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Chapter �

Fixed-con�dence guarantees for
Bayesian best-arm identi�cation

Abstract
We investigate and provide new insights on the sampling rule called Top-Two �ompson
Sampling (TTTS). In particular, we justify its use for �xed-con�dence best-arm identi�cation.
We further propose a variant of TTTS calledTop-TwoTransportationCost (T3C), which disposes
of the computational burden of TTTS. As our main contribution, we provide the �rst sample
complexity analysis of TTTS and T3C when coupled with a very natural Bayesian stopping
rule, for bandits with Gaussian rewards, solving one of the open questions raised by Russo
(����). We also provide new posterior convergence results for TTTS under two models that
are commonly used in practice: bandits with Gaussian and Bernoulli rewards and conjugate
priors.

�.� Introduction
In multi-armed bandits, a learner repeatedly chooses an arm to play, and receives a reward
from the associated unknown probability distribution. When the task is best-arm identi�cation
(BAI), the learner is not only asked to sample an arm at each stage, but is also asked to output a
recommendation (i.e., a guess for the arm with the largest mean reward) a�er a certain period.
Unlike in another well-studied bandit setting, the learner is not interested in maximizing the
sum of rewards gathered during the exploration (or minimizing regret), but only cares about the
quality of her recommendation. As such, BAI is a particular pure exploration setting (Bubeck,
Munos and Stoltz, ����).

Formally, we consider a �nite-arm bandit model, which is a collection of K probability distri-
butions, called armsA � {�, . . . ,K}, parametrized by their means µ� , . . . , µK . We assume the
(unknown) best arm is unique and we denote it by I� � argmaxi µi . A best-arm identi�cation

���
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strategy (In , Jn , τ) consists of three components.�e �rst is a sampling rule, which selects an
arm In at round n. At each round n, a vector of rewards Yn = (Yn ,� ,�,Yn ,K) is generated for all
arms independently from past observations, but only Yn ,In is revealed to the learner. Let Fn be
the σ-algebra generated by (U� , I� ,Y�,I� ,U� ,�, In ,Yn ,In ,Un), then In isFn−�-measurable, i.e., it
can only depend on the past n − � observations, and some exogenous randomness, materialized
into Un−� ∼ U([�, �]). �e second component is a Fn-measurable recommendation rule Jn ,
which returns a guess for the best arm, and thirdly, the stopping rule τ, a stopping time with
respect to (Fn)n∈N, decides when the exploration is over.

BAI is studied within several theoretical frameworks. In this chapter we consider the �xed-
con�dence setting, introduced by Even-dar,Mannor andMansour, ����. Given a risk parameter
δ ∈ [�, �], the goal is to ensure that the probability to stop and recommend a wrong arm,
P [Jτ ≠ I� ∧ τ <∞], is smaller than δ, while minimizing the expected total number of samples
to make this accurate recommendation, E [τ].�e most studied alternative setting is the �xed-
budget setting for which the stopping rule τ is �xed to some (known) maximal budget n, and
the goal is to minimize the error probability P [Jn ≠ I�] (Audibert and Bubeck, ����). Note
that these two frameworks are very di�erent in general and do not share transferable regret
bounds (see Carpentier and Locatelli ���� for an additional discussion).

Most existing sampling rules for the �xed-con�dence setting depend on the risk parameter
δ. Some of them rely on con�dence intervals such as LUCB (Kalyanakrishnan et al., ����),
UGapE (Gabillon, Ghavamzadeh and Lazaric, ����), or lil’UCB (Jamieson et al., ����); others
are based on eliminations such as SuccessiveElimination (Even-dar,Mannor andMansour,
����) and ExponentialGapElimination (Karnin, Koren and Somekh, ����).�e �rst known
sampling rule for BAI that does not depend on δ is the tracking rule proposed by Garivier and
Kaufmann, ����, which is proved to achieve the minimal sample complexity when combined
with the Cherno� stopping rule when δ goes to zero. Such an anytime sampling rule (neither
depending on a risk δ or a budget n) is very appealing for applications, as advocated by Jun and
Nowak, ���� who introduce the anytime best-arm identi�cation framework. In this chapter, we
investigate another anytime sampling rule for BAI: Top-Two Thompson Sampling (TTTS), and
propose a second anytime sampling rule: Top-Two Transportation Cost (T3C).

�ompson Sampling (�ompson, ����) is a Bayesian algorithm well known for regret minim-
ization, for which it is now seen as a major competitor to UCB-typed approaches (Burnetas
and Katehakis, ����; Auer, Cesa-Bianchi and Fischer, ����; Cappé et al., ����). However, it
is also well known that regret minimizing algorithms cannot yield optimal performance for
BAI (Bubeck, Munos and Stoltz, ����; Kaufmann and Garivier, ����) and as we opt�ompson
Sampling for BAI, then its adaptation is necessary. Such an adaptation, TTTS, was given by
Russo (����) along with two other top-two sampling rules TTPS and TTVS. By choosing between
two di�erent candidate arms in each round, these sampling rules enforce the exploration of
sub-optimal arms, which would be under-sampled by vanilla�ompson sampling due to its
objective of maximizing rewards.

While TTTS appears to be a good anytime sampling rule for �xed-con�dence BAI when coupled
with an appropriate stopping rule, so far there is no theoretical support for this employment.
Indeed, the (Bayesian-�avored) asymptotic analysis of Russo, ���� shows that under TTTS, the
posterior probability that I� is the best arm converges almost surely to � at the best possible
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rate. However, this property does not by itself translate into sample complexity guarantees.
Since the result of Russo, ����, Qin, Klabjan and Russo (����) proposed and analyzed TTEI,
another Bayesian sampling rule, both in the �xed-con�dence setting and in terms of posterior
convergence rate. Nonetheless, similar guarantees for TTTS have been le� as an open question
by Russo, ����. In the present chapter, we answer the question whether we can obtain �xed-
con�dence guarantees and optimal posterior convergence rates for TTTS. In addition, we
propose T3C, a computationallymore favorable variant of TTTS and extend the �xed-con�dence
guarantees to T3C as well.

Contributions (�) We propose a new Bayesian sampling rule, T3C, which is inspired by TTTS

but easier to implement and computationally advantageous (�) We investigate two Bayesian
stopping and recommendation rules and establish their δ-correctness for a bandit model with
Gaussian rewards.� (�) We provide the �rst sample complexity analysis of TTTS and T3C for a
Gaussian model and our proposed stopping rule. (�) Russo’s posterior convergence results for
TTTS were obtained under restrictive assumptions on the models and priors, which exclude
the two mostly used models in practice: Gaussian bandits with Gaussian priors and bandits
with Bernoulli rewards� with Beta priors. We prove that optimal posterior convergence rates
can be obtained for those two as well.

Outline In Section �.�, we restate TTTS and introduce T3C along with our proposed recom-
mendation and stopping rules.�en, in Section �.�, we describe in detail two important notions
of optimality that are invoked in this chapter.�e main �xed-con�dence analysis follows in Sec-
tion �.�, and further Bayesian optimality results are given in Section �.�. Numerical illustrations
are given in Section �.�.

�.� Bayesian BAI Strategies
In this section, we give an overview of the sampling rule TTTS and introduce T3C. We provide
details for Bayesian updating for Gaussian and Bernoulli models respectively, and introduce
associated Bayesian stopping and recommendation rules.

�.�.� Sampling rules
Both TTTS and T3C employ a Bayesian machinery and make use of a prior distribution Π�
over a set of parameters Θ, which is assumed to contain the unknown true parameter vector µ.
Upon acquiring observations (Y�,I� ,�,Yn−�,In−�), we update our beliefs according to Bayes’ rule
and obtain a posterior distribution Πn which we assume to have density πn w.r.t. the Lebesgue
measure. Russo’s analysis is requires strong regularity properties on the models and priors,
which exclude two important useful cases we consider in this chapter: (�) the observations of
each arm i follow a Gaussian distributionN (µi , σ �) with common known variance σ �, with
imposed Gaussian priorN (µ�, i , σ �

�, i), (�) all arms receive Bernoulli rewards with unknown
means, with a uniform (Beta(�, �)) prior on each arm.

�Herea�er Gaussian bandits or Gaussian model.
�Herea�er Bernoulli bandits.
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Gaussian model For Gaussian bandits with a N (�, κ�) prior on each mean, the posterior
distribution of µi at round n is Gaussian with mean and variance that are respectively given
by

∑n−�
`=� 1{I` = i}Y`,I`
Tn , i + σ ��κ�

and
σ �

Tn , i + σ ��κ�
,

where Tn , i � ∑n−�
`=� 1{I` = i} is the number of selections of arm i before round n. For the sake

of simplicity, we consider improper Gaussian priors with µ�, i = � and σ�, i = +∞ for all i ∈ A,
for which

µn , i =
�

Tn , i

n−�
�
`=�

1{I` = i}Y`,I` and σ �
n , i =

σ �

Tn , i
.

Observe that in this case the posterior mean µn , i coincides with the empirical mean.

Beta-Bernoullimodel For Bernoulli bandits with a uniform (Beta(�, �)) prior on eachmean,
the posterior distribution of µi at round n is a Beta distribution with shape parameters αn , i =
∑n−�

`=� 1{I` = i}Y`,I` + � and βn , i = Tn , i −∑n−�
`=� 1{I` = i}Y`,I` + �.

Now we brie�y recall TTTS and introduce T3C.�e pseudo-code of TTTS and T3C are shown
in Algorithm �.

Description of TTTS At each time step n, TTTS has two potential actions: (�) with probability
β, a parameter vector θ is sampled from Πn , and TTTS chooses to play I(�)n � argmaxi∈A θ i , (�)
and with probability �−β, the algorithm continues sampling new θ′ until we obtain a challenger
I(�)n � argmaxi∈A θ′i that is di�erent from I(�)n , and TTTS chooses to play I(�)n .

Description of T3C One drawback of TTTS is that, in practice, when the posteriors become
concentrated, it takes many�ompson samples before the challenger I(�)n is obtained. We thus
propose a variant of TTTS, called T3C, which alleviates this computational burden. Instead of
re-sampling from the posterior until a di�erent candidate appears, we de�ne the challenger as
the arm that has the lowest transportation cost Wn(I(�)n , i) with respect to the �rst candidate
(with ties broken uniformly at random).

Let µn , i be the empirical mean of arm i and µn , i , j � (Tn , i µn , i + Tn , j µn , j)�(Tn , i + Tn , j), then
we de�ne

Wn(i , j) � �
� if µn , j ≥ µn , i ,
Wn , i , j +Wn , j , i otherwise, (�.�)

whereWn , i , j � Tn , i d �µn , i , µn , i , j� for any i , j and d(µ; µ′)denotes theKullback-Leibler between
the distribution with mean µ and that of mean µ′. In the Gaussian case, d(µ; µ′) = (µ −
µ′)��(�σ �) while in the Bernoulli case d(µ; µ′) = µ ln(µ�µ′) + (� − µ) ln(� − µ)�(� − µ′). In
particular, for Gaussian bandits

Wn(i , j) =
(µn , i − µn , j)�

�σ �(��Tn , i + ��Tn , j)
1{µn , j < µn , i}.
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Note that under the Gaussian model with improper priors, one should pull each arm once at
the beginning for the sake of obtaining proper posteriors.

Algorithm � Sampling rule (TTTS/T3C)
�: Input: β
�: for n ← �, �,� do
�: sample θ ∼ Πn
�: I(�) ← argmaxi∈A θ i
�: sample b ∼ Bern(β)
�: if b = � then
�: evaluate arm I(�)
�: else
�: repeat sample θ′ ∼ Πn
��: I(�) ← argmaxi∈A θ′i TTTS
��: until I(�) ≠ I(�)
��: I(�) ← argmini≠I(�) Wn(I(�) , i), cf. (�.�) T3C
��: evaluate arm I(�)
��: end if
��: update mean and variance
��: t = t + �
��: end for

�.�.� Rationale for T3C
In order to explain how T3C can be seen as an approximation of the re-sampling performed by
TTTS, we �rst need to de�ne the optimal action probabilities.

Optimal action probability �e optimal action probability an , i is de�ned as the posterior
probability that arm i is optimal. Formally, letting Θ i be the subset of Θ such that arm i is the
optimal arm,

Θ i � �θ ∈ Θ � θ i >max
j≠i

θ j� ,

then we de�ne
an , i � Πn(Θ i) = �

Θ i
πn(θ)dθ . (�.�)

With this notation, one can show that under TTTS,

Πn �I(�)n = j�I(�)n = i� =
an , j

∑k≠i an ,k
. (�.�)

Furthermore, when i coincides with the empirical best mean (and this will o�en be the case for
I(�)n when n is large due to posterior convergence) one can write

an , j � Πn �θ j ≥ θ i� � exp (−Wn(i , j)) ,

where the last step is justi�ed in Lemma � in the Gaussian case (and Lemma �� in Appendix �.I.�
in the Bernoulli case). Hence, T3C replaces sampling from the distribution (�.�) by an approx-
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imation of its mode which is easy to compute. Note that directly computing the mode would
require to compute an , j , which is much more costly than the computation ofWn(i , j)�.

�.�.� Stopping and recommendation rules
In order to use TTTS or T3C as the sampling rule for �xed-con�dence BAI, we need to addition-
ally de�ne stopping and recommendation rules. While Qin, Klabjan and Russo, ���� suggest to
couple TTEI with the “frequentist” Cherno� stopping rule (Garivier and Kaufmann, ����), we
propose in this section natural Bayesian stopping and recommendation rules.�ey both rely
on the optimal action probabilities de�ned in (�.�).

Bayesian recommendation rule At time step n, a natural candidate for the best arm is the
arm with largest optimal action probability, hence we de�ne

Jn � argmax
i∈A

an , i .

Bayesian stopping rule In view of the recommendation rule, it is natural to stop when
the posterior probability that the recommended action is optimal is large, and exceeds some
threshold cn ,δ which gets close to �. Hence our Bayesian stopping rule is

τδ � inf �n ∈∶ max
i∈A

an , i ≥ cn ,δ� . (�.�)

Links with frequentist counterparts Using the transportation costWn(i , j) de�ned in (�.�),
the Cherno� stopping rule of Garivier and Kaufmann, ���� can actually be rewritten as

τCh.δ � inf �n ∈ N ∶ max
i∈A

min
j∈A�{i}

Wn(i , j) > dn ,δ� . (�.�)

�is stopping rule is coupled with the recommendation rule Jn = argmaxi µn , i .

As explained in that paper,Wn(i , j) can be interpreted as a (log) Generalized Likelihood Ratio
statistic for rejecting the hypothesisH� ∶ (µi < µ j).�rough our Bayesian lens, we rather have
in mind the approximation Πn(θ j > θ i) � exp{−Wn(i , j)}, valid when µn , i > µn , j , which
permits to analyze the two stopping rules using similar tools, as will be seen in the proof of
�eorem �.�.

As shown later in Sec. �.�, τδ and τCh.δ prove to be fairly similar for some corresponding choices
of the thresholds cn ,δ and dn ,δ .�is similarity endorses the use of the Cherno� stopping rule
in practice, which does not require the (heavy) computation of optimal action probabilities.
Still, our sample complexity analysis applies to the two stopping rules, and we believe that
a frequentist sample complexity analysis of a fully Bayesian-�avored BAI strategy is a nice
theoretical contribution.

�TTPS (Russo, ����) also requires the computation of an , i , thus we do not report simulations for it in Sec. �.�.
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Useful notation We follow the notation of Russo (����) and de�ne the following measures
of e�ort allocated to arm i up to time n,

ψn , i � P [In = i�Fn−�] and Ψn , i �
n
�
l=�

ψ l , i .

In particular, for TTTS we have

ψn , i = βan , i + (� − β)an , i�
j≠i

an , j
� − an , j

,

while for T3C

ψn , i = βan , i + (� − β)�
j≠i

an , j
1{Wn( j, i) =mink≠ j Wn( j, k)}

� �argmink≠ j Wn( j, k)�
.

�.� Two Related Optimality Notions
In the �xed-con�dence setting, we aim for building δ-correct strategies, i.e. strategies that
identify the best arm with high con�dence on any problem instance.

De�nition �.�. A strategy (In , Jn , τ) is δ-correct if for all banditmodels µwith a unique optimal
arm, it holds that Pµ [Jτ ≠ I� ∧ τ <∞] ≤ δ.

Among δ-correct strategies, we seek the one with the smallest sample complexity E [τδ]. So far,
TTTS has not been analyzed in terms of sample complexity; Russo (����) focuses on posterior
consistency and optimal convergence rates. Interestingly, both the smallest possible sample
complexity and the fastest rate of posterior convergence can be expressed in terms of the
following quantities.

De�nition �.�. Let ΣK = {ω ∶ ∑K
k=� ωk = �,ωk ≥ �} and de�ne for all i ≠ I�

Ci(ω,ω′) �min
x∈I

ωd(µI� ; x) + ω′d(µi ; x),

where d(µ, µ′) is the KL-divergence de�ned above and I = R in theGaussian case and I = [�, �]
in the Bernoulli case. We de�ne

Γ� � max
ω∈ΣK

min
i≠I� Ci(ωI� ,ω i),

Γ�β � max
ω∈ΣK
ωI�=β

min
i≠I� Ci(ωI� ,ω i). (�.�)

�e quantity Ci(ωI� ,ω i) can be interpreted as a “transportation cost”� from the original bandit
instance µ to an alternative instance in which the mean of arm i is larger than that of I�, when
the proportion of samples allocated to each arm is given by the vector ω ∈ ΣK . As shown
by Russo, ����, the ω that maximizes (�.�) is unique, which allows us to de�ne the β-optimal
allocation ωβ in the following proposition.

�for whichWn(I� , i) is an empirical counterpart
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Proposition �. �ere is a unique solution ωβ to the optimization problem (�.�) satisfying ωβ
I� =

β, and for all i , j ≠ I�, Ci(β,ωβ
i ) = Cj(β,ωβ

j ).

For models with more than two arms, there is no closed form expression for Γ�β or Γ�, even for
Gaussian bandits with variance σ � for which we have

Γ�β = max
ω∶ωI�=β

min
i≠I�

(µI� − µi)�

�σ �(��ω i + ��β)
.

Bayesian β-optimality Russo (����) proves that any sampling rule allocating a fraction β to
the optimal arm (Ψn ,I��n → β) satis�es � − an ,I� ≥ e−n(Γ

�
β +o(�)) (a.s.).We de�ne a Bayesian β-

optimal sampling rule as a sampling rule matching this lower bound, i.e. satisfying Ψn ,I��n → β
and � − an ,I� ≤ e−n(Γ

�
β +o(�)).

Russo (����) proves that TTTS with parameter β is Bayesian β-optimal. However, the result is
valid only under strong regularity assumptions, excluding the two practically important cases of
Gaussian and Bernoulli bandits. In this chapter, we complete the picture by establishing Bayesian
β-optimality for those models in Sec. �.�. For the Gaussian bandit, Bayesian β-optimality was
established for TTEI by Qin, Klabjan and Russo, ���� with Gaussian priors, but this remained
an open problem for TTTS.

A fundamental ingredient of these proofs is to establish the convergence of the allocation of
measurement e�ort to the β-optimal allocation: Ψn , i�n → ωβ

i for all i, which is equivalent to
Tn , i�n → ωβ

i (cf. Lemma �).

β-optimality in the �xed-con�dence setting In the �xed con�dence setting, the perform-
ance of an algorithm is evaluated in terms of sample complexity. A lower bound given byGarivier
andKaufmann, ���� states that any δ-correct strategy satis�esE [τδ] ≥ (Γ�)−� ln (��(�δ)).

Observe that Γ� =maxβ∈[�,�] Γ�β . Using the same lower bound techniques, one can also prove
that under any δ-correct strategy satisfying Tn ,I��n → β,

lim inf
δ→�

E [τδ]
ln(��δ)

≥ �
Γ�β

.

�is motivates the relaxed optimality notion that we introduce in this chapter: A BAI strategy
is called asymptotically β-optimal if it satis�es

Tn ,I�
n
→ β and lim sup

δ→�

E [τδ]
ln(��δ)

≤ �
Γ�β

.

In this chapter, we provide the �rst sample complexity analysis of a BAI algorithm based on
TTTS (with the stopping and recommendation rules described in Sec. �.�), establishing its
asymptotic β-optimality.
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As already observed by Qin, Klabjan and Russo, ����, any sampling rule converging to the
β-optimal allocation (i.e. satisfying Tn , i�n → wβ

i for all i) can be shown to satisfy

lim sup
δ→�

τδ
ln(��δ)

≤ (Γ�β )−�

almost surely, when coupled with the Cherno� stopping rule.�e �xed con�dence optimality
that we de�ne above is stronger as it provides guarantees on E [τδ].

�.� Fixed-Con�dence Analysis
In this section, we consider Gaussian bandits and the Bayesian rules using an improper prior
on the means. We state our main result below, showing that TTTS and T3C are asymptotic-
ally β-optimal in the �xed con�dence setting, when coupled with appropriate stopping and
recommendation rules.

�eorem �.�. With C gG the function de�ned in Corollary �� of Kaufmann and Koolen, ����,
which satis�es C gG (x) � x + ln(x), we introduce the threshold

dn ,δ = � ln(� + ln(n)) + �C gG �
ln((K − �)�δ)

�
� . (�.�)

�e TTTS and T3C sampling rules coupled with either

• the Bayesian stopping rule (�.�) with threshold

cn ,δ = � −
�√
�π

e−�
�

dn ,δ+
�√
�
�
�

and recommendation rule Jt = argmaxi an , i , or
• theCherno� stopping rule (�.�)with threshold dn ,δ and recommendation rule Jt = argmaxi µn , i ,

form a δ-correct BAI strategy. Moreover, if all the arms means are distinct, it satis�es

lim sup
δ→�

E [τδ]
log(��δ)

≤ �
Γ�β

.

We now give the proof of�eorem �.�, which is divided into three parts.�e �rst step of the
analysis is to prove the δ-correctness of the studied BAI strategies.

�eorem �.�. Regardless of the sampling rule, the stopping rule (�.�) with the threshold cn ,δ and
theCherno� stopping rule (�.�)with threshold dn ,δ de�ned in (�.�) satisfyP [τδ <∞∧ Jτδ ≠ I�] ≤
δ.

To prove that TTTS and T3C allow to reach a β-optimal sample complexity, one needs to quantify
how fast the measurement e�ort for each arm is concentrating to its corresponding optimal
weight. For this purpose, we introduce the random variable

T ε
β � inf �N ∈∶ max

i∈A
�Tn , i�n − ωβ

i � ≤ ε,∀n ≥ N� .
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�e second step of our analysis is a su�cient condition for β-optimality, stated in Lemma �.
Its proof is given in Appendix �.F.�e same result was proven for the Cherno� stopping rule
by Qin, Klabjan and Russo, ����.

Lemma �. Let δ, β ∈ (�, �). For any sampling rule which satis�es E �T ε
β� < ∞ for all ε > �, we

have
lim sup

δ→�

E [τδ]
log(��δ)

≤ �
Γ�β

,

if the sampling rule is coupled with stopping rule (�.�),

Finally, it remains to show that TTTS and T3C meet the su�cient condition, and therefore the
last step, which is the core component and the most technical part our analysis, consists of
showing the following.

�eorem �.�. Under TTTS or T3C, E �T ε
β� < +∞.

In the rest of this section, we prove�eorem �.� and sketch the proof of�eorem �.�. But we
�rst highlight some important ingredients for these proofs.

�.�.� Core ingredients
Our analysis hinges on properties of the Gaussian posteriors, in particular on the following tail
bounds, which follow from Lemma � of Qin, Klabjan and Russo, ����.

Lemma �. For any i , j ∈ A, if µn , i ≤ µn , j

Πn �θ i ≥ θ j� ≤
�
�
exp
�������
−
�µn , j − µn , i�

�

�σ �
n , i , j

�������
, (�.�)

Πn �θ i ≥ θ j� ≥
�√
�π

exp
�������
−
�µn , j − µn , i + σn , i , j�

�

�σ �
n , i , j

�������
, (�.�)

where σ �
n , i , j � σ ��Tn , i + σ ��Tn , j .

�is lemma is crucial to control an , i and ψn , i , the optimal action and selection probabilit-
ies.

�.�.� Proof of�eorem �.�
We upper bound the desired probability as follows

P [τδ <∞∧ Jτδ ≠ I
�] ≤ �

i≠I�
P [∃n ∈∶ an , i > cn ,δ]

≤ �
i≠I�

P [∃n ∈∶ Πn(θ i ≥ θ I�) > cn ,δ , µn ,I� ≤ µn , i]

≤ �
i≠I�

P [∃n ∈∶ � − cn ,δ > Πn(θ I�> θ i), µn ,I� ≤ µn , i] .
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�e second step uses the fact that as cn ,δ ≥ ���, a necessary condition for Πn(θ i ≥ θ I�) ≥ cn ,δ
is that µn , i ≥ µn ,I� . Now using the lower bound (�.�), if µn ,I� ≤ µn , i , the inequality � − cn ,δ >
Πn(θ I� > θ i) implies

(µn , i − µn ,I�)�

�σ �
n , i ,I�

≥
�
�

�
���ln

�√
�π(� − cn ,δ)

− �√
�
�
�

�

= dn ,δ ,

where the equality follows from the expression of cn ,δ as function of dn ,δ . Hence to conclude
the proof it remains to check that

P �∃n∈∶µn , i ≥ µn ,I�,
(µn , i−µn ,I�)�

�σ �
n , i ,I�

≥dn ,δ�≤
δ

K−�
. (�.��)

To prove this, we observe that for µn , i ≥ µn ,I� ,

(µn , i − µn ,I�)�

�σ �
n , i ,I�

= inf
θ i<θ I�

Tn , i d(µn , i ; θ i) + Tn ,I�d(µn ,I�; θ I�)

≤ Tn , i d(µn , i ; µi) + Tn ,I�d(µn ,I�; µI�).

Corollary �� of Kaufmann and Koolen, ���� then allows us to upper bound the probabil-
ity

P [∃n ∈∶ Tn , i d(µn , i ; µi) + Tn ,I�d(µn ,I� , µI�) ≥ dn ,δ]

by δ�(K−�) for the choice of threshold given in (�.�), which completes the proof that the stopping
rule (�.�) is δ-correct.�e fact that the Cherno� stopping rule with the above threshold dn ,δ
given above is δ-correct straightforwardly follows from (�.��).

�.�.� Sketch of the proof of�eorem �.�
We present a uni�ed proof sketch of�eorem �.� for TTTS and T3C. While the two analyses
follow the same steps, some of the lemmas given below have di�erent proofs for TTTS and T3C,
which can be found in Appendix �.D and �.E respectively.

We �rst state two important concentration results, that hold under any sampling rule.

Lemma �. [Lemma � of Qin, Klabjan and Russo ����]�ere exists a random variable W�, such
that for all i ∈ A,

∀n ∈, �µn , i − µi � ≤ σW�

�
��� log(e + Tn , i)

� + Tn , i
a.s.,

and E �eλW�� <∞ for all λ > �.

Lemma �. �ere exists a random variable W�, such that for all i ∈ A,

∀n ∈, �Tn , i −Ψn , i � ≤W�
�
(n + �) log(e� + n) a.s.,

and E �eλW�� <∞ for any λ > �.
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Lemma � controls the concentration of the posterior means towards the true means and
Lemma � establishes that Tn , i and Ψn , i are close. Both results rely on uniform deviation in-
equalities for martingales.

Our analysis uses the same principle as that of TTEI: We establish that T ε
β is upper bounded

by some random variable N which is a polynomial of the random variables W� and W� in-
troduced in the above lemmas, denoted by Poly(W� ,W�) � O(Wc�

� Wc�
� ), where c� and c� are

two constants (that may depend on the arms’ means and the constant hidden in theO). As all
exponential moments ofW� andW� are �nite, N has a �nite expectation as well, concluding
the proof.

�e �rst step to exhibit such an upper boundN is to establish that every arm is pulled su�ciently
o�en.

Lemma �. Under TTTS or T3C, there exists N� = Poly(W� ,W�) s.t.

∀n ≥ N� ,∀i , Tn , i ≥
� n

K
, a.s..

Due to the randomized nature of TTTS and T3C, the proof of Lemma � is signi�cantly more
involved than for a deterministic rule like TTEI. Intuitively, the posterior of each arm would
be well concentrated once the arm is su�ciently pulled. If the optimal arm is under-sampled,
then it would be chosen as the �rst candidate with large probability. If a sub-optimal arm is
under-sampled, then its posterior distribution would possess a relatively wide tail that overlaps
with or cover the somehow narrow tails of other overly-sampled arms.�e probability of that
sub-optimal arm being chosen as the challenger would be large enough then.

Combining Lemma � with Lemma � straightforwardly leads to the following result.

Lemma ��. Under TTTS or T3C, �x a constant ε > �, there exists N� = Poly(��ε,W� ,W�) s.t.
∀n ≥ N� ,∀i ∈ A, �µn , i − µi � ≤ ε.

We can then deduce a very nice property about the optimal action probability for sub-optimal
arms from the previous two lemmas. Indeed, we can show that

∀i ≠ I� , an , i ≤ exp�−
∆�
min

��σ �

� n
K
�

for n larger than some Poly(W� ,W�), where ∆min is the smallest mean di�erence among all
the arms.

Plugging this in the expression of ψn , i , one can easily quantify how fast ψn ,I� converges to β,
which eventually yields the following result.

Lemma ��. Under TTTS or T3C, �x ε > �, then there exists N� = Poly(��ε,W� ,W�) s.t.∀n ≥ N�,

�Tn ,I�
n
− β� ≤ ε.

�e last, more involved, step is to establish that the fraction of measurement allocation to every
sub-optimal arm i is indeed similarly close to its optimal proportion ωβ

i .
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Figure �.�: Black dots represent means and oranges lines represent medians.

Lemma ��. Under TTTS or T3C, �x a constant ε > �, there exists N� = Poly(��ε,W� ,W�) s.t.
∀n ≥ N�,

∀i ≠ I� , �Tn , i

n
− ωβ

i � ≤ ε.

�e major step in the proof of Lemma �� for each sampling rule, is to establish that if some arm
is over-sampled, then its probability to be selected is exponentially small. Formally, we show
that for n larger than some Poly(��ε,W� ,W�),

Ψn , i

n
≥ ωβ

i + ξ ⇒ ψn , i ≤ exp{− f (n, ξ)} ,

for some function f (n, ξ) to be speci�ed for each sampling rule, satisfying f (n) ≥ Cξ
√
n (a.s.).

�is result leads to the concentration ofΨn , i�n, thus can be easily converted to the concentration
of Tn , i�n by Lemma �.

Finally, Lemma �� and Lemma �� show that T ε
β is upper bounded by N � max(N� ,N�), which

yields
E[T ε

β] ≤max(E [N�] ,E [N�]) <∞.
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Sampling rule Execution time (s)
T3C �.� × ��−�

TTTS �.� × ��−�

TTEI � × ��−�

BC �.� × ��−�

D-Tracking �.� × ��−�

Uniform � × ��−�

UGapE � × ��−�

Table �.�: Average execution time in seconds for di�erent sampling rules.

�.� Optimal Posterior Convergence
Recall that an ,I� denotes the posterior mass assigned to the event that action I� (i.e. the true
optimal arm) is optimal at time n. As the number of observations tends to in�nity, we want
the posterior distribution to converge to the truth. In this section we show equivalently that
the posterior mass on the complementary event, � − an ,I� , the event that arm I� is not optimal,
converges to zero at an exponential rate, and that it does so at optimal rate Γ�β .

Russo (����) proves a similar theorem under three con�ning boundedness assumptions (see
Russo ����, Assumption �) on the parameter space, the prior density and the (�rst derivative
of the) log-normalizer of the exponential family. Hence, the theorems in Russo, ���� do not
apply to the two bandit models most used in practice, which we consider in this chapter: the
Gaussian and Bernoulli model.

In the �rst case, the parameter space is unbounded, in the latter model, the derivative of the
log-normalizer (which is eη�(� + eη)) is unbounded. Here we provide a theorem, proving
that under TTTS, the optimal, exponential posterior convergence rates are obtained for the
Gaussian model with uninformative (improper) Gaussian priors (proof in Appendix �.H), and
the Bernoulli model with Beta(�, �) priors (proof in Appendix �.I).

�eorem �.��. UnderTTTS, forGaussian bandits with improperGaussian priors and for Bernoulli
bandits with uniform priors, it holds almost surely that

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

�.� Numerical Illustrations
�is section is aimed at illustrating our theoretical results and supporting the practical use of
Bayesian sampling rules for �xed-con�dence BAI.

We experiment with � Bayesian sampling rules: T3C, TTTS and TTEI with β = ���, against
the Direct Tracking (D-Tracking) of Garivier and Kaufmann, ���� (which is adaptive to β),
UGapE of Gabillon, Ghavamzadeh and Lazaric, ����, and a uniform baseline. To make fair
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comparisons, we use the stopping rule (�.�) and associated recommendation rule for all of the
sampling rules except for UGapE which has its own stopping rule.

We further include a top-two variant of the Best Challenger (BC) heuristic (see Ménard, ����).
BC selects the empirical best arm În with probability β and the maximizer ofWn(În , j) with
probability �− β, but also performs forced exploration (selecting any arm sampled less than

√
n

times at round n). T3C can thus be viewed as a variant of BC in which no forced exploration is
needed to converge to ωβ , due to the noise added by replacing În with I(�)n .�is randomization
is crucial as BC without forced exploration can fail: we observed that on bandit instances with
two identical sub-optimal arms, BC has some probability to alternate forever between these two
arms and never stop.

We consider two simple instances with arm means given by µ� = [�.� �.� �.� �.�� �.�����],
and µ� = [� �.� �.�� �.�]. We run simulations for both Gaussian (σ = �) and Bernoulli bandits,
with a risk parameter δ = �.��. Fig. �.� reports the empirical distribution of τδ under the
di�erent sampling rules, estimated over ���� independent runs. We also indicate the values
of N� � log(��δ)�Γ� (resp.N��.� � log(��δ)�Γ��.�), the theoretical minimal number of samples
needed for any strategy (resp.any ���-optimal strategy). In Appendix �.C, we further illustrate
how the empirical stopping time of T3C matches the theoretical one.

�ese �gures provide several insights: (�) T3C is competitive with, and sometimes slightly
better than TTTS/TTEI in terms of sample complexity. (�)�e UGapE algorithm has a larger
sample complexity than the uniform sampling rule, which highlights the importance of the
stopping rule in the �xed-con�dence setting. (�)�e fact that D-Tracking performs best is
not surprising, since it converges to ωβ� and achieves minimal sample complexity. However,
in terms of computation time, D-Tracking is much worse than others, as shown in Table �.�,
which reports the average execution time of one step of each sampling rule for µ� in the Gaussian
case. (�) TTTS also su�ers from computational costs, whose origins are explained in Sec. �.�,
unlike T3C or TTEI. Although TTEI is already computationally more attractive than TTTS, its
practical bene�ts are limited to the Gaussian case, since the Expected Improvement (EI) does
not have a closed form beyond this case and its approximation would be costly. In contrast,
T3C can be applied for other distributions.

�.� Conclusion
Wehave advocated the use of Bayesian sampling rules for BAI. In particular, we proved thatTTTS

and a computationally advantageous approach T3C, are both β-optimal in the �xed-con�dence
setting, for Gaussian bandits. We further extended the Bayesian optimality properties (Russo,
����) to more practical choices of models and prior distributions. In order to be optimal, these
sampling rules would need the oracle tuning β� = argmaxβ∈[�,�] Γ

�

β , which is not feasible. In
future work, we will investigate the e�cient online tuning of β to circumvent this issue. We also
wish to obtain explicit �nite-time sample complexity bound for these Bayesian strategies, and
justify the use of these appealing anytime sampling rules in the �xed-budget setting.�e latter
is o�en more plausible in application scenarios such as BAI for automated machine learning (Li
et al., ����; Shang, Kaufmann and Valko, ����).
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�.A Outline
�e appendix of this chapter is organized as follows:

Appendix �.C provides some further numerical illustration for better understanding of T3C.
Appendix �.D provides the complete �xed-con�dence analysis of TTTS (Gaussian case).
Appendix �.E provides the complete �xed-con�dence analysis of T3C (Gaussian case).
Appendix �.F is dedicated to Lemma �.
Appendix �.G is dedicated to crucial technical lemmas.
Appendix �.H is the proof to the posterior convergence�eorem �.�� (Gaussian case).
Appendix �.I is the proof to the posterior convergence�eorem �.�� (Beta-Bernoulli case).

�.B Useful Notation
In this section, we provide a list of useful notation that is applied in appendices (including
reminders of previous notation in the main text and some new ones).

• Recall that d(µ�; µ�) denotes the KL-divergence between two distributions parametrized
by their means µ� and µ�. For Gaussian distributions, we know that

d(µ�; µ�) =
(µ� − µ�)�

�σ � .

When it comes to Bernoulli distributions, we denote this with kl , i.e.

kl(µ�; µ�) = µ� ln�
µ�
µ�
� + (� − µ�) ln�

� − µ�
� − µ�

� .

• Beta(⋅, ⋅) denotes a Beta distribution.
• Bern(⋅) denotes a Bernoulli distribution.
• B(⋅) denotes a Binomial distribution.
• N (⋅, ⋅) denotes a normal distribution.
• Yn , i is the reward of arm i at time n.
• Yn ,In is the observation of the sampling rule at time n.
• Fn � σ(I� ,Y�,I� , I� ,Y�,I� ,�, In ,Yn ,In) is the �ltration generated by the �rst n observa-
tions.

• ψn , i � P [In = i�Fn−�].
• Ψn , i � ∑n

l=� ψ l , i .
• For the sake of simplicity, we further de�ne ψn , i �

Ψn , i
n .

• Tn , i is the number of pulls of arm i before round n.
• Tn denotes the vector of the number of arm selections.
• I�n � argmaxi∈A µn , i denotes the empirical best arm at time n.
• For any a, b > �, de�ne a function Ca ,b s.t. ∀y,

Ca ,b(y) � (a + b − �)kl(
a − �

a + b − �
; y).
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• We de�ne the minimum and the maximum means gap as

∆min �min
i≠ j
�µi − µ j � ; ∆max �max

i≠ j
�µi − µ j �.

• We introduce two indices

J(�)n � argmax
j

an , j ; J(�)n � argmax
j≠J(�)n

an , j .

Note that J(�)n coincides with the Bayesian recommendation index Jn .
• Two real-valued sequences (an) and (bn) are are said to be logarithmically equivalent if

lim
n→∞

�
n
log� an

bn
� = �,

and we denote this by an � bn .

�.C Empirical vs. theoretical sample complexity
In Fig. �.�, we plot expected stopping time of T3C for δ = �.�� as a function of ��Γ�β on ���
randomly generated problem instances. We see on this plot that the empirical stopping time
has the right linear scaling in ��Γ�β (ignoring a few outliers).

Figure �.�: dots: empirical sample complexity, solid line: theoretical sample complexity.

�.D Fixed-Con�dence Analysis for TTTS
�is section is entirely dedicated to TTTS.

�.D.� Technical novelties and some intuitions
Before we start the analysis, we �rst highlight some technical novelties and intuitions.�e main
novelty in our analysis is the proof of Lemma �, establishing that all arms are su�ciently explored
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by our randomized strategies. Although Qin, Klabjan and Russo, ���� indeed establish a similar
result, our proof is much more intricate due to the randomized nature of the two candidate
arms I(�) and I(�) for TTTS (resp. I(�) for T3C). In the proof of Lemma � (in Appendix �.D.�
and Appendix �.E.� respectively), we need to add a sort of ‘extra layer’ where we �rst study
the behaviour of J(�) and J(�) for TTTS (resp. J(�) and�J(�) for T3C). We show in Lemma ��
(resp. Lemma �� for T3C) that if there exists some under-sampled arm, then either J(�) or
J(�) is also under-sampled. A link between I and J is then established using the expression of
ψn , i , which also allows to upper bound the optimal action probability with a known rate (see
Lemma ��).

�.D.� Su�cient exploration of all arms
proof of Lemma � under TTTS

To prove this lemma, we introduce the two following sets of indices for a given L > �: ∀n ∈ N
we de�ne

UL
n � {i ∶ Tn , i <

√
L},

VL
n � {i ∶ Tn , i < L���}.

It is seemingly non trivial to manipulate directly TTTS’s candidate arms, we thus start by
connecting TTTS with TTPS (top two probability sampling). TTPS is another sampling rule
presented by Russo, ���� for which the two candidate samples are de�ned as in Appendix �.B,
we recall them in the following.

J(�)n � argmax
j

an , j , J
(�)
n � argmax

j≠J(�)n

an , j .

Lemma � is proved via the following sequence of lemmas.

Lemma ��. �ere exists L� = Poly(W�) s.t. if L > L�, for all n, UL
n ≠ � implies J(�)n ∈ VL

n or
J(�)n ∈ VL

n .

Proof. If J(�)n ∈ VL
n , then the proof is �nished. Now we assume that J(�)n ∈ VL

n , and we prove that
J(�)n ∈ VL

n .

Step � According to Lemma �, there exists L� = Poly(W�) s.t. ∀L > L� ,∀i ∈ UL
n ,

�µn , i − µi � ≤ σW�

�
��� log(e + Tn , i)

� + Tn , i

≤ σW�

�
��� log(e +

√
L)

� +
√
L

≤ σW�
∆min

�σW�
= ∆min

�
.

�e second inequality holds since x � log(e+x)
�+x is a decreasing function.�e third inequality

holds for a large L > L� with L� = . . ..
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Step � We now assume that L > L�, and we de�ne

J�n � argmax
j∈UL

n

µn , j = argmax
j∈UL

n

µ j .

�e last equality holds since ∀ j ∈ UL
n , �µn , i − µi � ≤ ∆min��. We show that there exists L� =

Poly(W�) s.t. ∀L > L�,
J�n = J

(�)
n .

We proceed by contradiction, and suppose that J�n ≠ J
(�)
n , then µn , J(�)n

< µn , J�n , since J
(�)
n ∈ VL

n ⊂
UL

n . However, we have

an , J(�)n
= Πn

�����
θ J(�)n
> max

j≠J(�)n

θ j

�����
≤ Πn �θ J(�)n

> θ J�n �

≤ �
�
exp
�������
−
(µn , J(�)n

− µn , J�n )
�

�σ �(��Tn , J(�)n
+ ��Tn , J�n )

�������
.

�e last inequality uses the Gaussian tail inequality (�.�) of Lemma �. On the other hand,

�µn , J(�)n
− µn , J�n � = �µn , J(�)n

− µJ(�)n
+ µJ(�)n

− µJ�n + µJ�n − µn , J�n �

≥ �µJ(�)n
− µJ�n � − �µn , J(�)n

− µJ(�)n
+ µJ�n − µn , J�n �

≥ ∆min − (
∆min

�
+ ∆min

�
)

= ∆min

�
,

and
�

Tn , J(�)n

+ �
Tn , J�n

≤ �√
L
.

�us, if we take L� s.t.

exp�−
√
L�∆�

min
��σ � � ≤ �

�K
,

then for any L > L�, we have

an , J(�)n
≤ �
�K
< �
K
,

which contradicts the de�nition of J(�)n . We now assume that L > L�, thus J
(�)
n = J�n .

Step � We �nally show that for L large enough, J(�)n ∈ VL
n . First note that ∀ j ∈ VL

n , we have

an , j ≤ Πn �θ j ≥ θ J�n � ≤ exp�−
L���∆�

min
��σ � � . (�.��)
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�is last inequality can be proved using the same argument as Step �. Now we de�ne another
index J�n � argmax j∈UL

n
µn , j and the quantity cn �max(µn , J�n , µn , J�n ). We can lower bound an , J�n

as follows:

an , J�n ≥ Πn �θ J�n ≥ cn��
j≠J�n

Πn �θ j ≤ cn�

= Πn �θ J�n ≥ cn� �
j≠J�n ; j∈UL

n

Πn �θ j ≤ cn� �
j∈UL

n

Πn �θ j ≤ cn�

≥ Πn �θ J�n ≥ cn�
�

�K−�
.

Now there are two cases:

• If µn , J�n > µn , J�n , then we have

Πn �θ J�n ≥ cn� = Πn �θ J�n ≥ µn , J�n � ≥
�
�
.

• If µn , J�n < µn , J�n , then we can apply the Gaussian tail bound (�.�) of Lemma �, and we
obtain

Πn �θ J�n ≥ cn� = Πn �θ J�n ≥ µn , J�n � = Πn �θ J�n ≥ µn , J�n + (µn , J�n − µn , J�n )�

≥ �√
�π

exp
���������
− �
�
�
�
� −
�
Tn , J�n
σ
(µn , J�n − µn , J�n )

�
�

����������

= �√
�π

exp
���������
− �
�
�
�
� +
�
Tn , J�n
σ
(µn , J�n − µn , J�n )

�
�

����������
.

On the other hand, by Lemma �, we know that

�µn , J�n − µn , J�n � = �µn , J�n − µJ�n + µJ�n − µJ�n + µJ�n − µn , J�n �

≤ �µJ�n − µJ�n � + σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n
+ σW�

�
����

log(e + Tn , J�n )
� + Tn , J�n

≤ �µJ�n − µJ�n � + �σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n

≤ ∆max + �σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n
.
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�erefore,

Πn �θ J�n ≥ cn� ≥
�√
�π

exp

�����������

− �
�

�
�
�
� +
�
Tn , J�n
σ

�
�
�
∆max + �σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n

�
�
�

�
�
�

������������

≥ �√
�π

exp

�����������

− �
�

�
�
�
� +
�√

L
σ

�
�
�
∆max + �σW�

�
��� log(e +

√
L)

� +
√
L

�
�
�

�
�
�

������������

≥ �√
�π

exp
�������
− �
�
�� + L���∆max

σ
+ �W�

�
log(e +

√
L)�

��������
.

Now we have

an , J�n ≥max
�
�
� �
�
�
K
, � �

�
�
K−� �√

�π
exp
�������
− �
�
�� + L���∆max

σ
+ �W�

�
log(e +

√
L)�

��������

�
�
,

and we have ∀ j ∈ VL
n , an , j ≤ exp�−L���∆�

min�(��σ �)�, thus there exists L� = Poly(W�) s.t.
∀L > L�, ∀ j ∈ VL

n ,

an , j ≤
an , J�n
�

,

and by consequence, J(�)n ∈ VL
n .

Finally, taking L� =max(L� , L� , L�), we have ∀L > L�, either J
(�)
n ∈ VL

n or J(�)n ∈ VL
n .

Next we show that there exists at least one arm in VL
n for whom the probability of being pulled

is large enough. More precisely, we prove the following lemma.

Lemma ��. �ere exists L� = Poly(W�) s.t. for L > L� and for all n s.t. UL
n ≠ �, then there exists

Jn ∈ VL
n s.t.

ψn , Jn ≥
min(β, � − β)

K� � ψmin.

Proof. Using Lemma ��, we know that J(�)n or J(�)n ∈ VL
n . On the other hand, we know that

∀i ∈ A,ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�
.

�erefore we have

ψn , J(�)n
≥ βan , J(�)n

≥ β
K
,
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since∑i∈A an , i = �, and

ψn , J(�)n
≥ (� − β)an , J(�)n

an , J(�)n

� − an , J(�)n

= (� − β)an , J(�)n

an , J(�)n

� − an , J(�)n

≥ � − β
K� ,

since an , J(�)n
≥ ��K and∑i≠J(�)n

an , i�(� − an , J(�)n
) = �, thus an , J(�)n

�(� − an , J(�)n
) ≥ ��K.

�e rest of this subsection is quite similar to that of Qin, Klabjan and Russo, ����. Indeed, with
the above lemma, we can show that the set of poorly explored armsUL

n is empty when n is large
enough.

Lemma ��. Under TTTS, there exists L� = Poly(W� ,W�) s.t. ∀L > L�, UL
�KL� = �.

Proof. We proceed by contradiction, and we assume that UL
�KL� is not empty. �en for any

� ≤ ` ≤ �KL�, UL
` and VL

` are non empty as well.

�ere exists a deterministic L� s.t. ∀L > L�,

�L� ≥ KL��� .

Using the pigeonhole principle, there exists some i ∈ A s.t. T�L�, i ≥ L���. �us, we have
�VL
�L�� ≤ K − �.

Next, we prove �VL
��L�� ≤ K − �. Otherwise, since UL

` is non-empty for any �L� + � ≤ ` ≤ ��L�,
thus by Lemma ��, there exists J` ∈ VL

` s.t. ψ`, J` ≥ ψmin.�erefore,

�
i∈VL

`

ψ`, i ≥ ψmin,

and

�
i∈VL�L�

ψ`, i ≥ ψmin

since VL
` ⊂ VL

�L�. Hence, we have

�
i∈VL�L�
(Ψ��L�, i −Ψ�L�, i) =

��L�

�
`=�L�+�

�
i∈VL�L�

ψ`, i ≥ ψmin �L� .
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�en, using Lemma �, there exists L� = Poly(W�) s.t. ∀L > L�, we have

�
i∈VL�L�
(T��L�, i − T�L�, i) ≥ �

i∈VL�L�
(Ψ��L�, i −Ψ�L�, i − �W�

�
��L� log(e� + ��L�))

≥ �
i∈VL�L�
(Ψ��L�, i −Ψ�L�, i) − �KW�

�
��L� log(e� + ��L�)

≥ ψmin �L� − �KW�C� �L����

≥ KL��� ,

where C� is some absolute constant.�us, we have one arm in VL
�L� that is pulled at least L���

times between �L� + � and ��L�, thus �VL
��L�� ≤ K − �.

By induction, for any � ≤ k ≤ K, we have �VL
�kL�� ≤ K − k, and �nally if we take L� =

max(L� , L� , L�), then ∀L > L�, UL
�KL� = �.

We can �nally conclude the proof of Lemma � for TTTS.

Proof of Lemma � Let N� = KL� where L� = Poly(W� ,W�) is chosen according to Lemma ��.
For all n > N�, we let L = n�K, then by Lemma ��, we have UL

�KL� = Un�K
n is empty, which

concludes the proof.

�.D.� Concentration of the empirical means,
proof of Lemma �� under TTTS

As a corollary of the previous section,we can show the concentration of µn , i to µi forTTTS
�.

By Lemma �, we know that ∀i ∈ A and n ∈ N,

�µn , i − µi � ≤ σW�

�
��� log(e + Tn , i)

Tn , i + �
.

According to the previous section, there exists N� = Poly(W� ,W�) s.t. ∀n ≥ N� and ∀i ∈ A,
Tn , i ≥

�
n�K.�erefore,

�µn , i − µi � ≤

�
���� log(e +

�
n�K)

�
n�K + �

,

�this proof is the same as Proposition � of Qin, Klabjan and Russo, ����
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since x � log(e + x)�(x + �) is a decreasing function. �ere exists N ′� = Poly(ε,W�) s.t.
∀n ≥ N ′�, �

���� log(e +
�
n�K)

�
n�K + �

≤
�
����(n�K)����

n�K + �
≤ ε
σW�

.

�erefore, ∀n ≥ N� �max{N� ,N ′�}, we have

�µn , i − µi � ≤ σW�
ε

σW�
.

�.D.� Measurement e�ort concentration of the optimal arm,
proof of Lemma �� under TTTS

In this section we show that the empirical arm draws proportion of the true best arm for TTTS

concentrates to β when the total number of arm draws is su�ciently large.

�e proof is established upon the following lemmas. First, we prove that the empirical best
arm coincides with the true best arm when the total number of arm draws goes su�ciently
large.

Lemma ��. Under TTTS, there exists M� = Poly(W� ,W�) s.t. ∀n > M�, we have I�n = I� = J
(�)
n

and ∀i ≠ I�,

an , i ≤ exp�−
∆�
min

��σ �

� n
K
� .

Proof. Using Lemma �� with ε = ∆min��, there exists N ′� = Poly(��∆min,W� ,W�) s.t. ∀n > N ′� ,

∀i ∈ A, �µn , i − µi � ≤
∆min

�
,

which implies that starting from a known moment, µn ,I� > µn , i for all i ≠ I�, hence I�n = I�.
�us, ∀i ≠ I�,

an , i = Πn �θ i >max
j≠i

θ j�

≤ Πn [θ i > θ I�]

≤ �
�
exp�− (µn , i − µn ,I�)�

�σ �(��Tn , i + ��Tn ,I�)
� .

�e last inequality uses the Gaussian tail inequality of (�.�) Lemma �. Furthermore,

(µn , i − µn ,I�)� = (�µn , i − µn ,I� �)�

= (�µn , i − µi + µi − µI� + µI� − µn ,I� �)�

≥ (�µi − µI� � − �µn , i − µi + µI� − µn ,I� �)�

≥ �∆min − �
∆min

�
+ ∆min

�
��

�
= ∆�

min
�

,



�.D. Fixed-Con�dence Analysis for TTTS ���

and according to Lemma �, we know that there exists M� = Poly(W� ,W�) s.t. ∀n > M�,

�
Tn , i
+ �
Tn ,I�

≤ ��
n�K

.

�us, ∀n >max{N ′� ,M�}, we have

∀i ≠ I� , an , i ≤ exp�−
∆�
min

��σ �

� n
K
� .

�en, we have

an ,I� = � − �
i≠I�

an , i ≥ � − (K − �) exp�−
∆�
min

��σ �

� n
K
� .

�ere exists M′� s.t. ∀n > M′�, an ,I� > ���, and by consequence I� = J(�)n . Finally taking
M� �max{N ′� ,M� ,M′�} concludes the proof.

Before we prove Lemma ��, we �rst show that Ψn ,I��n concentrates to β.

Lemma ��. Under TTTS, �x a constant ε > �, there exists M� = Poly(ε,W� ,W�) s.t. ∀n > M�,
we have

�Ψn ,I�
n
− β� ≤ ε.

Proof. By Lemma ��, we know that there exists M′� = Poly(W� ,W�) s.t. ∀n > M′� , we have
I�n = I� = J

(�)
n and ∀i ≠ I�,

an , i ≤ exp�−
∆�
min

��σ �

� n
K
� .

Note also that ∀n ∈ N, we have

ψn ,I� = an ,I�
�
�
β + (� − β) �

j≠I�
an , j

� − an , j
�
�
.

We proceed the proof with the following two steps.
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Step � We �rst lower bound Ψn ,I� for a given ε. Take M� > M′� that we decide later, we have
∀n > M�,

Ψn ,I�
n
= �
n

n
�
l=�

ψ l ,I� =
�
n

M�

�
l=I�

ψ l ,I� +
�
n

n
�

l=M�+�
ψ l ,I�

≥ �
n

n
�

l=M�+�
ψ l ,I� ≥

�
n

n
�

l=M�+�
al ,I�β

= β
n

n
�

l=M�+�

�
�
� − �

j≠I�
al , j
�
�

≥ β
n

n
�

l=M�+�

�
�
� − (K − �) exp

�������
−∆

�
min

��σ �

�
l
K

�������

�
�

= β − M�

n
β − β

n

n
�

l=M�+�
(K − �) exp

�������
−∆

�
min

��σ �

�
l
K

�������

≥ β − M�

n
β − (n −M�)

n
β(K − �) exp

�������
−∆

�
min

��σ �

�
M�

K

�������

≥ β − M�

n
β − β(K − �) exp

�������
−∆

�
min

��σ �

�
M�

K

�������
.

For a given constant ε > �, there exists M� s.t. ∀n > M�,

β(K − �) exp�−∆
�
min

��σ �

� n
K
� < ε

�
.

Furthermore, there exists M� = Poly(ε��,M�) s.t. ∀n > M�,

M�

n
β < ε

�
.

�erefore, if we take M� �max{M′� ,M� ,M�}, we have ∀n > M�,

Ψn ,I�
n
≥ β − ε.
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Step � On the other hand, we can also upper bound Ψn ,I� . We have ∀n > M�,

Ψn ,I�
n
= �
n

n
�
l=�

ψ l ,I�

= �
n

n
�
l=�

al ,I�
�
�
β + (� − β) �

j≠I�
al , j

� − al , j
�
�

≤ �
n

n
�
l=�

al ,I�β +
�
n

n
�
l=�

al ,I�(� − β) �
j≠I�

al , j
� − al , j

≤ β + �
n

n
�
l=�
(� − β) �

j≠I�
al , j

� − al , j

≤ β + �
n

n
�
l=�
(� − β) �

j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�

.

Since, for a given ε > �, there exists M� s.t. ∀n > M�,

exp�−∆
�
min

��σ �

� n
K
� < �

�
,

and there exists M� s.t. ∀n > M�,

(� − β)(K − �) exp�−∆
�
min

��σ �

� n
K
� < ε

�
.

�us, ∀n > M�� �max{M� ,M�},

Ψn ,I�
n
≤ β + � − β

n

�
���
�

M��

�
l=�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�
+

n
�

l=M��+�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�

�
���
�

≤ β + � − β
n

M��

�
l=�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�
+ �(� − β)(K − �) exp

�������
−∆

�
min

��σ �

�
M��

K

�������

≤ β + � − β
n

M��

�
l=�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�
+ ε
�
.

�ere exists M�� = Poly(ε��,M��) s.t. ∀n > M��,

� − β
n

M��

�
l=�
�
j≠I�

exp�− ∆�
min

��σ �

�
l
K�

� − exp�− ∆�
min

��σ �

�
l
K�
< ε
�
.
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�erefore, ∀n > M� �max{M� ,M��}, we have

Ψn ,I�
n
≤ β + ε.

Conclusion Finally, combining the two steps and de�ne M� � max{M� ,M�}, we have
∀n > M�,

�Ψn ,I�
n
− β� ≤ ε.

With the help of the previous lemma and Lemma �, we can �nally prove Lemma ��.

Proof of Lemma �� Fix an ε > �. Using Lemma �, we have ∀n ∈ N,

�Tn ,I�
n
− Ψn ,I�

n
� ≤

W�
�
(n + �) log(e� + n)

n
.

�us there exists M�� s.t. ∀n > M��,

�Tn ,I�
n
− Ψn ,I�

n
� ≤ ε

�
.

And using Lemma ��, there exists M′� = Poly(ε��,W� ,W�) s.t. ∀n > M′�,

�Ψn ,I�
n
− β� ≤ ε

�
.

Again, according to Lemma ��, there exists M′� s.t. ∀n > M′�,

Ψn ,I�
n
≤ β + ε

�
.

�us, if we take N� �max{M′� ,M��}, then ∀n > N�, we have

�Tn ,I�
n
− β� ≤ ε.

�.D.� Measurement e�ort concentration of other arms,
proof of Lemma �� under TTTS

In this section, we show that, for TTTS, the empirical measurement e�ort concentration also
holds for other arms than the true best arm. We �rst show that if some arm is overly sampled at
time n, then its probability of being picked is reduced exponentially.
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Lemma ��. Under TTTS, for every ξ ∈ (�, �), there exists S� = Poly(��ξ,W� ,W�) such that for
all n > S�, for all i ≠ I�,

Ψn , i

n
≥ ωβ

i + ξ ⇒ ψn , i ≤ exp{−ε�(ξ)n} ,

where ε� is de�ned in (�.��) below.

Proof. First, by Lemma ��, there exists M′′� = Poly(W� ,W�) s.t. ∀n > M′′� ,

I� = I�n = J
(�)
n .

�en, following the similar argument as in Lemma ��, one can show that for all i ≠ I� and for
all n > M′′� ,

ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�

≤ an , iβ + an , i(� − β)
∑ j≠i an , j
� − an , J(�)n

= an , iβ + an , i(� − β)
∑ j≠i an , j
� − an ,I�

≤ an , iβ + an , i(� − β)
�

� − an ,I�

≤ an , i
� − an ,I�

≤ Πn [θ i ≥ θ I�]
Πn �∪ j≠I�θ j ≥ θ I��

≤ Πn [θ i ≥ θ I�]
max j≠I� Πn �θ j ≥ θ I��

.

Using the upper and lower Gaussian tail bounds from Lemma �, we have

ψn , i ≤
exp�− (µn ,I� − µn , i)�

�σ � (��Tn ,I� + ��Tn , i)
�

exp

�����������

−min
j≠I�

�
�

�
�
�

(µn ,I� − µn , j)

σ
�
���Tn ,I� + ��Tn , j�

− �
�
�
�

������������

=
exp�−n (µn ,I� − µn , i)�

�σ � (n�Tn ,I� + n�Tn , i)
�

exp

�����������

−n
�
�
�
min
j≠I�

(µn ,I� − µn , j)�
�σ � �n�Tn ,I� + n�Tn , j�

− �√
�n

�
�
�

������������

,
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where we assume that n > S� = Poly(W� ,W�) for which

(µn ,I� − µn , i)�

σ � (��Tn ,I� + ��Tn , i)
≥ �

according to Lemma �. From there we take a supremum over the possible allocations to lower
bound the denominator and write

ψn , i ≤
exp�−n (µn ,I� − µn , i)�

�σ � (n�Tn ,I� + n�Tn , i)
�

exp

�����������

−n
�
�
�

sup
ω∶ωI�=Tn ,I� �n

min
j≠I�

(µn ,I� − µn , i)�
�σ � ���ωI� + ��ω j�

− �√
�n

�
�
�

������������

=
exp�−n (µn ,I� − µn , i)�

�σ � (n�Tn ,I� + n�Tn , i)
�

exp
�������
−n �
�

Γ�Tn ,I� �n (µn) −
�√
�n
�
��������

,

where µn � (µn ,� ,�, µn ,K), and (β, µ) � Γ�β (µ) represents a function that maps β and µ to
the parameterized optimal error decay that any allocation rule can reach given parameter β
and a set of arms with means µ. Note that this function is continuous with respect to β and µ
respectively.

Now, assuming Ψn , i�n ≥ ωβ
i + ξ yields that there exists S′� � Poly(��ξ,W�) s.t. for all n > S′�,

Tn , i�n ≥ ωβ
i + ξ��, and by consequence,

ψn , i ≤ exp

���������������������������

−n
�
��
�

(µn ,I� − µn , i)�

�σ � �n�Tn ,I� + ��(ωβ
i + ξ��)�

− Γ�Tn ,I� �n (µn) −
�
�n
+

�
����Γ�Tn ,I� �n (µn)

n

�
��
�

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
εn(ξ)

���������������������������

.

Using Lemma ��, we know that for any ε, there exists S� = Poly(��ε,W� ,W�) s.t. ∀n > S�,
�Tn ,I��n − β� ≤ ε, and ∀ j ∈ A, �µn , j − µ j � ≤ ε. Furthermore, (β, µ)� Γ�β (µ) is continuous with
respect to β and µ, thus for a given ε�, there exists S′� = Poly(��ε� ,W� ,W�) s.t. ∀n > S′�, we
have ��������������

εn(ξ) −
�
�
�

(µI� − µi)�

�σ � ���β + ��(ωβ
i + ξ��)�

− Γ�β
�
�
�

��������������
≤ ε� .

Finally, de�ne S� �max{S� , S′� , S′�}, we have ∀n > S�,

ψn , i ≤ exp{−ε�(ξ)n} ,
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where

ε�(ξ) =
(µI� − µi)�

�σ � ���β + ��(ωβ
i + ξ��)�

− Γ�β + ε� . (�.��)

Next, starting from some known moment, no arm is overly allocated. More precisely, we show
the following lemma.

Lemma ��. Under TTTS, for every ξ, there exists S� = Poly(��ξ,W� ,W�) s.t. ∀n > S�,

∀i ∈ A, Ψn , i

n
≤ ωβ

i + ξ.

Proof. From Lemma ��, there exists S′� = Poly(��ξ,W� ,W�) such that for all n > S′� and for all
i ≠ I�,

Ψn , i

n
≥ ωβ

i +
ξ
�
⇒ ψn , i ≤ exp{−ε�(ξ��)n} .

�us, for all i ≠ I�,

Ψn , i

n
≤ S′�

n
+

n
�

`=S′�+�
ψ`, i1�

Ψ`, i

n
≥ ωβ

i +
ξ
�
�

n
+

n
�

`=S′�+�
ψ`, i1�

Ψ`, i

n
≤ ωβ

i +
ξ
�
�

n

≤ S′�
n
+

n
�
`=�

exp{−ε�(ξ��)n}

n
+

`n(ξ)

�
`=S′�+�

ψ`, i1�
Ψ`, i

n
≤ ωβ

i +
ξ
�
�

n
,

where we let `n(ξ) =max�` ≤ n ∶ Ψ`, i�n ≤ ωβ
i + ξ���.�en

Ψn , i

n
≤ S′�

n
+

n
�
`=�

exp{−ε�(ξ��)n}

n
+Ψ`n(ξ), i

≤ S′� + (� − exp(−ε�(ξ��))−�

n
+ ωβ

i +
ξ
�

�en, there exists S� such that for all n ≥ S�,

S′� + (� − exp(−ε�(ξ��))−�

n
≤ ξ
�
.

�erefore, for any n > S� � max{S′� , S�}, Ψn , i ≤ ωβ
i + ξ holds for all i ≠ I�. For i = I�, it is

already proved for the optimal arm.

We now prove Lemma �� under TTTS.
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Proof of Lemma �� From Lemma ��, there exists S′� = Poly((K − �)�ξ,W� ,W�) such that
for all n > S′�,

∀i ∈ A, Ψn , i

n
≤ ωβ

i +
ξ

K − �
.

Using the fact that Ψn , i�n and ωβ
i all sum to �, we have ∀i ∈ A,

Ψn , i

n
= � −�

j≠i

Ψn , j

n

≥ � −�
j≠i
�ωβ

j +
ξ

K − �
�

= ωβ
i − ξ.

�us, for all n > S′�, we have
∀i ∈ A, �Ψn , i

n
− ωβ

i � ≤ ξ.

And �nally we use the same reasoning as the proof of Lemma �� to link Tn , i and Ψn , i . Fix an
ε > �. Using Lemma �, we have ∀n ∈ N,

∀i ∈ A, �Tn , i

n
− Ψn , i

n
� ≤

W�
�
(n + �) log(e� + n)

n
.

�us there exists S� s.t. ∀n > S�,

�Tn ,I�
n
− Ψn ,I�

n
� ≤ ε

�
.

And using the above result, there exists S′′� = Poly(��ε,W� ,W�) s.t. ∀n > S′′� ,

�Ψn , i

n
− ωβ

i � ≤
ε
�
.

�us, if we take N� �max{S′′� , S�}, then ∀n > N�, we have

∀i ∈ A, �Tn , i

n
− ωβ

i � ≤ ε.

�.E Fixed-Con�dence Analysis for T3C
�is section is entirely dedicated to T3C. Note that the analysis to follow share the same proof
line with that of TTTS, and some parts even completely coincide with those of TTTS. For
the sake of clarity and simplicity, we shall only focus on the parts that di�er and skip some
redundant proofs.
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�.E.� Su�cient exploration of all arms, proof of Lemma�underT3C
To prove this lemma, we still need the two sets of indices for under-sampled arms like in
Appendix �.D.�. We recall that for a given L > �: ∀n ∈ N we de�ne

UL
n � {i ∶ Tn , i <

√
L},

VL
n � {i ∶ Tn , i < L���}.

For T3C however, we investigate the following two indices,

J(�)n � argmax
j

an , j ;
�J(�)n � argmin

j≠J(�)n

Wn(J(�)n , j).

Lemma � is proved via the following sequence of lemmas.

Lemma ��. �ere exists L� = Poly(W�) s.t. if L > L�, for all n, UL
n ≠ � implies J(�)n ∈ VL

n or
�J(�)n ∈ VL

n .

Proof. If J(�)n ∈ VL
n , then the proof is �nished. Now we assume that J(�)n ∈ VL

n ⊂ UL
n , and we

prove that J(�)n ∈ VL
n .

Step � Following the same reasoning as Step � and Step � of the proof of Lemma ��, we know
that there exists L� = Poly(W�) s.t. if L > L�, then

J�n � argmax
j∈UL

n

µn , j = argmax
j∈UL

n

µ j = J(�)n .

Step � Now assuming that L > L�, and we show that for L large enough,�J(�)n ∈ VL
n . In the

same way that we proved (�.��) one can show that for all ∀ j ∈ VL
n ,

Wn(J(�)n , j) =
(µn ,I� − µn , j)�

�σ � � �
Tn ,I�

+ �
Tn , j
�
≥ L���∆�

min
��σ � .

Again, denote J�n � argmax j∈UL
n
µn , j , we obtain

Wn(J(�)n , J�n) =

�������������������

� if µn , J�n ≥ µn , J(�)n
,

(µn , J(�)n
− µn , J�n )

�

�σ � �
�

�
Tn , J(�)n

+ �
Tn , J�n

�
�

else.
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In the second case, as already shown in Step � of Lemma �� we have that

�µn , J�n − µn , J�n � ≤ ∆max + �σW�

�
��� log(e + Tn , J�n )

� + Tn , J�n

≤ ∆max + �σW�

�
��� log(e +

√
L)

� +
√
L

,

since J�n ∈ UL
n . We also know that

�σ � �
�

�
Tn , J(�)n

+ �
Tn , J�n

�
�
≥ �σ �

Tn , J�n
≥ �σ �
√
L
.

�erefore, we get

Wn(J(�)n , J�n) ≤
√
L

�σ �

�
�
�
∆max + �σW�

�
��� log(e +

√
L)

� +
√
L

�
�
�

�

.

On the other hand, we know that for all j ∈ VL
n ,

Wn(J(�)n , j) ≥ L���∆�
min

��σ � .

�us, there exists L� s.t. if L > L�, then

∀ j ∈ VL
n , Wn(J(�)n , j) ≥ �Wn(J(�)n , J�n).

�at means�J(�)n ∉ VL
n and by consequence,�J(�)n ∈ VL

n .

Finally, taking L� =max(L� , L�), we have ∀L > L�, either J
(�)
n ∈ VL

n or�J(�)n ∈ VL
n .

Next we show that there exists at least one arm in VL
n for whom the probability of being pulled

is large enough. More precisely, we prove the following lemma.

Lemma ��. �ere exists L� = Poly(W�) s.t. for L > L� and for all n s.t. UL
n ≠ �, then there exists

Jn ∈ VL
n s.t.

ψn , Jn ≥
min(β, � − β)

K� � ψmin.

Proof. Using Lemma ��, we know that J(�)n or�J(�)n ∈ VL
n . We also know that under T3C, for any

arm i, ψn , i can be written as

ψn , i = βan , i + (� − β)�
j≠i

an , j
1{Wn( j, i) =mink≠ j Wn( j, k)}

� argmink≠ j Wn( j, k)�
.
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Note that (ψn , i)i sums to �,

�
i
ψn , i = β + (� − β)�

j
an , j�

i≠ j

1{Wn( j, i) =mink≠ j Wn( j, k)}
� argmink≠ j Wn( j, k)�

= β + (� − β)�
j
an , j = � .

�erefore, we have

ψn , J(�)n
≥ βan , J(�)n

≥ β
K

on one hand, since∑i∈A an , i = �. On the other hand, we have

ψ
n ,�J(�)n

≥ (� − β)
an , J(�)n

K

≥ � − β
K� ,

which concludes the proof.

�e rest of this subsection is exactly the same to that of TTTS. Indeed, with the above lemma,
we can show that the set of poorly explored arms UL

n is empty when n is large enough.

Lemma ��. Under T3C, there exists L� = Poly(W� ,W�) s.t. ∀L > L�, UL
�KL� = �.

Proof. See proof of Lemma �� in Appendix �.D.�.

We can �nally conclude the proof of Lemma � for T3C in the same way as for TTTS in Ap-
pendix �.D.�.

�.E.� Concentration of the empirical means,
proof of Lemma �� under T3C

As a corollary of the previous section, we can show the concentration of µn , i to µi , and the
proof remains the same as that of TTTS in Appendix �.D.�.

�.E.� Measurement e�ort concentration of the optimal arm,
proof of Lemma �� under T3C

Next, we show that the empirical armdraws proportion of the true best arm for T3C concentrates
to β when the total number of arm draws is su�ciently large.�is proof also remains the same
as that of TTTS in Appendix �.D.�.
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�.E.� Measurement e�ort concentration of other arms,
proof of Lemma �� under T3C

In this section, we show that, for T3C, the empirical measurement e�ort concentration also
holds for other arms than the true best arm. Note that this part di�ers from that of TTTS.

We again establish �rst an over-allocation implies negligible probability result as follow.

Lemma ��. UnderT3C, for every ξ ≤ ε� with ε� problemdependent, there exists S� = Poly(��ξ,W� ,W�)
such that for all n > S�, for all i ≠ I�,

Ψn , i

n
≥ ωβ

i + �ξ ⇒ ψn , i ≤ (K − �) exp�−
∆�
min

��σ �

� n
K
� .

Proof. Fix i ≠ I� s.t. Ψn , i�n ≥ ωβ
i + �ξ, then using Lemma �, there exists S� = Poly(��ξ,W�)

such that for any n > S�, we have
Tn , i

n
≥ ωβ

i + ξ.

�en,

ψn , i ≤ βan , i + (� − β)�
j≠i

an , j1{Wn( j, i) =min
k≠ j

Wn( j, k)}

≤ βan , i + (� − β)
�
� �j≠i ,I�

an , j + an ,I�1{Wn(I� , i) =min
k≠I� Wn(I� , k)}

�
�

≤ �
j≠I�

an , j + 1{Wn(I� , i) =min
k≠I� Wn(I� , k)}.

Next we show that the indicator function term in the previous inequality equals �.

Using Lemma � and Lemma �� for T3C, there exists S� = Poly(��ξ,W� ,W�) such that for any
n > S�,

�Tn ,I�
n
− β� ≤ ξ� and ∀ j ∈ A, �µn , j − µ j � ≤ ξ� .

Now if ∀ j ≠ I� , i, we have Tn , j�n > ωβ
j , then

n − �
n
= �

j∈A

Tn , j

n

= Tn ,I�
n
+ Tn , i

n
+ �

j≠I� , i
Tn , j

n

> β − ε� + ωβ
i + ε + �

j≠I� , i
ωβ

j ≥ �,

which is a contradiction.
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�us there exists at least one j� ≠ I� , i, such that Tn , j��n ≤ ω
β
j . Assuming n >max(S� , S�), we

have

Wn(I� , i) −Wn(I� , j�) =
(µn ,I� − µn , i)�

�σ � � �
Tn ,I�

+ �
Tn , i
�
−
(µn ,I� − µn , j�)�

�σ � � �
Tn ,I�

+ �
Tn , j�
�

≥ (µI� − µi − �ξ�)�

�σ � �
�

�
β − ξ�

+ �
ωβ
i + ξ

�
�

−
(µI� − µ j� + �ξ�)�

�σ �
�
�
�

�
β + ξ�

+ �
ωβ

j�

�
�
�

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
W ξ

i , j�

.

According to Proposition �,W ξ
i , j� converges to � when ξ goes to �, more precisely we have

W ξ
i , j� =

(µI� − µi)�

�σ �

�
�

β
β + ωβ

i

�
�

�

ξ + O(ξ�) ,

thus there exists a ε� such that for all ξ < ε� it holds for all i , j� ≠ I�,W ξ
i , j� > �. It follows then

Wn(I� , i) −min
k≠I� Wn(I� , k) ≥Wn(I� , i) −Wn(I� , j�) > �,

and 1{Wn(I� , i) =mink≠I� Wn(I� , k)} = �.

Knowing that Lemma �� is also valid for T3C, thus there exists M� = Poly(��∆min,W� ,W�)
such that for all n > M�,

∀ j ≠ I� , an , j ≤ exp�−
∆�
min

��σ �

� n
K
� ,

which then concludes the proof by taking S� �max(M� , S� , S�).

�e rest of this subsection almost coincides with that of TTTS. We �rst show that, starting
from some known moment, no arm is overly allocated. More precisely, we show the following
lemma.

Lemma ��. Under T3C, for every ξ, there exists S� = Poly(��ξ,W� ,W�) s.t. ∀n > S�,

∀i ∈ A, Ψn , i

n
≤ ωβ

i + �ξ.

Proof. See proof of Lemma �� in Appendix �.D.�. Note that the previous step does not match
exactly that of TTTS, so the proof would be slightly di�erent. However, the di�erence is only a
matter of constant, we thus still choose to skip this proof.

It remains to prove Lemma �� for T3C, which stays the same as that of TTTS.
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Proof of Lemma �� for T3C See proof of Lemma �� for TTTS in Appendix �.D.�.

�.F Proof of Lemma �
Finally, it remains to prove Lemma � under the Gaussian case before we can conclude for
�eorem �.� for TTTS or T3C.

Lemma �. Let δ, β ∈ (�, �). For any sampling rule which satis�es E �T ε
β� < ∞ for all ε > �, we

have
lim sup

δ→�

E [τδ]
log(��δ)

≤ �
Γ�β

,

if the sampling rule is coupled with stopping rule (�.�),

For the clarity, we recall the de�nition of generalized likelihood ratio. For any pair of arms i , j,
We �rst de�ne a weighted average of their empirical means,

µ̂n , i , j �
Tn , i

Tn , i + Tn , j
µ̂n , i +

Tn , j

Tn , i + Tn , j
µ̂n , j .

And if µ̂n , i ≥ µ̂n , j , then the generalized likelihood ratio Zn , i , j for Gaussian noise distributions
has the following analytic expression,

Zn , i , j � Tn , i d(µ̂n , i ; µ̂n , i , j) + Tn , jd(µ̂n , j ; µ̂n , i , j).

We further de�ne a statistic Zn as

Zn �max
i∈A

min
j∈A�{i}

Zn , i , j .

�e following lemma stated by Qin, Klabjan and Russo (����) is needed in our proof.

Lemma ��. For any ζ > �, there exists ε s.t. ∀n ≥ T ε
β , Zn ≥ (Γ�β − ζ)n.

To prove Lemma �, we need the Gaussian tail inequality (�.�) of Lemma �.

Proof. We know that

� − an ,I� = �
i≠I�

an , i

≤ �
i≠I�

Πn [θ i > θ I�]

= �
i≠I�

Πn [θ i − θ I� > �]

≤ (K − �)max
i≠I� Πn [θ i − θ I� > �] .
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We can further rewrite Πn [θ i − θ I� > �] as

Πn [θ i − θ I� > µn , i − µn ,I� + µn ,I� − µn , i] .

We choose ε su�ciently small such that the empirical best arm I�n = I�.�en, for all n ≥ Tn
β and

for any i ≠ I�, µn ,I� ≥ µn , i .�us, �x any ζ ∈ (�, Γ�β ��) and apply inequality (�.�) of Lemma �
with µn ,I� and µn , i , we have for any n ≥ T ε

β ,

� − an ,I� ≤ (K − �)max
i≠I�

�
�
exp�−(µn ,I

� − µn , i)�

�σ �
n , i ,I�

�

= (K − �) exp{−Zn}
�

≤
(K − �) exp�−(Γ�β − ζ)n�

�
.

�e last inequality is deduced from Lemma ��. By consequence,

∀n ≥ T ε
β , ln (� − an ,I�) ≤ ln

K − �
�
− (Γ�β − ζ)n.

On the other hand, we have for any n,

� − cn ,δ =
δ

�n(K − �)
√
�πe exp

�������

�
� ln

�n(K − �)
δ

�������

.

�us, there exists a deterministic time N s.t. ∀n ≥ N ,

ln (� − cn ,δ) = ln
δ

(K − �)
√
�πe
− ln n −

�
� ln

�n(K − �)
δ

≥ ln δ
�(K − �)

√
�πe
− ζn.

Let C� � (K − �)�
√
�πe, we have for any n ≥ N� � T ε

β + N ,

ln (� − an ,I�) − ln (� − cn ,δ) ≤ ln
C�

δ
− (Γ�β − �ζ)n, (�.��)

and it is clear that E [N�] <∞.

Let us consider the following two cases:

Case � �ere exists n ∈ [�,N�] s.t. an ,I� ≥ cn ,δ , then by de�nition,

τδ ≤ n ≤ N� .
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Case � For any n ∈ [�,N�], we have an ,I� < cn ,δ , then τδ ≥ N� + �, thus by Equation �.��,

� ≤ ln (� − aτδ−�,I�) − ln (� − cτδ−�,δ)

≤ ln C�

δ
− (Γ�β − �ζ)(τδ − �),

and we obtain

τδ ≤
ln(C��δ)
Γ�β − �ζ

+ �.

Combining the two cases, and we have for any ζ ∈ (�, Γ�β ��),

τδ ≤max
�������
N� ,

ln(C��δ)
Γ�β − �ζ

+ �
�������

≤ N� + � +
ln(C�)
Γ�β − �ζ

+ ln(��δ)
Γ�β − �ζ

.

Since E [N�] <∞, therefore

lim sup
δ

E [τδ]
log(��δ)

≤ �
Γ�β − �ζ

,∀ζ ∈ (�, Γ�β ��),

which concludes the proof.

�.G Technical Lemmas
�e whole �xed-con�dence analysis for the two sampling rules are both substantially based on
two lemmas: Lemma � of Qin, Klabjan and Russo, ���� and Lemma �. We prove Lemma � in
this section.

Lemma �. �ere exists a random variable W�, such that for all i ∈ A,

∀n ∈, �Tn , i −Ψn , i � ≤W�
�
(n + �) log(e� + n) a.s.,

and E �eλW�� <∞ for any λ > �.

Proof. �e proof shares some similarities with that of Lemma � of Qin, Klabjan and Russo,
����. For any arm i ∈ A, de�ne ∀n ∈ N,

Dn � Tn , i −Ψn , i ,

dn � 1{In = i} − ψn , i .
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It is clear that Dn = ∑n−�
l=� dl and E [dn �Fn−�] = �. Indeed,

E [dn �Fn−�] = E [1{In = i} − ψn , i �Fn−�]
= P [In = i�Fn−�] − E [P [In = i�Fn−�] �Fn−�]
= P [In = i�Fn−�] − P [In = i�Fn−�] = �.

�e second last equality holds sinceP [In = i�Fn−�] isFn−�-measurable.�usDn is amartingale,
whose increment are � sub-Gaussian as dn ∈ [−�, �] for all n.

Applying Corollary � of Abbasi-Yadkori, Pál and Szepesvári, �����, it holds that, with probability
larger than � − δ, for all n,

�Dn � ≤

�
���� (� + n) ln�

√
� + n
δ
�

which yields the �rst statement of Lemma �.

We now introduce the random variable

W� �max
n∈N

max
i∈A

�Tn , i −Ψn , i ��
(n + �) ln(e� + n)

.

Applying the previous inequality with δ = e−x
�
�� yields

P �∃n ∈ N� ∶ �Dn � >
�
(� + n) (ln (� + n) + x�)� ≤ e−x

�
�� ,

P �∃n ∈ N� ∶ �Dn � >
�
(� + n) ln (e� + n) x�� ≤ e−x

�
�� ,

where the last inequality uses that for all a, b ≥ �, we have ab ≥ a + b.

Consequently ∀x ≥ �, for all i ∈ A

P
�����
max
n∈N

�Tn , i −Ψn , i ��
(n + �) log (e� + n)

≥ x
�����
≤ e−x

�
�� .

Now taking a union bound over i ∈ A, we have ∀x ≥ �,

P [W� ≥ x] ≤ P
������
max
i∈A

max
n∈N

�Tn , i −Ψn , i �
(n + �) log �

√
e� + n�

≥ x
������

≤ P
������
�
i∈A

max
n∈N

�Tn , i −Ψn , i �
(n + �) log �

√
e� + n�

≥ x
������

≤ �
i∈A

P
������
max
n∈N

�Tn , i −Ψn , i �
(n + �) log �

√
e� + n�

≥ x
������

≤ Ke−x
�
�� .

�but we could actually use several deviation inequalities that hold uniformly over time for martingales with
sub-Gaussian increments
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�e previous inequalities imply that ∀i ∈ A and ∀n ∈ N, we have

�Tn , i −Ψn , i � ≤W�
�
(n + �) log(e� + n)

almost surely. Now it remains to show that ∀λ > �,E �eλW�� <∞. Fix some λ > �.

E �eλW�� = �
∞

x=�
P �eλW� ≥ x�dx = �

∞

y=�
P �eλW� ≥ e�λy� �λe�λy dy

= �λ�
�

y=�
P [W� ≥ �y] e�λy dy + �λ�

∞

y=�
P [W� ≥ �y] e�λy dy

≤ �λ�
�

y=�
P [W� ≥ �y] e�λy dy

�����������������������������������������������������������������������������������������������������������������������������������������������������������������������
=e�λ−�

+ �λC� �
∞

y=�
e−y

�
��e�λy dy

������������������������������������������������������������������������������������������������������������������������������������������
<∞

<∞,

where C� is some constant.

�.H Proof ofPosteriorConvergence for theGaussianBandit

�.H.� Proof of�eorem �.��, Gaussian case
�eorem �.��. Under TTTS, for Gaussian bandits with improper Gaussian priors, it holds almost
surely that

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

From�eorem � in Qin, Klabjan and Russo, ����, any allocation rule satisfying Tn , i�n → ωβ
i

for each i ∈ A, satis�es

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

�erefore, to prove�eorem �.��, it is su�cient to prove that under TTTS,

∀i ∈ {�, . . . ,K}, lim
n→∞

Tn , i

n
a .s= ωβ

i . (�.��)

Due to the concentration result in Lemma � that we restate below (and proved in Appendix �.D),
which will be useful at several places in the proof, observe that

lim
n→∞

Tn , i

n
a .s= ωβ

i ⇔ lim
n→∞

Ψn , i

n
a .s= ωβ

i ,

therefore it su�ces to establish the convergence of ψn , i = Ψn , i�n to ωβ
i , which we do next. For

that purpose, we need again the following maximality inequality lemma.

Lemma �. �ere exists a random variable W�, such that for all i ∈ A,

∀n ∈, �Tn , i −Ψn , i � ≤W�
�
(n + �) log(e� + n) a.s.,

and E �eλW�� <∞ for any λ > �.
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Step �: TTTS draws all arms in�nitely o�en and satis�es Tn ,I��n → β. More precisely, we
prove the following lemma.

Lemma ��. Under TTTS, it holds almost surely that

�. for all i ∈ A, limn→∞ Tn , i =∞.

�. an ,I� → �.

�. Tn ,I��n → β.

Proof. Our �rst ingredient is a lemma showing the implications of �nite measurement, and
consistency when all arms are sampled in�nitely o�en. Its proof follows standard posterior
concentration arguments and is given in Appendix �.H.�.

Lemma �� (Consistency and implications of �nite measurement).
Denote with I the arms that are sampled only a �nite amount of times:

I = {i ∈ {�, . . . , k} ∶ ∀n, Tn , i <∞}.

If I is empty, an , i converges almost surely to �when i = I� and to �when i ≠ I�. If I is non-empty,
then for every i ∈ I , we have lim inf n→∞ an , i > � a.s.

First we show that∑n∈N Tn , j =∞ for each arm j. Suppose otherwise. Let I again be the set of
arms to which only �nite measurement e�ort is allocated. Under TTTS, we have

ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�
,

so ψn , i ≥ βan , i .�erefore, by Lemma ��, if i ∈ I , then lim inf an , i > � implies that∑n ψn , i =
∞. By Lemma �, we then must have that limn→∞ Tn , i = ∞ as well: contradiction. �us,
limn→∞ Tn , i =∞ for all i, and we conclude that an ,I� → �, by Lemma ��.

For TTTS with parameter β this implies that ψn ,I� → β, and since we have a bound on �Tn , i�n−
ψn , i � in Lemma �, we have Tn ,I��n → β as well.

Step �: Controlling the over-allocation of sub-optimal arms. �e convergence of Tn ,I��n
to β leads to following interesting consequence, expressed in Lemma ��: if an arm is sampled
more o�en than its optimal proportion, the posterior probability of this arm to be optimal is
reduced compared to that of other sub-optimal arms.

Lemma �� (Over-allocation implies negligible probability). � Fix any ξ > � and j ≠ I�. With
probability �, under any allocation rule, if Tn ,I��n → β, there exist ξ′ > � and a sequence εn with
εn → � such that for any n ∈ N,

Tn , j

n
≥ ωβ

j + ξ⇒
an , j

maxi≠I� an , i
≤ e−n(ξ

′
+εn) .

�analogue of Lemma �� of Russo, ����
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Proof. We have Πn(Θ∪i≠I�) = ∑i≠I� an , i = � − an ,I� , therefore maxi≠I� an , i ≤ � − an ,I� . By
�eorem � of Qin, Klabjan and Russo, ���� we have, as Tn ,I��n → β,

lim sup
n→∞

− �
n
log�max

i≠I� an , i� ≤ Γ
�

β .

We also have the following from the standard Gaussian tail inequality, for n ≥ τ a�er which
µn ,I� ≥ µn , i , using that θ i − θ I� ∼ N (µn , i − µn ,I� , σ �

n , i + σ �
n ,I�) and σ �

n , i + σ �
n ,I� = σ �(��Tn , i +

��Tn ,I�),

an , i ≤ Πn(θ i ≥ θ I�) ≤ exp�
−(µn , i − µn ,I�)�

�σ �(��Tn ,I� + ��Tn , i)
� = exp�−n (µn , i − µn ,�)�

�σ �(n�Tn ,I� + n�Tn , i)
� .

�us, there exists a sequence εn → �, for which

an , j
maxi≠I� an , i

≤
exp�−n �

(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− εn����

exp�−n �Γ�β + εn����)

= exp�−n �
(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− Γ�β − εn�� .

Now we take a look at the two terms in the middle:
(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− Γ�β .

Note that the �rst term is increasing in Tn , j�n. We have the de�nition from Qin, Klabjan and
Russo, ����, for any j ≠ I�,

Γ�β =
(µ j − µI�)�

�σ � ���ωβ
I� + ��ω

β
j �

,

and we have the premise

Tn , j

n
≥ ωβ

j + ξ.

Combining these with the convergence of the empirical means to the true means (consistency,
see Lemma ��), we can conclude that for all ε > �, there exists a time n� such that for all later
times n ≥ n�, we have

(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
≥

(µ j − µI�)�

�σ � ���β + n�Tn , j�
− ε ≥

(µ j − µI�)�

�σ � ���β + ��(ωβ
j + ξ)�

− ε > Γ�β ,

where the �rst inequality follows from consistency, the second from monotonicity in Tn , j�n.
�at means that there exist a ξ′ > � such that

(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− Γ�β > ξ′ ,
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and thus the claim follows that when Tn , j
n ≥ ω

β
j + ξ, we have

an , j
maxi≠I� an , i

≤ exp�−n �
(µn , j − µn ,I�)�

�σ �(n�Tn ,I� + n�Tn , j)
− Γ�β − εn�� ≤ e−n(ξ

′
+εn) .

Step �:ψn , i converges to ω
β
i for all arms. To establish the convergence of the allocation e�ort

of all arms, we rely on the same su�cient condition used in the analysis of Russo, ����, that we
recall below.

Lemma �� (Su�cient condition for optimality). � Consider any adaptive allocation rule. If we
have

ψn ,I� → β, and �
n∈N

ψn , j��ψn , j ≥ ω
β
j + ξ� <∞, ∀ j ≠ I� , ξ > �, (�.��)

then ψn → ψβ .

First, note that fromLemma ��weknow thatTn ,I��n → β, an by Lemma � this impliesψn ,I� → β,
hence we can use Lemma �� to prove convergence to the optimal proportions.�us, we now
show that (�.��) holds under TTTS. Recall that J(�)n = argmax j an , j and J(�)n = argmax j≠J(�)n

an , j .

Since an ,I� → � by Lemma ��, there is some �nite time τ a�er which for all n > τ, J(�)n = I�.
Under TTTS,

ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�

≤ an , iβ + an , i(� − β)
∑ j≠i an , j
� − an , J(�)n

≤ an , iβ + an , i(� − β)
∑ j≠i an , j
an , J(�)n

≤ an , iβ + an , i(� − β)
�

an , J(�)n

≤ an , i
an , J(�)n

,

where we use the fact that for j ≠ J(�)n , we have an , J(�)n
≥ an , j and an , J(�)n

≤ � − an , J(�)n
. For n ≥ τ

this means that ψn , i ≤ an , i�max j≠I� an , i for any i ≠ I�.

By Lemma ��, there is a constant ξ′ > � such and a sequence εn → � such that

Tn , i�n ≥ wβ
i + ξ⇒

an , i
max j≠I� an , j

≤ e−n(ξ
′
−εn) .

�Lemma �� of Russo, ����
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Now take a time τ large enough, such that for n ≥ τ we have �Tn , j�n − ψn , j � ≤ ξ (which can be
found by Lemma �).�en we have

1�ψn , j ≥ ψ
β
j + ξ� ≤ 1�

Tn , j

n
≥ ωβ

j + �ξ�

�erefore, for all i ≠ I�, we have

�
n≥τ

ψn , i1�ψn , j ≥ ψ
β
j + ξ� ≤ �

n≥τ
ψn , i1�

Tn , j

n
≥ ωβ

j + �ξ� ≤ �
n≥τ

e−n(ξ
′
−εn) <∞.

�us (�.��) holds and the convergence to the optimal proportions follows by Lemma ��.

�.H.� Proof of auxiliary lemmas

Proof of Lemma �� Let I be nonempty. De�ne

µ∞,n � lim
n→∞

µn , i , and σ �
∞, i � lim

n→∞
σ �
n , i ,

and recall that for i ∈ A for which Tn , i = �, we have µni = µ�, i = � and σ �
n , i = σ �

�, i =∞, and if
Tn , i > �, we have

µn , i =
�

Tn , i

n−�
�
`=�

1{I` = i}Y`,I` , and σ �
n , i =

σ �

Tn , i
.

For all arms that are sampled in�nitely o�en, we therefore have µ∞, i = µi and σ �
∞, i = �. For

all arms that are sampled only a �nite number of times, i.e. i ∈ I , we have σ �
∞, i > �, and there

exists a time n� a�er which for all n ≥ n� and i ∈ I , we have Tn , i = Tn� , i . De�ne

Π∞ �N (µ∞,� , σ �
∞,�)⊗N (µ∞,� , σ �

∞,�)⊗ . . . ⊗N (µ∞,k , σ �
∞,k) =�

i�∈I
δµi ⊗�

i∈I
Πn� .

�en for each i ∈ A we de�ne

a∞, i � Π∞ �θ i >max
j≠i

θ j� .

�en we have for all i ∈ I , a∞, i ∈ (�, �), since σ �
∞, i > �, and thus a∞,I� < �.

When I is empty, we have an ,I� = Πn(θ I� > maxi≠I� θ i), but since Π∞ = �i∈A δµi , we have
a∞,I� = � and a∞, i = � for all i ≠ I�.
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�.I Proof ofPosteriorConvergence for theBernoulli Bandit

�.I.� Preliminaries
We �rst introduce a crucial Beta tail bound inequality. Let FBeta

a ,b denote the cdf of a Beta
distributionwith parameters a and b, and FB

c ,d the cdf of a Binomial distributionwith parameters
c and d, then we have the following relationship, o�en called the ‘Beta-Binomial trick’,

FBeta
a ,b (y) = � − FB

a+b−�,y(a − �),

so that we have

P [X ≥ x] = P [Ba+b−�,x ≤ a − �] = P [Ba+b−�,�−x ≥ b] .

We can bound Binomial tails with Sanov’s inequality:

e−nd(k�n ,x)

n + �
≤ P [Bn ,x ≥ k] ≤ e−nd(k�n ,x) ,

where the last inequalities hold when k ≥ nx.

Lemma ��. Let X ∼ Beta(a, b) and Y ∼ Beta(c, d) with � < a−�
a+b−� <

c−�
c+d−� . �en we have

P [X > Y] ≤ De−C where

C = inf
a−�

a+b−� ≤y≤ c−�
c+d−�

Ca ,b(y) + Cc ,d(y),

and
D = � +min�Ca ,b �

c − �
c + d − �

� ,Cc ,d �
a − �

a + b − �
�� .

Note that this lemma is the Bernoulli version of Lemma �.

�eorem �.��. Consider the Beta-Bernoulli setting. For β ∈ (�, �), under any allocation rule
satisfying Tn ,I��n → ωβ

I� ,

lim
n→∞
− �
n
log(� − an ,I�) ≤ Γ�β ,

and under any allocation rule satisfying Tn , i�n → ωβ
i for each i ∈ A,

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

Proof. Denote again with I again the set of arms sampled only �nitely many times. For I empty,
we thus have µ∞, i � limn→∞ µn , i = µi .�e posterior variance is

σ �
n , i =

αn , iβn , i
(αn , i + βn , i)�(αn , i + βn , i + �)

= (� +∑
n−�
`=� 1{I` = i}Y`,I`)(� + Tn , i −∑n−�

`=� 1{I` = i}Y`,I`)
(� + Tn , i)�(� + Tn , i + �)

.

We see that when I is empty, we have σ �
∞, i � limn→∞ σ �

n , i = �, i.e., the posterior is concentrated.
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Step �: A lower bound when some arms are sampled only �nitely o�en. First, note that
when Tn , i = � for some i ∈ A, the empirical mean for that arm equals the prior mean

µn , i = α�, i�(α�, i + β�, i),

and the variance is strictly positive:

σ �
n , i = (α�, iβ�, i)� �(α�, i + β�, i)�(α�, i + β�, i + �)� > �.

When I is not empty, then for every i ∈ I we have σ �
∞, i > �, and a∞, i ∈ (�, �), implying

a∞,I� < �, and thus

lim
n→∞
− �
n
log (� − an ,I�) = −

�
n
log (� − a∞,I�) = �.

Step �: A lower bound when every arm is sampled in�nitely o�en. Suppose now that I is
empty, then we have

max
i≠I� Πn(θ i ≥ θ I�) ≤ � − an ,I� ≤ �

i≠I�
Πn(θ i ≥ θ I�) ≤ (k − �)max

i≠I� Πn(θ i ≥ θ I�).

�us, we have �−an ,I� ≤ (k−�)maxi≠I� Πn(θ i ≥ θ I�) and also �−an ,I� �maxi≠I� Πn(θ i ≥ θ I�).
We have

Γ� =max
w∈W

min
i≠I� Ci(ωI� ,ω i),

Γ�β = max
w∈W ;ωI�=β

min
i≠I� Ci(β,ω i), with

Ci(ωI� ,ω i) =min
x∈R

ωI�d(θ I� ; x) + ω i d(θ i ; x) = ωI�d(θ I� ; θ) + ω i d(θ i ; θ),

where θ ∈ [θ i , θ I�] is the solution to

A′(θ) = ωI�A′(θ I�) + ω iA′(θ i)
ωI� + ω i

.

Since every arm is sampled in�nitely o�en, when n is large, we have µn ,I� > µn , i . De�ne
Sn , i � ∑n−�

`=� 1{I` = i}Y`,I` . Recall that the posterior is a Beta distribution with parameters
an , i = Sn , i + � and βn , i = Tn , i − Sn , i + �. Let τ ∈ N be such that for every n ≥ τ, we have
Sn , i�(Tn , i + �) < Sn ,I��(Tn ,I� + �). For the sake of simplicity, we de�ne for any i ∈ A the interval

Ii ,I� � �
Sn , i

Tn , i + �
,

Sn ,I�
Tn ,I� + �

� .

�en using Lemma �� with a = Sn , i + �, b = Tn , i − Sn , i + �, c = Sn ,I� + �, d = Tn ,I� − Sn ,I� + �, we
have

Πn(θ i − θ I� ≥ �) ≤ D exp�− inf
y∈I i ,I�

CSn , i+�,Tn , i−Sn , i+�(y) + CSn ,I�+�,Tn ,I�−Sn ,I�+�(y)� .
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�is implies

�
n
log
�
�

Πn(θ i ≥ θ I�)
exp�− inf y∈I i ,I� CSn , i+�,Tn , i−Sn , i+�(y) + CSn ,I�+�,Tn ,I�−Sn ,I�+�(y)�

�
�
≤ �
n
log(D),

which goes to zero as n goes to in�nity. Indeed replacing a, b, c, d by their values in the de�nition
of D we get

D ≤ � + (Tn , i − �)kl �
Sn , i

Tn , i + �
;

Sn ,I�
Tn ,I� + �

�

≤ � + (n + �)kl ��; n
n + �

�

= (n + �) log(n + �) .

Hence,

Πn(θ i ≥ θ I�) � exp�− inf
y∈I i ,I�

CSn , i+�,Tn , i−Sn , i+�(y) + CSn ,I�+�,Tn ,I�−Sn ,I�+�(y)� .

We thus have for any i,

� − an , i �max
j≠I� Πn �θ j ≥ θ I��

�max
j≠I� exp�− inf

y∈I j ,I�
CSn , j+�,Tn , j−Sn , j+�(y) + CSn ,I�+�,Tn ,I�−Sn ,I�+�(y)�

� exp�−nmin
j≠I� inf

y∈I j ,I�
Tn , j + �

n
kl �

Sn , j
Tn , j + �

; y� + Tn ,I� + �
n

kl � Sn ,I�
Tn ,I� + �

; y��

≥ exp�−nmax
ω

min
j≠I� inf

y∈I j ,I�
ω i kl �

Sn , j
Tn , j + �

; y� + ωI�kl �
Sn ,I�

Tn , j + �
; y�� .

Fix some ε > �, then there exists some n�(ε) such that for all n ≥ n�(ε), we have for any j,

I j ,I� = �
Sn , j

Tn , j + �
,

Sn ,I�
Tn ,I� + �

, � ⊂ �µ j + ε, µI� − ε� � I�j ,ε ,

and because KL-divergence is uniformly continuous on the compact interval I�j ,ε , there exists
an n� such that for every n ≥ n� we have

kl �
Sn , j

Tn , j + �
; y� ≥ (� − ε)kl �µ j ; y� ,

for any y and for all j ∈ A.�erefore, we have

� − an , i � exp�−nmax
ω

min
j≠I� inf

y∈I j ,I�
ω j kl �

Sn , j
Tn , j + �

; y� + ωI�kl �
Sn ,I�

Tn ,I� + �
; y��

≥ exp
�������
−nmax

ω
min
i≠I� inf

y∈I�j ,ε
ω i kl(µ j ; y) + ωI�kl(µI� ; y)

�������
.
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�erefore, we have

lim sup
n→∞

− �
n
log(� − an , i) ≤ Γ� .

If Tn , i�n → ω�i for each i ∈ A, we have

lim
n→∞

inf
y∈I i ,I�

Tn , i + �
n

kl � Sn , i
Tn , i + �

; y� + Tn ,I� + �
n

kl � Sn ,I�
Tn , i + �

; y�

= inf
y∈[µi , µI� ]

ω�i kl(µi ; y) + ω�I�kl(µI� ; y)

= Γ� ,

and thus

� − an , i � exp�−nmax
ω

min
j≠I� inf

y∈I�ε
ω i kl(µ j ; y) + ωI�kl(µI� ; y)�

� exp{−nΓ�} ,

implying

lim
n→∞
− �
n
log (� − an , i) = Γ� .

Everything goes similarly when ωI� = β ∈ (�, �), so under any sampling rule satisfying
Tn ,I��n → β we have

lim sup
n→∞

− �
n
log(� − an , i) ≤ Γ�β

and under any sampling rule satisfying Tn , i�n → ωβ
i for each i ∈ A, we have

lim
n→∞
− �
n
log(� − an , i) = Γ�β .

�.I.� Proof of�eorem �.��, Bernoulli case
�eorem �.��. Under TTTS, for Bernoulli bandits and uniform priors, it holds almost surely that

lim
n→∞
− �
n
log(� − an ,I�) = Γ�β .

From�eorem �.�� we know that under any allocation rule satisfying Tn , i�n → ωβ
i for every

i ∈ A, we have

lim
n→∞
− �
n
log (� − an ,I�) = Γ�β .
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�us, we only need to prove that under TTTS, for all i ∈ A, we have

lim
n→∞

Tn , i

n
a .s= ωβ

i .

Just as for the proof of the Gaussian case, we can use Lemma � (proof in Appendix �.H.�), which
implies

lim
n→∞

Tn , i

n
a .s= ωβ

i ⇔ lim
n→∞

Ψn , i

n
a .s= ωβ

i .

�erefore, it su�ces to show convergence for ψn , i = Ψn , i�n to ωβ
i , which we will do next,

following the same steps as in the proof for the Gaussian case.

Step �: TTTS draws all arms in�nitely o�en and satis�es Tn ,I��n → β. We prove the follow-
ing lemma.

Lemma ��. Under TTTS, it holds almost surely that

�. for all i ∈ A, limn→∞ Tn , i =∞.

�. an ,I� → �.

�. Tn ,I�
n → β.

Proof. First, we give a lemma showing the implications of �nite measurement, and consistency
when all arms are sampled in�nitely o�en, which provides a proof for �. �e proof of this
lemma follows from the proof of�eorem �.��, and is given in Appendix �.I.�.

Lemma �� (Consistency and implications of �nite measurement).
Denote with I the arms that are sampled only a �nite amount of times:

I = {i ∈ {�, . . . , k} ∶ ∀n, Tn , i <∞}.

If I is empty, an , i converges almost surely to �when i = I� and to �when i ≠ I�. If I is non-empty,
then for every i ∈ I , we have lim inf n→∞ an , i > � a.s.

Nowwe can show �. of Lemma ��: we show that under TTTS, for each j ∈ A, we have∑n∈N Tn , j =
∞.�e proof is exactly equal to the proof for Gaussian arms.

Under TTTS, we have

ψn , i = an , i
�
�
β + (� − β)�

j≠i

an , j
� − an , j

�
�
,

so ψn , i ≥ βan , i , therefore, by Lemma ��, if i ∈ I , then lim inf an , i > � implies that∑n ψn , i =
∞. By Lemma �, we then must have that limn→∞ Tn , i = ∞ as well: contradiction. �us,
limn→∞ Tn , i =∞ for all i, and we conclude that an ,I� → �, by Lemma ��.
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Lastly we prove point �. of Lemma ��. For TTTS with parameter β, the above implies that
ψn ,I� → β, and since we have a bound on �Tn , i�n − ψn , i � in Lemma �, we have Tn ,I��n → β as
well.

Step �: Controlling the over-allocation of sub-optimal arms. Following the proof for the
Gaussian case again, we can establish a consequence of the convergence of Tn ,I��n to β : if an
arm is sampled more o�en than its optimal proportion, the posterior probability of this arm to
be optimal is reduced compared to that of other sub-optimal arms. We can prove this by using
ingredients from the proof of the lower bound in�eorem �.��.

Lemma �� (Over-allocation implies negligible probability). �

Fix any ξ > � and j ≠ I�. With probability �, under any allocation rule, if Tn ,I��n → β, there
exist ξ′ > � and a sequence εn with εn → � such that for any n ∈ N,

Tn , j

n
≥ ωβ

j + ξ �⇒
an , j

maxi≠I� an , i
≤ e−n(ξ

′
+εn) .

Proof. By�eorem �.��, we have, as Tn ,I��n → β,

lim sup
n→∞

− �
n
log�max

i≠I� an , i� ≤ Γ
�

β ,

since maxi≠I� an , i ≤ � − an ,I� . We also have from Lemma �� a deviation inequality, so that we
can establish the following logarithmic equivalence:

an , j ≤ Πn(θ j ≥ θ I�) � exp�−nCj �wn ,I� ,ωn , j�� � exp�−nCj �β,ωn , j�� ,

where we denote ωn , j �
Tn , j
n . We can combine these results, which implies that there exists a

non-negative sequence εn → � such that

an , j
maxi≠I� an , i

≤
exp�−nCj �β,ωn , j� − εn���

exp�−n(Γ�β + ε��)�
= exp�−n �Cj �β,ωn , j� − Γ�β � − εn� .

We know that Cj �β,ωβ
j � is strictly increasing in ωβ

j , and Cj �β,ωβ
j � = Γ

�

β , thus, there exists
some ξ′ > � such that

ωn , j ≥ ωβ
j + ξ �⇒ Cj �β,ωn , j� − Γ�β > ξ′ .

�analogue of Lemma �� of Russo, ����
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Step �:ψn , i converges to ω
β
i for all arms. To establish the convergence of the allocation e�ort

of all arms, we rely on the same su�cient condition used in the analysis of Russo, ����, restated
above in Lemma ��, and we will restate it here again for convenience.

Lemma �� (Su�cient condition for optimality).
Consider any adaptive allocation rule. If

ψn ,I� → β, and �
n∈N

ψn , j��ψn , j ≥ ω
β
j + ξ� <∞, ∀ j ≠ I� , ξ > �, (�.��)

then ψn → ψβ .

First, note that from Lemma ��we know that Tn ,I�
n → β, and by Lemma � this implies ψn ,I� → β,

hence we can use the lemma above to prove convergence to the optimal proportions. �is
proof is already given in Step � of the proof for the Gaussian case, and since it does not depend
on the speci�cs of the Gaussian case, except for invoking Lemma �� (consistency), which
for the Bernoulli case we replace by Lemma ��, it gives a proof for the Bernoulli case as well.
We conclude that (�.��) holds, and the convergence to the optimal proportions follows by
Lemma ��.

�.I.� Proof of auxiliary lemmas

Lemma ��. Let X ∼ Beta(a, b) and Y ∼ Beta(c, d) with � < a−�
a+b−� <

c−�
c+d−� . �en we have

P [X > Y] ≤ De−C where

C = inf
a−�

a+b−� ≤y≤ c−�
c+d−�

Ca ,b(y) + Cc ,d(y),

and

D = � +min�Ca ,b �
c − �

c + d − �
� ,Cc ,d �

a − �
a + b − �

�� .

Proof

P [X > Y] = E [P [X > Y �Y]] ≤ E �1{Y < a − �
a + b − �

} + 1{Y ≥ a − �
a + b − �

}P [X > Y �Y]�

≤ exp�−(c + d − �)kl � c − �
c + d − �

;
a − �

a + b − �
��

+ E �exp�−(a + b − �)kl � a − �
a + b − �

;Y��1{Y ≥ a − �
a + b − �

}�
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

A

,
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Using the Beta-Binomial trick in the second inequality. Furthermore, we have

A ≤ E �1{ a − �
a + b − �

≤ Y ≤ c − �
c + d − �

}� exp�−(a + b − �)kl � a − �
a + b − �

;Y��
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

B

+ exp�−(a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
��

Denote with f the density of Y , then

B = �
c−�

c+d−�
a−�

a+b−�
exp�−(a + b − �)kl � a − �

a + b − �
; y�� f (y)dy.

Via integration by parts we obtain

B = �exp�−(a + b − �)kl � a − �
a + b − �

; y��P [Y ≤ y]�
c−�

c+d−�
a−�

a+b−�

+�
c−�

c+d−�
a−�

a+b−�
(a + b − �) d

dy
kl � a − �

a + b − �
; y� exp{−Ca ,b(y)}P(Y ≤ y)dy

≤ �
c−�

c+d−�
a−�

a+b−�
(a + b − �) d

dy
kl � a − �

a + b − �
; y� exp{−(Ca ,b(y) + Cc ,d(y))}dy

+ exp�−(a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
�� ,

where the �rst inequality uses the Binomial trick again. Let

C = inf
a−�

a+b−� ≤y≤ c−�
c+d−�
(a + b − �)kl � a − �

a + b − �
; y� + (c + d − �)kl � c − �

c + d − �
; y�

= inf
a−�

a+b−� ≤y≤ c−�
c+d−�

Ca ,b(y) + Cc ,d(y),

then note that in particular we have

C ≤min�(a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
� , (c + d − �)kl � c − �

c + d − �
;

a − �
a + b − �

��

=min�Ca ,b �
c − �

c + d − �
� ,Cc ,d �

a − �
a + b − �

�� .

�en

B ≤ e−C �
c−�

c+d−�
a−�

a+b−�
(a + b − �) d

dy
kl � a − �

a + b − �
; y�dy + e−C

= �(a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
� + �� e−C .
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�us we have

P [X > Y] ≤ �� + (a + b − �)kl � a − �
a + b − �

;
c − �

c + d − �
�� e−C .

By symmetry, we have

P [X > Y] ≤ �� +min�Ca ,b �
c − �

c + d − �
� ,Cc ,d �

a − �
a + b − �

��� e−C ,

where

C = inf
a−�

a+b−� ≤y≤ c−�
c+d−�
(a + b − �)kl � a − �

a + b − �
; y� + (c + d − �)kl � c − �

c + d − �
; y� .

Proof of Lemma �� Let I be empty, then we have µ∞, i � limn→∞ µn , i = µi .�e posterior
variance is

σ �
n , i =

αn , iβn , i
(αn , i + βn , i)�(αn , i + βn , i + �)

= (� +∑
n−�
`=� 1{I` = i}Y`,I`)(� + Tn , i −∑n−�

`=� 1{I` = i}Y`,I`)
(� + Tn , i)�(� + Tn , i + �)

,

We see that when I is empty, we have σ �
∞, i � limn→∞ σ �

n , i = �, i.e., the posterior is concentrated.

When Tn , i = � for some i ∈ A, the empirical mean for that arm equals the prior mean

µn , i = α�, i�(α�, i + β�, i),

and the variance is strictly positive:

σ �
n , i = (αn , iβn , i)� �(α�, i + β�, i)�(α�, i + β�, i + �)� > �.

When I is not empty, then for every i ∈ I we have σ �
∞, i > �, and α∞, i ∈ (�, �), implying

α∞,I� < �, hence the posterior is not concentrated.
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