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Chapter �

Discussion and future work

In this chapter I concisely review the previous six chapters of this dissertation, and explore
some open challenges and possible directions for future work.

�.� Forward-looking Bayesians
In Chapter � we studied the failure of weak truth-merger of Wenmackers and Romeijn’s open-
minded Bayesians, and we proposed two versions of forward-looking open-minded Bayesians
that do weakly merge with the truth when the truth is added at some point in time. In Chapter �
we only focus on how to incorporate new hypotheses. A direction for future research, possibly
for me and my co-author on this chapter, is to formalise when new hypotheses should be
considered, and to investigate how this interacts with the guarantee of truth-merger.

Chapter � inspired the following idea for a future project for myself in the area of continuous-
armed best-arm identi�cation inmachine learning.�is protocol can be viewed as similar to the
protocol of the forward-looking Bayesians, if we let arms correspond to hypotheses, however, it
is still unclear what the relation is between truth-merger and identi�cation.�e algorithms
proposed in papers on best-arm identi�cation in continuous-armed bandits (Bubeck, Munos
and Stoltz, ����; Carpentier and Valko, ����; Aziz et al., ����) employ two phases: First, a
�nite subset of arms from a continuous reservoir is selected, and subsequently a �nite-armed
bandit algorithm is run on this subset to identify the best arm. An interesting idea would be
to propose an algorithm that decides during the learning process to add (or remove) arms
from the �nite set under consideration, which might lead to simple regret bounds scaling
better in the con�dence parameter δ in the �xed-con�dence setting. Another future course
would be to propose a Bayesian algorithm for best-arm identi�cation in continuous-armed
bandits, which can also be seen as an extension of the algorithms discussed in Chapter �, see
also the upcoming Section �.�.�is is both conceptually interesting because of the link with
the forward-looking Bayesians and Bayesian con�rmation theory, and also interesting because
the Bayesian sampling rules of Chapter � do not depend on a con�dence parameter or time
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horizon.�e combination of these two challenges is to propose a Bayesian algorithm for best-
arm identi�cation in continuous-armed bandits that adds or removes arms in course of the
learning process.�is algorithm could also provide some insights for the problem of when to
add new hypotheses in the framework of the forward-looking Bayesians.

�.� Hypothesis testing
Chapters � and � deal with the question whether Bayes factor hypothesis testing is robust
under optional stopping.�e bottom line of these chapters is that the answer to this question
depends on one’s perspective on Bayesianism (see also Section �.�) and which de�nition of
optional stopping one employs — we give three distinct mathematical de�nitions in Chapter �.
It is remarkable how resolutely some authors advocate the use of their favourite method for
hypothesis testing, and how �rm their reproach sometimes is to other authors who nuance or
criticise claims about these methods, see for example (Benjamin et al., ����) and (McShane
et al., ����); and even before being published, Chapter � provoked several responses (Rouder,
����; Wagenmakers, Gronau and Vandekerckhove, ����; Rouder and Haaf, n.d.) . In light of
this �erce defence of some speci�c methods for hypothesis testing, an interesting project would
be to investigate the role of hypothesis testing in the behavioural sciences. In a paper related to
this subject, Gigerenzer and Marewski (����) argue that “determining signi�cance has become
a surrogate for good research”.�e current discussion on optional stopping with Bayes factors
that is the subject of Chapter � seems to be an example of that shi� in focus from the actual goals
of science to the surrogate of “mindless mechanical statistics”. Goals of science include gaining
knowledge about the world around us, and hypothesis testing is one of the means scientists
have at their disposal to achieve that. How clear this distinction between goals and means is in
current research in the behavioural sciences, and what the role of hypothesis testing in scienti�c
research should be, are subjects to be addressed, possibly by philosophers of science.

In Chapter � we proposed a new theory for hypothesis testing based on �-values. From a
practical perspective, it is now important to develop so�ware for calculating �-values for
common hypothesis tests, so that practitioners can start working with �-value based hypothesis
tests. From a theoretical perspective, there are some open questions arising in particular from
the combination of Chapter � and �.�e former chapter provides results showing that using
the right Haar prior in general group invariant cases leads to �-values, however, in Chapter � is
only shown that these are GROW �-values for the particular (important) case of the t-test. An
objective for future work is thus to extend this to a general group-invariant setting. Further goals
for future work on Safe Testing include the construction of con�dence intervals by inverting
a safe test. When this safe test constitutes a test martingale, these con�dence intervals are
always valid con�dence intervals in the sense of Howard et al.’s ����b framework of uniform,
nonparametric, non-asymptotic con�dence sequences (Darling and Robbins, ����; Lai, ����).
�e intuitions behind the construction of safe tests can lead to other constructions of con�dence
intervals. Further future objectives are to investigate the connections of safe testing to Shafer
and Vovk’s ���� game-theoretic probability framework, and to the framework of always-valid
�-values (Robbins, ����; Robbins and Siegmund, ����; Robbins and Siegmund, ����; Johari,
Pekelis and Walsh, ����).�e group of prof. Grünwald at CWI is working on these practical
and theoretical challenges.
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�.� Safe-Bayesian generalised linear regression
Chapter � provides theoretical evidence that η-generalised Bayes can outperform standard
Bayes for generalised linear models, and provides empirical evidence for Bayesian lasso and
logistic regression. We also provided MCMC samplers for the generalised Bayesian lasso and
logistic regression.�e Gibbs sampler for the latter is based on a Pólya-Gamma latent variable
scheme, in which the Pólya-Gamma random variable is approximated by a truncated sum
of weighted Gamma random variables. Our current implementation is slow and unable to
deal with high-dimensional data, presumably because of the approximation via the truncated
sum.�ere exist another implementation of Bayesian logistic regression, in the programming
language STAN (Carpenter et al., ����), using No-U-Turn-Sampling (Ho�man and Gelman,
����), which is an extension of Hamiltonian Monte Carlo (HMC) (Duane et al., ����). An
interesting direction for future work, possibly for amaster’s or PhD student, would be to develop
HMC algorithms for η-generalised Bayesian methods. �is could also lead to a better and
possibly faster implementation of η-generalised Bayesian logistic regression.

An issue with generalised Bayesian methods is the dependency on the learning rate parameter
η. Grünwald’s ���� Safe-Bayesian algorithm provably �nds the appropriate η for bounded
excess loss functions and likelihood ratio’s, and experiments of Grünwald and Van Ommen
(����) and Chapter � indicate that SafeBayes performs excellently in the unbounded case as
well, but theoretical guarantees still need to be established. Furthermore, a drawback of the
Safe-Bayesian algorithm is that it is computationally very slow. Another future objective is to
propose a faster algorithm for learning η, possibly based on cross-validation, naturally together
with theoretical guarantees, e.g. that the data distribution satis�es the central condition at the
learning rate η output by the algorithm.

Objectives for future work thus are:

• providing a better MCMC sampler for η-generalised logistic regression, possibly via
Hamiltonian Monte Carlo,

• providing MCMC samplers for other η-generalised GLMs,
• providing guarantees on the Safe-Bayesian algorithm for the unbounded case,
• proposing a faster algorithm than SafeBayes for learning the appropriate learning rate η,
together with

• providing theoretical guarantees for this algorithm.

�.� Pure exploration
In Chapter � we studied two Bayesian sampling rules, TTTS and T3C, for best-arm identi-
�cation (BAI) in the �xed con�dence setting. We introduced the notion of asymptotic β-
optimality and proved that TTTS and T3C are asymptotically β-optimal.�is optimality notion
has two drawbacks. First, in order to be optimal, we would need the unknown true optimal
β� = argmaxβ∈[�,�] Γ

�

β . Secondly, the guarantees are asymptotic, whereas �nite-time sample
complexity bounds would be more practicable.

Evident objectives for my future work are:
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• �xed-con�dence guarantees with online tuning of β for TTTS and T3C,
• �nite-time sample complexity bounds,
• an extension to continuous-armed bandit models (see Section �.� above), and
• �xed-budget guarantees.

Furthermore, Chapter �provides a piece of the puzzle of the following twobigger pictures.

Any-time sampling rules BAI has been studied in di�erent frameworks: the �xed-budget
setting, the �xed-con�dence setting, which has been studied in Chapter �, and the any-time
BAI setting, introduced by Jun and Nowak, ����. In the any-time setting, the sampling rule
does not depend on the risk parameter or the budget.�e �rst sampling rule for BAI that does
not depend on the risk parameter is the tracking rule proposed by Garivier and Kaufmann
(����). �e sampling rules studied in Chapter �, TTTS and T3C, are also examples of any-
time sampling rules.�is sparks the question: does there exist a sampling rule that is, albeit
with modi�cations depending on the setting and objective, optimal in all settings?�ompson
sampling (TS) could be a possible candidate for this: vanilla TS for regretminimization, TTTS for
�xed-con�dence best-arm identi�cation, and (see below), Murphy sampling for the minimum
of means problem.

Pure-exploration objectives Pure exploration problems can have other objectives than �nd-
ing the best arm. Naturally, di�erent objectives require di�erent sampling rules. However, an
interesting avenue for future work is to investigate how the lower bounds and sampling rules
for the di�erent objectives and frameworks relate. Here are two pure-exploration problems
with objectives di�erent from BAI.

Kaufmann, Koolen and Garivier (����) study a problem related to BAI:�ey consider the task
of adaptively learning how the minimum mean of a �nite set of arms compares to a given
threshold.�ey provide a lower bound on the sample complexity in the �xed-con�dence setting,
and propose an algorithm inspired by TTTS, calledMurphy Sampling. Murphy Sampling is, just
as TTTS and T3C, an any-time sampling rule. An open problem is to �nd a �xed-budget lower
bound and algorithm for this problem.

Antos, Grover and Szepesvári (����) and Carpentier et al. (����) study the problem of estimating
the means of a �nite number of arms in the �xed-budget setting uniformly well.�e objective
is to minimise the worst expected squared error loss of the arms, and the performance of
the algorithm is measured by comparing its loss to that of the optimal allocation algorithm,
that is, regret.�is notion of regret is however not cumulative, and this problem is therefore
more related to the pure-exploration setting than to the standard MAB framework.�is is also
re�ected in the property that good strategies for this problem should play all arms linearly in
the number of draws, whereas in the standard stochastic bandit setting suboptimal arms should
be played logarithmically in the number of draws.�e problem can be extended to learning the
transition probabilities of Markov Chains (Talebi and Maillard, ����). An open problem is to
�nd problem-dependent lower bounds for this problem. Furthermore, the algorithms proposed
in both papers depend on the budget and/or the con�dence level. An interesting avenue for
future work is to �nd a problem-dependent lower bound and to propose an any-time, possibly
�ompson Sampling related sampling rule.


