ IS , set

Vλ,x := { T ∈ E : |T ||x | ∈ Uλ }.

Then {Vλ,x : λ ∈ Λ, x ∈ IS } is an ASOTSτF -neighbourhood base of zero in E .

Remark 3.3.7. It is not difficult to see that ASOTSτF is the weakest locally solid linear
topology τE on E such that, for every x ∈ IS , the map T → T x is a τE–τF continuous map
from E into F . It is also the weakest linear topology τ′E on E such that, for every x ∈ IS , the
map T → |T |x is a τ′E–τF continuous map from E into F . The latter characterisation is our
motivation for the name ‘absolute strong operator topology’.

Take F = R and S = E. Then ASOTEτR is what is commonly known as the absolute
weak∗-topology on Es. There is an unfortunate class of ‘weak’ and ‘strong’ here that appears
to be unavoidable.

Remark 3.3.8. For comparison with Remark 3.3.7, and in order to make clear the role of the
local solidness of the topologies in the present section, we mention the following, which is
an easy consequence of [5, Theorem 5.6], for example. Let E and F be vector spaces, where
F is supplied with a (not necessarily) Hausdorff linear topology τF . Take a linear subspace
E of the vector space of all linear maps from E into F , and take a non-empty subset S of E.
Then there exists a unique (not necessarily Hausdorff) linear topology SOTSτF on E such

that, for a net (Tα)α∈A in E , Tα
SOTSτF−−−−→ 0 if and only if Tαs

τF−→ 0 for all s ∈ S. The subsets
of E of the form

⋂n
i=1{ T ∈ E : Tsi ∈ Vλi

}, where the si run over S and the Vλi
run over a

balanced τF -neighbourhood base {Vλ : λ ∈ Λ } of zero in F , are an SOTSτF -neighbourhood
base of zero in E . When τF is Hausdorff, then SOTSτF is Hausdorff if and only if S separates
the points of E . This strong operator topology SOTSτF on E that is generated by τF via S,
is the weakest linear topology τE on E such that, for every s ∈ S, the map T 7→ T x is
τE–τF -continuous.
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3.4 o-Lebesgue topologies and uo-Lebesgue topologies on vec-
tor lattices of operators

In order to arrive at results concerning o-Lebesgue topologies and uo-Lebesgue topologies
on regular vector sublattices of operators, we need a preparatory result for which we are not
aware of a reference. Given its elementary nature, we refrain from any claim to originality.
It will re-appear at several places in the sequel.

Lemma 3.4.1. Let E and F be vector lattices, where F is Dedekind complete, and let E be a
regular vector sublattice of Lob(E, F). Suppose that (Tα)α∈A is net in E such that Tα

o
−→ 0 in

E . Then Tαx
o
−→ 0 for all x ∈ E.

Proof. By the regularity of E , we also have that Tα
o
−→ 0 in Lob(E, F). Hence there exists a

net (Sβ)β∈B inLob(E, F) such that Sβ ↓ 0 inLob(E, F) and with the property that, for every
β0 ∈ B, there exists an α0 ∈A such that |Tα| ≤ Sβ0

for all α ∈A such that α≥ α0. We know
from [7, Theorem 1.18], for example, that Sβ x ↓ 0 for all x ∈ E+. Since |Tαx | ≤ |Tα|x for

x ∈ E+, it then follows easily that Tαx
o
−→ 0 for all x ∈ E+. Hence Tαx

o
−→ 0 for all x ∈ E.

We can now show that the o-Lebesgue property of a locally solid linear topology on
the Dedekind complete codomain is inherited by the associated absolute strong operator
topology on a regular vector sublattice of operators.

Proposition 3.4.2. Let E and F be vector lattices, where F is Dedekind complete. Suppose that
F admits an o-Lebesgue topology τF . Take a regular vector sublattice E ofLob(E, F) and a non-
empty subset S of E. Then ASOTSτF is an o-Lebesgue topology on E . When τF is a Hausdorff
topology on F, then ASOTSτF is a Hausdorff topology on E if and only if IS separates the points
of E .

Proof. In view of Corollary 3.3.5, we merely need to show that, for a net (Tα)α∈A in E ,

the fact that Tα
o
−→ 0 in E implies that Tα

ASOTSτF−−−−−→ 0. Take s ∈ S. Since also |Tα|
o
−→ 0 in E ,

Lemma 3.4.1 implies that |Tα||s|
o
−→ 0 in F . Using that τF is an o-Lebesgue topology on F , we

find that |Tα||s|
τF−→ 0. Since this holds for all s ∈ S, Corollary 3.3.5 shows that Tα

ASOTSτF−−−−−→ 0
in E .

We conclude by showing that every regular vector sublattice ofLob(E, F) admits a (nec-
essarily unique) Hausdorff uo-Lebesgue topology when the Dedekind complete codomain F
admits a Hausdorff o-Lebesgue topology. It is the unbounded topology that is associated to
(in general multiple) absolute strong operator topologies on the vector sublattice. Our most
precise result in this direction is the following. The convergence criterion in part (2) is a
‘minimal one’ that is convenient when one wants to show that a net is convergent, whereas
the criteria in part (3) exploits the known convergence of a net to its maximum.

Theorem 3.4.3. Let E and F be vector lattices, where F is Dedekind complete. Suppose that F
admits an o-Lebesgue topology τF . Take a regular vector sublattice E ofLob(E, F), a non-empty
subset S of E , and a non-empty subset S of E.
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Then uS ASOTSτF is a uo-Lebesgue topology on E .
We let IS denote the ideal of E that is generated by S, and IS the ideal of E that is generated

by S . For a net (Tα)α∈A in E , the following are equivalent:

(1) Tα
uS ASOTSτF−−−−−−−→ 0;

(2) (|Tα| ∧ |T |)|s|
τF−→ 0 for all T ∈ S and s ∈ S;

(3) (|Tα| ∧ |T |)x
τF−→ 0 for all T ∈ IS and x ∈ IS .

Suppose that τF is actually a Hausdorff o-Lebesgue topology on F. Then the following are
equivalent:
(1) uS ASOTSτF is a (necessarily unique) Hausdorff uo-Lebesgue topology on E ;
(2) IS separates the points of E and IS is order dense in E .

In that case, the Hausdorff uo-Lebesgue topology uS ASOTSτF on E is the restriction of the
(necessarily unique) Hausdorff uo-Lebesgue topology on Lob(E, F), i.e., of uLob(E,F)ASOTEτF ,
and the criteria in (1), (2), and (3) are also equivalent to:

(4) (|Tα| ∧ |T |)x
τF−→ 0 for all T ∈ Lob(E, F) and x ∈ E.

Proof. It is clear from Proposition 3.4.2 and [20, Proposition 4.1] that uS ASOTSτF is a uo-
Lebesgue topology on E . The two convergence criteria for nets follow from the combination
of those in [20, Theorem 3.1] and in Corollary 3.3.5.

According to [20, Proposition 4.1], uS ASOTSτF is a Hausdorff topology on E if and
only if ASOTSτF is a Hausdorff topology on E and IS is order dense in E . An appeal to
Proposition 3.4.2 then completes the proof of the necessary and sufficient conditions for
uS ASOTSτF to be Hausdorff.

Suppose that τF is actually also Hausdorff, that IS separates the points of E , and that IS
is order dense in E . From what we have already established, it is clear that uLob(E,F)ASOTEτF
is a (necessarily unique) Hausdorff uo-Lebesgue topology on Lob(E, F). Since the restric-
tion of a Hausdorff uo-Lebesgue topology on a vector lattice to a regular vector sublat-
tice is a (necessarily unique) Hausdorff uo-Lebesgue topology on the vector sublattice (see
[44, Proposition 5.12]), the criterion in part (4) follows from that in part (3) applied to
uLob(E,F)ASOTEτF .

Remark 3.4.4. Take a τF -neighbourhood base {Uλ}λ∈Λ of zero in F that consists of solid
subsets of F . For λ ∈ Λ, eT ∈ IS , and x ∈ IS , set

Vλ,eT ,x := { T ∈ E : (|T | ∧ |eT |)|x | ∈ Uλ }.

As a consequence of the constructions of unbounded and absolute strong operator topolo-
gies, {Vλ,eT ,x : λ ∈ Λ, T ∈ IS , x ∈ IS } is then a uS ASOTSτF -neighbourhood base of zero in
E .

The following is a less precise consequence of Theorem 3.4.3 that will be sufficient in
many situations.

Corollary 3.4.5. Let E and F be vector lattices, where F is Dedekind complete. Suppose that
F admits a Hausdorff o-Lebesgue topology τF .
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Take a regular vector sublattice E of Lob(E, F). Then E admits a (necessarily unique)
Hausdorff uo-Lebesgue topology bτE . This topology equals uEASOTEτF , and is also equal to the
restriction to E of the Hausdorff uo-Lebesgue topology uLob(E,F)ASOTEτF on Lob(E, F).

For a net (Tα)α∈A in E , the following are equivalent:

(1) Tα
bτE−→ 0;

(2) (|Tα| ∧ |T |)x
τF−→ 0 for all T ∈ E and x ∈ E;

(3) (|Tα| ∧ |T |)x
τF−→ 0 for all T ∈ Lob(E, F) and x ∈ E.

Remark 3.4.6. There can, sometimes, be other ways to see that a given regular vector
sublattice ofLob(E, F) admits a Hausdorff uo-Lebesgue topology. For example, suppose that
Fsoc separates the points of F . For x ∈ E and ϕ ∈ Fsoc, the map T 7→ ϕ(T x) defines an order
continuous linear functional onLoc(E, F), and it is then clear that the order continuous dual
of Loc(E, F) separates the points of Loc(E, F). Hence Loc(E, F) can also be supplied with a
Hausdorff uo-Lebesgue topology as in [20, Theorem 5.2] which, in view of its uniqueness,
coincides with the one as supplied by Corollary 3.4.5.

3.5 Comparing uniform and strong convergence structures on
Lob(E, F)

Suppose that E and F are vector lattices, where F is Dedekind complete. As explained in
Section 3.1, there exist a uniform and a strong convergence structure onLob(E, F) for each
of order convergence, unbounded order convergence, and—when applicable—convergence
in the Hausdorff uo-Lebesgue topology. In this section, we investigate what the relation is
between the members of each of these three pairs. We shall show that only one of the six
conceivable implications is valid in general, and that the others are not even generally valid
for uniformly bounded sequences of order continuous operators on Banach lattices. Whilst
the failures of such general implications may, perhaps, not come as too big a surprise, the
positive results for orthomorphisms (see Theorems 3.9.4, 3.9.7, 3.9.9, and 3.9.12, below)
may serve to indicate that they are less evident than one would think at first sight.

For monotone nets in Lob(E, F), however, the following result shows that then even all
four (or six) convergence structures on Lob(E, F) are equal.

Proposition 3.5.1. Let E and F be vector lattices, where F is Dedekind complete, and let
(Tα)α∈A be a monotone net in Lob(E, F). The following are equivalent:
(1) Tα

o
−→ 0 in Lob(E, F);

(2) Tα
uo
−→ 0 in Lob(E, F);

(3) Tαx
o
−→ 0 in F for all x ∈ E;

(4) Tαx
uo
−→ 0 in F for all x ∈ E.

Suppose that, in addition, F admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτF ,
so that Lob(E, F) also admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτLob(E,F)
by Corollary 3.4.5. Then (1)–(4) are also equivalent to:

(5) Tα
bτLob(E,F)
−−−−−→ 0;
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(6) Tαx
bτF−→ 0 for all x ∈ E.

Proof. We may suppose that Tα ↓ 0 and that x ∈ E+. For order bounded nets in a vector
lattice, order convergence and unbounded order convergence are equivalent. Passing to
an order bounded tail of (Tα)α∈A, we thus see that the parts (1) and (2) are equivalent.
Similarly, the parts (3) and (4) are equivalent. The equivalence of the parts (1) and (3) is
well known; see [6, Theorem 1.67], for example.

Suppose that F admits a Hausdorff uo-Lebesgue topology bτF . In that case, it follows from
[20, Lemma 7.2] that the parts (2) and (5) are equivalent, as are the parts (4) and (6).

When (Tα)α∈A is a not necessarily monotone net in Lob(E, F) such that Tα
o
−→ 0, then

Lemma 3.4.1 shows that Tαx
o
−→ 0 in F for all x ∈ E. We shall now give five examples

to show that each of the remaining five conceivable implications between a corresponding
uniform and strong convergence structures on Lob(E, F) is not generally valid. In each of
these examples, we can even take E = F to be a Banach lattice, and for the net (Tα)α∈A we
can even take a uniformly bounded sequence (Tn)∞n=1 of order continuous operators on E.

Example 3.5.2. We give an example of a uniformly bounded sequence (Tn)∞n=1 of positive
order continuous operators on a Dedekind complete Banach lattice E with a strong order unit,
such that Tn x

o
−→ 0 in E for all x ∈ E but Tn

o
−/−→ 0 in Lob(E) because the sequence is not even

order bounded in Lob(E).
We choose `∞(N) for E = F . For n ≥ 1, we set Tn := Sn, where S is the right shift

operator on E. The Tn are evidently positive and of norm one. A moment’s thought shows
that they are order continuous. Furthermore, it is easy to see that Tn x

o
−→ 0 in E for all

x ∈ E. We shall now show that { Tn : n ≥ 1 } is not order bounded in Lob(E). For this, we
start by establishing that the Tn are mutually disjoint. Let (ei)∞i=1 be the standard sequence
of unit vectors in E. Take m 6= n and i ≥ 1. Since ei is an atom, the Riesz-Kantorovich
formula for the infimum of two operators shows that

0≤ (Tm ∧ Tn)ei = inf{ tem+i + (1− t)en+i : 0≤ t ≤ 1 } ≤ inf{em+i , en+i}= 0.

Hence (Tm ∧ Tn) vanishes on the span of the ei . Since this span is order dense in E, and
since Tn ∧ Tm ∈ Loc(E), it follows that Tn ∧ Tm = 0.

We can now show that (Tn)∞n=1 is not order bounded in Lob(E). Indeed, suppose that
T ∈ Lob(E) is a upper bound for all Tn. Set e :=

∨∞
i=1 ei . Then, for all N ≥ 1,

Te ≥
� N
∨

n=1

Tn

�

e =

� N
∑

n=1

Tn

�

e ≥ NeN+1.

This shows that Te cannot be an element of `∞. We conclude from this contradiction that
(Tn)∞n=1 is not order bounded in Lob(E).

Example 3.5.3. We give an example of a uniformly bounded sequence (Tn)∞n=1 of positive
order continuous operators on a Dedekind complete Banach lattice E with a strong order unit,
such that Tn

uo
−→ 0 in Lob(E) but Tn x

uo
−/−→ 0 for some x ∈ E.
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We choose `∞(Z) for E = F . For n ≥ 1, we set Tn := Sn, where S is the right shift
operator on E. Just as in Example 3.5.2, the Tn are positive order continuous operators
on E of norm one that are mutually disjoint. Since disjoint sequences in vector lattices are
unbounded order convergent to zero (see [28, Corollary 3.6]), we have Tn

uo
−→ 0 in Lob(E).

On the other hand, if we let e be the two-sided sequence that is constant 1, then Tne = e for
all n≥ 1. Hence (Tne)∞n=1 is not unbounded order convergent to zero in E.

For our next example, we require a preparatory lemma.

Lemma 3.5.4. Let µ be the Lebesgue measure on the Borel σ-algebraB of [0,1], and let 1≤
p ≤∞. Take a Borel subset S of [0,1], and define the positive operator TS : Lp([0,1],B ,µ)→
Lp([0,1],B ,µ) by setting

TS( f ) :=

∫

S
f dµ ·χS

for f ∈ Lp([0,1],B ,µ). Then TS ∧ I = 0.

Proof. Take an n ≥ 1, and choose disjoint a partition [0, 1] =
⋃n

i=1 Ai of [0, 1] into Borel
sets Ai of measure 1/n. Let e denote the constant function 1. Then

(TS ∧ I)e =
n
∑

i=1

(TS ∧ I)χAi

≤
n
∑

i=1

(TSχAi
)∧χAi

≤
n
∑

i=1

(µ(Ai)χS)∧χAi

≤
n
∑

i=1

µ(Ai)χAi

=
1
n

e.

Since n is arbitrary, we see that (TS ∧ I)e = 0. Because 0 ≤ TS ∧ I ≤ I , TS ∧ I is order
continuous. From the fact that the positive order continuous operator TS ∧ I vanishes on
the weak order unit e of Lp([0, 1],B ,µ), we conclude that TS ∧ I = 0.

Example 3.5.5. We give an example of a uniformly bounded sequence (Tn)∞n=1 of order con-
tinuous operators on a separable reflexive Banach lattice E with a weak order unit, such that

Tn x
uo
−→ 0 in E for all x ∈ E but Tn

uo
−/−→ 0 in Lob(E) because even Tn

bτLob(E)−−/−−→ 0 in Lob(E).
Let µ be the Lebesgue measure on the Borel σ-algebraB of [0,1], and let 1 ≤ p ≤∞.

For E we choose Lp([0, 1],B ,µ), so that E is reflexive for 1 < p <∞. For n ≥ 1, we let
Bn be the sub-σ-algebra of B that is generated by the intervals Sn,i := [(i − 1)/2n, i/2n]
for i = 1, . . . , 2n, and we let En : E → E be the corresponding conditional expectation.
By [9, Theorem 10.1.5], En is a positive norm one projection. A moment’s thought shows
that every open subset of [0,1] is the union of the countably infinitely many Sn,i that are
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contained in it, so that it follows from [9, Theorem 10.2.3] that En f → f almost everywhere
as n→∞. By [28, Proposition 3.1], we can now conclude that En f

uo
−→ f for all f ∈ E.

On the other hand, it is not true that En

bτLob(E)−−−−→ I . To see this, we note that, by [9,
Example 10.1.2], every En is a linear combination of operators as in Lemma 3.5.4. Hence
En ⊥ I for all n. Since bτLob(E) is a locally solid linear topology, a possible bτLob(E)-limit of the
En is also disjoint from I , hence cannot be I itself.

On setting Tn := En − I for n≥ 1, we have obtained a sequence of operators as desired.

Example 3.5.6. We give an example of a uniformly bounded sequence (Tn)∞n=1 of positive
order continuous operators on a Dedekind complete Banach lattice E with a strong order unit

that admits a Hausdorff uo-Lebesgue topology, such that Tn

bτLob(E)−−−−→ 0 in Lob(E) but Tn x
bτE−/−→ 0

in E for some x ∈ E.
We choose E, the Tn ∈ Lob(E), and e ∈ E as in Example 3.5.3. There are several ways

to see that E admits a Hausdorff uo-Lebesgue topology. This follows most easily from the
fact that E is atomic (see [44, Lemma 7.4]) and also from [20, Theorem 6.3] in the context
of measure spaces. By Corollary 3.4.5, Lob(E) then also admits such a topology. Since we

already know from Example 3.5.3 that Tn
uo
−→ 0, we also have that Tn

bτLob(E)−−−−→ 0. On the other
hand, the fact that Tne = e for n≥ 1 evidently shows that (Tne)∞n=1 is not bτE-convergent to
zero in E.

Example 3.5.7. We note that Example 3.5.5 also gives an example of a uniformly bounded
sequence (Tn)∞n=1 of order continuous operators on a separable reflexive Banach lattice E with

a weak order unit that admits a Hausdorff uo-Lebesgue topology, such that Tn x
bτE−→ 0 in E for

all x ∈ E but Tn

bτLob(E)−−/−−→ 0 in Lob(E).

3.6 Orthomorphisms

In this section, we review some material concerning orthomorphism and establish a few
auxiliary result for use in the present paper and in future ones.

Let E be a vector lattice. We recall from [7, Definition 2.41] that an operator on E is called
an orthomorphism when it is a band preserving order bounded operator. An orthomorphism
is evidently disjointness preserving, it is order continuous (see [7, Theorem 2.44]), and
its kernel is a band (see [7, Theorem 2.48]). We denote by Orth(E) the collection of all
orthomorphism on E. Even when E is not Dedekind complete, the supremum and infimum
of two orthomorphisms S and T in E always exists in Lob(E). In fact, we have

[S ∨ T] (x) = S(x)∨ T (x)

[S ∧ T] (x) = S(x)∧ T (x)
(3.1)

for x ∈ E+ and
|T x |= |T ||x |= |T (|x |)| (3.2)
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for x ∈ E; see [7, Theorems 2.43 and 2.40]. Consequently, Orth(E) is a unital vector lat-
tice algebra for every vector lattice E. Even more is true: according to [7, Theorem 2.59],
Orth(E) is an (obviously Archimedean) f -algebra for every vector lattice E, so it is commu-
tative by [7, Theorem 2.56]. Furthermore, for every vector lattice E, when T ∈ Orth(E)
and T : E → E is injective and surjective, then the linear map T−1 : E → E is again an
orthomorphism. We refer to [37, Theorem 3.1.10] for a proof of this result of Huijsmans’
and de Pagter’s.

It follows easily from equation (3.1) that, for every vector lattice E, the identity operator
is a weak order unit of Orth(E). When E is Dedekind complete, Orth(E) is the band in
Lob(E) that is generated by the identity operator on E; see [7, Theorem 2.45].

Let E be a vector lattice, let T ∈ Lob(E), and let λ ≥ 0. Using [7, Theorem 2.40], it is
not difficult to see that the following are equivalent:
(1) −λI ≤ T ≤ λI ;
(2) |T | exists in Lob(E), and |T | ≤ λI ;
(3) |T x | ≤ λ|x | for all x ∈ E.
The set of all such T is a unital subalgebra Z (E) of Orth(E) consisting of ideal preserving
order bounded operators on E. It is called the ideal centre of E.

Let E be a vector lattice, and define the stabiliser of E, denoted by S (E), as the set of
linear operators on E that are ideal preserving. It is not required that these operators be
order bounded, but this is nevertheless always the case. In fact, S (E) is a unital subalgebra
of Orth(E) for every vector lattice E (see [47, Proposition 2.6]), so that we have the chain

Z (E) ⊆ S (E) ⊆ Orth(E)

of unital algebras for every vector lattice E. For every Banach lattice E, we have

Z (E) = S (E) = Orth(E);

see [47, Corollary 4.2], so that the identity operator on E is then even an order unit of
Orth(E).

For every Banach lattice E, Orth(E) is a unital Banach subalgebra of the bounded linear
operators on E in the operator norm. This follows easily from the facts that bands are closed
and that a band preserving operator on a Banach lattice is automatically order bounded; see
[7, Theorem 4.76].

Let E be a Banach lattice. Since the identity operator is an order unit of Orth(E), we can
introduce the order unit norm ‖ · ‖I with respect to I on Orth(E) by setting

‖T‖I := inf{λ≥ 0 : |T | ≤ λI }

for T ∈ Orth(E). Then ‖T‖= ‖T‖I for all T ∈ Orth(E); see [47, Proposition 4.1]. Since we
already know that Orth(E) is complete in the operator norm, it follows that Orth(E), when
supplied with ‖ · ‖= ‖ · ‖I , is a unital Banach lattice algebra that is also an AM-space. When E
is a Dedekind complete Banach lattice, then evidently ‖T‖= ‖T‖I = ‖|T |‖I = ‖ |T | ‖= ‖T‖r
for T ∈ Orth(E). Hence Orth(E) is then also a unital Banach lattice subalgebra of the Banach
lattice algebra of all order bounded operators on E in the regular norm.
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Let E be Banach lattice. It is clear from the above that (Orth(E),‖ · ‖) = (Orth(E),‖ · ‖I)
is a unital Banach f -algebra in which its identity element is also a (positive) order unit. The
following result is, therefore, applicable withA = Orth(E) and e = I . It shows, in particular,
that Orth(E) is isometrically Banach lattice algebra isomorphic to a C(K)-space. Both its
statement and its proof improve on the ones in [15, Proposition 2.6], [41, Proposition 1.4],
and [30].

Theorem 3.6.1. Let A be a unital f -algebra such that its identity element e is also a (posi-
tive) order unit, and such that it is complete in the submultiplicative order unit norm ‖ · ‖e on

A . Let B be a (not necessarily unital) associative subalgebra of A . Then B‖ · ‖e is a Banach
f -subalgebra ofA . When e ∈B , then there exist a compact Hausdorff space K, uniquely deter-
mined up to homeomorphism, and an isometric surjective Banach lattice algebra isomorphism

ψ :B‖ · ‖e → C(K).

Proof. Since (A ,‖ · ‖I) is an AM-space with order unit e, there exist a compact Hausdorff
space K ′ and an isometric surjective lattice homomorphism ψ′ : A → C(K ′) such that
ψ′(e) = 1; see [37, Theorem 2.1.3] for this result of Kakutani’s, for example. Via this
isomorphism, the f -algebra multiplication on C(K ′) provides the vector lattice A with a
multiplication that makes A into an f -algebra with e as its positive multiplicative identity
element. Such a multiplication is, however, unique; see [7, Theorem 2.58]. Hence ψ′ also
preserves multiplication, and we conclude that ψ′ : A → C(K ′) is an isometric surjective
Banach lattice algebra isomorphism.

We now turn to B . It is clear that B‖ · ‖e is Banach subalgebra of A . After moving to

the C(K ′)-model forA that we have obtained, [23, Lemma 4.48] shows thatB‖ · ‖e is also

a vector sublattice of A . Hence B‖ · ‖e is a Banach f -subalgebra of A . When e ∈ B‖ · ‖e ,
we can then apply the first part of the proof to B , and obtain a compact Hausdorff space

K and an isometric surjective Banach lattice algebra isomorphism ψ :B‖ · ‖e → C(K). The
Banach-Stone theorem (see [12, Theorem VI.2.1], for example) implies that K is uniquely
determined up to homeomorphism.

We now proceed to show that E and Orth(E) have isomorphic universal completions.
We start with a preparatory lemma.

Proposition 3.6.2. Let E be a Dedekind complete vector lattice, and let x ∈ E. Let Ix be the
principal ideal of E that is generated by x, let Bx be the principal band in E that is generated
by x, let Px : E → Bx be the corresponding order projection, and let IPx

be the principal ideal
of Lob(E) that is generated by Px . For T ∈ IPx

, set ψx(T ) := T |x |. Then ψx(T ) ∈ Ix , and:
(1) the map ψx : IPx

→ Ix is a surjective vector lattice isomorphism such that ψx(Px) = |x |;
(2) IPx

= PxZ (E).

Proof. Take T ∈ IPx
. There exists a λ ≥ 0 such that |T | ≤ λPx , and this implies that

|T y| ≤ λPx |y| for all y ∈ E. This shows that T |x | ∈ Ix , so that ψx maps IPx
into Ix ; it

also shows that T (Bd
x) = {0}. Suppose that T |x | = 0. Since the kernel of T is a band in E,

this implies that T vanishes on Bx . We already know that it vanishes on Bd
x . Hence T = 0,

and we conclude that ψx is injective. We show that ψx is surjective. Let y ∈ Ix . Take a
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λ > 0 such that 0 ≤ |y/λ| ≤ |x |. An inspection of the proof of [7, Theorem 2.49] shows
that there exists a T ∈ Z (E) with T |x | = y/λ. Since λT Px ∈ IPx

and (λT Px)|x | = y , we
see that ψx is surjective. Finally, it is clear from equation (3.1) that ψx is a vector lattice
homomorphism. This completes the proof of part (1).

We turn to part (2). It is clear that IPx
⊇ PxZ (E). Take T ∈ IPx

⊆ Z (E). Then also
Px T ∈ IPx

. Since ψx(T ) = ψx(Px T ), the injectivity of ψx on IPx
implies that T = Px T ∈

PxZ (E).

The first part of Proposition 3.6.2 is used in the proof of our next result.

Proposition 3.6.3. Let E be a Dedekind complete vector lattice. Then there exist an order
dense ideal I of E and an order dense ideal I of Orth(E) such that I and I are isomorphic
vector lattices.

Proof. Choose a maximal disjoint system { xα : α ∈ A } in E. For each α ∈ A, let Ixα ,
Bxα , Pxα : E → Bxα , IPxα

, and the vector lattice isomorphism ψxα : IPxα
→ Ixα be as in

Proposition 3.6.2.
Since the xα are mutually disjoint, it is clear that the ideal

∑

α∈A Ixα of E is, in fact, an
internal direct sum

⊕

α∈A Ixα . Since the disjoint system is maximal,
⊕

α∈A Ixα is an order
dense ideal of E.

It follows easily from equation (3.1) that the Pxα are also mutually disjoint. They even
form a maximal disjoint system in Orth(E). To see this, suppose that T ∈ Orth(E) is such
that |T | ∧ Pxα = 0 for all α ∈A. Then (|T |xα)∧ xα = (|T | ∧ Pxα)xα = 0 for all α ∈A. Since
|T | is band preserving, this implies that |T |xα = 0 for all α ∈A. The fact that the kernel of
|T | is a band in E then yields that |T | = 0. Just as for E, we now conclude that the ideal
∑

α∈AIPxα
of Orth(E) is an internal direct sum

⊕

α∈AIPxα
that is order dense in Orth(E).

Since
⊕

α∈Aψxα :
⊕

α∈AIPxα
→
⊕

α∈A Ixα is a vector lattice isomorphism by Proposi-
tion 3.6.2, the proof is complete.

It is generally true that a vector lattice and an order dense vector sublattice of it have iso-
morphic universal completions; see [6, Theorems 7.21 and 7.23]. Proposition 3.6.3 there-
fore implies the following.

Corollary 3.6.4. Let E be a Dedekind complete vector lattice. Then the universal completions
of E and of Orth(E) are isomorphic vector lattices.

The previous result enables us to relate the countable sup property of E to that of
Orth(E). We recall that vector lattice E has the countable sup property when, for every
non-empty subset S of E that has a supremum in E, there exists an at most countable subset
of S that has the same supremum in E as S. In parts of the literature, such as in [36] and
[51], E is then said to be order separable. We also recall that a subset of a vector lattice is
said to be an order basis when the band that it generates is the whole vector lattice.

Proposition 3.6.5. Let E be a Dedekind complete vector lattice. The following are equivalent:
(1) Orth(E) has the countable sup property;
(2) E has the countable sup property and an at most countably infinite order basis.
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Proof. It is proved in [33, Theorem 6.2] that, for an arbitrary vector lattice F , Fu has the
countable sup property if and only if F has the countable sup property as well as an at most
countably infinite order basis. Since Orth(E) has a weak order unit I , we see that Orth(E)u

has the countable sup property if and only if Orth(E) has the countable sup property. On
the other hand, since Orth(E)u and Eu are isomorphic by Corollary 3.6.4, an application of
this same result to E shows that Orth(E)u has the countable sup property if and only if E
has the countable sup property and an at most countably infinite order basis.

We conclude by giving some estimates for orthomorphisms in Proposition 3.6.7 that
will be used in the sequel. As a preparation, we need the following extension of [7, Exer-
cise 1.3.7].

Lemma 3.6.6. Let E be a vector lattice with the principal projection property. Take x , y ∈ E.
For λ ∈ R, let Pλ denote the order projection in E onto the band generated by (x −λy)+. Then
λPλ y ≤ Pλx. When x , y ∈ E+ and λ≥ 0, then x ≤ λy + Pλx.

Proof. The first inequality follows from the fact that

0≤ Pλ(x −λy)+ = Pλ(x −λy) = Pλx −λPλ y.

For the second inequality, we note that x −λy ≤ (x −λy)+ = Pλ(x −λy)+ for all x , y , and
λ. When x , y ∈ E+ and λ≥ 0, then (x −λy)+ ≤ x+ = x , so that

x ≤ λy + Pλ(x −λy)+ ≤ λy + Pλx .

Proposition 3.6.7. Let E be a Dedekind complete vector lattice, and let T∈Orth(E)+. For λ >
0, let Pλ be the order projection in Orth(E) onto the band generated by (T −λI)+ in Orth(E).
There exists a unique order projection Pλ in E such that Pλ(S) = PλS for all S ∈ Orth(E).
Furthermore:
(1) λPλ ≤ PλT ≤ T;
(2) T ≤ λI + PλT;
(3) (PλT x)∧ y ≤ 1

λT y for all x , y ∈ E+.

Proof. Since 0≤ Pλ ≤ IOrth(E), it follows from [6, Theorem 2.62] that there exists a unique
Pλ ∈ Orth(E) with 0 ≤ Pλ ≤ I such that Pλ(S) = PλS for all S ∈ Orth(E). The fact that Pλ
is idempotent implies that Pλ is also idempotent. Hence Pλ is an order projection.

The inequalities in the parts (1) and (2) are then a consequence of those in Lemma 3.6.6.
For part (3), we note that (PλT x) ∧ y is in the image of the projection Pλ. Since order
projections are vector lattice homomorphisms, we have, using part (1) in the final step, that

(PλT x)∧ y = Pλ((PλT x)∧ y) = (P2
λT x)∧ Pλ y ≤ Pλ y ≤

1
λ

T y.
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3.7 Continuity properties of orthomorphisms

Orthomorphisms preserve order convergence of nets. In this short section, we show that
they also preserve unbounded order convergence and, when applicable, convergence in the
(necessarily unique) Hausdorff uo-Lebesgue topology.

Before doing so, let us note that this is in contrast to the case of general order bounded
operators. Surely, there exist order bounded operators that are not order continuous. For
the remaining two convergence structures, we consider `1 with its standard basis (en)∞n=1. It

follows from [28, Corollary 3.6] that en
uo
−→ 0. There are several ways to see that `1 admits

a (necessarily unique) Hausdorff uo-Lebesgue topology bτ`1
. This follows from the fact that

its norm is order continuous (see [44, p. 993]), from the fact that it is atomic (see [44,
Lemma 7.4]), and from a result in the context of measure spaces (see [20, Theorem 6.2]).

The latter two results also show that en

bτ`1−→ 0 which is, of course, also a consequence of the
fact that en

uo
−→ 0. Define T : `1→ `1 by setting T x :=

�∑∞
n=1 xn

�

e1 for x =
∑∞

n=1 xnen ∈ `1.
Since Ten = e1 for all n≥ 1, the order continuous positive operator T on `1 preserves neither
uo-convergence nor bτ`1

-convergence of sequences in `1.

Proposition 3.7.1. Let E be a Dedekind complete vector lattice, and let T ∈ Orth(E). Suppose
that (xα)α∈A is a net in E such that xα

uo
−→ 0 in E. Then T xα

uo
−→ 0 in E.

Proof. Using equation (3.2), one easily sees that we may suppose that T and the xα are
positive. For n≥ 1, we let Pn be the order projection in Orth(E) onto the band generated by
(T −nI)+ in Orth(E). According to Proposition 3.6.7, there exists a unique order projection
Pn in E such that Pn(S) = PnS for all S ∈ Orth(E). Take e ∈ E+. By applying part (2) of
Proposition 3.6.7 in the first step and its part (3) in the third, we see that, for α ∈ A and
n≥ 1,

(T xα)∧ e ≤ (nxα + PnT xα)∧ e

≤ n(xα ∧ e) + PnT xα ∧ e

≤ n(xα ∧ e) +
1
n

Te.

(3.3)

This implies that, for n≥ 1,

0≤ inf
α

sup
β≥α

�

(T xβ)∧ e
�

≤ n inf
α

sup
β≥α

�

xβ ∧ e
�

+
1
n

Te.

Since xα ∧ e
o
−→ 0 in E, it now follows from [28, Remark 2.2] that

0≤ inf
α

sup
β≥α

�

(T xβ)∧ e
�

≤
1
n

Te

for all n≥ 1. Hence infα supβ≥α
�

(T xβ)∧ e
�

= 0, and we conclude that (T xα)∧ e
o
−→ 0 in E.

Since e ∈ E+ was arbitrary, the proof is complete.
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For the case of a Hausdorff uo-Lebesgue topology, we need the following preparatory
result that has some independent interest. Lemma 3.9.11 is of the same flavour.

Proposition 3.7.2. Let E be a Dedekind complete vector lattice that admits a (not necessarily
Hausdorff) locally solid linear topology τE , and let T ∈ Orth(E). Suppose that (xα)α∈A is a

net in E such that xα
τE−→ 0 in E. Then T xα

uEτE−−→ 0 in E.

Proof. As in the proof of Proposition 3.7.1, we may suppose that T and the xα are positive.
For n≥ 1, we let Pn be the order projection in Orth(E) onto the band generated by (T−nI)+

in Orth(E) again, so that again there exists a unique order projection Pn in E such that
Pn(S) = PnS for all S ∈ Orth(E). Fix e ∈ E+. Take a solid τE-neighbourhood U of 0 in
E, and choose a τE-neighbourhood V of 0 such that V + V ⊆ U . Take an n0 ≥ 1 such

that Te/n0 ∈ V . As xα
τE−→ 0, there exists an α0 ∈ A such that n0 xα ∈ V for all α ≥ α0.

Continuing the chain of inequalities in equation (3.3) for n0 for one more step, we see that,
for all α≥ α0,

(T xα)∧ e ≤ n0(xα ∧ e) +
1
n0

Te

≤ n0 xα +
1
n0

Te

∈ V + V ⊆ U

(3.4)

The solidness of V then implies that (T xα) ∧ e ∈ U for all α ≥ α0. Since U and e were

arbitrary, we conclude that Tαx
uEτE−−→ 0.

Since the unbounded topology uEbτE that is generated by a Hausdorff uo-Lebesgue topol-
ogy bτE equals bτE again, the following is now clear.

Corollary 3.7.3. Let E be a Dedekind complete vector lattice that admits a (necessarily unique)
Hausdorff uo-Lebesgue topology bτE , and let T ∈ Orth(E). Suppose that (xα)α∈A is a net in E

such that xα
bτE−→ 0 in E. Then T xα

bτE−→ 0 in E.

3.8 Topologies on Orth(E)

Let E be a Dedekind complete vector lattice, and suppose that τE is a (not necessarily Haus-
dorff) locally solid additive topology on E. Take a non-empty subset S of E. According
to Theorem 3.3.1, there exists a unique additive topology ASOTSτE on Lob(E) such that,

for a net (Tα)α∈A in Lob(E), Tα
ASOTSτE−−−−−→ 0 if and only if |Tα||s|

τE−→ 0 for all s ∈ S. When
(Tα)α∈A ⊆ Orth(E), equation (3.2) and the local solidness of τE imply that this convergence

criterion is also equivalent to the one that Tαs
τF−→ 0 for all s ∈ S. Hence on subsets of Orth(E),

an absolute strong operator topology that is generated by a locally solid additive topology on
E coincides with the corresponding strong operator topology. In order to remind ourselves of
the connection with the topology on the enveloping vector lattice Lob(E) of Orth(E), we
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shall keep writing ASOTSτF when considering the restriction of this topology to subsets of
Orth(E), rather than switch to, e.g., SOTSτF .

The above observation can be used in several results in Section 3.3. For the ease of
reference, we include the following consequence of Corollary 3.3.5.

Corollary 3.8.1. Let E be a Dedekind complete vector lattice, and let τE be a (not necessarily
Hausdorff) locally solid linear topology on E. Take a vector sublattice E of Orth(E) and a
non-empty subset S of E.

There exists a unique locally solid linear topology ASOTSτE on E such that, for a net

(Tα)α∈A in E , Tα
ASOTSτE−−−−−→ 0 if and only if Tαs

τE−→ 0 for all s ∈ S.

Let IS be the ideal of E that is generated by S. For a net (Tα)α∈A in E , Tα
ASOTSτE−−−−−→ 0 if and

only if Tαx
τE−→ 0 for all x ∈ IS .

When τE is a Hausdorff topology on F, then ASOTSτE is a Hausdorff topology on E if and
only if IS separates the points of E .

According to the next result, there is an intimate relation between the existence of Haus-
dorff o-Lebesgue topologies and uo-Lebesgue topologies on E and on Orth(E).

Proposition 3.8.2. Let E be a Dedekind complete vector lattice. The following are equivalent:
(1) E admits a Hausdorff o-Lebesgue topology;
(2) Orth(E) admits a Hausdorff o-Lebesgue topology;
(3) E admits a (necessarily unique) Hausdorff uo-Lebesgue topology;
(4) Orth(E) admits a (necessarily unique) Hausdorff uo-Lebesgue topology.

Proof. As E and Orth(E) are Dedekind complete, they are not just order dense vector sublat-
tices of their universal completions but even order dense ideals; see [7, p.126–127]. Since
these universal completions are isomorphic vector lattices by Corollary 3.6.4, the proposi-
tion follows from a double application of [20, Theorem 4.9.(3)].

For a Dedekind complete vector lattice E, Orth(E), being a band in Lob(E), is a regular
vector sublattice of Lob(E). A regular vector sublattice E of Orth(E) is, therefore, also
a regular vector sublattice of Lob(E), and Proposition 3.4.2 then shows how o-Lebesgue
topologies on E can be obtained from an o-Lebesgue topology on E as (absolute) strong
operator topologies. In particular, this makes the fact that part (1) of Proposition 3.8.2
implies its part (2) more concrete. The fact that part (1) implies part (2) is made more
concrete as a special case of the following consequence of Theorem 3.4.3.

Theorem 3.8.3. Let E be a Dedekind complete vector lattice. Suppose that E admits an o-
Lebesgue topology τE . Take a regular vector sublattice E of Orth(E), a non-empty subset S of
E , and a non-empty subset S of E.

Then uS ASOTSτE is a uo-Lebesgue topology on E .
We let IS denote the ideal of E that is generated by S, and IS the ideal of E that is generated

by S . For a net (Tα)α∈A in E , the following are equivalent:

(1) Tα
uS ASOTSτE−−−−−−−→ 0;

(2) |Tαs| ∧ |Ts|
τE−→ 0 for all T ∈ S and s ∈ S;
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(3) |Tαx | ∧ |T x |
τE−→ 0 for all T ∈ IS and x ∈ IS .

Suppose that τE is actually a Hausdorff o-Lebesgue topology bτE on E. Then the following
are equivalent:
(1) uS ASOTSbτE is a (necessarily unique) Hausdorff uo-Lebesgue topology on E ;
(2) IS separates the points of E and IS is order dense in E .

In that case, the Hausdorff uo-Lebesgue topology uS ASOTSτE on E is the restriction of the
(necessarily unique) Hausdorff uo-Lebesgue topology on Lob(E, F), i.e., of uLob(E,F)ASOTEτE ,
and the criteria in (1), (2), and (3) are also equivalent to:

(4) (|Tα| ∧ |T |)x
bτE−→ 0 for all T ∈ Lob(E) and x ∈ E.

3.9 Comparing uniform and strong convergence structures on
Orth(E)

Let E and F be vector lattices, where F is Dedekind complete, and let (Tα)α∈A be a net
in Lob(E, F). In Section 3.5, we studied the relation between uniform and strong con-
vergence of (Tα)α∈A for order convergence, unbounded order convergence, and—when
applicable—convergence in a Hausdorff uo-Lebesgue topology. In the present section, we
consider the case where (Tα)α∈A is actually contained in Orth(E). As we shall see, the rela-
tion between uniform and strong convergence is now much more symmetrical than in the
general case of Section 3.5; see Theorem 3.9.4 (and Theorem 3.9.7), Theorem 3.9.9, and
Theorem 3.9.12, below.

These positive results might, perhaps, lead one to wonder whether some of the three
uniform convergence structures under consideration might actually even be identical for
the orthomorphisms. This, however, is not the case. There even exist sequences of positive
orthomorphisms on separable reflexive Banach lattices with weak order units showing that
the two ‘reverse’ implications in question are not generally valid. For this, we consider E :=
Lp([0,1]) for 1< p <∞. In that case, Orth(E) can canonically be identified with L∞([0,1])
as an f -algebra; see [7, Example 2.67], for example. The uo-convergence of a net in the
regular vector sublattice L∞([0, 1]) of L0([0,1]) coincides with that in L0([0, 1]) which,
according to [28, Proposition 3.1], is simply convergence almost everywhere in the case
of sequences. According to [20, Theorem 6.3], the convergence of a net in the Hausdorff
uo-Lebesgue topology of L∞([0, 1]) is equal to the convergence in measure. For n ≥ 1, set
fn := nχ[0,1/n]. Then fn

uo
−→ 0 in L∞([0,1]), but it is not true that fn

o
−→ 0 in L∞([0,1])

since the fn are not even order bounded in L∞([0,1]). Using χ[(k−1)2−n,k2−n] for n ≥ 1 and
k = 1, . . . , 2n, one easily finds a sequence that is convergent to zero in measure, but that is
not convergent in any point of [0, 1].

We now start with uniform and strong order convergence for nets of orthomorphisms.
For this, we need a few preparatory results. The first one is on general order continuous
operators.

Lemma 3.9.1. Let E be a Dedekind complete vector lattice, let (Tα)α∈A be a decreasing net in
Loc(E)

+, and let F be an order dense vector sublattice of E. The following are equivalent:
(1) Tαx

o
−→ 0 in E for all x ∈ F;
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(2) Tαx
o
−→ 0 in E for all x ∈ E.

Proof. We need to show only that part (1) implies part (2). Suppose that Tαx
o
−→ 0 in E for

all x ∈ F . By passing to a tail, we may suppose that there exists a T ∈ Loc(E)
+ such that

Tα ≤ T for α ∈A. Take x ∈ E+. Since (Tαx)α∈A is directed downwards and E is Dedekind
complete, there exists a y ∈ E+ such that Tαx ↓ y in E. The order denseness of F in E
implies that there exists a net (xβ)β∈B ⊆ F+ with xβ ↑ x in E. For each α ∈ A and β ∈ B,
we have

y ≤ Tαx = Tα(x − xβ) + Tαxβ
≤ T (x − xβ) + Tαxβ .

For each fixed β ∈ B, the assumption then implies that

y ≤ T (x − xβ) + inf
α

Tαxβ = T (x − xβ).

The order continuity of T then shows that

0≤ y ≤ inf
β

T (x − xβ) = 0,

and so y = 0. We conclude that Tαx ↓ 0 in E for every x ∈ E+, and the statement in part (2)
follows.

Proposition 3.9.2. Let E be a Dedekind complete vector lattice, let (Tα)α∈A be a decreasing
net in Orth(E)+, and let S be a non-empty subset of E. The following are equivalent:
(1) Tαs

o
−→ 0 in E for all s ∈ S;

(2) Tαx
o
−→ 0 in E for all x ∈ BS .

In particular, if E has a positive weak order unit e, then Tαx
o
−→ 0 in E for all x ∈ E if and only

if Tαe ↓ 0 in E.

Proof. We need to show only that part (1) implies part (2). Take y ∈ I+S . There exist
s1, . . . , sn ∈ S and λ1, . . . ,λn ≥ 0 such that 0 ≤ y ≤

∑n
i=1λi|si|. Hence 0 ≤ Tα y ≤

∑n
i=1λi Tα|si| =

∑n
i=1λi|Tαsi| for α ∈ A, and the assumption then implies that Tα y ↓ 0

in E. Since orthomorphisms preserve bands, we have Tα y ∈ BS for all α, and the fact that
BS is an ideal of E now shows that Tα y ↓ 0 in BS . It follows that Tα y

o
−→ 0 in BS for all

y ∈ IS . Since the restriction of each Tα to the regular vector sublattice BS of E is again
order continuous, and since IS is an order dense vector sublattice of the vector lattice BS ,
Lemma 3.9.1 implies that Tα y

o
−→ 0 in BS for all y ∈ BS . The fact that BS is a regular vector

sublattice of E then yields that Tα y
o
−→ 0 in E for all y ∈ BS .

Lemma 3.9.3. Let E be a Dedekind complete vector lattice, and let S be a subset of Orth(E)
that is bounded above in Lob(E). Then, for x ∈ E+,

�

∨

T∈S
T

�

x =
∨

T∈S
T x .
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Proof. Using [6, Theorem 1.67.(b)] in the second step, we see that, for x ∈ E+,
�

∨

T∈S
T

�

x =

�

∨

T∨∈S ∨
T∨
�

x =
∨

T∨∈S ∨
T∨x .

By equation (3.1), this equals
∨

y∨∈(S x)∨
y∨ =

∨

y∈S x
y =

∨

T∈S
T x .

We can now establish our main result regarding uniform and strong order convergence
for nets of orthomorphisms.

Theorem 3.9.4. Let E be a Dedekind complete vector lattice, and let (Tα)α∈A be a net in
Orth(E) that is order bounded in Lob(E). Let S be a non-empty subset of E with BS = E. The
following are equivalent:
(1) Tα

o
−→ 0 in Orth(E);

(2) Tα
o
−→ 0 in Lob(E);

(3) Tαs
o
−→ 0 in E for all s ∈ S;

(4) Tαx
o
−→ 0 in E for all x ∈ E.

In particular, when E has a weak order unit e, then Tα
o
−→ 0 in Lob(E) if and only if Tαe

o
−→ 0

in E.

Before proceeding with the proof, we remark that, since Orth(E) is a projection band in
Lob(E), the order boundedness of the net could equivalently have been required in Orth(E).

Proof. Since the net (Tα)α∈A is supposed to be order bounded in the regular vector sub-
lattice Orth(E), the equivalence of the parts (1) and (2) follows from [28, Corollary 2.12].
Lemma 3.4.1 shows that part (2) implies part (4), and evidently part (4) implies part (3).
The proof will be completed by showing that part (3) implies part (1). Suppose that Tαs

o
−→ 0

in E for all s ∈ S or, equivalently, that |Tα||s| = |Tαs|
o
−→ 0 in E for all s ∈ S. For α ∈ A, set

eTα :=
∨

β≥α|Tβ | in Lob(E). Since Lemma 3.9.3 shows that eTα|s| =
∨

β≥α|Tβ ||s| for α ∈ A
and s ∈ S, we see that eTα|s| ↓ 0 in E for all s ∈ S. Proposition 3.9.2 then yields that eTαx

o
−→ 0

for all x ∈ B|S| = E. Using that eTα ↓, it follows that eTα ↓ 0 in Lob(E). Since |Tα| ≤ eTα for

α ∈A, we see that |Tα|
o
−→ 0 in Lob(E), as required.

In view of Lemma 3.4.1, the most substantial part of Theorem 3.9.4 is the fact that the
parts (3) and (4) imply the parts (1) and (2). For this to hold in general, the assumption
that (Tα)α∈A be order bounded is actually necessary. To see this, let Γ be an uncountable
set that is supplied with the counting measure, and consider E := `p(Γ ) for 1≤ p ≤∞. Set

A := { (n, S) : n≥ 1, S ⊂ Γ is at most countably infinite }
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and, for (n1, S1), (n2, S2) ∈ A, say that (n1, S2) ≤ (n2, S2) when n1 ≤ n2 and S1 ⊆ S2. For
(n, S) ∈A, define T(n,S) ∈ Z (E) = Orth(E) by setting

T(n,S)x := nχΓ\S x

for all x : Γ → R in E. Take an x ∈ E. Then the net (T(n,S)x)(n,S)∈A has a tail that is

identically zero, namely (T(n,S)x)(n,S)≥(1,supp x) . Hence T(n,S)x
o
−→ 0 in E for all x ∈ E. We

claim that (T(n,S))(n,S)∈A is not order convergent in Orth(E), and not even in Lob(E). For
this, it is sufficient to show that it does not have any tail that is order bounded in Lob(E).
Suppose, to the contrary, that there exist an n0 ≥ 1, an at most countably infinite subset S0
of Γ , and a T ∈ Lob(E) such that T(n,A) ≤ T for all (n, A) ∈ A with n ≥ n0 and A ⊇ A0. As
Γ is uncountable, we can choose an x0 ∈ Γ \ A0; we let ex0

denote the corresponding atom
in E. Then, in particular, T(n,A0)ex0

≤ Tex0
for all n ≥ n0. Hence Tex0

≥ nex0
for all n ≥ n0,

which is impossible.
We now consider uniform and strong order convergence in the case where E is a Dede-

kind complete Banach lattice. In that case, a version of Theorem 3.9.4 can be obtained for
sequences where the order boundedness of the sequence need to be a part of the hypotheses
because it is automatic; see Theorem 3.9.7, below. Our results are based on the following
ordered version of the uniform boundedness principle for orthomorphisms.

Proposition 3.9.5. Let E be a Dedekind complete Banach lattice, and let { Tα : α ∈ A } be a
non-empty subset of Orth(E). The following are equivalent:
(1) { Tα : α ∈A } is an order bounded subset of Lob(E);
(2) for each x ∈ E, { Tαx : α ∈A } is an order bounded subset of E.

As in Theorem 3.9.4, the order boundedness of the net could equivalently have been
stated in Orth(E).

Proof. It is trivial that part (1) implies part (2). We give two proofs for the fact that part (2)
implies part (1).

The first proof is as follows. The fact that |Tα||x | = |Tαx | implies that we may suppose
that the Tα are positive. Suppose, to the contrary, that { Tα : α ∈A } is not an order bounded
subset of Lob(E). Using that Orth(E) = Z (E), it is easy to see that, for every n ≥ 1, there
exists an αn ∈ A such that (Tαn

− 2n I)+ > 0. For n ≥ 1, we let Bn be the band generated
by (Tαn

− 2n I)+ in Orth(E), and we let Pn be the corresponding non-zero order projection
onto Bn. According to Proposition 3.6.7, there exists a unique order projection Pn in E such
that PnS = PnS for all S ∈ Orth(E). Furthermore, Tαn

≥ 2nPn. As Pn 6= 0, we can choose an
xn ∈ E+ such that ‖Pn xn‖ = 1/2n. Since

∨m
n=1 Pn xn ≤

∑∞
n=1 Pn xn for all m ≥ 1, we can set

e :=
∨∞

n=1 Pn xn ∈ E+. By assumption, we can choose an upper bound x of { Tαn
e : n ≥ 1 }

in E+. Then
x ≥ Tαn

e ≥ 2nPne ≥ 2nPn(Pn xn) = 2nPn xn

for n≥ 1. Again by assumption, we can choose an upper bound y of { Tαn
x : n≥ 1 } in E+,

and then
y ≥ Tαn

x ≥ 2nPn x ≥ 2nPn(2
nPn xn) = 4nPn xn
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for n ≥ 1. This implies that ‖y‖ ≥ 4n‖Pn xn‖ = 2n for all n. This contradiction completes
the first proof.

The second proof, which uses somewhat ‘heavier’ auxiliary results, is as follows. The fact
that the Tα are pointwise order bounded implies that they are pointwise norm bounded.
Hence, by the uniform boundedness principle, the Tα are bounded in the uniform norm on
the bounded operators on E. Since they are in Orth(E) = Z (E), where (see Section 3.6)
the operator norm agrees with the order unit norm with respect to the strong order unit I
of Z (E), the Tα are also order bounded in Z (E).

As a side result, we note the following consequence of Proposition 3.9.5. It is an ordered
analogue of the familiar result for a sequence of bounded operators on a Banach space.

Corollary 3.9.6. Let E be a Dedekind complete Banach lattice, and let (Tn)∞n=1 be a sequence
in Orth(E). Suppose that the sequence (Tn x)∞n=1 is order convergent in E for all x ∈ E. Then
{ Tn : n≥ 1 } is an order bounded subset of Lob(E). For x ∈ E, define T : E→ E by setting

T x := o – lim
n→∞

Tn x .

Then T ∈ Orth(E).

Proof. It is clear that T is linear. Since order convergent sequences are order bounded,
Proposition 3.9.5 shows that there exist an S ∈ Orth(E) such that |Tn| ≤ |S| for n ≥ 1. As
Orth(E) = Z (E), there exists a λ ≥ 0 such that |Tn| ≤ λI for n ≥ 1. Using equation (3.2),
one then easily sees that |T x | ≤ λ|x | for x ∈ E. Hence T ∈ Z (E) = Orth(E).

Using Theorem 3.9.4 and the order boundedness statement in Corollary 3.9.6, the fol-
lowing is easily established. As announced above, there is no order boundedness in the
hypotheses.

Theorem 3.9.7. Let E be a Dedekind complete Banach lattice, and let (Tn)∞n=1 be a sequence
in Orth(E). Let S be a non-empty subset of E such that IS = E. The following are equivalent:
(1) Tn

o
−→ 0 in Orth(E);

(2) Tn
o
−→ 0 in Lob(E);

(3) Tns
o
−→ 0 in E for all s ∈ S;

(4) Tn x
o
−→ 0 in E for all x ∈ E.

In particular, when E has a strong order unit e, then Tn
o
−→ 0 in Orth(E) if and only if Tne

o
−→ 0

in E.

Remark 3.9.8. In Theorem 3.9.7, the condition that IS = E cannot be relaxed to BS = E.
To see this, we choose E := c0 and set e :=

∨

n≥1 ei/i
2, where (ei)∞i=1 is the standard unit

basis of E. It is clear that Be = E. For n ≥ 1, there exists a unique Tn ∈ Orth(E) such that,
for i ≥ 1, Tnei = nei when i = n, and Tnei = 0 when i 6= n. It is clear that Tne

o
−→ 0 in

E. However, a consideration of Tn(
∨

i≥1 ei/i) for n≥ 1 shows that (Tn)∞n=1 fails to be order
bounded in Orth(E), hence cannot be order convergent in Orth(E).
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We continue our comparison of uniform and strong convergence structures on the or-
thomorphisms by considering unbounded order convergence. In that case, the result is as
follows.

Theorem 3.9.9. Let E be a Dedekind complete vector lattice, and let (Tα)α∈A be a net in
Orth(E). Let S be a non-empty subset of E such that BS = E. The following are equivalent:
(1) Tα

uo
−→ 0 in Orth E;

(2) Tα
uo
−→ 0 in Lob(E);

(3) Tαs
uo
−→ 0 in E for all s ∈ S;

(4) Tαx
uo
−→ 0 in E for all x ∈ E.

In particular, when E has a weak order unit e, then Tα
uo
−→ 0 in Orth(E) if and only if Tαe

uo
−→ 0

in E.

Proof. Since Orth(E) is a regular vector sublattice ofLob(E), the equivalence of the parts (1)
and (2) is clear from [28, Theorem 3.2]

We prove that part (2) implies part (4). Suppose that Tα
uo
−→ 0 in Lob(E), so that, in

particular, |Tα|∧ I
o
−→ 0 inLob(E). Take x ∈ E. Using equation (3.1) in the second step, and

Lemma 3.4.1 in the third, we have

(|Tα||x |)∧ |x |= (|Tα||x |)∧ (I |x |) = (|Tα| ∧ I)|x |
o
−→ 0.

Since the net (|Tα||x |)α∈A is contained in the band B|x |, it now follows from [20, Proposi-

tion 7.4] that |Tα||x |
uo
−→ 0 in E. As |Tα||x |= |Tαx |, we conclude that Tαx

uo
−→ 0 in E.

It is clear that part (4) implies part (3).
We prove that part (3) implies part (2). Suppose that Tαs

uo
−→ 0 in E for all s ∈ S, so that

also |Tα||s|= |Tαs|
uo
−→ 0 in E for s ∈ S. Using equation (3.1) again, we have

(|Tα| ∧ I)|s|= (|Tα||s|)∧ |s|
o
−→ 0

in E for all x ∈ S. In view of the order boundedness of (|Tα| ∧ I)α∈A, Theorem 3.9.4 then
yields that |Tα| ∧ I

o
−→ 0 in Lob(E). As I is a weak order unit of Orth(E), [29, Lemma 3.2]

(or the more general [20, Proposition 7.4]) shows that Tα
uo
−→ 0 in Lob(E).

We now consider uniform and strong convergence of nets of orthomorphisms for the
Hausdorff uo-Lebesgue topology. Let E be a Dedekind complete vector lattice. Suppose
that E admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτE . We recall from
Theorem 3.8.3 that Orth(E) then also admits a (necessarily unique) Hausdorff uo-Lebes-
gue topology bτOrth(E), and that this topology equals uOrth(E)ASOTEbτE . Furthermore, for a

net (Tα)α∈A in Orth(E), we have that Tα
bτOrth(E)
−−−−→ 0 if and only if |Tαx | ∧ |T x |

bτE−→ 0 for all
T ∈ Orth(E) and x ∈ E.

We need two preparatory results.
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Lemma 3.9.10. Let E be a vector lattice that admits a (necessarily unique) Hausdorff uo-
Lebesgue topology bτE . Suppose that E has a positive weak order unit e. Let (xα)α∈A be a net

in E. Then xα
bτE−→ 0 in E if and only if |xα| ∧ e

bτE−→ 0 in E.

Proof. We need to show only the “if”-part. Suppose that |xα| ∧ e
bτE−→ 0 in E. For each x ∈ E,

there exists a net (yβ)β∈B in Ie such that yβ
o
−→ x , and then certainly yβ

bτE−→ x . Hence

Ie
bτE = E. An appeal to [44, Proposition 9.8] then shows that xα

uE bτE−−→ 0. Since uEbτE = bτE ,
we are done.

Our second preparatory result is in the same vein as Proposition 3.7.2.

Lemma 3.9.11. Let E be a vector lattice with the principal projection property that admits a
(not necessarily Hausdorff) o-Lebesgue topology τE , and let (Tα)α∈A be a net in Orth(E). Let
S be a non-empty subset of E such that BS = E. Suppose that Tαs

τE−→ 0 for all s ∈ S. Then

Tαx
uEτE−−→ 0 for all x ∈ E.

Proof. Using equation (3.2), it follows easily that Tαx
τE−→ 0 for all x ∈ IS . Take an x ∈ E,

and let U be a solid τE-neighbourhood U of 0. Choose a τE-neighbourhood V of 0 such
that V + V ⊆ U . There exists a net (xβ)β∈B in IS such that xβ

o
−→ x in E, and then we can

choose a β0 ∈ B such that |x − xβ0
| ∈ V . As |Tα||xβ0

|= |Tαxβ0
|
τE−→ 0, there exists an α0 ∈A

such that |Tα||xβ0
| ∈ V for all α≥ α0. For all α≥ α0, we then have

0≤ (|Tαx |)∧ |x |= (|Tα| ∧ I)|x |
≤ (|Tα| ∧ I)|xβ0

|+ (|Tα| ∧ I)|x − xβ0
|

≤ |Tα||xβ0
|+ |x − xβ0

|

∈ V + V ⊆ U .

As U is solid, we see that (|Tαx |)∧ |x | ∈ U for α ≥ α0, and we conclude that (|Tαx |)∧
|x |

τE−→ 0. Since |Tαx | ∈ B|x | for α ∈ A, it then follows from [44, Proposition 9.8] that

|Tαx | ∧ |y|
τE−→ 0 in E for all y ∈ B|x |. As B|x | is a projection band in E, this holds, in fact, for

all y ∈ E.

Theorem 3.9.12. Let E be a Dedekind complete vector lattice. Suppose that E admits a (nec-
essarily unique) Hausdorff uo-Lebesgue topology bτE , so that Orth(E) and Lob(E) also admit
(necessarily unique) Hausdorff uo-Lebesgue topologies bτOrth(E) and bτLob(E), respectively. Let
(Tα)α∈A be a net in Orth(E). Let S be a non-empty subset S of E such that BS = E. The
following are equivalent:

(1) Tα
bτOrth(E)
−−−−→ 0 in Orth(E);

(2) Tα
bτLob(E)−−−−→ 0 in Lob(E);

(3) Tαs
bτE−→ 0 in E for all s ∈ S;

(4) Tαx
bτE−→ 0 in E for all x ∈ E.
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In particular, when E has a weak order unit e, then Tα
bτOrth(E)
−−−−→ 0 in Orth(E) if and only if

Tαe
bτE−→ 0 in E.

Proof. The equivalence of the parts (1) and (2) follows from the final part of Theorem 3.4.3.

We prove that part (1) implies part (4). Suppose that Tα
bτOrth(E)
−−−−→ 0 in Orth(E). Take an

x ∈ E. Then certainly |Tαx | ∧ |x | = |Tαx | ∧ |I x |
bτE−→ 0. The net (Tαx)α∈A is contained in

the band B|x |. Since, by [44, Proposition 5.12], the regular vector sublattice B|x | of E also
admits a (necessarily unique) Hausdorff uo-Lebesgue topology (namely, the restriction of

bτE to B|x |), it then follows from Lemma 3.9.10 that Tαx
bτE−→ 0 in E.

We prove that part (4) implies part (1). Suppose that Tαx
bτE−→ 0 for all x ∈ E. Since bτE

is locally solid, we then also have |Tαx | ∧ |T x |
bτE−→ 0 for all T ∈ Orth(E) and x ∈ E. Hence

Tα
bτOrth(E)
−−−−→ 0 in Orth(E).
It is clear that part (4) implies part (3).
Since uEbτE = bτE , Lemma 3.9.11 shows that part (3) implies part (4).





Chapter 4

Convergence structures and
Hausdorff uo-Lebesgue topologies on
vector lattice algebras of operators

Abstract

A vector sublattice of the order bounded operators on a Dedekind complete vector lattice
can be supplied with the convergence structures of order convergence, strong order con-
vergence, unbounded order convergence, strong unbounded order convergence, and, when
applicable, convergence with respect to a Hausdorff uo-Lebesgue topology and strong con-
vergence with respect to such a topology. We determine the general validity of the implica-
tions between these six convergences on the order bounded operator and on the orthomor-
phisms. Furthermore, the continuity of left and right multiplications with respect to these
convergence structures on the order bounded operators, on the order continuous operators,
and on the orthomorphisms is investigated, as is their simultaneous continuity. A number of
results are included on the equality of adherences of vector sublattices of the order bounded
operators and of the orthomorphisms with respect to these convergence structures. These
are consequences of more general results for vector sublattices of arbitrary Dedekind com-
plete vector lattices.
The special attention that is paid to vector sublattices of the orthomorphisms is motivated
by explaining their relevance for representation theory on vector lattices.
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4.1 Introduction and overview

In an earlier paper [19], the authors studied aspects of locally solid linear topologies on vec-
tor lattices of order bounded linear operators between vector lattices. Particular attention
was paid to the possibility of introducing a Hausdorff uo-Lebesgue topology on such vector
lattices.

Such vector lattices of operators carry at least three natural convergence structures (or-
der convergence, unbounded order convergence, and convergence with respect to a possible
Hausdorff uo-Lebesgue topology), as they can be defined for arbitrary vector lattices. For
vector lattices of operators, however, besides these ‘uniform’ convergence structures, there
are also three corresponding ‘strong’ counterparts that can be defined in the obvious way.
Several relations between the resulting six convergence structures on vector lattices of op-
erators were also investigated in [19]. In view of their relevance for representation theory
in vector lattices, special emphasis was put on the orthomorphisms on a Dedekind complete
vector lattice. In that case, implications between convergences hold that do not hold for
more general vector lattices of operators. Furthermore, it was shown that the orthomor-
phisms are not only order continuous, but also continuous with respect to unbounded order
convergence on the vector lattice and with respect to a possible Hausdorff uo-Lebesgue
topology on it.

Apart from their intrinsic interest, the results in [19] can be viewed as a part of the
groundwork that has to be done in order to facilitate further developments of aspects of the
theory of vector lattices of operators. The questions that are asked are natural and basic,
but even so the answers are often more easily formulated than proved.

In the present paper, we take this one step further and study these six convergence
structures in the context of vector lattice algebras of order bounded linear operators on a
Dedekind complete vector lattice. Also here there are many natural questions of a basic
nature that need to be answered before one can expect to get much further with the theory
of such vector lattice algebras and with representation theory on vector lattices. For exam-
ple, is the left multiplication by a fixed element continuous on the order bounded linear
operators with respect to unbounded order convergence? Is the multiplication on the order
continuous linear operators simultaneously continuous with respect to a possible Hausdorff
uo-Lebesgue topology on it? Given a vector lattice subalgebra of the order continuous linear
operators, is the closure (we shall actually prefer to speak of the ‘adherence’) in the order
bounded linear operators with respect to strong unbounded order convergence again a vec-
tor lattice subalgebra? Is there a condition, sufficiently lenient to be of practical relevance,
under which the order adherence of a vector lattice subalgebra of the orthomorphisms co-
incides with its closure in a possible Hausdorff uo-Lebesgue topology? Building on [19], we
shall answer these questions in the present paper, together with many more similar ones.
As indicated, we hope and expect that, apart from their intrinsic interest, this may serve as
a stockpile of basic, but non-elementary, results that will facilitate a further development
of the theory of vector lattice algebras of operators and of representation theory in vector
lattices.

This paper is organised as follows.
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Section 4.2 contains the necessary notations, definitions, and conventions, as well as
a few preparatory results that are of interest in their own right. Corollary 4.2.3, below,
shows that, in many cases of practical interest, a unital positive linear representation of a
unital f -algebra on a vector lattice is always an action by orthomorphisms. Its consequence
Corollary 4.2.5, below, unifies several known results in the literature on compositions with
orthomorphisms.

In Section 4.3, we study the validity of each of the 36 possible implications between the 6
convergences that we consider on vector lattice algebras of order bounded linear operators
on a Dedekind complete vector lattice. We do this for the order bounded linear operators
as well as for the orthomorphisms. The results that are already in [19] and a few additional
ones are sufficient to complete the Tables 4.3.1 and 4.3.2, below.

Section 4.4 contains our results on the continuity of the left and right multiplications by
a fixed element with respect to each of the six convergence structures on the order bounded
linear operators. For this, we distinguish between the multiplication by an arbitrary order
bounded linear operator, by an order continuous one, and by an orthomorphism. By giving
(counter) examples, we show that our results are sharp in the sense that, whenever we state
that continuity holds for multiplication by, e.g., an orthomorphism, it is no longer generally
true for an arbitrary order continuous linear operator, i.e., for an operator in the ‘next best
class’. We also consider these questions for the orthomorphisms. The results are contained
in Tables 4.4.14 to 4.4.16, below.

In Section 4.5, we investigate the simultaneous continuity of the multiplication with
respect to each of the six convergence structures. When there is simultaneous continuity,
the adherence of a subalgebra is, of course, again a subalgebra. With only one exception
(see Corollary 4.5.6 and Example 4.5.7, below), we give (counter) examples to show that
our conditions for the adherence of an algebra to be a subalgebra again are ‘sharp’ in the
sense as indicated above for Section 4.4.

Section 4.6 is dedicated to the equality of various adherences of vector sublattices and
vector lattice subalgebras. It is also indicated there how representation theory in vector lat-
tices leads quite naturally to the study of vector lattice subalgebras of the orthomorphisms
(see the Theorems 4.6.1 and 4.6.2, below), thus motivating in more detail the special at-
tention that is paid in [19] and in the present paper to the orthomorphisms.

4.2 Preliminaries

In this section, we collect a number of notations, conventions, and definitions. We also
include a few preliminary results.

All vector spaces are over the real numbers and all vector lattices are supposed to be
Archimedean. We let E+ denote the positive cone of a vector lattice E. The identity operator
on a vector lattice E will be denoted by I , or by IE when the context requires this. The
characteristic function of a set S is denoted by χS .

Let E be a vector lattice, and let x ∈ E. We say that a net (xα)α∈A in E is order convergent
to x ∈ E (denoted by xα

o
−→ x) when there exists a net (yβ)β∈B in E such that yβ ↓ 0 and

with the property that, for every β0 ∈ B, there exists an α0 ∈ A such that |x − xα| ≤ yβ0



74

whenever α in A is such that α ≥ α0. Note that, in this definition, the index sets A and B
need not be equal.

A net (xα)α∈A in a vector lattice E is said to be unbounded order convergent to an element
x in E (denoted by xα

uo
−→ x) when |xα− x | ∧ y

o
−→ 0 in E for all y ∈ E+. Order convergence

implies unbounded order convergence to the same limit. For order bounded nets, the two
notions coincide.

Let E and F be vector lattices. The order bounded linear operators from E into F will be
denoted byLob(E, F), and we write Es forLob(E,R). A linear operator T : E→ F between
two vector lattices E and F is order continuous when, for every net (xα)α∈A in E, the fact
that xα

o
−→ 0 in E implies that T xα

o
−→ 0 in F . An order continuous linear operator between

two vector lattices is automatically order bounded; see [7, Lemma 1.54], for example. The
order continuous linear operators from E into F will be denoted by Loc(E, F). We write Esoc
for Loc(E,R).

Let F be a vector sublattice of a vector lattice E. Then F is a regular vector sublattice
of E when the inclusion map from F into E is order continuous. Ideals are regular vector
sublattices. For a net in a regular vector sublattice F of E, its unbounded order convergence
in F and in E are equivalent; see [28, Theorem 3.2].

An orthomorphism on a vector lattice E is a band preserving order bounded linear oper-
ator. We let Orth(E) denote the orthomorphisms on E. Orthomorphisms are automatically
order continuous; see [7, Theorem 2.44]. An overview of some basic properties of the ortho-
morphisms that we shall use can be found in the first part of [19, Section 6], with detailed
references included.

A topology τ on a vector lattice E is a uo-Lebesgue topology when it is a (not necessarily
Hausdorff) locally solid linear topology on E such that, for a net (xα)α∈A in E, the fact that
xα

uo
−→ 0 in E implies that xα

τ
−→ 0. For the general theory of locally solid linear topologies

on vector lattices we refer to [6]. A vector lattice need not admit a uo-Lebesgue topology,
and it admits at most one Hausdorff uo-Lebesgue topology; see [11, Propositions 3.2, 3.4,
and 6.2] or [44, Theorems 5.5 and 5.9]). In this case, this unique Hausdorff uo-Lebesgue
topology is denoted by bτE .

The following fact will often be used in the present paper.

Theorem 4.2.1. Let E be a Dedekind complete vector lattice. The following are equivalent:
(1) E admits a (necessarily unique) Hausdorff uo-Lebesgue topology;
(2) Orth(E) admits a (necessarily unique) Hausdorff uo-Lebesgue topology;
(3) Lob(E) admits a (necessarily unique) Hausdorff uo-Lebesgue topology.

Proof. The equivalence of the parts (1) and (2) is a part of [19, Proposition 8.2]. Part (1)
implies part (3) by [19, Theorem 4.3], and part (3) implies part (2) by [44, Proposi-
tion 5.12].

Let X be a non-empty set. As in [19], we define a convergence structure on X to be a
non-empty collection C of pairs ((xα)α∈A, x), where (xα)α∈A is a net in X and x ∈ X , such
that:
(1) when ((xα)α∈A, x) ∈ C , then also ((yβ)β∈B, x) ∈ C for every subnet (yβ)β∈B of
(xα)α∈A;
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(2) when a net (xα)α∈A in X is constant with value x , then ((xα)α∈A, x) ∈ C .
It is obvious how to define a sequential convergence structure by using sequences and

subsequences.
Suppose thatC is a convergence structure on a non-empty set X . For a non-empty subset

S ⊆ X , we define the C -adherence of S in X as

aC (S) := { x ∈ E : there exists a net (xα)α∈A in S such that ((xα)α∈A, x) ∈ C ) }

We set aC (;) := ;. A subset S of X is said to be C -closed when aC (S) = S. It is not difficult
to see that the C -closed subsets of X are the closed subsets of a topology τC on X . It is not
generally true that aC (S) is τC -closed. In fact, aC (S)

τC = S
τC for S ⊆ X .

On a vector lattice E, the set of all pairs of order convergent nets and their order limits
forms a convergence structure Co on E. Likewise, there is a convergence structure Cuo on E
and, when applicable, a convergence structureC

bτE
of a topological nature. For a subset S of

E, we shall write ao(S) for aCo
(S), auo(S) for aCuo

(S), and, when applicable, S
bτE for aC

bτE
(S).

There are self-explanatory notations aσo(S), aσuo(S), and, when applicable, aσbτE
(S). We

shall also speak of the order adherence (or o-adherence) of a subset, rather than of its Co-
adherence; etc. Note that the order adherence ao(S) of S is what is called the ‘order closure’
of S in other sources. Since this ‘order closure’ need not be closed in the τCo

-topology on
E, we shall not use this terminology that is prone to mistakes.

Let E and F be vector lattices, where F is Dedekind complete. Suppose that E is a vector
sublattice of Lob(E, F). As for general vector lattices, we have the convergence structures
Co(E ), Cuo(E ) and, when applicable, a convergence structure C

bτE
on E. In addition to

these ‘uniform’ convergence structures, there are in this case also ‘strong’ ones that we shall
now define. Let (Tα)α∈A be a net in E , and let T ∈ E . Then we shall say that (Tα)α∈A
is strongly order convergent to T (denoted by Tα

SO
−→ T) when Tαx

o
−→ T x for all x ∈ E.

The set of all pairs of strongly order convergent nets in E and their limits forms a conver-
gence structure CSO on E . Likewise, the net is strongly unbounded order convergent to T

(denoted by Tα
SUO
−−→ T) when it is pointwise unbounded order convergent to T , resulting

in a convergence structure CSUO on E . When E admits a Hausdorff uo-Lebesgue topology

bτE , then a net is strongly convergent with respect to bτE to T (denoted by Tα
SbτE−−→ T) when

it is pointwise bτE-convergent to T , yielding to a convergence structure CSbτE on E . As for
the three convergence structures on general vector lattices, we shall simply write aSUO(S )
for the CSUO-adherence aCSUO

(S ) of a subset S of E ; etc. We shall use a similar simplified
notation for adherences corresponding to the sequential strong convergence structures that
are defined in the obvious way.

The adherence of a set in a convergence structure obviously depends on the superset,
since this determines the available possible limits of nets. In an ordered context, there can
be additional complications because, for example, the notion of order convergence of a net
itself depends on the vector lattice that the net is considered to be a subset of. It is for this
reason that, although we have not included the superset in the notation for adherences, we
shall always indicate it in words.
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Let CX be a convergence structure on a non-empty set X , and let CY be a convergence
structure on a non-empty set Y . A map Φ : X → Y is said to be CX -CY continuous when, for
every pair ((xα)α∈A, x) in CX , the pair ((Φ(xα))α∈A,Φ(x)) is an element of CY . We shall
speak of SbτE-o continuity rather than of CSbτE

-Co continuity; etc.
Let E be a vector lattice. For T ∈ Lob(E), we define ρT ,λT :Lob(E)→Lob(E) by setting

ρT (S) := ST and λT (S) := TS for S ∈ Lob(E). We shall use the same notations for the maps
that result in other contexts when compositions with linear operators map one set of linear
operators into another.

For later use in this paper, we establish a few preparatory results that are of some interest
in their own right.

Lemma 4.2.2. LetA be an f-algebra with a (not necessarily positive) identity element e, and
let E be a vector lattice with the principal projection property. Let a ∈A +, and suppose that

π : Span{e, a, a2} →Lob(E)

is a positive linear map such that π(e) = I . Then π(a) ∈ Orth(E).

Proof. It is obvious that π(a) ∈ Lob(E), so it remains to be shown that π(a) is band pre-
serving on E. We know from [7, Theorem 2.57] that

a ≤ a ∧ ne+
1
n

a2 ≤ ne+
1
n

a2

for n≥ 1. Take x ∈ E+. Then we have

π(a)x ≤ π
�

ne+
1
n

a2
�

x = nx +
1
n
π(a2)x . (4.1)

for n ≥ 1. Let Bx be the band generated by x in E, and let Px ∈ Lob(E) be the order
projection onto Bx . Using that π(a)x ≥ 0 and equation (4.1), we have

0≤ (I − Px)[π(a)x]

≤ (I − Px)[nx +
1
n
π(a2)x]

=
1
n
(I − Px)[π(a

2)x]

for all n ≥ 1. Hence (I − Px)[π(a)x] = 0, so that π(a)x ∈ Bx . Since x was arbitrary, this
shows that π(a) is band preserving.

Corollary 4.2.3. LetA be an f-algebra with a (not necessarily positive) identity element e, and
let E be a vector lattice with the principal projection property. Suppose that π :A →Lob(E)
is a positive linear map such that π(e) = I . Then π(A ) ⊆ Orth(E).

Remark 4.2.4. Corollary 4.2.3 shows that part (iii) of [34, Definition 4.1] is redundant in
a number of cases of practical interest. The fact that the action of the f -algebra preserves
multiplication is not even needed for this redundancy to be the case.
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The following is immediate from Corollary 4.2.3.

Corollary 4.2.5. Let E and F be vector lattices, where F is Dedekind complete. Let E be a
vector sublattice of Lob(E, F) with the principal projection property.
(1) Suppose that ST ∈ E for all S ∈ E and T ∈ Orth(F), so that there is a naturally defined

map ρT : E → E for T ∈ Orth(F). Then ρT ∈ Orth(E ) for T ∈ Orth(F).
(2) Suppose that TS ∈ E for all S ∈ E and T ∈ Orth(E), so that there is a naturally defined

map λT : E → E for T ∈ Orth(E). Then λT ∈ Orth(E ) for T ∈ Orth(E).

Remark 4.2.6.
(1) For E =Lob(E, F), Corollary 4.2.5 is established in the beginning of [34, Section 2].
(2) For E = Loc(E), where E is a Dedekind complete vector lattice, Corollary 4.2.5 is es-

tablished in [18, Proof of Theorem 8.4].
(3) For E = Orth(E), where E is a Dedekind complete vector lattice, [7, Theorem 2.62]

provides a much stronger result than Corollary 4.2.5, also when E need not be Dedekind
complete.

4.3 Implications between convergences on vector lattices of op-
erators

In this section, we investigate the implications between the six convergences on the order
bounded linear operators and on the orthomorphisms on a Dedekind complete vector lattice.
Without further ado, let us simply state the answers and explain how they are obtained.

For a general net of order bounded linear operators (resp. orthomorphisms) on a general
Dedekind complete vector lattice, the implications between order convergence, unbounded
order convergence, convergence in a possible Hausdorff uo-Lebesgue topology, strong order
convergence, strong unbounded order convergence, and strong convergence with respect
to a possible Hausdorff uo-Lebesgue topology, are given in Table 4.3.1 (resp. Table 4.3.2).

Table 4.3.1: Implications between convergences of nets in Lob(E).

o uo bτLob(E) SO SUO SbτE

o 1 1 1 1 1 1
uo 0 1 1 0 0 0

bτLob(E) 0 0 1 0 0 0
SO 0 0 0 1 1 1

SUO 0 0 0 0 1 1
SbτE 0 0 0 0 0 1
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Table 4.3.2: Implications between convergences of nets in Orth(E).

o uo bτOrth(E) SO SUO SbτE

o 1 1 1 1 1 1
uo 0 1 1 0 1 1

bτOrth(E) 0 0 1 0 0 1
SO 0 1 1 1 1 1

SUO 0 1 1 0 1 1
SbτE 0 0 1 0 0 1

In Orth(E), uo and SUO convergence of nets coincide, as do a possible bτOrth(E) and
SbτE convergence.

In these tables, the value in a cell indicates whether the convergence of a net in the
sense that labels the row of that cell does (value 1) or does not (value 0) in general imply
its convergence (to the same limit) in the sense that labels the column of that cell. For
example, the value 0 in the cell (uo, SbτE) in Table 4.3.1 indicates that there exists a net
of order bounded linear operators on a Dedekind complete vector lattice E that admits a
Hausdorff uo-Lebesgue topology bτE , such that this net is unbounded order convergent to
zero in Lob(E), but not strongly convergent to zero with respect to bτE . The value 1 in the
cell (uo,SbτE) in Table 4.3.2, however, indicates that every net of orthomorphisms on an
arbitrary Dedekind complete vector lattice E that admits a Hausdorff uo-Lebesgue topology
bτE , such that this net is unbounded order convergent to zero, is strongly convergent to zero
with respect to bτE .

We shall now explain how these tables can be obtained.
Obviously, the order convergence of a net of operators implies its unbounded order

convergence, which implies its convergence in a possible Hausdorff uo-Lebesgue topology.
There are similar implications for the three associated strong convergences. Furthermore,
an implication that fails for orthomorphisms also fails in the general case. Using these basic
facts, it is a logical exercise to complete the tables from a few ‘starting values’ that we now
validate.

For Table 4.3.1, we have the following ‘starting values’:
• the value 1 in the cell (o, SO) follows from [19, Lemma 4.1];
• the value 0 in the cell (uo, SbτE) follows from [19, Example 5.3], when using that,

for an atomic vector lattice as in that example, the unbounded order convergence of
a net and the convergence in the Hausdorff uo-Lebesgue topology coincide (see [13,
Proposition 1] and [44, Lemma 7.4]);

• the value 0 in the cell (SO, bτLob(E)) follows from the case where p = ∞ in [19,
Example 5.5]. The reason is—we resort to the notation and context of that exam-
ple—that, for p =∞, it follows from [9, Example 10.1.2] that the sequence En f is
order bounded in L∞([0,1]) for all f ∈ L∞([0, 1]). Since we already know from the
general case that it is almost everywhere convergent to f it is, in fact, order conver-
gent to f in L∞([0,1]). The remainder of the arguments in the example then validate
the value 0 in the cell.
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For Table 4.3.2, we have the following ‘starting values’:
• the values 0 in the cells (uo,o), (uo,SO), (bτOrth(E), uo), and (bτOrth(E), SUO) follow from

the examples preceding [19, Lemma 9.1], letting the multiplication operators act on
the constant function 1 for the second and fourth of these cells;

• the value 0 in the cell (SO, o) follows from the example following the proof of [19,
Theorem 9.4];

• the values 1 in the cells (uo, SUO) and (SUO,uo) follow from [19, Theorem 9.9];
• the values 1 in the cells (bτOrth(E), SbτE) and (SbτE , bτOrth(E)) follow from [19, Theo-

rem 9.12].
The reader may check for himself that the above is, indeed, sufficient information to

determine both tables.

Remark 4.3.3.
(1) Every order bounded net of orthomorphisms on an arbitrary Dedekind complete vector

lattice E that is strongly order convergent to zero, is order convergent to zero in Orth(E);
see [19, Theorem 9.4];

(2) Every sequence of orthomorphisms on a Dedekind complete Banach lattice E that is
strongly order convergent to zero, is order convergent to zero in Orth(E); see [19,
Theorem 9.7];

(3) The validity of all zeroes in Table 4.3.1 (resp. Table 4.3.2) follows from the existence of a
net of order bounded linear operators (resp. orthomorphisms) on a Dedekind complete
Banach lattice for which the implication in question does not hold. With the cell (SO, o)
in Table 4.3.2 as the only exception, such a net of operators on a Banach lattice can even
be taken to be a sequence. This follows from an inspection of the (counter) examples
referred to above when validating the ‘starting’ zeroes in the tables.

4.4 Continuity of left and right multiplications

In this section, we study continuity properties of left and right multiplication operators.
For example, take an arbitrary T ∈ Lob(E), where E is an arbitrary Dedekind complete
vector lattice that admits a Hausdorff uo-Lebesgue topology bτLob(E). Is it then true that λT :
Lob(E)→Lob(E) maps unbounded order convergent nets in Lob(E) to bτLob(E)-convergent
nets (with corresponding limits)? If not, is this then true when we suppose that T ∈ Loc(E)?
If not, is this true when we suppose that T ∈ Orth(E)? One can ask a similar combination
of questions, specifying to classes of increasingly well-behaved operators, for each of the
6 ·6= 36 combinations of convergences of nets inLob(E) under consideration in this paper.
There are also 36 combinations to be considered for left multiplication operators. This
section provides the answers in all 72 cases; the results are contained in the Tables 4.4.14
and 4.4.15, below. For the example that we gave, the answer is still negative when asking
it for arbitrary T ∈ Loc(E), but affirmative for arbitrary T ∈ Orth(E).

For Orth(E), there are similar questions to be asked for its left and right regular repre-
sentation, but their number is smaller. Firstly, we see no obvious better-behaved subclass
of Orth(E) that we should also consider. Secondly, since Orth(E) is commutative, there is
only one type of multiplication involved. Thirdly, as in Table 4.3.2, there are two pairs of
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coinciding convergences. All in all, there are only 4 x 4 = 16 possible combinations that
actually have to be considered for the regular representation of Orth(E). Also in this case,
all answers can be given; the results are contained in Table 4.4.16, below. As it turns out,
Table 4.4.16 is identical to Table 4.3.2. There appears to be no a priori reason for this fact;
it is simply the outcome.

We shall now set out to validate the Tables 4.4.14, 4.4.15, and 4.4.16. Fortunately,
we do not need individual results for every cell. Upon considering the multiplications by
the orthomorphism that is the identity operator, the zeroes in the Tables 4.3.1 and 4.3.2
already determine the values in many cells. For the remaining ones, the combination of the
‘standard’ implications that were already used for the Tables 4.3.1 and 4.3.2 and a limited
number of results and (counter) examples already suffices. We shall now start to collect
these.

We start with o-o and SO-SO continuity.

Proposition 4.4.1. Let E be a Dedekind complete vector lattice. Then:
(1) ρT :Lob(E)→Lob(E) is o-o continuous for all T ∈ Lob(E);
(2) λT :Lob(E)→Lob(E) is o-o continuous for all T ∈ Loc(E);
(3) ρT :Lob(E)→Lob(E) is SO-SO continuous for all T ∈ Lob(E);
(4) λT :Lob(E)→Lob(E) is SO-SO continuous for all T ∈ Loc(E).

Proof. We prove the parts (1) and (2). Take T ∈ Lob(E), and let (Tα)α∈A ⊆ Lob(E) be
a net such that Sα

o
−→ 0 in Lob(E). By passing to a tail, we may assume that (|Sα|)α∈A is

order bounded in Lob(E). Set Rα :=
∨

β≥α|Sβ | for α ∈ A. Then |Sα| ≤ Rα for α ∈ A and
Rα ↓ 0 in Lob(E) (see [28, Remark 2.2]). It is immediate from [7, Theorem 1.18] that also
Rα|T | ↓ 0 in Lob(E). Since |ρT (Sα)| ≤ Rα|T | for α ∈A, we see that ρT (Sα)

o
−→ 0 in Lob(E),

as desired. Suppose that, in fact, T ∈ Loc(E). Since Rαx ↓ 0 for x ∈ E+ by [7, Theorem
1.18], we then also have that |T |Rαx ↓ 0 for x ∈ E+. Hence |T |Rα ↓ 0 in Lob(E). The fact
that |λT (Sα)| ≤ |T |Rα for α ∈A then implies that λT (Sα)

o
−→ 0 in Lob(E).

The parts (3) and (4) are immediate consequences of the definitions.

We now show that the condition in the parts (2) and (4) of Proposition 4.4.1 that T ∈
Loc(E) cannot be relaxed to T ∈ Lob(E).

Examples 4.4.2. Take E = `∞, let (en)∞n=1 be the sequence of standard unit vectors in E,
and let c denote the sublattice of E consisting of the convergent sequences. We define a
positive linear functional fc on c by setting

fc(x) := lim
n→∞

xn

for x =
∨∞

i=1 x iei ∈ c. Since c is a majorising vector subspace of E, [7, Theorem 1.32] shows
that there exists a positive functional f on E that extends fc . We define T : E→ E by setting
T x = f (x)e1 for x ∈ E. Clearly, T ∈ Lob(E); a consideration of T (

∨∞
i=n ei) for n≥ 1 shows

that T /∈ Loc(E).
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We define Sn ∈ Loc(E) for n≥ 1 by setting

Sn x := x1

n
∨

i=1

ei ,

and S ∈ Loc(E) by setting

Sx := x1

∞
∨

i=1

ei

for x =
∨∞

i=1 x iei ∈ E. Clearly, Sn ↑ S in Lob(E). On the other hand, λT (Sn) = 0 for all
n ≥ 1, while λT (S) = P1, where P1 ∈ Lob(E) is the order projection onto the span of e1.
This shows that λT :Lob(E)→Lob(E) is not o-o continuous.

The sequence (Sn)∞n=1, being order convergent to S, is also strongly unbounded order
convergent to S in Lob(E). Hence λT :Lob(E)→Lob(E) is not SO-SO continuous.

Remark 4.4.3. Examples 4.4.2 also shows that, already for a Banach lattice E, λT need
not even be sequentially o-bτLob(E) continuous, sequentially o-SbτE continuous, sequentially
SO-bτLob(E) continuous, or sequentially SO-SbτE continuous for arbitrary T ∈ Lob(E).

Remark 4.4.4. The o-o continuity (appropriately defined) of left and right multiplications
on ordered algebras is studied in [4]. It is established on [4, p. 542–543] that, for a Dedekind
complete vector lattice E, the right and left multiplication by an element T of the ordered
algebra L(E) of all (!) linear operators on E are both order continuous on L(E) in the sense
of [4] if and only if the left multiplication is, which is the case if and only if T ∈ Loc(E). The
proof refers to [3, Example 2.9 (a)], which is concerned with multiplications by a positive
operator T on the ordered Banach algebra L(E) of all (!) bounded linear operators on a
Dedekind complete Banach lattice E. It is established in that example that the simultaneous
order continuity of the right and left multiplication by T on L(E) in the sense of [3] is
equivalent to T being order continuous. On [3, p. 151] it is mentioned that this criterion
for the order continuity of an operator can also be presented for an arbitrary Dedekind
complete vector lattice. Although it is not stated as such, and although a proof as such
is not given, the author may have meant to state, and have known to be true, that, for a
Dedekind complete vector lattice E and T ∈ Lob(E), λT and ρT are both o-o continuous on
Lob(E) in the sense of the present paper if and only if λT is, which is the case if and only
if T ∈ Loc(E). Using arguments as on [3, p. 151] and [4, p. 542–543], the authors of the
present paper have verified that—this is the hard part—for T ∈ Lob(E), the o-o continuity
of λT on Lob(E) in the sense of the present paper does implies that T ∈ Loc(E). Hence the
three properties of T ∈ Lob(E) mentioned above are, indeed, equivalent; a result that is to
be attributed to the late Egor Alekhno.

We use the opportunity to establish the following side result, which follows easily from
combining each of [42, Satz 3.1] and [10, Proposition 2.2] with the parts (1) and (2) of
Proposition 4.4.1.

Proposition 4.4.5. Let E be a Dedekind complete vector lattice. Then:
(1) the map T 7→ ρT defines an order continuous lattice homomorphism ρ : Lob(E) →
Loc(Loc(E),Lob(E)).
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(2) the map T 7→ λT defines an order continuous lattice homomorphism λ : Lob(E) →
Lob(Lob(E)) that maps Loc(E) into Loc(Lob(E)).

Remark 4.4.6. In [48, Problem 1], it was asked, among others, whether, for a Dedekind
complete vector lattice E, the left regular representation of Lob(E) is a lattice homomor-
phism from Lob(E) into Lob(Lob(E)). In [14, Theorem 11.19], it was observed that the
affirmative answer is, in fact, provided by [42, Satz 3.1]. Part (2) of Proposition 4.4.5 gives
still more precise information.

Part (1), which relies on [10, Proposition 2.2], implies that the right regular representa-
tion ofLoc(E) is an order continuous lattice homomorphism fromLoc(E) intoLob(Loc(E)),
with an image that is, in fact, contained in Loc(Loc(E)).

After this brief digression, we continue with the main line of this section, and consider
uo-uo and SUO-SUO continuity of left and right multiplication operators.

Proposition 4.4.7. Let E be a Dedekind complete vector lattice. Then:
(1) ρT is uo-uo continuous on Lob(E) for all T ∈ Orth(E);
(2) λT is uo-uo continuous on Lob(E) for all T ∈ Orth(E);
(3) ρT is SUO-SUO continuous on Lob(E) for all T ∈ Lob(E);
(4) λT is SUO-SUO continuous on Lob(E) for all T ∈ Orth(E).

Proof. For the parts (1) and (2), we note that ρT ,λT ∈ Orth(Lob(E)) by Corollary 4.2.5.
Their uo-uo continuity then follows from [19, Proposition 7.1].

Part (3) is trivial.

We prove part (4). Let (Tα)α∈A be a net in Lob(E) such that Sα
SUO
−−→ 0. Take an x ∈ E.

Then Sαx
uo
−→ 0 in E. It follows from [19, Proposition 7.1] that λT (Sα)x = TSαx

uo
−→ 0 in E,

as desired.

Remark 4.4.8. For the proof of the parts (1) and (2) of Proposition 4.4.7, an appeal to the
beginning of [34, Section 2] can replace the use of Corollary 4.2.5. It is, however, only Corol-
lary 4.2.5 that permits the obvious extensions of the parts (1) and (2) of Proposition 4.4.7
to (not necessarily regular) vector sublattices of Lob(E) that are invariant under left or
right composition with orthomorphisms, provided that they have the principal projection
property.

We now show that the condition in the parts (1), (2), and (4) of Proposition 4.4.7 that
T ∈ Orth(E) cannot be relaxed to T ∈ Loc(E).

Examples 4.4.9.
(1) We first give an example showing that λT and ρT need not be uo-uo continuous on
Lob(E) for T ∈ Loc(E).
Let E = Lp[0,1] with 1≤ p <∞. We define T ∈ Lob(E) =Loc(E) by setting

S f :=

∫

f dµ ·χ[0,1] (4.2)
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for f ∈ E. For n≥ 1, we define the positive operator Sn on E by setting

Sn f (t) :=

¨

f (t + 1/n) for t ∈ [0, (n− 1)/n);
f (t − (n− 1)/n) for t ∈ [(n− 1)/n, 1].

We claim that (Sn)∞n=1 is a disjoint sequence in Lob(E). Let m, n ≥ 1 with m > n. Take
a k ≥ 1 such that 1/k < 1/n− 1/m. For every f ∈ E+, [7, Theorem 1.51] then implies
that

0≤ Sm ∧ Sn( f )≤
k
∑

i=1

Sm( f ·χ[(i−1)/k,i/k])∧ Sn( f ·χ[(i−1)/k,i/k]) = 0

because the supports of Sm( f · χ[(i−1)/k,i/k]) and Sn( f · χ[(i−1)/k,i/k]) are disjoint for
i = 1, . . . , k. Hence Sm ∧ Sn = 0, as claimed.
By [28, Corollary 3.6], the disjoint sequence (Sn)∞n=1 is unbounded order convergent to
zero in Lob(E). On the other hand, it is easy to see that ρT (Sn) = λT (Sn) = S for all
n ≥ 1. Hence neither of (ρT (Sn))∞n=1 and (λT (Sn))∞n=1 is unbounded order convergent
to zero in Lob(E). This shows that neither ρT nor λT is uo-uo continuous on Lob(E).

(2) We now give an example showing that λT need not be SUO-SUO continuous onLob(E)
for T ∈ Loc(E). Let E = Lp[0,1] with 1 ≤ p <∞. For n ≥ 1, define the positive
operator Sn on E by setting Sn f := 2nχ[1−1/2n−1,1−1/2n] · f for f ∈ E. Let T ∈ Loc(E) be
defined as in equation (4.2). For every f ∈ E, it is clear that Sn f and Sm f are disjoint
whenever m 6= n, and then [28, Corollary 3.6] shows that Sn f

uo
−→ 0 in E. That is,

(Sn)∞n=1 is strongly unbounded order convergent to zero. On the other hand, it is easily
seen that λT (Sn)χ[0,1] = χ[0,1] for n ≥ 1. This implies that (λT (Sn))∞n=1 is not strongly
unbounded order convergent to zero, so that λT is not SUO-SUO continuous onLob(E).

Remark 4.4.10. Examples 4.4.9 also shows that, already for a Banach lattice with an order
continuous norm, ρT and λT need not even be sequentially uo-bτLob(E) continuous and λT
need not be even be sequentially SUO-SbτE continuous onLob(E) for arbitrary T ∈ Loc(E) =
Lob(E).

We now turn to the Hausdorff uo-Lebesgue topologies. The reader may wish to recall
Theorem 4.2.1.

Proposition 4.4.11. Let E be a Dedekind complete vector lattice that admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτE , so thatLob(E) also admits a (necessarily unique)
Hausdorff uo-Lebesgue topology bτLob(E). Then:
(1) ρT is bτLob(E)-bτLob(E) continuous on Lob(E) for all T ∈ Orth(E);
(2) λT is bτLob(E)-bτLob(E) continuous on Lob(E) for all T ∈ Orth(E);
(3) ρT is SbτE-SbτE continuous on Lob(E) for all T ∈ Lob(E);
(4) λT is SbτE-SbτE continuous on Lob(E) for all T ∈ Orth(E).

Proof. We know from Corollary 4.2.5 that ρT ,λT ∈ Orth(Lob(E)) when T ∈ Orth(E), and
then the parts (1) and (2) follow from [19, Corollary 7.3].

Part (3) is trivial.
Part (4) follows from [19, Corollary 7.3].
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We now show that the condition in the parts (1), (2), and (4) of Proposition 4.4.11 that
T ∈ Orth(E) cannot be relaxed to T ∈ Loc(E).

Examples 4.4.12.
(1) We first give an example showing that λT andρT need not be bτLob(E)-bτLob(E) continuous

onLob(E) for T ∈ Loc(E). For this, we resort to the context and notation of part (1) of
Examples 4.4.9. In that example, we know that Sn

uo
−→ 0 in Lob(E), and then certainly

Sn

bτLob(E)−−−−→ 0. Since ρT (Sn) = λT (Sn) for all n ≥ 1, we see that neither ρS nor λS is
bτLob(E)-bτLob(E) continuous on Lob(E).

(2) We give an example showing that λT need not be SbτE-SbτE continuous on Lob(E) for
T ∈ Loc(E). For this, we resort to the context and notation of part (2) of Examples 4.4.9.

In that example, we know that Sn f
uo
−→ 0 in E for f ∈ E. Then certainly Sn f

bτE−→ 0
for f ∈ E. Since λT (Sn)χ[0,1] = χ[0,1] for all n ≥ 1, we see that λT is not SbτE-SbτE
continuous.

Remark 4.4.13. Examples 4.4.12 shows that, already for a Banach lattices with an order
continuous norm, ρT and λT need not even be sequentially bτLob(E)-bτLob(E) continuous and
λT need not even be sequentially SbτLob(E)-SbτLob(E) continuous on Lob(E) for arbitrary T ∈
Loc(E) =Lob(E).

We now have sufficient material at our disposal to determine the tables mentioned at
the beginning of this section.

For right multiplications on Lob(E), the results are in Table 4.4.14. The value in a cell
with a row label indicating a convergence structure C1 and a column label indicating a
convergence structure C2 is to be interpreted as follows:
(1) A value {0} (resp. Orth(E), resp.Loc(E)) means that ρT isC1-C2 continuous onLob(E)

for every Dedekind complete vector lattice E and for every T ∈ {0} (resp. T ∈ Orth(E),
resp. T ∈ Loc(E)), but there exist a Dedekind complete vector lattice E and a T ∈
Orth(E) (resp. T ∈ Loc(E), resp. T ∈ Lob(E)) for which this is not the case;

(2) A value Lob(E) means that ρT is C1-C2 continuous on Lob(E) for every Dedekind
complete vector lattice E and for every T ∈ Lob(E).

Table 4.4.14: Continuity of right multiplications on Lob(E).

o uo bτLob(E) SO SUO SbτE

o Lob(E) Lob(E) Lob(E) Lob(E) Lob(E) Lob(E)
uo {0} Orth(E) Orth(E) {0} {0} {0}

bτLob(E) {0} {0} Orth(E) {0} {0} {0}
SO {0} {0} {0} Lob(E) Lob(E) Lob(E)

SUO {0} {0} {0} {0} Lob(E) Lob(E)
SbτE {0} {0} {0} {0} {0} Lob(E)

As mentioned in the beginning of this section, the zeroes in Table 4.3.1 give zeroes in
Table 4.4.14. The reader may verify that the remaining values can be determined using
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that order convergence implies unbounded order convergence, which implies bτE conver-
gence when applicable; that analogous implications hold for their strong versions; that order
convergence implies strong order convergence; combined with Proposition 4.4.1, Proposi-
tion 4.4.7, Remark 4.4.10, Proposition 4.4.11, and Remark 4.4.13.

For left multiplications on Lob(E), the results are in Table 4.4.15, with a similar inter-
pretation of the values in the cells as for Table 4.4.14.

Table 4.4.15: Continuity of left multiplications on Lob(E).

o uo bτLob(E) SO SUO SbτE

o Loc(E) Loc(E) Loc(E) Loc(E) Loc(E) Loc(E)
uo {0} Orth(E) Orth(E) {0} {0} {0}

bτLob(E) {0} {0} Orth(E) {0} {0} {0}
SO {0} {0} {0} Loc(E) Loc(E) Loc(E)

SUO {0} {0} {0} {0} Orth(E) Orth(E)
SbτE {0} {0} {0} {0} {0} Orth(E)

For Table 4.4.15, the values of the cells can be determined using the zeroes in Table 4.3.1,
the ‘standard implications’ as listed for Table 4.4.14, combined with Proposition 4.4.1, Re-
mark 4.4.3, Proposition 4.4.7, Remark 4.4.10, Proposition 4.4.11, and Remark 4.4.13.

For multiplications on Orth(E), the continuity properties are given by Table 4.4.16. In
that table, a value 1 in a cell with a row label indicating a convergence structure C1 and
a column label indicating a convergence structure C2 means that the maps ρT = λT :
Orth(E) → Orth(E) is C1-C2 continuous for all T ∈ Orth(E). A value 0 means that there
exists a Dedekind complete vector lattice E and a T ∈ Orth(E) for which this is not the case.

Table 4.4.16: Continuity of multiplications on Orth(E).

o uo bτOrth(E) SO SUO SbτE

o 1 1 1 1 1 1
uo 0 1 1 0 1 1

bτOrth(E) 0 0 1 0 0 1
SO 0 1 1 1 1 1

SUO 0 1 1 0 1 1
SbτE 0 0 1 0 0 1

In Orth(E), uo and SUO convergence of nets coincide, as do a possible bτOrth(E) and
SbτE convergence.

The values in the cells of Table 4.4.16 can be determined using the zeroes in Table 4.3.2,
the ‘standard implications’ as listed for Table 4.4.14; the fact that Orth(E) is a regular vector
sublattice of Lob(E); the facts that unbounded order convergence and strong unbounded
order convergence coincide on Orth(E), as do a possible bτOrth(E) and SbτE convergence;
combined with Proposition 4.4.1, Proposition 4.4.7, and Proposition 4.4.11.
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4.5 Simultaneous continuity of multiplications and adherences
of subalgebras of Lob(E)

In this section, we study the simultaneous continuity of the multiplications in subalgebras of
Lob(E) (where E is a Dedekind complete vector lattice) with respect to the six convergence
structures under consideration in this paper. This is motivated by questions of the following
type. Suppose that E admits a Hausdorff uo-Lebesgue topology. Take a subalgebra (not
necessarily a vector lattice subalgebra) of Lob(E). Is its adherence aSbτE

(A ) in Lob(E) with
respect to strong bτE convergence again a subalgebra ofLob(E)? This is not always the case,
not even whenA ⊆Loc(E); see Example 4.5.13, below. WhenA ⊆ Orth(E), however, the
answer is affirmative; see Corollary 4.5.12, below.

As the reader may verify, it follows already from the continuity of the left and right mul-
tiplications with respect to strong bτE convergence (see Proposition 4.4.11) that aSbτE

(A ) ·
aSbτE
(A ) ⊆ aSbτE

(aSbτE
(A )) when A ⊆ Orth(E), but that is not sufficient to show that

aSbτE
(A ) is a subalgebra. The simultaneous continuity of the multiplication in Orth(E) with

respect to strong bτE convergence in Orth(E) would be sufficient to conclude this, and this
can indeed be established; see Proposition 4.5.11, below.

For each of the remaining five convergence structures, we follow the same pattern. We
establish (this also relies on the single variable results in Section 4.4) the simultaneous con-
tinuity of the multiplication with respect to the convergence structure under consideration,
and then conclude that the pertinent adherence of a subalgebra is again a subalgebra. For
the latter result it is—as the above example already indicates—essential to impose an extra
condition on the subalgebra. This condition depends on the convergence structure under
consideration. Natural extra conditions are that it be a subalgebra of Orth(E) or of Loc(E)
and we obtain positive results under such conditions. We also have fairly complete results
showing that the relaxation of the pertinent condition to the ‘natural’ next lenient one does,
in fact, render the statement that the adherence is a subalgebra again invalid. This also
implies that multiplication is then not simultaneously continuous.

In the cases where the lattice operations are known to be simultaneously continuous with
respect to the convergence structure under consideration, it obviously also follows that the
pertinent adherence of a vector lattice subalgebra is a vector lattice subalgebra again.

We shall now embark on this programme. We start with order convergence, which is
the easiest case. For this, we have the following result on the simultaneous continuity of
multiplication.

Proposition 4.5.1. Let E be a Dedekind complete vector lattice. Suppose that (Tα)α∈A is a net
in Loc(E) such that Sα

o
−→ S in Lob(E) for some S ∈ Lob(E) and that (Tβ)β∈B ⊆ Lob(E) is a

net such that Tβ
o
−→ T in Lob(E) for some T ∈ Lob(E). Then S ∈ Loc(E) and SαTβ

o
−→ ST in

Lob(E).

Proof. It is clear that S ∈ Loc(E). By passing to a tail, we may suppose that (|Tβ |)β∈B is
bounded above by some R ∈ Lob(E)

+. Using the parts (1) and (2) of Proposition 4.4.1 for
the final order convergence, we have that

|SαTβ − ST | ≤ |SαTβ − STβ |+ |STβ − ST |



87

≤ |Sα − S|R+ |S||Tβ − T |
o
−→ 0

in Lob(E). Hence SαTβ
o
−→ ST in Lob(E).

The following is now clear from Proposition 4.5.1 and the simultaneous order continuity
of the lattice operations.

Corollary 4.5.2. Let E be a Dedekind complete vector lattice. Suppose thatA is a subalgebra
of Loc(E). Then the adherence ao(A ) in Lob(E) is also a subalgebra of Loc(E). When A is
a vector lattice subalgebra of Loc(E), then so is ao(A ).

We now show that the condition in Corollary 4.5.2 that A ⊆Loc(E) cannot be relaxed
toA ⊆Lob(E).

Example 4.5.3. Take E = `∞ and let (en)∞n=1 be the standard sequence of unit vectors in
E. We define T ∈ Lob(E) as in Examples 4.4.2. For n ≥ 1, we now define S′n ∈ Loc(E) by
setting

S′n x := x2

n+2
∨

i=3

ei ,

and S′ ∈ Loc(E) by setting

S′x := x2

∞
∨

i=3

ei

for x =
∨∞

i=1 x iei ∈ E. It is easily verified that T2 = 0, that S′nS′m = 0 for m, n ≥ 1, and that
S′nT = TS′n = 0 for n ≥ 1. Hence A := Span{ T, S′n : n ≥ 1 } is a subalgebra of Lob(E). As
S′n ↑ S′ in Lob(E), both S′ and T are elements of ao(A ).

However, TS′ /∈ ao(A ). In fact, TS′ is not even an element of aSO(A ) ⊇ ao(A ). To
see this, we observe that TS′e2 = e1 6= 0, and that, as is easily verified, TS′e2 ⊥ Re2 for all
R ∈A . Hence there cannot exist a net (Rα)α∈A ⊆A such that Rαe2

o
−→ TS′e2 in E, let alone

such that Rα
SO
−→ TS′ in Lob(E).

Now we turn to the strong order adherences of subalgebras of Lob(E). We start by
showing that Orth(E) is closed in Lob(E) under the convergences under consideration in
this paper. We recall from Theorem 4.2.1 that either all of E, Orth(E), and Lob(E) admit a
Hausdorff uo-Lebesgue topology, or none does.

Lemma 4.5.4. Let E be a Dedekind complete vector lattice. Then Orth(E) is closed in Lob(E)
under order convergence, unbounded order convergence, strong order convergence, and strong
unbounded order convergence. Suppose that E admits a (necessarily unique) Hausdorff uo-
Lebesgue topology. Then Orth(E) is closed in Lob(E) under bτLob(E) convergence and strong bτE
convergence.

Proof. The statements concerning order convergence, unbounded order convergence, and
convergence in a possible Hausdorff uo-Lebesgue topology on Lob(E) are evident, since
Orth(E) is a band in Lob(E). These three general properties of bands in vector lattices, but
now for bands in E, also imply that, for each of the three strong convergences, a limit in
Lob(E) of a net in Orth(E) is again a band preserving operator on E.
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Proposition 4.5.5. Let E be a Dedekind complete vector lattice. Suppose that (Tα)α∈A is a net

in Orth(E) such that Sα
SO
−→ S inLob(E) for some S ∈ Lob(E) and that (Tβ)β∈B ⊆Lob(E) is a

net such that Tβ
SO
−→ T in Lob(E) for some T ∈ Lob(E). Then S ∈ Orth(E), and SαTβ

SO
−→ ST

in Lob(E).

Proof. Lemma 4.5.4 shows that S ∈ Orth(E). Take x ∈ E. By passing to a tail, we may
suppose that (|Tβ x |)β∈B is bounded above by some y ∈ E+. By applying [7, Theorem 2.43]
and the order continuity of |S| for the final convergence, we see that

|SαTβ x − ST x | ≤ |(Sα − S)Tβ x |+ |S(Tβ − T )x |
≤ |Sα − S||Tβ x |+ |S||(Tβ − T )x |
≤ |Sα − S|y + |S||Tβ x − T x |

= |(Sα − S)y|+ |S||Tβ x − T x |
o
−→ 0

in E. Hence SαTβ
SO
−→ ST in Lob(E).

The following is now clear from Proposition 4.5.5.

Corollary 4.5.6. Let E be a Dedekind complete vector lattice. Suppose thatA is a subalgebra
of Orth(E). Then the adherence aSO(A ) in Lob(E) is also a subalgebra of Orth(E).

We now show that the condition in Corollary 4.5.6 thatA ⊆ Orth(E) cannot be relaxed
toA ⊆Lob(E). At the time of writing, the authors do not know whether it might be relaxed
toA ⊆Loc(E).

Example 4.5.7. We resort to the context and notation of Example 4.5.3. In that example,
we had operators T, S′ ∈ ao(A ) such that TS′ /∈ aSO(A ). Since ao(A ) ⊆ aSO(A ), this
example also provides an example as currently needed.

We turn to unbounded order adherences and strong unbounded order adherences.

Proposition 4.5.8. Let E be a Dedekind complete vector lattice. Suppose that (Tα)α∈A is a net
in Orth(E) such that Sα

uo
−→ S inLob(E) for some S ∈ Lob(E) and that (Tβ)β∈B ⊆ Orth(E) is a

net such that Tβ
uo
−→ T inLob(E) for some T ∈ Lob(E). Then S, T ∈ Orth(E), and SαTβ

uo
−→ ST

inLob(E). Seven similar statements hold that are obtained by, for each of the three occurrences
of unbounded order convergence, either keeping it or replacing it with strong unbounded order
convergence.

Proof. We start with the statement for three occurrences of unbounded order convergence.
For this, we first suppose that S = T = 0.

For α ∈ A, let Pα be the order projection in Orth(E) onto the band Bα in Orth(E) that
is generated by (|Sα| − I)+. Then 0 ≤ Pα I ≤ Pα|Sα| ≤ |Sα| by [19, Lemma 6.6]. Hence
Pα I

uo
−→ 0 in Lob(E), so that also Pα I

uo
−→ 0 in the regular vector sublattice Orth(E) of

Lob(E) by [28, Theorem 3.2]. Since the net (Pα I)α∈A is order bounded in Orth(E), we see
that

Pα I
o
−→ 0 (4.3)
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in Orth(E). Furthermore, since (Pα|Sα|)Tβ ∈ Bα for α ∈ A,β ∈ B, (see [7, Theorem 2.62]
or Corollary 4.2.5), we also have that [(Pα|Sα|)Tβ]∧ I ∈ Bα for α ∈A,β ∈ B. Hence

[(Pα|Sα|)Tβ]∧ I = Pα
�

[(Pα|Sα|)Tβ]∧ I
�

≤ Pα I (4.4)

for α ∈A,β ∈ B.
Combining the fact that |Sα| ≤ I+Pα|Sα| by [19, Proposition 6.7(2)]with equation (4.4),

we have, for α ∈A,β ∈ B,

|SαTβ | ∧ I ≤ (|Sα||Tβ |)∧ I

≤ [(I +Pα|Sα|)|Tβ |]∧ I

≤ |Tβ | ∧ I + [(Pα|Sα|)|Tβ |]∧ I

≤ |Tβ | ∧ I +Pα I .

The fact that Tβ
uo
−→ 0 in Lob(E) and then also in Orth(E), together with equation (4.3),

now shows that |SαTβ | ∧ I
o
−→ 0 in Orth(E). Since I is a weak order unit of Orth(E), [28,

Corollary 3.5] (or the more general [20, Proposition 7.4]) implies that SαTβ
uo
−→ 0 in Orth(E)

and then also in Lob(E).
For the case of general S and T , we first note that S, T ∈ Orth(E) as a consequence of

Lemma 4.5.4. On writing

SαTβ − TS = (Sα − S)(Tβ − T ) + SαT + STβ − 2TS,

the special case considered above, together with Proposition 4.4.7, then implies that SαTβ
uo
−→

ST in Lob(E), as desired.
On invoking Lemma 4.5.4, [19, Theorem 9.9], and [28, Theorem 3.2], the remaining

seven statements follow from the case just established.

The following is now clear from Proposition 4.5.8, [19, Theorem 9.9], and the simulta-
neous unbounded order continuity of the lattice operations.

Corollary 4.5.9. Let E be a Dedekind complete vector lattice, and let A be a subalgebra of
Orth(E). Then the adherences auo(A ) and aSUO(A ) inLob(E) are equal, and are a subalgebra
of Orth(E). WhenA is a vector lattice subalgebra of Orth(E), then so is auo(A ) = aSUO(A ).

We now show that, neither for auo(A ) to be a subalgebra of Lob(E), nor for aSUO(A )
to be a subalgebra of Lob(E), the condition in Corollary 4.5.9 that A ⊆ Orth(E) can be
relaxed toA ⊆Loc(E).

Example 4.5.10. Let E = `1, and let (en)∞n=1 be the standard sequence of unit vectors in E.
For i, j ≥ 1, we define Si, j ∈ Loc(E) =Lob(E) by setting

Si, jen :=

¨

e j if n= i;

0 if n 6= i
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for n≥ 1, and we define T ∈ Loc(E) by setting

T x :=

�∞
∑

i=2

x i

�

e3

for x =
∨∞

i=1 x iei ∈ E. Set Sn := S1,2 − S1,n+3 for n≥ 1. It is not hard to check that T2 = T ,
that SnT = TSn = 0 for n ≥ 1, and that SmSn = 0 for m, n ≥ 1. Hence A := Span{ T, Sn :
n≥ 1 } is a subalgebra of Loc(E).

Using [7, Theorem 1.51], it is easy to see that (S1,n+3)∞n=1 is a disjoint sequence inLob(E),

so that S1,n+3
uo
−→ 0 in Lob(E) by [28, Corollary 3.6]. Hence Sn

uo
−→ S1,2 in Lob(E), showing

that S1,2 ∈ auo(A ). Obviously, T ∈ auo(A ). We claim that, however, TS1,2 is not even an

element ofA bτLob(E) ⊇ auo(A ). In order to see this, we observe that TS1,2 = S1,3 and, using
[7, Theorem 1.51], that S1,3 ⊥ T and S1,3 ⊥ Sn for n ≥ 1. Hence TS1,2 ⊥A , which implies

that TS1,2 /∈A
bτOrth(E) .

For x =
∨∞

i=1 x iei ∈ `1, we have S1,n+3 x = x1en+3 for n≥ 1. This implies that S1,n+3
SUO
−−→

0 in Lob(E), showing that Sn
SUO
−−→ S1,2 in Lob(E). Hence S1,2 ∈ aSUO(A ). Obviously,

T ∈ aSUO(E). We claim that, however, TS1,2 is not even an element of aSbτE
(A ) ⊇ aSUO(A ).

In order to see this, it is sufficient to observe that TSe1,2 = e3 6= 0 and that TS1,2e1 ⊥ Re1 for

all R ∈A . This implies that there cannot exist a net (Rα)α∈A ⊆A such that Rαe1
bτE−→ TS′e1

in E, let alone such that Rα
SbτE−−→ TS′ in Lob(E).

We turn to closures in a Hausdorff uo-Lebesgue topology and strong closures with respect
to a Hausdorff uo-Lebesgue topology. We recall once more from Theorem 4.2.1 that either
all of E, Orth(E), and Lob(E) admit a Hausdorff uo-Lebesgue topology, or none does. If
they do, then, by general principles (see [44, Proposition 5.12]), bτOrth(E) is the restriction
of bτLob(E) to Orth(E).

Proposition 4.5.11. Let E be a Dedekind complete vector lattice that admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτE . Suppose that (Tα)α∈A ⊆ Orth(E) is a net such

that Sα
bτLob(E)−−−−→ S in Lob(E) for some S ∈ Lob(E) and that (Tβ)β∈B ⊆ Orth(E) is a net such

that Tβ
bτLob(E)−−−−→ T in Lob(E) for some T ∈ Lob(E). Then S, T ∈ Orth(E), and SαTβ

bτLob(E)−−−−→ ST
inLob(E). Seven similar statements hold that are obtained by, for each of the three occurrences
of bτLob(E) convergence, either keeping it or replacing it with strong bτE convergence.

Proof. We start with the statement for three occurrences of bτLob(E) convergence. For this,
we first suppose that S = T = 0.

We can use parts of the proof of Proposition 4.5.8 here. In that proof, it was established
that, for α ∈A, there exists a band projection Pα in Orth(E) such that

0≤ Pα I ≤ |Sα| (4.5)

and such that
|SαTβ | ∧ I ≤ |Tβ | ∧ I +Pα I (4.6)
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for β ∈ B. It follows from equation (4.5) that also

Pα I
bτLob(E)−−−−→ 0

in Lob(E), and then equation (4.6) shows that |SαTβ | ∧ I
bτLob(E)−−−−→ 0 in Lob(E), so that also

|SαTβ | ∧ I
bτOrth(E)
−−−−→ 0 (4.7)

in Orth(E). The ideal of Orth(E) that is generated by I in Lob(E) is order dense in Lob(E).
It follows from [7, Theorem 1.36] that its order adherence inLob(E), as well as in Or th(E),
is exactly Orth(E). Hence it is certainly bτOrth(E) dense in Orth(E). Since bτOrth(E) is an un-
bounded topology on Orth(E), it now follows from equation (4.7) and [33, Corollary 3.5]

that SαTβ
bτOrth(E)
−−−−→ 0 in Orth(E), and then also SαTβ

bτLob(E)−−−−→ 0 in Lob(E).
For the case of general S and T , we first note that S, T ∈ Orth(E) as a consequence of

Lemma 4.5.4. On writing

SαTβ − TS = (Sα − S)(Tβ − T ) + SαT + STβ − 2TS,

we see that the special case considered above, together with Proposition 4.4.11, implies that

SαTβ
bτLob(E)−−−−→ ST in Lob(E), as desired.

On invoking Lemma 4.5.4 and [19, Theorem 9.12], the remaining seven statements
follow from the case just established.

The following is now clear from Proposition 4.5.11 and the simultaneous continuity of
the lattice operations with respect to the bτLob(E) topology.

Corollary 4.5.12. Let E be a Dedekind complete vector lattice that admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτE . Suppose that A is a subalgebra of Orth(E).
Then the closure A bτLob(E) in Lob(E) and the adherence aSbτE

(A ) in Lob(E) are equal, and
are a subalgebra of Orth(E). When A is a vector lattice subalgebra of Orth(E), then so is

A bτLob(E) = aSbτE
(A ).

We now show that, neither for A bτLob(E) to be a subalgebra of Lob(E), nor for aSbτE
(A )

to be a subalgebra of Lob(E), the condition in Corollary 4.5.12 that A ⊆ Orth(E) can be
relaxed toA ⊆Loc(E).

Example 4.5.13. We return to the context and notation of Example 4.5.10. In that example,

we saw that Sn
uo
−→ S1,2 inLob(E). Then certainly Sn

bτLob−−→ S1,2 inLob(E), so that both T and

S1,2 are elements ofA bτLob(E) . We saw in Example 4.5.10, however, that TS1,2 /∈A
bτLob(E) .

It was also observed that Sn
SUO
−−→ S1,2 inLob(E). Since E is atomic, the unbounded order

convergence of a net in E and its convergence in the Hausdorff uo-Lebesgue topology on E

are known to coincide (see [13, Proposition 1] and [44, Lemma 7.4]). Thus also Sn
SbτE−−→ S,
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so that both T and S1,2 are elements of aSbτE
(A ). We saw in Example 4.5.10, however, that

TS1,2 /∈ aSbτE
(A ).

4.6 Equality of adherences of vector sublattices

In this section, we establish the equality of various adherences of vector sublattices with
respect to convergence structures under consideration in this paper. We pay special attention
to vector sublattices of the orthomorphisms on a Dedekind complete vector lattice. Apart
from the intrinsic interest of the results, our research in this direction is also motivated by
representation theory. We shall now explain this.

Suppose that E is a vector lattice, and that S is a non-empty set of order bounded linear
operators on E. For example, E could be a group of order automorphisms of E, as arises
naturally when considering positive representations of groups on vector lattices. Likewise,
S could be a (vector lattice) algebra of order bounded linear operators, as arises naturally
when considering positive representations of (vector lattice) algebras on vector lattices. One
of the main issues in representation theory is to investigate the possible decompositions of
a module into submodules. In our case, this is asking for decompositions E = F1 ⊕ F2 as
an order direct sum of vector sublattices F1 and F2 that are both invariant under S . It
is well known (see [51, Theorem 11.3] for an even stronger result) that F1 and F2 are
then projection bands that are each other’s disjoint complements. Their respective order
projections then commute with all elements of S . Conversely, when an order projection
has this property, then E is the order direct sum of its range and its kernel, and both are
invariant underS . All in all, the decomposition question for the action ofS on E is the same
as asking for the order projections on E that commute with S . This makes it natural to ask
for the commutant of S in Orth(E), where these order projections reside. This commutant
is obviously an associative subalgebra of Orth(E). Somewhat surprisingly, it is actually also
a vector sublattice of Orth(E) in quite a few cases of interest. For example, this is always
true for Banach lattices, in which case the operators in S need not even be regular. Being
bounded is enough, as is shown by the following result, for which the Banach lattice need
not even be Dedekind complete.

Theorem 4.6.1. Let E be a Banach lattice, and let S be a non-empty set of bounded linear
operators on E. Then the commutant

S ′o := { T ∈ Orth(E) : TS = ST for all S ∈ S }

of S in Orth(E) is a Banach f-subalgebra of Orth(E) that contains the identity operator I as
a strong order unit; here Orth(E) is supplied with the coinciding operator norm and order unit
norm ‖ · ‖I .

Proof. It is obvious that S ′o is an associative subalgebra of Orth(E) that contains I and that
is closed with respect to the coinciding operator norm and order unit norm ‖ · ‖I . An appeal
to [19, Theorem 6.1] then finishes the proof.
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For Dedekind complete vector lattices, we have the following.

Theorem 4.6.2. Let E be a Dedekind complete vector lattice, and let S be a non-empty subset
of Loc(E)

+ ∪Loc(E)
−. Then the commutant

S ′o := { T ∈ Orth(E) : TS = ST for all S ∈ S }

of S in Orth(E) is a vector lattice subalgebra of Orth(E) that contains the identity operator I
as a weak order unit. Furthermore:
(1) S ′o is an order closed vector sublattice of every regular vector sublattice of Lob(E) con-

taining S ′o;
(2) S ′o is a regular vector sublattice of every Dedekind complete regular vector sublattice of
Lob(E) containing S ′o;

(3) S ′o is a Dedekind complete vector lattice.

Proof. We start by proving that S ′o is a vector sublattice of Orth(E). For this, we may
suppose that S consists of one positive operator S ∈ Loc(E). It is then sufficient to show
that, for T1, T2 ∈ Orth(E), T1 ∨ T2 commutes with S whenever T1 and T2 do. We shall now
show this. In the argument that is to follow, all left and right multiplication operators are
to be viewed as order bounded linear operators on Lob(E).

Obviously, (T1 ∨ T2)S = λT1∨T2
(S) which, by [42, Satz 3.1], equals (λT1

∨ λT2
)(S). We

know from part (1) of Corollary 4.2.5 that left multiplications by elements of Orth(E) are
orthomorphisms on Lob(E), so that [6, Theorem 2.43] can be used to conclude that (λT1

∨
λT2
)(S) = λT1

(S)∨λT2
(S) = (T1S)∨(T2S)which, as a consequence of the assumption, equals

(ST1)∨(ST2) = ρT1
(S)∨ρT2

(S). Part (2) of Corollary 4.2.5 and [6, Theorem 2.43] then show
that this equals [ρT1

∨ρT2
](S). So far, we have not used that S is order continuous, but it is

at this point that this enables us to conclude from [10, Proposition 2.2] that [ρT1
∨ρT2

](S) =
ρT1∨T2

(S), which is just S(T1 ∨ T2). Hence S ′o is a vector sublattice of Orth(E).
It is clear that S ′o is an associative subalgebra of Orth(E) containing I and that I , which

is a weak order unit of Orth(E), is also one of the vector lattice S ′o .
We turn to the remaining statements. Suppose that (Tα)α∈A is a net in S ′o , that T ∈

Lob(E), and that Tα
o
−→ T in Lob(E). Then certainly T ∈ Orth(E). Using once more that

S ⊆ Loc(E), it follows from Proposition 4.4.1 that T commutes with all elements of S .
Hence T ∈ S ′o , and we conclude that S ′o is an order closed vector sublattice of Lob(E).
Obviously, it is then also order closed in every regular vector sublattice ofLob(E) containing
it. We have thus established part (1).

Take a Dedekind complete regular vector sublatticeF ofLob(E) that containsS ′o . Since
we know that S ′o is order closed in F , [35, p. 303] shows that S ′o is a complete vector
sublattice of F as this notion is defined on [35, p. 295-296]. It then follows from [35,
p. 296] that S ′o is a regular vector sublattice of F and, on taking F = Lob(E), also that
S ′o is Dedekind complete.

Remark 4.6.3. Theorem 4.6.2 applies, in particular, when S is a group of order automor-
phisms of E. Obviously, it holds equally well when S is replaced with a linear subspace of
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Loc(E) that is spanned by its intersections with the positive and negative cones ofLoc(E). In
particular, it holds wheneverS is a vector sublattice ofLoc(E); the fact that S′o is then an or-
der closed vector lattice subalgebra of Orth(E) was already established in [18, Lemma 8.9].
Likewise, it holds whenever S is an associative subalgebra of Loc(E) that is generated, as
an associative algebra, by its intersections with the positive and negative cones of Loc(E).

In Theorem 4.6.2, the vector lattice S ′o is a Dedekind complete vector lattice with the
identity operator I as a weak order unit. The unbounded version of Freudenthal’s spectral
theorem (see [36, Theorem 40.3], for example) then shows that an arbitrary element T ∈
S ′o is an order limit of a sequence of linear combinations of the components of I in S ′o .
Since the latter are precisely the order projections that commute with S we see that, in
this case, S ′o does not only contain all information about the collection of bands in E that
reduce S , but that it is also completely determined by this collection.

On a later occasion, we shall report more elaborately on the procedures of taking com-
mutants and also of taking bicommutants in vector lattices of order bounded linear opera-
tors, as well as on their relations with reducing projection bands for sets of order bounded
linear operators. For the moment, we content ourselves with the general observation that
the study of vector lattice subalgebras of the orthomorphisms is relevant for representation
theory on vector lattices.

We shall now set out to study one particular aspect of this, namely, the equality of the
adherences of vector sublattices of the orthomorphism with respect to several of the conver-
gence structures under consideration in this paper. Although from a representation theoret-
ical point of view it would be natural to require that they also be associative subalgebras,
this does, so far, not appear to be relevant for these issues. Such results on equal adherences
can then also be obtained for associative subalgebras of the orthomorphisms on a Banach
lattice, as a consequence of the fact that their norm closures in the orthomorphisms are. in
fact, vector sublattices to which the previous results can be applied.

Regarding the results below that are given for vector sublattices of the orthomorphisms,
we recall that, for a Dedekind complete vector lattice, several adherences coincide for sub-
sets of the orthomorphisms. Indeed, since, for nets of orthomorphisms, unbounded order
convergence coincides with strong unbounded order convergence, and since the conver-
gence in a possible Hausdorff uo-Lebesgue topology coincides with the corresponding strong
convergence, the corresponding adherences of subsets of the orthomorphisms are also equal.
The same holds for sequential adherences. For reasons of brevity, we have refrained from in-
cluding these ‘obviously also equal’ adherences in the statements.

Although our motivation leads us to study vector sublattice of the orthomorphisms, the
results as we shall derive them for these are actually consequences of more general state-
ments for vector lattices that need not even consist of operators. These are of interest in
their own right. Other such results are [20, Theorem 8.8], [26, Theorem 2.13], and [44,
Proposition 2.12].

We start by establishing results showing that the closures of vector sublattices (or associa-
tive subalgebras) in a possible Hausdorff uo-Lebesgue topology coincide with their closures
in other linear topologies on the vector lattices (or associative algebras) under considera-
tion. These are based on the following result which, as the reader may verify, is established
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in the first paragraph of the proof of [20, Theorem 8.8]. For the definition of the absolute
weak topology |σ|(E, I) on E that occurs in it we refer to [6, p. 63].

Proposition 4.6.4. Let E be a vector lattice such that Esoc separates the points of E. Then E
admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτE . Take an ideal I of Esoc that
separates the points of E, and take a vector sublattice F of E. Then

F
bτE = F

σ(E,I)
= F

|σ|(E,I)

in E.

In the following consequence of Proposition 4.6.4, the lattice F of operators can be
taken to be Orth(E).

Corollary 4.6.5. Let E be a Dedekind complete vector lattice such that Esoc separates the points
of E, and let E be a regular vector sublattice of Lob(E). Then Esoc separates the points of E ,
and E admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτE . Take an ideal I of Esoc
that separates the points of E , and take a vector sublattice F of E . Then

F bτE =Fσ(E ,I)
=F |σ|(E ,I)

in E .

Proof. For ϕ ∈ Esoc and x ∈ E, define the order bounded linear functional on E by setting
Φϕ,x(T ) := ϕ(T x) for T ∈ E . Since E is a regular vector sublattice of Lob(E), an appeal
to [19, Lemma 4.1] shows that Φϕ,x ∈ Esoc. Is then clear that Esoc separates the points of E .
Now Proposition 4.6.4 can be applied with E replaced by E and F by F .

Proposition 4.6.4 is also used in the proof of the following.

Theorem 4.6.6. LetA be a unital f -algebra such that its identity element e is also a positive
strong order unit of A , and such that it is complete in the submultiplicative order unit norm
‖ · ‖e on A . Suppose that A soc separates the points of A . Then A admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτA . Take an ideal I ofA soc that separates the points
ofA , and take a (not necessarily unital) associative subalgebraB of E. Then

B bτA =Bσ(A ,I)
=B |σ|(A ,I)

=

B‖ · ‖e
bτA

=B‖ · ‖e
σ(A ,I)

=B‖ · ‖e
|σ|(A ,I) (4.8)

inA .

Before giving the proof, we mention the following fact that is easily verified. Suppose
that X is a topological space that is supplied with two topologies τ1 and τ2, where τ2 is

weaker than τ1. Then S
τ1
τ2

= S
τ2 for every subset S of X .
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Proof. It follows from [19, Theorem 6.1] that B‖ · ‖e is a Banach f -subalgebra ofA . Being
a vector sublattice of A , Proposition 4.6.4 shows that the sets in the second line of equa-
tion (4.8) are equal. Since the convergence of a net in the order unit norm ‖ · ‖e implies
its order convergence to the same limit (and then also its convergence in bτA to the same
limit), we are done by an appeal to the remark preceding the proof.

The following is now clear from Theorem 4.6.6 and the argument in the proof of Corol-
lary 4.6.5.

Corollary 4.6.7. Let E be a Dedekind complete Banach lattice. Suppose that Esoc separates the
points of E. Then Orth(E)soc separates the points of Orth(E), and Orth(E) admits a (necessarily
unique) Hausdorff uo-Lebesgue topology bτOrth(E). Take an ideal I of Orth(E)soc that separates
the points of Orth(E), and take a (not necessarily unital) associative subalgebraA of Orth(E).
Then

A bτOrth(E) =A σ(Orth(E),I)
=A |σ|(Orth(E),I)

=

A ‖ · ‖
bτOrth(E)

=A ‖ · ‖
σ(Orth(E),I)

=A ‖ · ‖
|σ|(Orth(E),I)

in Orth(E); here ‖ · ‖ denotes the coinciding operator norm, order unit norm with respect to
the identity operator, and regular norm on Orth(E).

We shall now continue by establishing results showing that the closures of vector sub-
lattices (or associative subalgebras) in a possible Hausdorff uo-Lebesgue topology coincide
with their adherences with respect to various convergence structures on the enveloping
vector lattices (or vector lattice algebras) under consideration in this paper.

Needless to say, under appropriate conditions, ‘topological’ results as obtained above
may apply at the same time as ‘adherence’ results to be obtained below. For reasons of
brevity, we have refrained from formulating such ‘combined’ results.

Let us also notice at this point that the results below imply that the adherences of vector
sublattices that occur in the statements are closed with respect to the pertinent convergence
structures. Indeed, these adherences are set maps that map vector sublattices to vector
sublattices. When they agree on vector sublattices with the topological closure operator
that is supplied by the Hausdorff uo-Lebesgue topology, then they, too, are idempotent. For
example, the unbounded order adherence of the vector sublattice F in Proposition 4.6.8,
below, is unbounded order closed. For reasons of brevity, we have refrained from including
such consequences in the results.

We start by considering two cases where the enveloping vector lattices have weak order
units.

Proposition 4.6.8. Let E be a Dedekind complete vector lattice with the countable sup property
and a weak order unit. Suppose that E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology bτE . Let F be vector sublattice of E. Then

F
bτE = aσuo(F) = auo(F)

in E.
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Proof. Clearly, we have aσuo(F) ⊆ auo(F) ⊆ F
bτE . Let e be a positive weak order unit of E.

Take x ∈ F
bτE . There exists a net (xα)α∈A in F with xα

bτE−→ x . Then |xα − x | ∧ e
bτE−→ 0, and

we conclude from [6, Theorem 4.19] that there exists an increasing sequence (αn)∞n=1 of

indices in A such that |xαn
− x | ∧ e

o
−→ 0 in E. An appeal to [29, Lemma 3.2] shows that

xαn

uo
−→ x in E. Hence x ∈ aσuo(F). We conclude that F

bτE ⊆ aσuo(F).

On combining Theorem 4.2.1, Proposition 4.6.8, and [19, Proposition 6.5], the following
is easily obtained. We recall that a subset of a vector lattice is said to be an order basis when
the band that it generates is the whole vector lattice.

Corollary 4.6.9. Let E be a Dedekind complete vector lattice with the countable sup property
and an at most countably infinite order basis. Suppose that E admits a (necessarily unique)
Hausdorff uo-Lebesgue topology. Then Orth(E) admits a (necessarily unique) Hausdorff uo-
Lebesgue topology bτOrth(E). Let E be vector sublattice of Orth(E). Then

E bτOrth(E) = aσuo(E ) = auo(E )

in Orth(E).

We continue by considering cases where the enveloping vector lattice (or vector lattice
algebra) has a strong order unit.

It is known that the o-adherence of a vector sublattice of a Dedekind complete Banach
lattice E with a strong order unit can be a proper sublattice of its uo-adherence; see [26,
Lemma 2.6] for details. When the vector sublattice contains a strong order unit of E, how-
ever, then this cannot occur, not even in general vector lattices. This is shown by the fol-
lowing preparatory result.

Lemma 4.6.10. Let E be a vector lattice with a strong order unit. Suppose that F is a vector
sublattice of E that contains a strong order unit of E. Then ao(F) = auo(F) and aσo(F) =
aσuo(F) in E.

Proof. We prove that ao(F) = auo(F). It is clear that ao(F) ⊆ auo(F). For the reverse
inclusion, we choose a positive strong order unit e of E such that e ∈ F . Take x ∈ auo(F), and
let (xα)α∈A be a net in F such that xα

uo
−→ x in E. There exists a λ ∈ R≥0 such that |x | ≤ λe.

For α ∈ A, set yα := (−λe ∨ xα) ∧ λe. Clearly, (yα)α ⊆ F and yα
uo
−→ (−λe ∨ x) ∧ λe = x .

Since the net (yα)α∈A is order bounded in E, we have that yα
o
−→ x in E. Hence x ∈ ao(F).

We conclude that auo(F) ⊆ ao(F).
The proof for the sequential adherences is a special case of the above one.

Remark 4.6.11. For comparison, we recall that, for a regular vector sublattice F of a vector
lattice E, it is always the case that ao(F) = auo(F) in E, and that these coinciding subsets
are order closed subsets of E; see [26, Theorem 2.13]. For this to hold, no assumptions on
E are necessary.

The following is immediate from Proposition 4.6.8 and Lemma 4.6.10.
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Theorem 4.6.12. Let E be a Dedekind complete vector lattice with the countable sup property
and a strong order unit. Suppose that E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology bτE . Let F be vector sublattice of E that contains a strong order unit of E. Then

F
bτE = aσo(F) = ao(F) = aσuo(F) = auo(F)

in E.

The following result follows from the combination of Theorem 4.2.1, Theorem 4.6.12,
and [19, Proposition 6.5]. In view of [19, Proposition 6.5], the natural condition to include
is that E have an at most countably infinite order basis, but it is easily verified fact that, for
a Banach lattice, this property is equivalent to having a weak order unit.

Corollary 4.6.13. Let E be a Dedekind complete Banach lattice with the countable sup property
and a weak order unit. Suppose that E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology. Then Orth(E) admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτOrth(E).
Let E be a vector sublattice of Orth(E) that contains a strong order unit of Orth(E). Then

E bτOrth(E) = aσo(E ) = ao(E ) = aσuo(E ) = auo(E )

in Orth(E).

We now turn to closures and adherences of associative subalgebras of a class of f -algebras
with strong order units. For this, we need the following preparatory result.

Lemma 4.6.14. Let E be a Banach lattice, and let A be a subset of E. Then aσo(A) = aσo(A)
in E, where A denotes the norm closure of A.

Proof. We need to prove only that aσo(A) ⊆ aσo(A). For this, we may suppose that A 6= ;.
Take x ∈ aσo(A) and a sequence (xn)∞n=1 in A such that xn

σo
−→ x in E. For n ≥ 1, take an

yn ∈ A such that ‖yn − xn‖ ≤ 2−n. For n ≥ 1, define zn by setting zn :=
∑∞

m=n|yn − xn|,
which is meaningful since the series is absolutely convergent. It is clear that zn ↓. Since
‖zn‖ ≤ 2−n+1, we have zn ↓ 0 in E. The fact that |yn − xn| ≤ zn for n ≥ 1 then shows that
|yn − xn|

σo
−→ 0 in E. From

0≤ |yn − x | ≤ |yn − xn|+ |xn − x |
σo
−→ 0,

we then see that yn
σo
−→ x in E. Hence x ∈ aσo(A), as desired.

Theorem 4.6.15. Let A be a Dedekind complete unital f-algebra with the countable sup
property, such that its identity element e is also a positive strong order unit of A , and such
that it is complete in the submultiplicative order unit norm ‖ · ‖e onA . Suppose thatA admits
a (necessarily unique) Hausdorff uo-Lebesgue topology bτA . LetB be an associative subalgebra
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ofA such thatB‖ · ‖e contains a strong order unit ofA . Then

B bτA = aσo(B) = ao(B) = aσuo(B) = auo(B) =

B‖ · ‖e
bτA

= aσo(B
‖ · ‖e) = ao(B

‖ · ‖e) = aσuo(B
‖ · ‖e) = auo(B

‖ · ‖e)
(4.9)

inA .

Proof. We know from [19, Theorem 6.1] that B‖ · ‖e is a Banach f -subalgebra of A . Then
Theorem 4.6.12 shows that all equalities in the second line of equation (4.9) hold. Further-
more, it is obvious that

aσo(B) ⊆ ao(B) ⊆ auo(B) ⊆B
bτA

and that
aσo(B) ⊆ aσuo(B) ⊆B bτA .

Using that aσo(B) = aσo(B
‖ · ‖e) by Lemma 4.6.14 and that, as in the proof of Theo-

rem 4.6.6, we also know thatB bτA =B‖ · ‖e
bτA

, it then follows that all sets in equation (4.9)
are equal.

The following is now clear from Theorem 4.2.1, Theorem 4.6.15, and [19, Proposi-
tion 6.5].

Corollary 4.6.16. Let E be a Dedekind complete Banach lattice with the countable sup property
and a weak order unit. Suppose that E admits a (necessarily unique) Hausdorff uo-Lebesgue
topology. Then Orth(E) admits a (necessarily unique) Hausdorff uo-Lebesgue topology bτOrth(E).

LetA be an associative subalgebra of Orth(E) such thatA ‖ · ‖ contains a strong order unit of
Orth(E). Then

A bτA = aσo(A ) = ao(A ) = aσuo(A ) = auo(A ) =

A ‖ · ‖
bτA

= aσo(A
‖ · ‖
) = ao(A

‖ · ‖
) = aσuo(A

‖ · ‖
) = auo(A

‖ · ‖
)

(4.10)

in Orth(E); here ‖ · ‖ denotes the coinciding operator norm, order unit norm with respect to
the identity operator, and regular norm on Orth(E).
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[33] M. Kandić and M.A. Taylor. Metrizability of minimal and unbounded topologies. J.
Math. Anal. Appl., 466(1):144–159, 2018.

[34] W.A.J. Luxemburg and B. de Pagter. Maharam extensions of positive operators and
f -modules. Positivity, 6(2):147–190, 2002.

[35] W.A.J. Luxemburg and B. de Pagter. Representations of positive projections. I. Positiv-
ity, 9(3):293–325, 2005.

[36] W.A.J. Luxemburg and A.C. Zaanen. Riesz spaces. Vol. I. North-Holland Publishing Co.,
Amsterdam-London, 1971.

[37] P. Meyer-Nieberg. Banach lattices. Universitext. Springer-Verlag, Berlin, 1991.

[38] E.T. Ordman. Convergence almost everywhere is not topological. Amer. Math. Monthly,
73(2):182–183, 1966.

[39] W. Rudin. Functional analysis. International Series in Pure and Applied Mathematics.
McGraw-Hill, Inc., New York, second edition edition, 1991.

[40] H.H. Schaefer. Banach lattices and positive operators, volume 215 of Die Grundlehren
der mathematischen Wissenschaften. Springer-Verlag, New York-Heidelberg, 1974.

[41] H.H. Schaefer, M. Wolff, and W. Arendt. On lattice isomorphisms with positive real
spectrum and groups of positive operators. Math. Z., 164(2):115–123, 1978.

[42] J. Synnatzschke. Über einige verbandstheoretische Eigenschaften der Multiplikation
von Operatoren in Vektorverbänden. Math. Nachr., 95:273–292, 1980.

[43] M.A. Taylor. Unbounded convergences in vector lattices. Master’s thesis, University of
Alberta, Edmonton, 2018.

[44] M.A. Taylor. Unbounded topologies and uo-convergence in locally solid vector lattices.
J. Math. Anal. Appl., 472(1):981–1000, 2019.



104

[45] V.G. Troitsky. Measures of non-compactness of operators on Banach lattices. Positivity,
8(2):165–178, 2004.

[46] J. von Neumann. Zur Algebra der Funktionaloperationen und Theorie der normalen
Operatoren. Math. Ann., 102(1):370–427, 1930.

[47] A.W. Wickstead. Representation and duality of multiplication operators on Archime-
dean Riesz spaces. Compositio Math., 35(3):225–238, 1977.

[48] A.W. Wickstead. Ordered Banach algebras and multi-norms: some open problems.
Positivity, 21:817–823, 2017.

[49] A.C. Zaanen. Integration. North-Holland Publishing Co., Amsterdam; Interscience
Publishers John Wiley & Sons, Inc., New York, 1967. Completely revised edition of An
introduction to the theory of integration.

[50] A.C. Zaanen. Riesz spaces. II, volume 30 of North-Holland Mathematical Library. North-
Holland Publishing Co., Amsterdam, 1983.

[51] A.C. Zaanen. Introduction to operator theory in Riesz spaces. Springer-Verlag, Berlin,
1997.

[52] O. Zabeti. Unbounded absolute weak convergence in Banach lattices. Positivity,
22(2):501–505, 2018.



Summary

This thesis consists of three papers that are centered around the common theme of Hausdorff
uo-Lebesgue topologies and convergence structures on vector lattices and on vector lattices
and vector lattice algebras of order bounded operators. Its origins lie in asking for possible
analogues of the von Neumann bicommutant theorem in the context of Banach lattices and
vector lattices. Apart from being interesting in their own right, such analogues are expected
to be relevant for the study of vector lattice algebras and Banach lattice algebras of order
bounded operators, as well as for representation theory in vector lattices and Banach lattices.

When contemplating a possible bicommutant theorem for vector lattices, the evident
ingredient that is missing in that context is the weak (or strong) operator topology that
figures in von Neumann’s theorem. Fortunately, there are natural candidates that can take
over this role. The first one is a possible Hausdorff uo-Lebesgue topology on a vector lattice
algebra of operators. Such topologies on vector lattices have received considerable attention
in recent years, and they appear to have a rather special position among the possible locally
solid topologies. Apart from this, there are several natural convergence structures on vector
lattices of order bounded operators to be considered. These come in pairs, consisting of a
uniform and a strong version. For example, the general theory of vector lattices provides
the definition of order convergence of a net for any vector lattice, hence also for a vector
lattice of order bounded operators. For a net of operators on a vector lattice, however, one
can also require that it be pointwise order convergent for every element of the underlying
vector lattice. Thus there are a uniform and a strong order convergence structure on a
vector lattice of order bounded operators. Likewise, there are a uniform unbounded order
convergence structure and a strong unbounded order convergence structure, as well as a
uniform convergence structure for a possible Hausdorff uo-Lebesgue topology (which is the
topological structure as already mentioned) and a strong one with respect to such a topology
on the underlying vector lattice. Thus we have six convergence structures. For each of these,
one can speak of the corresponding adherence of a set of order bounded linear operators.
These adherences (one of which is an actual topological closure) are all natural candidates
that can take over the role of the closure in the weak (or strong) operator topology in von
Neumann’s theorem.

When trying to work with these convergence structures in the context of an attempted
bicommutant theorem, one very quickly starts to feel the need for some ‘basic facts to work
with’. For example, is the adherence of a vector lattice subalgebra of the order bounded
operators with respect to strong unbounded order convergence again a vector lattice subal-
gebra? As it turns out, this is always the case when it is contained in the orthomorphisms, but
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not always when it is contained in the order continuous operators. The question is natural
and the answer is easily formulated, but establishing this answer (including its ‘sharpness’
as an important ingredient) is a non-trivial matter. There are many more such basic, but
very often non-trivial, issues to be resolved before one can get to more advanced parts of
the theory such as a bicommutant theorem. Since these have not been considered to any
substantial extent before, this is now undertaken in a systematic fashion in this thesis.

The first mathematical part of the thesis, Chapter 2, is still concerned with the general
theory of Hausdorff uo-Lebesgue topologies on vector lattices. Starting from a Hausdorff o-
Lebesgue topology on an order dense ideal, a Hausdorff uo-Lebesgue topology on the vector
lattice itself is constructed. This results in a going-up-going-down procedure of supplying
regular vector sublattices with such a topology that takes an earlier uniform construction of
such topologies still one step further. Classical relations between convergence in measure
and convergence almost everywhere are shown to be special cases of a more general result
relating convergence in a Hausdorff uo-Lebesgue topology and unbounded order conver-
gence.

In Chapter 3, Hausdorff uo-Lebesgue topologies on vector lattices of order bounded op-
erators are constructed from Hausdoff o-Lebesgue topologies on the underlying vector lat-
tices. The six convergence structures mentioned above are introduced in this chapter, and
their relations are studied at the level of vector lattices of order bounded operators. Par-
ticular attention is paid to the orthomorphisms, where several implications between these
convergences hold that are not generally valid.

In Chapter 4, after completing the investigation of the thirty-six possible implications
between the six convergence structures on vector lattices of order bounded operators, these
convergence structures are then considered in the context of vector lattice algebras of order
bounded operators. The continuity with respect to the six convergence structures is inves-
tigated of the left and right multiplications, as well as of the simultaneous continuity of the
multiplication. Results about adherences of vector lattice subalgebras being vector lattice
subalgebras again are then an immediate consequence; with one exception it is also shown
that these results are ‘sharp’. Results are also included concerning the equality of various
adherences of vector lattices (and of vector lattice algebras) of order bounded operators.

The material in Chapter 4, which builds on the earlier parts, is the most closely related to
the original question regarding possible analogues of von Neumann’s bicommutant theorem
for vector lattices. It can, in fact, be used to obtain such analogues. These results will be
published at a later date.



Samenvatting

Dit proefschrift bestaat uit drie artikelen rondom het gemeenschappelijke thema van Haus-
dorff uo-Lebesgue topologieën en convergentiestructuren op vectorroosters en op vector-
roosters en vectorroosteralgebra’s van ordebegrensde operatoren. De oorsprong ervan is
gelegen in de vraag naar mogelijke analoga van von Neumanns bicommutantstelling in
de context van Banachroosters en vectorroosters. Afgezien van hun waarde als zodanig
wordt van dergelijke analoga verwacht dat ze relevant zijn voor het onderzoek naar vec-
torroosteralgebra’s en Banachroosteralgebra’s van ordebegrensde operatoren, evenals voor
representatietheorie in vectorroosters en Banachroosters.

Bij het overwegen van een mogelijke bicommutantstelling voor vectorroosters ontbreekt
er in die context een belangrijk ingredient, namelijk de zwakke (of sterke) operatortopolo-
gie die in von Neumanns stelling voorkomt. Gelukkig zijn er wel natuurlijke kandidaten om
de rol daarvan over te nemen. De eerste hiervan is een mogelijke Hausdorff uo-Lebesgue
topologie op een vectorroosteralgebra van operatoren. Dergelijke topologieën op vector-
roosters hebben de afgelopen jaren sterk in de belangstelling gestaan en ze lijken een bij-
zondere plaats in te nemen binnen de mogelijke lokaal solide topologieën. Buiten dit zijn er
verschillende natuurlijke convergentiestructuren op vectorroosters van ordebegrensde ope-
ratoren die in overweging genomen kunnen worden. Deze treden in paren op, bestaande uit
een uniforme en een sterke versie. Bij wijze van voorbeeld: in de algemene theorie wordt
de definitie van ordeconvergentie van een net in een vectorrooster gegeven, die dus ook
van toepassing is op een net in een vectorrooster van ordebegrensde operatoren. Voor een
net van operatoren op een vectorrooster kan men echter ook verlangen dat het net punts-
gewijs ordeconvergent is voor ieder element van het onderliggende vectorrooster. Op die
manier kennen we zowel een uniforme als een sterke ordeconvergentiestructuur voor een
vectorrooster van ordebegrensde operatoren. Net zo zijn er een uniforme en een sterke on-
begrensde ordeconvergentiestructuur, evenals een uniforme convergentiestructuur met be-
trekking tot een eventuele Hausdorff uo-Lebesgue topologie (die de topologische structuur
is zoals hierboven al genoemd) en een sterke convergentiestructuur met betrekking tot een
dergelijke topologie op het onderliggende vectorrooster. Op die manier worden zes conver-
gentiestructuren verkregen. Voor ieder van deze convergentiestructuren kan men spreken
van de bijbehorende aankleving van een verzameling van ordebegrensde operatoren. Deze
aanklevingen (waarvan één een topologische afsluiting is) zijn ieder natuurlijke kandidaten
om de rol van de afsluiting in de zwakke (of sterke) operatortopologie in von Neumann’s
stelling over te nemen.

Bij het nadenken over deze convergentiestructuren in de context van een mogelijke bi-
commutantstelling wordt al heel snel de behoefte gevoeld aan ‘basisresultaten om mee te
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werken’. Bij wijze van voorbeeld: is de aankleving van een vectorroosterdeelalgebra van
de ordebegrensde operatoren met betrekking tot de sterke onbegrensde ordeconvergen-
tiestructuur weer een vectorroosterdeelalgebra? Naar blijkt is dat altijd het geval wanneer
deze bevat is in de orthomorfismen, maar niet altijd wanneer deze bevat is in de ordecon-
tinue operatoren. De vraag is een natuurlijke en het antwoord is gemakkelijk te formuleren,
maar het aantonen van de juistheid van dit antwoord (inclusief de ‘optimaliteit’ ervan als
een belangrijke component) is een niet-triviale aangelegenheid. Er zijn vele van dergelijke
fundamentele, maar vaak niet-triviale, vragen die beantwoord moeten worden voordat het
onderzoek kan beginnen aan meer geavanceerde aspecten van de theorie, zoals een bicom-
mutantstelling. Dergelijke vragen zijn nog niet serieus onderzocht. In dit proefschrift wordt
daar op een systematische manier mee begonnen.

Het eerste wiskundige gedeelte van het proefschrift, Hoofdstuk 2, is nog gericht op de
algemene theorie van Hausdorff uo-Lebesgue topologieën op vectorroosters. Uitgaande
van een Hausdorff o-Lebesgue topologie op een ordedicht ideaal wordt een Hausdorff uo-
Lebesgue topologie op het vectorrooster als geheel geconstrueerd. Dit resulteert in een
omhoog-omlaag procedure waarmee reguliere vectordeelroosters van een dergelijke topolo-
gie voorzien kunnen worden. Deze methode gaat nog een stap verder dan een al eerder
bekende uniforme constructie van dergelijke topologieën. Er wordt ook aangetoond hoe
klassieke relaties tussen convergentie in maat en convergentie bijna overal speciale gevallen
zijn van meer algemene verbanden tusen convergentie in een Hausdorff uo-Lebesgue topolo-
gie en onbegrensde ordeconvergentie.

In Hoofdstuk 3 worden Hausdorff uo-Lebesgue topologieën op vectorroosters van onbe-
grensde operatoren geconstrueerd uitgaande van Hausdorff o-Lebesgue topologieën op de
onderliggende vectorroosters. De zes convergentiestructuren die hierboven genoemd zijn
worden in dit hoofdstuk geïntroduceerd en hun relaties worden onderzocht op het niveau
van vectorroosters van ordebegrensde operatoren. Er wordt speciale aandacht besteed aan
de orthomorfismen, waar implicaties tussen deze convergenties gelden die niet in het alge-
meen waar zijn.

In Hoofdstuk 4 worden, nadat het onderzoek naar de zesendertig mogelijke implicaties
tussen de zes convergentiestructuren voor vectorroosters van ordebegrensde operatoren
voltooid is, deze convergentiestructuren vervolgens beschouwd in de context van vector-
roosteralgebra’s van ordebegrensde operatoren. De continuïteit van de links- en rechtsver-
menigvuldiging met betrekking tot deze convergentiestructuren wordt onderzocht, evenals
de gelijktijdige continuïteit van de vermenigvuldiging. Resultaten over aanklevingen van
vectorroosterdeelalgebra’s die weer vectorroosterdeelalgebra’s zijn worden als onmiddellij-
ke gevolgen verkregen. Met één uitzondering wordt ook aangetoond dat deze resultaten
‘optimaal’ zijn. Verder worden ook resultaten gegeven met betrekking tot de gelijkheid van
een aantal aanklevingen van vectorroosters en vectorroosteralgebra’s van ordebegrensde
operatoren.

Het materiaal in Hoofdstuk 4, dat voortbouwt op de eerdere onderdelen, is het nauwst
gerelateerd aan de oorspronkelijke vraag met betrekking tot mogelijke analoga van von
Neumanns bicommutantstelling voor vectorroosters. Het is, gebruikmakend van dit materi-
aal, inderdaad ook mogelijk om dergelijke analoga te verkijgen. De betreffende resultaten
zullen op een later tijdstip gepubliceerd worden.
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