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Chapter 7

Fixed-confidence guarantees for
Bayesian best-arm identification

Abstract

We investigate and provide new insights on the sampling rule called Top-Two Thompson
Sampling (TTTS). In particular, we justify its use for fixed-confidence best-arm identification.
We further propose a variant of TTTS called Top-Two Transportation Cost (T3C), which disposes
of the computational burden of TTTS. As our main contribution, we provide the first sample
complexity analysis of TTTS and T3C when coupled with a very natural Bayesian stopping
rule, for bandits with Gaussian rewards, solving one of the open questions raised by Russo
(2016). We also provide new posterior convergence results for TTTS under two models that
are commonly used in practice: bandits with Gaussian and Bernoulli rewards and conjugate
priors.

7.1 Introduction

In multi-armed bandits, a learner repeatedly chooses an arm to play, and receives a reward
from the associated unknown probability distribution. When the task is best-arm identification
(BAI), the learner is not only asked to sample an arm at each stage, but is also asked to output a
recommendation (i.e., a guess for the arm with the largest mean reward) after a certain period.
Unlike in another well-studied bandit setting, the learner is not interested in maximizing the
sum of rewards gathered during the exploration (or minimizing regret), but only cares about the
quality of her recommendation. As such, BAI is a particular pure exploration setting (Bubeck,
Munos and Stoltz, 2009).

Formally, we consider a finite-arm bandit model, which is a collection of K probability distri-
butions, called arms A = {1, ..., K}, parametrized by their means py, . .., yux. We assume the

a

unknown) best arm is unique and we denote it by I* £ arg max. y;. A best-arm identification
q y 8 i¥
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206  Chapter 7. Fixed-confidence guarantees for Bayesian best-arm identification

strategy (I, J,, 7) consists of three components. The first is a sampling rule, which selects an
arm I,, at round #. At each round n, a vector of rewards Y,, = (Y1, -+, Yy, k) is generated for all
arms independently from past observations, but only Y, ; is revealed to the learner. Let F,, be
the o-algebra generated by (Uy, I1, Y11, U1, -+, Iy, Yo 1, Uy ), then I, is F,_j-measurable, i.e., it
can only depend on the past n — 1 observations, and some exogenous randomness, materialized
into U,—; ~ U([0,1]). The second component is a F,,-measurable recommendation rule J,,
which returns a guess for the best arm, and thirdly, the stopping rule 7, a stopping time with
respect to (F,) x> decides when the exploration is over.

BAI is studied within several theoretical frameworks. In this chapter we consider the fixed-
confidence setting, introduced by Even-dar, Mannor and Mansour, 2003, Given a risk parameter
0 € [0,1], the goal is to ensure that the probability to stop and recommend a wrong arm,
P[J: # I" AT < o0}, is smaller than §, while minimizing the expected total number of samples
to make this accurate recommendation, E [ 7]. The most studied alternative setting is the fixed-
budget setting for which the stopping rule 7 is fixed to some (known) maximal budget n, and
the goal is to minimize the error probability P[], # I*] (Audibert and Bubeck, 2010). Note
that these two frameworks are very different in general and do not share transferable regret
bounds (see Carpentier and Locatelli|2016 for an additional discussion).

Most existing sampling rules for the fixed-confidence setting depend on the risk parameter
0. Some of them rely on confidence intervals such as LUCB (Kalyanakrishnan et al., 2012)),
UGapE (Gabillon, Ghavamzadeh and Lazaric,|2012), or 111’ UCB (Jamieson et al.,|2014)); others
are based on eliminations such as SuccessiveElimination (Even-dar, Mannor and Mansour,
2003) and ExponentialGapElimination (Karnin, Koren and Somekh,|2013). The first known
sampling rule for BAI that does not depend on § is the tracking rule proposed by Garivier and
Kaufmann, 2016, which is proved to achieve the minimal sample complexity when combined
with the Chernoff stopping rule when § goes to zero. Such an anytime sampling rule (neither
depending on a risk § or a budget n) is very appealing for applications, as advocated by Jun and
Nowak, 2016/ who introduce the anytime best-arm identification framework. In this chapter, we
investigate another anytime sampling rule for BAI: Top-Two Thompson Sampling (TTTS), and
propose a second anytime sampling rule: Top-Two Transportation Cost (T3C).

Thompson Sampling (Thompson, 1933) is a Bayesian algorithm well known for regret minim-
ization, for which it is now seen as a major competitor to UCB-typed approaches (Burnetas
and Katehakis, [1996; Auer, Cesa-Bianchi and Fischer, 2002; Cappé et al.,[2013). However, it
is also well known that regret minimizing algorithms cannot yield optimal performance for
BAI (Bubeck, Munos and Stoltz, 2011; Kaufmann and Garivier, 2017) and as we opt Thompson
Sampling for BAI, then its adaptation is necessary. Such an adaptation, TTTS, was given by
Russo (2016) along with two other top-two sampling rules TTPS and TTVS. By choosing between
two different candidate arms in each round, these sampling rules enforce the exploration of
sub-optimal arms, which would be under-sampled by vanilla Thompson sampling due to its
objective of maximizing rewards.

While TTTS appears to be a good anytime sampling rule for fixed-confidence BAI when coupled
with an appropriate stopping rule, so far there is no theoretical support for this employment.
Indeed, the (Bayesian-flavored) asymptotic analysis of Russo, 2016|shows that under TTTS, the
posterior probability that I* is the best arm converges almost surely to 1 at the best possible
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rate. However, this property does not by itself translate into sample complexity guarantees.
Since the result of Russo, 2016, Qin, Klabjan and Russo (2017) proposed and analyzed TTEI,
another Bayesian sampling rule, both in the fixed-confidence setting and in terms of posterior
convergence rate. Nonetheless, similar guarantees for TTTS have been left as an open question
by Russo, 2016/ In the present chapter, we answer the question whether we can obtain fixed-
confidence guarantees and optimal posterior convergence rates for TTTS. In addition, we
propose T3C, a computationally more favorable variant of TTTS and extend the fixed-confidence
guarantees to T3C as well.

Contributions (1) We propose a new Bayesian sampling rule, T3C, which is inspired by TTTS
but easier to implement and computationally advantageous (2) We investigate two Bayesian
stopping and recommendation rules and establish their §-correctness for a bandit model with
Gaussian rewards[ (3) We provide the first sample complexity analysis of TTTS and T3C for a
Gaussian model and our proposed stopping rule. (4) Russo’s posterior convergence results for
TTTS were obtained under restrictive assumptions on the models and priors, which exclude
the two mostly used models in practice: Gaussian bandits with Gaussian priors and bandits
with Bernoulli rewards’| with Beta priors. We prove that optimal posterior convergence rates
can be obtained for those two as well.

Outline In Section|7.2, we restate TTTS and introduce T3C along with our proposed recom-
mendation and stopping rules. Then, in Section 7.3} we describe in detail two important notions
of optimality that are invoked in this chapter. The main fixed-confidence analysis follows in Sec-
tion[7.4, and further Bayesian optimality results are given in Section[.5| Numerical illustrations
are given in Section [7.6|

7.2 Bayesian BAI Strategies

In this section, we give an overview of the sampling rule TTTS and introduce T3C. We provide
details for Bayesian updating for Gaussian and Bernoulli models respectively, and introduce
associated Bayesian stopping and recommendation rules.

7.2.1 Sampling rules

Both TTTS and T3C employ a Bayesian machinery and make use of a prior distribution ITy
over a set of parameters ®, which is assumed to contain the unknown true parameter vector y.
Upon acquiring observations ( Yy 1, Y,—11,_, ), we update our beliefs according to Bayes’ rule
and obtain a posterior distribution IT, which we assume to have density 7, w.r.t. the Lebesgue
measure. Russo’s analysis is requires strong regularity properties on the models and priors,
which exclude two important useful cases we consider in this chapter: (1) the observations of
each arm i follow a Gaussian distribution N (y;, 0*) with common known variance o2, with
imposed Gaussian prior N'(py,i, 07 ;), (2) all arms receive Bernoulli rewards with unknown
means, with a uniform (Beta(1,1)) prior on each arm.

"Hereafter Gaussian bandits or Gaussian model.
2Hereafter Bernoulli bandits.
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Gaussian model For Gaussian bandits with a A'(0, x?) prior on each mean, the posterior
distribution of y; at round # is Gaussian with mean and variance that are respectively given
by
-1 .
ZZ=1 ]l{IgZ I}YK,IZ O'2

and ———,
T,i + 0212 T,i + 0212

where T, ; = Y.)-' 1{I, = i} is the number of selections of arm i before round 7. For the sake
of simplicity, we consider improper Gaussian priors with 1 ; = 0 and 01,; = +oo forall i € A,
for which

1 n-1 ) 0_2
1{I,=i}Yy;, and o, = .
Tn,i ez:zl [ n,i Tn,i

Un,i =

Observe that in this case the posterior mean y,, ; coincides with the empirical mean.

Beta-Bernoullimodel For Bernoulli bandits with a uniform (Beta(1,1)) prior on each mean,
the posterior distribution of y; at round # is a Beta distribution with shape parameters a,, ; =
Yo 1{I, = i}Yyy, +land B, = T, - Sp 1{Ir = i} Yo, + 1.

Now we briefly recall TTTS and introduce T3C. The pseudo-code of TTTS and T3C are shown
in Algorithm

Description of TTTS At each time step n, TTTS has two potential actions: (1) with probability

B, a parameter vector 0 is sampled from IT,,, and TTTS chooses to play I ,(11) £argmax; 4 0;, (2)
and with probability 1—- 3, the algorithm continues sampling new 6’ until we obtain a challenger

I 5,2) £ argmax, 4 0 that is different from I ,(,1), and TTTS chooses to play I 512).

Description of T3C One drawback of TTTS is that, in practice, when the posteriors become
concentrated, it takes many Thompson samples before the challenger I 5,2) is obtained. We thus
propose a variant of TTTS, called T3C, which alleviates this computational burden. Instead of
re-sampling from the posterior until a different candidate appears, we define the challenger as
the arm that has the lowest transportation cost W, (I 511), i) with respect to the first candidate
(with ties broken uniformly at random).

Let u,,; be the empirical mean of arm i and py,,;,j = (T,ifhn,i + Tnjthn,j)/(Tn.i + Tn,j), then
we define

NN 0 if[/ln,j 2 Un,is
Wali,]) = { Wiij+ Wi otherwise, (7.1

where W, ;,j = T,.id (ni» tin,i,j) forany i, jand d(u; u) denotes the Kullback-Leibler between
the distribution with mean y and that of mean y'. In the Gaussian case, d(y; p') = (4 -
#')?/(20%) while in the Bernoulli case d(u; ¢’) = pln(u/p') + 1 - ) In(1-u)/(1 - y'). In
particular, for Gaussian bandits

(Uni— /"n,j)z

WG 1) <
(1) = STy < 1/T,

Y ]l{.”n,j < l"n,i}-
>
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Note that under the Gaussian model with improper priors, one should pull each arm once at
the beginning for the sake of obtaining proper posteriors.

Algorithm 2 Sampling rule (TTTS/T3C)

1: Input: 8
2: forn < 1,2,---do
3: sample 0 ~ II,

4 1M argmax; 4 0;

5: sample b ~ Bern(p)

6: if b = 1 then

7: evaluate armI()

8: else

9: repeat sample 6’ ~ I,
10: 1? « argmax;_, 0/ TTTS
1 until I = 1O

12: 12) argmin, (1 Wn(l(‘), i), cf. T3C
13: evaluate arm](®

14: end if

15: update mean and variance

16: t=t+1

17: end for

7.2.2 Rationale for T3C
In order to explain how T3C can be seen as an approximation of the re-sampling performed by

TTTS, we first need to define the optimal action probabilities.

Optimal action probability The optimal action probability a, ; is defined as the posterior
probability that arm i is optimal. Formally, letting ®; be the subset of ® such that arm i is the
optimal arm,

@,’ é{@e@) ‘ 01' >max6j},
J#i

then we define

an; £11,(9;) = f 7,(6)de. (7.2)
0;
With this notation, one can show that under TTTS,
2) _ () . Qn,j
I, (07 =4I, =i) = =—=2L—. (7.3)
( J| ) Zk¢ian,k

Furthermore, when i coincides with the empirical best mean (and this will often be the case for

1 . . .
1) when n is large due to posterior convergence) one can write

ay,j =T, (05> 0;) = exp (=W (i, )

where the last step is justified in Lemmal6in the Gaussian case (and Lemmals2/in Appendix[7.I.3
in the Bernoulli case). Hence, T3C replaces sampling from the distribution by an approx-
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imation of its mode which is easy to compute. Note that directly computing the mode would
require to compute a,,;, which is much more costly than the computation of W, (i, j

7.2.3 Stopping and recommendation rules

In order to use TTTS or T3C as the sampling rule for fixed-confidence BAI, we need to addition-
ally define stopping and recommendation rules. While Qin, Klabjan and Russo, 2017 suggest to
couple TTEI with the “frequentist” Chernoft stopping rule (Garivier and Kaufmann, 2016), we
propose in this section natural Bayesian stopping and recommendation rules. They both rely
on the optimal action probabilities defined in (7.2).

Bayesian recommendation rule At time step n, a natural candidate for the best arm is the
arm with largest optimal action probability, hence we define

Jn = argmaxa,,; .
icA

Bayesian stopping rule In view of the recommendation rule, it is natural to stop when
the posterior probability that the recommended action is optimal is large, and exceeds some
threshold ¢, s which gets close to 1. Hence our Bayesian stopping rule is

Ts = inf{n € maxa, ; > Cn,a} . (7.4)
ic A

Links with frequentist counterparts Using the transportation cost W, (i, j) defined in (.1),
the Chernoft stopping rule of Garivier and Kaufmann, 2016|can actually be rewritten as

Ch. 4 . ..
= inf N : Wu(i,j) >dns - .
im0 | o)

This stopping rule is coupled with the recommendation rule J,, = argmax; p, ;.

As explained in that paper, W, (i, j) can be interpreted as a (log) Generalized Likelihood Ratio
statistic for rejecting the hypothesis H : (¢#; < y;). Through our Bayesian lens, we rather have
in mind the approximation IT,(0; > 0;) =~ exp {-W, (i, j)}, valid when y, ; > u,,j, which
permits to analyze the two stopping rules using similar tools, as will be seen in the proof of
Theorem[7.3}

As shown later in Sec. E, 75 and 7§™ prove to be fairly similar for some corresponding choices
of the thresholds ¢, s and d,, 5. This similarity endorses the use of the Chernoff stopping rule
in practice, which does not require the (heavy) computation of optimal action probabilities.
Still, our sample complexity analysis applies to the two stopping rules, and we believe that
a frequentist sample complexity analysis of a fully Bayesian-flavored BAI strategy is a nice
theoretical contribution.

3TTPS (Russo, 2016) also requires the computation of a, ;, thus we do not report simulations for it in Sec.
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Useful notation We follow the notation of Russo (2016) and define the following measures
of effort allocated to arm i up to time #,

Yni 2P[L = i|lFu] and Wiz >y
I=1

In particular, for TTTS we have

an;
Vi = Pani+ (1= P)an: >, L,

i L= an,j

while for T3C

L{W,(j,i) = ming.; W, (j, k)}
Y = Ban + (1= ) Y an, — :
e #|argmmk¢j Wn(],k)‘

7.3 Two Related Optimality Notions

In the fixed-confidence setting, we aim for building §-correct strategies, i.e. strategies that
identify the best arm with high confidence on any problem instance.

Definition 7.1. A strategy (I,,, J,,, ) is 8-correct if for all bandit models g with a unique optimal
arm, it holds that P, [J; # I* A T < c0] < 6.

Among §-correct strategies, we seek the one with the smallest sample complexity E [ 75]. So far,
TTTS has not been analyzed in terms of sample complexity; Russo (2016)) focuses on posterior
consistency and optimal convergence rates. Interestingly, both the smallest possible sample
complexity and the fastest rate of posterior convergence can be expressed in terms of the
following quantities.

Definition 7.2. Let Zx = {@ : Y5, wj = 1, w; > 0} and define for all i # I*

Ci(w, ') 2 mi%l wd(prsx) + w'd(pix),
XE

where d(p, p') is the KL-divergence defined above and Z = R in the Gaussian caseand Z = [0,1]
in the Bernoulli case. We define

I* 2 maxminC;(w,w;),
weSy i+l*

1>

Iy max min C;(wp, w;). (7.6)
weSy il*

W=

The quantity C;(wp+, w;) can be interpreted as a “transportation cost’* from the original bandit
instance g to an alternative instance in which the mean of arm i is larger than that of I*, when
the proportion of samples allocated to each arm is given by the vector w € Zg. As shown
by Russo, 2016, the w that maximizes is unique, which allows us to define the -optimal
allocation w” in the following proposition.

4for which W, (I*, i) is an empirical counterpart
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Proposition 1. There is a unique solution w” to the optimization problem satisfying wf* =
B, and forall i, j + I, C;(B, &f ) = C;(B, wf).

For models with more than two arms, there is no closed form expression for Fﬁ* or I'*, even for
Gaussian bandits with variance o2 for which we have

. (1 —pi)?
I; = _
e ep 21 202(1w; +1/B)

Bayesian -optimality Russo (2016)) proves that any sampling rule allocating a fraction f to
the optimal arm (¥, ;- /n — f8) satisfies 1 — a,, ;+ > e (T +o() (a.s.).We define a Bayesian f3-
optimal sampling rule as a sampling rule matching this lower bound, i.e. satisfying ¥, ;< /n - f3
and1-a, - < e (Ti+o(),

Russo (2016) proves that TTTS with parameter f3 is Bayesian 3-optimal. However, the result is
valid only under strong regularity assumptions, excluding the two practically important cases of
Gaussian and Bernoulli bandits. In this chapter, we complete the picture by establishing Bayesian
B-optimality for those models in Sec. [7.5} For the Gaussian bandit, Bayesian -optimality was
established for TTEI by Qin, Klabjan and Russo, [2017 with Gaussian priors, but this remained
an open problem for TTTS.

A fundamental ingredient of these proofs is to establish the convergence of the allocation of
measurement effort to the $-optimal allocation: ¥,, ;/n — wlﬁ for all i, which is equivalent to
Tpi/n— wf (cf. Lemma.

p-optimality in the fixed-confidence setting In the fixed confidence setting, the perform-
ance of an algorithm is evaluated in terms of sample complexity. A lower bound given by Garivier
and Kaufmann, 2016/states that any §-correct strategy satisfies E [75] > (I'*) ' In (1/(39)).

Observe that I'" = maxge[o,1] ;. Using the same lower bound techniques, one can also prove
that under any J-correct strategy satisfying T;, ;- /n — f3,

This motivates the relaxed optimality notion that we introduce in this chapter: A BAI strategy
is called asymptotically B-optimal if it satisfies

T, 1+ E 1
n o, B and limsup [7s] < .
n 50 In(1/8) ~ T;

In this chapter, we provide the first sample complexity analysis of a BAI algorithm based on
TTTS (with the stopping and recommendation rules described in Sec. [7.2), establishing its
asymptotic -optimality.
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As already observed by Qin, Klabjan and Russo, |2017, any sampling rule converging to the
B-optimal allocation (i.e. satisfying T, ;/n — wf for all i) can be shown to satisfy

T

lim su S (1)
nsup sy < )

almost surely, when coupled with the Chernoff stopping rule. The fixed confidence optimality
that we define above is stronger as it provides guarantees on E [75].

7.4 Fixed-Confidence Analysis

In this section, we consider Gaussian bandits and the Bayesian rules using an improper prior
on the means. We state our main result below, showing that TTTS and T3C are asymptotic-
ally B-optimal in the fixed confidence setting, when coupled with appropriate stopping and
recommendation rules.

Theorem 7.2. With C$¢ the function defined in Corollary 10 of Kaufmann and Koolen, 2018,
which satisfies C8¢ (x) ~ x + In(x), we introduce the threshold

d, s = 41n(4 + In(n)) + 205 (1n((1<2-1)/5)) (27)
The TTTS and T3C sampling rules coupled with either
« the Bayesian stopping rule (7.4) with threshold
71 e_(m-" ﬁ )2
V2o

and recommendation rule J; = argmax; a, ;, or
o the Chernoff stopping rule with threshold d,, 5 and recommendation rule J, = argmax; p,, ;,

Cpo=1-

form a §-correct BAI strategy. Moreover, if all the arms means are distinct, it satisfies

. E [T@] 1
lim su < —.
s log(1/8) T

We now give the proof of Theorem 7.2, which is divided into three parts. The first step of the
analysis is to prove the §-correctness of the studied BAI strategies.

Theorem 7.3. Regardless of the sampling rule, the stopping rule with the threshold c, 5 and
the Chernoff stopping rule ([7.5) with threshold d,, s defined in (7.7) satisfy P [15 < 0o A ], # I*] <
d.

To prove that TTTS and T3C allow to reach a 3-optimal sample complexity, one needs to quantify
how fast the measurement effort for each arm is concentrating to its corresponding optimal
weight. For this purpose, we introduce the random variable

T; éinf{N 3 max|Tn,i/n—wf| <& Vn 2N}.
icA
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The second step of our analysis is a sufficient condition for 8-optimality, stated in Lemma 4}
Its proof is given in Appendix[7.F} The same result was proven for the Chernoff stopping rule
by Qin, Klabjan and Russo, 2017/

Lemma 4. Let 8, 3 € (0,1). For any sampling rule which satisfies E [Tg] < oo forall e >0, we

lim sup 7E [7s]
50 10g(1/8)

if the sampling rule is coupled with stopping rule (7.4),

have
<

>

1
1—**

Finally, it remains to show that TTTS and T3C meet the sufficient condition, and therefore the
last step, which is the core component and the most technical part our analysis, consists of
showing the following.

Theorem 7.5. Under TTTS or T3C, E [Tﬁg] < 400,

In the rest of this section, we prove Theorem[7.3]and sketch the proof of Theorem|[7.5| But we
first highlight some important ingredients for these proofs.

7.4.1 Core ingredients

Our analysis hinges on properties of the Gaussian posteriors, in particular on the following tail
bounds, which follow from Lemma 1 of Qin, Klabjan and Russo, 2017}

Lemma 6. Foranyi,je A, if i < pin,j

2
1 Un,j — Un,i
11, [491' > 61’] < 5 €XP {—(2]05”)} > (7.8)
1 (#ni = bt + 0nsif)”
n,j = Hn,i n,i,j
11, [9, > 6]] 2> \/ﬁ exp{— 20'?21314’1- }> (7.9)

2 a2 2
where Opij =0 [Toi + 0% Ty, ;.

This lemma is crucial to control 4, ; and v, ;, the optimal action and selection probabilit-
ies.

7.4.2  Proof of Theorem|7.3|
We upper bound the desired probability as follows

Plrs<ooAJr, #I"]< Y P[Ineay; > cysl
i+l*
< Z P[3neIl,(0; 201,) > cuo>ing < ni)
i+l*

< Z P [371 el- Cp,s > Hn(6[*> 91‘),‘[4”,]* < //ln),‘] .

i#I*
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The second step uses the fact that as ¢, s > 1/2, a necessary condition for I1,,(6; > 0;1,) > ¢,
is that p,; > p, 1, . Now using the lower bound (7.9), if pn, 1+ < fn,;» the inequality 1 — ¢, 5 >
I1,(6;- > 0;) implies

2

o )2 1 1
Mz In———-—| =dus
20 \V 2”(1 - Cn,(?) \/E

i, I*
where the equality follows from the expression of ¢, 5 as function of d,, 5. Hence to conclude
the proof it remains to check that

2 s
20, ; 1+

pypa— * 2
P[3”€Hn,i Zﬂn,p,wzdm]SKal. (7.10)

To prove this, we observe that for g, ; > iy 1+,

(,un,i - ‘un,l*)z _

2
20, 1+

inf Tn,id(//‘n,i;ei) + Tn,I*d(,un,I*§ 91*)
0i<0;«
< T id (s i) + T d(fn, 15 pr+).

Corollary 10 of Kaufmann and Koolen, [2018 then allows us to upper bound the probabil-
ity
P(3ne T, id(pnis i) + To - d(fn,r» phr+) > dns |

by 8/ (K-1) for the choice of threshold given in (7.7, which completes the proof that the stopping
rule is 8-correct. The fact that the Chernoft stopping rule with the above threshold d,, s
given above is §-correct straightforwardly follows from (7.10).

7.4.3 Sketch of the proof of Theorem |ﬁ

We present a unified proof sketch of Theorem [7.5|for TTTS and T3C. While the two analyses
follow the same steps, some of the lemmas given below have different proofs for TTTS and T3C,
which can be found in Appendix[7.D]|and[7.E|respectively.

We first state two important concentration results, that hold under any sampling rule.

Lemma 7. [Lemma 5 of Qin, Klabjan and Russo|2017] There exists a random variable W1, such

that for all i € A,
10 e+ T, i
Vne, |uni—pil <oWiy } g1(+Tm”) a.s.,

andE[e)‘W‘] < oo forall A > 0.

Lemma 8. There exists a random variable W, such that for all i € A,

Ve |Tyi— Wil < War/(n +1)log(e? + n) as.,

and E [eAWZ] < oo forany A > 0.
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Lemma [7 controls the concentration of the posterior means towards the true means and
Lemmaestablishes that T, ; and ¥, ; are close. Both results rely on uniform deviation in-
equalities for martingales.

Our analysis uses the same principle as that of TTEI: We establish that T is upper bounded
by some random variable N which is a polynomial of the random variables W; and W, in-
troduced in the above lemmas, denoted by Poly(W;, W) £ O(W," W,?), where ¢; and ¢, are
two constants (that may depend on the arms’ means and the constant hidden in the O). As all
exponential moments of W; and W, are finite, N has a finite expectation as well, concluding
the proof.

The first step to exhibit such an upper bound N is to establish that every arm is pulled sufficiently
often.

Lemma 9. Under TTTS or T3C, there exists Ny = Poly(Wy, W5) s.t.

Vn >N, Vi, Ty; 2 \/z, a.s..
K

Due to the randomized nature of TTTS and T3C, the proof of Lemma|g|is significantly more
involved than for a deterministic rule like TTEI. Intuitively, the posterior of each arm would
be well concentrated once the arm is sufficiently pulled. If the optimal arm is under-sampled,
then it would be chosen as the first candidate with large probability. If a sub-optimal arm is
under-sampled, then its posterior distribution would possess a relatively wide tail that overlaps
with or cover the somehow narrow tails of other overly-sampled arms. The probability of that
sub-optimal arm being chosen as the challenger would be large enough then.

Combining Lemma|o|with Lemma [7|straightforwardly leads to the following result.

Lemma 10. Under TTTS or T3C, fix a constant € > 0, there exists Ny = Poly(1/¢, Wy, Ws) s.t.
Vn>NpVieA, |pni-—pil<e

We can then deduce a very nice property about the optimal action probability for sub-optimal
arms from the previous two lemmas. Indeed, we can show that

A2,
Vi+I*, a;<exp {— 16““; IZ}
o

for n larger than some Poly(W;, W), where Ap, is the smallest mean difference among all
the arms.

Plugging this in the expression of v, ;, one can easily quantify how fast y,, ;« converges to f3,
which eventually yields the following result.

Lemma 11. Under TTTS or T3C, fix € > 0, then there exists N3 = Poly(1/e, Wi, W) s.t. Vn > N3,

‘ Tn,I*
n

-l <e
The last, more involved, step is to establish that the fraction of measurement allocation to every
B

it

sub-optimal arm i is indeed similarly close to its optimal proportion w
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Problem 1, Gaussian bandits, 6 = 0.01 Problem 2, Gaussian bandits, 6 = 0.01
7000

2000
T 6000

5000
1500

l 4000
1000 l 3000

2000
500

1000

0 0
T3C TTTS TTEI BC D-Tracking Uniform UGapE T3C TTTS TTEI BC  D-Tracking Uniform  UGapE
Problem 1, Bernoulli bandits, 6 = 0.01 Problem 2, Bernoulli bandits, 6 = 0.01
450 ==
400
400
350
350
300
300
250
250 200
200 150
150 1 100
100 50
T3C TTTS BC D-Tracking  Uniform UGapE T3C TTTS BC D-Tracking  Uniform UGapE

Figure 7.1: Black dots represent means and oranges lines represent medians.

Lemma 12. Under TTTS or T3C, fix a constant € > 0, there exists Ny = Poly(1/e, Wi, Ws) s.t.
Vn> N4,
Tn,i w,B

Vil -
n

<e.

The major step in the proof of Lemmalia|for each sampling rule, is to establish that if some arm
is over-sampled, then its probability to be selected is exponentially small. Formally, we show
that for n larger than some Poly(1/e, Wy, W;),

\Pni
_’wa+f = i <exp{-f(n,§)},

n
for some function f(n, £) to be specified for each sampling rule, satisfying f () > C¢\/n (a.s.).

This result leads to the concentration of ¥,, ; /n, thus can be easily converted to the concentration
of T,,;/n by Lemmalg|

Finally, Lemma and Lemma show that T is upper bounded by N = max (N3, Ny), which
yields

E[T§] < max(E [N3],E [Ny]) < 0.
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Sampling rule Execution time (s)
T3C 1.6 x107°
TTTS 2.3x107*
TTEI 1x107°
BC 1.4 x107°
D-Tracking 1.3x1073
Uniform 6 x107°
UGapE 5x107°

Table 7.1: Average execution time in seconds for different sampling rules.

7.5 Optimal Posterior Convergence

Recall that a,, ;« denotes the posterior mass assigned to the event that action I* (i.e. the true
optimal arm) is optimal at time n. As the number of observations tends to infinity, we want
the posterior distribution to converge to the truth. In this section we show equivalently that
the posterior mass on the complementary event, 1 — a,, 1+, the event that arm I* is not optimal,
converges to zero at an exponential rate, and that it does so at optimal rate FE .

Russo (2016) proves a similar theorem under three confining boundedness assumptions (see
Russo 2016, Assumption 1) on the parameter space, the prior density and the (first derivative
of the) log-normalizer of the exponential family. Hence, the theorems in Russo, 2016 do not
apply to the two bandit models most used in practice, which we consider in this chapter: the
Gaussian and Bernoulli model.

In the first case, the parameter space is unbounded, in the latter model, the derivative of the
log-normalizer (which is e”/(1 + e")) is unbounded. Here we provide a theorem, proving
that under TTTS, the optimal, exponential posterior convergence rates are obtained for the
Gaussian model with uninformative (improper) Gaussian priors (proof in Appendix[7.H), and
the Bernoulli model with Beta(1,1) priors (proof in Appendix[7.I).

Theorem 7.13. Under TTTS, for Gaussian bandits with improper Gaussian priors and for Bernoulli
bandits with uniform priors, it holds almost surely that

1
lim —= log(1—a, ) = T%.
im -~ og(l-au)=TIj

n—oo

2.6 Numerical Illustrations

This section is aimed at illustrating our theoretical results and supporting the practical use of
Bayesian sampling rules for fixed-confidence BAIL

We experiment with 3 Bayesian sampling rules: T3C, TTTS and TTEI with 3 = 1/2, against
the Direct Tracking (D-Tracking) of Garivier and Kaufmann, 2016 (which is adaptive to f3),
UGapE of Gabillon, Ghavamzadeh and Lazaric, 2012, and a uniform baseline. To make fair
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comparisons, we use the stopping rule and associated recommendation rule for all of the
sampling rules except for UGapE which has its own stopping rule.

We further include a top-two variant of the Best Challenger (BC) heuristic (see Ménard, |2019).
BC selects the empirical best arm T, with probability f and the maximizer of W, (T,,, j) with
probability 1 - f3, but also performs forced exploration (selecting any arm sampled less than \/n
times at round #). T3C can thus be viewed as a variant of BC in which no forced exploration is
needed to converge to w”, due to the noise added by replacing T,, with I 5,1). This randomization
is crucial as BC without forced exploration can fail: we observed that on bandit instances with
two identical sub-optimal arms, BC has some probability to alternate forever between these two
arms and never stop.

We consider two simple instances with arm means given by g; = [0.5 0.9 0.4 0.45 0.44999],
and g, = [10.8 0.75 0.7]. We run simulations for both Gaussian (¢ = 1) and Bernoulli bandits,
with a risk parameter § = 0.01. Fig. [.1 reports the empirical distribution of 75 under the
different sampling rules, estimated over 1000 independent runs. We also indicate the values
of N* 21og(1/8)/T* (resp.N§ s 21og(1/8) /Ty 5), the theoretical minimal number of samples
needed for any strategy (resp.any 1/2-optimal strategy). In Appendix|.C, we further illustrate
how the empirical stopping time of T3C matches the theoretical one.

These figures provide several insights: (1) T3C is competitive with, and sometimes slightly
better than TTTS/TTEI in terms of sample complexity. (2) The UGapE algorithm has a larger
sample complexity than the uniform sampling rule, which highlights the importance of the
stopping rule in the fixed-confidence setting. (3) The fact that D-Tracking performs best is
not surprising, since it converges to w” and achieves minimal sample complexity. However,
in terms of computation time, D-Tracking is much worse than others, as shown in Table[7.1,
which reports the average execution time of one step of each sampling rule for g, in the Gaussian
case. (4) TTTS also suffers from computational costs, whose origins are explained in Sec.
unlike T3C or TTEI. Although TTEI is already computationally more attractive than TTTS, its
practical benefits are limited to the Gaussian case, since the Expected Improvement (EI) does
not have a closed form beyond this case and its approximation would be costly. In contrast,
T3C can be applied for other distributions.

7.7 Conclusion

We have advocated the use of Bayesian sampling rules for BAL In particular, we proved that TTTS
and a computationally advantageous approach T3C, are both $-optimal in the fixed-confidence
setting, for Gaussian bandits. We further extended the Bayesian optimality properties (Russo,
2016)) to more practical choices of models and prior distributions. In order to be optimal, these
sampling rules would need the oracle tuning " = argmax,, ;; s, which is not feasible. In
future work, we will investigate the efficient online tuning of f3 to circumvent this issue. We also
wish to obtain explicit finite-time sample complexity bound for these Bayesian strategies, and
justify the use of these appealing anytime sampling rules in the fixed-budget setting. The latter
is often more plausible in application scenarios such as BAI for automated machine learning (Li
et al.,2017; Shang, Kaufmann and Valko, 2019).
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7.A  Outline

The appendix of this chapter is organized as follows:

Appendix[7.C|provides some further numerical illustration for better understanding of T3C.
Appendix [7.D|provides the complete fixed-confidence analysis of TTTS (Gaussian case).
Appendix7.E|provides the complete fixed-confidence analysis of T3C (Gaussian case).
Appendix[7.Fis dedicated to Lemmalg]

Appendix[7.Glis dedicated to crucial technical lemmas.

Appendix[7.H is the proof to the posterior convergence Theorem [7.27](Gaussian case).
Appendix[7IJis the proof to the posterior convergence Theorem[7.34|(Beta-Bernoulli case).

=.B  Useful Notation

In this section, we provide a list of useful notation that is applied in appendices (including
reminders of previous notation in the main text and some new ones).

o Recall that d(y;; 42 ) denotes the KL-divergence between two distributions parametrized
by their means y; and p,. For Gaussian distributions, we know that

_ 2
d(ps ) = 7(#12052) :

When it comes to Bernoulli distributions, we denote this with kI, i.e.

1-
kl(.‘"l;‘“Z):Hlln(:l)+(l—y1)ln( ‘ul),
2

1—‘1,12

o Beta(-,-) denotes a Beta distribution.

o Bern(-) denotes a Bernoulli distribution.

« B(-) denotes a Binomial distribution.

« N(,-) denotes a normal distribution.

o Y, ;is the reward of arm i at time .

« Y, , is the observation of the sampling rule at time #.

o Fu2o(h, Vo150, Yo, Iy, Yu1,) is the filtration generated by the first n observa-

tions.
* Vi 2P[I, =i|F,]
® \Iln,i = 27:1 V/l,i-

« For the sake of simplicity, we further define y, ; = \Pn .

o T,,; is the number of pulls of arm i before round ».

« T, denotes the vector of the number of arm selections.

o I, = argmax, , {4, denotes the empirical best arm at time 7.

o Forany a, b > 0, define a function C, j, s.t. Vy,

Can(y) 2 (a+b-1)kI(—2
a

+b—1;y)'
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o We define the minimum and the maximum means gap as

A A

Amin 2 min|p; — pjls  Amax = max|u; — pjl.
i#j i*j

o We introduce two indices

(Y] (2) »
n

= argmaxdy,;; n = argmaxa, .
J 150

Note that J 5,1) coincides with the Bayesian recommendation index J,,.
o Two real-valued sequences (a,) and (b,,) are are said to be logarithmically equivalent if

1 a
lim —1 il
o Og(b )

n—oo n n

03
and we denote this by a, = b,,.

7.C Empirical vs. theoretical sample complexity

In Fig. [7.2, we plot expected stopping time of T3C for § = 0.01 as a function of 1/ I'; on 100
randomly generated problem instances. We see on this plot that the empirical stopping time
has the right linear scaling in 1/T s (ignoring a few outliers).

4x10°

Empirical stopping time
S

°
0 95

5.0x10° 1.0x10° 15x10° 2.0x10°
1/Gamma_beta™*

°

Figure 7.2: dots: empirical sample complexity, solid line: theoretical sample complexity.

7.D Fixed-Confidence Analysis for TTTS

This section is entirely dedicated to TTTS.

7.D.1  Technical novelties and some intuitions

Before we start the analysis, we first highlight some technical novelties and intuitions. The main
novelty in our analysis is the proof of Lemmalg] establishing that all arms are sufficiently explored
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by our randomized strategies. Although Qin, Klabjan and Russo, 2017 indeed establish a similar
result, our proof is much more intricate due to the randomized nature of the two candidate
arms IV and I® for TTTS (resp. IV for T3C). In the proof of Lemma@ (in Appendix
and Appendix [7.E.1 respectively), we need to add a sort of ‘extra layer’ where we first studi

the behaviour of JV and J® for TTTS (resp. J® and J@ for T3C). We show in Lemma

(resp. LemmaEfor T3C) that if there exists some under-sampled arm, then either J @ or
J® is also under-sampled. A link between I and J is then established using the expression of
Wn,i>» which also allows to upper bound the optimal action probability with a known rate (see

Lemmali7).

7.D.2  Sufficient exploration of all arms
proof of Lemmalg under TTTS

To prove this lemma, we introduce the two following sets of indices for a given L > 0: Vn € N
we define

Ut {i:T,;<VL},

viegioT, <134
It is seemingly non trivial to manipulate directly TTTS’s candidate arms, we thus start by
connecting TTTS with TTPS (top two probability sampling). TTPS is another sampling rule

presented by Russo, 2016 for which the two candidate samples are defined as in Appendix|7.B}
we recall them in the following.

1) . 2) .
,(1 ) 2 argmaxan,j,ff, )2 argmaxa,, ;.

J =

Lemma g]is proved via the following sequence of lemmas.

Lemma 14. There exists L, = Poly(W)) s.t. if L > Ly, for all n, U- # @ implies ],(,1) e VEor
@ ey,

Proof. If ] O VL, then the proof is finished. Now we assume that ] O VI, and we prove that
(2) L
n €V,

Step1 According to Lemma there exists L, = Poly(W;) s.t. YL > Ly, Vi € UL,

log(e + Ty,;)
1+ Tn,i

log(e + VL)
1+ \/f
Amin _ Amin
40W, 4

|tn,i = pil < an\

S(TVVl\

<oW;

The second inequality holds since x % is a decreasing function. The third inequality

holds for alarge L > L, with L, = . ...
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Step2 We now assume that L > L,, and we define
J; £ argmax i, j = argmax ;.

j<UE j<U?

The last equality holds since Vj € UL, |uy.; — i] < Amin/4. We show that there exists L3 =

Poly(W;) s.t. VL > L3,
T = (1)
n [

We proceed by contradiction, and suppose that J; # 7, then H,,m < H, 5 since 7 e VEic

UL. However, we have

O]

anJE‘l) =11, [6]51) > ma]x 9]-:|
j#Iu

<L, [615” > eﬁ]

1 (#,y0 =, 7)°
SoexXpy - .
2 20 (I/Tn’]ﬁl) +1/T”’E)

The last inequality uses the Gaussian tail inequality (7.8) of Lemma[6} On the other hand,

=10 = 0 + 0~ g =, 7]

|, 0 =t 57
2 |0 — pgel = w0 — By + pE =,
Ami Ami
> Amin _ ( Zun " Zun)
_ Amin
2 b
and
1 1 2
+ < —
T ]r(x1) Tn,ﬁ L
Thus, if we take Ls s.t.
expq — LyAnin < i,
1602 2K
then for any L > L3, we have
1 1
Wi =K S K

which contradicts the definition of J ,(11). We now assume that L > L, thus J ,(11) =7

Step3 We finally show that for L large enough, | @ ¢ VL. First note that V j € V-, we have

LAY
an,; <11, [Hj > Gﬁ] < eXP{_l602 . (7.11)
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This last inequality can be proved using the same argument as Step 2. Now we define another
index J; = argmax ;. fin,j and the quantity ¢, = max(¢y,jz> 4, 7). We can lower bound a,, j»
as follows:

An,Jt > 11, [9]; > Cn] H I, [91 < Cn]

i
=, [0;2¢co] I Ta[0;<cu] [T [0 <cu]
j#TEseUt jeUr
1

> Hn [9]: > Cn] F

Now there are two cases:

« Iy > p, 57> then we have

0, [0); 2 ] = T [0 2 p gz ] 2

N | =

e If y,; < p, 7> then we can apply the Gaussian tail bound of Lemma E, and we
obtain

IL, [6); > cu] =11, [91:, 2 #n,ﬁ] =11, [9/: > gy + (55 = Mn,m)]

P\]

2
1 1 n,Jn
2 expy——|1- = U T
Van 2( g Hw))

2
1 1 Tn,];‘
= exp) = (1+ (Mn,,;—ﬂn,m))

o

On the other hand, by Lemmal[7} we know that

gy = b, 75 = Wty = bz + gy — g+ g — 5

<lugy = pgl + oWh

log(e + T, ;=)
1+ Tn,]:

< uy; = gzl +20W;

log(e + T, ;=
< Amax + 20 Wi log(e + Tuy;).
1+Tn,]:
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Therefore,

log(e + T, j+)

Hn [8]: > Cn] > Amax +2UVVI

1+ Tn,];

[}
>
ae)
|
N | =
—_
—
+
=
=~
>
=4
0
=
+
=
5}
g
~
(3N
+
S
N
|38
—

Now we have

16 1\ 1 LY*Ana ’
a,,);;Zmax((z) ,(5) mexp{—z(l-raa-rzwl log(e+\/f)) ,

and we have Vj € VI, a,; < exp {-L%*A2,,/(160%)}, thus there exists Ly = Poly(W;) s.t.
VL > Ly, Vje VL,

an,];
an,j S 2 >
(2) L
and by consequence, ], € V.
Finally, taking L; = max(L,, L3, L4 ), we have VL > L,, either ]f,l) eVlor ]5,2) e VL O

Next we show that there exists at least one arm in V! for whom the probability of being pulled
is large enough. More precisely, we prove the following lemma.

Lemma 15. There exists L, = Poly(W;) s.t. for L > L, and for all n s.t. UL # @, then there exists
Jao€VEst.

5 min(f,1-f3)

K2 = l/’min .

Yn,J,

Proof. Using Lemma E, we know that J$” or J{) ¢ V. On the other hand, we know that

VieA,w,;=an,; (/3+(1_ﬂ)z f”»] )

Therefore we have

l//n,]’(ql) > ﬁan’]’sl) > g,
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since Y ;e 4 an,i =1, and

) a, ;o
> — a —n
Vg 2 (1= B,y 7=, =0

»Jn

. an’ 5.2)
=(1-B)a
( ﬁ) n’jf‘l)l—a o
n,),
L8
K2
since a, ;) 2 1/K and oo an:/(1- an)]g)) =1, thus amﬁz)/(l - an,/ﬁo) >1/K. O

The rest of this subsection is quite similar to that of Qin, Klabjan and Russo, 2017. Indeed, with
the above lemma, we can show that the set of poorly explored arms U~ is empty when  is large
enough.

Lemma 16. Under TTTS, there exists Ly = Poly(W;, W;) s.t. VL > Ly, U[LKLJ =@.

Proof. We proceed by contradiction, and we assume that U[LKL | is not empty. Then for any
1< ¢ < |KL|, U and V} are non empty as well.

There exists a deterministic L s.t. VL > Ls,
|L] > KL,

Using the pigeonhole principle, there exists some i € A s.t. Tj;); > L**. Thus, we have
Vil <K-1

Next, we prove |VL2LJ| < K - 2. Otherwise, since U/ is non-empty forany |L| +1< ¢ < [2L],
thus by LemmaE,Lthere exists J; € VZL s.t. ¥g,5, > Wmin. Therefore,

Z Ye,i 2 Ynmins
eV}
and
Z 1/’2,1’ 2 ll/min
7 L
IGV[LJ
since Vi © V|7 |. Hence, we have
[2L]

Z (Yae)i = Yepi) = Z Z Vei > Ymin [ L]

) - iyl
eVl 12 [LJH’EVLLJ
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Then, using Lemma|8] there exists Ls = Poly(W,) s.t. VL > Ls, we have

Z (TLZLJ,i - T[LJ,i) > Z (\IILZLJ,I' - \II[LJ,i - ZWZ\/LZLJ log(ez + LZLJ))
eVl eVl
> Z (\IILZLJ,Z' - \II[LJ,i) - ZKWZ\/LZLJ log(ez + LZLJ)

ievﬁj

> Ymin | L] = 2KW5C, | LJ*
> KL,

where C, is some absolute constant. Thus, we have one arm in V[LL | that is pulled at least L3/*
times between | L| + 1 and | 2L |, thus |V[L2LJ| <K-2.

By induction, for any 1 < k < K, we have \Vﬁd” < K - k, and finally if we take Ly =
maX(Ll) L5, L6)) then VL > Lo, UI_LKLJ =J. D

We can finally conclude the proof of Lemmalg| for TTTS.

Proof of Lemmalg Let Ny = KL, where Ly = Poly(W;, W,) is chosen according to Lemma|1_6.
For all n > Ny, we let L = n/K, then by Lemma ‘ we have U[LKL | = U, /K i empty, which
concludes the proof.

7.D.3 Concentration of the empirical means,
proof of Lemma[10lunder TTTS

Asa corollary of the previous section, we can show the concentration of y,, ; to y; for TTT
By Lemmal7} we know that Vi € Aand n € N,

log(e + Ty,;)

i — il < oW .
|.un,t ‘“1‘ 1 Tpi+1

According to the previous section, there exists N; = Poly(W;, W,) s.t. Vi > Nj and Vi € A,

T,.; > \/n/K. Therefore,

|thn,i = pil <

5this proof is the same as Proposition 3 of Qin, Klabjan and Russo, 2017
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since x — log(e + x)/(x + 1) is a decreasing function. There exists N; = Poly(e, W) s.t.

Vn > Ny,
log(e ++/n/K) p 2(n/K)4 P
VrfK+1 "\ \/n/K+1 "~ oW

Therefore, Vn > N, = max{N;, N;}, we have

&
ni— Wil SOW——.
|tni = pil < oW p
7.D.4 Measurement effort concentration of the optimal arm,
proof of Lemma [11]under TTTS

In this section we show that the empirical arm draws proportion of the true best arm for TTTS
concentrates to f when the total number of arm draws is sufficiently large.

The proof is established upon the following lemmas. First, we prove that the empirical best
arm coincides with the true best arm when the total number of arm draws goes sufficiently
large.

Lemma 17. Under TTTS, there exists M, = Poly(W;, W,) s.t. Yn > My, we have I’ = I* = ,(,1)
and Vi + I,
Al [m
a,;<e -t
Xp{ 1602 K}

Proof. Using Lemma@with € = Apin/4, there exists N = Poly(4/Amin, Wi, W) s.t. Vn > Nj,

Amin

VieA, |upi— il < ,
i€ Alpn,i il < =

which implies that starting from a known moment, y,, 1+ > y, ; for all i # I*, hence I; = I*.
Thus, Vi # I,

ay,i = 11, |:0, > maxﬁj]
Jj#i

<II, [91 > 01*]

p— * 2
< lexp - (fni = s .
2 202(1/Tn),‘+1/Tn)[*)

The last inequality uses the Gaussian tail inequality of (7.8) Lemmal6] Furthermore,

(/"n,i — Un,1* )2 = (|.”n,i - /”n,l*|)2
= (pm,i = i + i = pre + prs = i1 )?
> (|pi = e = i = pi + e = i re])’?

> (Amin - (Azin + Al:;in ))2 = Aiﬂn >
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and according to Lemmalg} we know that there exists M, = Poly(Wj, W) s.t. Vnn > M,

Thus, Vn > max{N|, M, }, we have

A2
Vil a,,;< exp{—mml;\/g}.
o

Then, we have

A%,
apg-=1- Zan,izl—(K—l)exp{— min n}.

o 1602 V K

There exists M} s.t. Vn > M}, a,» > 1/2, and by consequence I* = 7. Finally taking
M; £ max{Nj, M,, M’} concludes the proof. O

Before we prove Lemma|u1} we first show that ¥, ;- /n concentrates to .

Lemma 18. Under TTTS, fix a constant € > 0, there exists M3 = Poly(e, W;, W,) s.t. Y > Ms,
we have

<e.

\Pn,I*
|2 -

n

Proof. By Lemma |17} we know that there exists M{ = Poly(Wj, W) s.t. Vn > M, we have
I'=I"= ,(11) and Vi + I*,

n

AL [m
An,i < exp{—m“(‘;; K}'

Note also that Vn € N, we have

a.
Wn,[*:an,l* ﬁ""(l_/j)z = .
jI* l—an,j

We proceed the proof with the following two steps.
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Step1  We first lower bound ¥, |+ for a given ¢. Take My > M; that we decide later, we have
Vn > My,

\Ijn,l* 12 1 My n
=*ZVM*=*ZV/U*+* Z Vi,
n i nr I=My+1
1 & 1 Z
2 — Z Vi 2 — Z arr-p
oM+l Mi=mMn1
S (E
MM+ jEI*
L A% !
ZE o[- (K-1)expq- N\ =
n M 160 K
X i
nl =My+1 P 16 2 K
M4 (I’l M4) Amm M4
2 f- 7/3 ——B(K-1)exp TEAVAN

> -2 p(K - 1)exp{ s ]f(}

For a given constant ¢ > 0, there exists Ms s.t. Vn > Ms,

n

AL
ﬁ(K—l)eXp{—mUz K}<

[\SRIN

Furthermore, there exists Mg = Poly(¢e/2, Ms) s.t. Vn > Mg,

Therefore, if we take My £ max{M;, M5, Mg}, we have Vn > My,

\PnI*
— 2>p-c
2P
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Step2 On the other hand, we can also upper bound ¥, ;. We have Vn > M3,

\I’n,l* _ 1<
w7 IZ:;V/Z,I*

Yo (pr-p) ¥

=— 2 4L -
ni; jEI* l—al,j
1 & arj

S*Zall*ﬂ"r*zall* — >
nig ;¢I* l—al,j

al)j

<priy(-p

n i Jﬂ* l-ay;
exp {— Ay \/I}
1602 K
1- .
Z( ﬁ) ;" A12'nm l
! B ATV
Since, for a given & > 0, there exists Mg s.t. Vn > Mg,
A% \/7 1
expy——22, /=1t < -,
p{ 1602 V K 2

and there exists My s.t. V1 > Mo,

n

(l—ﬁ)(K—l)eXp{—Ami“ K} <

1602

™ m

Thus, Vn > Mjy = max{ Mg, My},
A /L A /1
¥, . 1- B | Mo exp{ 1602V ¥ " P\ 1602 V ¥
. +
"1 A /L g2 M 1% 1* 1 A /1
~“SXP\ "2 V K 10 “SXP\ "2 V K

!

<3 p{ 2}50/&)(1“)&19{ m\/i}

n
- exp (- e

A? 1

min +
My P12 V K e
+ =

A% 2
I=1j#I" 1 - exp {_ To0? \/%}

There exists My, = Poly(¢e/2, Myg) s.t. Vi > My,
exp —A‘Z“‘"\/I
B Mio 160> V K €
< -,
Z Z A% I 2
1T - exp { - o\ /4

—

I/\

1-
n
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Therefore, Vn > M; £ max{ M3, My; }, we have

\Pnl*
—— <p+e
<P

Conclusion Finally, combining the two steps and define M3 = max{M4, M}, we have
Vn > Ms;,

\Pn I*
— - p|<e.
i
O
With the help of the previous lemma and Lemma|} we can finally prove Lemma
Proof of LemmaE Fix an € > 0. Using Lemma we have Vn € N,
Tor Yoo p Wiy/(n +1)log(e +n)
n no|- n '
Thus there exists My, s.t. Vn > My,
‘Tn,l* _ \Pn,l* E
n no|”2
And using Lemmali8, there exists M} = Poly(e/2, Wi, W,) s.t. Vi > M3,
\I’n I* €
gl &
‘ n A< 2
Again, according to Lemmalis, there exists M} s.t. Vn > Mj,
W1 £
— < p+—.
n B 2
Thus, if we take N3 £ max{ M}, M1, }, then Vn > N3, we have
Tn I*
— —pl<e
s
u

7.D.5 Measurement effort concentration of other arms,
proof of Lemma 12 under TTTS

In this section, we show that, for TTTS, the empirical measurement effort concentration also
holds for other arms than the true best arm. We first show that if some arm is overly sampled at
time n, then its probability of being picked is reduced exponentially.
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Lemma 19. Under TTTS, for every & € (0,1), there exists S = Poly(1/&, W, W,) such that for
alln> 8, foralli #I*,

\Pn,i

i <exp{-e(§)n},

where ¢ is defined in below.

Proof. First, by Lemmali7| there exists M{’ = Poly(W;, W,) s.t. Yn > M{’,
r=r=".

Then, following the similar argument as in Lemma|[31} one can show that for all i # I* and for
all n > MY,

(/5+(1—/3)Z )
jei - On,

=i An, j
< a,,,,-ﬁ+a,,,,»(1 ﬁ) ] !

](1)
2

_%$+%(hﬁ)ﬁ;
n,I*

< an,iﬁ+an,i(1 ﬁ) ~a,
I*

< an,i

1- an,[*
I1,[0; > 0]
a Hn [Uj#l*ej > 91*]
I1, [9, > 61*]

a man¢1* Hn [01 > 61*] .

Using the upper and lower Gaussian tail bounds from Lemma 6} we have
exp - (.un,l* - .“n,i)2
202 (I/Tn)j* + I/Tn),')
V/n,i 2
1 (n,s = tin,j)

exp | —min -~ -1
P02\ o\ /(Y T +1/ T, )

_ )2
exp {_n (/"n,I ["n,z) }

IN

202 (n/ Ty +1n/Ty;)

2\ °

. (Unr — .”mj)
exp{ —n | min

1
#r \/202 (T’l/Tn)I* +T’Z/Tn)j) \/ﬁ
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where we assume that n > S, = Poly(W;, W) for which

(,“n,l* _!'411,i)2 51
0'2 (I/TH,I* + I/Tn)i) B

according to Lemmalo| From there we take a supremum over the possible allocations to lower
bound the denominator and write

_ )2
exp{-n (,un,l ,un,l)
202 (ﬂ/TnJ* + ﬂ/Tn)i)

2

expiy-—n sup min (‘u”’l* _ ‘u"’i)

1
@wp =T, [n 7* \/202 (Yowp +1/w;) Vv 2n
_ )2
exp{—n (,un,I ,“n,z) }

202 (n/ Ty +n[T, ;)
exp{—n (\/m_ \/12—”) }

where py = (4n,1,+ pinx)> and (B, u) = T (u) represents a function that maps f and p to
the parameterized optimal error decay that any allocation rule can reach given parameter 8

and a set of arms with means g. Note that this function is continuous with respect to 8 and p
respectively.

Now, assuming ¥, ; /n > wf + Eyields that there exists S5 = Poly(2/¢, W5) s.t. forall n > S,
Tuifn > wf + &/2, and by consequence,

([/ln,l* - Hn,i)z

202 (n/ Ty +1/(f +E/2))

Yn,i S €xpq—n +
2n n

- r;n)p/n ([’ln) -

&n(8)

Using Lemmabl, we know that for any ¢, there exists S3 = Poly(1/e, Wi, W) s.t. Vn > S;,
| T+ /n = P|<e;and Vje A, |uy,; - pj| < e Furthermore, (B, ) = I'; (p) is continuous with

respect to B and g, thus for a given ¢, there exists S = Poly(1/eg, Wi, W5) s.t. Vi > S5, we
have

(- —pi)? .
Ep g) - -T < &o.
O 5 (VB +1(f+g2)) "

Finally, define §; = max{S$,, S}, S}}, we have Vn > §j,

Vn,i Sexp{-eo(§)n},



7.D. Fixed-Confidence Analysis for TTTS 235

where s
& () = G ) —F/§+eo. (7.12)

202 (1/8+1/(of + £2))

O

Next, starting from some known moment, no arm is overly allocated. More precisely, we show
the following lemma.

Lemma 20. Under TTTS, for every &, there exists Sy = Poly(1/&, Wi, W) s.t. Vn > Sy,

Vie A,

Proof. From Lemmaltg, there exists S{ = Poly(2/&, W;, W5) such that for all n > S{ and for all

T N
\Ijn,i B f

ref+ = Vi <exp{-eo(&/2)n}.

Thus, forall i # I,

n ¥,
Z Vei ( > fj+§) > 1//4,1-]1( 2’ Sw?-rg)

\Pn,,‘ Sl £=8{+1 25T
< —+ +
n n n "
(%) p £
Zexp{ eo(E/Z)n} Z Ve,i ( < W) +2)
S/ Z 1
< bl
n n n

where we let £,, (&) = max {€ <n:¥i/n< wf + 5/2} Then

S exp {~¢o(£/2)n}

Y, S' =
n

+ W, 0).i

. S{+(l—exp( 80(5/2)) !

n
Then, there exists S5 such that for all n > Ss,

S+ (1-expl-ea(§/2) " _
n T2

Therefore, for any n > S; = max{S},Ss}, ¥p,; < w{j + ¢ holds forall i # I*. For i = I*, it is
already proved for the optimal arm. O

We now prove Lemmali2|under TTTS.
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Proof of Lemmalfi2| From Lemmal|2o] there exists S§ = Poly((K - 1)/, Wy, W,) such that
forall n > S},
§

K-1

<wf +

\I/ .
Vie A, 2
n

Using the fact that ¥, ;/n and wf all sum to 1, we have Vi € A,

\Pni \Pﬂ‘
, :I_Z Ni
n o
: )
>1—Z(wﬁ+
j#i ! K-1
:wlﬁ—f
Thus, for all n > S}, we have
\Pni
VieA |l —of| <t
n

And finally we use the same reasoning as the proof of Lemmato link T, ; and ¥,, ;. Fix an
&> 0. Using Lemma([8] we have Vn € N,

Tn,i _ \Pn,i
n n

< Way/(n +1)log(e? + n).

Vie A,

Thus there exists S5 s.t. Vn > S5,

&
< =

5

‘ Tn,I* \Pn,I*

n n

And using the above result, there exists Sy = Poly(2/e, W;, W) s.t. Vn > S,

~of

1

‘\Pn,i <

n

€
5
Thus, if we take N = max{S}, S5}, then Vn > N4, we have

Tn,i B

_wi

Vie A,

<e.

7.E  Fixed-Confidence Analysis for T3C

This section is entirely dedicated to T3C. Note that the analysis to follow share the same proof
line with that of TTTS, and some parts even completely coincide with those of TTTS. For
the sake of clarity and simplicity, we shall only focus on the parts that differ and skip some
redundant proofs.
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7.E.1  Sufficient exploration of all arms, proof of Lemmalgunder T3C

To prove this lemma, we still need the two sets of indices for under-sampled arms like in
Appendix|[7.D.2. We recall that for a given L > 0: Vn € N we define

Ul {i:T,;<VL},

vie i, <134,

For T3C however, we investigate the following two indices,

0

£ argmaxa,,;; ,(12) £ argmin W, (],Sl),j).
; )

Lemma g]is proved via the following sequence of lemmas.

Lemma 21. There exists L, = Poly(W,) s.t. if L > Ly, for all n, UL # @ implies 7 e VEor

’_(\Z_SEVL
n n-

Proof. If ] O VL, then the proof is finished. Now we assume that JV e VE c UL, and we
prove that J& e VL

Step1  Following the same reasoning as Step 1 and Step 2 of the proof of Lemma|i4, we know
that there exists L, = Poly(W)) s.t. if L > L,, then

Jr = argmax {4, ; = argmax y; = f,l).

jeut jeUt
Step2 Now assuming that L > L,, and we show that for L large enough, J @ ¢ VE. In the
same way that we proved one can show that for all Vj € VL,

(#n,l* - /’ln,j)z > L3/4Arznin

5 2( L1 )‘ 1602
o
Tn,l* Tn,j

W, (70, j) =

Again, denote J;; £ argmax._,;; f,, j, we obtain

jeut
0 if gy e 2 OB
(1, 0 = thng: )’
Wn(]fll),fﬁ) = 2ol & else.
2( 1 1 )
20

+
Tn’]y(‘l) Tn,];
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In the second case, as already shown in Step 3 of Lemma [14) we have that

log(e + T, j+)
1+ Tn,];

log(e + /L)
1+vL

|‘un,]; n ]*| < Amax + ZGVVI\

< Apax + 20Wl\

since J; € UL. We also know that

2w L), 20° LZ
Tn,]ff) Ty ) Tug \/_

Therefore, we get

(1) <£ A 20 W, M
( ]) max t 20 W 1+\/Z

On the other hand, we know that for all j € VL,

3AN2
(1) L ~ Smin
W, > .
Un'0) 2 =3¢

Thus, there exists L3 s.t. if L > Ls, then

Vie VE W, i) 2 2w, G0, 12).

That means J$*) ¢ VI and by consequence, 5,2) e VE

Finally, taking L; = max(L,, L3), we have VL > Ly, either ]S,l) e VEor ]f,z) e VL

O

Next we show that there exists at least one arm in V" for whom the probability of being pulled

is large enough. More precisely, we prove the following lemma.

Lemma 22. There exists L, = Poly(W;) s.t. for L > Ly and for all n s.t. UL # @, then there exists

JoeVEst
min(S,1-f) ,

Yn,, 2 K2

= ¥min-

Proof. Using Lemmal we know that ], W or In e € VL. We also know that under T3C, for any

arm i, ¥, ; can be written as

L{ W, (jy i) = ming; W, (j k) }
v ,:ﬁan,,-+(1—[3)2an,j 3 2 ;
o |argm1nk¢j W, (j, k)|
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Note that (y,,;); sums to 1,

]I{Wn(j, i) = min;#j Wn(j’ k)}
V/n,i:/g""(l_/—;) @n,j i .
Zi: ZJ: j ; |argm1nk¢j W (j, k)|

:[34—(1—/3)2(1”,]':1.
J

Therefore, we have
> > E
Voo 2 Pa, o 2 K

on one hand, since Y ;. 4 dx,; = 1. On the other hand, we have

an’]’?)
v, (- )L

zl_ﬁ,
Kz

which concludes the proof. O

The rest of this subsection is exactly the same to that of TTTS. Indeed, with the above lemma,
we can show that the set of poorly explored arms U} is empty when 7 is large enough.

Lemma 23. Under T3, there exists Ly = Poly(W;, W;) s.t. VL > Ly, U[LKLJ =@.
Proof. See proof of Lemmali6]in Appendix[7.D.2, O

We can finally conclude the proof of Lemmag|for T3C in the same way as for TTTS in Ap-
pendix|[7.D.2! u

7.E.2 Concentration of the empirical means,
proof of Lemma |10/ under T3C

As a corollary of the previous section, we can show the concentration of y, ; to y;, and the
proof remains the same as that of TTTS in Appendix

7.E.3 Measurement effort concentration of the optimal arm,
proof of Lemma [u1junder T3C

Next, we show that the empirical arm draws proportion of the true best arm for T3C concentrates
to 3 when the total number of arm draws is sufficiently large. This proof also remains the same

as that of TTTS in Appendix[7.D.4}
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7.E.4 Measurement effort concentration of other arms,
proof of Lemma12 under T3C

In this section, we show that, for T3C, the empirical measurement effort concentration also
holds for other arms than the true best arm. Note that this part differs from that of TTTS.

We again establish first an over-allocation implies negligible probability result as follow.

Lemma 24. Under T3C, for every £ < g, with g, problem dependent, there exists S; = Poly(1/£, Wy, Ws)
such that for all n > Sy, for all i + I,

\Pn,i ﬁ Afnin n
TZwi+2£ = Y, <(K-1)exp e VK[

Proof. Fixi+I"st. ¥, ;/n> wf + 2¢, then using Lemma there exists S, = Poly(1/&, W;)
such that for any n > S,, we have

Tni
: wa+£,

n
Then,

Vi < Pani+(1-p) Z an,j]l{Wn(ﬂ i)= I}}i? W, (jis k)}

j*i
Sﬁan,i+(1—ﬁ)( S @+ a1 {W, (1) = min W"“*’k’})
jEi I

< D0+ L{W,(I", i) = min W, (I", k)}.
jEI* kI

Next we show that the indicator function term in the previous inequality equals o.

Using Lemmalz|and Lemmalulfor T3C, there exists S = Poly(1/&, Wy, W,) such that for any
n> S3,
Tn,I*

-B

n

<&andVje A, |un,—uj| < &

Now if Vj # I*, i, we have T, ;/n > wf,then

n_l_ Tn,j

n ]G.A n
T, T,
— n, + n,1+ Z
n no eri
2
>B-¢ +ofreq > wle,

i
j2I5 i

T,

n

which is a contradiction.
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Thus there exists at least one jo # I*, i, such that T}, j /n < wf. Assuming n > max(S,, S3), we
have

Wn(I*, l) _ Wn(I*,j()) _ (,un,l* ,un,l) _ (”n)l ﬂ »]0)
20° 1 + ! 20° ! + !
Tn,I* Tn,i Tn,I* Tn,jg
(pr — pi —28°)° (ur = pj, +28%)°

\Y%

202(1+1) oo
p-& wf+£ B+ & wfo

wt
irjo

. . 3 .
According to Proposmon Wy, converges to o when £ goes to o, more precisely we have

ijo L ( : /3) E+0(&8),

207 B+w

i
thus there exists a &y such that for all £ < ¢ it holds for all i, jo # I*, Wf B> 0. It follows then

W, (I, ) = min Wy (I, k) 2 Wy (I*, i) = W (I', jo) > 0,
=]

and 1{W, (I, i) = ming.p» W,(I",k)} = 0.

Knowing that Lemma[z]is also valid for T3C, thus there exists M; = Poly(4/A pin, Wi, Ws)
such that for all n > M;,

: * Arznin h
V]#:I ,an,jSexp —@ E ,
which then concludes the proof by taking S; £ max(M;, Sz, S3). O

The rest of this subsection almost coincides with that of TTTS. We first show that, starting
from some known moment, no arm is overly allocated. More precisely, we show the following
lemma.

Lemma 25. Under T3C, for every &, there exists Sy = Poly(1/&, Wi, W;) s.t. Vi > S,

\
Vied, —2L<of 428
n

Proof. See proof of Lemma20]in Appendix[7.D.5| Note that the previous step does not match
exactly that of TTTS, so the proof would be slightly different. However, the difference is only a
matter of constant, we thus still choose to skip this proof. O

It remains to prove Lemma|12|for T3C, which stays the same as that of TTTS.
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Proof of Lemmali2/for T3C  See proof of Lemmali2|for TTTS in Appendix[z.D.5|

7.F  Proof of Lemmalq

Finally, it remains to prove Lemma |4/ under the Gaussian case before we can conclude for
Theorem[7.2 for TTTS or T3C.

Lemma 4. Let 8, 3 € (0,1). For any sampling rule which satisfies E [TE] < oo forall e > 0, we

have
lim sup =701
50 log(1/3)

if the sampling rule is coupled with stopping rule (7.4),

S b

1
I‘*

For the clarity, we recall the definition of generalized likelihood ratio. For any pair of arms i, j,
We first define a weighted average of their empirical means,

Tn,i T4 Tn, j -
Tn,i + Tn,]‘ Hn Tn,i + Tn,j A"l”J'

T e
Un,i,j =

And if @, ; > @y, j, then the generalized likelihood ratio Z,, ; ; for Gaussian noise distributions
has the following analytic expression,

Zn,i,j = Tn,id(ﬁn,i;ﬁn,i,]’) + Tn,jd([//l\n,ﬁp\n,i,j)-
We further define a statistic Z,, as

Zyp2max min Z, ;.
ieA jeA\{i}

The following lemma stated by Qin, Klabjan and Russo (2017) is needed in our proof.
Lemma 26. For any { >0, there exists e s.t. Vn > Tg, Z,, > (I = {)n.

To prove Lemma 4} we need the Gaussian tail inequality (7.8) of Lemmale]

Proof. We know that

1= = ), an,

i#l*

< Z IT, [91 > 91*]
i#l*

= > M,[6; -0 >0]
i#l*

< (K—l) I_Il?XHn [9, - 91* > 0] .
i#]*
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We can further rewrite I1,, [6; — 6;- > 0] as

IT, [61 -0 > Un,i = Un,1 + Un1+ — Hn,i] .

We choose ¢ sufficiently small such that the empirical best arm I, = I*. Then, forall n > T} and

forany i # I*, y, 1+ > Uy,,;. Thus, fix any { € (0, FE/Z) and apply inequality of LemmaE
with y,, 1~ and p, ;, we have for any n > Tg,

1
1-a,p < (K—l)maxexp{
ixI* 2

_ (Mn,l* - P‘n,i)z}

2
20, ; 1+

_ (K-1)exp{-Z,}
2
) (K -1) exp {2—(r/; - ()n}'

The last inequality is deduced from Lemmal|26] By consequence,

£ K-1 *
Vl’l > T’B,ln(l— aﬂ,l*) SlnT - (rﬁ _()n.

On the other hand, we have for any #,

0
1-cps= .
2n(K -1
2n(K -1)\V2me exp{ 2In n((S)}
Thus, there exists a deterministic time N s.t. Vn > N,
0 2n(K -1)
In(l1-¢,5)=In———-Inn—-\/2In —=
( 2) (K -1)V/8me q
)
>In ———=-(n
2(K -1)v/2me
Let C; = (K —1)2\/2me, we have for any n > Ny = T; +N,
C3 *
In(l-a,<)-In(1-c,s) gln?—(rﬁ -2)n, (713)

and it is clear that E [Nj] < oo.

Let us consider the following two cases:

Case1 There exists n € [1, Ng| s.t. a, 1+ > ¢,5, then by definition,

Té‘SI’lSN].
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Case2 Foranyn € [1, Ny], we have a,, 1+ < ¢, 5, then 75 > Ny + 1, thus by Equation@,
0<In(l-ar1+) —In(1-cryo16)

< ln% = (T3 —20)(75 - 1),

and we obtain
TB S M + 1.
1"/; -2¢

Combining the two cases, and we have for any { € (0,T 3 /2),

Ts < max {NO, lrécj/z(? + 1}
In(C;) In(1/6)

+ .
r;-20 T;-2

§N0+1+

Since E[N;] < oo, therefore

E[T@] < 1

lim su < , Ve (0,T3/2),
P log(1/0) < Ty —ap "4 (O T

which concludes the proof. O

7.G  Technical Lemmas

The whole fixed-confidence analysis for the two sampling rules are both substantially based on
two lemmas: Lemma 5 of Qin, Klabjan and Russo, 2017/and Lemma We prove Lemmain
this section.

Lemma 8. There exists a random variable W, such that for all i € A,

Ve |Tyi— Wil < War/(n +1)log(e? + n) as.,

and E [e*"?] < oo for any A > 0.

Proof. The proof shares some similarities with that of Lemma 6 of Qin, Klabjan and Russo,
2017, For any arm i € A, define Vn € N,

a
D, = Tn,i - \Iln,i)

dn = ]1{1,1 = l} —Vn,i-
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It is clear that D,, = ¥/ d; and E [d,,|F,_1] = 0. Indeed,
E [dn|-7:n—l] =E []I{In = i} - Wn,i|-7:n—1]
P[I,=iF,]-E[P[I, = i|Fn1]|Fui]
=P[I, = i|Fu1] - P [, = i|Fp1] = 0.

The second last equality holds since P [I,, = i|F,,—;] is F,,—;-measurable. Thus D,, is a martingale,
whose increment are 1 sub-Gaussian as d,, € [-1,1] for all n.

Applying Corollary 8 of Abbasi-Yadkori, Pal and Szepesvari, 2012[6:, it holds that, with probability

larger than 1 - ¢, for all n,
ID,| < \l 2(1+n)1n( v 1(;”)

which yields the first statement of Lemmal3]

We now introduce the random variable

T . —, .
W, £ max max | L "”l

neN ieA \/(n+1)In(e2 +n)

-x2/2

Applying the previous inequality with § = e yields

P[3neN": D, > /(T+n) (n (T4 n) +22) | < P2,

P [Eln eN*:|D,| > /(1+n)In (e + n)xz] <e P,
where the last inequality uses that for all a, b > 2, we have ab > a + b.

Consequently Vx > 2, foralli € A

Tni_\I/ni —x?
P[max [T il 2x:|Sex/2.
neN \/(n +1)log (e + n)

Now taking a union bound over i € A, we have Vx > 2,

P[W, > x] < P [ max max i = ¥ >x
22T A e (n+1)log(\/ez+n) N

|Tn i _\Pn i‘
<P max : . > X
lig neN (n+1)log(Ve2 +n)

< Z P [ max [ Toi = Wi >x
ica | "N (n+1)log(VeZ+n)

< Ke™*12,

Sbut we could actually use several deviation inequalities that hold uniformly over time for martingales with
sub-Gaussian increments
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The previous inequalities imply that Vi € 4 and Vn € N, we have
‘Tn,i — \Iln’,'| < Wz\/(l’l + 1) 10g(€2 + 1’1)
almost surely. Now it remains to show that YA > 0,E [ekWZ] < oo. Fix some A > 0.

E[eAWZ] = /;T P[e)‘w2 >x]dx = [y: P[e“v2 > euy]Z)te”y dy

—2/\/ [Wy >2y]e 2”dy+2)t[ P[W, 22y] eV dy
y=2

<2/\[ (W >2y]e 2Aydy+2)tC1f eV 2)‘ydy<c>o

—edA-1 <oo

where C; is some constant.

O

7.H Proof of Posterior Convergence for the Gaussian Bandit

7.H.1  Proof of Theorem [7.13}, Gaussian case

Theorem 7.27. Under TTTS, for Gaussian bandits with improper Gaussian priors, it holds almost
surely that

. 1 x
r}ingo—;log(l —anr) =Tjg.
From Theorem 2 in Qin, Klabjan and Russo, [2017, any allocation rule satisfying T, ;/n — wf
for each i € A, satisfies

lim —— log(l —anr) =1Ijg.

n—>oo
Therefore, to prove Theorem [7.27} it is sufﬁc1ent to prove that under TTTS,

T, i a.
Vie{l,...,K}, lim 2% wf. (7.14)

n—oo 1

Due to the concentration result in Lemma|8|that we restate below (and proved in Appendix[7.D),
which will be useful at several places in the proof, observe that

Tni a.s \Ijni a.s
lim =% % of o lim —%L % P,
n—-oco M9 ! n—oo n !

therefore it suffices to establish the convergence of y,, ; = ¥, ;/n to wl: , which we do next. For
that purpose, we need again the following maximality inequality lemma.

Lemma 8. There exists a random variable W, such that for all i € A,

V16| Ty — Yail < Wan/(n +1)log(e? + n) as.,
and E [e*"?] < oo for any A > 0.
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Step 1: TTTS draws all arms infinitely often and satisfies T), ;- /n — . More precisely, we
prove the following lemma.

Lemma 28. Under TTTS, it holds almost surely that
1. forallie A limy, o Ty, = 00.
2. app —> L
3. Tup/n—p.
Proof. Our first ingredient is a lemma showing the implications of finite measurement, and

consistency when all arms are sampled infinitely often. Its proof follows standard posterior
concentration arguments and is given in Appendix[z.H.2]

Lemma 29 (Consistency and implications of finite measurement).
Denote with I the arms that are sampled only a finite amount of times:

T={ie{l,....k}:Yn,T,; <oo}.

IfTZisempty, a, ; converges almost surely to 1 when i = I" and to O when i # I". IfT is non-empty,
then for every i € Z, we have liminf,_, o a,; > 0 a.s.

First we show that 3", T,,j = oo for each arm j. Suppose otherwise. Let Z again be the set of
arms to which only finite measurement effort is allocated. Under TTTS, we have

I//n,i:an,i(ﬁ+(l_ﬁ)z fn )

i l—an,j

SO Yy,;i > fay ;. Therefore, by Lemma@, if i € Z, then liminf a,, ; > 0 implies that 3", y,,; =
co. By Lemma |8 we then must have that lim, ., Ty,; = oo as well: contradiction. Thus,
lim, o Ty,; = oo for all i, and we conclude that a,, ;~ — 1, by Lemma @

For TTTS with parameter f3 this implies that ¥, ;. — f, and since we have a bound on |T;, ; /n -
¥, | in Lemmalg| we have T, - /n — 8 as well, O

Step 2: Controlling the over-allocation of sub-optimal arms. The convergence of T, +/n
to /3 leads to following interesting consequence, expressed in Lemma 30! if an arm is sampled
more often than its optimal proportion, the posterior probability of this arm to be optimal is
reduced compared to that of other sub-optimal arms.

Lemma 30 (Over-allocation implies negligible probability). [|Fix any & > 0 and j # I*. With
probability 1, under any allocation rule, if T,, 1 [n — B, there exist & > 0 and a sequence &, with
&n — 0 such that for any n € N,

Ty,j

a i ’
LD A S =S ()
n / max;zr+ n,i

7analogue of Lemma 13 of Russo, 2016
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Proof. We have I1,(®y;s1<) = X e an,i = 1 — an+, therefore max; .« a,; <1- a,-. By
Theorem 2 of Qin, Klabjan and Russo, 2017 we have, as T,, 1+ /n — f3,

1
lim sup —— log (me}xan,i) <Tj.
i+l*

n—o00 n
We also have the following from the standard Gaussian tail inequality, for n > 7 after which
fn1+ > pni> using that 0; — O« ~ N (pn,i = pnre> 05, +0p ) and op  + 0 o = 02(1/ Tpi +
1/ Tn,I* ))

_([/‘ni_[ln I*)2 (#ni_.unl)z
 <I1,(0; > 0p:) < : : = - - ) .
nt S Th(0: 2 1) < cxp (zfﬂam,p w1y ) P 2 (0 T + 0/

Thus, there exists a sequence ¢, — 0, for which

exp{—n (b = pnrr)” €n/2
Qn,j < 202(”/Tn,1* +1’I/Tn’j) "
maxi:r+ An,i exp {-n (T; +€4/2)})
=exp4-n (i = pr-)° -T; —¢
202(n) T +0/T,5) P ")

Now we take a look at the two terms in the middle:

(fn,j = thn,1+ )?
ZUZ(H/Tn)I* + H/Tn)])

_rﬂ.

Note that the first term is increasing in T, j/n. We have the definition from Qin, Klabjan and
Russo, 2017, for any j + I*,

- () — )’
B, 2 B BY’
20 (1/(0[* +1/wj)

and we have the premise
T, :
) > a)[,g + E
n j

Combining these with the convergence of the empirical means to the true means (consistency,
see Lemma, we can conclude that for all € > 0, there exists a time n, such that for all later
times n > ny, we have

pRp— *2 ;- *2 ;= *2
(fn,j = ton,1+) > (= prr) _e> ) —s>FE,

202 (n[Tore + 1/ To)) = 202 (VB +n/Ty) 202 (1B +1/(wh + ©))

where the first inequality follows from consistency, the second from monotonicity in T}, ;/n.
That means that there exist a £ > 0 such that

(#nj = pin1+)’
202(”/Tn,1* + ﬂ/Tn)]‘)

-T; > &,
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and thus the claim follows that when % > wf + &, we have

Ay, j n,j = #n,I* 2 ’
J < exp{—n( (4 J T il ) —FE —fn)} < e n(E+en)

MaXje« Ap,i 202(n/ Ty 1+ + ”/Tn,j)

O
Step 3: ¥/, ; converges to wf forallarms. To establish the convergence of the allocation effort
of all arms, we rely on the same sufficient condition used in the analysis of Russo, [2016, that we
recall below.

Lemma 31 (Sufficient condition for optimality). Consider any adaptive allocation rule. If we
have

Y, > B and Zy/n,jl{%)jzwf+f}<oo, Vji#I",&>0, (7.15)
neN

theny, — yP.

First, note that from Lemma we know that T, j» /n — B,anby Lemmathis impliesy, . — B,
hence we can use Lemma [31/to prove convergence to the optimal proportions. Thus, we now
show that holds under TTTS. Recall that J{" = arg max; a,,j and 7P = arg max . q) an,j.
Since a, ;» — 1 by Lemma E, there is some finite time 7 after which for all n > 1, 21) =TI
Under TTTS,

an,i(ﬂ+(1—/5)zlfr;;j )

ll/n,i =
j#i n,j

Z i+i an,j

< an)iﬁ + a,,)i(l - ﬂ)L
1- a, o
z.#. an,j

<anif+a,i(1- ﬁ)L

an’]ﬁn
1

< an,,-ﬁ + an,,-(l — ﬁ)
an,],(f)

< Ap,i i

an,]gz>

. 1
where we use the fact that for j # ],(1 ), we have a, o 2, and a, o < l-a o.Fornxt
this means that v, ; < a,,;/ maxj.;- a,,; forany i # I*.

By Lemma@, there is a constant &’ > 0 such and a sequence ¢, — 0 such that

Tyifn 2w+ E = — 0l g emn(Een),

MaXjzr+ Ay, j

8L emma 12 of Russo, 2016
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Now take a time 7 large enough, such that for n > 7 we have [T,,;/n -y, ;| < § (which can be
found by Lemma|8). Then we have

{wn]_wj+£}<]l{T >w1+2§}

Therefore, for all i # I*, we have

St {2 v 0 ¢ Tyt T of vat < 3 e oo

n>t n>t n>t

Thus holds and the convergence to the optimal proportions follows by Lemmal31]

7.H.2 Proof of auxiliary lemmas

Proof of Lemma Let Z be nonempty. Define

Uoo,n = lim y, ;, and o .= lim o?

n—oo n—oo

n,i>

and recall that for i € A for which T, ; = 0, we have y,,, = p1,; = 0and 0 ; = 07, = 00, and if

T,.; > 0, we have

2

o
hni = ZIL{Ig—z}Y“Z,andU =7
nz /=1 n,i
For all arms that are sampled infinitely often, we therefore have pio. ; = y; and o2 ; = 0. For

all arms that are sampled only a finite number of times, i.e. i € Z, we have 02 ; > 0, and there
exists a time 7, after which for all n > ng and i € Z, we have T, ; = Ty i Deﬁne

oo = N(Hoo,bafo,l) ®N(Voo,2"7§o,2) ®... ®N(‘“oo,k"7§o,k) = ®5m ® @I,

i¢T ieZ

Then for each i € A we define

Ooo,i 21l (6, > maxGJ) .

j#i
Then we have for all i € Z, ao,; € (0,1), since afo)i >0, and thus ge 1+ < 1.

When 7 is empty, we have a,, 1+ = I1,(6;« > max;.- 0;), but since o, = ®;c4 d,,> we have
Goo» =land as ; =0 forall i + I*.
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7.1 Proof of Posterior Convergence for the Bernoulli Bandit

7.1 Preliminaries

We first introduce a crucial Beta tail bound inequality. Let FBeta denote the cdf of a Beta

distribution with parameters a and b, and F? .4 thecdfofa Binomial distribution with parameters
¢ and d, then we have the following relat10nsh1p, often called the ‘Beta-Binomial trick’,

oy (y) =1=Foyyy(a-1),

so that we have

P [X > X] =P [Bqub Lx S <a-— l] P [Bqub—l,lfx > b] .

We can bound Binomial tails with Sanov’s inequality:

—nd(k/n,x)
67 < P[Bn x 2 k] < e_”d(k/n,x)’
n+1 >

where the last inequalities hold when k > nx.

Lemma 32. Let X ~ Beta(a,b) and Y ~ Beta(c,d) with 0 < -7 < <L Then we have
P[X > Y] < De € where

C= _inf  Cop(y)+Cea(y)
T SYSGa

c—-1 a-1
D=3 in(Cop| —— |, Ceal —— ) -
emin(Cun (75 ) e (555

Note that this lemma is the Bernoulli version of Lemmalé]

and

Theorem 7.33. Consider the Beta-Bernoulli setting. For § € (0,1), under any allocation rule
satisfying Ty, 1+ [n — wfﬂ
lim —— log(l —app) < Fﬁ,

n—oo

and under any allocation rule satisfying T, ;/n — a)f foreachie A,
1
lim ——log(1-a,,~) =Tj.
lim L log(1- 1) = 1;

Proof. Denote again with 7 again the set of arms sampled only finitely many times. For Z empty,
we thus have po ; 2 lim, o pin,; = ;. The posterior variance is

2 An,iPn,i (1+ZZ 11]1{15—1}Y11e)(1+Tn1 >i- 11]1{12—’}Y€1z)

Opni = (i + Brnsi)* (i + i +1) 2+ T,:)?(2+ Ty +1)

We see that when 7 is empty, we have ai,)l- 2 lim, o 0,21)1» = 0, i.e., the posterior is concentrated.
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Step 1: A lower bound when some arms are sampled only finitely often. First, note that
when T, ; = 0 for some i € A, the empirical mean for that arm equals the prior mean

Un,i = 060,1'/(060,1‘ + ﬁo,:‘)»

and the variance is strictly positive:
2 _ 2
0 = (@0,iBo.i)/ ((@0,i + Bo.i)* (oo + Po.i +1)) > 0.

2. >0,and a.; € (0,1), implying

00,1

When Z is not empty, then for every i € Z we have o
deo 1+ < 1,and thus

1 1
lim ——log(1-a, ) =——log(1-de,+) =0.
n

n—oo n

Step 2: A lower bound when every arm is sampled infinitely often. Suppose now that Z is
empty, then we have

mellxl'[,,(ﬁ,' >0p)<l—a,p < Z I1,(60; >0r)<(k-1) me}xl‘[,,(@i >0p).
i+l i1 iFl*
Thus, wehavel-a, ;» < (k—-1) max;.+ IT1,(6; > 0« ) and also1-a,, » = max;.;« I1,,(0; > 0+).

We have

' = maxmin C;(wy, w;),
weW i#l*

rE = wevgﬁi:ﬂ I;l}{l C,-(ﬁ, w,-), with

C,’(Ol)]*, w,-) = mlFIzl wl*d(BI*;x) + wid(ﬁi;x) = w]*d(ej*;g) + w,-d(@,-;g),

where 0 € [6;, 0+ ] is the solution to

(U]*A,(el*) + wiA'(Gi)
WP+ ; ’

A'(0) =

Since every arm is sampled infinitely often, when n is large, we have p, 1~ > p,, ;. Define
Sui = Z?;ll 1{I, = i}Yy,. Recall that the posterior is a Beta distribution with parameters
an,i = Spi+1land B,; = Ty — Sui + 1. Let 7 € N be such that for every n > 7, we have
Su,if/ (Ty,i +1) < Sp1+ /(T 1+ +1). For the sake of simplicity, we define for any i € A the interval

N Sn,i Sn,l*
Iip = |-
Tn,i +1 Tn,l* +1

Then using Lemma@with a=8,,+1,b=T,;-S,i+Lc=S,++1,d=T, - Sy +1 we
have

I1,(0; - 01~ >0) < Dexp {— inf Cs,,+1,1,,-8,,+1(¥) + Cs, . 41,7, 12 =S, 1 +1()’)} .

yel;
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This implies
1 I1,(6; > 01
L1og (6.2 6r) Liog(p),
n exp {_1nfyell v Cs 1,1, -8,,41(Y) + Cs, o s1,1, 108, 1o +1(}’)}

which goes to zero as 1 goes to infinity. Indeed replacing a, b, ¢, d by their values in the definition
of D we get

D <3+ (T, -1)kl , _Snr
T,, i +1 Ty +1
ss+(n+1)kz(o;i)
n+1
=(n+1)log(n+1).
Hence,
IT,,(6; > 6;+) ‘eXP{—yglf Cs,+1.1=8,,+1(¥) + Cs, s, T,,I*—Snlwl()’)}
We thus have for any i,

l-a,,;= 1}1&113(Hn [9]- > 91*]

J#EI* yel;,

Tn i+ 1 Sl’l ; Tn « +1 Sl’l *
= exp{-nmin inf —L—Fkl Lyl + L ki ! 5y
JEI* yel; i« n Tn Jj +1 n Tn,I* +1

Sn, I
; <kl ; .
) o225}

= maxexp {— inf Can+1 T, =8,,41(¥) + Cs, 41T, 10 =5, 1 +1()/)}

> exp {—n maxmin inf w;kl ( T

o jE* yel;

Fix some ¢ > 0, then there exists some 7 (¢) such that for all n > ny(¢), we have for any j,

Sn,i S 1*
L= N [ VTE N T I
M [T,w-+1 TW+1] L+ &vr =] 2 1,

and because KL-divergence is uniformly continuous on the compact interval I ,, there exists
an n; such that for every n > n; we have

S,
ki Sl 1-e)kl(usy),
(Tn,j+1y)2( e)kl ()

for any y and for all j € A. Therefore, we have

Sa, “
l-a,;= exp{—n mjxrfimyi?f,* wikl ( T, + ,y) + wykl ( T, ;: 1')’)}

> exp{—n maxmin inf w;kl(pj;y )+w1*kl(yp,y)}

w  iEl* yeI
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Therefore, we have

1
limsup ——log(1-a,,;) <T*.
n

n—oo

If T,,;/n - w? for each i € A, we have

hm 1nf Tn,i+1kl( Sn,i l;y)+ Tn,I*+1kl( Sn,[* y)
n

n—00 yel; 1 n Tn,i + Tn,i +1
= inf  w/kl(usy)+wpkl(ursy)
yelpi prx]
=T,
and thus
l-a,,; = exp{—n max min inf w;kI(uj;y) + a)pkl(yp;y)}
w  jE* yel
zexp{-nl"},
implying

1
lim —-=log(1-a,;)=T".

n—oo 1

Everything goes similarly when w;+ = f € (0,1), so under any sampling rule satisfying
Ty,1+/n — 3 we have

1
limsup ——log(1 - a,,;) <Tj
n

n—oo

and under any sampling rule satisfying T, ; /n — a)f for each i € A, we have

1
lim ——log(1-a,,) =Ij.
n

n—oo

71.2  Proof of Theorem Bernoulli case

Theorem 7.34. Under TTTS, for Bernoulli bandits and uniform priors, it holds almost surely that

1
lim ——log(1-a,r) =Tj.
n

n—oo

From Theorem 7.33(we know that under any allocation rule satisfying T, ;/n — wf for every
i € A, we have

1
lim ——log(1-a,,r) =Ij.
n

n—oo
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Thus, we only need to prove that under TTTS, for all i € A, we have

T .
lim —2 = wf.
n—oco n
Just as for the proof of the Gaussian case, we can use Lemmal8|(proof in Appendix[7.H.2), which
implies
v .
m,i da.s wﬁ

it

lim " % o o  lim
n—oo n ! n—oo p

Therefore, it suffices to show convergence for y, ; = ¥, ;/n to wf , which we will do next,
following the same steps as in the proof for the Gaussian case.

Step 1: TTTS draws all arms infinitely often and satisfies T, ;- /n — 3. We prove the follow-
ing lemma.

Lemma 35. Under TTTS, it holds almost surely that
1. forallie A limy,_ oo Ty = o0.

2. Ay, v —> 1.
T, 1+
3 g

Proof. First, we give a lemma showing the implications of finite measurement, and consistency
when all arms are sampled infinitely often, which provides a proof for 2. The proof of this
lemma follows from the proof of Theorem [.33} and is given in Appendix[7.L3]

Lemma 36 (Consistency and implications of finite measurement).
Denote with I the arms that are sampled only a finite amount of times:

T={ie{l,....k}:Yn,T,; <oo}.

IfT isempty, a, ; converges almost surely to1when i = I" and to 0 when i # I*. If T is non-empty,
then for every i € Z, we have liminf, . a,,; > 0 a.s.

Now we can show 1. of Lemma we show that under TTTS, for each j € A, wehave 3.,y Ty j =
oo. The proof is exactly equal to the proof for Gaussian arms.

Under TTTS, we have

a.
Vu,i = Qn,i ﬁ+(1_ﬁ)z o >
jzi 1= an,j
SO Wp,i > an,i, therefore, by Lemma if i € Z, then liminf a,, ; > 0 implies that ¥, v, ; =
co. By Lemma |8 we then must have that lim,_, ., T,,; = oo as well: contradiction. Thus,
lim,_, Ty, ; = oo for all i, and we conclude that a, ;« — 1, by Lemma @
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Lastly we prove point 3. of Lemma [35. For TTTS with parameter f3, the above implies that
¥, 1~ — B,and since we have a bound on |T,, ;/n — ¥, ;| in Lemmal we have T, 1+ /n > f as
well.

O

Step 2: Controlling the over-allocation of sub-optimal arms. Following the proof for the
Gaussian case again, we can establish a consequence of the convergence of T, 1+ /n to 8 : if an
arm is sampled more often than its optimal proportion, the posterior probability of this arm to
be optimal is reduced compared to that of other sub-optimal arms. We can prove this by using
ingredients from the proof of the lower bound in Theorem|7.33}

Lemma 37 (Over-allocation implies negligible probability). E
Fix any & > 0 and j + I*. With probability 1, under any allocation rule, if T, - [n — f5, there
exist & > 0 and a sequence ¢, with €, > 0 such that for any n € N,

T,

n,j An,j < e—n(E'+s,,)

> a)é + & =
J MaX;.p+ Ap,j

Proof. By Theorem 7.331, we have, as T,, - /n — f3,
. 1 N
lim sup —— log (max an,i) <Iy,
n—oo0 n i£l*

since max;.+ d,,; <1- a, ~. We also have from Lemmaa deviation inequality, so that we
can establish the following logarithmic equivalence:

an,j <I1,(0;201) = exp{—an (wn)p,w,,)j)} = exp{—an (ﬁ,wn,j)} ,

a Tn,]

where we denote w,,; = —~. We can combine these results, which implies that there exists a
non-negative sequence &, — 0 such that

An,j < exp{—an (/3, wn)j) - s,,/z}
maxjsr« An,i exp{—n(l“g + 5/2)}

=exp{-n(C; (B, wn;)~T;) —en}.

We know that C; (ﬁ, wf ) is strictly increasing in wf ,and C; (/3, w? ) = I';, thus, there exists
some &' > 0 such that

wn,j2w§.3+£ — Cj(ﬁ,a)n)j)—FE >£l.

9analogue of Lemma 13 of Russo, 2016
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Step 3: v, ; converges to wf for allarms. To establish the convergence of the allocation effort
of all arms, we rely on the same sufficient condition used in the analysis of Russo, 2016, restated
above in Lemma 31} and we will restate it here again for convenience.

Lemma 38 (Sufficient condition for optimality).
Consider any adaptive allocation rule. If

Vore > B and Y yu 1 {9, ;2 0f + &} <oo, V£ I E>0, (7.16)
neN

theny, — yP.

First, note that from Lemmal&'we know that T”}f = — B,and by Lemma@this implies v, ;. — B,
hence we can use the lemma above to prove convergence to the optimal proportions. This
proof is already given in Step 3 of the proof for the Gaussian case, and since it does not depend
on the specifics of the Gaussian case, except for invoking Lemma 29| (consistency), which
for the Bernoulli case we replace by Lemmal[36, it gives a proof for the Bernoulli case as well.
We conclude that holds, and the convergence to the optimal proportions follows by
Lemma |31

7.1.3 Proof of auxiliary lemmas

< ==L Then we have

Lemma 32. Let X ~ Beta(a,b) and Y ~ Beta(c,d) with 0 < —=.

P[X > Y] < De € where

a-1
a+b-1

C= _inf  Cop(y)+Cea(y),

—a—l_ P ind
s B e

and

c—-1 a-—1
D:3 i Ca - )Cc - 5 4 .
+m1n( ’h(c+d—l) ’d(a+b—1))

Proof

P[X>Y]=E[P[X>Y|Y]]sE[]l{Y<a27;1_l}+]l{Yza37;1_l}P[X>Y\Y]]
Sexp{—(c+d_1)kl( c-1 a-1 )}

c+d—1;a+b—1

+ E[exp{—(a +b-1)kl (%;Y)}]I{Y > ai—l}],

a
a+b a+b-1

A
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Using the Beta-Binomial trick in the second inequality. Furthermore, we have

a-1 c-1 a-1
A<E|1 Y - -1 ;Y
< [{a+b—lS Sc-rcl—l}]e)(p{ (a+b )kl(a+b—l )}

B

a-1 c—1
- b-1)kl ;
rep (-G b-0i (5 5 )

Denote with f the density of Y, then
1%1/J&ex{—W+b—Dk% a-l Hf()d
Via integration by parts we obtain
B—Fx{—@+b—DH( “‘1-)}Pu< ﬂ‘
- a+b-17 =) a1

L+dl d a-1
b-1)—kl ; -C, P(Y<y)d
+/ (a b =1 Fk () exp (-Cas()) PUY < ) dy

< @bk (e 1(Can0) + CaaON

u+b1
a-1 c-1
- b-1)kl ; s
+exp{ (a+ ) (a+b—1 c+d—1)}

where the first inequality uses the Binomial trick again. Let

n+b—1

a-1 c—1
C-  inf b-1m( ;) d—lH( ;)
u+b—1£3§ci;1—1(a+ ) a+b_1 y +(C+ ) C+d_1 y

= inf Cap(¥)+Cea(y),

a—1 c—1
P Y A

then note that in particular we have

. a-—1 -1 c—-1 ) a-—-1
Csm1n((a+b—1)kl( b1 c+d ) (C+d_1)kl(c+d—l’a+b—1))

1
c—-1 a-—1
= i C
mm( u’b(c+d— ) Cd(a+b—1))

Then

B<e© L+d‘(a+b—1)— (aigl_l;y)d)H-e

a+h—l

[ p-pm (- ) e

-C

a+b-1c+d-1
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Thus we have

a-1  c-1 -C
P[X>Y]S(3+(a+b—1)kl(a+b—l’c+d—1))e '

By symmetry, we have

c-1 a-1
PX Y 1 - 7 - > 1 1 _C’
(X > ]g(3+mln(ca,b(c+d_1) C’d(a+b—1)))e

where

a-1
C= inf b-Dkl|———

a+b-1 =V

c—-1
,y) + (C+d—1)kl(m,y)

Proof of Lemma Let Z be empty, then we have oo ; 2 lim, o0 tn,i = y;. The posterior
variance is

02 o “n,iﬁn,i
! ((xn,i +ﬁn,i)2(‘xn,i +ﬁn,i +1)
(U X5 I = i} Yo, ) (14 T — X4 1{I = i} Yer,)
2+ Ty)*(2+ T, +1) ’

We see that when Z is empty, we have 02, ; £ lim,_,. 0 ; = 0, i.e., the posterior is concentrated.

When T, ; = 0 for some i € A, the empirical mean for that arm equals the prior mean

Un,i = 061,1‘/(061,1‘ ""ﬁl,i)’

and the variance is strictly positive:

on; = (aniBui)/ (Cari+ Bri)(ani + Pri+ 1)) > 0.

2

0,

When Z is not empty, then for every i € Z we have o,
®oo.1+ < 1, hence the posterior is not concentrated.

> 0, and ao,; € (0,1), implying
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